]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - include/linux/sched.h
x86/fpu, sched: Dynamically allocate 'struct fpu'
[mirror_ubuntu-artful-kernel.git] / include / linux / sched.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
607ca46e 4#include <uapi/linux/sched.h>
b7b3c76a 5
5c228079
DY
6#include <linux/sched/prio.h>
7
b7b3c76a
DW
8
9struct sched_param {
10 int sched_priority;
11};
12
1da177e4
LT
13#include <asm/param.h> /* for HZ */
14
1da177e4
LT
15#include <linux/capability.h>
16#include <linux/threads.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/timex.h>
20#include <linux/jiffies.h>
fb00aca4 21#include <linux/plist.h>
1da177e4
LT
22#include <linux/rbtree.h>
23#include <linux/thread_info.h>
24#include <linux/cpumask.h>
25#include <linux/errno.h>
26#include <linux/nodemask.h>
c92ff1bd 27#include <linux/mm_types.h>
92cf2118 28#include <linux/preempt.h>
1da177e4 29
1da177e4
LT
30#include <asm/page.h>
31#include <asm/ptrace.h>
bfc3f028 32#include <linux/cputime.h>
1da177e4
LT
33
34#include <linux/smp.h>
35#include <linux/sem.h>
ab602f79 36#include <linux/shm.h>
1da177e4 37#include <linux/signal.h>
1da177e4
LT
38#include <linux/compiler.h>
39#include <linux/completion.h>
40#include <linux/pid.h>
41#include <linux/percpu.h>
42#include <linux/topology.h>
3e26c149 43#include <linux/proportions.h>
1da177e4 44#include <linux/seccomp.h>
e56d0903 45#include <linux/rcupdate.h>
05725f7e 46#include <linux/rculist.h>
23f78d4a 47#include <linux/rtmutex.h>
1da177e4 48
a3b6714e
DW
49#include <linux/time.h>
50#include <linux/param.h>
51#include <linux/resource.h>
52#include <linux/timer.h>
53#include <linux/hrtimer.h>
7c3ab738 54#include <linux/task_io_accounting.h>
9745512c 55#include <linux/latencytop.h>
9e2b2dc4 56#include <linux/cred.h>
fa14ff4a 57#include <linux/llist.h>
7b44ab97 58#include <linux/uidgid.h>
21caf2fc 59#include <linux/gfp.h>
d4311ff1 60#include <linux/magic.h>
7d7efec3 61#include <linux/cgroup-defs.h>
a3b6714e
DW
62
63#include <asm/processor.h>
36d57ac4 64
d50dde5a
DF
65#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
66
67/*
68 * Extended scheduling parameters data structure.
69 *
70 * This is needed because the original struct sched_param can not be
71 * altered without introducing ABI issues with legacy applications
72 * (e.g., in sched_getparam()).
73 *
74 * However, the possibility of specifying more than just a priority for
75 * the tasks may be useful for a wide variety of application fields, e.g.,
76 * multimedia, streaming, automation and control, and many others.
77 *
78 * This variant (sched_attr) is meant at describing a so-called
79 * sporadic time-constrained task. In such model a task is specified by:
80 * - the activation period or minimum instance inter-arrival time;
81 * - the maximum (or average, depending on the actual scheduling
82 * discipline) computation time of all instances, a.k.a. runtime;
83 * - the deadline (relative to the actual activation time) of each
84 * instance.
85 * Very briefly, a periodic (sporadic) task asks for the execution of
86 * some specific computation --which is typically called an instance--
87 * (at most) every period. Moreover, each instance typically lasts no more
88 * than the runtime and must be completed by time instant t equal to
89 * the instance activation time + the deadline.
90 *
91 * This is reflected by the actual fields of the sched_attr structure:
92 *
93 * @size size of the structure, for fwd/bwd compat.
94 *
95 * @sched_policy task's scheduling policy
96 * @sched_flags for customizing the scheduler behaviour
97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
98 * @sched_priority task's static priority (SCHED_FIFO/RR)
99 * @sched_deadline representative of the task's deadline
100 * @sched_runtime representative of the task's runtime
101 * @sched_period representative of the task's period
102 *
103 * Given this task model, there are a multiplicity of scheduling algorithms
104 * and policies, that can be used to ensure all the tasks will make their
105 * timing constraints.
aab03e05
DF
106 *
107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108 * only user of this new interface. More information about the algorithm
109 * available in the scheduling class file or in Documentation/.
d50dde5a
DF
110 */
111struct sched_attr {
112 u32 size;
113
114 u32 sched_policy;
115 u64 sched_flags;
116
117 /* SCHED_NORMAL, SCHED_BATCH */
118 s32 sched_nice;
119
120 /* SCHED_FIFO, SCHED_RR */
121 u32 sched_priority;
122
123 /* SCHED_DEADLINE */
124 u64 sched_runtime;
125 u64 sched_deadline;
126 u64 sched_period;
127};
128
c87e2837 129struct futex_pi_state;
286100a6 130struct robust_list_head;
bddd87c7 131struct bio_list;
5ad4e53b 132struct fs_struct;
cdd6c482 133struct perf_event_context;
73c10101 134struct blk_plug;
c4ad8f98 135struct filename;
89076bc3 136struct nameidata;
1da177e4 137
615d6e87
DB
138#define VMACACHE_BITS 2
139#define VMACACHE_SIZE (1U << VMACACHE_BITS)
140#define VMACACHE_MASK (VMACACHE_SIZE - 1)
141
1da177e4
LT
142/*
143 * These are the constant used to fake the fixed-point load-average
144 * counting. Some notes:
145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
146 * a load-average precision of 10 bits integer + 11 bits fractional
147 * - if you want to count load-averages more often, you need more
148 * precision, or rounding will get you. With 2-second counting freq,
149 * the EXP_n values would be 1981, 2034 and 2043 if still using only
150 * 11 bit fractions.
151 */
152extern unsigned long avenrun[]; /* Load averages */
2d02494f 153extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
1da177e4
LT
154
155#define FSHIFT 11 /* nr of bits of precision */
156#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
0c2043ab 157#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
1da177e4
LT
158#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
159#define EXP_5 2014 /* 1/exp(5sec/5min) */
160#define EXP_15 2037 /* 1/exp(5sec/15min) */
161
162#define CALC_LOAD(load,exp,n) \
163 load *= exp; \
164 load += n*(FIXED_1-exp); \
165 load >>= FSHIFT;
166
167extern unsigned long total_forks;
168extern int nr_threads;
1da177e4
LT
169DECLARE_PER_CPU(unsigned long, process_counts);
170extern int nr_processes(void);
171extern unsigned long nr_running(void);
2ee507c4 172extern bool single_task_running(void);
1da177e4 173extern unsigned long nr_iowait(void);
8c215bd3 174extern unsigned long nr_iowait_cpu(int cpu);
372ba8cb 175extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
69d25870 176
0f004f5a 177extern void calc_global_load(unsigned long ticks);
3289bdb4
PZ
178
179#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
5aaa0b7a 180extern void update_cpu_load_nohz(void);
3289bdb4
PZ
181#else
182static inline void update_cpu_load_nohz(void) { }
183#endif
1da177e4 184
7e49fcce
SR
185extern unsigned long get_parent_ip(unsigned long addr);
186
b637a328
PM
187extern void dump_cpu_task(int cpu);
188
43ae34cb
IM
189struct seq_file;
190struct cfs_rq;
4cf86d77 191struct task_group;
43ae34cb
IM
192#ifdef CONFIG_SCHED_DEBUG
193extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
194extern void proc_sched_set_task(struct task_struct *p);
43ae34cb 195#endif
1da177e4 196
4a8342d2
LT
197/*
198 * Task state bitmask. NOTE! These bits are also
199 * encoded in fs/proc/array.c: get_task_state().
200 *
201 * We have two separate sets of flags: task->state
202 * is about runnability, while task->exit_state are
203 * about the task exiting. Confusing, but this way
204 * modifying one set can't modify the other one by
205 * mistake.
206 */
1da177e4
LT
207#define TASK_RUNNING 0
208#define TASK_INTERRUPTIBLE 1
209#define TASK_UNINTERRUPTIBLE 2
f021a3c2
MW
210#define __TASK_STOPPED 4
211#define __TASK_TRACED 8
4a8342d2 212/* in tsk->exit_state */
ad86622b
ON
213#define EXIT_DEAD 16
214#define EXIT_ZOMBIE 32
abd50b39 215#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
4a8342d2 216/* in tsk->state again */
af927232 217#define TASK_DEAD 64
f021a3c2 218#define TASK_WAKEKILL 128
e9c84311 219#define TASK_WAKING 256
f2530dc7 220#define TASK_PARKED 512
80ed87c8
PZ
221#define TASK_NOLOAD 1024
222#define TASK_STATE_MAX 2048
f021a3c2 223
80ed87c8 224#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN"
73342151 225
e1781538
PZ
226extern char ___assert_task_state[1 - 2*!!(
227 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
f021a3c2
MW
228
229/* Convenience macros for the sake of set_task_state */
230#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
231#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
232#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
1da177e4 233
80ed87c8
PZ
234#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
235
92a1f4bc
MW
236/* Convenience macros for the sake of wake_up */
237#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
f021a3c2 238#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
92a1f4bc
MW
239
240/* get_task_state() */
241#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
f021a3c2 242 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
74e37200 243 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
92a1f4bc 244
f021a3c2
MW
245#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
246#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
92a1f4bc 247#define task_is_stopped_or_traced(task) \
f021a3c2 248 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
92a1f4bc 249#define task_contributes_to_load(task) \
e3c8ca83 250 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
80ed87c8
PZ
251 (task->flags & PF_FROZEN) == 0 && \
252 (task->state & TASK_NOLOAD) == 0)
1da177e4 253
8eb23b9f
PZ
254#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
255
256#define __set_task_state(tsk, state_value) \
257 do { \
258 (tsk)->task_state_change = _THIS_IP_; \
259 (tsk)->state = (state_value); \
260 } while (0)
261#define set_task_state(tsk, state_value) \
262 do { \
263 (tsk)->task_state_change = _THIS_IP_; \
b92b8b35 264 smp_store_mb((tsk)->state, (state_value)); \
8eb23b9f
PZ
265 } while (0)
266
267/*
268 * set_current_state() includes a barrier so that the write of current->state
269 * is correctly serialised wrt the caller's subsequent test of whether to
270 * actually sleep:
271 *
272 * set_current_state(TASK_UNINTERRUPTIBLE);
273 * if (do_i_need_to_sleep())
274 * schedule();
275 *
276 * If the caller does not need such serialisation then use __set_current_state()
277 */
278#define __set_current_state(state_value) \
279 do { \
280 current->task_state_change = _THIS_IP_; \
281 current->state = (state_value); \
282 } while (0)
283#define set_current_state(state_value) \
284 do { \
285 current->task_state_change = _THIS_IP_; \
b92b8b35 286 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
287 } while (0)
288
289#else
290
1da177e4
LT
291#define __set_task_state(tsk, state_value) \
292 do { (tsk)->state = (state_value); } while (0)
293#define set_task_state(tsk, state_value) \
b92b8b35 294 smp_store_mb((tsk)->state, (state_value))
1da177e4 295
498d0c57
AM
296/*
297 * set_current_state() includes a barrier so that the write of current->state
298 * is correctly serialised wrt the caller's subsequent test of whether to
299 * actually sleep:
300 *
301 * set_current_state(TASK_UNINTERRUPTIBLE);
302 * if (do_i_need_to_sleep())
303 * schedule();
304 *
305 * If the caller does not need such serialisation then use __set_current_state()
306 */
8eb23b9f 307#define __set_current_state(state_value) \
1da177e4 308 do { current->state = (state_value); } while (0)
8eb23b9f 309#define set_current_state(state_value) \
b92b8b35 310 smp_store_mb(current->state, (state_value))
1da177e4 311
8eb23b9f
PZ
312#endif
313
1da177e4
LT
314/* Task command name length */
315#define TASK_COMM_LEN 16
316
1da177e4
LT
317#include <linux/spinlock.h>
318
319/*
320 * This serializes "schedule()" and also protects
321 * the run-queue from deletions/modifications (but
322 * _adding_ to the beginning of the run-queue has
323 * a separate lock).
324 */
325extern rwlock_t tasklist_lock;
326extern spinlock_t mmlist_lock;
327
36c8b586 328struct task_struct;
1da177e4 329
db1466b3
PM
330#ifdef CONFIG_PROVE_RCU
331extern int lockdep_tasklist_lock_is_held(void);
332#endif /* #ifdef CONFIG_PROVE_RCU */
333
1da177e4
LT
334extern void sched_init(void);
335extern void sched_init_smp(void);
2d07b255 336extern asmlinkage void schedule_tail(struct task_struct *prev);
36c8b586 337extern void init_idle(struct task_struct *idle, int cpu);
1df21055 338extern void init_idle_bootup_task(struct task_struct *idle);
1da177e4 339
3fa0818b
RR
340extern cpumask_var_t cpu_isolated_map;
341
89f19f04 342extern int runqueue_is_locked(int cpu);
017730c1 343
3451d024 344#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
c1cc017c 345extern void nohz_balance_enter_idle(int cpu);
69e1e811 346extern void set_cpu_sd_state_idle(void);
bc7a34b8 347extern int get_nohz_timer_target(void);
46cb4b7c 348#else
c1cc017c 349static inline void nohz_balance_enter_idle(int cpu) { }
fdaabd80 350static inline void set_cpu_sd_state_idle(void) { }
46cb4b7c 351#endif
1da177e4 352
e59e2ae2 353/*
39bc89fd 354 * Only dump TASK_* tasks. (0 for all tasks)
e59e2ae2
IM
355 */
356extern void show_state_filter(unsigned long state_filter);
357
358static inline void show_state(void)
359{
39bc89fd 360 show_state_filter(0);
e59e2ae2
IM
361}
362
1da177e4
LT
363extern void show_regs(struct pt_regs *);
364
365/*
366 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
367 * task), SP is the stack pointer of the first frame that should be shown in the back
368 * trace (or NULL if the entire call-chain of the task should be shown).
