]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - include/linux/sched.h
mm, oom: task_will_free_mem should skip oom_reaped tasks
[mirror_ubuntu-artful-kernel.git] / include / linux / sched.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
607ca46e 4#include <uapi/linux/sched.h>
b7b3c76a 5
5c228079
DY
6#include <linux/sched/prio.h>
7
b7b3c76a
DW
8
9struct sched_param {
10 int sched_priority;
11};
12
1da177e4
LT
13#include <asm/param.h> /* for HZ */
14
1da177e4
LT
15#include <linux/capability.h>
16#include <linux/threads.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/timex.h>
20#include <linux/jiffies.h>
fb00aca4 21#include <linux/plist.h>
1da177e4
LT
22#include <linux/rbtree.h>
23#include <linux/thread_info.h>
24#include <linux/cpumask.h>
25#include <linux/errno.h>
26#include <linux/nodemask.h>
c92ff1bd 27#include <linux/mm_types.h>
92cf2118 28#include <linux/preempt.h>
1da177e4 29
1da177e4
LT
30#include <asm/page.h>
31#include <asm/ptrace.h>
bfc3f028 32#include <linux/cputime.h>
1da177e4
LT
33
34#include <linux/smp.h>
35#include <linux/sem.h>
ab602f79 36#include <linux/shm.h>
1da177e4 37#include <linux/signal.h>
1da177e4
LT
38#include <linux/compiler.h>
39#include <linux/completion.h>
40#include <linux/pid.h>
41#include <linux/percpu.h>
42#include <linux/topology.h>
43#include <linux/seccomp.h>
e56d0903 44#include <linux/rcupdate.h>
05725f7e 45#include <linux/rculist.h>
23f78d4a 46#include <linux/rtmutex.h>
1da177e4 47
a3b6714e
DW
48#include <linux/time.h>
49#include <linux/param.h>
50#include <linux/resource.h>
51#include <linux/timer.h>
52#include <linux/hrtimer.h>
5c9a8750 53#include <linux/kcov.h>
7c3ab738 54#include <linux/task_io_accounting.h>
9745512c 55#include <linux/latencytop.h>
9e2b2dc4 56#include <linux/cred.h>
fa14ff4a 57#include <linux/llist.h>
7b44ab97 58#include <linux/uidgid.h>
21caf2fc 59#include <linux/gfp.h>
d4311ff1 60#include <linux/magic.h>
7d7efec3 61#include <linux/cgroup-defs.h>
a3b6714e
DW
62
63#include <asm/processor.h>
36d57ac4 64
d50dde5a
DF
65#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
66
67/*
68 * Extended scheduling parameters data structure.
69 *
70 * This is needed because the original struct sched_param can not be
71 * altered without introducing ABI issues with legacy applications
72 * (e.g., in sched_getparam()).
73 *
74 * However, the possibility of specifying more than just a priority for
75 * the tasks may be useful for a wide variety of application fields, e.g.,
76 * multimedia, streaming, automation and control, and many others.
77 *
78 * This variant (sched_attr) is meant at describing a so-called
79 * sporadic time-constrained task. In such model a task is specified by:
80 * - the activation period or minimum instance inter-arrival time;
81 * - the maximum (or average, depending on the actual scheduling
82 * discipline) computation time of all instances, a.k.a. runtime;
83 * - the deadline (relative to the actual activation time) of each
84 * instance.
85 * Very briefly, a periodic (sporadic) task asks for the execution of
86 * some specific computation --which is typically called an instance--
87 * (at most) every period. Moreover, each instance typically lasts no more
88 * than the runtime and must be completed by time instant t equal to
89 * the instance activation time + the deadline.
90 *
91 * This is reflected by the actual fields of the sched_attr structure:
92 *
93 * @size size of the structure, for fwd/bwd compat.
94 *
95 * @sched_policy task's scheduling policy
96 * @sched_flags for customizing the scheduler behaviour
97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
98 * @sched_priority task's static priority (SCHED_FIFO/RR)
99 * @sched_deadline representative of the task's deadline
100 * @sched_runtime representative of the task's runtime
101 * @sched_period representative of the task's period
102 *
103 * Given this task model, there are a multiplicity of scheduling algorithms
104 * and policies, that can be used to ensure all the tasks will make their
105 * timing constraints.
aab03e05
DF
106 *
107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108 * only user of this new interface. More information about the algorithm
109 * available in the scheduling class file or in Documentation/.
