]> git.proxmox.com Git - qemu.git/blame - hw/omap1.c
Omap DPLL & APLL locking logic.
[qemu.git] / hw / omap1.c
CommitLineData
c3d2689d
AZ
1/*
2 * TI OMAP processors emulation.
3 *
b4e3104b 4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
c3d2689d
AZ
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
827df9f3
AZ
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
c3d2689d
AZ
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
19 * MA 02111-1307 USA
20 */
87ecb68b
PB
21#include "hw.h"
22#include "arm-misc.h"
23#include "omap.h"
24#include "sysemu.h"
25#include "qemu-timer.h"
827df9f3 26#include "qemu-char.h"
87ecb68b
PB
27/* We use pc-style serial ports. */
28#include "pc.h"
c3d2689d 29
827df9f3 30/* Should signal the TCMI/GPMC */
66450b15
AZ
31uint32_t omap_badwidth_read8(void *opaque, target_phys_addr_t addr)
32{
02645926
AZ
33 uint8_t ret;
34
66450b15 35 OMAP_8B_REG(addr);
b854bc19 36 cpu_physical_memory_read(addr, (void *) &ret, 1);
02645926 37 return ret;
66450b15
AZ
38}
39
40void omap_badwidth_write8(void *opaque, target_phys_addr_t addr,
41 uint32_t value)
42{
b854bc19
AZ
43 uint8_t val8 = value;
44
66450b15 45 OMAP_8B_REG(addr);
b854bc19 46 cpu_physical_memory_write(addr, (void *) &val8, 1);
66450b15
AZ
47}
48
b30bb3a2 49uint32_t omap_badwidth_read16(void *opaque, target_phys_addr_t addr)
c3d2689d 50{
b854bc19
AZ
51 uint16_t ret;
52
c3d2689d 53 OMAP_16B_REG(addr);
b854bc19
AZ
54 cpu_physical_memory_read(addr, (void *) &ret, 2);
55 return ret;
c3d2689d
AZ
56}
57
b30bb3a2 58void omap_badwidth_write16(void *opaque, target_phys_addr_t addr,
c3d2689d
AZ
59 uint32_t value)
60{
b854bc19
AZ
61 uint16_t val16 = value;
62
c3d2689d 63 OMAP_16B_REG(addr);
b854bc19 64 cpu_physical_memory_write(addr, (void *) &val16, 2);
c3d2689d
AZ
65}
66
b30bb3a2 67uint32_t omap_badwidth_read32(void *opaque, target_phys_addr_t addr)
c3d2689d 68{
b854bc19
AZ
69 uint32_t ret;
70
c3d2689d 71 OMAP_32B_REG(addr);
b854bc19
AZ
72 cpu_physical_memory_read(addr, (void *) &ret, 4);
73 return ret;
c3d2689d
AZ
74}
75
b30bb3a2 76void omap_badwidth_write32(void *opaque, target_phys_addr_t addr,
c3d2689d
AZ
77 uint32_t value)
78{
79 OMAP_32B_REG(addr);
b854bc19 80 cpu_physical_memory_write(addr, (void *) &value, 4);
c3d2689d
AZ
81}
82
c3d2689d 83/* Interrupt Handlers */
106627d0 84struct omap_intr_handler_bank_s {
c3d2689d 85 uint32_t irqs;
106627d0 86 uint32_t inputs;
c3d2689d 87 uint32_t mask;
c3d2689d 88 uint32_t fiq;
106627d0 89 uint32_t sens_edge;
827df9f3 90 uint32_t swi;
106627d0 91 unsigned char priority[32];
c3d2689d
AZ
92};
93
106627d0
AZ
94struct omap_intr_handler_s {
95 qemu_irq *pins;
96 qemu_irq parent_intr[2];
97 target_phys_addr_t base;
98 unsigned char nbanks;
827df9f3 99 int level_only;
c3d2689d 100
106627d0
AZ
101 /* state */
102 uint32_t new_agr[2];
103 int sir_intr[2];
827df9f3
AZ
104 int autoidle;
105 uint32_t mask;
106 struct omap_intr_handler_bank_s bank[];
106627d0 107};
c3d2689d 108
106627d0
AZ
109static void omap_inth_sir_update(struct omap_intr_handler_s *s, int is_fiq)
110{
111 int i, j, sir_intr, p_intr, p, f;
112 uint32_t level;
113 sir_intr = 0;
114 p_intr = 255;
115
116 /* Find the interrupt line with the highest dynamic priority.
117 * Note: 0 denotes the hightest priority.
118 * If all interrupts have the same priority, the default order is IRQ_N,
119 * IRQ_N-1,...,IRQ_0. */
120 for (j = 0; j < s->nbanks; ++j) {
827df9f3
AZ
121 level = s->bank[j].irqs & ~s->bank[j].mask &
122 (is_fiq ? s->bank[j].fiq : ~s->bank[j].fiq);
106627d0
AZ
123 for (f = ffs(level), i = f - 1, level >>= f - 1; f; i += f,
124 level >>= f) {
827df9f3 125 p = s->bank[j].priority[i];
106627d0
AZ
126 if (p <= p_intr) {
127 p_intr = p;
128 sir_intr = 32 * j + i;
129 }
130 f = ffs(level >> 1);
131 }
cfa0b71d 132 }
106627d0 133 s->sir_intr[is_fiq] = sir_intr;
c3d2689d
AZ
134}
135
106627d0 136static inline void omap_inth_update(struct omap_intr_handler_s *s, int is_fiq)
c3d2689d 137{
106627d0
AZ
138 int i;
139 uint32_t has_intr = 0;
c3d2689d 140
106627d0 141 for (i = 0; i < s->nbanks; ++i)
827df9f3
AZ
142 has_intr |= s->bank[i].irqs & ~s->bank[i].mask &
143 (is_fiq ? s->bank[i].fiq : ~s->bank[i].fiq);
c3d2689d 144
827df9f3 145 if (s->new_agr[is_fiq] & has_intr & s->mask) {
106627d0
AZ
146 s->new_agr[is_fiq] = 0;
147 omap_inth_sir_update(s, is_fiq);
148 qemu_set_irq(s->parent_intr[is_fiq], 1);
c3d2689d 149 }
c3d2689d
AZ
150}
151
152#define INT_FALLING_EDGE 0
153#define INT_LOW_LEVEL 1
154
155static void omap_set_intr(void *opaque, int irq, int req)
156{
157 struct omap_intr_handler_s *ih = (struct omap_intr_handler_s *) opaque;
158 uint32_t rise;
159
827df9f3 160 struct omap_intr_handler_bank_s *bank = &ih->bank[irq >> 5];
106627d0
AZ
161 int n = irq & 31;
162
c3d2689d 163 if (req) {
106627d0
AZ
164 rise = ~bank->irqs & (1 << n);
165 if (~bank->sens_edge & (1 << n))
827df9f3 166 rise &= ~bank->inputs;
106627d0
AZ
167
168 bank->inputs |= (1 << n);
169 if (rise) {
170 bank->irqs |= rise;
171 omap_inth_update(ih, 0);
172 omap_inth_update(ih, 1);
173 }
c3d2689d 174 } else {
106627d0
AZ
175 rise = bank->sens_edge & bank->irqs & (1 << n);
176 bank->irqs &= ~rise;
177 bank->inputs &= ~(1 << n);
c3d2689d
AZ
178 }
179}
180
827df9f3
AZ
181/* Simplified version with no edge detection */
182static void omap_set_intr_noedge(void *opaque, int irq, int req)
183{
184 struct omap_intr_handler_s *ih = (struct omap_intr_handler_s *) opaque;
185 uint32_t rise;
186
187 struct omap_intr_handler_bank_s *bank = &ih->bank[irq >> 5];
188 int n = irq & 31;
189
190 if (req) {
191 rise = ~bank->inputs & (1 << n);
192 if (rise) {
193 bank->irqs |= bank->inputs |= rise;
194 omap_inth_update(ih, 0);
195 omap_inth_update(ih, 1);
196 }
197 } else
198 bank->irqs = (bank->inputs &= ~(1 << n)) | bank->swi;
199}
200
c3d2689d
AZ
201static uint32_t omap_inth_read(void *opaque, target_phys_addr_t addr)
202{
203 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
204 int i, offset = addr - s->base;
106627d0
AZ
205 int bank_no = offset >> 8;
206 int line_no;
827df9f3 207 struct omap_intr_handler_bank_s *bank = &s->bank[bank_no];
106627d0 208 offset &= 0xff;
c3d2689d
AZ
209
210 switch (offset) {
211 case 0x00: /* ITR */
106627d0 212 return bank->irqs;
c3d2689d
AZ
213
214 case 0x04: /* MIR */
106627d0 215 return bank->mask;
c3d2689d
AZ
216
217 case 0x10: /* SIR_IRQ_CODE */
106627d0
AZ
218 case 0x14: /* SIR_FIQ_CODE */
219 if (bank_no != 0)
220 break;
221 line_no = s->sir_intr[(offset - 0x10) >> 2];
827df9f3 222 bank = &s->bank[line_no >> 5];
106627d0
AZ
223 i = line_no & 31;
224 if (((bank->sens_edge >> i) & 1) == INT_FALLING_EDGE)
225 bank->irqs &= ~(1 << i);
f2df5260 226 return line_no;
c3d2689d
AZ
227
228 case 0x18: /* CONTROL_REG */
106627d0
AZ
229 if (bank_no != 0)
230 break;
c3d2689d
AZ
231 return 0;
232
233 case 0x1c: /* ILR0 */
234 case 0x20: /* ILR1 */
235 case 0x24: /* ILR2 */
236 case 0x28: /* ILR3 */
237 case 0x2c: /* ILR4 */
238 case 0x30: /* ILR5 */
239 case 0x34: /* ILR6 */
240 case 0x38: /* ILR7 */
241 case 0x3c: /* ILR8 */
242 case 0x40: /* ILR9 */
243 case 0x44: /* ILR10 */
244 case 0x48: /* ILR11 */
245 case 0x4c: /* ILR12 */
246 case 0x50: /* ILR13 */
247 case 0x54: /* ILR14 */
248 case 0x58: /* ILR15 */
249 case 0x5c: /* ILR16 */
250 case 0x60: /* ILR17 */
251 case 0x64: /* ILR18 */
252 case 0x68: /* ILR19 */
253 case 0x6c: /* ILR20 */
254 case 0x70: /* ILR21 */
255 case 0x74: /* ILR22 */
256 case 0x78: /* ILR23 */
257 case 0x7c: /* ILR24 */
258 case 0x80: /* ILR25 */
259 case 0x84: /* ILR26 */
260 case 0x88: /* ILR27 */
261 case 0x8c: /* ILR28 */
262 case 0x90: /* ILR29 */
263 case 0x94: /* ILR30 */
264 case 0x98: /* ILR31 */
265 i = (offset - 0x1c) >> 2;
106627d0
AZ
266 return (bank->priority[i] << 2) |
267 (((bank->sens_edge >> i) & 1) << 1) |
268 ((bank->fiq >> i) & 1);
c3d2689d
AZ
269
270 case 0x9c: /* ISR */
271 return 0x00000000;
272
c3d2689d 273 }
106627d0 274 OMAP_BAD_REG(addr);
c3d2689d
AZ
275 return 0;
276}
277
278static void omap_inth_write(void *opaque, target_phys_addr_t addr,
279 uint32_t value)
280{
281 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
282 int i, offset = addr - s->base;
106627d0 283 int bank_no = offset >> 8;
827df9f3 284 struct omap_intr_handler_bank_s *bank = &s->bank[bank_no];
106627d0 285 offset &= 0xff;
c3d2689d
AZ
286
287 switch (offset) {
288 case 0x00: /* ITR */
106627d0
AZ
289 /* Important: ignore the clearing if the IRQ is level-triggered and
290 the input bit is 1 */
291 bank->irqs &= value | (bank->inputs & bank->sens_edge);
c3d2689d
AZ
292 return;
293
294 case 0x04: /* MIR */
106627d0
AZ
295 bank->mask = value;
296 omap_inth_update(s, 0);
297 omap_inth_update(s, 1);
c3d2689d
AZ
298 return;
299
300 case 0x10: /* SIR_IRQ_CODE */
301 case 0x14: /* SIR_FIQ_CODE */
302 OMAP_RO_REG(addr);
303 break;
304
305 case 0x18: /* CONTROL_REG */
106627d0
AZ
306 if (bank_no != 0)
307 break;
308 if (value & 2) {
309 qemu_set_irq(s->parent_intr[1], 0);
310 s->new_agr[1] = ~0;
311 omap_inth_update(s, 1);
312 }
313 if (value & 1) {
314 qemu_set_irq(s->parent_intr[0], 0);
315 s->new_agr[0] = ~0;
316 omap_inth_update(s, 0);
317 }
c3d2689d
AZ
318 return;
319
320 case 0x1c: /* ILR0 */
321 case 0x20: /* ILR1 */
322 case 0x24: /* ILR2 */
323 case 0x28: /* ILR3 */
324 case 0x2c: /* ILR4 */
325 case 0x30: /* ILR5 */
326 case 0x34: /* ILR6 */
327 case 0x38: /* ILR7 */
328 case 0x3c: /* ILR8 */
329 case 0x40: /* ILR9 */
330 case 0x44: /* ILR10 */
331 case 0x48: /* ILR11 */
332 case 0x4c: /* ILR12 */
333 case 0x50: /* ILR13 */
334 case 0x54: /* ILR14 */
335 case 0x58: /* ILR15 */
336 case 0x5c: /* ILR16 */
337 case 0x60: /* ILR17 */
338 case 0x64: /* ILR18 */
339 case 0x68: /* ILR19 */
340 case 0x6c: /* ILR20 */
341 case 0x70: /* ILR21 */
342 case 0x74: /* ILR22 */
343 case 0x78: /* ILR23 */
344 case 0x7c: /* ILR24 */
345 case 0x80: /* ILR25 */
346 case 0x84: /* ILR26 */
347 case 0x88: /* ILR27 */
348 case 0x8c: /* ILR28 */
349 case 0x90: /* ILR29 */
350 case 0x94: /* ILR30 */
351 case 0x98: /* ILR31 */
352 i = (offset - 0x1c) >> 2;
106627d0
AZ
353 bank->priority[i] = (value >> 2) & 0x1f;
354 bank->sens_edge &= ~(1 << i);
355 bank->sens_edge |= ((value >> 1) & 1) << i;
356 bank->fiq &= ~(1 << i);
357 bank->fiq |= (value & 1) << i;
c3d2689d
AZ
358 return;
359
360 case 0x9c: /* ISR */
361 for (i = 0; i < 32; i ++)
362 if (value & (1 << i)) {
106627d0 363 omap_set_intr(s, 32 * bank_no + i, 1);
c3d2689d
AZ
364 return;
365 }
366 return;
c3d2689d 367 }
106627d0 368 OMAP_BAD_REG(addr);
c3d2689d
AZ
369}
370
371static CPUReadMemoryFunc *omap_inth_readfn[] = {
372 omap_badwidth_read32,
373 omap_badwidth_read32,
374 omap_inth_read,
375};
376
377static CPUWriteMemoryFunc *omap_inth_writefn[] = {
378 omap_inth_write,
379 omap_inth_write,
380 omap_inth_write,
381};
382
106627d0 383void omap_inth_reset(struct omap_intr_handler_s *s)
c3d2689d 384{
106627d0
AZ
385 int i;
386
387 for (i = 0; i < s->nbanks; ++i){
827df9f3
AZ
388 s->bank[i].irqs = 0x00000000;
389 s->bank[i].mask = 0xffffffff;
390 s->bank[i].sens_edge = 0x00000000;
391 s->bank[i].fiq = 0x00000000;
392 s->bank[i].inputs = 0x00000000;
393 s->bank[i].swi = 0x00000000;
394 memset(s->bank[i].priority, 0, sizeof(s->bank[i].priority));
395
396 if (s->level_only)
397 s->bank[i].sens_edge = 0xffffffff;
106627d0 398 }
c3d2689d 399
106627d0
AZ
400 s->new_agr[0] = ~0;
401 s->new_agr[1] = ~0;
402 s->sir_intr[0] = 0;
403 s->sir_intr[1] = 0;
827df9f3
AZ
404 s->autoidle = 0;
405 s->mask = ~0;
106627d0
AZ
406
407 qemu_set_irq(s->parent_intr[0], 0);
408 qemu_set_irq(s->parent_intr[1], 0);
c3d2689d
AZ
409}
410
411struct omap_intr_handler_s *omap_inth_init(target_phys_addr_t base,
827df9f3 412 unsigned long size, unsigned char nbanks, qemu_irq **pins,
106627d0 413 qemu_irq parent_irq, qemu_irq parent_fiq, omap_clk clk)
c3d2689d
AZ
414{
415 int iomemtype;
416 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *)
106627d0
AZ
417 qemu_mallocz(sizeof(struct omap_intr_handler_s) +
418 sizeof(struct omap_intr_handler_bank_s) * nbanks);
c3d2689d 419
106627d0
AZ
420 s->parent_intr[0] = parent_irq;
421 s->parent_intr[1] = parent_fiq;
c3d2689d 422 s->base = base;
106627d0
AZ
423 s->nbanks = nbanks;
424 s->pins = qemu_allocate_irqs(omap_set_intr, s, nbanks * 32);
827df9f3
AZ
425 if (pins)
426 *pins = s->pins;
106627d0 427
c3d2689d
AZ
428 omap_inth_reset(s);
429
430 iomemtype = cpu_register_io_memory(0, omap_inth_readfn,
431 omap_inth_writefn, s);
432 cpu_register_physical_memory(s->base, size, iomemtype);
433
434 return s;
435}
436
827df9f3
AZ
437static uint32_t omap2_inth_read(void *opaque, target_phys_addr_t addr)
438{
439 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
440 int offset = addr - s->base;
441 int bank_no, line_no;
442 struct omap_intr_handler_bank_s *bank = 0;
443
444 if ((offset & 0xf80) == 0x80) {
445 bank_no = (offset & 0x60) >> 5;
446 if (bank_no < s->nbanks) {
447 offset &= ~0x60;
448 bank = &s->bank[bank_no];
449 }
450 }
451
452 switch (offset) {
453 case 0x00: /* INTC_REVISION */
454 return 0x21;
455
456 case 0x10: /* INTC_SYSCONFIG */
457 return (s->autoidle >> 2) & 1;
458
459 case 0x14: /* INTC_SYSSTATUS */
460 return 1; /* RESETDONE */
461
462 case 0x40: /* INTC_SIR_IRQ */
463 return s->sir_intr[0];
464
465 case 0x44: /* INTC_SIR_FIQ */
466 return s->sir_intr[1];
467
468 case 0x48: /* INTC_CONTROL */
469 return (!s->mask) << 2; /* GLOBALMASK */
470
471 case 0x4c: /* INTC_PROTECTION */
472 return 0;
473
474 case 0x50: /* INTC_IDLE */
475 return s->autoidle & 3;
476
477 /* Per-bank registers */
478 case 0x80: /* INTC_ITR */
479 return bank->inputs;
480
481 case 0x84: /* INTC_MIR */
482 return bank->mask;
483
484 case 0x88: /* INTC_MIR_CLEAR */
485 case 0x8c: /* INTC_MIR_SET */
486 return 0;
487
488 case 0x90: /* INTC_ISR_SET */
489 return bank->swi;
490
491 case 0x94: /* INTC_ISR_CLEAR */
492 return 0;
493
494 case 0x98: /* INTC_PENDING_IRQ */
495 return bank->irqs & ~bank->mask & ~bank->fiq;
496
497 case 0x9c: /* INTC_PENDING_FIQ */
498 return bank->irqs & ~bank->mask & bank->fiq;
499
500 /* Per-line registers */
501 case 0x100 ... 0x300: /* INTC_ILR */
502 bank_no = (offset - 0x100) >> 7;
503 if (bank_no > s->nbanks)
504 break;
505 bank = &s->bank[bank_no];
506 line_no = (offset & 0x7f) >> 2;
507 return (bank->priority[line_no] << 2) |
508 ((bank->fiq >> line_no) & 1);
509 }
510 OMAP_BAD_REG(addr);
511 return 0;
512}
513
514static void omap2_inth_write(void *opaque, target_phys_addr_t addr,
515 uint32_t value)
516{
517 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
518 int offset = addr - s->base;
519 int bank_no, line_no;
520 struct omap_intr_handler_bank_s *bank = 0;
521
522 if ((offset & 0xf80) == 0x80) {
523 bank_no = (offset & 0x60) >> 5;
524 if (bank_no < s->nbanks) {
525 offset &= ~0x60;
526 bank = &s->bank[bank_no];
527 }
528 }
529
530 switch (offset) {
531 case 0x10: /* INTC_SYSCONFIG */
532 s->autoidle &= 4;
533 s->autoidle |= (value & 1) << 2;
534 if (value & 2) /* SOFTRESET */
535 omap_inth_reset(s);
536 return;
537
538 case 0x48: /* INTC_CONTROL */
539 s->mask = (value & 4) ? 0 : ~0; /* GLOBALMASK */
540 if (value & 2) { /* NEWFIQAGR */
541 qemu_set_irq(s->parent_intr[1], 0);
542 s->new_agr[1] = ~0;
543 omap_inth_update(s, 1);
544 }
545 if (value & 1) { /* NEWIRQAGR */
546 qemu_set_irq(s->parent_intr[0], 0);
547 s->new_agr[0] = ~0;
548 omap_inth_update(s, 0);
549 }
550 return;
551
552 case 0x4c: /* INTC_PROTECTION */
553 /* TODO: Make a bitmap (or sizeof(char)map) of access privileges
554 * for every register, see Chapter 3 and 4 for privileged mode. */
555 if (value & 1)
556 fprintf(stderr, "%s: protection mode enable attempt\n",
557 __FUNCTION__);
558 return;
559
560 case 0x50: /* INTC_IDLE */
561 s->autoidle &= ~3;
562 s->autoidle |= value & 3;
563 return;
564
565 /* Per-bank registers */
566 case 0x84: /* INTC_MIR */
567 bank->mask = value;
568 omap_inth_update(s, 0);
569 omap_inth_update(s, 1);
570 return;
571
572 case 0x88: /* INTC_MIR_CLEAR */
573 bank->mask &= ~value;
574 omap_inth_update(s, 0);
575 omap_inth_update(s, 1);
576 return;
577
578 case 0x8c: /* INTC_MIR_SET */
579 bank->mask |= value;
580 return;
581
582 case 0x90: /* INTC_ISR_SET */
583 bank->irqs |= bank->swi |= value;
584 omap_inth_update(s, 0);
585 omap_inth_update(s, 1);
586 return;
587
588 case 0x94: /* INTC_ISR_CLEAR */
589 bank->swi &= ~value;
590 bank->irqs = bank->swi & bank->inputs;
591 return;
592
593 /* Per-line registers */
594 case 0x100 ... 0x300: /* INTC_ILR */
595 bank_no = (offset - 0x100) >> 7;
596 if (bank_no > s->nbanks)
597 break;
598 bank = &s->bank[bank_no];
599 line_no = (offset & 0x7f) >> 2;
600 bank->priority[line_no] = (value >> 2) & 0x3f;
601 bank->fiq &= ~(1 << line_no);
602 bank->fiq |= (value & 1) << line_no;
603 return;
604
605 case 0x00: /* INTC_REVISION */
606 case 0x14: /* INTC_SYSSTATUS */
607 case 0x40: /* INTC_SIR_IRQ */
608 case 0x44: /* INTC_SIR_FIQ */
609 case 0x80: /* INTC_ITR */
610 case 0x98: /* INTC_PENDING_IRQ */
611 case 0x9c: /* INTC_PENDING_FIQ */
612 OMAP_RO_REG(addr);
613 return;
614 }
615 OMAP_BAD_REG(addr);
616}
617
618static CPUReadMemoryFunc *omap2_inth_readfn[] = {
619 omap_badwidth_read32,
620 omap_badwidth_read32,
621 omap2_inth_read,
622};
623
624static CPUWriteMemoryFunc *omap2_inth_writefn[] = {
625 omap2_inth_write,
626 omap2_inth_write,
627 omap2_inth_write,
628};
629
630struct omap_intr_handler_s *omap2_inth_init(target_phys_addr_t base,
631 int size, int nbanks, qemu_irq **pins,
632 qemu_irq parent_irq, qemu_irq parent_fiq,
633 omap_clk fclk, omap_clk iclk)
634{
635 int iomemtype;
636 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *)
637 qemu_mallocz(sizeof(struct omap_intr_handler_s) +
638 sizeof(struct omap_intr_handler_bank_s) * nbanks);
639
640 s->parent_intr[0] = parent_irq;
641 s->parent_intr[1] = parent_fiq;
642 s->base = base;
643 s->nbanks = nbanks;
644 s->level_only = 1;
645 s->pins = qemu_allocate_irqs(omap_set_intr_noedge, s, nbanks * 32);
646 if (pins)
647 *pins = s->pins;
648
649 omap_inth_reset(s);
650
651 iomemtype = cpu_register_io_memory(0, omap2_inth_readfn,
652 omap2_inth_writefn, s);
653 cpu_register_physical_memory(s->base, size, iomemtype);
654
655 return s;
656}
657
c3d2689d
AZ
658/* MPU OS timers */
659struct omap_mpu_timer_s {
660 qemu_irq irq;
661 omap_clk clk;
662 target_phys_addr_t base;
663 uint32_t val;
664 int64_t time;
665 QEMUTimer *timer;
666 int64_t rate;
667 int it_ena;
668
669 int enable;
670 int ptv;
671 int ar;
672 int st;
673 uint32_t reset_val;
674};
675
676static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
677{
678 uint64_t distance = qemu_get_clock(vm_clock) - timer->time;
679
680 if (timer->st && timer->enable && timer->rate)
681 return timer->val - muldiv64(distance >> (timer->ptv + 1),
682 timer->rate, ticks_per_sec);
683 else
684 return timer->val;
685}
686
687static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
688{
689 timer->val = omap_timer_read(timer);
690 timer->time = qemu_get_clock(vm_clock);
691}
692
693static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
694{
695 int64_t expires;
696
697 if (timer->enable && timer->st && timer->rate) {
698 timer->val = timer->reset_val; /* Should skip this on clk enable */
b8b137d6 699 expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
c3d2689d 700 ticks_per_sec, timer->rate);
b854bc19
AZ
701
702 /* If timer expiry would be sooner than in about 1 ms and
703 * auto-reload isn't set, then fire immediately. This is a hack
704 * to make systems like PalmOS run in acceptable time. PalmOS
705 * sets the interval to a very low value and polls the status bit
706 * in a busy loop when it wants to sleep just a couple of CPU
707 * ticks. */
708 if (expires > (ticks_per_sec >> 10) || timer->ar)
709 qemu_mod_timer(timer->timer, timer->time + expires);
710 else {
711 timer->val = 0;
712 timer->st = 0;
713 if (timer->it_ena)
106627d0
AZ