369 */
370extern void show_stack(struct task_struct *task, unsigned long *sp);
371
1da177e4
LT
372extern void cpu_init (void);
373extern void trap_init(void);
374extern void update_process_times(int user);
375extern void scheduler_tick(void);
376
82a1fcb9
IM
377extern void sched_show_task(struct task_struct *p);
378
19cc36c0 379#ifdef CONFIG_LOCKUP_DETECTOR
8446f1d3 380extern void touch_softlockup_watchdog(void);
d6ad3e28 381extern void touch_softlockup_watchdog_sync(void);
04c9167f 382extern void touch_all_softlockup_watchdogs(void);
332fbdbc
DZ
383extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
384 void __user *buffer,
385 size_t *lenp, loff_t *ppos);
9c44bc03 386extern unsigned int softlockup_panic;
004417a6 387void lockup_detector_init(void);
8446f1d3 388#else
8446f1d3
IM
389static inline void touch_softlockup_watchdog(void)
390{
391}
d6ad3e28
JW
392static inline void touch_softlockup_watchdog_sync(void)
393{
394}
04c9167f
JF
395static inline void touch_all_softlockup_watchdogs(void)
396{
397}
004417a6
PZ
398static inline void lockup_detector_init(void)
399{
400}
8446f1d3
IM
401#endif
402
8b414521
MT
403#ifdef CONFIG_DETECT_HUNG_TASK
404void reset_hung_task_detector(void);
405#else
406static inline void reset_hung_task_detector(void)
407{
408}
409#endif
410
1da177e4
LT
411/* Attach to any functions which should be ignored in wchan output. */
412#define __sched __attribute__((__section__(".sched.text")))
deaf2227
IM
413
414/* Linker adds these: start and end of __sched functions */
415extern char __sched_text_start[], __sched_text_end[];
416
1da177e4
LT
417/* Is this address in the __sched functions? */
418extern int in_sched_functions(unsigned long addr);
419
420#define MAX_SCHEDULE_TIMEOUT LONG_MAX
b3c97528 421extern signed long schedule_timeout(signed long timeout);
64ed93a2 422extern signed long schedule_timeout_interruptible(signed long timeout);
294d5cc2 423extern signed long schedule_timeout_killable(signed long timeout);
64ed93a2 424extern signed long schedule_timeout_uninterruptible(signed long timeout);
1da177e4 425asmlinkage void schedule(void);
c5491ea7 426extern void schedule_preempt_disabled(void);
1da177e4 427
9cff8ade
N
428extern long io_schedule_timeout(long timeout);
429
430static inline void io_schedule(void)
431{
432 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
433}
434
ab516013 435struct nsproxy;
acce292c 436struct user_namespace;
1da177e4 437
efc1a3b1
DH
438#ifdef CONFIG_MMU
439extern void arch_pick_mmap_layout(struct mm_struct *mm);
1da177e4
LT
440extern unsigned long
441arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
442 unsigned long, unsigned long);
443extern unsigned long
444arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
445 unsigned long len, unsigned long pgoff,
446 unsigned long flags);
efc1a3b1
DH
447#else
448static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
449#endif
1da177e4 450
d049f74f
KC
451#define SUID_DUMP_DISABLE 0 /* No setuid dumping */
452#define SUID_DUMP_USER 1 /* Dump as user of process */
453#define SUID_DUMP_ROOT 2 /* Dump as root */
454
6c5d5238 455/* mm flags */
f8af4da3 456
7288e118 457/* for SUID_DUMP_* above */
3cb4a0bb 458#define MMF_DUMPABLE_BITS 2
f8af4da3 459#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
3cb4a0bb 460
942be387
ON
461extern void set_dumpable(struct mm_struct *mm, int value);
462/*
463 * This returns the actual value of the suid_dumpable flag. For things
464 * that are using this for checking for privilege transitions, it must
465 * test against SUID_DUMP_USER rather than treating it as a boolean
466 * value.
467 */
468static inline int __get_dumpable(unsigned long mm_flags)
469{
470 return mm_flags & MMF_DUMPABLE_MASK;
471}
472
473static inline int get_dumpable(struct mm_struct *mm)
474{
475 return __get_dumpable(mm->flags);
476}
477
3cb4a0bb
KH
478/* coredump filter bits */
479#define MMF_DUMP_ANON_PRIVATE 2
480#define MMF_DUMP_ANON_SHARED 3
481#define MMF_DUMP_MAPPED_PRIVATE 4
482#define MMF_DUMP_MAPPED_SHARED 5
82df3973 483#define MMF_DUMP_ELF_HEADERS 6
e575f111
KM
484#define MMF_DUMP_HUGETLB_PRIVATE 7
485#define MMF_DUMP_HUGETLB_SHARED 8
f8af4da3 486
3cb4a0bb 487#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
e575f111 488#define MMF_DUMP_FILTER_BITS 7
3cb4a0bb
KH
489#define MMF_DUMP_FILTER_MASK \
490 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
491#define MMF_DUMP_FILTER_DEFAULT \
e575f111 492 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
656eb2cd
RM
493 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
494
495#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
496# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
497#else
498# define MMF_DUMP_MASK_DEFAULT_ELF 0
499#endif
f8af4da3
HD
500 /* leave room for more dump flags */
501#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
ba76149f 502#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
bafb282d 503#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
f8af4da3 504
9f68f672
ON
505#define MMF_HAS_UPROBES 19 /* has uprobes */
506#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
f8ac4ec9 507
f8af4da3 508#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
6c5d5238 509
1da177e4
LT
510struct sighand_struct {
511 atomic_t count;
512 struct k_sigaction action[_NSIG];
513 spinlock_t siglock;
b8fceee1 514 wait_queue_head_t signalfd_wqh;
1da177e4
LT
515};
516
0e464814 517struct pacct_struct {
f6ec29a4
KK
518 int ac_flag;
519 long ac_exitcode;
0e464814 520 unsigned long ac_mem;
77787bfb
KK
521 cputime_t ac_utime, ac_stime;
522 unsigned long ac_minflt, ac_majflt;
0e464814
KK
523};
524
42c4ab41
SG
525struct cpu_itimer {
526 cputime_t expires;
527 cputime_t incr;
8356b5f9
SG
528 u32 error;
529 u32 incr_error;
42c4ab41
SG
530};
531
d37f761d
FW
532/**
533 * struct cputime - snaphsot of system and user cputime
534 * @utime: time spent in user mode
535 * @stime: time spent in system mode
536 *
537 * Gathers a generic snapshot of user and system time.
538 */
539struct cputime {
540 cputime_t utime;
541 cputime_t stime;
542};
543
f06febc9
FM
544/**
545 * struct task_cputime - collected CPU time counts
546 * @utime: time spent in user mode, in &cputime_t units
547 * @stime: time spent in kernel mode, in &cputime_t units
548 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 549 *
d37f761d
FW
550 * This is an extension of struct cputime that includes the total runtime
551 * spent by the task from the scheduler point of view.
552 *
553 * As a result, this structure groups together three kinds of CPU time
554 * that are tracked for threads and thread groups. Most things considering
f06febc9
FM
555 * CPU time want to group these counts together and treat all three
556 * of them in parallel.
557 */
558struct task_cputime {
559 cputime_t utime;
560 cputime_t stime;
561 unsigned long long sum_exec_runtime;
562};
563/* Alternate field names when used to cache expirations. */
564#define prof_exp stime
565#define virt_exp utime
566#define sched_exp sum_exec_runtime
567
4cd4c1b4
PZ
568#define INIT_CPUTIME \
569 (struct task_cputime) { \
64861634
MS
570 .utime = 0, \
571 .stime = 0, \
4cd4c1b4
PZ
572 .sum_exec_runtime = 0, \
573 }
574
971e8a98
JL
575/*
576 * This is the atomic variant of task_cputime, which can be used for
577 * storing and updating task_cputime statistics without locking.
578 */
579struct task_cputime_atomic {
580 atomic64_t utime;
581 atomic64_t stime;
582 atomic64_t sum_exec_runtime;
583};
584
585#define INIT_CPUTIME_ATOMIC \
586 (struct task_cputime_atomic) { \
587 .utime = ATOMIC64_INIT(0), \
588 .stime = ATOMIC64_INIT(0), \
589 .sum_exec_runtime = ATOMIC64_INIT(0), \
590 }
591
a233f112
PZ
592#ifdef CONFIG_PREEMPT_COUNT
593#define PREEMPT_DISABLED (1 + PREEMPT_ENABLED)
594#else
595#define PREEMPT_DISABLED PREEMPT_ENABLED
596#endif
597
c99e6efe
PZ
598/*
599 * Disable preemption until the scheduler is running.
600 * Reset by start_kernel()->sched_init()->init_idle().
d86ee480
PZ
601 *
602 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
603 * before the scheduler is active -- see should_resched().
c99e6efe 604 */
a233f112 605#define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE)
c99e6efe 606
f06febc9 607/**
4cd4c1b4 608 * struct thread_group_cputimer - thread group interval timer counts
920ce39f 609 * @cputime_atomic: atomic thread group interval timers.
4cd4c1b4
PZ
610 * @running: non-zero when there are timers running and
611 * @cputime receives updates.
f06febc9
FM
612 *
613 * This structure contains the version of task_cputime, above, that is
4cd4c1b4 614 * used for thread group CPU timer calculations.
f06febc9 615 */
4cd4c1b4 616struct thread_group_cputimer {
71107445 617 struct task_cputime_atomic cputime_atomic;
4cd4c1b4 618 int running;
f06febc9 619};
f06febc9 620
4714d1d3 621#include <linux/rwsem.h>
5091faa4
MG
622struct autogroup;
623
1da177e4 624/*
e815f0a8 625 * NOTE! "signal_struct" does not have its own
1da177e4
LT
626 * locking, because a shared signal_struct always
627 * implies a shared sighand_struct, so locking
628 * sighand_struct is always a proper superset of
629 * the locking of signal_struct.
630 */
631struct signal_struct {
ea6d290c 632 atomic_t sigcnt;
1da177e4 633 atomic_t live;
b3ac022c 634 int nr_threads;
0c740d0a 635 struct list_head thread_head;
1da177e4
LT
636
637 wait_queue_head_t wait_chldexit; /* for wait4() */
638
639 /* current thread group signal load-balancing target: */
36c8b586 640 struct task_struct *curr_target;
1da177e4
LT
641
642 /* shared signal handling: */
643 struct sigpending shared_pending;
644
645 /* thread group exit support */
646 int group_exit_code;
647 /* overloaded:
648 * - notify group_exit_task when ->count is equal to notify_count
649 * - everyone except group_exit_task is stopped during signal delivery
650 * of fatal signals, group_exit_task processes the signal.
651 */
1da177e4 652 int notify_count;
07dd20e0 653 struct task_struct *group_exit_task;
1da177e4
LT
654
655 /* thread group stop support, overloads group_exit_code too */
656 int group_stop_count;
657 unsigned int flags; /* see SIGNAL_* flags below */
658
ebec18a6
LP
659 /*
660 * PR_SET_CHILD_SUBREAPER marks a process, like a service
661 * manager, to re-parent orphan (double-forking) child processes
662 * to this process instead of 'init'. The service manager is
663 * able to receive SIGCHLD signals and is able to investigate
664 * the process until it calls wait(). All children of this
665 * process will inherit a flag if they should look for a
666 * child_subreaper process at exit.
667 */
668 unsigned int is_child_subreaper:1;
669 unsigned int has_child_subreaper:1;
670
1da177e4 671 /* POSIX.1b Interval Timers */
5ed67f05
PE
672 int posix_timer_id;
673 struct list_head posix_timers;
1da177e4
LT
674
675 /* ITIMER_REAL timer for the process */
2ff678b8 676 struct hrtimer real_timer;
fea9d175 677 struct pid *leader_pid;
2ff678b8 678 ktime_t it_real_incr;
1da177e4 679
42c4ab41
SG
680 /*
681 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
682 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
683 * values are defined to 0 and 1 respectively
684 */
685 struct cpu_itimer it[2];
1da177e4 686
f06febc9 687 /*
4cd4c1b4
PZ
688 * Thread group totals for process CPU timers.
689 * See thread_group_cputimer(), et al, for details.
f06febc9 690 */
4cd4c1b4 691 struct thread_group_cputimer cputimer;
f06febc9
FM
692
693 /* Earliest-expiration cache. */
694 struct task_cputime cputime_expires;
695
696 struct list_head cpu_timers[3];
697
ab521dc0 698 struct pid *tty_old_pgrp;
1ec320af 699
1da177e4
LT
700 /* boolean value for session group leader */
701 int leader;
702
703 struct tty_struct *tty; /* NULL if no tty */
704
5091faa4
MG
705#ifdef CONFIG_SCHED_AUTOGROUP
706 struct autogroup *autogroup;
707#endif
1da177e4
LT
708 /*
709 * Cumulative resource counters for dead threads in the group,
710 * and for reaped dead child processes forked by this group.
711 * Live threads maintain their own counters and add to these
712 * in __exit_signal, except for the group leader.
713 */
e78c3496 714 seqlock_t stats_lock;
32bd671d 715 cputime_t utime, stime, cutime, cstime;
9ac52315
LV
716 cputime_t gtime;
717 cputime_t cgtime;
9fbc42ea 718#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
d37f761d 719 struct cputime prev_cputime;
0cf55e1e 720#endif
1da177e4
LT
721 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
722 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
6eaeeaba 723 unsigned long inblock, oublock, cinblock, coublock;
1f10206c 724 unsigned long maxrss, cmaxrss;
940389b8 725 struct task_io_accounting ioac;
1da177e4 726
32bd671d
PZ
727 /*
728 * Cumulative ns of schedule CPU time fo dead threads in the
729 * group, not including a zombie group leader, (This only differs
730 * from jiffies_to_ns(utime + stime) if sched_clock uses something
731 * other than jiffies.)
732 */
733 unsigned long long sum_sched_runtime;
734
1da177e4
LT
735 /*
736 * We don't bother to synchronize most readers of this at all,
737 * because there is no reader checking a limit that actually needs
738 * to get both rlim_cur and rlim_max atomically, and either one
739 * alone is a single word that can safely be read normally.
740 * getrlimit/setrlimit use task_lock(current->group_leader) to
741 * protect this instead of the siglock, because they really
742 * have no need to disable irqs.
743 */
744 struct rlimit rlim[RLIM_NLIMITS];
745
0e464814
KK
746#ifdef CONFIG_BSD_PROCESS_ACCT
747 struct pacct_struct pacct; /* per-process accounting information */
748#endif
ad4ecbcb 749#ifdef CONFIG_TASKSTATS
ad4ecbcb
SN
750 struct taskstats *stats;
751#endif
522ed776
MT
752#ifdef CONFIG_AUDIT
753 unsigned audit_tty;
46e959ea 754 unsigned audit_tty_log_passwd;
522ed776
MT
755 struct tty_audit_buf *tty_audit_buf;
756#endif
28b83c51 757
e1e12d2f 758 oom_flags_t oom_flags;
a9c58b90
DR
759 short oom_score_adj; /* OOM kill score adjustment */
760 short oom_score_adj_min; /* OOM kill score adjustment min value.
761 * Only settable by CAP_SYS_RESOURCE. */
9b1bf12d
KM
762
763 struct mutex cred_guard_mutex; /* guard against foreign influences on
764 * credential calculations
765 * (notably. ptrace) */
1da177e4
LT
766};
767
768/*
769 * Bits in flags field of signal_struct.
770 */
771#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
ee77f075
ON
772#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
773#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
403bad72 774#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
e4420551
ON
775/*
776 * Pending notifications to parent.
