]> git.proxmox.com Git - qemu.git/blame - hw/wdt_i6300esb.c
Update to a hopefully more future proof FSF address
[qemu.git] / hw / wdt_i6300esb.c
CommitLineData
9dd986cc
RJ
1/*
2 * Virtual hardware watchdog.
3 *
4 * Copyright (C) 2009 Red Hat Inc.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
8167ee88 17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
9dd986cc
RJ
18 *
19 * By Richard W.M. Jones (rjones@redhat.com).
20 */
21
22#include <inttypes.h>
23
24#include "qemu-common.h"
25#include "qemu-timer.h"
26#include "watchdog.h"
27#include "hw.h"
28#include "isa.h"
29#include "pc.h"
30#include "pci.h"
31
32/*#define I6300ESB_DEBUG 1*/
33
34#ifdef I6300ESB_DEBUG
35#define i6300esb_debug(fs,...) \
36 fprintf(stderr,"i6300esb: %s: "fs,__func__,##__VA_ARGS__)
37#else
38#define i6300esb_debug(fs,...)
39#endif
40
41#ifndef PCI_DEVICE_ID_INTEL_ESB_9
42#define PCI_DEVICE_ID_INTEL_ESB_9 0x25ab
43#endif
44
45/* PCI configuration registers */
46#define ESB_CONFIG_REG 0x60 /* Config register */
47#define ESB_LOCK_REG 0x68 /* WDT lock register */
48
49/* Memory mapped registers (offset from base address) */
50#define ESB_TIMER1_REG 0x00 /* Timer1 value after each reset */
51#define ESB_TIMER2_REG 0x04 /* Timer2 value after each reset */
52#define ESB_GINTSR_REG 0x08 /* General Interrupt Status Register */
53#define ESB_RELOAD_REG 0x0c /* Reload register */
54
55/* Lock register bits */
56#define ESB_WDT_FUNC (0x01 << 2) /* Watchdog functionality */
57#define ESB_WDT_ENABLE (0x01 << 1) /* Enable WDT */
58#define ESB_WDT_LOCK (0x01 << 0) /* Lock (nowayout) */
59
60/* Config register bits */
61#define ESB_WDT_REBOOT (0x01 << 5) /* Enable reboot on timeout */
62#define ESB_WDT_FREQ (0x01 << 2) /* Decrement frequency */
63#define ESB_WDT_INTTYPE (0x11 << 0) /* Interrupt type on timer1 timeout */
64
65/* Reload register bits */
66#define ESB_WDT_RELOAD (0x01 << 8) /* prevent timeout */
67
68/* Magic constants */
69#define ESB_UNLOCK1 0x80 /* Step 1 to unlock reset registers */
70#define ESB_UNLOCK2 0x86 /* Step 2 to unlock reset registers */
71
72/* Device state. */
73struct I6300State {
74 PCIDevice dev; /* PCI device state, must be first field. */
75
76 int reboot_enabled; /* "Reboot" on timer expiry. The real action
77 * performed depends on the -watchdog-action
78 * param passed on QEMU command line.
79 */
80 int clock_scale; /* Clock scale. */
81#define CLOCK_SCALE_1KHZ 0
82#define CLOCK_SCALE_1MHZ 1
83
84 int int_type; /* Interrupt type generated. */
85#define INT_TYPE_IRQ 0 /* APIC 1, INT 10 */
86#define INT_TYPE_SMI 2
87#define INT_TYPE_DISABLED 3
88
89 int free_run; /* If true, reload timer on expiry. */
90 int locked; /* If true, enabled field cannot be changed. */
91 int enabled; /* If true, watchdog is enabled. */
92
93 QEMUTimer *timer; /* The actual watchdog timer. */
94
95 uint32_t timer1_preload; /* Values preloaded into timer1, timer2. */
96 uint32_t timer2_preload;
97 int stage; /* Stage (1 or 2). */
98
99 int unlock_state; /* Guest writes 0x80, 0x86 to unlock the
100 * registers, and we transition through
101 * states 0 -> 1 -> 2 when this happens.
102 */
103
104 int previous_reboot_flag; /* If the watchdog caused the previous
105 * reboot, this flag will be set.
106 */
107};
108
109typedef struct I6300State I6300State;
110
111/* This function is called when the watchdog has either been enabled
112 * (hence it starts counting down) or has been keep-alived.