714 /* Edge-triggered irq */
715 qemu_irq_pulse(timer->irq);
b854bc19 716 }
c3d2689d
AZ
717 } else
718 qemu_del_timer(timer->timer);
719}
720
721static void omap_timer_tick(void *opaque)
722{
723 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
724 omap_timer_sync(timer);
725
726 if (!timer->ar) {
727 timer->val = 0;
728 timer->st = 0;
729 }
730
731 if (timer->it_ena)
106627d0
AZ
732 /* Edge-triggered irq */
733 qemu_irq_pulse(timer->irq);
c3d2689d
AZ
734 omap_timer_update(timer);
735}
736
737static void omap_timer_clk_update(void *opaque, int line, int on)
738{
739 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
740
741 omap_timer_sync(timer);
742 timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
743 omap_timer_update(timer);
744}
745
746static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
747{
748 omap_clk_adduser(timer->clk,
749 qemu_allocate_irqs(omap_timer_clk_update, timer, 1)[0]);
750 timer->rate = omap_clk_getrate(timer->clk);
751}
752
753static uint32_t omap_mpu_timer_read(void *opaque, target_phys_addr_t addr)
754{
755 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
756 int offset = addr - s->base;
757
758 switch (offset) {
759 case 0x00: /* CNTL_TIMER */
760 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
761
762 case 0x04: /* LOAD_TIM */
763 break;
764
765 case 0x08: /* READ_TIM */
766 return omap_timer_read(s);
767 }
768
769 OMAP_BAD_REG(addr);
770 return 0;
771}
772
773static void omap_mpu_timer_write(void *opaque, target_phys_addr_t addr,
774 uint32_t value)
775{
776 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
777 int offset = addr - s->base;
778
779 switch (offset) {
780 case 0x00: /* CNTL_TIMER */
781 omap_timer_sync(s);
782 s->enable = (value >> 5) & 1;
783 s->ptv = (value >> 2) & 7;
784 s->ar = (value >> 1) & 1;
785 s->st = value & 1;
786 omap_timer_update(s);
787 return;
788
789 case 0x04: /* LOAD_TIM */
790 s->reset_val = value;
791 return;
792
793 case 0x08: /* READ_TIM */
794 OMAP_RO_REG(addr);
795 break;
796
797 default:
798 OMAP_BAD_REG(addr);
799 }
800}
801
802static CPUReadMemoryFunc *omap_mpu_timer_readfn[] = {
803 omap_badwidth_read32,
804 omap_badwidth_read32,
805 omap_mpu_timer_read,
806};
807
808static CPUWriteMemoryFunc *omap_mpu_timer_writefn[] = {
809 omap_badwidth_write32,
810 omap_badwidth_write32,
811 omap_mpu_timer_write,
812};
813
814static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
815{
816 qemu_del_timer(s->timer);
817 s->enable = 0;
818 s->reset_val = 31337;
819 s->val = 0;
820 s->ptv = 0;
821 s->ar = 0;
822 s->st = 0;
823 s->it_ena = 1;
824}
825
826struct omap_mpu_timer_s *omap_mpu_timer_init(target_phys_addr_t base,
827 qemu_irq irq, omap_clk clk)
828{
829 int iomemtype;
830 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *)
831 qemu_mallocz(sizeof(struct omap_mpu_timer_s));
832
833 s->irq = irq;
834 s->clk = clk;
835 s->base = base;
836 s->timer = qemu_new_timer(vm_clock, omap_timer_tick, s);
837 omap_mpu_timer_reset(s);
838 omap_timer_clk_setup(s);
839
840 iomemtype = cpu_register_io_memory(0, omap_mpu_timer_readfn,
841 omap_mpu_timer_writefn, s);
842 cpu_register_physical_memory(s->base, 0x100, iomemtype);
843
844 return s;
845}
846
847/* Watchdog timer */
848struct omap_watchdog_timer_s {
849 struct omap_mpu_timer_s timer;
850 uint8_t last_wr;
851 int mode;
852 int free;
853 int reset;
854};
855
856static uint32_t omap_wd_timer_read(void *opaque, target_phys_addr_t addr)
857{
858 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
859 int offset = addr - s->timer.base;
860
861 switch (offset) {
862 case 0x00: /* CNTL_TIMER */
863 return (s->timer.ptv << 9) | (s->timer.ar << 8) |
864 (s->timer.st << 7) | (s->free << 1);
865
866 case 0x04: /* READ_TIMER */
867 return omap_timer_read(&s->timer);
868
869 case 0x08: /* TIMER_MODE */
870 return s->mode << 15;
871 }
872
873 OMAP_BAD_REG(addr);
874 return 0;
875}
876
877static void omap_wd_timer_write(void *opaque, target_phys_addr_t addr,
878 uint32_t value)
879{
880 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
881 int offset = addr - s->timer.base;
882
883 switch (offset) {
884 case 0x00: /* CNTL_TIMER */
885 omap_timer_sync(&s->timer);
886 s->timer.ptv = (value >> 9) & 7;
887 s->timer.ar = (value >> 8) & 1;
888 s->timer.st = (value >> 7) & 1;
889 s->free = (value >> 1) & 1;
890 omap_timer_update(&s->timer);
891 break;
892
893 case 0x04: /* LOAD_TIMER */
894 s->timer.reset_val = value & 0xffff;
895 break;
896
897 case 0x08: /* TIMER_MODE */
898 if (!s->mode && ((value >> 15) & 1))
899 omap_clk_get(s->timer.clk);
900 s->mode |= (value >> 15) & 1;
901 if (s->last_wr == 0xf5) {
902 if ((value & 0xff) == 0xa0) {
d8f699cb
AZ
903 if (s->mode) {
904 s->mode = 0;
905 omap_clk_put(s->timer.clk);
906 }
c3d2689d
AZ
907 } else {
908 /* XXX: on T|E hardware somehow this has no effect,
909 * on Zire 71 it works as specified. */
910 s->reset = 1;
911 qemu_system_reset_request();
912 }
913 }
914 s->last_wr = value & 0xff;
915 break;
916
917 default:
918 OMAP_BAD_REG(addr);
919 }
920}
921
922static CPUReadMemoryFunc *omap_wd_timer_readfn[] = {
923 omap_badwidth_read16,
924 omap_wd_timer_read,
925 omap_badwidth_read16,
926};
927
928static CPUWriteMemoryFunc *omap_wd_timer_writefn[] = {
929 omap_badwidth_write16,
930 omap_wd_timer_write,
931 omap_badwidth_write16,
932};
933
934static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
935{
936 qemu_del_timer(s->timer.timer);
937 if (!s->mode)
938 omap_clk_get(s->timer.clk);
939 s->mode = 1;
940 s->free = 1;
941 s->reset = 0;
942 s->timer.enable = 1;
943 s->timer.it_ena = 1;
944 s->timer.reset_val = 0xffff;
945 s->timer.val = 0;
946 s->timer.st = 0;
947 s->timer.ptv = 0;
948 s->timer.ar = 0;
949 omap_timer_update(&s->timer);
950}
951
952struct omap_watchdog_timer_s *omap_wd_timer_init(target_phys_addr_t base,
953 qemu_irq irq, omap_clk clk)
954{
955 int iomemtype;
956 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *)
957 qemu_mallocz(sizeof(struct omap_watchdog_timer_s));
958
959 s->timer.irq = irq;
960 s->timer.clk = clk;
961 s->timer.base = base;
962 s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
963 omap_wd_timer_reset(s);
964 omap_timer_clk_setup(&s->timer);
965
966 iomemtype = cpu_register_io_memory(0, omap_wd_timer_readfn,
967 omap_wd_timer_writefn, s);
968 cpu_register_physical_memory(s->timer.base, 0x100, iomemtype);
969
970 return s;
971}
972
973/* 32-kHz timer */
974struct omap_32khz_timer_s {
975 struct omap_mpu_timer_s timer;
976};
977
978static uint32_t omap_os_timer_read(void *opaque, target_phys_addr_t addr)
979{
980 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
cf965d24 981 int offset = addr & OMAP_MPUI_REG_MASK;
c3d2689d
AZ
982
983 switch (offset) {
984 case 0x00: /* TVR */
985 return s->timer.reset_val;
986
987 case 0x04: /* TCR */
988 return omap_timer_read(&s->timer);
989
990 case 0x08: /* CR */
991 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
992
993 default:
994 break;
995 }
996 OMAP_BAD_REG(addr);
997 return 0;
998}
999
1000static void omap_os_timer_write(void *opaque, target_phys_addr_t addr,
1001 uint32_t value)
1002{
1003 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
cf965d24 1004 int offset = addr & OMAP_MPUI_REG_MASK;
c3d2689d
AZ
1005
1006 switch (offset) {
1007 case 0x00: /* TVR */
1008 s->timer.reset_val = value & 0x00ffffff;
1009 break;
1010
1011 case 0x04: /* TCR */
1012 OMAP_RO_REG(addr);
1013 break;
1014
1015 case 0x08: /* CR */
1016 s->timer.ar = (value >> 3) & 1;
1017 s->timer.it_ena = (value >> 2) & 1;
1018 if (s->timer.st != (value & 1) || (value & 2)) {
1019 omap_timer_sync(&s->timer);
1020 s->timer.enable = value & 1;
1021 s->timer.st = value & 1;
1022 omap_timer_update(&s->timer);
1023 }
1024 break;
1025
1026 default:
1027 OMAP_BAD_REG(addr);
1028 }
1029}
1030
1031static CPUReadMemoryFunc *omap_os_timer_readfn[] = {
1032 omap_badwidth_read32,
1033 omap_badwidth_read32,
1034 omap_os_timer_read,
1035};
1036
1037static CPUWriteMemoryFunc *omap_os_timer_writefn[] = {
1038 omap_badwidth_write32,
1039 omap_badwidth_write32,
1040 omap_os_timer_write,
1041};
1042
1043static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
1044{
1045 qemu_del_timer(s->timer.timer);
1046 s->timer.enable = 0;
1047 s->timer.it_ena = 0;
1048 s->timer.reset_val = 0x00ffffff;
1049 s->timer.val = 0;
1050 s->timer.st = 0;
1051 s->timer.ptv = 0;
1052 s->timer.ar = 1;
1053}
1054
1055struct omap_32khz_timer_s *omap_os_timer_init(target_phys_addr_t base,
1056 qemu_irq irq, omap_clk clk)
1057{
1058 int iomemtype;
1059 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *)
1060 qemu_mallocz(sizeof(struct omap_32khz_timer_s));
1061
1062 s->timer.irq = irq;
1063 s->timer.clk = clk;
1064 s->timer.base = base;
1065 s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
1066 omap_os_timer_reset(s);
1067 omap_timer_clk_setup(&s->timer);
1068
1069 iomemtype = cpu_register_io_memory(0, omap_os_timer_readfn,
1070 omap_os_timer_writefn, s);
1071 cpu_register_physical_memory(s->timer.base, 0x800, iomemtype);
1072
1073 return s;
1074}
1075
1076/* Ultra Low-Power Device Module */
1077static uint32_t omap_ulpd_pm_read(void *opaque, target_phys_addr_t addr)
1078{
1079 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1080 int offset = addr - s->ulpd_pm_base;
1081 uint16_t ret;
1082
1083 switch (offset) {
1084 case 0x14: /* IT_STATUS */
1085 ret = s->ulpd_pm_regs[offset >> 2];
1086 s->ulpd_pm_regs[offset >> 2] = 0;
1087 qemu_irq_lower(s->irq[1][OMAP_INT_GAUGE_32K]);
1088 return ret;
1089
1090 case 0x18: /* Reserved */
1091 case 0x1c: /* Reserved */
1092 case 0x20: /* Reserved */
1093 case 0x28: /* Reserved */
1094 case 0x2c: /* Reserved */
1095 OMAP_BAD_REG(addr);
1096 case 0x00: /* COUNTER_32_LSB */
1097 case 0x04: /* COUNTER_32_MSB */
1098 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
1099 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
1100 case 0x10: /* GAUGING_CTRL */
1101 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
1102 case 0x30: /* CLOCK_CTRL */
1103 case 0x34: /* SOFT_REQ */
1104 case 0x38: /* COUNTER_32_FIQ */
1105 case 0x3c: /* DPLL_CTRL */
1106 case 0x40: /* STATUS_REQ */
1107 /* XXX: check clk::usecount state for every clock */
1108 case 0x48: /* LOCL_TIME */
1109 case 0x4c: /* APLL_CTRL */
1110 case 0x50: /* POWER_CTRL */
1111 return s->ulpd_pm_regs[offset >> 2];
1112 }
1113
1114 OMAP_BAD_REG(addr);
1115 return 0;
1116}
1117
1118static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
1119 uint16_t diff, uint16_t value)
1120{
1121 if (diff & (1 << 4)) /* USB_MCLK_EN */
1122 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
1123 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
1124 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
1125}
1126
1127static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
1128 uint16_t diff, uint16_t value)
1129{
1130 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
1131 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
1132 if (diff & (1 << 1)) /* SOFT_COM_REQ */
1133 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
1134 if (diff & (1 << 2)) /* SOFT_SDW_REQ */
1135 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
1136 if (diff & (1 << 3)) /* SOFT_USB_REQ */
1137 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
1138}
1139
1140static void omap_ulpd_pm_write(void *opaque, target_phys_addr_t addr,
1141 uint32_t value)
1142{
1143 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1144 int offset = addr - s->ulpd_pm_base;
1145 int64_t now, ticks;
1146 int div, mult;
1147 static const int bypass_div[4] = { 1, 2, 4, 4 };
1148 uint16_t diff;
1149
1150 switch (offset) {
1151 case 0x00: /* COUNTER_32_LSB */
1152 case 0x04: /* COUNTER_32_MSB */
1153 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
1154 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
1155 case 0x14: /* IT_STATUS */
1156 case 0x40: /* STATUS_REQ */
1157 OMAP_RO_REG(addr);
1158 break;
1159
1160 case 0x10: /* GAUGING_CTRL */
1161 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
1162 if ((s->ulpd_pm_regs[offset >> 2] ^ value) & 1) {
1163 now = qemu_get_clock(vm_clock);
1164
1165 if (value & 1)
1166 s->ulpd_gauge_start = now;
1167 else {
1168 now -= s->ulpd_gauge_start;
1169
1170 /* 32-kHz ticks */
1171 ticks = muldiv64(now, 32768, ticks_per_sec);
1172 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
1173 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
1174 if (ticks >> 32) /* OVERFLOW_32K */
1175 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
1176
1177 /* High frequency ticks */
1178 ticks = muldiv64(now, 12000000, ticks_per_sec);
1179 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
1180 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
1181 if (ticks >> 32) /* OVERFLOW_HI_FREQ */
1182 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
1183
1184 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
1185 qemu_irq_raise(s->irq[1][OMAP_INT_GAUGE_32K]);
1186 }
1187 }
1188 s->ulpd_pm_regs[offset >> 2] = value;
1189 break;
1190
1191 case 0x18: /* Reserved */
1192 case 0x1c: /* Reserved */
1193 case 0x20: /* Reserved */
1194 case 0x28: /* Reserved */
1195 case 0x2c: /* Reserved */
1196 OMAP_BAD_REG(addr);
1197 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
1198 case 0x38: /* COUNTER_32_FIQ */
1199 case 0x48: /* LOCL_TIME */
1200 case 0x50: /* POWER_CTRL */
1201 s->ulpd_pm_regs[offset >> 2] = value;
1202 break;
1203
1204 case 0x30: /* CLOCK_CTRL */
1205 diff = s->ulpd_pm_regs[offset >> 2] ^ value;
1206 s->ulpd_pm_regs[offset >> 2] = value & 0x3f;
1207 omap_ulpd_clk_update(s, diff, value);
1208 break;
1209
1210 case 0x34: /* SOFT_REQ */
1211 diff = s->ulpd_pm_regs[offset >> 2] ^ value;
1212 s->ulpd_pm_regs[offset >> 2] = value & 0x1f;
1213 omap_ulpd_req_update(s, diff, value);
1214 break;
1215
1216 case 0x3c: /* DPLL_CTRL */
1217 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
1218 * omitted altogether, probably a typo. */
1219 /* This register has identical semantics with DPLL(1:3) control
1220 * registers, see omap_dpll_write() */
1221 diff = s->ulpd_pm_regs[offset >> 2] & value;
1222 s->ulpd_pm_regs[offset >> 2] = value & 0x2fff;
1223 if (diff & (0x3ff << 2)) {
1224 if (value & (1 << 4)) { /* PLL_ENABLE */
1225 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1226 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1227 } else {
1228 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1229 mult = 1;
1230 }
1231 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
1232 }
1233
1234 /* Enter the desired mode. */
1235 s->ulpd_pm_regs[offset >> 2] =
1236 (s->ulpd_pm_regs[offset >> 2] & 0xfffe) |
1237 ((s->ulpd_pm_regs[offset >> 2] >> 4) & 1);
1238
1239 /* Act as if the lock is restored. */
1240 s->ulpd_pm_regs[offset >> 2] |= 2;
1241 break;
1242
1243 case 0x4c: /* APLL_CTRL */
1244 diff = s->ulpd_pm_regs[offset >> 2] & value;
1245 s->ulpd_pm_regs[offset >> 2] = value & 0xf;
1246 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
1247 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
1248 (value & (1 << 0)) ? "apll" : "dpll4"));
1249 break;
1250
1251 default:
1252 OMAP_BAD_REG(addr);
1253 }
1254}
1255
1256static CPUReadMemoryFunc *omap_ulpd_pm_readfn[] = {
1257 omap_badwidth_read16,
1258 omap_ulpd_pm_read,
1259 omap_badwidth_read16,
1260};
1261
1262static CPUWriteMemoryFunc *omap_ulpd_pm_writefn[] = {
1263 omap_badwidth_write16,
1264 omap_ulpd_pm_write,
1265 omap_badwidth_write16,
1266};
1267
1268static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
1269{
1270 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
1271 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
1272 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
1273 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
1274 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
1275 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
1276 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
1277 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
1278 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
1279 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
1280 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
1281 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
1282 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
1283 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
1284 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
1285 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
1286 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
1287 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
1288 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
1289 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
1290 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
1291 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
1292 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
1293}
1294
1295static void omap_ulpd_pm_init(target_phys_addr_t base,
1296 struct omap_mpu_state_s *mpu)
1297{
1298 int iomemtype = cpu_register_io_memory(0, omap_ulpd_pm_readfn,
1299 omap_ulpd_pm_writefn, mpu);
1300
1301 mpu->ulpd_pm_base = base;
1302 cpu_register_physical_memory(mpu->ulpd_pm_base, 0x800, iomemtype);
1303 omap_ulpd_pm_reset(mpu);
1304}
1305
1306/* OMAP Pin Configuration */
1307static uint32_t omap_pin_cfg_read(void *opaque, target_phys_addr_t addr)
1308{
1309 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1310 int offset = addr - s->pin_cfg_base;
1311
1312 switch (offset) {
1313 case 0x00: /* FUNC_MUX_CTRL_0 */
1314 case 0x04: /* FUNC_MUX_CTRL_1 */
1315 case 0x08: /* FUNC_MUX_CTRL_2 */
1316 return s->func_mux_ctrl[offset >> 2];
1317
1318 case 0x0c: /* COMP_MODE_CTRL_0 */
1319 return s->comp_mode_ctrl[0];
1320
1321 case 0x10: /* FUNC_MUX_CTRL_3 */
1322 case 0x14: /* FUNC_MUX_CTRL_4 */
1323 case 0x18: /* FUNC_MUX_CTRL_5 */
1324 case 0x1c: /* FUNC_MUX_CTRL_6 */
1325 case 0x20: /* FUNC_MUX_CTRL_7 */
1326 case 0x24: /* FUNC_MUX_CTRL_8 */
1327 case 0x28: /* FUNC_MUX_CTRL_9 */
1328 case 0x2c: /* FUNC_MUX_CTRL_A */
1329 case 0x30: /* FUNC_MUX_CTRL_B */
1330 case 0x34: /* FUNC_MUX_CTRL_C */
1331 case 0x38: /* FUNC_MUX_CTRL_D */
1332 return s->func_mux_ctrl[(offset >> 2) - 1];
1333
1334 case 0x40: /* PULL_DWN_CTRL_0 */
1335 case 0x44: /* PULL_DWN_CTRL_1 */
1336 case 0x48: /* PULL_DWN_CTRL_2 */
1337 case 0x4c: /* PULL_DWN_CTRL_3 */
1338 return s->pull_dwn_ctrl[(offset & 0xf) >> 2];
1339
1340 case 0x50: /* GATE_INH_CTRL_0 */
1341 return s->gate_inh_ctrl[0];
1342
1343 case 0x60: /* VOLTAGE_CTRL_0 */
1344 return s->voltage_ctrl[0];
1345
1346 case 0x70: /* TEST_DBG_CTRL_0 */
1347 return s->test_dbg_ctrl[0];
1348
1349 case 0x80: /* MOD_CONF_CTRL_0 */
1350 return s->mod_conf_ctrl[0];
1351 }
1352
1353 OMAP_BAD_REG(addr);
1354 return 0;
1355}
1356
1357static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
1358 uint32_t diff, uint32_t value)
1359{
1360 if (s->compat1509) {
1361 if (diff & (1 << 9)) /* BLUETOOTH */
1362 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
1363 (~value >> 9) & 1);
1364 if (diff & (1 << 7)) /* USB.CLKO */
1365 omap_clk_onoff(omap_findclk(s, "usb.clko"),
1366 (value >> 7) & 1);
1367 }
1368}
1369
1370static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
1371 uint32_t diff, uint32_t value)
1372{
1373 if (s->compat1509) {
1374 if (diff & (1 << 31)) /* MCBSP3_CLK_HIZ_DI */
1375 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"),
1376 (value >> 31) & 1);
1377 if (diff & (1 << 1)) /* CLK32K */
1378 omap_clk_onoff(omap_findclk(s, "clk32k_out"),
1379 (~value >> 1) & 1);
1380 }
1381}
1382
1383static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
1384 uint32_t diff, uint32_t value)
1385{
1386 if (diff & (1 << 31)) /* CONF_MOD_UART3_CLK_MODE_R */
1387 omap_clk_reparent(omap_findclk(s, "uart3_ck"),
1388 omap_findclk(s, ((value >> 31) & 1) ?