777 */
778#define SIGNAL_CLD_STOPPED 0x00000010
779#define SIGNAL_CLD_CONTINUED 0x00000020
780#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
1da177e4 781
fae5fa44
ON
782#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
783
ed5d2cac
ON
784/* If true, all threads except ->group_exit_task have pending SIGKILL */
785static inline int signal_group_exit(const struct signal_struct *sig)
786{
787 return (sig->flags & SIGNAL_GROUP_EXIT) ||
788 (sig->group_exit_task != NULL);
789}
790
1da177e4
LT
791/*
792 * Some day this will be a full-fledged user tracking system..
793 */
794struct user_struct {
795 atomic_t __count; /* reference count */
796 atomic_t processes; /* How many processes does this user have? */
1da177e4 797 atomic_t sigpending; /* How many pending signals does this user have? */
2d9048e2 798#ifdef CONFIG_INOTIFY_USER
0eeca283
RL
799 atomic_t inotify_watches; /* How many inotify watches does this user have? */
800 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
801#endif
4afeff85
EP
802#ifdef CONFIG_FANOTIFY
803 atomic_t fanotify_listeners;
804#endif
7ef9964e 805#ifdef CONFIG_EPOLL
52bd19f7 806 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
7ef9964e 807#endif
970a8645 808#ifdef CONFIG_POSIX_MQUEUE
1da177e4
LT
809 /* protected by mq_lock */
810 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
970a8645 811#endif
1da177e4
LT
812 unsigned long locked_shm; /* How many pages of mlocked shm ? */
813
814#ifdef CONFIG_KEYS
815 struct key *uid_keyring; /* UID specific keyring */
816 struct key *session_keyring; /* UID's default session keyring */
817#endif
818
819 /* Hash table maintenance information */
735de223 820 struct hlist_node uidhash_node;
7b44ab97 821 kuid_t uid;
24e377a8 822
cdd6c482 823#ifdef CONFIG_PERF_EVENTS
789f90fc
PZ
824 atomic_long_t locked_vm;
825#endif
1da177e4
LT
826};
827
eb41d946 828extern int uids_sysfs_init(void);
5cb350ba 829
7b44ab97 830extern struct user_struct *find_user(kuid_t);
1da177e4
LT
831
832extern struct user_struct root_user;
833#define INIT_USER (&root_user)
834
b6dff3ec 835
1da177e4
LT
836struct backing_dev_info;
837struct reclaim_state;
838
f6db8347 839#ifdef CONFIG_SCHED_INFO
1da177e4
LT
840struct sched_info {
841 /* cumulative counters */
2d72376b 842 unsigned long pcount; /* # of times run on this cpu */
9c2c4802 843 unsigned long long run_delay; /* time spent waiting on a runqueue */
1da177e4
LT
844
845 /* timestamps */
172ba844
BS
846 unsigned long long last_arrival,/* when we last ran on a cpu */
847 last_queued; /* when we were last queued to run */
1da177e4 848};
f6db8347 849#endif /* CONFIG_SCHED_INFO */
1da177e4 850
ca74e92b
SN
851#ifdef CONFIG_TASK_DELAY_ACCT
852struct task_delay_info {
853 spinlock_t lock;
854 unsigned int flags; /* Private per-task flags */
855
856 /* For each stat XXX, add following, aligned appropriately
857 *
858 * struct timespec XXX_start, XXX_end;
859 * u64 XXX_delay;
860 * u32 XXX_count;
861 *
862 * Atomicity of updates to XXX_delay, XXX_count protected by
863 * single lock above (split into XXX_lock if contention is an issue).
864 */
0ff92245
SN
865
866 /*
867 * XXX_count is incremented on every XXX operation, the delay
868 * associated with the operation is added to XXX_delay.
869 * XXX_delay contains the accumulated delay time in nanoseconds.
870 */
9667a23d 871 u64 blkio_start; /* Shared by blkio, swapin */
0ff92245
SN
872 u64 blkio_delay; /* wait for sync block io completion */
873 u64 swapin_delay; /* wait for swapin block io completion */
874 u32 blkio_count; /* total count of the number of sync block */
875 /* io operations performed */
876 u32 swapin_count; /* total count of the number of swapin block */
877 /* io operations performed */
873b4771 878
9667a23d 879 u64 freepages_start;
873b4771
KK
880 u64 freepages_delay; /* wait for memory reclaim */
881 u32 freepages_count; /* total count of memory reclaim */
ca74e92b 882};
52f17b6c
CS
883#endif /* CONFIG_TASK_DELAY_ACCT */
884
885static inline int sched_info_on(void)
886{
887#ifdef CONFIG_SCHEDSTATS
888 return 1;
889#elif defined(CONFIG_TASK_DELAY_ACCT)
890 extern int delayacct_on;
891 return delayacct_on;
892#else
893 return 0;
ca74e92b 894#endif
52f17b6c 895}
ca74e92b 896
d15bcfdb
IM
897enum cpu_idle_type {
898 CPU_IDLE,
899 CPU_NOT_IDLE,
900 CPU_NEWLY_IDLE,
901 CPU_MAX_IDLE_TYPES
1da177e4
LT
902};
903
1399fa78 904/*
ca8ce3d0 905 * Increase resolution of cpu_capacity calculations
1399fa78 906 */
ca8ce3d0
NP
907#define SCHED_CAPACITY_SHIFT 10
908#define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
1da177e4 909
76751049
PZ
910/*
911 * Wake-queues are lists of tasks with a pending wakeup, whose
912 * callers have already marked the task as woken internally,
913 * and can thus carry on. A common use case is being able to
914 * do the wakeups once the corresponding user lock as been
915 * released.
916 *
917 * We hold reference to each task in the list across the wakeup,
918 * thus guaranteeing that the memory is still valid by the time
919 * the actual wakeups are performed in wake_up_q().
920 *
921 * One per task suffices, because there's never a need for a task to be
922 * in two wake queues simultaneously; it is forbidden to abandon a task
923 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
924 * already in a wake queue, the wakeup will happen soon and the second
925 * waker can just skip it.
926 *
927 * The WAKE_Q macro declares and initializes the list head.
928 * wake_up_q() does NOT reinitialize the list; it's expected to be
929 * called near the end of a function, where the fact that the queue is
930 * not used again will be easy to see by inspection.
931 *
932 * Note that this can cause spurious wakeups. schedule() callers
933 * must ensure the call is done inside a loop, confirming that the
934 * wakeup condition has in fact occurred.
935 */
936struct wake_q_node {
937 struct wake_q_node *next;
938};
939
940struct wake_q_head {
941 struct wake_q_node *first;
942 struct wake_q_node **lastp;
943};
944
945#define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
946
947#define WAKE_Q(name) \
948 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
949
950extern void wake_q_add(struct wake_q_head *head,
951 struct task_struct *task);
952extern void wake_up_q(struct wake_q_head *head);
953
1399fa78
NR
954/*
955 * sched-domains (multiprocessor balancing) declarations:
956 */
2dd73a4f 957#ifdef CONFIG_SMP
b5d978e0
PZ
958#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
959#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
960#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
961#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
c88d5910 962#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
b5d978e0 963#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
5d4dfddd 964#define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
d77b3ed5 965#define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
b5d978e0
PZ
966#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
967#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
532cb4c4 968#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
b5d978e0 969#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
e3589f6c 970#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
3a7053b3 971#define SD_NUMA 0x4000 /* cross-node balancing */
5c45bf27 972
143e1e28 973#ifdef CONFIG_SCHED_SMT
b6220ad6 974static inline int cpu_smt_flags(void)
143e1e28 975{
5d4dfddd 976 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
143e1e28
VG
977}
978#endif
979
980#ifdef CONFIG_SCHED_MC
b6220ad6 981static inline int cpu_core_flags(void)
143e1e28
VG
982{
983 return SD_SHARE_PKG_RESOURCES;
984}
985#endif
986
987#ifdef CONFIG_NUMA
b6220ad6 988static inline int cpu_numa_flags(void)
143e1e28
VG
989{
990 return SD_NUMA;
991}
992#endif
532cb4c4 993
1d3504fc
HS
994struct sched_domain_attr {
995 int relax_domain_level;
996};
997
998#define SD_ATTR_INIT (struct sched_domain_attr) { \
999 .relax_domain_level = -1, \
1000}
1001
60495e77
PZ
1002extern int sched_domain_level_max;
1003
5e6521ea
LZ
1004struct sched_group;
1005
1da177e4
LT
1006struct sched_domain {
1007 /* These fields must be setup */
1008 struct sched_domain *parent; /* top domain must be null terminated */
1a848870 1009 struct sched_domain *child; /* bottom domain must be null terminated */
1da177e4 1010 struct sched_group *groups; /* the balancing groups of the domain */
1da177e4
LT
1011 unsigned long min_interval; /* Minimum balance interval ms */
1012 unsigned long max_interval; /* Maximum balance interval ms */
1013 unsigned int busy_factor; /* less balancing by factor if busy */
1014 unsigned int imbalance_pct; /* No balance until over watermark */
1da177e4 1015 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
7897986b
NP
1016 unsigned int busy_idx;
1017 unsigned int idle_idx;
1018 unsigned int newidle_idx;
1019 unsigned int wake_idx;
147cbb4b 1020 unsigned int forkexec_idx;
a52bfd73 1021 unsigned int smt_gain;
25f55d9d
VG
1022
1023 int nohz_idle; /* NOHZ IDLE status */
1da177e4 1024 int flags; /* See SD_* */
60495e77 1025 int level;
1da177e4
LT
1026
1027 /* Runtime fields. */
1028 unsigned long last_balance; /* init to jiffies. units in jiffies */
1029 unsigned int balance_interval; /* initialise to 1. units in ms. */
1030 unsigned int nr_balance_failed; /* initialise to 0 */
1031
f48627e6 1032 /* idle_balance() stats */
9bd721c5 1033 u64 max_newidle_lb_cost;
f48627e6 1034 unsigned long next_decay_max_lb_cost;
2398f2c6 1035
1da177e4
LT
1036#ifdef CONFIG_SCHEDSTATS
1037 /* load_balance() stats */
480b9434
KC
1038 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1039 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1040 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1041 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1042 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1043 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1044 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1045 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1da177e4
LT
1046
1047 /* Active load balancing */
480b9434
KC
1048 unsigned int alb_count;
1049 unsigned int alb_failed;
1050 unsigned int alb_pushed;
1da177e4 1051
68767a0a 1052 /* SD_BALANCE_EXEC stats */
480b9434
KC
1053 unsigned int sbe_count;
1054 unsigned int sbe_balanced;
1055 unsigned int sbe_pushed;
1da177e4 1056
68767a0a 1057 /* SD_BALANCE_FORK stats */
480b9434
KC
1058 unsigned int sbf_count;
1059 unsigned int sbf_balanced;
1060 unsigned int sbf_pushed;
68767a0a 1061
1da177e4 1062 /* try_to_wake_up() stats */
480b9434
KC
1063 unsigned int ttwu_wake_remote;
1064 unsigned int ttwu_move_affine;
1065 unsigned int ttwu_move_balance;
1da177e4 1066#endif
a5d8c348
IM
1067#ifdef CONFIG_SCHED_DEBUG
1068 char *name;
1069#endif
dce840a0
PZ
1070 union {
1071 void *private; /* used during construction */
1072 struct rcu_head rcu; /* used during destruction */
1073 };
6c99e9ad 1074
669c55e9 1075 unsigned int span_weight;
4200efd9
IM
1076 /*
1077 * Span of all CPUs in this domain.
1078 *
1079 * NOTE: this field is variable length. (Allocated dynamically
1080 * by attaching extra space to the end of the structure,
1081 * depending on how many CPUs the kernel has booted up with)
4200efd9
IM
1082 */
1083 unsigned long span[0];
1da177e4
LT
1084};
1085
758b2cdc
RR
1086static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1087{
6c99e9ad 1088 return to_cpumask(sd->span);
758b2cdc
RR
1089}
1090
acc3f5d7 1091extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 1092 struct sched_domain_attr *dattr_new);
029190c5 1093
acc3f5d7
RR
1094/* Allocate an array of sched domains, for partition_sched_domains(). */
1095cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1096void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1097
39be3501
PZ
1098bool cpus_share_cache(int this_cpu, int that_cpu);
1099
143e1e28 1100typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
b6220ad6 1101typedef int (*sched_domain_flags_f)(void);
143e1e28
VG
1102
1103#define SDTL_OVERLAP 0x01
1104
1105struct sd_data {
1106 struct sched_domain **__percpu sd;
1107 struct sched_group **__percpu sg;
63b2ca30 1108 struct sched_group_capacity **__percpu sgc;
143e1e28
VG
1109};
1110
1111struct sched_domain_topology_level {
1112 sched_domain_mask_f mask;
1113 sched_domain_flags_f sd_flags;
1114 int flags;
1115 int numa_level;
1116 struct sd_data data;
1117#ifdef CONFIG_SCHED_DEBUG
1118 char *name;
1119#endif
1120};
1121
1122extern struct sched_domain_topology_level *sched_domain_topology;
1123
1124extern void set_sched_topology(struct sched_domain_topology_level *tl);
f6be8af1 1125extern void wake_up_if_idle(int cpu);
143e1e28
VG
1126
1127#ifdef CONFIG_SCHED_DEBUG
1128# define SD_INIT_NAME(type) .name = #type
1129#else
1130# define SD_INIT_NAME(type)
1131#endif
1132
1b427c15 1133#else /* CONFIG_SMP */
1da177e4 1134
1b427c15 1135struct sched_domain_attr;
d02c7a8c 1136
1b427c15 1137static inline void
acc3f5d7 1138partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1b427c15
IM
1139 struct sched_domain_attr *dattr_new)
1140{
d02c7a8c 1141}
39be3501
PZ
1142
1143static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1144{
1145 return true;
1146}
1147
1b427c15 1148#endif /* !CONFIG_SMP */
1da177e4 1149
47fe38fc 1150
1da177e4 1151struct io_context; /* See blkdev.h */
1da177e4 1152
1da177e4 1153
383f2835 1154#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
36c8b586 1155extern void prefetch_stack(struct task_struct *t);
383f2835
KC
1156#else
1157static inline void prefetch_stack(struct task_struct *t) { }
1158#endif
1da177e4
LT
1159
1160struct audit_context; /* See audit.c */
1161struct mempolicy;
b92ce558 1162struct pipe_inode_info;
4865ecf1 1163struct uts_namespace;
1da177e4 1164
20b8a59f 1165struct load_weight {
9dbdb155
PZ
1166 unsigned long weight;
1167 u32 inv_weight;
20b8a59f
IM
1168};
1169
9d85f21c 1170struct sched_avg {
36ee28e4
VG
1171 u64 last_runnable_update;
1172 s64 decay_count;
1173 /*
1174 * utilization_avg_contrib describes the amount of time that a
1175 * sched_entity is running on a CPU. It is based on running_avg_sum
1176 * and is scaled in the range [0..SCHED_LOAD_SCALE].
1177 * load_avg_contrib described the amount of time that a sched_entity
1178 * is runnable on a rq. It is based on both runnable_avg_sum and the
1179 * weight of the task.
