]>
Commit | Line | Data |
---|---|---|
7e7c5e4c AZ |
1 | /* |
2 | * OneNAND flash memories emulation. | |
3 | * | |
4 | * Copyright (C) 2008 Nokia Corporation | |
5 | * Written by Andrzej Zaborowski <andrew@openedhand.com> | |
6 | * | |
7 | * This program is free software; you can redistribute it and/or | |
8 | * modify it under the terms of the GNU General Public License as | |
9 | * published by the Free Software Foundation; either version 2 or | |
10 | * (at your option) version 3 of the License. | |
11 | * | |
12 | * This program is distributed in the hope that it will be useful, | |
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | * GNU General Public License for more details. | |
16 | * | |
fad6cb1a | 17 | * You should have received a copy of the GNU General Public License along |
8167ee88 | 18 | * with this program; if not, see <http://www.gnu.org/licenses/>. |
7e7c5e4c AZ |
19 | */ |
20 | ||
21 | #include "qemu-common.h" | |
34f9f0b5 | 22 | #include "hw.h" |
7e7c5e4c AZ |
23 | #include "flash.h" |
24 | #include "irq.h" | |
666daa68 | 25 | #include "blockdev.h" |
7e7c5e4c AZ |
26 | |
27 | /* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */ | |
28 | #define PAGE_SHIFT 11 | |
29 | ||
30 | /* Fixed */ | |
31 | #define BLOCK_SHIFT (PAGE_SHIFT + 6) | |
32 | ||
bc24a225 | 33 | typedef struct { |
7e7c5e4c AZ |
34 | uint32_t id; |
35 | int shift; | |
c227f099 | 36 | target_phys_addr_t base; |
7e7c5e4c AZ |
37 | qemu_irq intr; |
38 | qemu_irq rdy; | |
39 | BlockDriverState *bdrv; | |
40 | BlockDriverState *bdrv_cur; | |
41 | uint8_t *image; | |
42 | uint8_t *otp; | |
43 | uint8_t *current; | |
c227f099 | 44 | ram_addr_t ram; |
7e7c5e4c AZ |
45 | uint8_t *boot[2]; |
46 | uint8_t *data[2][2]; | |
47 | int iomemtype; | |
48 | int cycle; | |
49 | int otpmode; | |
50 | ||
51 | uint16_t addr[8]; | |
52 | uint16_t unladdr[8]; | |
53 | int bufaddr; | |
54 | int count; | |
55 | uint16_t command; | |
56 | uint16_t config[2]; | |
57 | uint16_t status; | |
58 | uint16_t intstatus; | |
59 | uint16_t wpstatus; | |
60 | ||
bc24a225 | 61 | ECCState ecc; |
7e7c5e4c AZ |
62 | |
63 | int density_mask; | |
64 | int secs; | |
65 | int secs_cur; | |
66 | int blocks; | |
67 | uint8_t *blockwp; | |
bc24a225 | 68 | } OneNANDState; |
7e7c5e4c AZ |
69 | |
70 | enum { | |
71 | ONEN_BUF_BLOCK = 0, | |
72 | ONEN_BUF_BLOCK2 = 1, | |
73 | ONEN_BUF_DEST_BLOCK = 2, | |
74 | ONEN_BUF_DEST_PAGE = 3, | |
75 | ONEN_BUF_PAGE = 7, | |
76 | }; | |
77 | ||
78 | enum { | |
79 | ONEN_ERR_CMD = 1 << 10, | |
80 | ONEN_ERR_ERASE = 1 << 11, | |
81 | ONEN_ERR_PROG = 1 << 12, | |
82 | ONEN_ERR_LOAD = 1 << 13, | |
83 | }; | |
84 | ||
85 | enum { | |
86 | ONEN_INT_RESET = 1 << 4, | |
87 | ONEN_INT_ERASE = 1 << 5, | |
88 | ONEN_INT_PROG = 1 << 6, | |
89 | ONEN_INT_LOAD = 1 << 7, | |
90 | ONEN_INT = 1 << 15, | |
91 | }; | |
92 | ||
93 | enum { | |
94 | ONEN_LOCK_LOCKTIGHTEN = 1 << 0, | |
95 | ONEN_LOCK_LOCKED = 1 << 1, | |
96 | ONEN_LOCK_UNLOCKED = 1 << 2, | |
97 | }; | |
98 | ||
c227f099 | 99 | void onenand_base_update(void *opaque, target_phys_addr_t new) |
7e7c5e4c | 100 | { |
bc24a225 | 101 | OneNANDState *s = (OneNANDState *) opaque; |
7e7c5e4c AZ |
102 | |
103 | s->base = new; | |
104 | ||
105 | /* XXX: We should use IO_MEM_ROMD but we broke it earlier... | |
106 | * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to | |