1389 "ck_48m" : "armper_ck"));
1390 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
1391 omap_clk_reparent(omap_findclk(s, "uart2_ck"),
1392 omap_findclk(s, ((value >> 30) & 1) ?
1393 "ck_48m" : "armper_ck"));
1394 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
1395 omap_clk_reparent(omap_findclk(s, "uart1_ck"),
1396 omap_findclk(s, ((value >> 29) & 1) ?
1397 "ck_48m" : "armper_ck"));
1398 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
1399 omap_clk_reparent(omap_findclk(s, "mmc_ck"),
1400 omap_findclk(s, ((value >> 23) & 1) ?
1401 "ck_48m" : "armper_ck"));
1402 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
1403 omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
1404 omap_findclk(s, ((value >> 12) & 1) ?
1405 "ck_48m" : "armper_ck"));
1406 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
1407 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
1408}
1409
1410static void omap_pin_cfg_write(void *opaque, target_phys_addr_t addr,
1411 uint32_t value)
1412{
1413 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1414 int offset = addr - s->pin_cfg_base;
1415 uint32_t diff;
1416
1417 switch (offset) {
1418 case 0x00: /* FUNC_MUX_CTRL_0 */
1419 diff = s->func_mux_ctrl[offset >> 2] ^ value;
1420 s->func_mux_ctrl[offset >> 2] = value;
1421 omap_pin_funcmux0_update(s, diff, value);
1422 return;
1423
1424 case 0x04: /* FUNC_MUX_CTRL_1 */
1425 diff = s->func_mux_ctrl[offset >> 2] ^ value;
1426 s->func_mux_ctrl[offset >> 2] = value;
1427 omap_pin_funcmux1_update(s, diff, value);
1428 return;
1429
1430 case 0x08: /* FUNC_MUX_CTRL_2 */
1431 s->func_mux_ctrl[offset >> 2] = value;
1432 return;
1433
1434 case 0x0c: /* COMP_MODE_CTRL_0 */
1435 s->comp_mode_ctrl[0] = value;
1436 s->compat1509 = (value != 0x0000eaef);
1437 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
1438 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
1439 return;
1440
1441 case 0x10: /* FUNC_MUX_CTRL_3 */
1442 case 0x14: /* FUNC_MUX_CTRL_4 */
1443 case 0x18: /* FUNC_MUX_CTRL_5 */
1444 case 0x1c: /* FUNC_MUX_CTRL_6 */
1445 case 0x20: /* FUNC_MUX_CTRL_7 */
1446 case 0x24: /* FUNC_MUX_CTRL_8 */
1447 case 0x28: /* FUNC_MUX_CTRL_9 */
1448 case 0x2c: /* FUNC_MUX_CTRL_A */
1449 case 0x30: /* FUNC_MUX_CTRL_B */
1450 case 0x34: /* FUNC_MUX_CTRL_C */
1451 case 0x38: /* FUNC_MUX_CTRL_D */
1452 s->func_mux_ctrl[(offset >> 2) - 1] = value;
1453 return;
1454
1455 case 0x40: /* PULL_DWN_CTRL_0 */
1456 case 0x44: /* PULL_DWN_CTRL_1 */
1457 case 0x48: /* PULL_DWN_CTRL_2 */
1458 case 0x4c: /* PULL_DWN_CTRL_3 */
1459 s->pull_dwn_ctrl[(offset & 0xf) >> 2] = value;
1460 return;
1461
1462 case 0x50: /* GATE_INH_CTRL_0 */
1463 s->gate_inh_ctrl[0] = value;
1464 return;
1465
1466 case 0x60: /* VOLTAGE_CTRL_0 */
1467 s->voltage_ctrl[0] = value;
1468 return;
1469
1470 case 0x70: /* TEST_DBG_CTRL_0 */
1471 s->test_dbg_ctrl[0] = value;
1472 return;
1473
1474 case 0x80: /* MOD_CONF_CTRL_0 */
1475 diff = s->mod_conf_ctrl[0] ^ value;
1476 s->mod_conf_ctrl[0] = value;
1477 omap_pin_modconf1_update(s, diff, value);
1478 return;
1479
1480 default:
1481 OMAP_BAD_REG(addr);
1482 }
1483}
1484
1485static CPUReadMemoryFunc *omap_pin_cfg_readfn[] = {
1486 omap_badwidth_read32,
1487 omap_badwidth_read32,
1488 omap_pin_cfg_read,
1489};
1490
1491static CPUWriteMemoryFunc *omap_pin_cfg_writefn[] = {
1492 omap_badwidth_write32,
1493 omap_badwidth_write32,
1494 omap_pin_cfg_write,
1495};
1496
1497static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
1498{
1499 /* Start in Compatibility Mode. */
1500 mpu->compat1509 = 1;
1501 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
1502 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
1503 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
1504 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
1505 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
1506 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
1507 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
1508 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
1509 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
1510 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
1511}
1512
1513static void omap_pin_cfg_init(target_phys_addr_t base,
1514 struct omap_mpu_state_s *mpu)
1515{
1516 int iomemtype = cpu_register_io_memory(0, omap_pin_cfg_readfn,
1517 omap_pin_cfg_writefn, mpu);
1518
1519 mpu->pin_cfg_base = base;
1520 cpu_register_physical_memory(mpu->pin_cfg_base, 0x800, iomemtype);
1521 omap_pin_cfg_reset(mpu);
1522}
1523
1524/* Device Identification, Die Identification */
1525static uint32_t omap_id_read(void *opaque, target_phys_addr_t addr)
1526{
1527 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1528
1529 switch (addr) {
1530 case 0xfffe1800: /* DIE_ID_LSB */
1531 return 0xc9581f0e;
1532 case 0xfffe1804: /* DIE_ID_MSB */
1533 return 0xa8858bfa;
1534
1535 case 0xfffe2000: /* PRODUCT_ID_LSB */
1536 return 0x00aaaafc;
1537 case 0xfffe2004: /* PRODUCT_ID_MSB */
1538 return 0xcafeb574;
1539
1540 case 0xfffed400: /* JTAG_ID_LSB */
1541 switch (s->mpu_model) {
1542 case omap310:
1543 return 0x03310315;
1544 case omap1510:
1545 return 0x03310115;
827df9f3
AZ
1546 default:
1547 cpu_abort(cpu_single_env, "%s: bad mpu model\n", __FUNCTION__);
c3d2689d
AZ
1548 }
1549 break;
1550
1551 case 0xfffed404: /* JTAG_ID_MSB */
1552 switch (s->mpu_model) {
1553 case omap310:
1554 return 0xfb57402f;
1555 case omap1510:
1556 return 0xfb47002f;
827df9f3
AZ
1557 default:
1558 cpu_abort(cpu_single_env, "%s: bad mpu model\n", __FUNCTION__);
c3d2689d
AZ
1559 }
1560 break;
1561 }
1562
1563 OMAP_BAD_REG(addr);
1564 return 0;
1565}
1566
1567static void omap_id_write(void *opaque, target_phys_addr_t addr,
1568 uint32_t value)
1569{
1570 OMAP_BAD_REG(addr);
1571}
1572
1573static CPUReadMemoryFunc *omap_id_readfn[] = {
1574 omap_badwidth_read32,
1575 omap_badwidth_read32,
1576 omap_id_read,
1577};
1578
1579static CPUWriteMemoryFunc *omap_id_writefn[] = {
1580 omap_badwidth_write32,
1581 omap_badwidth_write32,
1582 omap_id_write,
1583};
1584
1585static void omap_id_init(struct omap_mpu_state_s *mpu)
1586{
1587 int iomemtype = cpu_register_io_memory(0, omap_id_readfn,
1588 omap_id_writefn, mpu);
1589 cpu_register_physical_memory(0xfffe1800, 0x800, iomemtype);
1590 cpu_register_physical_memory(0xfffed400, 0x100, iomemtype);
1591 if (!cpu_is_omap15xx(mpu))
1592 cpu_register_physical_memory(0xfffe2000, 0x800, iomemtype);
1593}
1594
1595/* MPUI Control (Dummy) */
1596static uint32_t omap_mpui_read(void *opaque, target_phys_addr_t addr)
1597{
1598 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1599 int offset = addr - s->mpui_base;
1600
1601 switch (offset) {
1602 case 0x00: /* CTRL */
1603 return s->mpui_ctrl;
1604 case 0x04: /* DEBUG_ADDR */
1605 return 0x01ffffff;
1606 case 0x08: /* DEBUG_DATA */
1607 return 0xffffffff;
1608 case 0x0c: /* DEBUG_FLAG */
1609 return 0x00000800;
1610 case 0x10: /* STATUS */
1611 return 0x00000000;
1612
1613 /* Not in OMAP310 */
1614 case 0x14: /* DSP_STATUS */
1615 case 0x18: /* DSP_BOOT_CONFIG */
1616 return 0x00000000;
1617 case 0x1c: /* DSP_MPUI_CONFIG */
1618 return 0x0000ffff;
1619 }
1620
1621 OMAP_BAD_REG(addr);
1622 return 0;
1623}
1624
1625static void omap_mpui_write(void *opaque, target_phys_addr_t addr,
1626 uint32_t value)
1627{
1628 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1629 int offset = addr - s->mpui_base;
1630
1631 switch (offset) {
1632 case 0x00: /* CTRL */
1633 s->mpui_ctrl = value & 0x007fffff;
1634 break;
1635
1636 case 0x04: /* DEBUG_ADDR */
1637 case 0x08: /* DEBUG_DATA */
1638 case 0x0c: /* DEBUG_FLAG */
1639 case 0x10: /* STATUS */
1640 /* Not in OMAP310 */
1641 case 0x14: /* DSP_STATUS */
1642 OMAP_RO_REG(addr);
1643 case 0x18: /* DSP_BOOT_CONFIG */
1644 case 0x1c: /* DSP_MPUI_CONFIG */
1645 break;
1646
1647 default:
1648 OMAP_BAD_REG(addr);
1649 }
1650}
1651
1652static CPUReadMemoryFunc *omap_mpui_readfn[] = {
1653 omap_badwidth_read32,
1654 omap_badwidth_read32,
1655 omap_mpui_read,
1656};
1657
1658static CPUWriteMemoryFunc *omap_mpui_writefn[] = {
1659 omap_badwidth_write32,
1660 omap_badwidth_write32,
1661 omap_mpui_write,
1662};
1663
1664static void omap_mpui_reset(struct omap_mpu_state_s *s)
1665{
1666 s->mpui_ctrl = 0x0003ff1b;
1667}
1668
1669static void omap_mpui_init(target_phys_addr_t base,
1670 struct omap_mpu_state_s *mpu)
1671{
1672 int iomemtype = cpu_register_io_memory(0, omap_mpui_readfn,
1673 omap_mpui_writefn, mpu);
1674
1675 mpu->mpui_base = base;
1676 cpu_register_physical_memory(mpu->mpui_base, 0x100, iomemtype);
1677
1678 omap_mpui_reset(mpu);
1679}
1680
1681/* TIPB Bridges */
1682struct omap_tipb_bridge_s {
1683 target_phys_addr_t base;
1684 qemu_irq abort;
1685
1686 int width_intr;
1687 uint16_t control;
1688 uint16_t alloc;
1689 uint16_t buffer;
1690 uint16_t enh_control;
1691};
1692
1693static uint32_t omap_tipb_bridge_read(void *opaque, target_phys_addr_t addr)
1694{
1695 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1696 int offset = addr - s->base;
1697
1698 switch (offset) {
1699 case 0x00: /* TIPB_CNTL */
1700 return s->control;
1701 case 0x04: /* TIPB_BUS_ALLOC */
1702 return s->alloc;
1703 case 0x08: /* MPU_TIPB_CNTL */
1704 return s->buffer;
1705 case 0x0c: /* ENHANCED_TIPB_CNTL */
1706 return s->enh_control;
1707 case 0x10: /* ADDRESS_DBG */
1708 case 0x14: /* DATA_DEBUG_LOW */
1709 case 0x18: /* DATA_DEBUG_HIGH */
1710 return 0xffff;
1711 case 0x1c: /* DEBUG_CNTR_SIG */
1712 return 0x00f8;
1713 }
1714
1715 OMAP_BAD_REG(addr);
1716 return 0;
1717}
1718
1719static void omap_tipb_bridge_write(void *opaque, target_phys_addr_t addr,
1720 uint32_t value)
1721{
1722 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1723 int offset = addr - s->base;
1724
1725 switch (offset) {
1726 case 0x00: /* TIPB_CNTL */
1727 s->control = value & 0xffff;
1728 break;
1729
1730 case 0x04: /* TIPB_BUS_ALLOC */
1731 s->alloc = value & 0x003f;
1732 break;
1733
1734 case 0x08: /* MPU_TIPB_CNTL */
1735 s->buffer = value & 0x0003;
1736 break;
1737
1738 case 0x0c: /* ENHANCED_TIPB_CNTL */
1739 s->width_intr = !(value & 2);
1740 s->enh_control = value & 0x000f;
1741 break;
1742
1743 case 0x10: /* ADDRESS_DBG */
1744 case 0x14: /* DATA_DEBUG_LOW */
1745 case 0x18: /* DATA_DEBUG_HIGH */
1746 case 0x1c: /* DEBUG_CNTR_SIG */
1747 OMAP_RO_REG(addr);
1748 break;
1749
1750 default:
1751 OMAP_BAD_REG(addr);
1752 }
1753}
1754
1755static CPUReadMemoryFunc *omap_tipb_bridge_readfn[] = {
1756 omap_badwidth_read16,
1757 omap_tipb_bridge_read,
1758 omap_tipb_bridge_read,
1759};
1760
1761static CPUWriteMemoryFunc *omap_tipb_bridge_writefn[] = {
1762 omap_badwidth_write16,
1763 omap_tipb_bridge_write,
1764 omap_tipb_bridge_write,
1765};
1766
1767static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1768{
1769 s->control = 0xffff;
1770 s->alloc = 0x0009;
1771 s->buffer = 0x0000;
1772 s->enh_control = 0x000f;
1773}
1774
1775struct omap_tipb_bridge_s *omap_tipb_bridge_init(target_phys_addr_t base,
1776 qemu_irq abort_irq, omap_clk clk)
1777{
1778 int iomemtype;
1779 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *)
1780 qemu_mallocz(sizeof(struct omap_tipb_bridge_s));
1781
1782 s->abort = abort_irq;
1783 s->base = base;
1784 omap_tipb_bridge_reset(s);
1785
1786 iomemtype = cpu_register_io_memory(0, omap_tipb_bridge_readfn,
1787 omap_tipb_bridge_writefn, s);
1788 cpu_register_physical_memory(s->base, 0x100, iomemtype);
1789
1790 return s;
1791}
1792
1793/* Dummy Traffic Controller's Memory Interface */
1794static uint32_t omap_tcmi_read(void *opaque, target_phys_addr_t addr)
1795{
1796 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1797 int offset = addr - s->tcmi_base;
1798 uint32_t ret;
1799
1800 switch (offset) {
d8f699cb
AZ
1801 case 0x00: /* IMIF_PRIO */
1802 case 0x04: /* EMIFS_PRIO */
1803 case 0x08: /* EMIFF_PRIO */
1804 case 0x0c: /* EMIFS_CONFIG */
1805 case 0x10: /* EMIFS_CS0_CONFIG */
1806 case 0x14: /* EMIFS_CS1_CONFIG */
1807 case 0x18: /* EMIFS_CS2_CONFIG */
1808 case 0x1c: /* EMIFS_CS3_CONFIG */
1809 case 0x24: /* EMIFF_MRS */
1810 case 0x28: /* TIMEOUT1 */
1811 case 0x2c: /* TIMEOUT2 */
1812 case 0x30: /* TIMEOUT3 */
1813 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1814 case 0x40: /* EMIFS_CFG_DYN_WAIT */
c3d2689d
AZ
1815 return s->tcmi_regs[offset >> 2];
1816
d8f699cb 1817 case 0x20: /* EMIFF_SDRAM_CONFIG */
c3d2689d
AZ
1818 ret = s->tcmi_regs[offset >> 2];
1819 s->tcmi_regs[offset >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1820 /* XXX: We can try using the VGA_DIRTY flag for this */
1821 return ret;
1822 }
1823
1824 OMAP_BAD_REG(addr);
1825 return 0;
1826}
1827
1828static void omap_tcmi_write(void *opaque, target_phys_addr_t addr,
1829 uint32_t value)
1830{
1831 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1832 int offset = addr - s->tcmi_base;
1833
1834 switch (offset) {
d8f699cb
AZ
1835 case 0x00: /* IMIF_PRIO */
1836 case 0x04: /* EMIFS_PRIO */
1837 case 0x08: /* EMIFF_PRIO */
1838 case 0x10: /* EMIFS_CS0_CONFIG */
1839 case 0x14: /* EMIFS_CS1_CONFIG */
1840 case 0x18: /* EMIFS_CS2_CONFIG */
1841 case 0x1c: /* EMIFS_CS3_CONFIG */
1842 case 0x20: /* EMIFF_SDRAM_CONFIG */
1843 case 0x24: /* EMIFF_MRS */
1844 case 0x28: /* TIMEOUT1 */
1845 case 0x2c: /* TIMEOUT2 */
1846 case 0x30: /* TIMEOUT3 */
1847 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1848 case 0x40: /* EMIFS_CFG_DYN_WAIT */
c3d2689d
AZ
1849 s->tcmi_regs[offset >> 2] = value;
1850 break;
d8f699cb 1851 case 0x0c: /* EMIFS_CONFIG */
c3d2689d
AZ
1852 s->tcmi_regs[offset >> 2] = (value & 0xf) | (1 << 4);
1853 break;
1854
1855 default:
1856 OMAP_BAD_REG(addr);
1857 }
1858}
1859
1860static CPUReadMemoryFunc *omap_tcmi_readfn[] = {
1861 omap_badwidth_read32,
1862 omap_badwidth_read32,
1863 omap_tcmi_read,
1864};
1865
1866static CPUWriteMemoryFunc *omap_tcmi_writefn[] = {
1867 omap_badwidth_write32,
1868 omap_badwidth_write32,
1869 omap_tcmi_write,
1870};
1871
1872static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1873{
1874 mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1875 mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1876 mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1877 mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1878 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1879 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1880 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1881 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1882 mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1883 mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1884 mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1885 mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1886 mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1887 mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1888 mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1889}
1890
1891static void omap_tcmi_init(target_phys_addr_t base,
1892 struct omap_mpu_state_s *mpu)
1893{
1894 int iomemtype = cpu_register_io_memory(0, omap_tcmi_readfn,
1895 omap_tcmi_writefn, mpu);
1896
1897 mpu->tcmi_base = base;
1898 cpu_register_physical_memory(mpu->tcmi_base, 0x100, iomemtype);
1899 omap_tcmi_reset(mpu);
1900}
1901
1902/* Digital phase-locked loops control */
1903static uint32_t omap_dpll_read(void *opaque, target_phys_addr_t addr)
1904{
1905 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1906 int offset = addr - s->base;
1907
1908 if (offset == 0x00) /* CTL_REG */
1909 return s->mode;
1910
1911 OMAP_BAD_REG(addr);
1912 return 0;
1913}
1914
1915static void omap_dpll_write(void *opaque, target_phys_addr_t addr,
1916 uint32_t value)
1917{
1918 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1919 uint16_t diff;
1920 int offset = addr - s->base;
1921 static const int bypass_div[4] = { 1, 2, 4, 4 };
1922 int div, mult;
1923
1924 if (offset == 0x00) { /* CTL_REG */
1925 /* See omap_ulpd_pm_write() too */
1926 diff = s->mode & value;
1927 s->mode = value & 0x2fff;
1928 if (diff & (0x3ff << 2)) {
1929 if (value & (1 << 4)) { /* PLL_ENABLE */
1930 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1931 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1932 } else {