1180 */
1181 unsigned long load_avg_contrib, utilization_avg_contrib;
9d85f21c
PT
1182 /*
1183 * These sums represent an infinite geometric series and so are bound
239003ea 1184 * above by 1024/(1-y). Thus we only need a u32 to store them for all
9d85f21c 1185 * choices of y < 1-2^(-32)*1024.
36ee28e4
VG
1186 * running_avg_sum reflects the time that the sched_entity is
1187 * effectively running on the CPU.
1188 * runnable_avg_sum represents the amount of time a sched_entity is on
1189 * a runqueue which includes the running time that is monitored by
1190 * running_avg_sum.
9d85f21c 1191 */
36ee28e4 1192 u32 runnable_avg_sum, avg_period, running_avg_sum;
9d85f21c
PT
1193};
1194
94c18227 1195#ifdef CONFIG_SCHEDSTATS
41acab88 1196struct sched_statistics {
20b8a59f 1197 u64 wait_start;
94c18227 1198 u64 wait_max;
6d082592
AV
1199 u64 wait_count;
1200 u64 wait_sum;
8f0dfc34
AV
1201 u64 iowait_count;
1202 u64 iowait_sum;
94c18227 1203
20b8a59f 1204 u64 sleep_start;
20b8a59f 1205 u64 sleep_max;
94c18227
IM
1206 s64 sum_sleep_runtime;
1207
1208 u64 block_start;
20b8a59f
IM
1209 u64 block_max;
1210 u64 exec_max;
eba1ed4b 1211 u64 slice_max;
cc367732 1212
cc367732
IM
1213 u64 nr_migrations_cold;
1214 u64 nr_failed_migrations_affine;
1215 u64 nr_failed_migrations_running;
1216 u64 nr_failed_migrations_hot;
1217 u64 nr_forced_migrations;
cc367732
IM
1218
1219 u64 nr_wakeups;
1220 u64 nr_wakeups_sync;
1221 u64 nr_wakeups_migrate;
1222 u64 nr_wakeups_local;
1223 u64 nr_wakeups_remote;
1224 u64 nr_wakeups_affine;
1225 u64 nr_wakeups_affine_attempts;
1226 u64 nr_wakeups_passive;
1227 u64 nr_wakeups_idle;
41acab88
LDM
1228};
1229#endif
1230
1231struct sched_entity {
1232 struct load_weight load; /* for load-balancing */
1233 struct rb_node run_node;
1234 struct list_head group_node;
1235 unsigned int on_rq;
1236
1237 u64 exec_start;
1238 u64 sum_exec_runtime;
1239 u64 vruntime;
1240 u64 prev_sum_exec_runtime;
1241
41acab88
LDM
1242 u64 nr_migrations;
1243
41acab88
LDM
1244#ifdef CONFIG_SCHEDSTATS
1245 struct sched_statistics statistics;
94c18227
IM
1246#endif
1247
20b8a59f 1248#ifdef CONFIG_FAIR_GROUP_SCHED
fed14d45 1249 int depth;
20b8a59f
IM
1250 struct sched_entity *parent;
1251 /* rq on which this entity is (to be) queued: */
1252 struct cfs_rq *cfs_rq;
1253 /* rq "owned" by this entity/group: */
1254 struct cfs_rq *my_q;
1255#endif
8bd75c77 1256
141965c7 1257#ifdef CONFIG_SMP
f4e26b12 1258 /* Per-entity load-tracking */
9d85f21c
PT
1259 struct sched_avg avg;
1260#endif
20b8a59f 1261};
70b97a7f 1262
fa717060
PZ
1263struct sched_rt_entity {
1264 struct list_head run_list;
78f2c7db 1265 unsigned long timeout;
57d2aa00 1266 unsigned long watchdog_stamp;
bee367ed 1267 unsigned int time_slice;
6f505b16 1268
58d6c2d7 1269 struct sched_rt_entity *back;
052f1dc7 1270#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
1271 struct sched_rt_entity *parent;
1272 /* rq on which this entity is (to be) queued: */
1273 struct rt_rq *rt_rq;
1274 /* rq "owned" by this entity/group: */
1275 struct rt_rq *my_q;
1276#endif
fa717060
PZ
1277};
1278
aab03e05
DF
1279struct sched_dl_entity {
1280 struct rb_node rb_node;
1281
1282 /*
1283 * Original scheduling parameters. Copied here from sched_attr
4027d080 1284 * during sched_setattr(), they will remain the same until
1285 * the next sched_setattr().
aab03e05
DF
1286 */
1287 u64 dl_runtime; /* maximum runtime for each instance */
1288 u64 dl_deadline; /* relative deadline of each instance */
755378a4 1289 u64 dl_period; /* separation of two instances (period) */
332ac17e 1290 u64 dl_bw; /* dl_runtime / dl_deadline */
aab03e05
DF
1291
1292 /*
1293 * Actual scheduling parameters. Initialized with the values above,
1294 * they are continously updated during task execution. Note that
1295 * the remaining runtime could be < 0 in case we are in overrun.
1296 */
1297 s64 runtime; /* remaining runtime for this instance */
1298 u64 deadline; /* absolute deadline for this instance */
1299 unsigned int flags; /* specifying the scheduler behaviour */
1300
1301 /*
1302 * Some bool flags:
1303 *
1304 * @dl_throttled tells if we exhausted the runtime. If so, the
1305 * task has to wait for a replenishment to be performed at the
1306 * next firing of dl_timer.
1307 *
1308 * @dl_new tells if a new instance arrived. If so we must
1309 * start executing it with full runtime and reset its absolute
1310 * deadline;
2d3d891d
DF
1311 *
1312 * @dl_boosted tells if we are boosted due to DI. If so we are
1313 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
1314 * exit the critical section);
1315 *
1316 * @dl_yielded tells if task gave up the cpu before consuming
1317 * all its available runtime during the last job.
aab03e05 1318 */
5bfd126e 1319 int dl_throttled, dl_new, dl_boosted, dl_yielded;
aab03e05
DF
1320
1321 /*
1322 * Bandwidth enforcement timer. Each -deadline task has its
1323 * own bandwidth to be enforced, thus we need one timer per task.
1324 */
1325 struct hrtimer dl_timer;
1326};
8bd75c77 1327
1d082fd0
PM
1328union rcu_special {
1329 struct {
1330 bool blocked;
1331 bool need_qs;
1332 } b;
1333 short s;
1334};
86848966
PM
1335struct rcu_node;
1336
8dc85d54
PZ
1337enum perf_event_task_context {
1338 perf_invalid_context = -1,
1339 perf_hw_context = 0,
89a1e187 1340 perf_sw_context,
8dc85d54
PZ
1341 perf_nr_task_contexts,
1342};
1343
1da177e4
LT
1344struct task_struct {
1345 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
f7e4217b 1346 void *stack;
1da177e4 1347 atomic_t usage;
97dc32cd
WC
1348 unsigned int flags; /* per process flags, defined below */
1349 unsigned int ptrace;
1da177e4 1350
2dd73a4f 1351#ifdef CONFIG_SMP
fa14ff4a 1352 struct llist_node wake_entry;
3ca7a440 1353 int on_cpu;
62470419
MW
1354 struct task_struct *last_wakee;
1355 unsigned long wakee_flips;
1356 unsigned long wakee_flip_decay_ts;
ac66f547
PZ
1357
1358 int wake_cpu;
2dd73a4f 1359#endif
fd2f4419 1360 int on_rq;
50e645a8 1361
b29739f9 1362 int prio, static_prio, normal_prio;
c7aceaba 1363 unsigned int rt_priority;
5522d5d5 1364 const struct sched_class *sched_class;
20b8a59f 1365 struct sched_entity se;
fa717060 1366 struct sched_rt_entity rt;
8323f26c
PZ
1367#ifdef CONFIG_CGROUP_SCHED
1368 struct task_group *sched_task_group;
1369#endif
aab03e05 1370 struct sched_dl_entity dl;
1da177e4 1371
e107be36
AK
1372#ifdef CONFIG_PREEMPT_NOTIFIERS
1373 /* list of struct preempt_notifier: */
1374 struct hlist_head preempt_notifiers;
1375#endif
1376
6c5c9341 1377#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1378 unsigned int btrace_seq;
6c5c9341 1379#endif
1da177e4 1380
97dc32cd 1381 unsigned int policy;
29baa747 1382 int nr_cpus_allowed;
1da177e4 1383 cpumask_t cpus_allowed;
1da177e4 1384
a57eb940 1385#ifdef CONFIG_PREEMPT_RCU
e260be67 1386 int rcu_read_lock_nesting;
1d082fd0 1387 union rcu_special rcu_read_unlock_special;
f41d911f 1388 struct list_head rcu_node_entry;
a57eb940 1389 struct rcu_node *rcu_blocked_node;
28f6569a 1390#endif /* #ifdef CONFIG_PREEMPT_RCU */
8315f422
PM
1391#ifdef CONFIG_TASKS_RCU
1392 unsigned long rcu_tasks_nvcsw;
1393 bool rcu_tasks_holdout;
1394 struct list_head rcu_tasks_holdout_list;
176f8f7a 1395 int rcu_tasks_idle_cpu;
8315f422 1396#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 1397
f6db8347 1398#ifdef CONFIG_SCHED_INFO
1da177e4
LT
1399 struct sched_info sched_info;
1400#endif
1401
1402 struct list_head tasks;
806c09a7 1403#ifdef CONFIG_SMP
917b627d 1404 struct plist_node pushable_tasks;
1baca4ce 1405 struct rb_node pushable_dl_tasks;
806c09a7 1406#endif
1da177e4
LT
1407
1408 struct mm_struct *mm, *active_mm;
615d6e87
DB
1409 /* per-thread vma caching */
1410 u32 vmacache_seqnum;
1411 struct vm_area_struct *vmacache[VMACACHE_SIZE];
34e55232
KH
1412#if defined(SPLIT_RSS_COUNTING)
1413 struct task_rss_stat rss_stat;
1414#endif
1da177e4 1415/* task state */
97dc32cd 1416 int exit_state;
1da177e4
LT
1417 int exit_code, exit_signal;
1418 int pdeath_signal; /* The signal sent when the parent dies */
e7cc4173 1419 unsigned long jobctl; /* JOBCTL_*, siglock protected */
9b89f6ba
AE
1420
1421 /* Used for emulating ABI behavior of previous Linux versions */
97dc32cd 1422 unsigned int personality;
9b89f6ba 1423
f9ce1f1c
KT
1424 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1425 * execve */
8f0dfc34
AV
1426 unsigned in_iowait:1;
1427
ca94c442
LP
1428 /* Revert to default priority/policy when forking */
1429 unsigned sched_reset_on_fork:1;
a8e4f2ea 1430 unsigned sched_contributes_to_load:1;
ff303e66 1431 unsigned sched_migrated:1;
ca94c442 1432
6f185c29
VD
1433#ifdef CONFIG_MEMCG_KMEM
1434 unsigned memcg_kmem_skip_account:1;
1435#endif
ff303e66
PZ
1436#ifdef CONFIG_COMPAT_BRK
1437 unsigned brk_randomized:1;
1438#endif
6f185c29 1439
1d4457f9
KC
1440 unsigned long atomic_flags; /* Flags needing atomic access. */
1441
f56141e3
AL
1442 struct restart_block restart_block;
1443
1da177e4
LT
1444 pid_t pid;
1445 pid_t tgid;
0a425405 1446
1314562a 1447#ifdef CONFIG_CC_STACKPROTECTOR
0a425405
AV
1448 /* Canary value for the -fstack-protector gcc feature */
1449 unsigned long stack_canary;
1314562a 1450#endif
4d1d61a6 1451 /*
1da177e4 1452 * pointers to (original) parent process, youngest child, younger sibling,
4d1d61a6 1453 * older sibling, respectively. (p->father can be replaced with
f470021a 1454 * p->real_parent->pid)
1da177e4 1455 */
abd63bc3
KC
1456 struct task_struct __rcu *real_parent; /* real parent process */
1457 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1da177e4 1458 /*
f470021a 1459 * children/sibling forms the list of my natural children
1da177e4
LT
1460 */
1461 struct list_head children; /* list of my children */
1462 struct list_head sibling; /* linkage in my parent's children list */
1463 struct task_struct *group_leader; /* threadgroup leader */
1464
f470021a
RM
1465 /*
1466 * ptraced is the list of tasks this task is using ptrace on.
1467 * This includes both natural children and PTRACE_ATTACH targets.