107 | * write boot commands. Also take note of the BWPS bit. */ | |
108 | cpu_register_physical_memory(s->base + (0x0000 << s->shift), | |
109 | 0x0200 << s->shift, s->iomemtype); | |
110 | cpu_register_physical_memory(s->base + (0x0200 << s->shift), | |
111 | 0xbe00 << s->shift, | |
112 | (s->ram +(0x0200 << s->shift)) | IO_MEM_RAM); | |
113 | if (s->iomemtype) | |
8da3ff18 PB |
114 | cpu_register_physical_memory_offset(s->base + (0xc000 << s->shift), |
115 | 0x4000 << s->shift, s->iomemtype, (0xc000 << s->shift)); | |
7e7c5e4c AZ |
116 | } |
117 | ||
118 | void onenand_base_unmap(void *opaque) | |
119 | { | |
bc24a225 | 120 | OneNANDState *s = (OneNANDState *) opaque; |
7e7c5e4c AZ |
121 | |
122 | cpu_register_physical_memory(s->base, | |
123 | 0x10000 << s->shift, IO_MEM_UNASSIGNED); | |
124 | } | |
125 | ||
bc24a225 | 126 | static void onenand_intr_update(OneNANDState *s) |
7e7c5e4c AZ |
127 | { |
128 | qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1); | |
129 | } | |
130 | ||
131 | /* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */ | |
bc24a225 | 132 | static void onenand_reset(OneNANDState *s, int cold) |
7e7c5e4c AZ |
133 | { |
134 | memset(&s->addr, 0, sizeof(s->addr)); | |
135 | s->command = 0; | |
136 | s->count = 1; | |
137 | s->bufaddr = 0; | |
138 | s->config[0] = 0x40c0; | |
139 | s->config[1] = 0x0000; | |
140 | onenand_intr_update(s); | |
141 | qemu_irq_raise(s->rdy); | |
142 | s->status = 0x0000; | |
143 | s->intstatus = cold ? 0x8080 : 0x8010; | |
144 | s->unladdr[0] = 0; | |
145 | s->unladdr[1] = 0; | |
146 | s->wpstatus = 0x0002; | |
147 | s->cycle = 0; | |
148 | s->otpmode = 0; | |
149 | s->bdrv_cur = s->bdrv; | |
150 | s->current = s->image; | |
151 | s->secs_cur = s->secs; | |
152 | ||
153 | if (cold) { | |
154 | /* Lock the whole flash */ | |
155 | memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks); | |
156 | ||
157 | if (s->bdrv && bdrv_read(s->bdrv, 0, s->boot[0], 8) < 0) | |
2ac71179 | 158 | hw_error("%s: Loading the BootRAM failed.\n", __FUNCTION__); |
7e7c5e4c AZ |
159 | } |
160 | } | |
161 | ||
bc24a225 | 162 | static inline int onenand_load_main(OneNANDState *s, int sec, int secn, |
7e7c5e4c AZ |
163 | void *dest) |
164 | { | |
165 | if (s->bdrv_cur) | |
166 | return bdrv_read(s->bdrv_cur, sec, dest, secn) < 0; | |
167 | else if (sec + secn > s->secs_cur) | |
168 | return 1; | |
169 | ||
170 | memcpy(dest, s->current + (sec << 9), secn << 9); | |
171 | ||
172 | return 0; | |
173 | } | |
174 | ||
bc24a225 | 175 | static inline int onenand_prog_main(OneNANDState *s, int sec, int secn, |
7e7c5e4c AZ |
176 | void *src) |
177 | { | |
178 | if (s->bdrv_cur) | |
179 | return bdrv_write(s->bdrv_cur, sec, src, secn) < 0; | |
180 | else if (sec + secn > s->secs_cur) | |
181 | return 1; | |
182 | ||
183 | memcpy(s->current + (sec << 9), src, secn << 9); | |
184 | ||
185 | return 0; | |
186 | } | |
187 | ||
bc24a225 | 188 | static inline int onenand_load_spare(OneNANDState *s, int sec, int secn, |
7e7c5e4c AZ |
189 | void *dest) |
190 | { | |
191 | uint8_t buf[512]; | |
192 | ||
193 | if (s->bdrv_cur) { | |
194 | if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0) | |
195 | return 1; | |
196 | memcpy(dest, buf + ((sec & 31) << 4), secn << 4); | |
197 | } else if (sec + secn > s->secs_cur) | |
198 | return 1; | |
199 | else | |