1933 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1934 mult = 1;
1935 }
1936 omap_clk_setrate(s->dpll, div, mult);
1937 }
1938
1939 /* Enter the desired mode. */
1940 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1941
1942 /* Act as if the lock is restored. */
1943 s->mode |= 2;
1944 } else {
1945 OMAP_BAD_REG(addr);
1946 }
1947}
1948
1949static CPUReadMemoryFunc *omap_dpll_readfn[] = {
1950 omap_badwidth_read16,
1951 omap_dpll_read,
1952 omap_badwidth_read16,
1953};
1954
1955static CPUWriteMemoryFunc *omap_dpll_writefn[] = {
1956 omap_badwidth_write16,
1957 omap_dpll_write,
1958 omap_badwidth_write16,
1959};
1960
1961static void omap_dpll_reset(struct dpll_ctl_s *s)
1962{
1963 s->mode = 0x2002;
1964 omap_clk_setrate(s->dpll, 1, 1);
1965}
1966
1967static void omap_dpll_init(struct dpll_ctl_s *s, target_phys_addr_t base,
1968 omap_clk clk)
1969{
1970 int iomemtype = cpu_register_io_memory(0, omap_dpll_readfn,
1971 omap_dpll_writefn, s);
1972
1973 s->base = base;
1974 s->dpll = clk;
1975 omap_dpll_reset(s);
1976
1977 cpu_register_physical_memory(s->base, 0x100, iomemtype);
1978}
1979
1980/* UARTs */
1981struct omap_uart_s {
1982 SerialState *serial; /* TODO */
827df9f3
AZ
1983 struct omap_target_agent_s *ta;
1984 target_phys_addr_t base;
1985
1986 uint8_t eblr;
1987 uint8_t syscontrol;
1988 uint8_t wkup;
1989 uint8_t cfps;
54585ffe
AZ
1990 uint8_t mdr[2];
1991 uint8_t scr;
c3d2689d
AZ
1992};
1993
827df9f3 1994void omap_uart_reset(struct omap_uart_s *s)
c3d2689d 1995{
827df9f3
AZ
1996 s->eblr = 0x00;
1997 s->syscontrol = 0;
1998 s->wkup = 0x3f;
1999 s->cfps = 0x69;
c3d2689d
AZ
2000}
2001
2002struct omap_uart_s *omap_uart_init(target_phys_addr_t base,
827df9f3
AZ
2003 qemu_irq irq, omap_clk fclk, omap_clk iclk,
2004 qemu_irq txdma, qemu_irq rxdma, CharDriverState *chr)
c3d2689d
AZ
2005{
2006 struct omap_uart_s *s = (struct omap_uart_s *)
2007 qemu_mallocz(sizeof(struct omap_uart_s));
827df9f3 2008
b6cd0ea1
AJ
2009 s->serial = serial_mm_init(base, 2, irq, omap_clk_getrate(fclk)/16,
2010 chr ?: qemu_chr_open("null"), 1);
827df9f3
AZ
2011
2012 return s;
2013}
2014
2015static uint32_t omap_uart_read(void *opaque, target_phys_addr_t addr)
2016{
2017 struct omap_uart_s *s = (struct omap_uart_s *) opaque;
2018 int offset = addr - s->base;
2019
2020 switch (offset) {
54585ffe
AZ
2021 case 0x20: /* MDR1 */
2022 return s->mdr[0];
2023 case 0x24: /* MDR2 */
2024 return s->mdr[1];
2025 case 0x40: /* SCR */
2026 return s->scr;
2027 case 0x44: /* SSR */
2028 return 0x0;
827df9f3
AZ
2029 case 0x48: /* EBLR */
2030 return s->eblr;
2031 case 0x50: /* MVR */
2032 return 0x30;
2033 case 0x54: /* SYSC */
2034 return s->syscontrol;
2035 case 0x58: /* SYSS */
2036 return 1;
2037 case 0x5c: /* WER */
2038 return s->wkup;
2039 case 0x60: /* CFPS */
2040 return s->cfps;
2041 }
2042
2043 OMAP_BAD_REG(addr);
2044 return 0;
2045}
2046
2047static void omap_uart_write(void *opaque, target_phys_addr_t addr,
2048 uint32_t value)
2049{
2050 struct omap_uart_s *s = (struct omap_uart_s *) opaque;
2051 int offset = addr - s->base;
2052
2053 switch (offset) {
54585ffe
AZ
2054 case 0x20: /* MDR1 */
2055 s->mdr[0] = value & 0x7f;
2056 break;
2057 case 0x24: /* MDR2 */
2058 s->mdr[1] = value & 0xff;
2059 break;
2060 case 0x40: /* SCR */
2061 s->scr = value & 0xff;
2062 break;
827df9f3
AZ
2063 case 0x48: /* EBLR */
2064 s->eblr = value & 0xff;
2065 break;
54585ffe 2066 case 0x44: /* SSR */
827df9f3
AZ
2067 case 0x50: /* MVR */
2068 case 0x58: /* SYSS */
2069 OMAP_RO_REG(addr);
2070 break;
2071 case 0x54: /* SYSC */
2072 s->syscontrol = value & 0x1d;
2073 if (value & 2)
2074 omap_uart_reset(s);
2075 break;
2076 case 0x5c: /* WER */
2077 s->wkup = value & 0x7f;
2078 break;
2079 case 0x60: /* CFPS */
2080 s->cfps = value & 0xff;
2081 break;
2082 default:
2083 OMAP_BAD_REG(addr);
2084 }
2085}
2086
2087static CPUReadMemoryFunc *omap_uart_readfn[] = {
2088 omap_uart_read,
2089 omap_uart_read,
2090 omap_badwidth_read8,
2091};
2092
2093static CPUWriteMemoryFunc *omap_uart_writefn[] = {
2094 omap_uart_write,
2095 omap_uart_write,
2096 omap_badwidth_write8,
2097};
2098
2099struct omap_uart_s *omap2_uart_init(struct omap_target_agent_s *ta,
2100 qemu_irq irq, omap_clk fclk, omap_clk iclk,
2101 qemu_irq txdma, qemu_irq rxdma, CharDriverState *chr)
2102{
2103 target_phys_addr_t base = omap_l4_attach(ta, 0, 0);
2104 struct omap_uart_s *s = omap_uart_init(base, irq,
2105 fclk, iclk, txdma, rxdma, chr);
2106 int iomemtype = cpu_register_io_memory(0, omap_uart_readfn,
2107 omap_uart_writefn, s);
2108
2109 s->ta = ta;
2110 s->base = base;
2111
2112 cpu_register_physical_memory(s->base + 0x20, 0x100, iomemtype);
2113
c3d2689d
AZ
2114 return s;
2115}
2116
2117/* MPU Clock/Reset/Power Mode Control */
2118static uint32_t omap_clkm_read(void *opaque, target_phys_addr_t addr)
2119{
2120 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2121 int offset = addr - s->clkm.mpu_base;
2122
2123 switch (offset) {
2124 case 0x00: /* ARM_CKCTL */
2125 return s->clkm.arm_ckctl;
2126
2127 case 0x04: /* ARM_IDLECT1 */
2128 return s->clkm.arm_idlect1;
2129
2130 case 0x08: /* ARM_IDLECT2 */
2131 return s->clkm.arm_idlect2;
2132
2133 case 0x0c: /* ARM_EWUPCT */
2134 return s->clkm.arm_ewupct;
2135
2136 case 0x10: /* ARM_RSTCT1 */
2137 return s->clkm.arm_rstct1;
2138
2139 case 0x14: /* ARM_RSTCT2 */
2140 return s->clkm.arm_rstct2;
2141
2142 case 0x18: /* ARM_SYSST */
d8f699cb 2143 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
c3d2689d
AZ
2144
2145 case 0x1c: /* ARM_CKOUT1 */
2146 return s->clkm.arm_ckout1;
2147
2148 case 0x20: /* ARM_CKOUT2 */
2149 break;
2150 }
2151
2152 OMAP_BAD_REG(addr);
2153 return 0;
2154}
2155
2156static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
2157 uint16_t diff, uint16_t value)
2158{
2159 omap_clk clk;
2160
2161 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
2162 if (value & (1 << 14))
2163 /* Reserved */;
2164 else {
2165 clk = omap_findclk(s, "arminth_ck");
2166 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
2167 }
2168 }
2169 if (diff & (1 << 12)) { /* ARM_TIMXO */
2170 clk = omap_findclk(s, "armtim_ck");
2171 if (value & (1 << 12))
2172 omap_clk_reparent(clk, omap_findclk(s, "clkin"));
2173 else
2174 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
2175 }
2176 /* XXX: en_dspck */
2177 if (diff & (3 << 10)) { /* DSPMMUDIV */
2178 clk = omap_findclk(s, "dspmmu_ck");
2179 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
2180 }
2181 if (diff & (3 << 8)) { /* TCDIV */
2182 clk = omap_findclk(s, "tc_ck");
2183 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
2184 }
2185 if (diff & (3 << 6)) { /* DSPDIV */
2186 clk = omap_findclk(s, "dsp_ck");
2187 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
2188 }
2189 if (diff & (3 << 4)) { /* ARMDIV */
2190 clk = omap_findclk(s, "arm_ck");
2191 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
2192 }
2193 if (diff & (3 << 2)) { /* LCDDIV */
2194 clk = omap_findclk(s, "lcd_ck");
2195 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
2196 }
2197 if (diff & (3 << 0)) { /* PERDIV */
2198 clk = omap_findclk(s, "armper_ck");
2199 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
2200 }
2201}
2202
2203static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
2204 uint16_t diff, uint16_t value)
2205{
2206 omap_clk clk;
2207
2208 if (value & (1 << 11)) /* SETARM_IDLE */
2209 cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
2210 if (!(value & (1 << 10))) /* WKUP_MODE */
2211 qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
2212
2213#define SET_CANIDLE(clock, bit) \
2214 if (diff & (1 << bit)) { \
2215 clk = omap_findclk(s, clock); \
2216 omap_clk_canidle(clk, (value >> bit) & 1); \
2217 }
2218 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
2219 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
2220 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
2221 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
2222 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
2223 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
2224 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
2225 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
2226 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
2227 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
2228 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
2229 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
2230 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
2231 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
2232}
2233
2234static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
2235 uint16_t diff, uint16_t value)
2236{
2237 omap_clk clk;
2238
2239#define SET_ONOFF(clock, bit) \
2240 if (diff & (1 << bit)) { \
2241 clk = omap_findclk(s, clock); \
2242 omap_clk_onoff(clk, (value >> bit) & 1); \
2243 }
2244 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
2245 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
2246 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
2247 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
2248 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
2249 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
2250 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
2251 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
2252 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
2253 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
2254 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
2255}
2256
2257static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
2258 uint16_t diff, uint16_t value)
2259{
2260 omap_clk clk;
2261
2262 if (diff & (3 << 4)) { /* TCLKOUT */
2263 clk = omap_findclk(s, "tclk_out");
2264 switch ((value >> 4) & 3) {
2265 case 1:
2266 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
2267 omap_clk_onoff(clk, 1);
2268 break;
2269 case 2:
2270 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
2271 omap_clk_onoff(clk, 1);
2272 break;
2273 default:
2274 omap_clk_onoff(clk, 0);
2275 }
2276 }
2277 if (diff & (3 << 2)) { /* DCLKOUT */
2278 clk = omap_findclk(s, "dclk_out");
2279 switch ((value >> 2) & 3) {
2280 case 0:
2281 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
2282 break;
2283 case 1:
2284 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
2285 break;
2286 case 2:
2287 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
2288 break;
2289 case 3:
2290 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
2291 break;
2292 }
2293 }
2294 if (diff & (3 << 0)) { /* ACLKOUT */
2295 clk = omap_findclk(s, "aclk_out");
2296 switch ((value >> 0) & 3) {
2297 case 1:
2298 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
2299 omap_clk_onoff(clk, 1);
2300 break;
2301 case 2:
2302 omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
2303 omap_clk_onoff(clk, 1);
2304 break;
2305 case 3:
2306 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
2307 omap_clk_onoff(clk, 1);
2308 break;
2309 default:
2310 omap_clk_onoff(clk, 0);
2311 }
2312 }
2313}
2314
2315static void omap_clkm_write(void *opaque, target_phys_addr_t addr,
2316 uint32_t value)
2317{
2318 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2319 int offset = addr - s->clkm.mpu_base;
2320 uint16_t diff;
2321 omap_clk clk;
2322 static const char *clkschemename[8] = {
2323 "fully synchronous", "fully asynchronous", "synchronous scalable",
2324 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
2325 };
2326
2327 switch (offset) {
2328 case 0x00: /* ARM_CKCTL */
2329 diff = s->clkm.arm_ckctl ^ value;
2330 s->clkm.arm_ckctl = value & 0x7fff;
2331 omap_clkm_ckctl_update(s, diff, value);
2332 return;
2333
2334 case 0x04: /* ARM_IDLECT1 */
2335 diff = s->clkm.arm_idlect1 ^ value;
2336 s->clkm.arm_idlect1 = value & 0x0fff;
2337 omap_clkm_idlect1_update(s, diff, value);
2338 return;
2339
2340 case 0x08: /* ARM_IDLECT2 */
2341 diff = s->clkm.arm_idlect2 ^ value;
2342 s->clkm.arm_idlect2 = value & 0x07ff;
2343 omap_clkm_idlect2_update(s, diff, value);
2344 return;
2345
2346 case 0x0c: /* ARM_EWUPCT */
2347 diff = s->clkm.arm_ewupct ^ value;
2348 s->clkm.arm_ewupct = value & 0x003f;
2349 return;
2350
2351 case 0x10: /* ARM_RSTCT1 */
2352 diff = s->clkm.arm_rstct1 ^ value;
2353 s->clkm.arm_rstct1 = value & 0x0007;
2354 if (value & 9) {
2355 qemu_system_reset_request();
2356 s->clkm.cold_start = 0xa;
2357 }
2358 if (diff & ~value & 4) { /* DSP_RST */
2359 omap_mpui_reset(s);
2360 omap_tipb_bridge_reset(s->private_tipb);
2361 omap_tipb_bridge_reset(s->public_tipb);
2362 }
2363 if (diff & 2) { /* DSP_EN */
2364 clk = omap_findclk(s, "dsp_ck");
2365 omap_clk_canidle(clk, (~value >> 1) & 1);
2366 }
2367 return;
2368
2369 case 0x14: /* ARM_RSTCT2 */
2370 s->clkm.arm_rstct2 = value & 0x0001;
2371 return;
2372
2373 case 0x18: /* ARM_SYSST */
2374 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
2375 s->clkm.clocking_scheme = (value >> 11) & 7;
2376 printf("%s: clocking scheme set to %s\n", __FUNCTION__,
2377 clkschemename[s->clkm.clocking_scheme]);
2378 }
2379 s->clkm.cold_start &= value & 0x3f;
2380 return;
2381
2382 case 0x1c: /* ARM_CKOUT1 */
2383 diff = s->clkm.arm_ckout1 ^ value;
2384 s->clkm.arm_ckout1 = value & 0x003f;
2385 omap_clkm_ckout1_update(s, diff, value);
2386 return;
2387
2388 case 0x20: /* ARM_CKOUT2 */
2389 default:
2390 OMAP_BAD_REG(addr);
2391 }
2392}
2393
2394static CPUReadMemoryFunc *omap_clkm_readfn[] = {
2395 omap_badwidth_read16,
2396 omap_clkm_read,
2397 omap_badwidth_read16,
2398};
2399
2400static CPUWriteMemoryFunc *omap_clkm_writefn[] = {
2401 omap_badwidth_write16,
2402 omap_clkm_write,
2403 omap_badwidth_write16,
2404};
2405
2406static uint32_t omap_clkdsp_read(void *opaque, target_phys_addr_t addr)
2407{
2408 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2409 int offset = addr - s->clkm.dsp_base;
2410
2411 switch (offset) {
2412 case 0x04: /* DSP_IDLECT1 */
2413 return s->clkm.dsp_idlect1;
2414
2415 case 0x08: /* DSP_IDLECT2 */
2416 return s->clkm.dsp_idlect2;
2417
2418 case 0x14: /* DSP_RSTCT2 */
2419 return s->clkm.dsp_rstct2;
2420
2421 case 0x18: /* DSP_SYSST */
d8f699cb 2422 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
c3d2689d
AZ
2423 (s->env->halted << 6); /* Quite useless... */
2424 }
2425
2426 OMAP_BAD_REG(addr);
2427 return 0;
2428}
2429
2430static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
2431 uint16_t diff, uint16_t value)
2432{
2433 omap_clk clk;
2434
2435 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
2436}
2437
2438static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
2439 uint16_t diff, uint16_t value)
2440{
2441 omap_clk clk;
2442
2443 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
2444}
2445
2446static void omap_clkdsp_write(void *opaque, target_phys_addr_t addr,
2447 uint32_t value)
2448{
2449 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2450 int offset = addr - s->clkm.dsp_base;
2451 uint16_t diff;
2452
2453 switch (offset) {
2454 case 0x04: /* DSP_IDLECT1 */
2455 diff = s->clkm.dsp_idlect1 ^ value;
2456 s->clkm.dsp_idlect1 = value & 0x01f7;
2457 omap_clkdsp_idlect1_update(s, diff, value);
2458 break;
2459
2460 case 0x08: /* DSP_IDLECT2 */
2461 s->clkm.dsp_idlect2 = value & 0x0037;
2462 diff = s->clkm.dsp_idlect1 ^ value;
2463 omap_clkdsp_idlect2_update(s, diff, value);
2464 break;
2465
2466 case 0x14: /* DSP_RSTCT2 */
2467 s->clkm.dsp_rstct2 = value & 0x0001;
2468 break;
2469
2470 case 0x18: /* DSP_SYSST */
2471 s->clkm.cold_start &= value & 0x3f;
2472 break;
2473
2474 default:
2475 OMAP_BAD_REG(addr);
2476 }
2477}
2478
2479static CPUReadMemoryFunc *omap_clkdsp_readfn[] = {
2480 omap_badwidth_read16,
2481 omap_clkdsp_read,
2482 omap_badwidth_read16,
2483};
2484
2485static CPUWriteMemoryFunc *omap_clkdsp_writefn[] = {
2486 omap_badwidth_write16,
2487 omap_clkdsp_write,
2488 omap_badwidth_write16,
2489};
2490
2491static void omap_clkm_reset(struct omap_mpu_state_s *s)
2492{
2493 if (s->wdt && s->wdt->reset)
2494 s->clkm.cold_start = 0x6;
2495 s->clkm.clocking_scheme = 0;
2496 omap_clkm_ckctl_update(s, ~0, 0x3000);
2497 s->clkm.arm_ckctl = 0x3000;
d8f699cb 2498 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
c3d2689d 2499 s->clkm.arm_idlect1 = 0x0400;