1468 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1469 */
1470 struct list_head ptraced;
1471 struct list_head ptrace_entry;
1472
1da177e4 1473 /* PID/PID hash table linkage. */
92476d7f 1474 struct pid_link pids[PIDTYPE_MAX];
47e65328 1475 struct list_head thread_group;
0c740d0a 1476 struct list_head thread_node;
1da177e4
LT
1477
1478 struct completion *vfork_done; /* for vfork() */
1479 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1480 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1481
c66f08be 1482 cputime_t utime, stime, utimescaled, stimescaled;
9ac52315 1483 cputime_t gtime;
9fbc42ea 1484#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
d37f761d 1485 struct cputime prev_cputime;
6a61671b
FW
1486#endif
1487#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1488 seqlock_t vtime_seqlock;
1489 unsigned long long vtime_snap;
1490 enum {
1491 VTIME_SLEEPING = 0,
1492 VTIME_USER,
1493 VTIME_SYS,
1494 } vtime_snap_whence;
d99ca3b9 1495#endif
1da177e4 1496 unsigned long nvcsw, nivcsw; /* context switch counts */
ccbf62d8 1497 u64 start_time; /* monotonic time in nsec */
57e0be04 1498 u64 real_start_time; /* boot based time in nsec */
1da177e4
LT
1499/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1500 unsigned long min_flt, maj_flt;
1501
f06febc9 1502 struct task_cputime cputime_expires;
1da177e4
LT
1503 struct list_head cpu_timers[3];
1504
1505/* process credentials */
1b0ba1c9 1506 const struct cred __rcu *real_cred; /* objective and real subjective task
3b11a1de 1507 * credentials (COW) */
1b0ba1c9 1508 const struct cred __rcu *cred; /* effective (overridable) subjective task
3b11a1de 1509 * credentials (COW) */
36772092
PBG
1510 char comm[TASK_COMM_LEN]; /* executable name excluding path
1511 - access with [gs]et_task_comm (which lock
1512 it with task_lock())
221af7f8 1513 - initialized normally by setup_new_exec */
1da177e4 1514/* file system info */
756daf26 1515 struct nameidata *nameidata;
3d5b6fcc 1516#ifdef CONFIG_SYSVIPC
1da177e4
LT
1517/* ipc stuff */
1518 struct sysv_sem sysvsem;
ab602f79 1519 struct sysv_shm sysvshm;
3d5b6fcc 1520#endif
e162b39a 1521#ifdef CONFIG_DETECT_HUNG_TASK
82a1fcb9 1522/* hung task detection */
82a1fcb9
IM
1523 unsigned long last_switch_count;
1524#endif
1da177e4
LT
1525/* filesystem information */
1526 struct fs_struct *fs;
1527/* open file information */
1528 struct files_struct *files;
1651e14e 1529/* namespaces */
ab516013 1530 struct nsproxy *nsproxy;
1da177e4
LT
1531/* signal handlers */
1532 struct signal_struct *signal;
1533 struct sighand_struct *sighand;
1534
1535 sigset_t blocked, real_blocked;
f3de272b 1536 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1da177e4
LT
1537 struct sigpending pending;
1538
1539 unsigned long sas_ss_sp;
1540 size_t sas_ss_size;
1541 int (*notifier)(void *priv);
1542 void *notifier_data;
1543 sigset_t *notifier_mask;
67d12145 1544 struct callback_head *task_works;
e73f8959 1545
1da177e4 1546 struct audit_context *audit_context;
bfef93a5 1547#ifdef CONFIG_AUDITSYSCALL
e1760bd5 1548 kuid_t loginuid;
4746ec5b 1549 unsigned int sessionid;
bfef93a5 1550#endif
932ecebb 1551 struct seccomp seccomp;
1da177e4
LT
1552
1553/* Thread group tracking */
1554 u32 parent_exec_id;
1555 u32 self_exec_id;
58568d2a
MX
1556/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1557 * mempolicy */
1da177e4 1558 spinlock_t alloc_lock;
1da177e4 1559
b29739f9 1560 /* Protection of the PI data structures: */
1d615482 1561 raw_spinlock_t pi_lock;
b29739f9 1562
76751049
PZ
1563 struct wake_q_node wake_q;
1564
23f78d4a
IM
1565#ifdef CONFIG_RT_MUTEXES
1566 /* PI waiters blocked on a rt_mutex held by this task */
fb00aca4
PZ
1567 struct rb_root pi_waiters;
1568 struct rb_node *pi_waiters_leftmost;
23f78d4a
IM
1569 /* Deadlock detection and priority inheritance handling */
1570 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1571#endif
1572
408894ee
IM
1573#ifdef CONFIG_DEBUG_MUTEXES
1574 /* mutex deadlock detection */
1575 struct mutex_waiter *blocked_on;
1576#endif
de30a2b3
IM
1577#ifdef CONFIG_TRACE_IRQFLAGS
1578 unsigned int irq_events;
de30a2b3 1579 unsigned long hardirq_enable_ip;
de30a2b3 1580 unsigned long hardirq_disable_ip;
fa1452e8 1581 unsigned int hardirq_enable_event;
de30a2b3 1582 unsigned int hardirq_disable_event;
fa1452e8
HS
1583 int hardirqs_enabled;
1584 int hardirq_context;
de30a2b3 1585 unsigned long softirq_disable_ip;
de30a2b3 1586 unsigned long softirq_enable_ip;
fa1452e8 1587 unsigned int softirq_disable_event;
de30a2b3 1588 unsigned int softirq_enable_event;
fa1452e8 1589 int softirqs_enabled;
de30a2b3
IM
1590 int softirq_context;
1591#endif
fbb9ce95 1592#ifdef CONFIG_LOCKDEP
bdb9441e 1593# define MAX_LOCK_DEPTH 48UL
fbb9ce95
IM
1594 u64 curr_chain_key;
1595 int lockdep_depth;
fbb9ce95 1596 unsigned int lockdep_recursion;
c7aceaba 1597 struct held_lock held_locks[MAX_LOCK_DEPTH];
cf40bd16 1598 gfp_t lockdep_reclaim_gfp;
fbb9ce95 1599#endif
408894ee 1600
1da177e4
LT
1601/* journalling filesystem info */
1602 void *journal_info;
1603
d89d8796 1604/* stacked block device info */
bddd87c7 1605 struct bio_list *bio_list;
d89d8796 1606
73c10101
JA
1607#ifdef CONFIG_BLOCK
1608/* stack plugging */
1609 struct blk_plug *plug;
1610#endif
1611
1da177e4
LT
1612/* VM state */
1613 struct reclaim_state *reclaim_state;
1614
1da177e4
LT
1615 struct backing_dev_info *backing_dev_info;
1616
1617 struct io_context *io_context;
1618
1619 unsigned long ptrace_message;
1620 siginfo_t *last_siginfo; /* For ptrace use. */
7c3ab738 1621 struct task_io_accounting ioac;
8f0ab514 1622#if defined(CONFIG_TASK_XACCT)
1da177e4
LT
1623 u64 acct_rss_mem1; /* accumulated rss usage */
1624 u64 acct_vm_mem1; /* accumulated virtual memory usage */
49b5cf34 1625 cputime_t acct_timexpd; /* stime + utime since last update */
1da177e4
LT
1626#endif
1627#ifdef CONFIG_CPUSETS
58568d2a 1628 nodemask_t mems_allowed; /* Protected by alloc_lock */
cc9a6c87 1629 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
825a46af 1630 int cpuset_mem_spread_rotor;
6adef3eb 1631 int cpuset_slab_spread_rotor;
1da177e4 1632#endif
ddbcc7e8 1633#ifdef CONFIG_CGROUPS
817929ec 1634 /* Control Group info protected by css_set_lock */
2c392b8c 1635 struct css_set __rcu *cgroups;
817929ec
PM
1636 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1637 struct list_head cg_list;
ddbcc7e8 1638#endif
42b2dd0a 1639#ifdef CONFIG_FUTEX
0771dfef 1640 struct robust_list_head __user *robust_list;
34f192c6
IM
1641#ifdef CONFIG_COMPAT
1642 struct compat_robust_list_head __user *compat_robust_list;
1643#endif
c87e2837
IM
1644 struct list_head pi_state_list;
1645 struct futex_pi_state *pi_state_cache;
c7aceaba 1646#endif
cdd6c482 1647#ifdef CONFIG_PERF_EVENTS
8dc85d54 1648 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
cdd6c482
IM
1649 struct mutex perf_event_mutex;
1650 struct list_head perf_event_list;
a63eaf34 1651#endif
8f47b187
TG
1652#ifdef CONFIG_DEBUG_PREEMPT
1653 unsigned long preempt_disable_ip;
1654#endif
c7aceaba 1655#ifdef CONFIG_NUMA
58568d2a 1656 struct mempolicy *mempolicy; /* Protected by alloc_lock */
c7aceaba 1657 short il_next;
207205a2 1658 short pref_node_fork;
42b2dd0a 1659#endif
cbee9f88
PZ
1660#ifdef CONFIG_NUMA_BALANCING
1661 int numa_scan_seq;
cbee9f88 1662 unsigned int numa_scan_period;
598f0ec0 1663 unsigned int numa_scan_period_max;
de1c9ce6 1664 int numa_preferred_nid;
6b9a7460 1665 unsigned long numa_migrate_retry;
cbee9f88 1666 u64 node_stamp; /* migration stamp */
7e2703e6
RR
1667 u64 last_task_numa_placement;
1668 u64 last_sum_exec_runtime;
cbee9f88 1669 struct callback_head numa_work;
f809ca9a 1670
8c8a743c
PZ
1671 struct list_head numa_entry;
1672 struct numa_group *numa_group;
1673
745d6147 1674 /*
44dba3d5
IM
1675 * numa_faults is an array split into four regions:
1676 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1677 * in this precise order.
1678 *
1679 * faults_memory: Exponential decaying average of faults on a per-node
1680 * basis. Scheduling placement decisions are made based on these
1681 * counts. The values remain static for the duration of a PTE scan.
1682 * faults_cpu: Track the nodes the process was running on when a NUMA
1683 * hinting fault was incurred.
1684 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1685 * during the current scan window. When the scan completes, the counts
1686 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1687 */
44dba3d5 1688 unsigned long *numa_faults;
83e1d2cd 1689 unsigned long total_numa_faults;
745d6147 1690
04bb2f94
RR
1691 /*
1692 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1693 * scan window were remote/local or failed to migrate. The task scan
1694 * period is adapted based on the locality of the faults with different
1695 * weights depending on whether they were shared or private faults
04bb2f94 1696 */
074c2381 1697 unsigned long numa_faults_locality[3];
04bb2f94 1698
b32e86b4 1699 unsigned long numa_pages_migrated;
cbee9f88
PZ
1700#endif /* CONFIG_NUMA_BALANCING */
1701
e56d0903 1702 struct rcu_head rcu;
b92ce558
JA
1703
1704 /*
1705 * cache last used pipe for splice
1706 */
1707 struct pipe_inode_info *splice_pipe;
5640f768
ED
1708
1709 struct page_frag task_frag;
1710
ca74e92b
SN
1711#ifdef CONFIG_TASK_DELAY_ACCT
1712 struct task_delay_info *delays;
f4f154fd
AM
1713#endif
1714#ifdef CONFIG_FAULT_INJECTION
1715 int make_it_fail;
ca74e92b 1716#endif
9d823e8f
WF
1717 /*
1718 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1719 * balance_dirty_pages() for some dirty throttling pause
1720 */
1721 int nr_dirtied;
1722 int nr_dirtied_pause;
83712358 1723 unsigned long dirty_paused_when; /* start of a write-and-pause period */
9d823e8f 1724
9745512c
AV
1725#ifdef CONFIG_LATENCYTOP
1726 int latency_record_count;
1727 struct latency_record latency_record[LT_SAVECOUNT];
1728#endif
6976675d
AV
1729 /*
1730 * time slack values; these are used to round up poll() and
1731 * select() etc timeout values. These are in nanoseconds.
1732 */
1733 unsigned long timer_slack_ns;
1734 unsigned long default_timer_slack_ns;
f8d570a4 1735
0b24becc
AR
1736#ifdef CONFIG_KASAN
1737 unsigned int kasan_depth;
1738#endif
fb52607a 1739#ifdef CONFIG_FUNCTION_GRAPH_TRACER
3ad2f3fb 1740 /* Index of current stored address in ret_stack */
f201ae23
FW
1741 int curr_ret_stack;
1742 /* Stack of return addresses for return function tracing */
1743 struct ftrace_ret_stack *ret_stack;
8aef2d28
SR
1744 /* time stamp for last schedule */
1745 unsigned long long ftrace_timestamp;
f201ae23
FW
1746 /*
1747 * Number of functions that haven't been traced
1748 * because of depth overrun.
1749 */
1750 atomic_t trace_overrun;
380c4b14
FW
1751 /* Pause for the tracing */
1752 atomic_t tracing_graph_pause;
f201ae23 1753#endif
ea4e2bc4
SR
1754#ifdef CONFIG_TRACING
1755 /* state flags for use by tracers */
1756 unsigned long trace;
b1cff0ad 1757 /* bitmask and counter of trace recursion */
261842b7
SR
1758 unsigned long trace_recursion;
1759#endif /* CONFIG_TRACING */
6f185c29 1760#ifdef CONFIG_MEMCG
519e5247 1761 struct memcg_oom_info {
49426420
JW
1762 struct mem_cgroup *memcg;
1763 gfp_t gfp_mask;
1764 int order;
519e5247
JW
1765 unsigned int may_oom:1;
1766 } memcg_oom;
569b846d 1767#endif
0326f5a9
SD
1768#ifdef CONFIG_UPROBES
1769 struct uprobe_task *utask;
0326f5a9 1770#endif
cafe5635
KO
1771#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1772 unsigned int sequential_io;
1773 unsigned int sequential_io_avg;
1774#endif
8eb23b9f
PZ
1775#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1776 unsigned long task_state_change;
1777#endif
8bcbde54 1778 int pagefault_disabled;
0c8c0f03
DH
1779/* CPU-specific state of this task */
1780 struct thread_struct thread;
1781/*
1782 * WARNING: on x86, 'thread_struct' contains a variable-sized
1783 * structure. It *MUST* be at the end of 'task_struct'.
1784 *
1785 * Do not put anything below here!
1786 */
1da177e4
LT
1787};
1788
0c8c0f03
DH
1789extern int arch_task_struct_size(void);
1790
76e6eee0 1791/* Future-safe accessor for struct task_struct's cpus_allowed. */
a4636818 1792#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
76e6eee0 1793
6688cc05
PZ
1794#define TNF_MIGRATED 0x01
1795#define TNF_NO_GROUP 0x02
dabe1d99 1796#define TNF_SHARED 0x04
04bb2f94 1797#define TNF_FAULT_LOCAL 0x08
074c2381 1798#define TNF_MIGRATE_FAIL 0x10
6688cc05 1799
cbee9f88 1800#ifdef CONFIG_NUMA_BALANCING
6688cc05 1801extern void task_numa_fault(int last_node, int node, int pages, int flags);
e29cf08b 1802extern pid_t task_numa_group_id(struct task_struct *p);
1a687c2e 1803extern void set_numabalancing_state(bool enabled);
82727018 1804extern void task_numa_free(struct task_struct *p);
10f39042
RR
1805extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1806 int src_nid, int dst_cpu);
cbee9f88 1807#else
ac8e895b 1808static inline void task_numa_fault(int last_node, int node, int pages,
6688cc05 1809 int flags)
cbee9f88
PZ
1810{
1811}
e29cf08b
MG
1812static inline pid_t task_numa_group_id(struct task_struct *p)
1813{
1814 return 0;
1815}
1a687c2e
MG
1816static inline void set_numabalancing_state(bool enabled)
1817{
1818}
82727018
RR
1819static inline void task_numa_free(struct task_struct *p)
1820{
1821}
10f39042
RR
1822static inline bool should_numa_migrate_memory(struct task_struct *p,
1823 struct page *page, int src_nid, int dst_cpu)
1824{
1825 return true;
1826}
cbee9f88
PZ
1827#endif
1828
e868171a 1829static inline struct pid *task_pid(struct task_struct *task)
22c935f4
EB
1830{
1831 return task->pids[PIDTYPE_PID].pid;
1832}
1833
e868171a 1834static inline struct pid *task_tgid(struct task_struct *task)
22c935f4
EB
1835{
1836 return task->group_leader->pids[PIDTYPE_PID].pid;
1837}
1838
6dda81f4
ON
1839/*
1840 * Without tasklist or rcu lock it is not safe to dereference
1841 * the result of task_pgrp/task_session even if task == current,
1842 * we can race with another thread doing sys_setsid/sys_setpgid.
1843 */
e868171a 1844static inline struct pid *task_pgrp(struct task_struct *task)
22c935f4
EB
1845{
1846 return task->group_leader->pids[PIDTYPE_PGID].pid;
1847}
1848
e868171a 1849static inline struct pid *task_session(struct task_struct *task)
22c935f4
EB
1850{
1851 return task->group_leader->pids[PIDTYPE_SID].pid;
1852}
1853
7af57294
PE
1854struct pid_namespace;
1855
1856/*
1857 * the helpers to get the task's different pids as they are seen
1858 * from various namespaces
1859 *
1860 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1861 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1862 * current.