113 */
114static void i6300esb_restart_timer(I6300State *d, int stage)
115{
116 int64_t timeout;
117
118 if (!d->enabled)
119 return;
120
121 d->stage = stage;
122
123 if (d->stage <= 1)
124 timeout = d->timer1_preload;
125 else
126 timeout = d->timer2_preload;
127
128 if (d->clock_scale == CLOCK_SCALE_1KHZ)
129 timeout <<= 15;
130 else
131 timeout <<= 5;
132
133 /* Get the timeout in units of ticks_per_sec. */
134 timeout = ticks_per_sec * timeout / 33000000;
135
136 i6300esb_debug("stage %d, timeout %" PRIi64 "\n", d->stage, timeout);
137
138 qemu_mod_timer(d->timer, qemu_get_clock(vm_clock) + timeout);
139}
140
141/* This is called when the guest disables the watchdog. */
142static void i6300esb_disable_timer(I6300State *d)
143{
144 i6300esb_debug("timer disabled\n");
145
146 qemu_del_timer(d->timer);
147}
148
149static void i6300esb_reset(I6300State *d)
150{
151 /* XXX We should probably reset other parts of the state here,
152 * but we should also reset our state on general machine reset
153 * too. For now just disable the timer so it doesn't fire
154 * again after the reboot.
155 */
156 i6300esb_disable_timer(d);
157}
158
159/* This function is called when the watchdog expires. Note that
160 * the hardware has two timers, and so expiry happens in two stages.
161 * If d->stage == 1 then we perform the first stage action (usually,
162 * sending an interrupt) and then restart the timer again for the
163 * second stage. If the second stage expires then the watchdog
164 * really has run out.
165 */
166static void i6300esb_timer_expired(void *vp)
167{
168 I6300State *d = (I6300State *) vp;
169
170 i6300esb_debug("stage %d\n", d->stage);
171
172 if (d->stage == 1) {
173 /* What to do at the end of stage 1? */
174 switch (d->int_type) {
175 case INT_TYPE_IRQ:
176 fprintf(stderr, "i6300esb_timer_expired: I would send APIC 1 INT 10 here if I knew how (XXX)\n");
177 break;
178 case INT_TYPE_SMI:
179 fprintf(stderr, "i6300esb_timer_expired: I would send SMI here if I knew how (XXX)\n");
180 break;
181 }
182
183 /* Start the second stage. */
184 i6300esb_restart_timer(d, 2);
185 } else {
186 /* Second stage expired, reboot for real. */
187 if (d->reboot_enabled) {
188 d->previous_reboot_flag = 1;
189 watchdog_perform_action(); /* This reboots, exits, etc */
190 i6300esb_reset(d);
191 }
192
193 /* In "free running mode" we start stage 1 again. */
194 if (d->free_run)
195 i6300esb_restart_timer(d, 1);
196 }
197}
198
199static void i6300esb_config_write(PCIDevice *dev, uint32_t addr,
200 uint32_t data, int len)
201{
202 I6300State *d = (I6300State *) dev;
203 int old;
204
205 i6300esb_debug("addr = %x, data = %x, len = %d\n", addr, data, len);
206
207 if (addr == ESB_CONFIG_REG && len == 2) {
208 d->reboot_enabled = (data & ESB_WDT_REBOOT) == 0;
209 d->clock_scale =
210 (data & ESB_WDT_FREQ) != 0 ? CLOCK_SCALE_1MHZ : CLOCK_SCALE_1KHZ;
211 d->int_type = (data & ESB_WDT_INTTYPE);
212 } else if (addr == ESB_LOCK_REG && len == 1) {
213 if (!d->locked) {
214 d->locked = (data & ESB_WDT_LOCK) != 0;
215 d->free_run = (data & ESB_WDT_FUNC) != 0;
216 old = d->enabled;
217 d->enabled = (data & ESB_WDT_ENABLE) != 0;
218 if (!old && d->enabled) /* Enabled transitioned from 0 -> 1 */
219 i6300esb_restart_timer(d, 1);
220 else if (!d->enabled)
221 i6300esb_disable_timer(d);
222 }
223 } else {
224 pci_default_write_config(dev, addr, data, len);