d8f699cb 2500 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
c3d2689d
AZ
2501 s->clkm.arm_idlect2 = 0x0100;
2502 s->clkm.arm_ewupct = 0x003f;
2503 s->clkm.arm_rstct1 = 0x0000;
2504 s->clkm.arm_rstct2 = 0x0000;
2505 s->clkm.arm_ckout1 = 0x0015;
2506 s->clkm.dpll1_mode = 0x2002;
2507 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
2508 s->clkm.dsp_idlect1 = 0x0040;
2509 omap_clkdsp_idlect2_update(s, ~0, 0x0000);
2510 s->clkm.dsp_idlect2 = 0x0000;
2511 s->clkm.dsp_rstct2 = 0x0000;
2512}
2513
2514static void omap_clkm_init(target_phys_addr_t mpu_base,
2515 target_phys_addr_t dsp_base, struct omap_mpu_state_s *s)
2516{
2517 int iomemtype[2] = {
2518 cpu_register_io_memory(0, omap_clkm_readfn, omap_clkm_writefn, s),
2519 cpu_register_io_memory(0, omap_clkdsp_readfn, omap_clkdsp_writefn, s),
2520 };
2521
2522 s->clkm.mpu_base = mpu_base;
2523 s->clkm.dsp_base = dsp_base;
d8f699cb
AZ
2524 s->clkm.arm_idlect1 = 0x03ff;
2525 s->clkm.arm_idlect2 = 0x0100;
2526 s->clkm.dsp_idlect1 = 0x0002;
c3d2689d 2527 omap_clkm_reset(s);
d8f699cb 2528 s->clkm.cold_start = 0x3a;
c3d2689d
AZ
2529
2530 cpu_register_physical_memory(s->clkm.mpu_base, 0x100, iomemtype[0]);
2531 cpu_register_physical_memory(s->clkm.dsp_base, 0x1000, iomemtype[1]);
2532}
2533
fe71e81a
AZ
2534/* MPU I/O */
2535struct omap_mpuio_s {
2536 target_phys_addr_t base;
2537 qemu_irq irq;
2538 qemu_irq kbd_irq;
2539 qemu_irq *in;
2540 qemu_irq handler[16];
2541 qemu_irq wakeup;
2542
2543 uint16_t inputs;
2544 uint16_t outputs;
2545 uint16_t dir;
2546 uint16_t edge;
2547 uint16_t mask;
2548 uint16_t ints;
2549
2550 uint16_t debounce;
2551 uint16_t latch;
2552 uint8_t event;
2553
2554 uint8_t buttons[5];
2555 uint8_t row_latch;
2556 uint8_t cols;
2557 int kbd_mask;
2558 int clk;
2559};
2560
2561static void omap_mpuio_set(void *opaque, int line, int level)
2562{
2563 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2564 uint16_t prev = s->inputs;
2565
2566 if (level)
2567 s->inputs |= 1 << line;
2568 else
2569 s->inputs &= ~(1 << line);
2570
2571 if (((1 << line) & s->dir & ~s->mask) && s->clk) {
2572 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
2573 s->ints |= 1 << line;
2574 qemu_irq_raise(s->irq);
2575 /* TODO: wakeup */
2576 }
2577 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
2578 (s->event >> 1) == line) /* PIN_SELECT */
2579 s->latch = s->inputs;
2580 }
2581}
2582
2583static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
2584{
2585 int i;
2586 uint8_t *row, rows = 0, cols = ~s->cols;
2587
38a34e1d 2588 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
fe71e81a 2589 if (*row & cols)
38a34e1d 2590 rows |= i;
fe71e81a 2591
cf6d9118
AZ
2592 qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
2593 s->row_latch = ~rows;
fe71e81a
AZ
2594}
2595
2596static uint32_t omap_mpuio_read(void *opaque, target_phys_addr_t addr)
2597{
2598 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
cf965d24 2599 int offset = addr & OMAP_MPUI_REG_MASK;
fe71e81a
AZ
2600 uint16_t ret;
2601
2602 switch (offset) {
2603 case 0x00: /* INPUT_LATCH */
2604 return s->inputs;
2605
2606 case 0x04: /* OUTPUT_REG */
2607 return s->outputs;
2608
2609 case 0x08: /* IO_CNTL */
2610 return s->dir;
2611
2612 case 0x10: /* KBR_LATCH */
2613 return s->row_latch;
2614
2615 case 0x14: /* KBC_REG */
2616 return s->cols;
2617
2618 case 0x18: /* GPIO_EVENT_MODE_REG */
2619 return s->event;
2620
2621 case 0x1c: /* GPIO_INT_EDGE_REG */
2622 return s->edge;
2623
2624 case 0x20: /* KBD_INT */
cf6d9118 2625 return (~s->row_latch & 0x1f) && !s->kbd_mask;
fe71e81a
AZ
2626
2627 case 0x24: /* GPIO_INT */
2628 ret = s->ints;
8e129e07
AZ
2629 s->ints &= s->mask;
2630 if (ret)
2631 qemu_irq_lower(s->irq);
fe71e81a
AZ
2632 return ret;
2633
2634 case 0x28: /* KBD_MASKIT */
2635 return s->kbd_mask;
2636
2637 case 0x2c: /* GPIO_MASKIT */
2638 return s->mask;
2639
2640 case 0x30: /* GPIO_DEBOUNCING_REG */
2641 return s->debounce;
2642
2643 case 0x34: /* GPIO_LATCH_REG */
2644 return s->latch;
2645 }
2646
2647 OMAP_BAD_REG(addr);
2648 return 0;
2649}
2650
2651static void omap_mpuio_write(void *opaque, target_phys_addr_t addr,
2652 uint32_t value)
2653{
2654 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
cf965d24 2655 int offset = addr & OMAP_MPUI_REG_MASK;
fe71e81a
AZ
2656 uint16_t diff;
2657 int ln;
2658
2659 switch (offset) {
2660 case 0x04: /* OUTPUT_REG */
d8f699cb 2661 diff = (s->outputs ^ value) & ~s->dir;
fe71e81a 2662 s->outputs = value;
fe71e81a
AZ
2663 while ((ln = ffs(diff))) {
2664 ln --;
2665 if (s->handler[ln])
2666 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2667 diff &= ~(1 << ln);
2668 }
2669 break;
2670
2671 case 0x08: /* IO_CNTL */
2672 diff = s->outputs & (s->dir ^ value);
2673 s->dir = value;
2674
2675 value = s->outputs & ~s->dir;
2676 while ((ln = ffs(diff))) {
2677 ln --;
2678 if (s->handler[ln])
2679 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2680 diff &= ~(1 << ln);
2681 }
2682 break;
2683
2684 case 0x14: /* KBC_REG */
2685 s->cols = value;
2686 omap_mpuio_kbd_update(s);
2687 break;
2688
2689 case 0x18: /* GPIO_EVENT_MODE_REG */
2690 s->event = value & 0x1f;
2691 break;
2692
2693 case 0x1c: /* GPIO_INT_EDGE_REG */
2694 s->edge = value;
2695 break;
2696
2697 case 0x28: /* KBD_MASKIT */
2698 s->kbd_mask = value & 1;
2699 omap_mpuio_kbd_update(s);
2700 break;
2701
2702 case 0x2c: /* GPIO_MASKIT */
2703 s->mask = value;
2704 break;
2705
2706 case 0x30: /* GPIO_DEBOUNCING_REG */
2707 s->debounce = value & 0x1ff;
2708 break;
2709
2710 case 0x00: /* INPUT_LATCH */
2711 case 0x10: /* KBR_LATCH */
2712 case 0x20: /* KBD_INT */
2713 case 0x24: /* GPIO_INT */
2714 case 0x34: /* GPIO_LATCH_REG */
2715 OMAP_RO_REG(addr);
2716 return;
2717
2718 default:
2719 OMAP_BAD_REG(addr);
2720 return;
2721 }
2722}
2723
2724static CPUReadMemoryFunc *omap_mpuio_readfn[] = {
2725 omap_badwidth_read16,
2726 omap_mpuio_read,
2727 omap_badwidth_read16,
2728};
2729
2730static CPUWriteMemoryFunc *omap_mpuio_writefn[] = {
2731 omap_badwidth_write16,
2732 omap_mpuio_write,
2733 omap_badwidth_write16,
2734};
2735
9596ebb7 2736static void omap_mpuio_reset(struct omap_mpuio_s *s)
fe71e81a
AZ
2737{
2738 s->inputs = 0;
2739 s->outputs = 0;
2740 s->dir = ~0;
2741 s->event = 0;
2742 s->edge = 0;
2743 s->kbd_mask = 0;
2744 s->mask = 0;
2745 s->debounce = 0;
2746 s->latch = 0;
2747 s->ints = 0;
2748 s->row_latch = 0x1f;
38a34e1d 2749 s->clk = 1;
fe71e81a
AZ
2750}
2751
2752static void omap_mpuio_onoff(void *opaque, int line, int on)
2753{
2754 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2755
2756 s->clk = on;
2757 if (on)
2758 omap_mpuio_kbd_update(s);
2759}
2760
2761struct omap_mpuio_s *omap_mpuio_init(target_phys_addr_t base,
2762 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2763 omap_clk clk)
2764{
2765 int iomemtype;
2766 struct omap_mpuio_s *s = (struct omap_mpuio_s *)
2767 qemu_mallocz(sizeof(struct omap_mpuio_s));
2768
2769 s->base = base;
2770 s->irq = gpio_int;
2771 s->kbd_irq = kbd_int;
2772 s->wakeup = wakeup;
2773 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2774 omap_mpuio_reset(s);
2775
2776 iomemtype = cpu_register_io_memory(0, omap_mpuio_readfn,
2777 omap_mpuio_writefn, s);
2778 cpu_register_physical_memory(s->base, 0x800, iomemtype);
2779
2780 omap_clk_adduser(clk, qemu_allocate_irqs(omap_mpuio_onoff, s, 1)[0]);
2781
2782 return s;
2783}
2784
2785qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2786{
2787 return s->in;
2788}
2789
2790void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2791{
2792 if (line >= 16 || line < 0)
2793 cpu_abort(cpu_single_env, "%s: No GPIO line %i\n", __FUNCTION__, line);
2794 s->handler[line] = handler;
2795}
2796
2797void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2798{
2799 if (row >= 5 || row < 0)
2800 cpu_abort(cpu_single_env, "%s: No key %i-%i\n",
2801 __FUNCTION__, col, row);
2802
2803 if (down)
38a34e1d 2804 s->buttons[row] |= 1 << col;
fe71e81a 2805 else
38a34e1d 2806 s->buttons[row] &= ~(1 << col);
fe71e81a
AZ
2807
2808 omap_mpuio_kbd_update(s);
2809}
2810
64330148
AZ
2811/* General-Purpose I/O */
2812struct omap_gpio_s {
2813 target_phys_addr_t base;
2814 qemu_irq irq;
2815 qemu_irq *in;
2816 qemu_irq handler[16];
2817
2818 uint16_t inputs;
2819 uint16_t outputs;
2820 uint16_t dir;
2821 uint16_t edge;
2822 uint16_t mask;
2823 uint16_t ints;
d8f699cb 2824 uint16_t pins;
64330148
AZ
2825};
2826
2827static void omap_gpio_set(void *opaque, int line, int level)
2828{
2829 struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
2830 uint16_t prev = s->inputs;
2831
2832 if (level)
2833 s->inputs |= 1 << line;
2834 else
2835 s->inputs &= ~(1 << line);
2836
2837 if (((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) &
2838 (1 << line) & s->dir & ~s->mask) {
2839 s->ints |= 1 << line;
2840 qemu_irq_raise(s->irq);
2841 }
2842}
2843
2844static uint32_t omap_gpio_read(void *opaque, target_phys_addr_t addr)
2845{
2846 struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
cf965d24 2847 int offset = addr & OMAP_MPUI_REG_MASK;
64330148
AZ
2848
2849 switch (offset) {
2850 case 0x00: /* DATA_INPUT */
d8f699cb 2851 return s->inputs & s->pins;
64330148
AZ
2852
2853 case 0x04: /* DATA_OUTPUT */
2854 return s->outputs;
2855
2856 case 0x08: /* DIRECTION_CONTROL */
2857 return s->dir;
2858
2859 case 0x0c: /* INTERRUPT_CONTROL */
2860 return s->edge;
2861
2862 case 0x10: /* INTERRUPT_MASK */
2863 return s->mask;
2864
2865 case 0x14: /* INTERRUPT_STATUS */
2866 return s->ints;
d8f699cb
AZ
2867
2868 case 0x18: /* PIN_CONTROL (not in OMAP310) */
2869 OMAP_BAD_REG(addr);
2870 return s->pins;
64330148
AZ
2871 }
2872
2873 OMAP_BAD_REG(addr);
2874 return 0;
2875}
2876
2877static void omap_gpio_write(void *opaque, target_phys_addr_t addr,
2878 uint32_t value)
2879{
2880 struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
cf965d24 2881 int offset = addr & OMAP_MPUI_REG_MASK;
64330148
AZ
2882 uint16_t diff;
2883 int ln;
2884
2885 switch (offset) {
2886 case 0x00: /* DATA_INPUT */
2887 OMAP_RO_REG(addr);
2888 return;
2889
2890 case 0x04: /* DATA_OUTPUT */
66450b15 2891 diff = (s->outputs ^ value) & ~s->dir;
64330148 2892 s->outputs = value;
64330148
AZ
2893 while ((ln = ffs(diff))) {
2894 ln --;
2895 if (s->handler[ln])
2896 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2897 diff &= ~(1 << ln);
2898 }
2899 break;
2900
2901 case 0x08: /* DIRECTION_CONTROL */
2902 diff = s->outputs & (s->dir ^ value);
2903 s->dir = value;
2904
2905 value = s->outputs & ~s->dir;
2906 while ((ln = ffs(diff))) {
2907 ln --;
2908 if (s->handler[ln])
2909 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2910 diff &= ~(1 << ln);
2911 }
2912 break;
2913
2914 case 0x0c: /* INTERRUPT_CONTROL */
2915 s->edge = value;
2916 break;
2917
2918 case 0x10: /* INTERRUPT_MASK */
2919 s->mask = value;
2920 break;
2921
2922 case 0x14: /* INTERRUPT_STATUS */
2923 s->ints &= ~value;
2924 if (!s->ints)
2925 qemu_irq_lower(s->irq);
2926 break;
2927
d8f699cb
AZ
2928 case 0x18: /* PIN_CONTROL (not in OMAP310 TRM) */
2929 OMAP_BAD_REG(addr);
2930 s->pins = value;
2931 break;
2932
64330148
AZ
2933 default:
2934 OMAP_BAD_REG(addr);
2935 return;
2936 }
2937}
2938
3efda49d 2939/* *Some* sources say the memory region is 32-bit. */
64330148 2940static CPUReadMemoryFunc *omap_gpio_readfn[] = {
3efda49d 2941 omap_badwidth_read16,
64330148 2942 omap_gpio_read,
3efda49d 2943 omap_badwidth_read16,
64330148
AZ
2944};
2945
2946static CPUWriteMemoryFunc *omap_gpio_writefn[] = {
3efda49d 2947 omap_badwidth_write16,
64330148 2948 omap_gpio_write,
3efda49d 2949 omap_badwidth_write16,
64330148
AZ
2950};
2951
9596ebb7 2952static void omap_gpio_reset(struct omap_gpio_s *s)
64330148
AZ
2953{
2954 s->inputs = 0;
2955 s->outputs = ~0;
2956 s->dir = ~0;
2957 s->edge = ~0;
2958 s->mask = ~0;
2959 s->ints = 0;
d8f699cb 2960 s->pins = ~0;
64330148
AZ
2961}
2962
2963struct omap_gpio_s *omap_gpio_init(target_phys_addr_t base,
2964 qemu_irq irq, omap_clk clk)
2965{
2966 int iomemtype;
2967 struct omap_gpio_s *s = (struct omap_gpio_s *)
2968 qemu_mallocz(sizeof(struct omap_gpio_s));
2969
2970 s->base = base;
2971 s->irq = irq;
2972 s->in = qemu_allocate_irqs(omap_gpio_set, s, 16);
2973 omap_gpio_reset(s);
2974
2975 iomemtype = cpu_register_io_memory(0, omap_gpio_readfn,
2976 omap_gpio_writefn, s);
2977 cpu_register_physical_memory(s->base, 0x1000, iomemtype);
2978
2979 return s;
2980}
2981
2982qemu_irq *omap_gpio_in_get(struct omap_gpio_s *s)
2983{
2984 return s->in;
2985}
2986
2987void omap_gpio_out_set(struct omap_gpio_s *s, int line, qemu_irq handler)
2988{
2989 if (line >= 16 || line < 0)
2990 cpu_abort(cpu_single_env, "%s: No GPIO line %i\n", __FUNCTION__, line);
2991 s->handler[line] = handler;
2992}
2993
d951f6ff
AZ
2994/* MicroWire Interface */
2995struct omap_uwire_s {
2996 target_phys_addr_t base;
2997 qemu_irq txirq;
2998 qemu_irq rxirq;
2999 qemu_irq txdrq;
3000
3001 uint16_t txbuf;
3002 uint16_t rxbuf;
3003 uint16_t control;
3004 uint16_t setup[5];
3005
3006 struct uwire_slave_s *chip[4];
3007};
3008
3009static void omap_uwire_transfer_start(struct omap_uwire_s *s)
3010{
3011 int chipselect = (s->control >> 10) & 3; /* INDEX */
3012 struct uwire_slave_s *slave = s->chip[chipselect];
3013
3014 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
3015 if (s->control & (1 << 12)) /* CS_CMD */
3016 if (slave && slave->send)
3017 slave->send(slave->opaque,
3018 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
3019 s->control &= ~(1 << 14); /* CSRB */
3020 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
3021 * a DRQ. When is the level IRQ supposed to be reset? */
3022 }
3023
3024 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
3025 if (s->control & (1 << 12)) /* CS_CMD */
3026 if (slave && slave->receive)
3027 s->rxbuf = slave->receive(slave->opaque);
3028 s->control |= 1 << 15; /* RDRB */
3029 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
3030 * a DRQ. When is the level IRQ supposed to be reset? */
3031 }
3032}
3033
3034static uint32_t omap_uwire_read(void *opaque, target_phys_addr_t addr)
3035{
3036 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
cf965d24 3037 int offset = addr & OMAP_MPUI_REG_MASK;
d951f6ff
AZ
3038
3039 switch (offset) {
3040 case 0x00: /* RDR */
3041 s->control &= ~(1 << 15); /* RDRB */
3042 return s->rxbuf;
3043
3044 case 0x04: /* CSR */
3045 return s->control;
3046
3047 case 0x08: /* SR1 */
3048 return s->setup[0];
3049 case 0x0c: /* SR2 */
3050 return s->setup[1];
3051 case 0x10: /* SR3 */
3052 return s->setup[2];
3053 case 0x14: /* SR4 */
3054 return s->setup[3];
3055 case 0x18: /* SR5 */
3056 return s->setup[4];
3057 }
3058
3059 OMAP_BAD_REG(addr);
3060 return 0;
3061}
3062
3063static void omap_uwire_write(void *opaque, target_phys_addr_t addr,
3064 uint32_t value)
3065{
3066 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
cf965d24 3067 int offset = addr & OMAP_MPUI_REG_MASK;
d951f6ff
AZ
3068
3069 switch (offset) {
3070 case 0x00: /* TDR */
3071 s->txbuf = value; /* TD */
d951f6ff
AZ
3072 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
3073 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
cf965d24
AZ
3074 (s->control & (1 << 12)))) { /* CS_CMD */
3075 s->control |= 1 << 14; /* CSRB */
d951f6ff 3076 omap_uwire_transfer_start(s);
cf965d24 3077 }
d951f6ff
AZ
3078 break;
3079
3080 case 0x04: /* CSR */
3081 s->control = value & 0x1fff;
3082 if (value & (1 << 13)) /* START */
3083 omap_uwire_transfer_start(s);
3084 break;
3085
3086 case 0x08: /* SR1 */
3087 s->setup[0] = value & 0x003f;
3088 break;
3089
3090 case 0x0c: /* SR2 */
3091 s->setup[1] = value & 0x0fc0;
3092 break;
3093
3094 case 0x10: /* SR3 */
3095 s->setup[2] = value & 0x0003;
3096 break;
3097
3098 case 0x14: /* SR4 */
3099 s->setup[3] = value & 0x0001;
3100 break;
3101
3102 case 0x18: /* SR5 */
3103 s->setup[4] = value & 0x000f;
3104 break;
3105
3106 default:
3107 OMAP_BAD_REG(addr);
3108 return;
3109 }
3110}
3111
3112static CPUReadMemoryFunc *omap_uwire_readfn[] = {
3113 omap_badwidth_read16,
3114 omap_uwire_read,
3115 omap_badwidth_read16,
3116};
3117
3118static CPUWriteMemoryFunc *omap_uwire_writefn[] = {
3119 omap_badwidth_write16,
3120 omap_uwire_write,