7af57294
PE
1863 * task_xid_nr_ns() : id seen from the ns specified;
1864 *
1865 * set_task_vxid() : assigns a virtual id to a task;
1866 *
7af57294
PE
1867 * see also pid_nr() etc in include/linux/pid.h
1868 */
52ee2dfd
ON
1869pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1870 struct pid_namespace *ns);
7af57294 1871
e868171a 1872static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1873{
1874 return tsk->pid;
1875}
1876
52ee2dfd
ON
1877static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1878 struct pid_namespace *ns)
1879{
1880 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1881}
7af57294
PE
1882
1883static inline pid_t task_pid_vnr(struct task_struct *tsk)
1884{
52ee2dfd 1885 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1886}
1887
1888
e868171a 1889static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1890{
1891 return tsk->tgid;
1892}
1893
2f2a3a46 1894pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
7af57294
PE
1895
1896static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1897{
1898 return pid_vnr(task_tgid(tsk));
1899}
1900
1901
80e0b6e8 1902static inline int pid_alive(const struct task_struct *p);
ad36d282
RGB
1903static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1904{
1905 pid_t pid = 0;
1906
1907 rcu_read_lock();
1908 if (pid_alive(tsk))
1909 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1910 rcu_read_unlock();
1911
1912 return pid;
1913}
1914
1915static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1916{
1917 return task_ppid_nr_ns(tsk, &init_pid_ns);
1918}
1919
52ee2dfd
ON
1920static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1921 struct pid_namespace *ns)
7af57294 1922{
52ee2dfd 1923 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1924}
1925
7af57294
PE
1926static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1927{
52ee2dfd 1928 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1929}
1930
1931
52ee2dfd
ON
1932static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1933 struct pid_namespace *ns)
7af57294 1934{
52ee2dfd 1935 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1936}
1937
7af57294
PE
1938static inline pid_t task_session_vnr(struct task_struct *tsk)
1939{
52ee2dfd 1940 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1941}
1942
1b0f7ffd
ON
1943/* obsolete, do not use */
1944static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1945{
1946 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1947}
7af57294 1948
1da177e4
LT
1949/**
1950 * pid_alive - check that a task structure is not stale
1951 * @p: Task structure to be checked.
1952 *
1953 * Test if a process is not yet dead (at most zombie state)
1954 * If pid_alive fails, then pointers within the task structure
1955 * can be stale and must not be dereferenced.
e69f6186
YB
1956 *
1957 * Return: 1 if the process is alive. 0 otherwise.
1da177e4 1958 */
ad36d282 1959static inline int pid_alive(const struct task_struct *p)
1da177e4 1960{
92476d7f 1961 return p->pids[PIDTYPE_PID].pid != NULL;
1da177e4
LT
1962}
1963
f400e198 1964/**
b460cbc5 1965 * is_global_init - check if a task structure is init
3260259f
HK
1966 * @tsk: Task structure to be checked.
1967 *
1968 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1969 *
1970 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1971 */
e868171a 1972static inline int is_global_init(struct task_struct *tsk)
b461cc03
PE
1973{
1974 return tsk->pid == 1;
1975}
b460cbc5 1976
9ec52099
CLG
1977extern struct pid *cad_pid;
1978
1da177e4 1979extern void free_task(struct task_struct *tsk);
1da177e4 1980#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
e56d0903 1981
158d9ebd 1982extern void __put_task_struct(struct task_struct *t);
e56d0903
IM
1983
1984static inline void put_task_struct(struct task_struct *t)
1985{
1986 if (atomic_dec_and_test(&t->usage))
8c7904a0 1987 __put_task_struct(t);
e56d0903 1988}
1da177e4 1989
6a61671b
FW
1990#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1991extern void task_cputime(struct task_struct *t,
1992 cputime_t *utime, cputime_t *stime);
1993extern void task_cputime_scaled(struct task_struct *t,
1994 cputime_t *utimescaled, cputime_t *stimescaled);
1995extern cputime_t task_gtime(struct task_struct *t);
1996#else
6fac4829
FW
1997static inline void task_cputime(struct task_struct *t,
1998 cputime_t *utime, cputime_t *stime)
1999{
2000 if (utime)
2001 *utime = t->utime;
2002 if (stime)
2003 *stime = t->stime;
2004}
2005
2006static inline void task_cputime_scaled(struct task_struct *t,
2007 cputime_t *utimescaled,
2008 cputime_t *stimescaled)
2009{
2010 if (utimescaled)
2011 *utimescaled = t->utimescaled;
2012 if (stimescaled)
2013 *stimescaled = t->stimescaled;
2014}
6a61671b
FW
2015
2016static inline cputime_t task_gtime(struct task_struct *t)
2017{
2018 return t->gtime;
2019}
2020#endif
e80d0a1a
FW
2021extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2022extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
49048622 2023
1da177e4
LT
2024/*
2025 * Per process flags
2026 */
1da177e4 2027#define PF_EXITING 0x00000004 /* getting shut down */
778e9a9c 2028#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
94886b84 2029#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
21aa9af0 2030#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1da177e4 2031#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
4db96cf0 2032#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1da177e4
LT
2033#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2034#define PF_DUMPCORE 0x00000200 /* dumped core */
2035#define PF_SIGNALED 0x00000400 /* killed by a signal */
2036#define PF_MEMALLOC 0x00000800 /* Allocating memory */
72fa5997 2037#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1da177e4 2038#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
774a1221 2039#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1da177e4
LT
2040#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2041#define PF_FROZEN 0x00010000 /* frozen for system suspend */
2042#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2043#define PF_KSWAPD 0x00040000 /* I am kswapd */
21caf2fc 2044#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1da177e4 2045#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
246bb0b1 2046#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
b31dc66a
JA
2047#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2048#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
14a40ffc 2049#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
4db96cf0 2050#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
61a87122 2051#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
58a69cb4 2052#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2b44c4db 2053#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1da177e4
LT
2054
2055/*
2056 * Only the _current_ task can read/write to tsk->flags, but other
2057 * tasks can access tsk->flags in readonly mode for example
2058 * with tsk_used_math (like during threaded core dumping).
2059 * There is however an exception to this rule during ptrace
2060 * or during fork: the ptracer task is allowed to write to the
2061 * child->flags of its traced child (same goes for fork, the parent
2062 * can write to the child->flags), because we're guaranteed the
2063 * child is not running and in turn not changing child->flags
2064 * at the same time the parent does it.
2065 */
2066#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2067#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2068#define clear_used_math() clear_stopped_child_used_math(current)
2069#define set_used_math() set_stopped_child_used_math(current)
2070#define conditional_stopped_child_used_math(condition, child) \
2071 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2072#define conditional_used_math(condition) \
2073 conditional_stopped_child_used_math(condition, current)
2074#define copy_to_stopped_child_used_math(child) \
2075 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2076/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2077#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2078#define used_math() tsk_used_math(current)
2079
934f3072
JB
2080/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2081 * __GFP_FS is also cleared as it implies __GFP_IO.
2082 */
21caf2fc
ML
2083static inline gfp_t memalloc_noio_flags(gfp_t flags)
2084{
2085 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
934f3072 2086 flags &= ~(__GFP_IO | __GFP_FS);
21caf2fc
ML
2087 return flags;
2088}
2089
2090static inline unsigned int memalloc_noio_save(void)
2091{
2092 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2093 current->flags |= PF_MEMALLOC_NOIO;
2094 return flags;
2095}
2096
2097static inline void memalloc_noio_restore(unsigned int flags)
2098{
2099 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2100}
2101
1d4457f9 2102/* Per-process atomic flags. */
a2b86f77 2103#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2ad654bc
ZL
2104#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2105#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2106
1d4457f9 2107
e0e5070b
ZL
2108#define TASK_PFA_TEST(name, func) \
2109 static inline bool task_##func(struct task_struct *p) \
2110 { return test_bit(PFA_##name, &p->atomic_flags); }
2111#define TASK_PFA_SET(name, func) \
2112 static inline void task_set_##func(struct task_struct *p) \
2113 { set_bit(PFA_##name, &p->atomic_flags); }
2114#define TASK_PFA_CLEAR(name, func) \
2115 static inline void task_clear_##func(struct task_struct *p) \
2116 { clear_bit(PFA_##name, &p->atomic_flags); }
2117
2118TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2119TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 2120
2ad654bc
ZL
2121TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2122TASK_PFA_SET(SPREAD_PAGE, spread_page)
2123TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2124
2125TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2126TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2127TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 2128
e5c1902e 2129/*
a8f072c1 2130 * task->jobctl flags
e5c1902e 2131 */
a8f072c1 2132#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
e5c1902e 2133
a8f072c1
TH
2134#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2135#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2136#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
73ddff2b 2137#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
fb1d910c 2138#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
a8f072c1 2139#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
544b2c91 2140#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
a8f072c1 2141
b76808e6
PD
2142#define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2143#define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2144#define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2145#define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2146#define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2147#define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2148#define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
a8f072c1 2149
fb1d910c 2150#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
73ddff2b 2151#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
3759a0d9 2152
7dd3db54 2153extern bool task_set_jobctl_pending(struct task_struct *task,
b76808e6 2154 unsigned long mask);
73ddff2b 2155extern void task_clear_jobctl_trapping(struct task_struct *task);
3759a0d9 2156extern void task_clear_jobctl_pending(struct task_struct *task,
b76808e6 2157 unsigned long mask);
39efa3ef 2158
f41d911f
PM
2159static inline void rcu_copy_process(struct task_struct *p)
2160{
8315f422 2161#ifdef CONFIG_PREEMPT_RCU
f41d911f 2162 p->rcu_read_lock_nesting = 0;
1d082fd0 2163 p->rcu_read_unlock_special.s = 0;
dd5d19ba 2164 p->rcu_blocked_node = NULL;
f41d911f 2165 INIT_LIST_HEAD(&p->rcu_node_entry);
8315f422
PM
2166#endif /* #ifdef CONFIG_PREEMPT_RCU */
2167#ifdef CONFIG_TASKS_RCU
2168 p->rcu_tasks_holdout = false;
2169 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
176f8f7a 2170 p->rcu_tasks_idle_cpu = -1;
8315f422 2171#endif /* #ifdef CONFIG_TASKS_RCU */
f41d911f
PM
2172}
2173
907aed48
MG
2174static inline void tsk_restore_flags(struct task_struct *task,
2175 unsigned long orig_flags, unsigned long flags)
2176{
2177 task->flags &= ~flags;
2178 task->flags |= orig_flags & flags;
2179}
2180
f82f8042
JL
2181extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2182 const struct cpumask *trial);
7f51412a
JL
2183extern int task_can_attach(struct task_struct *p,
2184 const struct cpumask *cs_cpus_allowed);
1da177e4 2185#ifdef CONFIG_SMP
1e1b6c51
KM
2186extern void do_set_cpus_allowed(struct task_struct *p,
2187 const struct cpumask *new_mask);
2188
cd8ba7cd 2189extern int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2190 const struct cpumask *new_mask);
1da177e4 2191#else
1e1b6c51
KM
2192static inline void do_set_cpus_allowed(struct task_struct *p,
2193 const struct cpumask *new_mask)
2194{
2195}
cd8ba7cd 2196static inline int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2197 const struct cpumask *new_mask)
1da177e4 2198{
96f874e2 2199 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
2200 return -EINVAL;
2201 return 0;
2202}
2203#endif
e0ad9556 2204
3451d024 2205#ifdef CONFIG_NO_HZ_COMMON
5167e8d5
PZ
2206void calc_load_enter_idle(void);
2207void calc_load_exit_idle(void);
2208#else
2209static inline void calc_load_enter_idle(void) { }
2210static inline void calc_load_exit_idle(void) { }
3451d024 2211#endif /* CONFIG_NO_HZ_COMMON */
5167e8d5 2212
e0ad9556 2213#ifndef CONFIG_CPUMASK_OFFSTACK
cd8ba7cd
MT
2214static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
2215{
2216 return set_cpus_allowed_ptr(p, &new_mask);
2217}
e0ad9556 2218#endif
1da177e4 2219
b342501c 2220/*
c676329a
PZ
2221 * Do not use outside of architecture code which knows its limitations.
2222 *
2223 * sched_clock() has no promise of monotonicity or bounded drift between
2224 * CPUs, use (which you should not) requires disabling IRQs.
2225 *
2226 * Please use one of the three interfaces below.
b342501c 2227 */
1bbfa6f2 2228extern unsigned long long notrace sched_clock(void);
c676329a 2229/*
489a71b0 2230 * See the comment in kernel/sched/clock.c
c676329a
PZ
2231 */
2232extern u64 cpu_clock(int cpu);
2233extern u64 local_clock(void);
545a2bf7 2234extern u64 running_clock(void);
c676329a
PZ
2235extern u64 sched_clock_cpu(int cpu);
2236
e436d800 2237
c1955a3d 2238extern void sched_clock_init(void);
3e51f33f 2239
c1955a3d 2240#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3e51f33f
PZ
2241static inline void sched_clock_tick(void)
2242{
2243}
2244
2245static inline void sched_clock_idle_sleep_event(void)
2246{
2247}
2248
2249static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2250{
2251}
2252#else
c676329a
PZ
2253/*
2254 * Architectures can set this to 1 if they have specified
2255 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2256 * but then during bootup it turns out that sched_clock()
2257 * is reliable after all:
2258 */
35af99e6
PZ
2259extern int sched_clock_stable(void);
2260extern void set_sched_clock_stable(void);
2261extern void clear_sched_clock_stable(void);
c676329a 2262
3e51f33f
PZ
2263extern void sched_clock_tick(void);
2264extern void sched_clock_idle_sleep_event(void);
2265extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2266#endif
2267
b52bfee4
VP
2268#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2269/*
2270 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2271 * The reason for this explicit opt-in is not to have perf penalty with
2272 * slow sched_clocks.