d50dde5a
DF
110 */
111struct sched_attr {
112 u32 size;
113
114 u32 sched_policy;
115 u64 sched_flags;
116
117 /* SCHED_NORMAL, SCHED_BATCH */
118 s32 sched_nice;
119
120 /* SCHED_FIFO, SCHED_RR */
121 u32 sched_priority;
122
123 /* SCHED_DEADLINE */
124 u64 sched_runtime;
125 u64 sched_deadline;
126 u64 sched_period;
127};
128
c87e2837 129struct futex_pi_state;
286100a6 130struct robust_list_head;
bddd87c7 131struct bio_list;
5ad4e53b 132struct fs_struct;
cdd6c482 133struct perf_event_context;
73c10101 134struct blk_plug;
c4ad8f98 135struct filename;
89076bc3 136struct nameidata;
1da177e4 137
615d6e87
DB
138#define VMACACHE_BITS 2
139#define VMACACHE_SIZE (1U << VMACACHE_BITS)
140#define VMACACHE_MASK (VMACACHE_SIZE - 1)
141
1da177e4
LT
142/*
143 * These are the constant used to fake the fixed-point load-average
144 * counting. Some notes:
145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
146 * a load-average precision of 10 bits integer + 11 bits fractional
147 * - if you want to count load-averages more often, you need more
148 * precision, or rounding will get you. With 2-second counting freq,
149 * the EXP_n values would be 1981, 2034 and 2043 if still using only
150 * 11 bit fractions.
151 */
152extern unsigned long avenrun[]; /* Load averages */
2d02494f 153extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
1da177e4
LT
154
155#define FSHIFT 11 /* nr of bits of precision */
156#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
0c2043ab 157#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
1da177e4
LT
158#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
159#define EXP_5 2014 /* 1/exp(5sec/5min) */
160#define EXP_15 2037 /* 1/exp(5sec/15min) */
161
162#define CALC_LOAD(load,exp,n) \
163 load *= exp; \
164 load += n*(FIXED_1-exp); \
165 load >>= FSHIFT;
166
167extern unsigned long total_forks;
168extern int nr_threads;
1da177e4
LT
169DECLARE_PER_CPU(unsigned long, process_counts);
170extern int nr_processes(void);
171extern unsigned long nr_running(void);
2ee507c4 172extern bool single_task_running(void);
1da177e4 173extern unsigned long nr_iowait(void);
8c215bd3 174extern unsigned long nr_iowait_cpu(int cpu);
372ba8cb 175extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
69d25870 176
0f004f5a 177extern void calc_global_load(unsigned long ticks);
3289bdb4
PZ
178
179#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
1f41906a
FW
180extern void cpu_load_update_nohz_start(void);
181extern void cpu_load_update_nohz_stop(void);
3289bdb4 182#else
1f41906a
FW
183static inline void cpu_load_update_nohz_start(void) { }
184static inline void cpu_load_update_nohz_stop(void) { }
3289bdb4 185#endif
1da177e4 186
b637a328
PM
187extern void dump_cpu_task(int cpu);
188
43ae34cb
IM
189struct seq_file;
190struct cfs_rq;
4cf86d77 191struct task_group;
43ae34cb
IM
192#ifdef CONFIG_SCHED_DEBUG
193extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
194extern void proc_sched_set_task(struct task_struct *p);
43ae34cb 195#endif
1da177e4 196
4a8342d2
LT
197/*
198 * Task state bitmask. NOTE! These bits are also
199 * encoded in fs/proc/array.c: get_task_state().
200 *
201 * We have two separate sets of flags: task->state
202 * is about runnability, while task->exit_state are
203 * about the task exiting. Confusing, but this way
204 * modifying one set can't modify the other one by
205 * mistake.
206 */
1da177e4
LT
207#define TASK_RUNNING 0
208#define TASK_INTERRUPTIBLE 1
209#define TASK_UNINTERRUPTIBLE 2
f021a3c2
MW
210#define __TASK_STOPPED 4
211#define __TASK_TRACED 8
4a8342d2 212/* in tsk->exit_state */
ad86622b
ON
213#define EXIT_DEAD 16
214#define EXIT_ZOMBIE 32
abd50b39 215#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
4a8342d2 216/* in tsk->state again */
af927232 217#define TASK_DEAD 64
f021a3c2 218#define TASK_WAKEKILL 128
e9c84311 219#define TASK_WAKING 256
f2530dc7 220#define TASK_PARKED 512
80ed87c8 221#define TASK_NOLOAD 1024
7dc603c9
PZ
222#define TASK_NEW 2048
223#define TASK_STATE_MAX 4096
f021a3c2 224
7dc603c9 225#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn"
73342151 226
e1781538
PZ
227extern char ___assert_task_state[1 - 2*!!(
228 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
f021a3c2
MW
229
230/* Convenience macros for the sake of set_task_state */
231#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
232#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
233#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
1da177e4 234
80ed87c8
PZ
235#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
236
92a1f4bc
MW
237/* Convenience macros for the sake of wake_up */
238#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
f021a3c2 239#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
