]> git.proxmox.com Git - qemu.git/blame - hw/spapr.c
pseries: Add support for new KVM hash table control call
[qemu.git] / hw / spapr.c
CommitLineData
9fdf0c29
DG
1/*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27#include "sysemu.h"
9fdf0c29
DG
28#include "hw.h"
29#include "elf.h"
8d90ad90 30#include "net.h"
6e270446 31#include "blockdev.h"
e97c3636
DG
32#include "cpus.h"
33#include "kvm.h"
34#include "kvm_ppc.h"
9fdf0c29
DG
35
36#include "hw/boards.h"
37#include "hw/ppc.h"
38#include "hw/loader.h"
39
40#include "hw/spapr.h"
4040ab72 41#include "hw/spapr_vio.h"
3384f95c 42#include "hw/spapr_pci.h"
b5cec4c5 43#include "hw/xics.h"
0ee2c058 44#include "hw/msi.h"
9fdf0c29 45
f61b4bed
AG
46#include "kvm.h"
47#include "kvm_ppc.h"
3384f95c 48#include "pci.h"
f28359d8 49#include "vga-pci.h"
f61b4bed 50
890c2b77 51#include "exec-memory.h"
35139a59 52#include "hw/usb.h"
890c2b77 53
9fdf0c29
DG
54#include <libfdt.h>
55
4d8d5467
BH
56/* SLOF memory layout:
57 *
58 * SLOF raw image loaded at 0, copies its romfs right below the flat
59 * device-tree, then position SLOF itself 31M below that
60 *
61 * So we set FW_OVERHEAD to 40MB which should account for all of that
62 * and more
63 *
64 * We load our kernel at 4M, leaving space for SLOF initial image
65 */
9fdf0c29 66#define FDT_MAX_SIZE 0x10000
39ac8455 67#define RTAS_MAX_SIZE 0x10000
a9f8ad8f
DG
68#define FW_MAX_SIZE 0x400000
69#define FW_FILE_NAME "slof.bin"
4d8d5467
BH
70#define FW_OVERHEAD 0x2800000
71#define KERNEL_LOAD_ADDR FW_MAX_SIZE
a9f8ad8f 72
4d8d5467 73#define MIN_RMA_SLOF 128UL
9fdf0c29
DG
74
75#define TIMEBASE_FREQ 512000000ULL
76
41019fec 77#define MAX_CPUS 256
4d8d5467 78#define XICS_IRQS 1024
9fdf0c29 79
3384f95c
DG
80#define SPAPR_PCI_BUID 0x800000020000001ULL
81#define SPAPR_PCI_MEM_WIN_ADDR (0x10000000000ULL + 0xA0000000)
82#define SPAPR_PCI_MEM_WIN_SIZE 0x20000000
83#define SPAPR_PCI_IO_WIN_ADDR (0x10000000000ULL + 0x80000000)
0ee2c058 84#define SPAPR_PCI_MSI_WIN_ADDR (0x10000000000ULL + 0x90000000)
3384f95c 85
0c103f8e
DG
86#define PHANDLE_XICP 0x00001111
87
7f763a5d
DG
88#define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
89
9fdf0c29
DG
90sPAPREnvironment *spapr;
91
a307d594 92int spapr_allocate_irq(int hint, enum xics_irq_type type)
e6c866d4 93{
a307d594 94 int irq;
e6c866d4
DG
95
96 if (hint) {
97 irq = hint;
98 /* FIXME: we should probably check for collisions somehow */
99 } else {
100 irq = spapr->next_irq++;
101 }
102
a307d594
AK
103 /* Configure irq type */
104 if (!xics_get_qirq(spapr->icp, irq)) {
105 return 0;
e6c866d4
DG
106 }
107
a307d594 108 xics_set_irq_type(spapr->icp, irq, type);
e6c866d4 109
a307d594 110 return irq;
e6c866d4
DG
111}
112
f4b9523b
AK
113/* Allocate block of consequtive IRQs, returns a number of the first */
114int spapr_allocate_irq_block(int num, enum xics_irq_type type)
115{
116 int first = -1;
117 int i;
118
119 for (i = 0; i < num; ++i) {
120 int irq;
121
122 irq = spapr_allocate_irq(0, type);
123 if (!irq) {
124 return -1;
125 }
126
127 if (0 == i) {
128 first = irq;
129 }
130
131 /* If the above doesn't create a consecutive block then that's
132 * an internal bug */
133 assert(irq == (first + i));
134 }
135
136 return first;
137}
138
7f763a5d 139static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
6e806cc3
BR
140{
141 int ret = 0, offset;
e2684c0b 142 CPUPPCState *env;
6e806cc3
BR
143 char cpu_model[32];
144 int smt = kvmppc_smt_threads();
7f763a5d 145 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
6e806cc3
BR
146
147 assert(spapr->cpu_model);
148
149 for (env = first_cpu; env != NULL; env = env->next_cpu) {
150 uint32_t associativity[] = {cpu_to_be32(0x5),
151 cpu_to_be32(0x0),
