]> git.proxmox.com Git - qemu.git/blame - hw/slavio_timer.c
new bochs BIOS - 16 bit APM support (initial patch by Struan Bartlett)
[qemu.git] / hw / slavio_timer.c
CommitLineData
e80cfcfc
FB
1/*
2 * QEMU Sparc SLAVIO timer controller emulation
3 *
66321a11 4 * Copyright (c) 2003-2005 Fabrice Bellard
e80cfcfc
FB
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24#include "vl.h"
25
26//#define DEBUG_TIMER
27
66321a11
FB
28#ifdef DEBUG_TIMER
29#define DPRINTF(fmt, args...) \
30do { printf("TIMER: " fmt , ##args); } while (0)
31#else
32#define DPRINTF(fmt, args...)
33#endif
34
e80cfcfc
FB
35/*
36 * Registers of hardware timer in sun4m.
37 *
38 * This is the timer/counter part of chip STP2001 (Slave I/O), also
39 * produced as NCR89C105. See
40 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
41 *
42 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
43 * are zero. Bit 31 is 1 when count has been reached.
44 *
45 */
46
47typedef struct SLAVIO_TIMERState {
48 uint32_t limit, count, counthigh;
49 int64_t count_load_time;
50 int64_t expire_time;
51 int64_t stop_time, tick_offset;
52 QEMUTimer *irq_timer;
53 int irq;
54 int reached, stopped;
55 int mode; // 0 = processor, 1 = user, 2 = system
56} SLAVIO_TIMERState;
57
58#define TIMER_MAXADDR 0x1f
59#define CNT_FREQ 2000000
60#define MAX_CPUS 16
61
62// Update count, set irq, update expire_time
63static void slavio_timer_get_out(SLAVIO_TIMERState *s)
64{
65 int out;
66 int64_t diff, ticks, count;
67 uint32_t limit;
68
69 // There are three clock tick units: CPU ticks, register units
70 // (nanoseconds), and counter ticks (500 ns).
71 if (s->mode == 1 && s->stopped)
72 ticks = s->stop_time;
73 else
74 ticks = qemu_get_clock(vm_clock) - s->tick_offset;
75
76 out = (ticks >= s->expire_time);
77 if (out)
78 s->reached = 0x80000000;
79 if (!s->limit)
80 limit = 0x7fffffff;
81 else
82 limit = s->limit;
83
84 // Convert register units to counter ticks
85 limit = limit >> 9;
86
87 // Convert cpu ticks to counter ticks
88 diff = muldiv64(ticks - s->count_load_time, CNT_FREQ, ticks_per_sec);
89
90 // Calculate what the counter should be, convert to register
91 // units
92 count = diff % limit;
93 s->count = count << 9;
94 s->counthigh = count >> 22;
95
96 // Expire time: CPU ticks left to next interrupt
97 // Convert remaining counter ticks to CPU ticks
98 s->expire_time = ticks + muldiv64(limit - count, ticks_per_sec, CNT_FREQ);
99
66321a11
FB
100 DPRINTF("irq %d limit %d reached %d d %lld count %d s->c %x diff %lld stopped %d mode %d\n", s->irq, limit, s->reached?1:0, (ticks-s->count_load_time), count, s->count, s->expire_time - ticks, s->stopped, s->mode);
101
e80cfcfc
FB
102 if (s->mode != 1)
103 pic_set_irq(s->irq, out);
104}
105
106// timer callback
107static void slavio_timer_irq(void *opaque)
108{
109 SLAVIO_TIMERState *s = opaque;
110
111 if (!s->irq_timer)
112 return;
113 slavio_timer_get_out(s);
114 if (s->mode != 1)
115 qemu_mod_timer(s->irq_timer, s->expire_time);
116}
117
118static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
119{
120 SLAVIO_TIMERState *s = opaque;
121 uint32_t saddr;
122
123 saddr = (addr & TIMER_MAXADDR) >> 2;
124 switch (saddr) {
125 case 0:
126 // read limit (system counter mode) or read most signifying
127 // part of counter (user mode)
128 if (s->mode != 1) {
129 // clear irq
130 pic_set_irq(s->irq, 0);
131 s->count_load_time = qemu_get_clock(vm_clock);
132 s->reached = 0;
133 return s->limit;
134 }
135 else {
136 slavio_timer_get_out(s);
137 return s->counthigh & 0x7fffffff;
138 }
139 case 1:
140 // read counter and reached bit (system mode) or read lsbits
141 // of counter (user mode)
142 slavio_timer_get_out(s);
143 if (s->mode != 1)
144 return (s->count & 0x7fffffff) | s->reached;
145 else
146 return s->count;
147 case 3:
148 // read start/stop status
149 return s->stopped;
150 case 4:
151 // read user/system mode
152 return s->mode & 1;
153 default:
154 return 0;
155 }
156}
157
158static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
159{
160 SLAVIO_TIMERState *s = opaque;
161 uint32_t saddr;
162
163 saddr = (addr & TIMER_MAXADDR) >> 2;
164 switch (saddr) {
165 case 0:
166 // set limit, reset counter
167 s->count_load_time = qemu_get_clock(vm_clock);
168 // fall through
169 case 2:
170 // set limit without resetting counter
171 if (!val)
172 s->limit = 0x7fffffff;
173 else
174 s->limit = val & 0x7fffffff;
175 slavio_timer_irq(s);
176 break;
177 case 3:
178 // start/stop user counter
179 if (s->mode == 1) {
180 if (val & 1) {
181 s->stop_time = qemu_get_clock(vm_clock);
182 s->stopped = 1;
183 }
184 else {
185 if (s->stopped)
186 s->tick_offset += qemu_get_clock(vm_clock) - s->stop_time;
187 s->stopped = 0;
188 }
189 }
190 break;
191 case 4:
192 // bit 0: user (1) or system (0) counter mode
193 if (s->mode == 0 || s->mode == 1)
194 s->mode = val & 1;
195 break;
196 default:
197 break;
198 }
199}
200
201static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
202 slavio_timer_mem_readl,
203 slavio_timer_mem_readl,
204 slavio_timer_mem_readl,
205};
206
207static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
208 slavio_timer_mem_writel,
209 slavio_timer_mem_writel,
210 slavio_timer_mem_writel,
211};
212
213static void slavio_timer_save(QEMUFile *f, void *opaque)
214{
215 SLAVIO_TIMERState *s = opaque;
216
217 qemu_put_be32s(f, &s->limit);
218 qemu_put_be32s(f, &s->count);
219 qemu_put_be32s(f, &s->counthigh);
220 qemu_put_be64s(f, &s->count_load_time);
221 qemu_put_be64s(f, &s->expire_time);
222 qemu_put_be64s(f, &s->stop_time);
223 qemu_put_be64s(f, &s->tick_offset);
224 qemu_put_be32s(f, &s->irq);
225 qemu_put_be32s(f, &s->reached);
226 qemu_put_be32s(f, &s->stopped);
227 qemu_put_be32s(f, &s->mode);
228}
229
230static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
231{
232 SLAVIO_TIMERState *s = opaque;
233
234 if (version_id != 1)
235 return -EINVAL;
236
237 qemu_get_be32s(f, &s->limit);
238 qemu_get_be32s(f, &s->count);
239 qemu_get_be32s(f, &s->counthigh);
240 qemu_get_be64s(f, &s->count_load_time);
241 qemu_get_be64s(f, &s->expire_time);
242 qemu_get_be64s(f, &s->stop_time);
243 qemu_get_be64s(f, &s->tick_offset);
244 qemu_get_be32s(f, &s->irq);
245 qemu_get_be32s(f, &s->reached);
246 qemu_get_be32s(f, &s->stopped);
247 qemu_get_be32s(f, &s->mode);
248 return 0;
249}
250
251static void slavio_timer_reset(void *opaque)
252{
253 SLAVIO_TIMERState *s = opaque;
254
255 s->limit = 0;
256 s->count = 0;
257 s->count_load_time = qemu_get_clock(vm_clock);;
258 s->stop_time = s->count_load_time;
259 s->tick_offset = 0;
260 s->reached = 0;
261 s->mode &= 2;
262 s->stopped = 1;
263 slavio_timer_get_out(s);
264}
265
266static void slavio_timer_init_internal(uint32_t addr, int irq, int mode)
267{
268 int slavio_timer_io_memory;
269 SLAVIO_TIMERState *s;
270
271 s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
272 if (!s)
273 return;
274 s->irq = irq;
275 s->mode = mode;
276 s->irq_timer = qemu_new_timer(vm_clock, slavio_timer_irq, s);
277
278 slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
279 slavio_timer_mem_write, s);
280 cpu_register_physical_memory(addr, TIMER_MAXADDR, slavio_timer_io_memory);
281 register_savevm("slavio_timer", addr, 1, slavio_timer_save, slavio_timer_load, s);
282 qemu_register_reset(slavio_timer_reset, s);
283 slavio_timer_reset(s);
284}
285
286void slavio_timer_init(uint32_t addr1, int irq1, uint32_t addr2, int irq2)
287{
288 int i;
289
290 for (i = 0; i < MAX_CPUS; i++) {
291 slavio_timer_init_internal(addr1 + i * TARGET_PAGE_SIZE, irq1, 0);
292 }
293
294 slavio_timer_init_internal(addr2, irq2, 2);
295}