92a1f4bc
MW
240
241/* get_task_state() */
242#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
f021a3c2 243 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
74e37200 244 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
92a1f4bc 245
f021a3c2
MW
246#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
247#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
92a1f4bc 248#define task_is_stopped_or_traced(task) \
f021a3c2 249 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
92a1f4bc 250#define task_contributes_to_load(task) \
e3c8ca83 251 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
80ed87c8
PZ
252 (task->flags & PF_FROZEN) == 0 && \
253 (task->state & TASK_NOLOAD) == 0)
1da177e4 254
8eb23b9f
PZ
255#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
256
257#define __set_task_state(tsk, state_value) \
258 do { \
259 (tsk)->task_state_change = _THIS_IP_; \
260 (tsk)->state = (state_value); \
261 } while (0)
262#define set_task_state(tsk, state_value) \
263 do { \
264 (tsk)->task_state_change = _THIS_IP_; \
b92b8b35 265 smp_store_mb((tsk)->state, (state_value)); \
8eb23b9f
PZ
266 } while (0)
267
268/*
269 * set_current_state() includes a barrier so that the write of current->state
270 * is correctly serialised wrt the caller's subsequent test of whether to
271 * actually sleep:
272 *
273 * set_current_state(TASK_UNINTERRUPTIBLE);
274 * if (do_i_need_to_sleep())
275 * schedule();
276 *
277 * If the caller does not need such serialisation then use __set_current_state()
278 */
279#define __set_current_state(state_value) \
280 do { \
281 current->task_state_change = _THIS_IP_; \
282 current->state = (state_value); \
283 } while (0)
284#define set_current_state(state_value) \
285 do { \
286 current->task_state_change = _THIS_IP_; \
b92b8b35 287 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
288 } while (0)
289
290#else
291
1da177e4
LT
292#define __set_task_state(tsk, state_value) \
293 do { (tsk)->state = (state_value); } while (0)
294#define set_task_state(tsk, state_value) \
b92b8b35 295 smp_store_mb((tsk)->state, (state_value))
1da177e4 296
498d0c57
AM
297/*
298 * set_current_state() includes a barrier so that the write of current->state
299 * is correctly serialised wrt the caller's subsequent test of whether to
300 * actually sleep:
301 *
302 * set_current_state(TASK_UNINTERRUPTIBLE);
303 * if (do_i_need_to_sleep())
304 * schedule();
305 *
306 * If the caller does not need such serialisation then use __set_current_state()
307 */
8eb23b9f 308#define __set_current_state(state_value) \
1da177e4 309 do { current->state = (state_value); } while (0)
8eb23b9f 310#define set_current_state(state_value) \
b92b8b35 311 smp_store_mb(current->state, (state_value))
1da177e4 312
8eb23b9f
PZ
313#endif
314
1da177e4
LT
315/* Task command name length */
316#define TASK_COMM_LEN 16
317
1da177e4
LT
318#include <linux/spinlock.h>
319
320/*
321 * This serializes "schedule()" and also protects
322 * the run-queue from deletions/modifications (but
323 * _adding_ to the beginning of the run-queue has
324 * a separate lock).
325 */
326extern rwlock_t tasklist_lock;
327extern spinlock_t mmlist_lock;
328
36c8b586 329struct task_struct;
1da177e4 330
db1466b3
PM
331#ifdef CONFIG_PROVE_RCU
332extern int lockdep_tasklist_lock_is_held(void);
333#endif /* #ifdef CONFIG_PROVE_RCU */
334
1da177e4
LT
335extern void sched_init(void);
336extern void sched_init_smp(void);
2d07b255 337extern asmlinkage void schedule_tail(struct task_struct *prev);
36c8b586 338extern void init_idle(struct task_struct *idle, int cpu);
1df21055 339extern void init_idle_bootup_task(struct task_struct *idle);
1da177e4 340
3fa0818b
RR
341extern cpumask_var_t cpu_isolated_map;
342
89f19f04 343extern int runqueue_is_locked(int cpu);
017730c1 344
3451d024 345#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
c1cc017c 346extern void nohz_balance_enter_idle(int cpu);
69e1e811 347extern void set_cpu_sd_state_idle(void);
bc7a34b8 348extern int get_nohz_timer_target(void);
46cb4b7c 349#else
c1cc017c 350static inline void nohz_balance_enter_idle(int cpu) { }
fdaabd80 351static inline void set_cpu_sd_state_idle(void) { }
46cb4b7c 352#endif
1da177e4 353
e59e2ae2 354/*
39bc89fd 355 * Only dump TASK_* tasks. (0 for all tasks)
e59e2ae2
IM
356 */
357extern void show_state_filter(unsigned long state_filter);
358
359static inline void show_state(void)
360{
39bc89fd 361 show_state_filter(0);
e59e2ae2
IM
362}
363
1da177e4
LT
364extern void show_regs(struct pt_regs *);
365
366/*
367 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
368 * task), SP is the stack pointer of the first frame that should be shown in the back
369 * trace (or NULL if the entire call-chain of the task should be shown).