3121 omap_badwidth_write16,
3122};
3123
9596ebb7 3124static void omap_uwire_reset(struct omap_uwire_s *s)
d951f6ff 3125{
66450b15 3126 s->control = 0;
d951f6ff
AZ
3127 s->setup[0] = 0;
3128 s->setup[1] = 0;
3129 s->setup[2] = 0;
3130 s->setup[3] = 0;
3131 s->setup[4] = 0;
3132}
3133
3134struct omap_uwire_s *omap_uwire_init(target_phys_addr_t base,
3135 qemu_irq *irq, qemu_irq dma, omap_clk clk)
3136{
3137 int iomemtype;
3138 struct omap_uwire_s *s = (struct omap_uwire_s *)
3139 qemu_mallocz(sizeof(struct omap_uwire_s));
3140
3141 s->base = base;
3142 s->txirq = irq[0];
3143 s->rxirq = irq[1];
3144 s->txdrq = dma;
3145 omap_uwire_reset(s);
3146
3147 iomemtype = cpu_register_io_memory(0, omap_uwire_readfn,
3148 omap_uwire_writefn, s);
3149 cpu_register_physical_memory(s->base, 0x800, iomemtype);
3150
3151 return s;
3152}
3153
3154void omap_uwire_attach(struct omap_uwire_s *s,
3155 struct uwire_slave_s *slave, int chipselect)
3156{
827df9f3
AZ
3157 if (chipselect < 0 || chipselect > 3) {
3158 fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
3159 exit(-1);
3160 }
d951f6ff
AZ
3161
3162 s->chip[chipselect] = slave;
3163}
3164
66450b15 3165/* Pseudonoise Pulse-Width Light Modulator */
9596ebb7 3166static void omap_pwl_update(struct omap_mpu_state_s *s)
66450b15
AZ
3167{
3168 int output = (s->pwl.clk && s->pwl.enable) ? s->pwl.level : 0;
3169
3170 if (output != s->pwl.output) {
3171 s->pwl.output = output;
3172 printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
3173 }
3174}
3175
3176static uint32_t omap_pwl_read(void *opaque, target_phys_addr_t addr)
3177{
3178 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
cf965d24 3179 int offset = addr & OMAP_MPUI_REG_MASK;
66450b15
AZ
3180
3181 switch (offset) {
3182 case 0x00: /* PWL_LEVEL */
3183 return s->pwl.level;
3184 case 0x04: /* PWL_CTRL */
3185 return s->pwl.enable;
3186 }
3187 OMAP_BAD_REG(addr);
3188 return 0;
3189}
3190
3191static void omap_pwl_write(void *opaque, target_phys_addr_t addr,
3192 uint32_t value)
3193{
3194 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
cf965d24 3195 int offset = addr & OMAP_MPUI_REG_MASK;
66450b15
AZ
3196
3197 switch (offset) {
3198 case 0x00: /* PWL_LEVEL */
3199 s->pwl.level = value;
3200 omap_pwl_update(s);
3201 break;
3202 case 0x04: /* PWL_CTRL */
3203 s->pwl.enable = value & 1;
3204 omap_pwl_update(s);
3205 break;
3206 default:
3207 OMAP_BAD_REG(addr);
3208 return;
3209 }
3210}
3211
3212static CPUReadMemoryFunc *omap_pwl_readfn[] = {
02645926 3213 omap_pwl_read,
66450b15
AZ
3214 omap_badwidth_read8,
3215 omap_badwidth_read8,
66450b15
AZ
3216};
3217
3218static CPUWriteMemoryFunc *omap_pwl_writefn[] = {
02645926 3219 omap_pwl_write,
66450b15
AZ
3220 omap_badwidth_write8,
3221 omap_badwidth_write8,
66450b15
AZ
3222};
3223
9596ebb7 3224static void omap_pwl_reset(struct omap_mpu_state_s *s)
66450b15
AZ
3225{
3226 s->pwl.output = 0;
3227 s->pwl.level = 0;
3228 s->pwl.enable = 0;
3229 s->pwl.clk = 1;
3230 omap_pwl_update(s);
3231}
3232
3233static void omap_pwl_clk_update(void *opaque, int line, int on)
3234{
3235 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3236
3237 s->pwl.clk = on;
3238 omap_pwl_update(s);
3239}
3240
3241static void omap_pwl_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
3242 omap_clk clk)
3243{
3244 int iomemtype;
3245
66450b15
AZ
3246 omap_pwl_reset(s);
3247
3248 iomemtype = cpu_register_io_memory(0, omap_pwl_readfn,
3249 omap_pwl_writefn, s);
b854bc19 3250 cpu_register_physical_memory(base, 0x800, iomemtype);
66450b15
AZ
3251
3252 omap_clk_adduser(clk, qemu_allocate_irqs(omap_pwl_clk_update, s, 1)[0]);
3253}
3254
f34c417b
AZ
3255/* Pulse-Width Tone module */
3256static uint32_t omap_pwt_read(void *opaque, target_phys_addr_t addr)
3257{
3258 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
cf965d24 3259 int offset = addr & OMAP_MPUI_REG_MASK;
f34c417b
AZ
3260
3261 switch (offset) {
3262 case 0x00: /* FRC */
3263 return s->pwt.frc;
3264 case 0x04: /* VCR */
3265 return s->pwt.vrc;
3266 case 0x08: /* GCR */
3267 return s->pwt.gcr;
3268 }
3269 OMAP_BAD_REG(addr);
3270 return 0;
3271}
3272
3273static void omap_pwt_write(void *opaque, target_phys_addr_t addr,
3274 uint32_t value)
3275{
3276 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
cf965d24 3277 int offset = addr & OMAP_MPUI_REG_MASK;
f34c417b
AZ
3278
3279 switch (offset) {
3280 case 0x00: /* FRC */
3281 s->pwt.frc = value & 0x3f;
3282 break;
3283 case 0x04: /* VRC */
3284 if ((value ^ s->pwt.vrc) & 1) {
3285 if (value & 1)
3286 printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
3287 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
3288 ((omap_clk_getrate(s->pwt.clk) >> 3) /
3289 /* Pre-multiplexer divider */
3290 ((s->pwt.gcr & 2) ? 1 : 154) /
3291 /* Octave multiplexer */
3292 (2 << (value & 3)) *
3293 /* 101/107 divider */
3294 ((value & (1 << 2)) ? 101 : 107) *
3295 /* 49/55 divider */
3296 ((value & (1 << 3)) ? 49 : 55) *
3297 /* 50/63 divider */
3298 ((value & (1 << 4)) ? 50 : 63) *
3299 /* 80/127 divider */
3300 ((value & (1 << 5)) ? 80 : 127) /
3301 (107 * 55 * 63 * 127)));
3302 else
3303 printf("%s: silence!\n", __FUNCTION__);
3304 }
3305 s->pwt.vrc = value & 0x7f;
3306 break;
3307 case 0x08: /* GCR */
3308 s->pwt.gcr = value & 3;
3309 break;
3310 default:
3311 OMAP_BAD_REG(addr);
3312 return;
3313 }
3314}
3315
3316static CPUReadMemoryFunc *omap_pwt_readfn[] = {
02645926 3317 omap_pwt_read,
f34c417b
AZ
3318 omap_badwidth_read8,
3319 omap_badwidth_read8,
f34c417b
AZ
3320};
3321
3322static CPUWriteMemoryFunc *omap_pwt_writefn[] = {
02645926 3323 omap_pwt_write,
f34c417b
AZ
3324 omap_badwidth_write8,
3325 omap_badwidth_write8,
f34c417b
AZ
3326};
3327
9596ebb7 3328static void omap_pwt_reset(struct omap_mpu_state_s *s)
f34c417b
AZ
3329{
3330 s->pwt.frc = 0;
3331 s->pwt.vrc = 0;
3332 s->pwt.gcr = 0;
3333}
3334
3335static void omap_pwt_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
3336 omap_clk clk)
3337{
3338 int iomemtype;
3339
f34c417b
AZ
3340 s->pwt.clk = clk;
3341 omap_pwt_reset(s);
3342
3343 iomemtype = cpu_register_io_memory(0, omap_pwt_readfn,
3344 omap_pwt_writefn, s);
b854bc19 3345 cpu_register_physical_memory(base, 0x800, iomemtype);
f34c417b
AZ
3346}
3347
5c1c390f
AZ
3348/* Real-time Clock module */
3349struct omap_rtc_s {
3350 target_phys_addr_t base;
3351 qemu_irq irq;
3352 qemu_irq alarm;
3353 QEMUTimer *clk;
3354
3355 uint8_t interrupts;
3356 uint8_t status;
3357 int16_t comp_reg;
3358 int running;
3359 int pm_am;
3360 int auto_comp;
3361 int round;
5c1c390f
AZ
3362 struct tm alarm_tm;
3363 time_t alarm_ti;
3364
3365 struct tm current_tm;
3366 time_t ti;
3367 uint64_t tick;
3368};
3369
3370static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
3371{
106627d0 3372 /* s->alarm is level-triggered */
5c1c390f
AZ
3373 qemu_set_irq(s->alarm, (s->status >> 6) & 1);
3374}
3375
3376static void omap_rtc_alarm_update(struct omap_rtc_s *s)
3377{
3378 s->alarm_ti = mktime(&s->alarm_tm);
3379 if (s->alarm_ti == -1)
3380 printf("%s: conversion failed\n", __FUNCTION__);
3381}
3382
3383static inline uint8_t omap_rtc_bcd(int num)
3384{
3385 return ((num / 10) << 4) | (num % 10);
3386}
3387
3388static inline int omap_rtc_bin(uint8_t num)
3389{
3390 return (num & 15) + 10 * (num >> 4);
3391}
3392
3393static uint32_t omap_rtc_read(void *opaque, target_phys_addr_t addr)
3394{
3395 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
cf965d24 3396 int offset = addr & OMAP_MPUI_REG_MASK;
5c1c390f
AZ
3397 uint8_t i;
3398
3399 switch (offset) {
3400 case 0x00: /* SECONDS_REG */
3401 return omap_rtc_bcd(s->current_tm.tm_sec);
3402
3403 case 0x04: /* MINUTES_REG */
3404 return omap_rtc_bcd(s->current_tm.tm_min);
3405
3406 case 0x08: /* HOURS_REG */
3407 if (s->pm_am)
3408 return ((s->current_tm.tm_hour > 11) << 7) |
3409 omap_rtc_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
3410 else
3411 return omap_rtc_bcd(s->current_tm.tm_hour);
3412
3413 case 0x0c: /* DAYS_REG */
3414 return omap_rtc_bcd(s->current_tm.tm_mday);
3415
3416 case 0x10: /* MONTHS_REG */
3417 return omap_rtc_bcd(s->current_tm.tm_mon + 1);
3418
3419 case 0x14: /* YEARS_REG */
3420 return omap_rtc_bcd(s->current_tm.tm_year % 100);
3421
3422 case 0x18: /* WEEK_REG */
3423 return s->current_tm.tm_wday;
3424
3425 case 0x20: /* ALARM_SECONDS_REG */
3426 return omap_rtc_bcd(s->alarm_tm.tm_sec);
3427
3428 case 0x24: /* ALARM_MINUTES_REG */
3429 return omap_rtc_bcd(s->alarm_tm.tm_min);
3430
3431 case 0x28: /* ALARM_HOURS_REG */
3432 if (s->pm_am)
3433 return ((s->alarm_tm.tm_hour > 11) << 7) |
3434 omap_rtc_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
3435 else
3436 return omap_rtc_bcd(s->alarm_tm.tm_hour);
3437
3438 case 0x2c: /* ALARM_DAYS_REG */
3439 return omap_rtc_bcd(s->alarm_tm.tm_mday);
3440
3441 case 0x30: /* ALARM_MONTHS_REG */
3442 return omap_rtc_bcd(s->alarm_tm.tm_mon + 1);
3443
3444 case 0x34: /* ALARM_YEARS_REG */
3445 return omap_rtc_bcd(s->alarm_tm.tm_year % 100);
3446
3447 case 0x40: /* RTC_CTRL_REG */
3448 return (s->pm_am << 3) | (s->auto_comp << 2) |
3449 (s->round << 1) | s->running;
3450
3451 case 0x44: /* RTC_STATUS_REG */
3452 i = s->status;
3453 s->status &= ~0x3d;
3454 return i;
3455
3456 case 0x48: /* RTC_INTERRUPTS_REG */
3457 return s->interrupts;
3458
3459 case 0x4c: /* RTC_COMP_LSB_REG */
3460 return ((uint16_t) s->comp_reg) & 0xff;
3461
3462 case 0x50: /* RTC_COMP_MSB_REG */
3463 return ((uint16_t) s->comp_reg) >> 8;
3464 }
3465
3466 OMAP_BAD_REG(addr);
3467 return 0;
3468}
3469
3470static void omap_rtc_write(void *opaque, target_phys_addr_t addr,
3471 uint32_t value)
3472{
3473 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
cf965d24 3474 int offset = addr & OMAP_MPUI_REG_MASK;
5c1c390f
AZ
3475 struct tm new_tm;
3476 time_t ti[2];
3477
3478 switch (offset) {
3479 case 0x00: /* SECONDS_REG */
3480#if ALMDEBUG
3481 printf("RTC SEC_REG <-- %02x\n", value);
3482#endif
3483 s->ti -= s->current_tm.tm_sec;
3484 s->ti += omap_rtc_bin(value);
3485 return;
3486
3487 case 0x04: /* MINUTES_REG */
3488#if ALMDEBUG
3489 printf("RTC MIN_REG <-- %02x\n", value);
3490#endif
3491 s->ti -= s->current_tm.tm_min * 60;
3492 s->ti += omap_rtc_bin(value) * 60;
3493 return;
3494
3495 case 0x08: /* HOURS_REG */
3496#if ALMDEBUG
3497 printf("RTC HRS_REG <-- %02x\n", value);
3498#endif
3499 s->ti -= s->current_tm.tm_hour * 3600;
3500 if (s->pm_am) {
3501 s->ti += (omap_rtc_bin(value & 0x3f) & 12) * 3600;
3502 s->ti += ((value >> 7) & 1) * 43200;
3503 } else
3504 s->ti += omap_rtc_bin(value & 0x3f) * 3600;
3505 return;
3506
3507 case 0x0c: /* DAYS_REG */
3508#if ALMDEBUG
3509 printf("RTC DAY_REG <-- %02x\n", value);
3510#endif
3511 s->ti -= s->current_tm.tm_mday * 86400;
3512 s->ti += omap_rtc_bin(value) * 86400;
3513 return;
3514
3515 case 0x10: /* MONTHS_REG */
3516#if ALMDEBUG
3517 printf("RTC MTH_REG <-- %02x\n", value);
3518#endif
3519 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
3520 new_tm.tm_mon = omap_rtc_bin(value);
3521 ti[0] = mktime(&s->current_tm);
3522 ti[1] = mktime(&new_tm);
3523
3524 if (ti[0] != -1 && ti[1] != -1) {
3525 s->ti -= ti[0];
3526 s->ti += ti[1];
3527 } else {
3528 /* A less accurate version */
3529 s->ti -= s->current_tm.tm_mon * 2592000;
3530 s->ti += omap_rtc_bin(value) * 2592000;
3531 }
3532 return;
3533
3534 case 0x14: /* YEARS_REG */
3535#if ALMDEBUG
3536 printf("RTC YRS_REG <-- %02x\n", value);
3537#endif
3538 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
3539 new_tm.tm_year += omap_rtc_bin(value) - (new_tm.tm_year % 100);
3540 ti[0] = mktime(&s->current_tm);
3541 ti[1] = mktime(&new_tm);
3542
3543 if (ti[0] != -1 && ti[1] != -1) {
3544 s->ti -= ti[0];
3545 s->ti += ti[1];
3546 } else {
3547 /* A less accurate version */
3548 s->ti -= (s->current_tm.tm_year % 100) * 31536000;
3549 s->ti += omap_rtc_bin(value) * 31536000;
3550 }
3551 return;
3552
3553 case 0x18: /* WEEK_REG */
3554 return; /* Ignored */
3555
3556 case 0x20: /* ALARM_SECONDS_REG */
3557#if ALMDEBUG
3558 printf("ALM SEC_REG <-- %02x\n", value);
3559#endif
3560 s->alarm_tm.tm_sec = omap_rtc_bin(value);
3561 omap_rtc_alarm_update(s);
3562 return;
3563
3564 case 0x24: /* ALARM_MINUTES_REG */
3565#if ALMDEBUG
3566 printf("ALM MIN_REG <-- %02x\n", value);
3567#endif
3568 s->alarm_tm.tm_min = omap_rtc_bin(value);
3569 omap_rtc_alarm_update(s);
3570 return;
3571
3572 case 0x28: /* ALARM_HOURS_REG */
3573#if ALMDEBUG
3574 printf("ALM HRS_REG <-- %02x\n", value);
3575#endif
3576 if (s->pm_am)
3577 s->alarm_tm.tm_hour =
3578 ((omap_rtc_bin(value & 0x3f)) % 12) +
3579 ((value >> 7) & 1) * 12;
3580 else
3581 s->alarm_tm.tm_hour = omap_rtc_bin(value);
3582 omap_rtc_alarm_update(s);
3583 return;
3584
3585 case 0x2c: /* ALARM_DAYS_REG */
3586#if ALMDEBUG
3587 printf("ALM DAY_REG <-- %02x\n", value);
3588#endif
3589 s->alarm_tm.tm_mday = omap_rtc_bin(value);
3590 omap_rtc_alarm_update(s);
3591 return;
3592
3593 case 0x30: /* ALARM_MONTHS_REG */
3594#if ALMDEBUG
3595 printf("ALM MON_REG <-- %02x\n", value);
3596#endif
3597 s->alarm_tm.tm_mon = omap_rtc_bin(value);
3598 omap_rtc_alarm_update(s);
3599 return;
3600
3601 case 0x34: /* ALARM_YEARS_REG */
3602#if ALMDEBUG
3603 printf("ALM YRS_REG <-- %02x\n", value);
3604#endif
3605 s->alarm_tm.tm_year = omap_rtc_bin(value);
3606 omap_rtc_alarm_update(s);
3607 return;
3608
3609 case 0x40: /* RTC_CTRL_REG */
3610#if ALMDEBUG
3611 printf("RTC CONTROL <-- %02x\n", value);
3612#endif
3613 s->pm_am = (value >> 3) & 1;
3614 s->auto_comp = (value >> 2) & 1;
3615 s->round = (value >> 1) & 1;
3616 s->running = value & 1;
3617 s->status &= 0xfd;
3618 s->status |= s->running << 1;
3619 return;
3620
3621 case 0x44: /* RTC_STATUS_REG */
3622#if ALMDEBUG
3623 printf("RTC STATUSL <-- %02x\n", value);
3624#endif
3625 s->status &= ~((value & 0xc0) ^ 0x80);
3626 omap_rtc_interrupts_update(s);
3627 return;
3628
3629 case 0x48: /* RTC_INTERRUPTS_REG */
3630#if ALMDEBUG
3631 printf("RTC INTRS <-- %02x\n", value);
3632#endif
3633 s->interrupts = value;
3634 return;
3635
3636 case 0x4c: /* RTC_COMP_LSB_REG */
3637#if ALMDEBUG
3638 printf("RTC COMPLSB <-- %02x\n", value);
3639#endif
3640 s->comp_reg &= 0xff00;
3641 s->comp_reg |= 0x00ff & value;
3642 return;
3643
3644 case 0x50: /* RTC_COMP_MSB_REG */
3645#if ALMDEBUG
3646 printf("RTC COMPMSB <-- %02x\n", value);
3647#endif
3648 s->comp_reg &= 0x00ff;
3649 s->comp_reg |= 0xff00 & (value << 8);
3650 return;
3651
3652 default:
3653 OMAP_BAD_REG(addr);
3654 return;
3655 }
3656}
3657
3658static CPUReadMemoryFunc *omap_rtc_readfn[] = {
3659 omap_rtc_read,
3660 omap_badwidth_read8,
3661 omap_badwidth_read8,
3662};
3663
3664static CPUWriteMemoryFunc *omap_rtc_writefn[] = {
3665 omap_rtc_write,
3666 omap_badwidth_write8,
3667 omap_badwidth_write8,
3668};
3669
3670static void omap_rtc_tick(void *opaque)
3671{
3672 struct omap_rtc_s *s = opaque;
3673
3674 if (s->round) {
3675 /* Round to nearest full minute. */
3676 if (s->current_tm.tm_sec < 30)
3677 s->ti -= s->current_tm.tm_sec;
3678 else
3679 s->ti += 60 - s->current_tm.tm_sec;
3680
3681 s->round = 0;
3682 }
3683
f6503059 3684 memcpy(&s->current_tm, localtime(&s->ti), sizeof(s->current_tm));
5c1c390f
AZ
3685
3686 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
3687 s->status |= 0x40;
3688 omap_rtc_interrupts_update(s);
3689 }
3690
3691 if (s->interrupts & 0x04)
3692 switch (s->interrupts & 3) {
3693 case 0:
3694 s->status |= 0x04;
106627d0 3695 qemu_irq_pulse(s->irq);
5c1c390f
AZ
3696 break;
3697 case 1:
3698 if (s->current_tm.tm_sec)
3699 break;
3700 s->status |= 0x08;
106627d0 3701 qemu_irq_pulse(s->irq);
5c1c390f
AZ
3702 break;
3703 case 2:
3704 if (s->current_tm.tm_sec || s->current_tm.tm_min)
3705 break;
3706 s->status |= 0x10;
106627d0 3707 qemu_irq_pulse(s->irq);
5c1c390f
AZ
3708 break;
3709 case 3:
3710 if (s->current_tm.tm_sec ||
3711 s->current_tm.tm_min || s->current_tm.tm_hour)
3712 break;
3713 s->status |= 0x20;
106627d0 3714 qemu_irq_pulse(s->irq);
5c1c390f
AZ
3715 break;
3716 }
3717
3718 /* Move on */
3719 if (s->running)
3720 s->ti ++;
3721 s->tick += 1000;
3722
3723 /*
3724 * Every full hour add a rough approximation of the compensation
3725 * register to the 32kHz Timer (which drives the RTC) value.