200 | memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4); | |
201 | ||
202 | return 0; | |
203 | } | |
204 | ||
bc24a225 | 205 | static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn, |
7e7c5e4c AZ |
206 | void *src) |
207 | { | |
208 | uint8_t buf[512]; | |
209 | ||
210 | if (s->bdrv_cur) { | |
211 | if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0) | |
212 | return 1; | |
213 | memcpy(buf + ((sec & 31) << 4), src, secn << 4); | |
214 | return bdrv_write(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0; | |
215 | } else if (sec + secn > s->secs_cur) | |
216 | return 1; | |
217 | ||
218 | memcpy(s->current + (s->secs_cur << 9) + (sec << 4), src, secn << 4); | |
219 | ||
220 | return 0; | |
221 | } | |
222 | ||
bc24a225 | 223 | static inline int onenand_erase(OneNANDState *s, int sec, int num) |
7e7c5e4c AZ |
224 | { |
225 | /* TODO: optimise */ | |
226 | uint8_t buf[512]; | |
227 | ||
228 | memset(buf, 0xff, sizeof(buf)); | |
229 | for (; num > 0; num --, sec ++) { | |
230 | if (onenand_prog_main(s, sec, 1, buf)) | |
231 | return 1; | |
232 | if (onenand_prog_spare(s, sec, 1, buf)) | |
233 | return 1; | |
234 | } | |
235 | ||
236 | return 0; | |
237 | } | |
238 | ||
bc24a225 | 239 | static void onenand_command(OneNANDState *s, int cmd) |
7e7c5e4c AZ |
240 | { |
241 | int b; | |
242 | int sec; | |
243 | void *buf; | |
244 | #define SETADDR(block, page) \ | |
245 | sec = (s->addr[page] & 3) + \ | |
246 | ((((s->addr[page] >> 2) & 0x3f) + \ | |
247 | (((s->addr[block] & 0xfff) | \ | |
248 | (s->addr[block] >> 15 ? \ | |
249 | s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9)); | |
250 | #define SETBUF_M() \ | |
251 | buf = (s->bufaddr & 8) ? \ | |
252 | s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0]; \ | |
253 | buf += (s->bufaddr & 3) << 9; | |
254 | #define SETBUF_S() \ | |
255 | buf = (s->bufaddr & 8) ? \ | |
256 | s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1]; \ | |
257 | buf += (s->bufaddr & 3) << 4; | |
258 | ||
259 | switch (cmd) { | |
260 | case 0x00: /* Load single/multiple sector data unit into buffer */ | |
261 | SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) | |
262 | ||
263 | SETBUF_M() | |
264 | if (onenand_load_main(s, sec, s->count, buf)) | |
265 | s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD; | |
266 | ||
267 | #if 0 | |
268 | SETBUF_S() | |
269 | if (onenand_load_spare(s, sec, s->count, buf)) | |
270 | s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD; | |
271 | #endif | |
272 | ||
273 | /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages) | |
274 | * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages) | |
275 | * then we need two split the read/write into two chunks. | |
276 | */ | |
277 | s->intstatus |= ONEN_INT | ONEN_INT_LOAD; | |
278 | break; | |
279 | case 0x13: /* Load single/multiple spare sector into buffer */ | |
280 | SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) | |
281 | ||
282 | SETBUF_S() | |
283 | if (onenand_load_spare(s, sec, s->count, buf)) | |
284 | s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD; | |
285 | ||
286 | /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages) | |
287 | * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages) | |
288 | * then we need two split the read/write into two chunks. | |
289 | */ | |
290 | s->intstatus |= ONEN_INT | ONEN_INT_LOAD; | |