370 */
371extern void show_stack(struct task_struct *task, unsigned long *sp);
372
1da177e4
LT
373extern void cpu_init (void);
374extern void trap_init(void);
375extern void update_process_times(int user);
376extern void scheduler_tick(void);
9cf7243d 377extern int sched_cpu_starting(unsigned int cpu);
40190a78
TG
378extern int sched_cpu_activate(unsigned int cpu);
379extern int sched_cpu_deactivate(unsigned int cpu);
1da177e4 380
f2785ddb
TG
381#ifdef CONFIG_HOTPLUG_CPU
382extern int sched_cpu_dying(unsigned int cpu);
383#else
384# define sched_cpu_dying NULL
385#endif
1da177e4 386
82a1fcb9
IM
387extern void sched_show_task(struct task_struct *p);
388
19cc36c0 389#ifdef CONFIG_LOCKUP_DETECTOR
03e0d461 390extern void touch_softlockup_watchdog_sched(void);
8446f1d3 391extern void touch_softlockup_watchdog(void);
d6ad3e28 392extern void touch_softlockup_watchdog_sync(void);
04c9167f 393extern void touch_all_softlockup_watchdogs(void);
332fbdbc
DZ
394extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
395 void __user *buffer,
396 size_t *lenp, loff_t *ppos);
9c44bc03 397extern unsigned int softlockup_panic;
ac1f5912 398extern unsigned int hardlockup_panic;
004417a6 399void lockup_detector_init(void);
8446f1d3 400#else
03e0d461
TH
401static inline void touch_softlockup_watchdog_sched(void)
402{
403}
8446f1d3
IM
404static inline void touch_softlockup_watchdog(void)
405{
406}
d6ad3e28
JW
407static inline void touch_softlockup_watchdog_sync(void)
408{
409}
04c9167f
JF
410static inline void touch_all_softlockup_watchdogs(void)
411{
412}
004417a6
PZ
413static inline void lockup_detector_init(void)
414{
415}
8446f1d3
IM
416#endif
417
8b414521
MT
418#ifdef CONFIG_DETECT_HUNG_TASK
419void reset_hung_task_detector(void);
420#else
421static inline void reset_hung_task_detector(void)
422{
423}
424#endif
425
1da177e4
LT
426/* Attach to any functions which should be ignored in wchan output. */
427#define __sched __attribute__((__section__(".sched.text")))
deaf2227
IM
428
429/* Linker adds these: start and end of __sched functions */
430extern char __sched_text_start[], __sched_text_end[];
431
1da177e4
LT
432/* Is this address in the __sched functions? */
433extern int in_sched_functions(unsigned long addr);
434
435#define MAX_SCHEDULE_TIMEOUT LONG_MAX
b3c97528 436extern signed long schedule_timeout(signed long timeout);
64ed93a2 437extern signed long schedule_timeout_interruptible(signed long timeout);
294d5cc2 438extern signed long schedule_timeout_killable(signed long timeout);
64ed93a2 439extern signed long schedule_timeout_uninterruptible(signed long timeout);
69b27baf 440extern signed long schedule_timeout_idle(signed long timeout);
1da177e4 441asmlinkage void schedule(void);
c5491ea7 442extern void schedule_preempt_disabled(void);
1da177e4 443
9cff8ade
N
444extern long io_schedule_timeout(long timeout);
445
446static inline void io_schedule(void)
447{
448 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
449}
450
ab516013 451struct nsproxy;
acce292c 452struct user_namespace;
1da177e4 453
efc1a3b1
DH
454#ifdef CONFIG_MMU
455extern void arch_pick_mmap_layout(struct mm_struct *mm);
1da177e4
LT
456extern unsigned long
457arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
458 unsigned long, unsigned long);
459extern unsigned long
460arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
461 unsigned long len, unsigned long pgoff,
462 unsigned long flags);
efc1a3b1
DH
463#else
464static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
465#endif
1da177e4 466
d049f74f
KC
467#define SUID_DUMP_DISABLE 0 /* No setuid dumping */
468#define SUID_DUMP_USER 1 /* Dump as user of process */
469#define SUID_DUMP_ROOT 2 /* Dump as root */
470
6c5d5238 471/* mm flags */
f8af4da3 472
7288e118 473/* for SUID_DUMP_* above */
3cb4a0bb 474#define MMF_DUMPABLE_BITS 2
f8af4da3 475#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
3cb4a0bb 476
942be387
ON
477extern void set_dumpable(struct mm_struct *mm, int value);
478/*
479 * This returns the actual value of the suid_dumpable flag. For things
480 * that are using this for checking for privilege transitions, it must
481 * test against SUID_DUMP_USER rather than treating it as a boolean
482 * value.