152 cpu_to_be32(0x0),
153 cpu_to_be32(0x0),
154 cpu_to_be32(env->numa_node),
155 cpu_to_be32(env->cpu_index)};
156
157 if ((env->cpu_index % smt) != 0) {
158 continue;
159 }
160
161 snprintf(cpu_model, 32, "/cpus/%s@%x", spapr->cpu_model,
162 env->cpu_index);
163
164 offset = fdt_path_offset(fdt, cpu_model);
165 if (offset < 0) {
166 return offset;
167 }
168
7f763a5d
DG
169 if (nb_numa_nodes > 1) {
170 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
171 sizeof(associativity));
172 if (ret < 0) {
173 return ret;
174 }
175 }
176
177 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
178 pft_size_prop, sizeof(pft_size_prop));
6e806cc3
BR
179 if (ret < 0) {
180 return ret;
181 }
182 }
183 return ret;
184}
185
5af9873d
BH
186
187static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
188 size_t maxsize)
189{
190 size_t maxcells = maxsize / sizeof(uint32_t);
191 int i, j, count;
192 uint32_t *p = prop;
193
194 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
195 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
196
197 if (!sps->page_shift) {
198 break;
199 }
200 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
201 if (sps->enc[count].page_shift == 0) {
202 break;
203 }
204 }
205 if ((p - prop) >= (maxcells - 3 - count * 2)) {
206 break;
207 }
208 *(p++) = cpu_to_be32(sps->page_shift);
209 *(p++) = cpu_to_be32(sps->slb_enc);
210 *(p++) = cpu_to_be32(count);
211 for (j = 0; j < count; j++) {
212 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
213 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
214 }
215 }
216
217 return (p - prop) * sizeof(uint32_t);
218}
219
7f763a5d
DG
220#define _FDT(exp) \
221 do { \
222 int ret = (exp); \
223 if (ret < 0) { \
224 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
225 #exp, fdt_strerror(ret)); \
226 exit(1); \
227 } \
228 } while (0)
229
230
a3467baa
DG
231static void *spapr_create_fdt_skel(const char *cpu_model,
232 target_phys_addr_t initrd_base,
233 target_phys_addr_t initrd_size,
4d8d5467 234 target_phys_addr_t kernel_size,
a3467baa 235 const char *boot_device,
7f763a5d 236 const char *kernel_cmdline)
9fdf0c29
DG
237{
238 void *fdt;
e2684c0b 239 CPUPPCState *env;
9fdf0c29
DG
240 uint32_t start_prop = cpu_to_be32(initrd_base);
241 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
ee86dfee 242 char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
a3d0abae 243 "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
c73e3771 244 char qemu_hypertas_prop[] = "hcall-memop1";
7f763a5d 245 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
b5cec4c5 246 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
9fdf0c29 247 char *modelname;
7f763a5d 248 int i, smt = kvmppc_smt_threads();
6e806cc3 249 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
9fdf0c29 250
7267c094 251 fdt = g_malloc0(FDT_MAX_SIZE);
9fdf0c29
DG
252 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
253
4d8d5467
BH
254 if (kernel_size) {
255 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
256 }
257 if (initrd_size) {
258 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
259 }
9fdf0c29
DG
260 _FDT((fdt_finish_reservemap(fdt)));
261
262 /* Root node */
263 _FDT((fdt_begin_node(fdt, "")));
264 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
5d73dd66 265 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
9fdf0c29
DG
266
267 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
268 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
269
270 /* /chosen */
271 _FDT((fdt_begin_node(fdt, "chosen")));
272
6e806cc3
BR
273 /* Set Form1_affinity */
274 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
275
9fdf0c29
DG
