]> git.proxmox.com Git - qemu.git/blame - hw/slavio_timer.c
Commit NAND image changes on "commit all" or "commit mtd".
[qemu.git] / hw / slavio_timer.c
CommitLineData
e80cfcfc
FB
1/*
2 * QEMU Sparc SLAVIO timer controller emulation
3 *
66321a11 4 * Copyright (c) 2003-2005 Fabrice Bellard
e80cfcfc
FB
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24#include "vl.h"
25
26//#define DEBUG_TIMER
27
66321a11
FB
28#ifdef DEBUG_TIMER
29#define DPRINTF(fmt, args...) \
30do { printf("TIMER: " fmt , ##args); } while (0)
31#else
32#define DPRINTF(fmt, args...)
33#endif
34
e80cfcfc
FB
35/*
36 * Registers of hardware timer in sun4m.
37 *
38 * This is the timer/counter part of chip STP2001 (Slave I/O), also
39 * produced as NCR89C105. See
40 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
41 *
42 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
43 * are zero. Bit 31 is 1 when count has been reached.
44 *
ba3c64fb
FB
45 * Per-CPU timers interrupt local CPU, system timer uses normal
46 * interrupt routing.
47 *
e80cfcfc
FB
48 */
49
50typedef struct SLAVIO_TIMERState {
51 uint32_t limit, count, counthigh;
52 int64_t count_load_time;
53 int64_t expire_time;
54 int64_t stop_time, tick_offset;
55 QEMUTimer *irq_timer;
56 int irq;
57 int reached, stopped;
58 int mode; // 0 = processor, 1 = user, 2 = system
ba3c64fb 59 unsigned int cpu;
52cc07d0 60 void *intctl;
e80cfcfc
FB
61} SLAVIO_TIMERState;
62
63#define TIMER_MAXADDR 0x1f
64#define CNT_FREQ 2000000
e80cfcfc
FB
65
66// Update count, set irq, update expire_time
67static void slavio_timer_get_out(SLAVIO_TIMERState *s)
68{
69 int out;
70 int64_t diff, ticks, count;
71 uint32_t limit;
72
73 // There are three clock tick units: CPU ticks, register units
74 // (nanoseconds), and counter ticks (500 ns).
75 if (s->mode == 1 && s->stopped)
76 ticks = s->stop_time;
77 else
78 ticks = qemu_get_clock(vm_clock) - s->tick_offset;
79
ba3c64fb 80 out = (ticks > s->expire_time);
e80cfcfc
FB
81 if (out)
82 s->reached = 0x80000000;
e80cfcfc 83 // Convert register units to counter ticks
31ade715
BS
84 limit = s->limit >> 9;
85
86 if (!limit)
87 limit = 0x7fffffff >> 9;
e80cfcfc
FB
88
89 // Convert cpu ticks to counter ticks
90 diff = muldiv64(ticks - s->count_load_time, CNT_FREQ, ticks_per_sec);
91
92 // Calculate what the counter should be, convert to register
93 // units
94 count = diff % limit;
95 s->count = count << 9;
96 s->counthigh = count >> 22;
97
98 // Expire time: CPU ticks left to next interrupt
99 // Convert remaining counter ticks to CPU ticks
100 s->expire_time = ticks + muldiv64(limit - count, ticks_per_sec, CNT_FREQ);
101
26a76461 102 DPRINTF("irq %d limit %d reached %d d %" PRId64 " count %d s->c %x diff %" PRId64 " stopped %d mode %d\n", s->irq, limit, s->reached?1:0, (ticks-s->count_load_time), count, s->count, s->expire_time - ticks, s->stopped, s->mode);
66321a11 103
e80cfcfc 104 if (s->mode != 1)
52cc07d0 105 pic_set_irq_cpu(s->intctl, s->irq, out, s->cpu);
e80cfcfc
FB
106}
107
108// timer callback
109static void slavio_timer_irq(void *opaque)
110{
111 SLAVIO_TIMERState *s = opaque;
112
113 if (!s->irq_timer)
114 return;
115 slavio_timer_get_out(s);
116 if (s->mode != 1)
117 qemu_mod_timer(s->irq_timer, s->expire_time);
118}
119
120static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
121{
122 SLAVIO_TIMERState *s = opaque;
123 uint32_t saddr;
124
125 saddr = (addr & TIMER_MAXADDR) >> 2;
126 switch (saddr) {
127 case 0:
128 // read limit (system counter mode) or read most signifying
129 // part of counter (user mode)
130 if (s->mode != 1) {
131 // clear irq
52cc07d0 132 pic_set_irq_cpu(s->intctl, s->irq, 0, s->cpu);
e80cfcfc
FB
133 s->reached = 0;
134 return s->limit;
135 }
136 else {
137 slavio_timer_get_out(s);
138 return s->counthigh & 0x7fffffff;
139 }
140 case 1:
141 // read counter and reached bit (system mode) or read lsbits