483 */
484static inline int __get_dumpable(unsigned long mm_flags)
485{
486 return mm_flags & MMF_DUMPABLE_MASK;
487}
488
489static inline int get_dumpable(struct mm_struct *mm)
490{
491 return __get_dumpable(mm->flags);
492}
493
3cb4a0bb
KH
494/* coredump filter bits */
495#define MMF_DUMP_ANON_PRIVATE 2
496#define MMF_DUMP_ANON_SHARED 3
497#define MMF_DUMP_MAPPED_PRIVATE 4
498#define MMF_DUMP_MAPPED_SHARED 5
82df3973 499#define MMF_DUMP_ELF_HEADERS 6
e575f111
KM
500#define MMF_DUMP_HUGETLB_PRIVATE 7
501#define MMF_DUMP_HUGETLB_SHARED 8
5037835c
RZ
502#define MMF_DUMP_DAX_PRIVATE 9
503#define MMF_DUMP_DAX_SHARED 10
f8af4da3 504
3cb4a0bb 505#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
5037835c 506#define MMF_DUMP_FILTER_BITS 9
3cb4a0bb
KH
507#define MMF_DUMP_FILTER_MASK \
508 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
509#define MMF_DUMP_FILTER_DEFAULT \
e575f111 510 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
656eb2cd
RM
511 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
512
513#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
514# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
515#else
516# define MMF_DUMP_MASK_DEFAULT_ELF 0
517#endif
f8af4da3
HD
518 /* leave room for more dump flags */
519#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
ba76149f 520#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
bafb282d 521#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
f8af4da3 522
9f68f672
ON
523#define MMF_HAS_UPROBES 19 /* has uprobes */
524#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
bb8a4b7f 525#define MMF_OOM_REAPED 21 /* mm has been already reaped */
f8ac4ec9 526
f8af4da3 527#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
6c5d5238 528
1da177e4
LT
529struct sighand_struct {
530 atomic_t count;
531 struct k_sigaction action[_NSIG];
532 spinlock_t siglock;
b8fceee1 533 wait_queue_head_t signalfd_wqh;
1da177e4
LT
534};
535
0e464814 536struct pacct_struct {
f6ec29a4
KK
537 int ac_flag;
538 long ac_exitcode;
0e464814 539 unsigned long ac_mem;
77787bfb
KK
540 cputime_t ac_utime, ac_stime;
541 unsigned long ac_minflt, ac_majflt;
0e464814
KK
542};
543
42c4ab41
SG
544struct cpu_itimer {
545 cputime_t expires;
546 cputime_t incr;
8356b5f9
SG
547 u32 error;
548 u32 incr_error;
42c4ab41
SG
549};
550
d37f761d 551/**
9d7fb042 552 * struct prev_cputime - snaphsot of system and user cputime
d37f761d
FW
553 * @utime: time spent in user mode
554 * @stime: time spent in system mode
9d7fb042 555 * @lock: protects the above two fields
d37f761d 556 *
9d7fb042
PZ
557 * Stores previous user/system time values such that we can guarantee
558 * monotonicity.
d37f761d 559 */
9d7fb042
PZ
560struct prev_cputime {
561#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
d37f761d
FW
562 cputime_t utime;
563 cputime_t stime;
9d7fb042
PZ
564 raw_spinlock_t lock;
565#endif
d37f761d
FW
566};
567
9d7fb042
PZ
568static inline void prev_cputime_init(struct prev_cputime *prev)
569{
570#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
571 prev->utime = prev->stime = 0;
572 raw_spin_lock_init(&prev->lock);
573#endif
574}
575
f06febc9
FM
576/**
577 * struct task_cputime - collected CPU time counts
578 * @utime: time spent in user mode, in &cputime_t units
579 * @stime: time spent in kernel mode, in &cputime_t units
580 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 581 *
9d7fb042
PZ
582 * This structure groups together three kinds of CPU time that are tracked for
583 * threads and thread groups. Most things considering CPU time want to group
584 * these counts together and treat all three of them in parallel.
f06febc9
FM
585 */
586struct task_cputime {
587 cputime_t utime;
588 cputime_t stime;
589 unsigned long long sum_exec_runtime;
590};
9d7fb042 591
f06febc9 592/* Alternate field names when used to cache expirations. */
f06febc9 593#define virt_exp utime
9d7fb042 594#define prof_exp stime
f06febc9
FM
595#define sched_exp sum_exec_runtime
596
4cd4c1b4
PZ
597#define INIT_CPUTIME \
598 (struct task_cputime) { \
64861634
MS
599 .utime = 0, \
600 .stime = 0, \
4cd4c1b4
PZ
601 .sum_exec_runtime = 0, \
602 }
603
971e8a98
JL
604/*
605 * This is the atomic variant of task_cputime, which can be used for
606 * storing and updating task_cputime statistics without locking.