276 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
277 _FDT((fdt_property(fdt, "linux,initrd-start",
278 &start_prop, sizeof(start_prop))));
279 _FDT((fdt_property(fdt, "linux,initrd-end",
280 &end_prop, sizeof(end_prop))));
4d8d5467
BH
281 if (kernel_size) {
282 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
283 cpu_to_be64(kernel_size) };
9fdf0c29 284
4d8d5467
BH
285 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
286 }
287 _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
f28359d8 288 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
289 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
290 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
3384f95c 291
9fdf0c29
DG
292 _FDT((fdt_end_node(fdt)));
293
9fdf0c29
DG
294 /* cpus */
295 _FDT((fdt_begin_node(fdt, "cpus")));
296
297 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
298 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
299
7267c094 300 modelname = g_strdup(cpu_model);
9fdf0c29
DG
301
302 for (i = 0; i < strlen(modelname); i++) {
303 modelname[i] = toupper(modelname[i]);
304 }
305
6e806cc3
BR
306 /* This is needed during FDT finalization */
307 spapr->cpu_model = g_strdup(modelname);
308
c7a5c0c9
DG
309 for (env = first_cpu; env != NULL; env = env->next_cpu) {
310 int index = env->cpu_index;
e97c3636
DG
311 uint32_t servers_prop[smp_threads];
312 uint32_t gservers_prop[smp_threads * 2];
9fdf0c29
DG
313 char *nodename;
314 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
315 0xffffffff, 0xffffffff};
0a8b2938
AG
316 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
317 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
5af9873d
BH
318 uint32_t page_sizes_prop[64];
319 size_t page_sizes_prop_size;
9fdf0c29 320
e97c3636
DG
321 if ((index % smt) != 0) {
322 continue;
323 }
324
c7a5c0c9 325 if (asprintf(&nodename, "%s@%x", modelname, index) < 0) {
9fdf0c29
DG
326 fprintf(stderr, "Allocation failure\n");
327 exit(1);
328 }
329
330 _FDT((fdt_begin_node(fdt, nodename)));
331
332 free(nodename);
333
c7a5c0c9 334 _FDT((fdt_property_cell(fdt, "reg", index)));
9fdf0c29
DG
335 _FDT((fdt_property_string(fdt, "device_type", "cpu")));
336
337 _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
338 _FDT((fdt_property_cell(fdt, "dcache-block-size",
339 env->dcache_line_size)));
340 _FDT((fdt_property_cell(fdt, "icache-block-size",
341 env->icache_line_size)));
0a8b2938
AG
342 _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
343 _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
9fdf0c29
DG
344 _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
345 _FDT((fdt_property_string(fdt, "status", "okay")));
346 _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
e97c3636
DG
347
348 /* Build interrupt servers and gservers properties */
349 for (i = 0; i < smp_threads; i++) {
350 servers_prop[i] = cpu_to_be32(index + i);
351 /* Hack, direct the group queues back to cpu 0 */
352 gservers_prop[i*2] = cpu_to_be32(index + i);
353 gservers_prop[i*2 + 1] = 0;
354 }
355 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
356 servers_prop, sizeof(servers_prop))));
b5cec4c5 357 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
e97c3636 358 gservers_prop, sizeof(gservers_prop))));
9fdf0c29 359
c7a5c0c9 360 if (env->mmu_model & POWERPC_MMU_1TSEG) {
9fdf0c29
DG
361 _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
362 segs, sizeof(segs))));
363 }
364
6659394f
DG
365 /* Advertise VMX/VSX (vector extensions) if available
366 * 0 / no property == no vector extensions
367 * 1 == VMX / Altivec available
368 * 2 == VSX available */
a7342588
DG
369 if (env->insns_flags & PPC_ALTIVEC) {
370 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