3726 */
3727 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
3728 s->tick += s->comp_reg * 1000 / 32768;
3729
3730 qemu_mod_timer(s->clk, s->tick);
3731}
3732
9596ebb7 3733static void omap_rtc_reset(struct omap_rtc_s *s)
5c1c390f 3734{
f6503059
AZ
3735 struct tm tm;
3736
5c1c390f
AZ
3737 s->interrupts = 0;
3738 s->comp_reg = 0;
3739 s->running = 0;
3740 s->pm_am = 0;
3741 s->auto_comp = 0;
3742 s->round = 0;
3743 s->tick = qemu_get_clock(rt_clock);
3744 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
3745 s->alarm_tm.tm_mday = 0x01;
3746 s->status = 1 << 7;
f6503059
AZ
3747 qemu_get_timedate(&tm, 0);
3748 s->ti = mktime(&tm);
5c1c390f
AZ
3749
3750 omap_rtc_alarm_update(s);
3751 omap_rtc_tick(s);
3752}
3753
3754struct omap_rtc_s *omap_rtc_init(target_phys_addr_t base,
3755 qemu_irq *irq, omap_clk clk)
3756{
3757 int iomemtype;
3758 struct omap_rtc_s *s = (struct omap_rtc_s *)
3759 qemu_mallocz(sizeof(struct omap_rtc_s));
3760
3761 s->base = base;
3762 s->irq = irq[0];
3763 s->alarm = irq[1];
3764 s->clk = qemu_new_timer(rt_clock, omap_rtc_tick, s);
5c1c390f
AZ
3765
3766 omap_rtc_reset(s);
3767
3768 iomemtype = cpu_register_io_memory(0, omap_rtc_readfn,
3769 omap_rtc_writefn, s);
3770 cpu_register_physical_memory(s->base, 0x800, iomemtype);
3771
3772 return s;
3773}
3774
d8f699cb
AZ
3775/* Multi-channel Buffered Serial Port interfaces */
3776struct omap_mcbsp_s {
3777 target_phys_addr_t base;
3778 qemu_irq txirq;
3779 qemu_irq rxirq;
3780 qemu_irq txdrq;
3781 qemu_irq rxdrq;
3782
3783 uint16_t spcr[2];
3784 uint16_t rcr[2];
3785 uint16_t xcr[2];
3786 uint16_t srgr[2];
3787 uint16_t mcr[2];
3788 uint16_t pcr;
3789 uint16_t rcer[8];
3790 uint16_t xcer[8];
3791 int tx_rate;
3792 int rx_rate;
3793 int tx_req;
73560bc8 3794 int rx_req;
d8f699cb
AZ
3795
3796 struct i2s_codec_s *codec;
73560bc8
AZ
3797 QEMUTimer *source_timer;
3798 QEMUTimer *sink_timer;
d8f699cb
AZ
3799};
3800
3801static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
3802{
3803 int irq;
3804
3805 switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
3806 case 0:
3807 irq = (s->spcr[0] >> 1) & 1; /* RRDY */
3808 break;
3809 case 3:
3810 irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
3811 break;
3812 default:
3813 irq = 0;
3814 break;
3815 }
3816
106627d0
AZ
3817 if (irq)
3818 qemu_irq_pulse(s->rxirq);
d8f699cb
AZ
3819
3820 switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
3821 case 0:
3822 irq = (s->spcr[1] >> 1) & 1; /* XRDY */
3823 break;
3824 case 3:
3825 irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
3826 break;
3827 default:
3828 irq = 0;
3829 break;
3830 }
3831
106627d0
AZ
3832 if (irq)
3833 qemu_irq_pulse(s->txirq);
d8f699cb
AZ
3834}
3835
73560bc8 3836static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
d8f699cb 3837{
73560bc8
AZ
3838 if ((s->spcr[0] >> 1) & 1) /* RRDY */
3839 s->spcr[0] |= 1 << 2; /* RFULL */
3840 s->spcr[0] |= 1 << 1; /* RRDY */
3841 qemu_irq_raise(s->rxdrq);
3842 omap_mcbsp_intr_update(s);
d8f699cb
AZ
3843}
3844
73560bc8 3845static void omap_mcbsp_source_tick(void *opaque)
d8f699cb 3846{
73560bc8
AZ
3847 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3848 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3849
3850 if (!s->rx_rate)
d8f699cb 3851 return;
73560bc8
AZ
3852 if (s->rx_req)
3853 printf("%s: Rx FIFO overrun\n", __FUNCTION__);
d8f699cb 3854
73560bc8 3855 s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
d8f699cb 3856
73560bc8
AZ
3857 omap_mcbsp_rx_newdata(s);
3858 qemu_mod_timer(s->source_timer, qemu_get_clock(vm_clock) + ticks_per_sec);
d8f699cb
AZ
3859}
3860
3861static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3862{
73560bc8
AZ
3863 if (!s->codec || !s->codec->rts)
3864 omap_mcbsp_source_tick(s);
3865 else if (s->codec->in.len) {
3866 s->rx_req = s->codec->in.len;
3867 omap_mcbsp_rx_newdata(s);
d8f699cb 3868 }
d8f699cb
AZ
3869}
3870
3871static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
73560bc8
AZ
3872{
3873 qemu_del_timer(s->source_timer);
3874}
3875
3876static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
d8f699cb
AZ
3877{
3878 s->spcr[0] &= ~(1 << 1); /* RRDY */
3879 qemu_irq_lower(s->rxdrq);
3880 omap_mcbsp_intr_update(s);
3881}
3882
73560bc8
AZ
3883static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3884{
3885 s->spcr[1] |= 1 << 1; /* XRDY */
3886 qemu_irq_raise(s->txdrq);
3887 omap_mcbsp_intr_update(s);
3888}
3889
3890static void omap_mcbsp_sink_tick(void *opaque)
d8f699cb 3891{
73560bc8
AZ
3892 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3893 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3894
3895 if (!s->tx_rate)
d8f699cb 3896 return;
73560bc8
AZ
3897 if (s->tx_req)
3898 printf("%s: Tx FIFO underrun\n", __FUNCTION__);
3899
3900 s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3901
3902 omap_mcbsp_tx_newdata(s);
3903 qemu_mod_timer(s->sink_timer, qemu_get_clock(vm_clock) + ticks_per_sec);
3904}
3905
3906static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3907{
3908 if (!s->codec || !s->codec->cts)
3909 omap_mcbsp_sink_tick(s);
3910 else if (s->codec->out.size) {
3911 s->tx_req = s->codec->out.size;
3912 omap_mcbsp_tx_newdata(s);
3913 }
3914}
3915
3916static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3917{
3918 s->spcr[1] &= ~(1 << 1); /* XRDY */
3919 qemu_irq_lower(s->txdrq);
3920 omap_mcbsp_intr_update(s);
3921 if (s->codec && s->codec->cts)
3922 s->codec->tx_swallow(s->codec->opaque);
d8f699cb
AZ
3923}
3924
3925static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3926{
73560bc8
AZ
3927 s->tx_req = 0;
3928 omap_mcbsp_tx_done(s);
3929 qemu_del_timer(s->sink_timer);
3930}
3931
3932static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3933{
3934 int prev_rx_rate, prev_tx_rate;
3935 int rx_rate = 0, tx_rate = 0;
3936 int cpu_rate = 1500000; /* XXX */
3937
3938 /* TODO: check CLKSTP bit */
3939 if (s->spcr[1] & (1 << 6)) { /* GRST */
3940 if (s->spcr[0] & (1 << 0)) { /* RRST */
3941 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3942 (s->pcr & (1 << 8))) { /* CLKRM */
3943 if (~s->pcr & (1 << 7)) /* SCLKME */
3944 rx_rate = cpu_rate /
3945 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3946 } else
3947 if (s->codec)
3948 rx_rate = s->codec->rx_rate;
3949 }
3950
3951 if (s->spcr[1] & (1 << 0)) { /* XRST */
3952 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3953 (s->pcr & (1 << 9))) { /* CLKXM */
3954 if (~s->pcr & (1 << 7)) /* SCLKME */
3955 tx_rate = cpu_rate /
3956 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3957 } else
3958 if (s->codec)
3959 tx_rate = s->codec->tx_rate;
3960 }
3961 }
3962 prev_tx_rate = s->tx_rate;
3963 prev_rx_rate = s->rx_rate;
3964 s->tx_rate = tx_rate;
3965 s->rx_rate = rx_rate;
3966
3967 if (s->codec)
3968 s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3969
3970 if (!prev_tx_rate && tx_rate)
3971 omap_mcbsp_tx_start(s);
3972 else if (s->tx_rate && !tx_rate)
3973 omap_mcbsp_tx_stop(s);
3974
3975 if (!prev_rx_rate && rx_rate)
3976 omap_mcbsp_rx_start(s);
3977 else if (prev_tx_rate && !tx_rate)
3978 omap_mcbsp_rx_stop(s);
d8f699cb
AZ
3979}
3980
3981static uint32_t omap_mcbsp_read(void *opaque, target_phys_addr_t addr)
3982{
3983 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3984 int offset = addr & OMAP_MPUI_REG_MASK;
3985 uint16_t ret;
3986
3987 switch (offset) {
3988 case 0x00: /* DRR2 */
3989 if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
3990 return 0x0000;
3991 /* Fall through. */
3992 case 0x02: /* DRR1 */
73560bc8 3993 if (s->rx_req < 2) {
d8f699cb 3994 printf("%s: Rx FIFO underrun\n", __FUNCTION__);
73560bc8 3995 omap_mcbsp_rx_done(s);
d8f699cb 3996 } else {
73560bc8
AZ
3997 s->tx_req -= 2;
3998 if (s->codec && s->codec->in.len >= 2) {
3999 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
4000 ret |= s->codec->in.fifo[s->codec->in.start ++];
4001 s->codec->in.len -= 2;
4002 } else
4003 ret = 0x0000;
4004 if (!s->tx_req)
4005 omap_mcbsp_rx_done(s);
d8f699cb
AZ
4006 return ret;
4007 }
4008 return 0x0000;
4009
4010 case 0x04: /* DXR2 */
4011 case 0x06: /* DXR1 */
4012 return 0x0000;
4013
4014 case 0x08: /* SPCR2 */
4015 return s->spcr[1];
4016 case 0x0a: /* SPCR1 */
4017 return s->spcr[0];
4018 case 0x0c: /* RCR2 */
4019 return s->rcr[1];
4020 case 0x0e: /* RCR1 */
4021 return s->rcr[0];
4022 case 0x10: /* XCR2 */
4023 return s->xcr[1];
4024 case 0x12: /* XCR1 */
4025 return s->xcr[0];
4026 case 0x14: /* SRGR2 */
4027 return s->srgr[1];
4028 case 0x16: /* SRGR1 */
4029 return s->srgr[0];
4030 case 0x18: /* MCR2 */
4031 return s->mcr[1];
4032 case 0x1a: /* MCR1 */
4033 return s->mcr[0];
4034 case 0x1c: /* RCERA */
4035 return s->rcer[0];
4036 case 0x1e: /* RCERB */
4037 return s->rcer[1];
4038 case 0x20: /* XCERA */
4039 return s->xcer[0];
4040 case 0x22: /* XCERB */
4041 return s->xcer[1];
4042 case 0x24: /* PCR0 */
4043 return s->pcr;
4044 case 0x26: /* RCERC */
4045 return s->rcer[2];
4046 case 0x28: /* RCERD */
4047 return s->rcer[3];
4048 case 0x2a: /* XCERC */
4049 return s->xcer[2];
4050 case 0x2c: /* XCERD */
4051 return s->xcer[3];
4052 case 0x2e: /* RCERE */
4053 return s->rcer[4];
4054 case 0x30: /* RCERF */
4055 return s->rcer[5];
4056 case 0x32: /* XCERE */
4057 return s->xcer[4];
4058 case 0x34: /* XCERF */
4059 return s->xcer[5];
4060 case 0x36: /* RCERG */
4061 return s->rcer[6];
4062 case 0x38: /* RCERH */
4063 return s->rcer[7];
4064 case 0x3a: /* XCERG */
4065 return s->xcer[6];
4066 case 0x3c: /* XCERH */
4067 return s->xcer[7];
4068 }
4069
4070 OMAP_BAD_REG(addr);
4071 return 0;
4072}
4073
73560bc8 4074static void omap_mcbsp_writeh(void *opaque, target_phys_addr_t addr,
d8f699cb
AZ
4075 uint32_t value)
4076{
4077 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4078 int offset = addr & OMAP_MPUI_REG_MASK;
4079
4080 switch (offset) {
4081 case 0x00: /* DRR2 */
4082 case 0x02: /* DRR1 */
4083 OMAP_RO_REG(addr);
4084 return;
4085
4086 case 0x04: /* DXR2 */
4087 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
4088 return;
4089 /* Fall through. */
4090 case 0x06: /* DXR1 */
73560bc8
AZ
4091 if (s->tx_req > 1) {
4092 s->tx_req -= 2;
4093 if (s->codec && s->codec->cts) {
d8f699cb
AZ
4094 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
4095 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
d8f699cb 4096 }
73560bc8
AZ
4097 if (s->tx_req < 2)
4098 omap_mcbsp_tx_done(s);
d8f699cb
AZ
4099 } else
4100 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
4101 return;
4102
4103 case 0x08: /* SPCR2 */
4104 s->spcr[1] &= 0x0002;
4105 s->spcr[1] |= 0x03f9 & value;
4106 s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
73560bc8 4107 if (~value & 1) /* XRST */
d8f699cb 4108 s->spcr[1] &= ~6;
d8f699cb
AZ
4109 omap_mcbsp_req_update(s);
4110 return;
4111 case 0x0a: /* SPCR1 */
4112 s->spcr[0] &= 0x0006;
4113 s->spcr[0] |= 0xf8f9 & value;
4114 if (value & (1 << 15)) /* DLB */
4115 printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
4116 if (~value & 1) { /* RRST */
4117 s->spcr[0] &= ~6;
73560bc8
AZ
4118 s->rx_req = 0;
4119 omap_mcbsp_rx_done(s);
d8f699cb 4120 }
d8f699cb
AZ
4121 omap_mcbsp_req_update(s);
4122 return;
4123
4124 case 0x0c: /* RCR2 */
4125 s->rcr[1] = value & 0xffff;
4126 return;
4127 case 0x0e: /* RCR1 */
4128 s->rcr[0] = value & 0x7fe0;
4129 return;
4130 case 0x10: /* XCR2 */
4131 s->xcr[1] = value & 0xffff;
4132 return;
4133 case 0x12: /* XCR1 */
4134 s->xcr[0] = value & 0x7fe0;
4135 return;
4136 case 0x14: /* SRGR2 */
4137 s->srgr[1] = value & 0xffff;
73560bc8 4138 omap_mcbsp_req_update(s);
d8f699cb
AZ
4139 return;
4140 case 0x16: /* SRGR1 */
4141 s->srgr[0] = value & 0xffff;
73560bc8 4142 omap_mcbsp_req_update(s);
d8f699cb
AZ
4143 return;
4144 case 0x18: /* MCR2 */
4145 s->mcr[1] = value & 0x03e3;
4146 if (value & 3) /* XMCM */
4147 printf("%s: Tx channel selection mode enable attempt\n",
4148 __FUNCTION__);
4149 return;
4150 case 0x1a: /* MCR1 */
4151 s->mcr[0] = value & 0x03e1;
4152 if (value & 1) /* RMCM */
4153 printf("%s: Rx channel selection mode enable attempt\n",
4154 __FUNCTION__);
4155 return;
4156 case 0x1c: /* RCERA */
4157 s->rcer[0] = value & 0xffff;
4158 return;
4159 case 0x1e: /* RCERB */
4160 s->rcer[1] = value & 0xffff;
4161 return;
4162 case 0x20: /* XCERA */
4163 s->xcer[0] = value & 0xffff;
4164 return;
4165 case 0x22: /* XCERB */
4166 s->xcer[1] = value & 0xffff;
4167 return;
4168 case 0x24: /* PCR0 */
4169 s->pcr = value & 0x7faf;
4170 return;
4171 case 0x26: /* RCERC */
4172 s->rcer[2] = value & 0xffff;
4173 return;
4174 case 0x28: /* RCERD */
4175 s->rcer[3] = value & 0xffff;
4176 return;
4177 case 0x2a: /* XCERC */
4178 s->xcer[2] = value & 0xffff;
4179 return;
4180 case 0x2c: /* XCERD */
4181 s->xcer[3] = value & 0xffff;
4182 return;
4183 case 0x2e: /* RCERE */
4184 s->rcer[4] = value & 0xffff;
4185 return;
4186 case 0x30: /* RCERF */
4187 s->rcer[5] = value & 0xffff;
4188 return;
4189 case 0x32: /* XCERE */
4190 s->xcer[4] = value & 0xffff;
4191 return;
4192 case 0x34: /* XCERF */
4193 s->xcer[5] = value & 0xffff;
4194 return;
4195 case 0x36: /* RCERG */
4196 s->rcer[6] = value & 0xffff;
4197 return;
4198 case 0x38: /* RCERH */
4199 s->rcer[7] = value & 0xffff;
4200 return;
4201 case 0x3a: /* XCERG */
4202 s->xcer[6] = value & 0xffff;
4203 return;
4204 case 0x3c: /* XCERH */
4205 s->xcer[7] = value & 0xffff;
4206 return;
4207 }
4208
4209 OMAP_BAD_REG(addr);
4210}
4211
73560bc8
AZ
4212static void omap_mcbsp_writew(void *opaque, target_phys_addr_t addr,
4213 uint32_t value)
4214{
4215 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4216 int offset = addr & OMAP_MPUI_REG_MASK;
4217
4218 if (offset == 0x04) { /* DXR */
4219 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
4220 return;
4221 if (s->tx_req > 3) {
4222 s->tx_req -= 4;
4223 if (s->codec && s->codec->cts) {
4224 s->codec->out.fifo[s->codec->out.len ++] =
4225 (value >> 24) & 0xff;
4226 s->codec->out.fifo[s->codec->out.len ++] =
4227 (value >> 16) & 0xff;
4228 s->codec->out.fifo[s->codec->out.len ++] =
4229 (value >> 8) & 0xff;
4230 s->codec->out.fifo[s->codec->out.len ++] =
4231 (value >> 0) & 0xff;
4232 }
4233 if (s->tx_req < 4)
4234 omap_mcbsp_tx_done(s);
4235 } else
4236 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
4237 return;
4238 }
4239
4240 omap_badwidth_write16(opaque, addr, value);
4241}
4242
d8f699cb
AZ
4243static CPUReadMemoryFunc *omap_mcbsp_readfn[] = {
4244 omap_badwidth_read16,
4245 omap_mcbsp_read,
4246 omap_badwidth_read16,
4247};
4248
4249static CPUWriteMemoryFunc *omap_mcbsp_writefn[] = {
4250 omap_badwidth_write16,
73560bc8
AZ
4251 omap_mcbsp_writeh,
4252 omap_mcbsp_writew,
d8f699cb
AZ
4253};
4254
4255static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
4256{
4257 memset(&s->spcr, 0, sizeof(s->spcr));
4258 memset(&s->rcr, 0, sizeof(s->rcr));
4259 memset(&s->xcr, 0, sizeof(s->xcr));
4260 s->srgr[0] = 0x0001;
4261 s->srgr[1] = 0x2000;
4262 memset(&s->mcr, 0, sizeof(s->mcr));
4263 memset(&s->pcr, 0, sizeof(s->pcr));
4264 memset(&s->rcer, 0, sizeof(s->rcer));
4265 memset(&s->xcer, 0, sizeof(s->xcer));
4266 s->tx_req = 0;
73560bc8 4267 s->rx_req = 0;
d8f699cb
AZ
4268 s->tx_rate = 0;
4269 s->rx_rate = 0;
73560bc8
AZ
4270 qemu_del_timer(s->source_timer);
4271 qemu_del_timer(s->sink_timer);
d8f699cb
AZ
4272}
4273
4274struct omap_mcbsp_s *omap_mcbsp_init(target_phys_addr_t base,
4275 qemu_irq *irq, qemu_irq *dma, omap_clk clk)
4276{
4277 int iomemtype;
4278 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *)
4279 qemu_mallocz(sizeof(struct omap_mcbsp_s));
4280
4281 s->base = base;
4282 s->txirq = irq[0];
4283 s->rxirq = irq[1];
4284 s->txdrq = dma[0];
4285 s->rxdrq = dma[1];
73560bc8
AZ
4286 s->sink_timer = qemu_new_timer(vm_clock, omap_mcbsp_sink_tick, s);
4287 s->source_timer = qemu_new_timer(vm_clock, omap_mcbsp_source_tick, s);
d8f699cb
AZ
4288 omap_mcbsp_reset(s);
4289
4290 iomemtype = cpu_register_io_memory(0, omap_mcbsp_readfn,
4291 omap_mcbsp_writefn, s);
4292 cpu_register_physical_memory(s->base, 0x800, iomemtype);
4293
4294 return s;
4295}
4296
9596ebb7 4297static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
d8f699cb
AZ
4298{
4299 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4300
73560bc8
AZ
4301 if (s->rx_rate) {
4302 s->rx_req = s->codec->in.len;
4303 omap_mcbsp_rx_newdata(s);
4304 }
d8f699cb
AZ
4305}
4306
9596ebb7 4307static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
d8f699cb
AZ
4308{
4309 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4310
73560bc8
AZ
4311 if (s->tx_rate) {
4312 s->tx_req = s->codec->out.size;
4313 omap_mcbsp_tx_newdata(s);
4314 }
d8f699cb
AZ
4315}
4316
4317void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, struct i2s_codec_s *slave)
4318{
4319 s->codec = slave;
4320 slave->rx_swallow = qemu_allocate_irqs(omap_mcbsp_i2s_swallow, s, 1)[0];
4321 slave->tx_start = qemu_allocate_irqs(omap_mcbsp_i2s_start, s, 1)[0];
4322}
4323
f9d43072
AZ
4324/* LED Pulse Generators */
4325struct omap_lpg_s {
4326 target_phys_addr_t base;