291 | break; | |
292 | case 0x80: /* Program single/multiple sector data unit from buffer */ | |
293 | SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) | |
294 | ||
295 | SETBUF_M() | |
296 | if (onenand_prog_main(s, sec, s->count, buf)) | |
297 | s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG; | |
298 | ||
299 | #if 0 | |
300 | SETBUF_S() | |
301 | if (onenand_prog_spare(s, sec, s->count, buf)) | |
302 | s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG; | |
303 | #endif | |
304 | ||
305 | /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages) | |
306 | * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages) | |
307 | * then we need two split the read/write into two chunks. | |
308 | */ | |
309 | s->intstatus |= ONEN_INT | ONEN_INT_PROG; | |
310 | break; | |
311 | case 0x1a: /* Program single/multiple spare area sector from buffer */ | |
312 | SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) | |
313 | ||
314 | SETBUF_S() | |
315 | if (onenand_prog_spare(s, sec, s->count, buf)) | |
316 | s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG; | |
317 | ||
318 | /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages) | |
319 | * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages) | |
320 | * then we need two split the read/write into two chunks. | |
321 | */ | |
322 | s->intstatus |= ONEN_INT | ONEN_INT_PROG; | |
323 | break; | |
324 | case 0x1b: /* Copy-back program */ | |
325 | SETBUF_S() | |
326 | ||
327 | SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) | |
328 | if (onenand_load_main(s, sec, s->count, buf)) | |
329 | s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG; | |
330 | ||
331 | SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE) | |
332 | if (onenand_prog_main(s, sec, s->count, buf)) | |
333 | s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG; | |
334 | ||
335 | /* TODO: spare areas */ | |
336 | ||
337 | s->intstatus |= ONEN_INT | ONEN_INT_PROG; | |
338 | break; | |
339 | ||
340 | case 0x23: /* Unlock NAND array block(s) */ | |
341 | s->intstatus |= ONEN_INT; | |
342 | ||
343 | /* XXX the previous (?) area should be locked automatically */ | |
344 | for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) { | |
345 | if (b >= s->blocks) { | |
346 | s->status |= ONEN_ERR_CMD; | |
347 | break; | |
348 | } | |
349 | if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN) | |
350 | break; | |
351 | ||
352 | s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED; | |
353 | } | |
354 | break; | |
89588a4b AZ |
355 | case 0x27: /* Unlock All NAND array blocks */ |
356 | s->intstatus |= ONEN_INT; | |
357 | ||
358 | for (b = 0; b < s->blocks; b ++) { | |
359 | if (b >= s->blocks) { | |
360 | s->status |= ONEN_ERR_CMD; | |
361 | break; | |
362 | } | |
363 | if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN) | |
364 | break; | |
365 | ||
366 | s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED; | |
367 | } | |
368 | break; | |
369 | ||
7e7c5e4c AZ |
370 | case 0x2a: /* Lock NAND array block(s) */ |
371 | s->intstatus |= ONEN_INT; | |
372 | ||
373 | for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) { | |
374 | if (b >= s->blocks) { | |
375 | s->status |= ONEN_ERR_CMD; | |
376 | break; | |
377 | } | |
378 | if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN) | |
379 | break; | |
380 | ||