371
6659394f
DG
372 _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
373 }
374
375 /* Advertise DFP (Decimal Floating Point) if available
376 * 0 / no property == no DFP
377 * 1 == DFP available */
a7342588
DG
378 if (env->insns_flags2 & PPC2_DFP) {
379 _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
6659394f
DG
380 }
381
5af9873d
BH
382 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
383 sizeof(page_sizes_prop));
384 if (page_sizes_prop_size) {
385 _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
386 page_sizes_prop, page_sizes_prop_size)));
387 }
388
9fdf0c29
DG
389 _FDT((fdt_end_node(fdt)));
390 }
391
7267c094 392 g_free(modelname);
9fdf0c29
DG
393
394 _FDT((fdt_end_node(fdt)));
395
f43e3525
DG
396 /* RTAS */
397 _FDT((fdt_begin_node(fdt, "rtas")));
398
399 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
400 sizeof(hypertas_prop))));
c73e3771
BH
401 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop,
402 sizeof(qemu_hypertas_prop))));
f43e3525 403
6e806cc3
BR
404 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
405 refpoints, sizeof(refpoints))));
406
f43e3525
DG
407 _FDT((fdt_end_node(fdt)));
408
b5cec4c5 409 /* interrupt controller */
9dfef5aa 410 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
b5cec4c5
DG
411
412 _FDT((fdt_property_string(fdt, "device_type",
413 "PowerPC-External-Interrupt-Presentation")));
414 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
b5cec4c5
DG
415 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
416 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
417 interrupt_server_ranges_prop,
418 sizeof(interrupt_server_ranges_prop))));
0c103f8e
DG
419 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
420 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
421 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
b5cec4c5
DG
422
423 _FDT((fdt_end_node(fdt)));
424
4040ab72
DG
425 /* vdevice */
426 _FDT((fdt_begin_node(fdt, "vdevice")));
427
428 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
429 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
430 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
431 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
b5cec4c5
DG
432 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
433 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
4040ab72
DG
434
435 _FDT((fdt_end_node(fdt)));
436
9fdf0c29
DG
437 _FDT((fdt_end_node(fdt))); /* close root node */
438 _FDT((fdt_finish(fdt)));
439
a3467baa
DG
440 return fdt;
441}
442
7f763a5d
DG
443static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
444{
445 uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
446 cpu_to_be32(0x0), cpu_to_be32(0x0),
447 cpu_to_be32(0x0)};
448 char mem_name[32];
449 target_phys_addr_t node0_size, mem_start;
450 uint64_t mem_reg_property[2];
451 int i, off;
452
453 /* memory node(s) */
454 node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
455 if (spapr->rma_size > node0_size) {
456 spapr->rma_size = node0_size;
457 }
458
459 /* RMA */
460 mem_reg_property[0] = 0;
461 mem_reg_property[1] = cpu_to_be64(spapr->rma_size);
462 off = fdt_add_subnode(fdt, 0, "memory@0");
463 _FDT(off);
464 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
465 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
466 sizeof(mem_reg_property))));
467 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
468 sizeof(associativity))));
469
470 /* RAM: Node 0 */
471 if (node0_size > spapr->rma_size) {
472 mem_reg_property[0] = cpu_to_be64(spapr->rma_size);
473 mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size);
474
475 sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size);