607 */
608struct task_cputime_atomic {
609 atomic64_t utime;
610 atomic64_t stime;
611 atomic64_t sum_exec_runtime;
612};
613
614#define INIT_CPUTIME_ATOMIC \
615 (struct task_cputime_atomic) { \
616 .utime = ATOMIC64_INIT(0), \
617 .stime = ATOMIC64_INIT(0), \
618 .sum_exec_runtime = ATOMIC64_INIT(0), \
619 }
620
609ca066 621#define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
a233f112 622
c99e6efe 623/*
87dcbc06
PZ
624 * Disable preemption until the scheduler is running -- use an unconditional
625 * value so that it also works on !PREEMPT_COUNT kernels.
d86ee480 626 *
87dcbc06 627 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
c99e6efe 628 */
87dcbc06 629#define INIT_PREEMPT_COUNT PREEMPT_OFFSET
a233f112 630
c99e6efe 631/*
609ca066
PZ
632 * Initial preempt_count value; reflects the preempt_count schedule invariant
633 * which states that during context switches:
d86ee480 634 *
609ca066
PZ
635 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
636 *
637 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
638 * Note: See finish_task_switch().
c99e6efe 639 */
609ca066 640#define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
c99e6efe 641
f06febc9 642/**
4cd4c1b4 643 * struct thread_group_cputimer - thread group interval timer counts
920ce39f 644 * @cputime_atomic: atomic thread group interval timers.
d5c373eb
JL
645 * @running: true when there are timers running and
646 * @cputime_atomic receives updates.
c8d75aa4
JL
647 * @checking_timer: true when a thread in the group is in the
648 * process of checking for thread group timers.
f06febc9
FM
649 *
650 * This structure contains the version of task_cputime, above, that is
4cd4c1b4 651 * used for thread group CPU timer calculations.
f06febc9 652 */
4cd4c1b4 653struct thread_group_cputimer {
71107445 654 struct task_cputime_atomic cputime_atomic;
d5c373eb 655 bool running;
c8d75aa4 656 bool checking_timer;
f06febc9 657};
f06febc9 658
4714d1d3 659#include <linux/rwsem.h>
5091faa4
MG
660struct autogroup;
661
1da177e4 662/*
e815f0a8 663 * NOTE! "signal_struct" does not have its own
1da177e4
LT
664 * locking, because a shared signal_struct always
665 * implies a shared sighand_struct, so locking
666 * sighand_struct is always a proper superset of
667 * the locking of signal_struct.
668 */
669struct signal_struct {
ea6d290c 670 atomic_t sigcnt;
1da177e4 671 atomic_t live;
b3ac022c 672 int nr_threads;
f44666b0 673 atomic_t oom_victims; /* # of TIF_MEDIE threads in this thread group */
0c740d0a 674 struct list_head thread_head;
1da177e4
LT
675
676 wait_queue_head_t wait_chldexit; /* for wait4() */
677
678 /* current thread group signal load-balancing target: */
36c8b586 679 struct task_struct *curr_target;
1da177e4
LT
680
681 /* shared signal handling: */
682 struct sigpending shared_pending;
683
684 /* thread group exit support */
685 int group_exit_code;
686 /* overloaded:
687 * - notify group_exit_task when ->count is equal to notify_count
688 * - everyone except group_exit_task is stopped during signal delivery
689 * of fatal signals, group_exit_task processes the signal.
690 */
1da177e4 691 int notify_count;
07dd20e0 692 struct task_struct *group_exit_task;
1da177e4
LT
693
694 /* thread group stop support, overloads group_exit_code too */
695 int group_stop_count;
696 unsigned int flags; /* see SIGNAL_* flags below */
697
ebec18a6
LP
698 /*
699 * PR_SET_CHILD_SUBREAPER marks a process, like a service
700 * manager, to re-parent orphan (double-forking) child processes
701 * to this process instead of 'init'. The service manager is
702 * able to receive SIGCHLD signals and is able to investigate
703 * the process until it calls wait(). All children of this
704 * process will inherit a flag if they should look for a
705 * child_subreaper process at exit.
706 */
707 unsigned int is_child_subreaper:1;
708 unsigned int has_child_subreaper:1;
709
1da177e4 710 /* POSIX.1b Interval Timers */
5ed67f05
PE
711 int posix_timer_id;
712 struct list_head posix_timers;
1da177e4
LT
713
714 /* ITIMER_REAL timer for the process */
2ff678b8 715 struct hrtimer real_timer;
fea9d175 716 struct pid *leader_pid;
2ff678b8 717 ktime_t it_real_incr;
1da177e4 718
42c4ab41
SG
719 /*
720 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
721 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
722 * values are defined to 0 and 1 respectively
723 */
724 struct cpu_itimer it[2];
1da177e4 725
f06febc9 726 /*
4cd4c1b4
PZ
727 * Thread group totals for process CPU timers.