142 // of counter (user mode)
143 slavio_timer_get_out(s);
144 if (s->mode != 1)
145 return (s->count & 0x7fffffff) | s->reached;
146 else
147 return s->count;
148 case 3:
149 // read start/stop status
150 return s->stopped;
151 case 4:
152 // read user/system mode
153 return s->mode & 1;
154 default:
155 return 0;
156 }
157}
158
159static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
160{
161 SLAVIO_TIMERState *s = opaque;
162 uint32_t saddr;
163
164 saddr = (addr & TIMER_MAXADDR) >> 2;
165 switch (saddr) {
166 case 0:
167 // set limit, reset counter
168 s->count_load_time = qemu_get_clock(vm_clock);
169 // fall through
170 case 2:
171 // set limit without resetting counter
172 if (!val)
173 s->limit = 0x7fffffff;
174 else
175 s->limit = val & 0x7fffffff;
176 slavio_timer_irq(s);
177 break;
178 case 3:
179 // start/stop user counter
180 if (s->mode == 1) {
181 if (val & 1) {
182 s->stop_time = qemu_get_clock(vm_clock);
183 s->stopped = 1;
184 }
185 else {
186 if (s->stopped)
187 s->tick_offset += qemu_get_clock(vm_clock) - s->stop_time;
188 s->stopped = 0;
189 }
190 }
191 break;
192 case 4:
193 // bit 0: user (1) or system (0) counter mode
194 if (s->mode == 0 || s->mode == 1)
195 s->mode = val & 1;
196 break;
197 default:
198 break;
199 }
200}
201
202static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
203 slavio_timer_mem_readl,
204 slavio_timer_mem_readl,
205 slavio_timer_mem_readl,
206};
207
208static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
209 slavio_timer_mem_writel,
210 slavio_timer_mem_writel,
211 slavio_timer_mem_writel,
212};
213
214static void slavio_timer_save(QEMUFile *f, void *opaque)
215{
216 SLAVIO_TIMERState *s = opaque;
217
218 qemu_put_be32s(f, &s->limit);
219 qemu_put_be32s(f, &s->count);
220 qemu_put_be32s(f, &s->counthigh);
221 qemu_put_be64s(f, &s->count_load_time);
222 qemu_put_be64s(f, &s->expire_time);
223 qemu_put_be64s(f, &s->stop_time);
224 qemu_put_be64s(f, &s->tick_offset);
225 qemu_put_be32s(f, &s->irq);
226 qemu_put_be32s(f, &s->reached);
227 qemu_put_be32s(f, &s->stopped);
228 qemu_put_be32s(f, &s->mode);
229}
230
231static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
232{
233 SLAVIO_TIMERState *s = opaque;
234
235 if (version_id != 1)
236 return -EINVAL;
237
238 qemu_get_be32s(f, &s->limit);
239 qemu_get_be32s(f, &s->count);
240 qemu_get_be32s(f, &s->counthigh);
241 qemu_get_be64s(f, &s->count_load_time);
242 qemu_get_be64s(f, &s->expire_time);
243 qemu_get_be64s(f, &s->stop_time);
244 qemu_get_be64s(f, &s->tick_offset);
245 qemu_get_be32s(f, &s->irq);
246 qemu_get_be32s(f, &s->reached);
247 qemu_get_be32s(f, &s->stopped);
248 qemu_get_be32s(f, &s->mode);
249 return 0;
250}
251
252static void slavio_timer_reset(void *opaque)
253{
254 SLAVIO_TIMERState *s = opaque;
255
256 s->limit = 0;
257 s->count = 0;
258 s->count_load_time = qemu_get_clock(vm_clock);;
259 s->stop_time = s->count_load_time;
260 s->tick_offset = 0;
261 s->reached = 0;
262 s->mode &= 2;
263 s->stopped = 1;
3d29fbef 264 slavio_timer_irq(s);
e80cfcfc
FB
265}
266
5dcb6b91
BS
267void slavio_timer_init(target_phys_addr_t addr, int irq, int mode,
268 unsigned int cpu, void *intctl)
e80cfcfc
FB
269{
270 int slavio_timer_io_memory;
271 SLAVIO_TIMERState *s;
272
273 s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
274 if (!s)
275 return;
276 s->irq = irq;
277 s->mode = mode;
ba3c64fb 278 s->cpu = cpu;
e80cfcfc 279 s->irq_timer = qemu_new_timer(vm_clock, slavio_timer_irq, s);
52cc07d0 280 s->intctl = intctl;
e80cfcfc
FB
281
282 slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
283 slavio_timer_mem_write, s);
284 cpu_register_physical_memory(addr, TIMER_MAXADDR, slavio_timer_io_memory);
285 register_savevm("slavio_timer", addr, 1, slavio_timer_save, slavio_timer_load, s);
286 qemu_register_reset(slavio_timer_reset, s);
287 slavio_timer_reset(s);
288}