476 off = fdt_add_subnode(fdt, 0, mem_name);
477 _FDT(off);
478 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
479 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
480 sizeof(mem_reg_property))));
481 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
482 sizeof(associativity))));
483 }
484
485 /* RAM: Node 1 and beyond */
486 mem_start = node0_size;
487 for (i = 1; i < nb_numa_nodes; i++) {
488 mem_reg_property[0] = cpu_to_be64(mem_start);
489 mem_reg_property[1] = cpu_to_be64(node_mem[i]);
490 associativity[3] = associativity[4] = cpu_to_be32(i);
491 sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
492 off = fdt_add_subnode(fdt, 0, mem_name);
493 _FDT(off);
494 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
495 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
496 sizeof(mem_reg_property))));
497 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
498 sizeof(associativity))));
499 mem_start += node_mem[i];
500 }
501
502 return 0;
503}
504
a3467baa
DG
505static void spapr_finalize_fdt(sPAPREnvironment *spapr,
506 target_phys_addr_t fdt_addr,
507 target_phys_addr_t rtas_addr,
508 target_phys_addr_t rtas_size)
509{
510 int ret;
511 void *fdt;
3384f95c 512 sPAPRPHBState *phb;
a3467baa 513
7267c094 514 fdt = g_malloc(FDT_MAX_SIZE);
a3467baa
DG
515
516 /* open out the base tree into a temp buffer for the final tweaks */
517 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
4040ab72 518
7f763a5d
DG
519 ret = spapr_populate_memory(spapr, fdt);
520 if (ret < 0) {
521 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
522 exit(1);
523 }
524
4040ab72
DG
525 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
526 if (ret < 0) {
527 fprintf(stderr, "couldn't setup vio devices in fdt\n");
528 exit(1);
529 }
530
3384f95c 531 QLIST_FOREACH(phb, &spapr->phbs, list) {
e0fdbd7c 532 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
3384f95c
DG
533 }
534
535 if (ret < 0) {
536 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
537 exit(1);
538 }
539
39ac8455
DG
540 /* RTAS */
541 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
542 if (ret < 0) {
543 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
544 }
545
6e806cc3 546 /* Advertise NUMA via ibm,associativity */
7f763a5d
DG
547 ret = spapr_fixup_cpu_dt(fdt, spapr);
548 if (ret < 0) {
549 fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
6e806cc3
BR
550 }
551
3fc5acde 552 if (!spapr->has_graphics) {
f28359d8 553 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
554 }
68f3a94c 555
4040ab72
DG
556 _FDT((fdt_pack(fdt)));
557
4d8d5467
BH
558 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
559 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
560 fdt_totalsize(fdt), FDT_MAX_SIZE);
561 exit(1);
562 }
563
a3467baa 564 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
9fdf0c29 565
7267c094 566 g_free(fdt);
9fdf0c29
DG
567}
568
569static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
570{
571 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
572}
573
e2684c0b 574static void emulate_spapr_hypercall(CPUPPCState *env)
9fdf0c29
DG
575{
576 env->gpr[3] = spapr_hypercall(env, env->gpr[3], &env->gpr[4]);
577}
578
7f763a5d
DG
579static void spapr_reset_htab(sPAPREnvironment *spapr)
580{
581 long shift;
582
583 /* allocate hash page table. For now we always make this 16mb,
584 * later we should probably make it scale to the size of guest
585 * RAM */
586
587 shift = kvmppc_reset_htab(spapr->htab_shift);
588
589 if (shift > 0) {
590 /* Kernel handles htab, we don't need to allocate one */
591 spapr->htab_shift = shift;
592 } else {
593 if (!spapr->htab) {
594 /* Allocate an htab if we don't yet have one */