728 * See thread_group_cputimer(), et al, for details.
f06febc9 729 */
4cd4c1b4 730 struct thread_group_cputimer cputimer;
f06febc9
FM
731
732 /* Earliest-expiration cache. */
733 struct task_cputime cputime_expires;
734
d027d45d 735#ifdef CONFIG_NO_HZ_FULL
f009a7a7 736 atomic_t tick_dep_mask;
d027d45d
FW
737#endif
738
f06febc9
FM
739 struct list_head cpu_timers[3];
740
ab521dc0 741 struct pid *tty_old_pgrp;
1ec320af 742
1da177e4
LT
743 /* boolean value for session group leader */
744 int leader;
745
746 struct tty_struct *tty; /* NULL if no tty */
747
5091faa4
MG
748#ifdef CONFIG_SCHED_AUTOGROUP
749 struct autogroup *autogroup;
750#endif
1da177e4
LT
751 /*
752 * Cumulative resource counters for dead threads in the group,
753 * and for reaped dead child processes forked by this group.
754 * Live threads maintain their own counters and add to these
755 * in __exit_signal, except for the group leader.
756 */
e78c3496 757 seqlock_t stats_lock;
32bd671d 758 cputime_t utime, stime, cutime, cstime;
9ac52315
LV
759 cputime_t gtime;
760 cputime_t cgtime;
9d7fb042 761 struct prev_cputime prev_cputime;
1da177e4
LT
762 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
763 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
6eaeeaba 764 unsigned long inblock, oublock, cinblock, coublock;
1f10206c 765 unsigned long maxrss, cmaxrss;
940389b8 766 struct task_io_accounting ioac;
1da177e4 767
32bd671d
PZ
768 /*
769 * Cumulative ns of schedule CPU time fo dead threads in the
770 * group, not including a zombie group leader, (This only differs
771 * from jiffies_to_ns(utime + stime) if sched_clock uses something
772 * other than jiffies.)
773 */
774 unsigned long long sum_sched_runtime;
775
1da177e4
LT
776 /*
777 * We don't bother to synchronize most readers of this at all,
778 * because there is no reader checking a limit that actually needs
779 * to get both rlim_cur and rlim_max atomically, and either one
780 * alone is a single word that can safely be read normally.
781 * getrlimit/setrlimit use task_lock(current->group_leader) to
782 * protect this instead of the siglock, because they really
783 * have no need to disable irqs.
784 */
785 struct rlimit rlim[RLIM_NLIMITS];
786
0e464814
KK
787#ifdef CONFIG_BSD_PROCESS_ACCT
788 struct pacct_struct pacct; /* per-process accounting information */
789#endif
ad4ecbcb 790#ifdef CONFIG_TASKSTATS
ad4ecbcb
SN
791 struct taskstats *stats;
792#endif
522ed776
MT
793#ifdef CONFIG_AUDIT
794 unsigned audit_tty;
795 struct tty_audit_buf *tty_audit_buf;
796#endif
28b83c51 797
c96fc2d8
TH
798 /*
799 * Thread is the potential origin of an oom condition; kill first on
800 * oom
801 */
802 bool oom_flag_origin;
a9c58b90
DR
803 short oom_score_adj; /* OOM kill score adjustment */
804 short oom_score_adj_min; /* OOM kill score adjustment min value.
805 * Only settable by CAP_SYS_RESOURCE. */
9b1bf12d
KM
806
807 struct mutex cred_guard_mutex; /* guard against foreign influences on
808 * credential calculations
809 * (notably. ptrace) */
1da177e4
LT
810};
811
812/*
813 * Bits in flags field of signal_struct.
814 */
815#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
ee77f075
ON
816#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
817#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
403bad72 818#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
e4420551
ON
819/*
820 * Pending notifications to parent.
821 */
822#define SIGNAL_CLD_STOPPED 0x00000010
823#define SIGNAL_CLD_CONTINUED 0x00000020
824#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
1da177e4 825
fae5fa44
ON
826#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
827
ed5d2cac
ON
828/* If true, all threads except ->group_exit_task have pending SIGKILL */
829static inline int signal_group_exit(const struct signal_struct *sig)
830{
831 return (sig->flags & SIGNAL_GROUP_EXIT) ||
832 (sig->group_exit_task != NULL);
833}
834
1da177e4
LT
835/*
836 * Some day this will be a full-fledged user tracking system..