381 | s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED; | |
382 | } | |
383 | break; | |
384 | case 0x2c: /* Lock-tight NAND array block(s) */ | |
385 | s->intstatus |= ONEN_INT; | |
386 | ||
387 | for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) { | |
388 | if (b >= s->blocks) { | |
389 | s->status |= ONEN_ERR_CMD; | |
390 | break; | |
391 | } | |
392 | if (s->blockwp[b] == ONEN_LOCK_UNLOCKED) | |
393 | continue; | |
394 | ||
395 | s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN; | |
396 | } | |
397 | break; | |
398 | ||
399 | case 0x71: /* Erase-Verify-Read */ | |
400 | s->intstatus |= ONEN_INT; | |
401 | break; | |
402 | case 0x95: /* Multi-block erase */ | |
403 | qemu_irq_pulse(s->intr); | |
404 | /* Fall through. */ | |
405 | case 0x94: /* Block erase */ | |
406 | sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) | | |
407 | (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0)) | |
408 | << (BLOCK_SHIFT - 9); | |
409 | if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9))) | |
410 | s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE; | |
411 | ||
412 | s->intstatus |= ONEN_INT | ONEN_INT_ERASE; | |
413 | break; | |
414 | case 0xb0: /* Erase suspend */ | |
415 | break; | |
416 | case 0x30: /* Erase resume */ | |
417 | s->intstatus |= ONEN_INT | ONEN_INT_ERASE; | |
418 | break; | |
419 | ||
420 | case 0xf0: /* Reset NAND Flash core */ | |
421 | onenand_reset(s, 0); | |
422 | break; | |
423 | case 0xf3: /* Reset OneNAND */ | |
424 | onenand_reset(s, 0); | |
425 | break; | |
426 | ||
427 | case 0x65: /* OTP Access */ | |
428 | s->intstatus |= ONEN_INT; | |
b9d38e95 | 429 | s->bdrv_cur = NULL; |
7e7c5e4c AZ |
430 | s->current = s->otp; |
431 | s->secs_cur = 1 << (BLOCK_SHIFT - 9); | |
432 | s->addr[ONEN_BUF_BLOCK] = 0; | |
433 | s->otpmode = 1; | |
434 | break; | |
435 | ||
436 | default: | |
437 | s->status |= ONEN_ERR_CMD; | |
438 | s->intstatus |= ONEN_INT; | |
439 | fprintf(stderr, "%s: unknown OneNAND command %x\n", | |
440 | __FUNCTION__, cmd); | |
441 | } | |
442 | ||
443 | onenand_intr_update(s); | |
444 | } | |
445 | ||
c227f099 | 446 | static uint32_t onenand_read(void *opaque, target_phys_addr_t addr) |
7e7c5e4c | 447 | { |
bc24a225 | 448 | OneNANDState *s = (OneNANDState *) opaque; |
8da3ff18 | 449 | int offset = addr >> s->shift; |
7e7c5e4c AZ |
450 | |
451 | switch (offset) { | |
452 | case 0x0000 ... 0xc000: | |
8da3ff18 | 453 | return lduw_le_p(s->boot[0] + addr); |
7e7c5e4c AZ |
454 | |
455 | case 0xf000: /* Manufacturer ID */ | |
456 | return (s->id >> 16) & 0xff; | |
457 | case 0xf001: /* Device ID */ | |
458 | return (s->id >> 8) & 0xff; | |
459 | /* TODO: get the following values from a real chip! */ | |
460 | case 0xf002: /* Version ID */ | |
461 | return (s->id >> 0) & 0xff; | |
462 | case 0xf003: /* Data Buffer size */ | |
463 | return 1 << PAGE_SHIFT; | |
464 | case 0xf004: /* Boot Buffer size */ | |
465 | return 0x200; | |
466 | case 0xf005: /* Amount of buffers */ | |
467 | return 1 | (2 << 8); | |
468 | case 0xf006: /* Technology */ | |
469 | return 0; | |
470 | ||
471 | case 0xf100 ... 0xf107: /* Start addresses */ | |
472 | return s->addr[offset - 0xf100]; | |
473 | ||
474 | case 0xf200: /* Start buffer */ | |
475 | return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10))); | |
476 | ||
477 | case 0xf220: /* Command */ | |