595 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
596 }
597
598 /* And clear it */
599 memset(spapr->htab, 0, HTAB_SIZE(spapr));
600 }
601
602 /* Update the RMA size if necessary */
603 if (spapr->vrma_adjust) {
604 spapr->rma_size = kvmppc_rma_size(ram_size, spapr->htab_shift);
605 }
606}
607
c8787ad4 608static void ppc_spapr_reset(void)
a3467baa 609{
7f763a5d
DG
610 /* Reset the hash table & recalc the RMA */
611 spapr_reset_htab(spapr);
a3467baa 612
c8787ad4
DG
613 qemu_devices_reset();
614
a3467baa
DG
615 /* Load the fdt */
616 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
617 spapr->rtas_size);
618
619 /* Set up the entry state */
620 first_cpu->gpr[3] = spapr->fdt_addr;
621 first_cpu->gpr[5] = 0;
622 first_cpu->halted = 0;
623 first_cpu->nip = spapr->entry_point;
624
625}
626
1bba0dc9
AF
627static void spapr_cpu_reset(void *opaque)
628{
5b2038e0 629 PowerPCCPU *cpu = opaque;
048706d9 630 CPUPPCState *env = &cpu->env;
1bba0dc9 631
5b2038e0 632 cpu_reset(CPU(cpu));
048706d9
DG
633
634 /* All CPUs start halted. CPU0 is unhalted from the machine level
635 * reset code and the rest are explicitly started up by the guest
636 * using an RTAS call */
637 env->halted = 1;
638
639 env->spr[SPR_HIOR] = 0;
7f763a5d
DG
640
641 env->external_htab = spapr->htab;
642 env->htab_base = -1;
643 env->htab_mask = HTAB_SIZE(spapr) - 1;
644 env->spr[SPR_SDR1] = (unsigned long)spapr->htab |
645 (spapr->htab_shift - 18);
1bba0dc9
AF
646}
647
8c57b867 648/* Returns whether we want to use VGA or not */
f28359d8 649static int spapr_vga_init(PCIBus *pci_bus)
650{
8c57b867
AG
651 switch (vga_interface_type) {
652 case VGA_STD:
f28359d8 653 pci_vga_init(pci_bus);
8c57b867
AG
654 return 1;
655 case VGA_NONE:
656 return 0;
657 default:
f28359d8 658 fprintf(stderr, "This vga model is not supported,"
659 "currently it only supports -vga std\n");
8c57b867
AG
660 exit(0);
661 break;
f28359d8 662 }
f28359d8 663}
664
9fdf0c29
DG
665/* pSeries LPAR / sPAPR hardware init */
666static void ppc_spapr_init(ram_addr_t ram_size,
667 const char *boot_device,
668 const char *kernel_filename,
669 const char *kernel_cmdline,
670 const char *initrd_filename,
671 const char *cpu_model)
672{
05769733 673 PowerPCCPU *cpu;
e2684c0b 674 CPUPPCState *env;
8c9f64df 675 PCIHostState *phb;
9fdf0c29 676 int i;
890c2b77
AK
677 MemoryRegion *sysmem = get_system_memory();
678 MemoryRegion *ram = g_new(MemoryRegion, 1);
7f763a5d 679 target_phys_addr_t rma_alloc_size;
4d8d5467
BH
680 uint32_t initrd_base = 0;
681 long kernel_size = 0, initrd_size = 0;
682 long load_limit, rtas_limit, fw_size;
39ac8455 683 char *filename;
9fdf0c29 684
0ee2c058
AK
685 msi_supported = true;
686
d43b45e2
DG
687 spapr = g_malloc0(sizeof(*spapr));
688 QLIST_INIT(&spapr->phbs);
689
9fdf0c29
DG
690 cpu_ppc_hypercall = emulate_spapr_hypercall;
691
354ac20a
DG
692 /* Allocate RMA if necessary */
693 rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
694
695 if (rma_alloc_size == -1) {
696 hw_error("qemu: Unable to create RMA\n");
697 exit(1);
698 }
7f763a5d 699
354ac20a 700 if (rma_alloc_size && (rma_alloc_size < ram_size)) {
7f763a5d 701 spapr->rma_size = rma_alloc_size;
354ac20a 702 } else {
7f763a5d
DG
703 spapr->rma_size = ram_size;
704
705 /* With KVM, we don't actually know whether KVM supports an
706 * unbounded RMA (PR KVM) or is limited by the hash table size
707 * (HV KVM using VRMA), so we always assume the latter
708 *
709 * In that case, we also limit the initial allocations for RTAS
710 * etc... to 256M since we have no way to know what the VRMA size
711 * is going to be as it depends on the size of the hash table
712 * isn't determined yet.