4327 QEMUTimer *tm;
4328
4329 uint8_t control;
4330 uint8_t power;
4331 int64_t on;
4332 int64_t period;
4333 int clk;
4334 int cycle;
4335};
4336
4337static void omap_lpg_tick(void *opaque)
4338{
4339 struct omap_lpg_s *s = opaque;
4340
4341 if (s->cycle)
4342 qemu_mod_timer(s->tm, qemu_get_clock(rt_clock) + s->period - s->on);
4343 else
4344 qemu_mod_timer(s->tm, qemu_get_clock(rt_clock) + s->on);
4345
4346 s->cycle = !s->cycle;
4347 printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
4348}
4349
4350static void omap_lpg_update(struct omap_lpg_s *s)
4351{
4352 int64_t on, period = 1, ticks = 1000;
4353 static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
4354
4355 if (~s->control & (1 << 6)) /* LPGRES */
4356 on = 0;
4357 else if (s->control & (1 << 7)) /* PERM_ON */
4358 on = period;
4359 else {
4360 period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
4361 256 / 32);
4362 on = (s->clk && s->power) ? muldiv64(ticks,
4363 per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
4364 }
4365
4366 qemu_del_timer(s->tm);
4367 if (on == period && s->on < s->period)
4368 printf("%s: LED is on\n", __FUNCTION__);
4369 else if (on == 0 && s->on)
4370 printf("%s: LED is off\n", __FUNCTION__);
4371 else if (on && (on != s->on || period != s->period)) {
4372 s->cycle = 0;
4373 s->on = on;
4374 s->period = period;
4375 omap_lpg_tick(s);
4376 return;
4377 }
4378
4379 s->on = on;
4380 s->period = period;
4381}
4382
4383static void omap_lpg_reset(struct omap_lpg_s *s)
4384{
4385 s->control = 0x00;
4386 s->power = 0x00;
4387 s->clk = 1;
4388 omap_lpg_update(s);
4389}
4390
4391static uint32_t omap_lpg_read(void *opaque, target_phys_addr_t addr)
4392{
4393 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
4394 int offset = addr & OMAP_MPUI_REG_MASK;
4395
4396 switch (offset) {
4397 case 0x00: /* LCR */
4398 return s->control;
4399
4400 case 0x04: /* PMR */
4401 return s->power;
4402 }
4403
4404 OMAP_BAD_REG(addr);
4405 return 0;
4406}
4407
4408static void omap_lpg_write(void *opaque, target_phys_addr_t addr,
4409 uint32_t value)
4410{
4411 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
4412 int offset = addr & OMAP_MPUI_REG_MASK;
4413
4414 switch (offset) {
4415 case 0x00: /* LCR */
4416 if (~value & (1 << 6)) /* LPGRES */
4417 omap_lpg_reset(s);
4418 s->control = value & 0xff;
4419 omap_lpg_update(s);
4420 return;
4421
4422 case 0x04: /* PMR */
4423 s->power = value & 0x01;
4424 omap_lpg_update(s);
4425 return;
4426
4427 default:
4428 OMAP_BAD_REG(addr);
4429 return;
4430 }
4431}
4432
4433static CPUReadMemoryFunc *omap_lpg_readfn[] = {
4434 omap_lpg_read,
4435 omap_badwidth_read8,
4436 omap_badwidth_read8,
4437};
4438
4439static CPUWriteMemoryFunc *omap_lpg_writefn[] = {
4440 omap_lpg_write,
4441 omap_badwidth_write8,
4442 omap_badwidth_write8,
4443};
4444
4445static void omap_lpg_clk_update(void *opaque, int line, int on)
4446{
4447 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
4448
4449 s->clk = on;
4450 omap_lpg_update(s);
4451}
4452
4453struct omap_lpg_s *omap_lpg_init(target_phys_addr_t base, omap_clk clk)
4454{
4455 int iomemtype;
4456 struct omap_lpg_s *s = (struct omap_lpg_s *)
4457 qemu_mallocz(sizeof(struct omap_lpg_s));
4458
4459 s->base = base;
4460 s->tm = qemu_new_timer(rt_clock, omap_lpg_tick, s);
4461
4462 omap_lpg_reset(s);
4463
4464 iomemtype = cpu_register_io_memory(0, omap_lpg_readfn,
4465 omap_lpg_writefn, s);
4466 cpu_register_physical_memory(s->base, 0x800, iomemtype);
4467
4468 omap_clk_adduser(clk, qemu_allocate_irqs(omap_lpg_clk_update, s, 1)[0]);
4469
4470 return s;
4471}
4472
4473/* MPUI Peripheral Bridge configuration */
4474static uint32_t omap_mpui_io_read(void *opaque, target_phys_addr_t addr)
4475{
4476 if (addr == OMAP_MPUI_BASE) /* CMR */
4477 return 0xfe4d;
4478
4479 OMAP_BAD_REG(addr);
4480 return 0;
4481}
4482
4483static CPUReadMemoryFunc *omap_mpui_io_readfn[] = {
4484 omap_badwidth_read16,
4485 omap_mpui_io_read,
4486 omap_badwidth_read16,
4487};
4488
4489static CPUWriteMemoryFunc *omap_mpui_io_writefn[] = {
4490 omap_badwidth_write16,
4491 omap_badwidth_write16,
4492 omap_badwidth_write16,
4493};
4494
4495static void omap_setup_mpui_io(struct omap_mpu_state_s *mpu)
4496{
4497 int iomemtype = cpu_register_io_memory(0, omap_mpui_io_readfn,
4498 omap_mpui_io_writefn, mpu);
4499 cpu_register_physical_memory(OMAP_MPUI_BASE, 0x7fff, iomemtype);
4500}
4501
c3d2689d 4502/* General chip reset */
827df9f3 4503static void omap1_mpu_reset(void *opaque)
c3d2689d
AZ
4504{
4505 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
4506
c3d2689d
AZ
4507 omap_inth_reset(mpu->ih[0]);
4508 omap_inth_reset(mpu->ih[1]);
4509 omap_dma_reset(mpu->dma);
4510 omap_mpu_timer_reset(mpu->timer[0]);
4511 omap_mpu_timer_reset(mpu->timer[1]);
4512 omap_mpu_timer_reset(mpu->timer[2]);
4513 omap_wd_timer_reset(mpu->wdt);
4514 omap_os_timer_reset(mpu->os_timer);
4515 omap_lcdc_reset(mpu->lcd);
4516 omap_ulpd_pm_reset(mpu);
4517 omap_pin_cfg_reset(mpu);
4518 omap_mpui_reset(mpu);
4519 omap_tipb_bridge_reset(mpu->private_tipb);
4520 omap_tipb_bridge_reset(mpu->public_tipb);
4521 omap_dpll_reset(&mpu->dpll[0]);
4522 omap_dpll_reset(&mpu->dpll[1]);
4523 omap_dpll_reset(&mpu->dpll[2]);
d951f6ff
AZ
4524 omap_uart_reset(mpu->uart[0]);
4525 omap_uart_reset(mpu->uart[1]);
4526 omap_uart_reset(mpu->uart[2]);
b30bb3a2 4527 omap_mmc_reset(mpu->mmc);
fe71e81a 4528 omap_mpuio_reset(mpu->mpuio);
64330148 4529 omap_gpio_reset(mpu->gpio);
d951f6ff 4530 omap_uwire_reset(mpu->microwire);
66450b15 4531 omap_pwl_reset(mpu);
4a2c8ac2 4532 omap_pwt_reset(mpu);
827df9f3 4533 omap_i2c_reset(mpu->i2c[0]);
5c1c390f 4534 omap_rtc_reset(mpu->rtc);
d8f699cb
AZ
4535 omap_mcbsp_reset(mpu->mcbsp1);
4536 omap_mcbsp_reset(mpu->mcbsp2);
4537 omap_mcbsp_reset(mpu->mcbsp3);
f9d43072
AZ
4538 omap_lpg_reset(mpu->led[0]);
4539 omap_lpg_reset(mpu->led[1]);
8ef6367e 4540 omap_clkm_reset(mpu);
c3d2689d
AZ
4541 cpu_reset(mpu->env);
4542}
4543
cf965d24
AZ
4544static const struct omap_map_s {
4545 target_phys_addr_t phys_dsp;
4546 target_phys_addr_t phys_mpu;
4547 uint32_t size;
4548 const char *name;
4549} omap15xx_dsp_mm[] = {
4550 /* Strobe 0 */
4551 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
4552 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
4553 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
4554 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
4555 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
4556 { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
4557 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
4558 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
4559 { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
4560 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
4561 { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
4562 { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
4563 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
4564 { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
4565 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
4566 { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
4567 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
4568 /* Strobe 1 */
4569 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
4570
4571 { 0 }
4572};
4573
4574static void omap_setup_dsp_mapping(const struct omap_map_s *map)
4575{
4576 int io;
4577
4578 for (; map->phys_dsp; map ++) {
4579 io = cpu_get_physical_page_desc(map->phys_mpu);
4580
4581 cpu_register_physical_memory(map->phys_dsp, map->size, io);
4582 }
4583}
4584
827df9f3 4585void omap_mpu_wakeup(void *opaque, int irq, int req)
c3d2689d
AZ
4586{
4587 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
4588
fe71e81a
AZ
4589 if (mpu->env->halted)
4590 cpu_interrupt(mpu->env, CPU_INTERRUPT_EXITTB);
c3d2689d
AZ
4591}
4592
827df9f3 4593static const struct dma_irq_map omap1_dma_irq_map[] = {
089b7c0a
AZ
4594 { 0, OMAP_INT_DMA_CH0_6 },
4595 { 0, OMAP_INT_DMA_CH1_7 },
4596 { 0, OMAP_INT_DMA_CH2_8 },
4597 { 0, OMAP_INT_DMA_CH3 },
4598 { 0, OMAP_INT_DMA_CH4 },
4599 { 0, OMAP_INT_DMA_CH5 },
4600 { 1, OMAP_INT_1610_DMA_CH6 },
4601 { 1, OMAP_INT_1610_DMA_CH7 },
4602 { 1, OMAP_INT_1610_DMA_CH8 },
4603 { 1, OMAP_INT_1610_DMA_CH9 },
4604 { 1, OMAP_INT_1610_DMA_CH10 },
4605 { 1, OMAP_INT_1610_DMA_CH11 },
4606 { 1, OMAP_INT_1610_DMA_CH12 },
4607 { 1, OMAP_INT_1610_DMA_CH13 },
4608 { 1, OMAP_INT_1610_DMA_CH14 },
4609 { 1, OMAP_INT_1610_DMA_CH15 }
4610};
4611
b4e3104b
AZ
4612/* DMA ports for OMAP1 */
4613static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
4614 target_phys_addr_t addr)
4615{
4616 return addr >= OMAP_EMIFF_BASE && addr < OMAP_EMIFF_BASE + s->sdram_size;
4617}
4618
4619static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
4620 target_phys_addr_t addr)
4621{
4622 return addr >= OMAP_EMIFS_BASE && addr < OMAP_EMIFF_BASE;
4623}
4624
4625static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
4626 target_phys_addr_t addr)
4627{
4628 return addr >= OMAP_IMIF_BASE && addr < OMAP_IMIF_BASE + s->sram_size;
4629}
4630
4631static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
4632 target_phys_addr_t addr)
4633{
4634 return addr >= 0xfffb0000 && addr < 0xffff0000;
4635}
4636
4637static int omap_validate_local_addr(struct omap_mpu_state_s *s,
4638 target_phys_addr_t addr)
4639{
4640 return addr >= OMAP_LOCALBUS_BASE && addr < OMAP_LOCALBUS_BASE + 0x1000000;
4641}
4642
4643static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
4644 target_phys_addr_t addr)
4645{
4646 return addr >= 0xe1010000 && addr < 0xe1020004;
4647}
4648
c3d2689d
AZ
4649struct omap_mpu_state_s *omap310_mpu_init(unsigned long sdram_size,
4650 DisplayState *ds, const char *core)
4651{
089b7c0a 4652 int i;
c3d2689d
AZ
4653 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
4654 qemu_mallocz(sizeof(struct omap_mpu_state_s));
4655 ram_addr_t imif_base, emiff_base;
106627d0 4656 qemu_irq *cpu_irq;
089b7c0a 4657 qemu_irq dma_irqs[6];
9d413d1d 4658 int sdindex;
106627d0 4659
aaed909a
FB
4660 if (!core)
4661 core = "ti925t";
c3d2689d
AZ
4662
4663 /* Core */
4664 s->mpu_model = omap310;
aaed909a
FB
4665 s->env = cpu_init(core);
4666 if (!s->env) {
4667 fprintf(stderr, "Unable to find CPU definition\n");
4668 exit(1);
4669 }
c3d2689d
AZ
4670 s->sdram_size = sdram_size;
4671 s->sram_size = OMAP15XX_SRAM_SIZE;
4672
fe71e81a
AZ
4673 s->wakeup = qemu_allocate_irqs(omap_mpu_wakeup, s, 1)[0];
4674
c3d2689d
AZ
4675 /* Clocks */
4676 omap_clk_init(s);
4677
4678 /* Memory-mapped stuff */
4679 cpu_register_physical_memory(OMAP_EMIFF_BASE, s->sdram_size,
4680 (emiff_base = qemu_ram_alloc(s->sdram_size)) | IO_MEM_RAM);
4681 cpu_register_physical_memory(OMAP_IMIF_BASE, s->sram_size,
4682 (imif_base = qemu_ram_alloc(s->sram_size)) | IO_MEM_RAM);
4683
4684 omap_clkm_init(0xfffece00, 0xe1008000, s);
4685
106627d0 4686 cpu_irq = arm_pic_init_cpu(s->env);
827df9f3 4687 s->ih[0] = omap_inth_init(0xfffecb00, 0x100, 1, &s->irq[0],
106627d0 4688 cpu_irq[ARM_PIC_CPU_IRQ], cpu_irq[ARM_PIC_CPU_FIQ],
c3d2689d 4689 omap_findclk(s, "arminth_ck"));
827df9f3 4690 s->ih[1] = omap_inth_init(0xfffe0000, 0x800, 1, &s->irq[1],
106627d0 4691 s->ih[0]->pins[OMAP_INT_15XX_IH2_IRQ], NULL,
c3d2689d 4692 omap_findclk(s, "arminth_ck"));
c3d2689d 4693
089b7c0a 4694 for (i = 0; i < 6; i ++)
827df9f3
AZ
4695 dma_irqs[i] =
4696 s->irq[omap1_dma_irq_map[i].ih][omap1_dma_irq_map[i].intr];
089b7c0a
AZ
4697 s->dma = omap_dma_init(0xfffed800, dma_irqs, s->irq[0][OMAP_INT_DMA_LCD],
4698 s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
4699
c3d2689d
AZ
4700 s->port[emiff ].addr_valid = omap_validate_emiff_addr;
4701 s->port[emifs ].addr_valid = omap_validate_emifs_addr;
4702 s->port[imif ].addr_valid = omap_validate_imif_addr;
4703 s->port[tipb ].addr_valid = omap_validate_tipb_addr;
4704 s->port[local ].addr_valid = omap_validate_local_addr;
4705 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
4706
4707 s->timer[0] = omap_mpu_timer_init(0xfffec500,
4708 s->irq[0][OMAP_INT_TIMER1],
4709 omap_findclk(s, "mputim_ck"));
4710 s->timer[1] = omap_mpu_timer_init(0xfffec600,
4711 s->irq[0][OMAP_INT_TIMER2],
4712 omap_findclk(s, "mputim_ck"));
4713 s->timer[2] = omap_mpu_timer_init(0xfffec700,
4714 s->irq[0][OMAP_INT_TIMER3],
4715 omap_findclk(s, "mputim_ck"));
4716
4717 s->wdt = omap_wd_timer_init(0xfffec800,
4718 s->irq[0][OMAP_INT_WD_TIMER],
4719 omap_findclk(s, "armwdt_ck"));
4720
4721 s->os_timer = omap_os_timer_init(0xfffb9000,
4722 s->irq[1][OMAP_INT_OS_TIMER],
4723 omap_findclk(s, "clk32-kHz"));
4724
4725 s->lcd = omap_lcdc_init(0xfffec000, s->irq[0][OMAP_INT_LCD_CTRL],
b4e3104b 4726 omap_dma_get_lcdch(s->dma), ds, imif_base, emiff_base,
c3d2689d
AZ
4727 omap_findclk(s, "lcd_ck"));
4728
4729 omap_ulpd_pm_init(0xfffe0800, s);
4730 omap_pin_cfg_init(0xfffe1000, s);
4731 omap_id_init(s);
4732
4733 omap_mpui_init(0xfffec900, s);
4734
4735 s->private_tipb = omap_tipb_bridge_init(0xfffeca00,
4736 s->irq[0][OMAP_INT_BRIDGE_PRIV],
4737 omap_findclk(s, "tipb_ck"));
4738 s->public_tipb = omap_tipb_bridge_init(0xfffed300,
4739 s->irq[0][OMAP_INT_BRIDGE_PUB],
4740 omap_findclk(s, "tipb_ck"));
4741
4742 omap_tcmi_init(0xfffecc00, s);
4743
d951f6ff 4744 s->uart[0] = omap_uart_init(0xfffb0000, s->irq[1][OMAP_INT_UART1],
c3d2689d 4745 omap_findclk(s, "uart1_ck"),
827df9f3
AZ
4746 omap_findclk(s, "uart1_ck"),
4747 s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
c3d2689d 4748 serial_hds[0]);
d951f6ff 4749 s->uart[1] = omap_uart_init(0xfffb0800, s->irq[1][OMAP_INT_UART2],
c3d2689d 4750 omap_findclk(s, "uart2_ck"),
827df9f3
AZ
4751 omap_findclk(s, "uart2_ck"),
4752 s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
c3d2689d 4753 serial_hds[0] ? serial_hds[1] : 0);
d951f6ff 4754 s->uart[2] = omap_uart_init(0xe1019800, s->irq[0][OMAP_INT_UART3],
c3d2689d 4755 omap_findclk(s, "uart3_ck"),
827df9f3
AZ
4756 omap_findclk(s, "uart3_ck"),
4757 s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
c3d2689d
AZ
4758 serial_hds[0] && serial_hds[1] ? serial_hds[2] : 0);
4759
4760 omap_dpll_init(&s->dpll[0], 0xfffecf00, omap_findclk(s, "dpll1"));
4761 omap_dpll_init(&s->dpll[1], 0xfffed000, omap_findclk(s, "dpll2"));
4762 omap_dpll_init(&s->dpll[2], 0xfffed100, omap_findclk(s, "dpll3"));
4763
9d413d1d
AZ
4764 sdindex = drive_get_index(IF_SD, 0, 0);
4765 if (sdindex == -1) {
e4bcb14c
TS
4766 fprintf(stderr, "qemu: missing SecureDigital device\n");
4767 exit(1);
4768 }
9d413d1d
AZ
4769 s->mmc = omap_mmc_init(0xfffb7800, drives_table[sdindex].bdrv,
4770 s->irq[1][OMAP_INT_OQN], &s->drq[OMAP_DMA_MMC_TX],
4771 omap_findclk(s, "mmc_ck"));
b30bb3a2 4772
fe71e81a
AZ
4773 s->mpuio = omap_mpuio_init(0xfffb5000,
4774 s->irq[1][OMAP_INT_KEYBOARD], s->irq[1][OMAP_INT_MPUIO],
4775 s->wakeup, omap_findclk(s, "clk32-kHz"));
4776
3efda49d 4777 s->gpio = omap_gpio_init(0xfffce000, s->irq[0][OMAP_INT_GPIO_BANK1],
66450b15 4778 omap_findclk(s, "arm_gpio_ck"));
64330148 4779
d951f6ff
AZ
4780 s->microwire = omap_uwire_init(0xfffb3000, &s->irq[1][OMAP_INT_uWireTX],
4781 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4782
d8f699cb
AZ
4783 omap_pwl_init(0xfffb5800, s, omap_findclk(s, "armxor_ck"));
4784 omap_pwt_init(0xfffb6000, s, omap_findclk(s, "armxor_ck"));
66450b15 4785
827df9f3 4786 s->i2c[0] = omap_i2c_init(0xfffb3800, s->irq[1][OMAP_INT_I2C],
4a2c8ac2
AZ
4787 &s->drq[OMAP_DMA_I2C_RX], omap_findclk(s, "mpuper_ck"));
4788
5c1c390f
AZ
4789 s->rtc = omap_rtc_init(0xfffb4800, &s->irq[1][OMAP_INT_RTC_TIMER],
4790 omap_findclk(s, "clk32-kHz"));
02645926 4791
d8f699cb
AZ
4792 s->mcbsp1 = omap_mcbsp_init(0xfffb1800, &s->irq[1][OMAP_INT_McBSP1TX],
4793 &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4794 s->mcbsp2 = omap_mcbsp_init(0xfffb1000, &s->irq[0][OMAP_INT_310_McBSP2_TX],
4795 &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4796 s->mcbsp3 = omap_mcbsp_init(0xfffb7000, &s->irq[1][OMAP_INT_McBSP3TX],
4797 &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4798
f9d43072
AZ
4799 s->led[0] = omap_lpg_init(0xfffbd000, omap_findclk(s, "clk32-kHz"));
4800 s->led[1] = omap_lpg_init(0xfffbd800, omap_findclk(s, "clk32-kHz"));
4801
02645926 4802 /* Register mappings not currenlty implemented:
02645926
AZ
4803 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
4804 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
4805 * USB W2FC fffb4000 - fffb47ff
4806 * Camera Interface fffb6800 - fffb6fff
02645926
AZ
4807 * USB Host fffba000 - fffba7ff
4808 * FAC fffba800 - fffbafff
4809 * HDQ/1-Wire fffbc000 - fffbc7ff
b854bc19 4810 * TIPB switches fffbc800 - fffbcfff
02645926
AZ
4811 * Mailbox fffcf000 - fffcf7ff
4812 * Local bus IF fffec100 - fffec1ff
4813 * Local bus MMU fffec200 - fffec2ff
4814 * DSP MMU fffed200 - fffed2ff
4815 */
4816
cf965d24 4817 omap_setup_dsp_mapping(omap15xx_dsp_mm);
f9d43072 4818 omap_setup_mpui_io(s);
cf965d24 4819
827df9f3 4820 qemu_register_reset(omap1_mpu_reset, s);
c3d2689d
AZ
4821
4822 return s;
4823}