225 }
226}
227
228static uint32_t i6300esb_config_read(PCIDevice *dev, uint32_t addr, int len)
229{
230 I6300State *d = (I6300State *) dev;
231 uint32_t data;
232
233 i6300esb_debug ("addr = %x, len = %d\n", addr, len);
234
235 if (addr == ESB_CONFIG_REG && len == 2) {
236 data =
237 (d->reboot_enabled ? 0 : ESB_WDT_REBOOT) |
238 (d->clock_scale == CLOCK_SCALE_1MHZ ? ESB_WDT_FREQ : 0) |
239 d->int_type;
240 return data;
241 } else if (addr == ESB_LOCK_REG && len == 1) {
242 data =
243 (d->free_run ? ESB_WDT_FUNC : 0) |
244 (d->locked ? ESB_WDT_LOCK : 0) |
245 (d->enabled ? ESB_WDT_ENABLE : 0);
246 return data;
247 } else {
248 return pci_default_read_config(dev, addr, len);
249 }
250}
251
252static uint32_t i6300esb_mem_readb(void *vp, target_phys_addr_t addr)
253{
254 i6300esb_debug ("addr = %x\n", (int) addr);
255
256 return 0;
257}
258
259static uint32_t i6300esb_mem_readw(void *vp, target_phys_addr_t addr)
260{
261 uint32_t data = 0;
262 I6300State *d = (I6300State *) vp;
263
264 i6300esb_debug("addr = %x\n", (int) addr);
265
266 if (addr == 0xc) {
267 /* The previous reboot flag is really bit 9, but there is
268 * a bug in the Linux driver where it thinks it's bit 12.
269 * Set both.
270 */
271 data = d->previous_reboot_flag ? 0x1200 : 0;
272 }
273
274 return data;
275}
276
277static uint32_t i6300esb_mem_readl(void *vp, target_phys_addr_t addr)
278{
279 i6300esb_debug("addr = %x\n", (int) addr);
280
281 return 0;
282}
283
284static void i6300esb_mem_writeb(void *vp, target_phys_addr_t addr, uint32_t val)
285{
286 I6300State *d = (I6300State *) vp;
287
288 i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
289
290 if (addr == 0xc && val == 0x80)
291 d->unlock_state = 1;
292 else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
293 d->unlock_state = 2;
294}
295
296static void i6300esb_mem_writew(void *vp, target_phys_addr_t addr, uint32_t val)
297{
298 I6300State *d = (I6300State *) vp;
299
300 i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
301
302 if (addr == 0xc && val == 0x80)
303 d->unlock_state = 1;
304 else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
305 d->unlock_state = 2;
306 else {
307 if (d->unlock_state == 2) {
308 if (addr == 0xc) {
309 if ((val & 0x100) != 0)
310 /* This is the "ping" from the userspace watchdog in
311 * the guest ...
312 */
313 i6300esb_restart_timer(d, 1);
314
315 /* Setting bit 9 resets the previous reboot flag.
316 * There's a bug in the Linux driver where it sets
317 * bit 12 instead.
318 */
319 if ((val & 0x200) != 0 || (val & 0x1000) != 0) {
320 d->previous_reboot_flag = 0;
321 }
322 }
323
324 d->unlock_state = 0;
325 }
326 }
327}
328
329static void i6300esb_mem_writel(void *vp, target_phys_addr_t addr, uint32_t val)
330{
331 I6300State *d = (I6300State *) vp;
332
333 i6300esb_debug ("addr = %x, val = %x\n", (int) addr, val);
334
335 if (addr == 0xc && val == 0x80)
336 d->unlock_state = 1;
337 else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
338 d->unlock_state = 2;
339 else {
340 if (d->unlock_state == 2) {
341 if (addr == 0)
342 d->timer1_preload = val & 0xfffff;
343 else if (addr == 4)
344 d->timer2_preload = val & 0xfffff;
345
346 d->unlock_state = 0;
347 }
348 }
349}
350
351static void i6300esb_map(PCIDevice *dev, int region_num,
352 uint32_t addr, uint32_t size, int type)
353{