2273 */
2274extern void enable_sched_clock_irqtime(void);
2275extern void disable_sched_clock_irqtime(void);
2276#else
2277static inline void enable_sched_clock_irqtime(void) {}
2278static inline void disable_sched_clock_irqtime(void) {}
2279#endif
2280
36c8b586 2281extern unsigned long long
41b86e9c 2282task_sched_runtime(struct task_struct *task);
1da177e4
LT
2283
2284/* sched_exec is called by processes performing an exec */
2285#ifdef CONFIG_SMP
2286extern void sched_exec(void);
2287#else
2288#define sched_exec() {}
2289#endif
2290
2aa44d05
IM
2291extern void sched_clock_idle_sleep_event(void);
2292extern void sched_clock_idle_wakeup_event(u64 delta_ns);
bb29ab26 2293
1da177e4
LT
2294#ifdef CONFIG_HOTPLUG_CPU
2295extern void idle_task_exit(void);
2296#else
2297static inline void idle_task_exit(void) {}
2298#endif
2299
3451d024 2300#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1c20091e 2301extern void wake_up_nohz_cpu(int cpu);
06d8308c 2302#else
1c20091e 2303static inline void wake_up_nohz_cpu(int cpu) { }
06d8308c
TG
2304#endif
2305
ce831b38
FW
2306#ifdef CONFIG_NO_HZ_FULL
2307extern bool sched_can_stop_tick(void);
265f22a9 2308extern u64 scheduler_tick_max_deferment(void);
ce831b38
FW
2309#else
2310static inline bool sched_can_stop_tick(void) { return false; }
06d8308c
TG
2311#endif
2312
5091faa4 2313#ifdef CONFIG_SCHED_AUTOGROUP
5091faa4
MG
2314extern void sched_autogroup_create_attach(struct task_struct *p);
2315extern void sched_autogroup_detach(struct task_struct *p);
2316extern void sched_autogroup_fork(struct signal_struct *sig);
2317extern void sched_autogroup_exit(struct signal_struct *sig);
2318#ifdef CONFIG_PROC_FS
2319extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2e5b5b3a 2320extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
5091faa4
MG
2321#endif
2322#else
2323static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2324static inline void sched_autogroup_detach(struct task_struct *p) { }
2325static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2326static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2327#endif
2328
fa93384f 2329extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
2330extern void set_user_nice(struct task_struct *p, long nice);
2331extern int task_prio(const struct task_struct *p);
d0ea0268
DY
2332/**
2333 * task_nice - return the nice value of a given task.
2334 * @p: the task in question.
2335 *
2336 * Return: The nice value [ -20 ... 0 ... 19 ].
2337 */
2338static inline int task_nice(const struct task_struct *p)
2339{
2340 return PRIO_TO_NICE((p)->static_prio);
2341}
36c8b586
IM
2342extern int can_nice(const struct task_struct *p, const int nice);
2343extern int task_curr(const struct task_struct *p);
1da177e4 2344extern int idle_cpu(int cpu);
fe7de49f
KM
2345extern int sched_setscheduler(struct task_struct *, int,
2346 const struct sched_param *);
961ccddd 2347extern int sched_setscheduler_nocheck(struct task_struct *, int,
fe7de49f 2348 const struct sched_param *);
d50dde5a
DF
2349extern int sched_setattr(struct task_struct *,
2350 const struct sched_attr *);
36c8b586 2351extern struct task_struct *idle_task(int cpu);
c4f30608
PM
2352/**
2353 * is_idle_task - is the specified task an idle task?
fa757281 2354 * @p: the task in question.
e69f6186
YB
2355 *
2356 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 2357 */
7061ca3b 2358static inline bool is_idle_task(const struct task_struct *p)
c4f30608
PM
2359{
2360 return p->pid == 0;
2361}
36c8b586
IM
2362extern struct task_struct *curr_task(int cpu);
2363extern void set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
2364
2365void yield(void);
2366
1da177e4
LT
2367union thread_union {
2368 struct thread_info thread_info;
2369 unsigned long stack[THREAD_SIZE/sizeof(long)];
2370};
2371
2372#ifndef __HAVE_ARCH_KSTACK_END
2373static inline int kstack_end(void *addr)
2374{
2375 /* Reliable end of stack detection:
2376 * Some APM bios versions misalign the stack
2377 */
2378 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2379}
2380#endif
2381
2382extern union thread_union init_thread_union;
2383extern struct task_struct init_task;
2384
2385extern struct mm_struct init_mm;
2386
198fe21b
PE
2387extern struct pid_namespace init_pid_ns;
2388
2389/*
2390 * find a task by one of its numerical ids
2391 *
198fe21b
PE
2392 * find_task_by_pid_ns():
2393 * finds a task by its pid in the specified namespace
228ebcbe
PE
2394 * find_task_by_vpid():
2395 * finds a task by its virtual pid
198fe21b 2396 *
e49859e7 2397 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
2398 */
2399
228ebcbe
PE
2400extern struct task_struct *find_task_by_vpid(pid_t nr);
2401extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2402 struct pid_namespace *ns);
198fe21b 2403
1da177e4 2404/* per-UID process charging. */
7b44ab97 2405extern struct user_struct * alloc_uid(kuid_t);
1da177e4
LT
2406static inline struct user_struct *get_uid(struct user_struct *u)
2407{
2408 atomic_inc(&u->__count);
2409 return u;
2410}
2411extern void free_uid(struct user_struct *);
1da177e4
LT
2412
2413#include <asm/current.h>
2414
f0af911a 2415extern void xtime_update(unsigned long ticks);
1da177e4 2416
b3c97528
HH
2417extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2418extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 2419extern void wake_up_new_task(struct task_struct *tsk);
1da177e4
LT
2420#ifdef CONFIG_SMP
2421 extern void kick_process(struct task_struct *tsk);
2422#else
2423 static inline void kick_process(struct task_struct *tsk) { }
2424#endif
aab03e05 2425extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
ad46c2c4 2426extern void sched_dead(struct task_struct *p);
1da177e4 2427
1da177e4
LT
2428extern void proc_caches_init(void);
2429extern void flush_signals(struct task_struct *);
10ab825b 2430extern void ignore_signals(struct task_struct *);
1da177e4
LT
2431extern void flush_signal_handlers(struct task_struct *, int force_default);
2432extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2433
2434static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2435{
2436 unsigned long flags;
2437 int ret;
2438
2439 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2440 ret = dequeue_signal(tsk, mask, info);
2441 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2442
2443 return ret;
53c8f9f1 2444}
1da177e4
LT
2445
2446extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2447 sigset_t *mask);
2448extern void unblock_all_signals(void);
2449extern void release_task(struct task_struct * p);
2450extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1da177e4
LT
2451extern int force_sigsegv(int, struct task_struct *);
2452extern int force_sig_info(int, struct siginfo *, struct task_struct *);
c4b92fc1 2453extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
c4b92fc1 2454extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
d178bc3a
SH
2455extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2456 const struct cred *, u32);
c4b92fc1
EB
2457extern int kill_pgrp(struct pid *pid, int sig, int priv);
2458extern int kill_pid(struct pid *pid, int sig, int priv);
c3de4b38 2459extern int kill_proc_info(int, struct siginfo *, pid_t);
86773473 2460extern __must_check bool do_notify_parent(struct task_struct *, int);
a7f0765e 2461extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
1da177e4 2462extern void force_sig(int, struct task_struct *);
1da177e4 2463extern int send_sig(int, struct task_struct *, int);
09faef11 2464extern int zap_other_threads(struct task_struct *p);
1da177e4
LT
2465extern struct sigqueue *sigqueue_alloc(void);
2466extern void sigqueue_free(struct sigqueue *);
ac5c2153 2467extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
9ac95f2f 2468extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1da177e4 2469
51a7b448
AV
2470static inline void restore_saved_sigmask(void)
2471{
2472 if (test_and_clear_restore_sigmask())
77097ae5 2473 __set_current_blocked(&current->saved_sigmask);
51a7b448
AV
2474}
2475
b7f9a11a
AV
2476static inline sigset_t *sigmask_to_save(void)
2477{
2478 sigset_t *res = &current->blocked;
2479 if (unlikely(test_restore_sigmask()))
2480 res = &current->saved_sigmask;
2481 return res;
2482}
2483
9ec52099
CLG
2484static inline int kill_cad_pid(int sig, int priv)
2485{
2486 return kill_pid(cad_pid, sig, priv);
2487}
2488
1da177e4
LT
2489/* These can be the second arg to send_sig_info/send_group_sig_info. */
2490#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2491#define SEND_SIG_PRIV ((struct siginfo *) 1)
2492#define SEND_SIG_FORCED ((struct siginfo *) 2)
2493
2a855dd0
SAS
2494/*
2495 * True if we are on the alternate signal stack.
2496 */
1da177e4
LT
2497static inline int on_sig_stack(unsigned long sp)
2498{
2a855dd0
SAS
2499#ifdef CONFIG_STACK_GROWSUP
2500 return sp >= current->sas_ss_sp &&
2501 sp - current->sas_ss_sp < current->sas_ss_size;
2502#else
2503 return sp > current->sas_ss_sp &&
2504 sp - current->sas_ss_sp <= current->sas_ss_size;
2505#endif
1da177e4
LT
2506}
2507
2508static inline int sas_ss_flags(unsigned long sp)
2509{
72f15c03
RW
2510 if (!current->sas_ss_size)
2511 return SS_DISABLE;
2512
2513 return on_sig_stack(sp) ? SS_ONSTACK : 0;
1da177e4
LT
2514}
2515
5a1b98d3
AV
2516static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2517{
2518 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2519#ifdef CONFIG_STACK_GROWSUP
2520 return current->sas_ss_sp;
2521#else
2522 return current->sas_ss_sp + current->sas_ss_size;
2523#endif
2524 return sp;
2525}
2526
1da177e4
LT
2527/*
2528 * Routines for handling mm_structs
2529 */
2530extern struct mm_struct * mm_alloc(void);
2531
2532/* mmdrop drops the mm and the page tables */
b3c97528 2533extern void __mmdrop(struct mm_struct *);
1da177e4
LT
2534static inline void mmdrop(struct mm_struct * mm)
2535{
6fb43d7b 2536 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1da177e4
LT
2537 __mmdrop(mm);
2538}
2539
2540/* mmput gets rid of the mappings and all user-space */
2541extern void mmput(struct mm_struct *);
2542/* Grab a reference to a task's mm, if it is not already going away */
2543extern struct mm_struct *get_task_mm(struct task_struct *task);
8cdb878d
CY
2544/*
2545 * Grab a reference to a task's mm, if it is not already going away
2546 * and ptrace_may_access with the mode parameter passed to it
2547 * succeeds.
2548 */
2549extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
1da177e4
LT
2550/* Remove the current tasks stale references to the old mm_struct */
2551extern void mm_release(struct task_struct *, struct mm_struct *);
2552
3033f14a
JT
2553#ifdef CONFIG_HAVE_COPY_THREAD_TLS
2554extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2555 struct task_struct *, unsigned long);
2556#else
6f2c55b8 2557extern int copy_thread(unsigned long, unsigned long, unsigned long,
afa86fc4 2558 struct task_struct *);
3033f14a
JT
2559
2560/* Architectures that haven't opted into copy_thread_tls get the tls argument
2561 * via pt_regs, so ignore the tls argument passed via C. */
2562static inline int copy_thread_tls(
2563 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2564 struct task_struct *p, unsigned long tls)
2565{
2566 return copy_thread(clone_flags, sp, arg, p);
2567}
2568#endif
1da177e4
LT
2569extern void flush_thread(void);
2570extern void exit_thread(void);
2571
1da177e4 2572extern void exit_files(struct task_struct *);
a7e5328a 2573extern void __cleanup_sighand(struct sighand_struct *);
cbaffba1 2574
1da177e4 2575extern void exit_itimers(struct signal_struct *);
cbaffba1 2576extern void flush_itimer_signals(void);
1da177e4 2577
9402c95f 2578extern void do_group_exit(int);
1da177e4 2579
c4ad8f98 2580extern int do_execve(struct filename *,
d7627467 2581 const char __user * const __user *,
da3d4c5f 2582 const char __user * const __user *);
51f39a1f
DD
2583extern int do_execveat(int, struct filename *,
2584 const char __user * const __user *,
2585 const char __user * const __user *,
2586 int);
3033f14a 2587extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
e80d6661 2588extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
36c8b586 2589struct task_struct *fork_idle(int);
2aa3a7f8 2590extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
1da177e4 2591
82b89778
AH
2592extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2593static inline void set_task_comm(struct task_struct *tsk, const char *from)
2594{
2595 __set_task_comm(tsk, from, false);
2596}
59714d65 2597extern char *get_task_comm(char *to, struct task_struct *tsk);
1da177e4
LT
2598
2599#ifdef CONFIG_SMP
317f3941 2600void scheduler_ipi(void);
85ba2d86 2601extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 2602#else
184748cc 2603static inline void scheduler_ipi(void) { }
85ba2d86
RM
2604static inline unsigned long wait_task_inactive(struct task_struct *p,
2605 long match_state)
2606{
2607 return 1;
2608}
1da177e4
LT
2609#endif
2610
fafe870f
FW
2611#define tasklist_empty() \
2612 list_empty(&init_task.tasks)
2613
05725f7e
JP
2614#define next_task(p) \
2615 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
1da177e4
LT
2616
2617#define for_each_process(p) \
2618 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2619
5bb459bb 2620extern bool current_is_single_threaded(void);
d84f4f99 2621
1da177e4
LT
2622/*
2623 * Careful: do_each_thread/while_each_thread is a double loop so
2624 * 'break' will not work as expected - use goto instead.
2625 */
2626#define do_each_thread(g, t) \
2627 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2628
2629#define while_each_thread(g, t) \
2630 while ((t = next_thread(t)) != g)
2631
0c740d0a
ON
2632#define __for_each_thread(signal, t) \
2633 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2634
2635#define for_each_thread(p, t) \
2636 __for_each_thread((p)->signal, t)
2637
2638/* Careful: this is a double loop, 'break' won't work as expected. */
2639#define for_each_process_thread(p, t) \
2640 for_each_process(p) for_each_thread(p, t)
2641
7e49827c
ON
2642static inline int get_nr_threads(struct task_struct *tsk)
2643{
b3ac022c 2644 return tsk->signal->nr_threads;
7e49827c
ON
2645}
2646
087806b1
ON
2647static inline bool thread_group_leader(struct task_struct *p)
2648{
2649 return p->exit_signal >= 0;
2650}
1da177e4 2651
0804ef4b
EB
2652/* Do to the insanities of de_thread it is possible for a process
2653 * to have the pid of the thread group leader without actually being
2654 * the thread group leader. For iteration through the pids in proc
2655 * all we care about is that we have a task with the appropriate
2656 * pid, we don't actually care if we have the right task.
2657 */
e1403b8e 2658static inline bool has_group_leader_pid(struct task_struct *p)
0804ef4b 2659{
e1403b8e 2660 return task_pid(p) == p->signal->leader_pid;
0804ef4b
EB
2661}
2662
bac0abd6 2663static inline
e1403b8e 2664bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
bac0abd6 2665{
e1403b8e 2666 return p1->signal == p2->signal;
bac0abd6
PE
2667}
2668
36c8b586 2669static inline struct task_struct *next_thread(const struct task_struct *p)
47e65328 2670{
05725f7e
JP
2671 return list_entry_rcu(p->thread_group.next,
2672 struct task_struct, thread_group);
47e65328
ON
2673}
2674
e868171a 2675static inline int thread_group_empty(struct task_struct *p)
1da177e4 2676{
47e65328 2677 return list_empty(&p->thread_group);
1da177e4
LT
2678}
2679
2680#define delay_group_leader(p) \
2681 (thread_group_leader(p) && !thread_group_empty(p))
2682
1da177e4 2683/*
260ea101 2684 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
22e2c507 2685 * subscriptions and synchronises with wait4(). Also used in procfs. Also
ddbcc7e8 2686 * pins the final release of task.io_context. Also protects ->cpuset and
d68b46fe 2687 * ->cgroup.subsys[]. And ->vfork_done.