478 | return s->command; | |
479 | case 0xf221: /* System Configuration 1 */ | |
480 | return s->config[0] & 0xffe0; | |
481 | case 0xf222: /* System Configuration 2 */ | |
482 | return s->config[1]; | |
483 | ||
484 | case 0xf240: /* Controller Status */ | |
485 | return s->status; | |
486 | case 0xf241: /* Interrupt */ | |
487 | return s->intstatus; | |
488 | case 0xf24c: /* Unlock Start Block Address */ | |
489 | return s->unladdr[0]; | |
490 | case 0xf24d: /* Unlock End Block Address */ | |
491 | return s->unladdr[1]; | |
492 | case 0xf24e: /* Write Protection Status */ | |
493 | return s->wpstatus; | |
494 | ||
495 | case 0xff00: /* ECC Status */ | |
496 | return 0x00; | |
497 | case 0xff01: /* ECC Result of main area data */ | |
498 | case 0xff02: /* ECC Result of spare area data */ | |
499 | case 0xff03: /* ECC Result of main area data */ | |
500 | case 0xff04: /* ECC Result of spare area data */ | |
2ac71179 | 501 | hw_error("%s: imeplement ECC\n", __FUNCTION__); |
7e7c5e4c AZ |
502 | return 0x0000; |
503 | } | |
504 | ||
505 | fprintf(stderr, "%s: unknown OneNAND register %x\n", | |
506 | __FUNCTION__, offset); | |
507 | return 0; | |
508 | } | |
509 | ||
c227f099 | 510 | static void onenand_write(void *opaque, target_phys_addr_t addr, |
7e7c5e4c AZ |
511 | uint32_t value) |
512 | { | |
bc24a225 | 513 | OneNANDState *s = (OneNANDState *) opaque; |
8da3ff18 | 514 | int offset = addr >> s->shift; |
7e7c5e4c AZ |
515 | int sec; |
516 | ||
517 | switch (offset) { | |
518 | case 0x0000 ... 0x01ff: | |
519 | case 0x8000 ... 0x800f: | |
520 | if (s->cycle) { | |
521 | s->cycle = 0; | |
522 | ||
523 | if (value == 0x0000) { | |
524 | SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) | |
525 | onenand_load_main(s, sec, | |
526 | 1 << (PAGE_SHIFT - 9), s->data[0][0]); | |
527 | s->addr[ONEN_BUF_PAGE] += 4; | |
528 | s->addr[ONEN_BUF_PAGE] &= 0xff; | |
529 | } | |
530 | break; | |
531 | } | |
532 | ||
533 | switch (value) { | |
534 | case 0x00f0: /* Reset OneNAND */ | |
535 | onenand_reset(s, 0); | |
536 | break; | |
537 | ||
538 | case 0x00e0: /* Load Data into Buffer */ | |
539 | s->cycle = 1; | |
540 | break; | |
541 | ||
542 | case 0x0090: /* Read Identification Data */ | |
543 | memset(s->boot[0], 0, 3 << s->shift); | |
544 | s->boot[0][0 << s->shift] = (s->id >> 16) & 0xff; | |
545 | s->boot[0][1 << s->shift] = (s->id >> 8) & 0xff; | |
546 | s->boot[0][2 << s->shift] = s->wpstatus & 0xff; | |
547 | break; | |
548 | ||
549 | default: | |
550 | fprintf(stderr, "%s: unknown OneNAND boot command %x\n", | |
551 | __FUNCTION__, value); | |
552 | } | |
553 | break; | |
554 | ||
555 | case 0xf100 ... 0xf107: /* Start addresses */ | |
556 | s->addr[offset - 0xf100] = value; | |
557 | break; | |
558 | ||
559 | case 0xf200: /* Start buffer */ | |
560 | s->bufaddr = (value >> 8) & 0xf; | |
561 | if (PAGE_SHIFT == 11) | |
562 | s->count = (value & 3) ?: 4; | |
563 | else if (PAGE_SHIFT == 10) | |
564 | s->count = (value & 1) ?: 2; | |
565 | break; | |
566 | ||
567 | case 0xf220: /* Command */ | |
568 | if (s->intstatus & (1 << 15)) | |
569 | break; | |
570 | s->command = value; | |
571 | onenand_command(s, s->command); | |
572 | break; | |
573 | case 0xf221: /* System Configuration 1 */ | |
574 | s->config[0] = value; | |
575 | onenand_intr_update(s); | |
576 | qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1); | |