713 */
714 if (kvm_enabled()) {
715 spapr->vrma_adjust = 1;
716 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
717 }
354ac20a
DG
718 }
719
4d8d5467 720 /* We place the device tree and RTAS just below either the top of the RMA,
354ac20a
DG
721 * or just below 2GB, whichever is lowere, so that it can be
722 * processed with 32-bit real mode code if necessary */
7f763a5d 723 rtas_limit = MIN(spapr->rma_size, 0x80000000);
4d8d5467
BH
724 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
725 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
726 load_limit = spapr->fdt_addr - FW_OVERHEAD;
9fdf0c29 727
7f763a5d
DG
728 /* For now, always aim for a 16MB hash table */
729 /* FIXME: we should change this default based on RAM size */
730 spapr->htab_shift = 24;
731
9fdf0c29
DG
732 /* init CPUs */
733 if (cpu_model == NULL) {
6b7a2cf6 734 cpu_model = kvm_enabled() ? "host" : "POWER7";
9fdf0c29
DG
735 }
736 for (i = 0; i < smp_cpus; i++) {
05769733
AF
737 cpu = cpu_ppc_init(cpu_model);
738 if (cpu == NULL) {
9fdf0c29
DG
739 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
740 exit(1);
741 }
05769733
AF
742 env = &cpu->env;
743
9fdf0c29
DG
744 /* Set time-base frequency to 512 MHz */
745 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
9fdf0c29 746
048706d9 747 /* PAPR always has exception vectors in RAM not ROM */
9fdf0c29 748 env->hreset_excp_prefix = 0;
048706d9
DG
749
750 /* Tell KVM that we're in PAPR mode */
751 if (kvm_enabled()) {
752 kvmppc_set_papr(env);
753 }
754
755 qemu_register_reset(spapr_cpu_reset, cpu);
9fdf0c29
DG
756 }
757
758 /* allocate RAM */
f73a2575 759 spapr->ram_limit = ram_size;
354ac20a
DG
760 if (spapr->ram_limit > rma_alloc_size) {
761 ram_addr_t nonrma_base = rma_alloc_size;
762 ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
763
c5705a77
AK
764 memory_region_init_ram(ram, "ppc_spapr.ram", nonrma_size);
765 vmstate_register_ram_global(ram);
354ac20a
DG
766 memory_region_add_subregion(sysmem, nonrma_base, ram);
767 }
9fdf0c29 768
39ac8455 769 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
a3467baa 770 spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
4d8d5467 771 rtas_limit - spapr->rtas_addr);
a3467baa 772 if (spapr->rtas_size < 0) {
39ac8455
DG
773 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
774 exit(1);
775 }
4d8d5467
BH
776 if (spapr->rtas_size > RTAS_MAX_SIZE) {
777 hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
778 spapr->rtas_size, RTAS_MAX_SIZE);
779 exit(1);
780 }
7267c094 781 g_free(filename);
39ac8455 782
4d8d5467 783
b5cec4c5 784 /* Set up Interrupt Controller */
c7a5c0c9 785 spapr->icp = xics_system_init(XICS_IRQS);
e6c866d4 786 spapr->next_irq = 16;
b5cec4c5 787
ad0ebb91
DG
788 /* Set up IOMMU */
789 spapr_iommu_init();
790
b5cec4c5 791 /* Set up VIO bus */
4040ab72
DG
792 spapr->vio_bus = spapr_vio_bus_init();
793
277f9acf 794 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
4040ab72 795 if (serial_hds[i]) {
d601fac4 796 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
4040ab72
DG
797 }
798 }
9fdf0c29 799
3384f95c 800 /* Set up PCI */
fa28f71b
AK
801 spapr_pci_rtas_init();
802
3384f95c
DG
803 spapr_create_phb(spapr, "pci", SPAPR_PCI_BUID,
804 SPAPR_PCI_MEM_WIN_ADDR,
805 SPAPR_PCI_MEM_WIN_SIZE,
0ee2c058
AK
806 SPAPR_PCI_IO_WIN_ADDR,
807 SPAPR_PCI_MSI_WIN_ADDR);