1da177e4
LT
2688 *
2689 * Nests both inside and outside of read_lock(&tasklist_lock).
2690 * It must not be nested with write_lock_irq(&tasklist_lock),
2691 * neither inside nor outside.
2692 */
2693static inline void task_lock(struct task_struct *p)
2694{
2695 spin_lock(&p->alloc_lock);
2696}
2697
2698static inline void task_unlock(struct task_struct *p)
2699{
2700 spin_unlock(&p->alloc_lock);
2701}
2702
b8ed374e 2703extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
f63ee72e
ON
2704 unsigned long *flags);
2705
9388dc30
AV
2706static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2707 unsigned long *flags)
2708{
2709 struct sighand_struct *ret;
2710
2711 ret = __lock_task_sighand(tsk, flags);
2712 (void)__cond_lock(&tsk->sighand->siglock, ret);
2713 return ret;
2714}
b8ed374e 2715
f63ee72e
ON
2716static inline void unlock_task_sighand(struct task_struct *tsk,
2717 unsigned long *flags)
2718{
2719 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2720}
2721
77e4ef99 2722/**
7d7efec3
TH
2723 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
2724 * @tsk: task causing the changes
77e4ef99 2725 *
7d7efec3
TH
2726 * All operations which modify a threadgroup - a new thread joining the
2727 * group, death of a member thread (the assertion of PF_EXITING) and
2728 * exec(2) dethreading the process and replacing the leader - are wrapped
2729 * by threadgroup_change_{begin|end}(). This is to provide a place which
2730 * subsystems needing threadgroup stability can hook into for
2731 * synchronization.
77e4ef99 2732 */
7d7efec3 2733static inline void threadgroup_change_begin(struct task_struct *tsk)
4714d1d3 2734{
7d7efec3
TH
2735 might_sleep();
2736 cgroup_threadgroup_change_begin(tsk);
4714d1d3 2737}
77e4ef99
TH
2738
2739/**
7d7efec3
TH
2740 * threadgroup_change_end - mark the end of changes to a threadgroup
2741 * @tsk: task causing the changes
77e4ef99 2742 *
7d7efec3 2743 * See threadgroup_change_begin().
77e4ef99 2744 */
7d7efec3 2745static inline void threadgroup_change_end(struct task_struct *tsk)
4714d1d3 2746{
7d7efec3 2747 cgroup_threadgroup_change_end(tsk);
4714d1d3 2748}
4714d1d3 2749
f037360f
AV
2750#ifndef __HAVE_THREAD_FUNCTIONS
2751
f7e4217b
RZ
2752#define task_thread_info(task) ((struct thread_info *)(task)->stack)
2753#define task_stack_page(task) ((task)->stack)
a1261f54 2754
10ebffde
AV
2755static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2756{
2757 *task_thread_info(p) = *task_thread_info(org);
2758 task_thread_info(p)->task = p;
2759}
2760
6a40281a
CE
2761/*
2762 * Return the address of the last usable long on the stack.
2763 *
2764 * When the stack grows down, this is just above the thread
2765 * info struct. Going any lower will corrupt the threadinfo.
2766 *
2767 * When the stack grows up, this is the highest address.
2768 * Beyond that position, we corrupt data on the next page.
2769 */
10ebffde
AV
2770static inline unsigned long *end_of_stack(struct task_struct *p)
2771{
6a40281a
CE
2772#ifdef CONFIG_STACK_GROWSUP
2773 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2774#else
f7e4217b 2775 return (unsigned long *)(task_thread_info(p) + 1);
6a40281a 2776#endif
10ebffde
AV
2777}
2778
f037360f 2779#endif
a70857e4
AT
2780#define task_stack_end_corrupted(task) \
2781 (*(end_of_stack(task)) != STACK_END_MAGIC)
f037360f 2782
8b05c7e6
FT
2783static inline int object_is_on_stack(void *obj)
2784{
2785 void *stack = task_stack_page(current);
2786
2787 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2788}
2789
8c9843e5
BH
2790extern void thread_info_cache_init(void);
2791
7c9f8861
ES
2792#ifdef CONFIG_DEBUG_STACK_USAGE
2793static inline unsigned long stack_not_used(struct task_struct *p)
2794{
2795 unsigned long *n = end_of_stack(p);
2796
2797 do { /* Skip over canary */
2798 n++;
2799 } while (!*n);
2800
2801 return (unsigned long)n - (unsigned long)end_of_stack(p);
2802}
2803#endif
d4311ff1 2804extern void set_task_stack_end_magic(struct task_struct *tsk);
7c9f8861 2805
1da177e4
LT
2806/* set thread flags in other task's structures
2807 * - see asm/thread_info.h for TIF_xxxx flags available
2808 */
2809static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2810{
a1261f54 2811 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2812}
2813
2814static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2815{
a1261f54 2816 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2817}
2818
2819static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2820{
a1261f54 2821 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2822}
2823
2824static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2825{
a1261f54 2826 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2827}
2828
2829static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2830{
a1261f54 2831 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2832}
2833
2834static inline void set_tsk_need_resched(struct task_struct *tsk)
2835{
2836 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2837}
2838
2839static inline void clear_tsk_need_resched(struct task_struct *tsk)
2840{
2841 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2842}
2843
8ae121ac
GH
2844static inline int test_tsk_need_resched(struct task_struct *tsk)
2845{
2846 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2847}
2848
690cc3ff
EB
2849static inline int restart_syscall(void)
2850{
2851 set_tsk_thread_flag(current, TIF_SIGPENDING);
2852 return -ERESTARTNOINTR;
2853}
2854
1da177e4
LT
2855static inline int signal_pending(struct task_struct *p)
2856{
2857 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2858}
f776d12d 2859
d9588725
RM
2860static inline int __fatal_signal_pending(struct task_struct *p)
2861{
2862 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2863}
f776d12d
MW
2864
2865static inline int fatal_signal_pending(struct task_struct *p)
2866{
2867 return signal_pending(p) && __fatal_signal_pending(p);
2868}
2869
16882c1e
ON
2870static inline int signal_pending_state(long state, struct task_struct *p)
2871{
2872 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2873 return 0;
2874 if (!signal_pending(p))
2875 return 0;
2876
16882c1e
ON
2877 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2878}
2879
1da177e4
LT
2880/*
2881 * cond_resched() and cond_resched_lock(): latency reduction via
2882 * explicit rescheduling in places that are safe. The return
2883 * value indicates whether a reschedule was done in fact.
2884 * cond_resched_lock() will drop the spinlock before scheduling,
2885 * cond_resched_softirq() will enable bhs before scheduling.
2886 */
c3921ab7 2887extern int _cond_resched(void);
6f80bd98 2888
613afbf8 2889#define cond_resched() ({ \
3427445a 2890 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
2891 _cond_resched(); \
2892})
6f80bd98 2893
613afbf8
FW
2894extern int __cond_resched_lock(spinlock_t *lock);
2895
bdd4e85d 2896#ifdef CONFIG_PREEMPT_COUNT
716a4234 2897#define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
02b67cc3 2898#else
716a4234 2899#define PREEMPT_LOCK_OFFSET 0
02b67cc3 2900#endif
716a4234 2901
613afbf8 2902#define cond_resched_lock(lock) ({ \
3427445a 2903 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
2904 __cond_resched_lock(lock); \
2905})
2906
2907extern int __cond_resched_softirq(void);
2908
75e1056f 2909#define cond_resched_softirq() ({ \
3427445a 2910 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
75e1056f 2911 __cond_resched_softirq(); \
613afbf8 2912})
1da177e4 2913
f6f3c437
SH
2914static inline void cond_resched_rcu(void)
2915{
2916#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2917 rcu_read_unlock();
2918 cond_resched();
2919 rcu_read_lock();
2920#endif
2921}
2922
1da177e4
LT
2923/*
2924 * Does a critical section need to be broken due to another
95c354fe
NP
2925 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2926 * but a general need for low latency)
1da177e4 2927 */
95c354fe 2928static inline int spin_needbreak(spinlock_t *lock)
1da177e4 2929{
95c354fe
NP
2930#ifdef CONFIG_PREEMPT
2931 return spin_is_contended(lock);
2932#else
1da177e4 2933 return 0;
95c354fe 2934#endif
1da177e4
LT
2935}
2936
ee761f62
TG
2937/*
2938 * Idle thread specific functions to determine the need_resched
69dd0f84 2939 * polling state.
ee761f62 2940 */
69dd0f84 2941#ifdef TIF_POLLING_NRFLAG
ee761f62
TG
2942static inline int tsk_is_polling(struct task_struct *p)
2943{
2944 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2945}
ea811747
PZ
2946
2947static inline void __current_set_polling(void)
3a98f871
TG
2948{
2949 set_thread_flag(TIF_POLLING_NRFLAG);
2950}
2951
ea811747
PZ
2952static inline bool __must_check current_set_polling_and_test(void)
2953{
2954 __current_set_polling();
2955
2956 /*
2957 * Polling state must be visible before we test NEED_RESCHED,
8875125e 2958 * paired by resched_curr()
ea811747 2959 */
4e857c58 2960 smp_mb__after_atomic();
ea811747
PZ
2961
2962 return unlikely(tif_need_resched());
2963}
2964
2965static inline void __current_clr_polling(void)
3a98f871
TG
2966{
2967 clear_thread_flag(TIF_POLLING_NRFLAG);
2968}
ea811747
PZ
2969
2970static inline bool __must_check current_clr_polling_and_test(void)
2971{
2972 __current_clr_polling();
2973
2974 /*
2975 * Polling state must be visible before we test NEED_RESCHED,
8875125e 2976 * paired by resched_curr()
ea811747 2977 */
4e857c58 2978 smp_mb__after_atomic();
ea811747
PZ
2979
2980 return unlikely(tif_need_resched());
2981}
2982
ee761f62
TG
2983#else
2984static inline int tsk_is_polling(struct task_struct *p) { return 0; }
ea811747
PZ
2985static inline void __current_set_polling(void) { }
2986static inline void __current_clr_polling(void) { }
2987
2988static inline bool __must_check current_set_polling_and_test(void)
2989{
2990 return unlikely(tif_need_resched());
2991}
2992static inline bool __must_check current_clr_polling_and_test(void)
2993{
2994 return unlikely(tif_need_resched());
2995}
ee761f62
TG
2996#endif
2997
8cb75e0c
PZ
2998static inline void current_clr_polling(void)
2999{
3000 __current_clr_polling();
3001
3002 /*
3003 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3004 * Once the bit is cleared, we'll get IPIs with every new
3005 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3006 * fold.
3007 */
8875125e 3008 smp_mb(); /* paired with resched_curr() */
8cb75e0c
PZ
3009
3010 preempt_fold_need_resched();
3011}
3012
75f93fed
PZ
3013static __always_inline bool need_resched(void)
3014{
3015 return unlikely(tif_need_resched());
3016}
3017
f06febc9
FM
3018/*
3019 * Thread group CPU time accounting.
3020 */
4cd4c1b4 3021void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
4da94d49 3022void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
f06febc9 3023
7bb44ade
RM
3024/*
3025 * Reevaluate whether the task has signals pending delivery.
3026 * Wake the task if so.
3027 * This is required every time the blocked sigset_t changes.
3028 * callers must hold sighand->siglock.
3029 */
3030extern void recalc_sigpending_and_wake(struct task_struct *t);
1da177e4
LT
3031extern void recalc_sigpending(void);
3032
910ffdb1
ON
3033extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3034
3035static inline void signal_wake_up(struct task_struct *t, bool resume)
3036{
3037 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3038}
3039static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3040{
3041 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3042}
1da177e4
LT
3043
3044/*
3045 * Wrappers for p->thread_info->cpu access. No-op on UP.
3046 */
3047#ifdef CONFIG_SMP
3048
3049static inline unsigned int task_cpu(const struct task_struct *p)
3050{
a1261f54 3051 return task_thread_info(p)->cpu;
1da177e4
LT
3052}
3053
b32e86b4
IM
3054static inline int task_node(const struct task_struct *p)
3055{
3056 return cpu_to_node(task_cpu(p));
3057}
3058
c65cc870 3059extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
3060
3061#else
3062
3063static inline unsigned int task_cpu(const struct task_struct *p)
3064{
3065 return 0;
3066}
3067
3068static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3069{
3070}
3071
3072#endif /* CONFIG_SMP */
3073
96f874e2
RR
3074extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3075extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 3076
7c941438 3077#ifdef CONFIG_CGROUP_SCHED
07e06b01 3078extern struct task_group root_task_group;
8323f26c 3079#endif /* CONFIG_CGROUP_SCHED */
9b5b7751 3080
54e99124
DG
3081extern int task_can_switch_user(struct user_struct *up,
3082 struct task_struct *tsk);
3083
4b98d11b
AD
3084#ifdef CONFIG_TASK_XACCT
3085static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3086{
940389b8 3087 tsk->ioac.rchar += amt;
4b98d11b
AD
3088}
3089
3090static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3091{
940389b8 3092 tsk->ioac.wchar += amt;
4b98d11b
AD
3093}
3094
3095static inline void inc_syscr(struct task_struct *tsk)
3096{
940389b8 3097 tsk->ioac.syscr++;
4b98d11b
AD
3098}
3099
3100static inline void inc_syscw(struct task_struct *tsk)
3101{
940389b8 3102 tsk->ioac.syscw++;
4b98d11b
AD
3103}
3104#else
3105static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3106{
3107}
3108
3109static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3110{
3111}
3112
3113static inline void inc_syscr(struct task_struct *tsk)
3114{
3115}
3116
3117static inline void inc_syscw(struct task_struct *tsk)
3118{
3119}
3120#endif
3121
82455257
DH
3122#ifndef TASK_SIZE_OF
3123#define TASK_SIZE_OF(tsk) TASK_SIZE
3124#endif
3125
f98bafa0 3126#ifdef CONFIG_MEMCG
cf475ad2 3127extern void mm_update_next_owner(struct mm_struct *mm);
cf475ad2
BS
3128#else
3129static inline void mm_update_next_owner(struct mm_struct *mm)
3130{
3131}
f98bafa0 3132#endif /* CONFIG_MEMCG */
cf475ad2 3133
3e10e716
JS
3134static inline unsigned long task_rlimit(const struct task_struct *tsk,
3135 unsigned int limit)
3136{
316c1608 3137 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3e10e716
JS
3138}
3139
3140static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3141 unsigned int limit)
3142{
316c1608 3143 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3e10e716
JS
3144}
3145
3146static inline unsigned long rlimit(unsigned int limit)
3147{
3148 return task_rlimit(current, limit);
3149}
3150
3151static inline unsigned long rlimit_max(unsigned int limit)
3152{
3153 return task_rlimit_max(current, limit);
3154}
3155
1da177e4 3156#endif