354 static CPUReadMemoryFunc *mem_read[3] = {
355 i6300esb_mem_readb,
356 i6300esb_mem_readw,
357 i6300esb_mem_readl,
358 };
359 static CPUWriteMemoryFunc *mem_write[3] = {
360 i6300esb_mem_writeb,
361 i6300esb_mem_writew,
362 i6300esb_mem_writel,
363 };
364 I6300State *d = (I6300State *) dev;
365 int io_mem;
366
367 i6300esb_debug("addr = %x, size = %x, type = %d\n", addr, size, type);
368
1eed09cb 369 io_mem = cpu_register_io_memory(mem_read, mem_write, d);
9dd986cc
RJ
370 cpu_register_physical_memory (addr, 0x10, io_mem);
371 /* qemu_register_coalesced_mmio (addr, 0x10); ? */
372}
373
374static void i6300esb_save(QEMUFile *f, void *vp)
375{
376 I6300State *d = (I6300State *) vp;
377
378 pci_device_save(&d->dev, f);
379 qemu_put_be32(f, d->reboot_enabled);
380 qemu_put_be32(f, d->clock_scale);
381 qemu_put_be32(f, d->int_type);
382 qemu_put_be32(f, d->free_run);
383 qemu_put_be32(f, d->locked);
384 qemu_put_be32(f, d->enabled);
385 qemu_put_timer(f, d->timer);
386 qemu_put_be32(f, d->timer1_preload);
387 qemu_put_be32(f, d->timer2_preload);
388 qemu_put_be32(f, d->stage);
389 qemu_put_be32(f, d->unlock_state);
390 qemu_put_be32(f, d->previous_reboot_flag);
391}
392
393static int i6300esb_load(QEMUFile *f, void *vp, int version)
394{
395 I6300State *d = (I6300State *) vp;
396
397 if (version != sizeof (I6300State))
398 return -EINVAL;
399
400 pci_device_load(&d->dev, f);
401 d->reboot_enabled = qemu_get_be32(f);
402 d->clock_scale = qemu_get_be32(f);
403 d->int_type = qemu_get_be32(f);
404 d->free_run = qemu_get_be32(f);
405 d->locked = qemu_get_be32(f);
406 d->enabled = qemu_get_be32(f);
407 qemu_get_timer(f, d->timer);
408 d->timer1_preload = qemu_get_be32(f);
409 d->timer2_preload = qemu_get_be32(f);
410 d->stage = qemu_get_be32(f);
411 d->unlock_state = qemu_get_be32(f);
412 d->previous_reboot_flag = qemu_get_be32(f);
413
414 return 0;
415}
416
417/* Create and initialize a virtual Intel 6300ESB during PC creation. */
418static void i6300esb_pc_init(PCIBus *pci_bus)
419{
420 I6300State *d;
421 uint8_t *pci_conf;
422
423 if (!pci_bus) {
424 fprintf(stderr, "wdt_i6300esb: no PCI bus in this machine\n");
425 return;
426 }
427
428 d = (I6300State *)
429 pci_register_device (pci_bus, "i6300esb_wdt", sizeof (I6300State),
430 -1,
431 i6300esb_config_read, i6300esb_config_write);
432
433 d->reboot_enabled = 1;
434 d->clock_scale = CLOCK_SCALE_1KHZ;
435 d->int_type = INT_TYPE_IRQ;
436 d->free_run = 0;
437 d->locked = 0;
438 d->enabled = 0;
439 d->timer = qemu_new_timer(vm_clock, i6300esb_timer_expired, d);
440 d->timer1_preload = 0xfffff;
441 d->timer2_preload = 0xfffff;
442 d->stage = 1;
443 d->unlock_state = 0;
444 d->previous_reboot_flag = 0;
445
446 pci_conf = d->dev.config;
447 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
448 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_ESB_9);
449 pci_config_set_class(pci_conf, PCI_CLASS_SYSTEM_OTHER);
450 pci_conf[0x0e] = 0x00;
451
28c2c264 452 pci_register_bar(&d->dev, 0, 0x10,
9dd986cc
RJ
453 PCI_ADDRESS_SPACE_MEM, i6300esb_map);
454
455 register_savevm("i6300esb_wdt", -1, sizeof(I6300State),
456 i6300esb_save, i6300esb_load, d);
457}
458
459static WatchdogTimerModel model = {
460 .wdt_name = "i6300esb",
461 .wdt_description = "Intel 6300ESB",
462 .wdt_pc_init = i6300esb_pc_init,
463};
464
465void wdt_i6300esb_init(void)
466{
467 watchdog_add_model(&model);
468}