8558d942 808 phb = PCI_HOST_BRIDGE(QLIST_FIRST(&spapr->phbs));
3384f95c 809
277f9acf 810 for (i = 0; i < nb_nics; i++) {
8d90ad90
DG
811 NICInfo *nd = &nd_table[i];
812
813 if (!nd->model) {
7267c094 814 nd->model = g_strdup("ibmveth");
8d90ad90
DG
815 }
816
817 if (strcmp(nd->model, "ibmveth") == 0) {
d601fac4 818 spapr_vlan_create(spapr->vio_bus, nd);
8d90ad90 819 } else {
3384f95c 820 pci_nic_init_nofail(&nd_table[i], nd->model, NULL);
8d90ad90
DG
821 }
822 }
823
6e270446 824 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
d601fac4 825 spapr_vscsi_create(spapr->vio_bus);
6e270446
BH
826 }
827
f28359d8 828 /* Graphics */
8c9f64df 829 if (spapr_vga_init(phb->bus)) {
3fc5acde 830 spapr->has_graphics = true;
f28359d8 831 }
832
35139a59 833 if (usb_enabled) {
8c9f64df 834 pci_create_simple(phb->bus, -1, "pci-ohci");
35139a59
DG
835 if (spapr->has_graphics) {
836 usbdevice_create("keyboard");
837 usbdevice_create("mouse");
838 }
839 }
840
7f763a5d 841 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
4d8d5467
BH
842 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
843 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
844 exit(1);
845 }
846
9fdf0c29
DG
847 if (kernel_filename) {
848 uint64_t lowaddr = 0;
849
9fdf0c29
DG
850 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
851 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
852 if (kernel_size < 0) {
a3467baa
DG
853 kernel_size = load_image_targphys(kernel_filename,
854 KERNEL_LOAD_ADDR,
4d8d5467 855 load_limit - KERNEL_LOAD_ADDR);
9fdf0c29
DG
856 }
857 if (kernel_size < 0) {
858 fprintf(stderr, "qemu: could not load kernel '%s'\n",
859 kernel_filename);
860 exit(1);
861 }
862
863 /* load initrd */
864 if (initrd_filename) {
4d8d5467
BH
865 /* Try to locate the initrd in the gap between the kernel
866 * and the firmware. Add a bit of space just in case
867 */
868 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
9fdf0c29 869 initrd_size = load_image_targphys(initrd_filename, initrd_base,
4d8d5467 870 load_limit - initrd_base);
9fdf0c29
DG
871 if (initrd_size < 0) {
872 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
873 initrd_filename);
874 exit(1);
875 }
876 } else {
877 initrd_base = 0;
878 initrd_size = 0;
879 }
4d8d5467 880 }
a3467baa 881
4d8d5467
BH
882 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, FW_FILE_NAME);
883 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
884 if (fw_size < 0) {
885 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
886 exit(1);
887 }
888 g_free(filename);
4d8d5467
BH
889
890 spapr->entry_point = 0x100;
891
9fdf0c29 892 /* Prepare the device tree */
7f763a5d 893 spapr->fdt_skel = spapr_create_fdt_skel(cpu_model,
a3467baa 894 initrd_base, initrd_size,
4d8d5467 895 kernel_size,
7f763a5d 896 boot_device, kernel_cmdline);
a3467baa 897 assert(spapr->fdt_skel != NULL);
9fdf0c29
DG
898}
899
900static QEMUMachine spapr_machine = {
901 .name = "pseries",
902 .desc = "pSeries Logical Partition (PAPR compliant)",
903 .init = ppc_spapr_init,
c8787ad4 904 .reset = ppc_spapr_reset,
9fdf0c29 905 .max_cpus = MAX_CPUS,
9fdf0c29 906 .no_parallel = 1,
6e270446 907 .use_scsi = 1,
9fdf0c29
DG
908};
909
910static void spapr_machine_init(void)
911{
912 qemu_register_machine(&spapr_machine);
913}
914
915machine_init(spapr_machine_init);