577 | break; | |
578 | case 0xf222: /* System Configuration 2 */ | |
579 | s->config[1] = value; | |
580 | break; | |
581 | ||
582 | case 0xf241: /* Interrupt */ | |
583 | s->intstatus &= value; | |
584 | if ((1 << 15) & ~s->intstatus) | |
585 | s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE | | |
586 | ONEN_ERR_PROG | ONEN_ERR_LOAD); | |
587 | onenand_intr_update(s); | |
588 | break; | |
589 | case 0xf24c: /* Unlock Start Block Address */ | |
590 | s->unladdr[0] = value & (s->blocks - 1); | |
591 | /* For some reason we have to set the end address to by default | |
592 | * be same as start because the software forgets to write anything | |
593 | * in there. */ | |
594 | s->unladdr[1] = value & (s->blocks - 1); | |
595 | break; | |
596 | case 0xf24d: /* Unlock End Block Address */ | |
597 | s->unladdr[1] = value & (s->blocks - 1); | |
598 | break; | |
599 | ||
600 | default: | |
601 | fprintf(stderr, "%s: unknown OneNAND register %x\n", | |
602 | __FUNCTION__, offset); | |
603 | } | |
604 | } | |
605 | ||
d60efc6b | 606 | static CPUReadMemoryFunc * const onenand_readfn[] = { |
7e7c5e4c AZ |
607 | onenand_read, /* TODO */ |
608 | onenand_read, | |
609 | onenand_read, | |
610 | }; | |
611 | ||
d60efc6b | 612 | static CPUWriteMemoryFunc * const onenand_writefn[] = { |
7e7c5e4c AZ |
613 | onenand_write, /* TODO */ |
614 | onenand_write, | |
615 | onenand_write, | |
616 | }; | |
617 | ||
618 | void *onenand_init(uint32_t id, int regshift, qemu_irq irq) | |
619 | { | |
bc24a225 | 620 | OneNANDState *s = (OneNANDState *) qemu_mallocz(sizeof(*s)); |
751c6a17 | 621 | DriveInfo *dinfo = drive_get(IF_MTD, 0, 0); |
7e7c5e4c AZ |
622 | uint32_t size = 1 << (24 + ((id >> 12) & 7)); |
623 | void *ram; | |
624 | ||
625 | s->shift = regshift; | |
626 | s->intr = irq; | |
b9d38e95 | 627 | s->rdy = NULL; |
7e7c5e4c AZ |
628 | s->id = id; |
629 | s->blocks = size >> BLOCK_SHIFT; | |
630 | s->secs = size >> 9; | |
631 | s->blockwp = qemu_malloc(s->blocks); | |
632 | s->density_mask = (id & (1 << 11)) ? (1 << (6 + ((id >> 12) & 7))) : 0; | |
1eed09cb | 633 | s->iomemtype = cpu_register_io_memory(onenand_readfn, |
2507c12a | 634 | onenand_writefn, s, DEVICE_NATIVE_ENDIAN); |
751c6a17 | 635 | if (!dinfo) |
7e7c5e4c AZ |
636 | s->image = memset(qemu_malloc(size + (size >> 5)), |
637 | 0xff, size + (size >> 5)); | |
638 | else | |
751c6a17 | 639 | s->bdrv = dinfo->bdrv; |
7e7c5e4c AZ |
640 | s->otp = memset(qemu_malloc((64 + 2) << PAGE_SHIFT), |
641 | 0xff, (64 + 2) << PAGE_SHIFT); | |
1724f049 | 642 | s->ram = qemu_ram_alloc(NULL, "onenand.ram", 0xc000 << s->shift); |
5c130f65 | 643 | ram = qemu_get_ram_ptr(s->ram); |
7e7c5e4c AZ |
644 | s->boot[0] = ram + (0x0000 << s->shift); |
645 | s->boot[1] = ram + (0x8000 << s->shift); | |
646 | s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift); | |
647 | s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift); | |
648 | s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift); | |
649 | s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift); | |
650 | ||
651 | onenand_reset(s, 1); | |
652 | ||
653 | return s; | |
654 | } | |
c580d92b AZ |
655 | |
656 | void *onenand_raw_otp(void *opaque) | |
657 | { | |
bc24a225 | 658 | OneNANDState *s = (OneNANDState *) opaque; |
c580d92b AZ |
659 | |
660 | return s->otp; | |
661 | } |