837 */
838struct user_struct {
839 atomic_t __count; /* reference count */
840 atomic_t processes; /* How many processes does this user have? */
1da177e4 841 atomic_t sigpending; /* How many pending signals does this user have? */
2d9048e2 842#ifdef CONFIG_INOTIFY_USER
0eeca283
RL
843 atomic_t inotify_watches; /* How many inotify watches does this user have? */
844 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
845#endif
4afeff85
EP
846#ifdef CONFIG_FANOTIFY
847 atomic_t fanotify_listeners;
848#endif
7ef9964e 849#ifdef CONFIG_EPOLL
52bd19f7 850 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
7ef9964e 851#endif
970a8645 852#ifdef CONFIG_POSIX_MQUEUE
1da177e4
LT
853 /* protected by mq_lock */
854 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
970a8645 855#endif
1da177e4 856 unsigned long locked_shm; /* How many pages of mlocked shm ? */
712f4aad 857 unsigned long unix_inflight; /* How many files in flight in unix sockets */
759c0114 858 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */
1da177e4
LT
859
860#ifdef CONFIG_KEYS
861 struct key *uid_keyring; /* UID specific keyring */
862 struct key *session_keyring; /* UID's default session keyring */
863#endif
864
865 /* Hash table maintenance information */
735de223 866 struct hlist_node uidhash_node;
7b44ab97 867 kuid_t uid;
24e377a8 868
aaac3ba9 869#if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
789f90fc
PZ
870 atomic_long_t locked_vm;
871#endif
1da177e4
LT
872};
873
eb41d946 874extern int uids_sysfs_init(void);
5cb350ba 875
7b44ab97 876extern struct user_struct *find_user(kuid_t);
1da177e4
LT
877
878extern struct user_struct root_user;
879#define INIT_USER (&root_user)
880
b6dff3ec 881
1da177e4
LT
882struct backing_dev_info;
883struct reclaim_state;
884
f6db8347 885#ifdef CONFIG_SCHED_INFO
1da177e4
LT
886struct sched_info {
887 /* cumulative counters */
2d72376b 888 unsigned long pcount; /* # of times run on this cpu */
9c2c4802 889 unsigned long long run_delay; /* time spent waiting on a runqueue */
1da177e4
LT
890
891 /* timestamps */
172ba844
BS
892 unsigned long long last_arrival,/* when we last ran on a cpu */
893 last_queued; /* when we were last queued to run */
1da177e4 894};
f6db8347 895#endif /* CONFIG_SCHED_INFO */
1da177e4 896
ca74e92b
SN
897#ifdef CONFIG_TASK_DELAY_ACCT
898struct task_delay_info {
899 spinlock_t lock;
900 unsigned int flags; /* Private per-task flags */
901
902 /* For each stat XXX, add following, aligned appropriately
903 *
904 * struct timespec XXX_start, XXX_end;
905 * u64 XXX_delay;
906 * u32 XXX_count;
907 *
908 * Atomicity of updates to XXX_delay, XXX_count protected by
909 * single lock above (split into XXX_lock if contention is an issue).
910 */
0ff92245
SN
911
912 /*
913 * XXX_count is incremented on every XXX operation, the delay
914 * associated with the operation is added to XXX_delay.
915 * XXX_delay contains the accumulated delay time in nanoseconds.
916 */
9667a23d 917 u64 blkio_start; /* Shared by blkio, swapin */
0ff92245
SN
918 u64 blkio_delay; /* wait for sync block io completion */
919 u64 swapin_delay; /* wait for swapin block io completion */
920 u32 blkio_count; /* total count of the number of sync block */
921 /* io operations performed */
922 u32 swapin_count; /* total count of the number of swapin block */
923 /* io operations performed */
873b4771 924
9667a23d 925 u64 freepages_start;
873b4771
KK
926 u64 freepages_delay; /* wait for memory reclaim */
927 u32 freepages_count; /* total count of memory reclaim */
ca74e92b 928};
52f17b6c
CS
929#endif /* CONFIG_TASK_DELAY_ACCT */
930
931static inline int sched_info_on(void)
932{
933#ifdef CONFIG_SCHEDSTATS
934 return 1;
935#elif defined(CONFIG_TASK_DELAY_ACCT)
936 extern int delayacct_on;
937 return delayacct_on;
938#else
939 return 0;
ca74e92b 940#endif
52f17b6c 941}
ca74e92b 942
cb251765
MG
943#ifdef CONFIG_SCHEDSTATS
944void force_schedstat_enabled(void);
945#endif
946
d15bcfdb
IM
947enum cpu_idle_type {
948 CPU_IDLE,
949 CPU_NOT_IDLE,
950 CPU_NEWLY_IDLE,
951 CPU_MAX_IDLE_TYPES
1da177e4
LT
952};
953
6ecdd749
YD
954/*
955 * Integer metrics need fixed point arithmetic, e.g., sched/fair
956 * has a few: load, load_avg, util_avg, freq, and capacity.
957 *
958 * We define a basic fixed point arithmetic range, and then formalize
959 * all these metrics based on that basic range.
960 */
961# define SCHED_FIXEDPOINT_SHIFT 10
962# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
963
1399fa78 964/*
ca8ce3d0 965 * Increase resolution of cpu_capacity calculations
1399fa78 966 */
6ecdd749 967#define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
ca8ce3d0 968#define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
1da177e4 969
76751049
PZ
970/*
971 * Wake-queues are lists of tasks with a pending wakeup, whose
972 * callers have already marked the task as woken internally,
973 * and can thus carry on. A common use case is being able to
974 * do the wakeups once the corresponding user lock as been
975 * released.
976 *
977 * We hold reference to each task in the list across the wakeup,
978 * thus guaranteeing that the memory is still valid by the time
979 * the actual wakeups are performed in wake_up_q().
980 *
981 * One per task suffices, because there's never a need for a task to be
982 * in two wake queues simultaneously; it is forbidden to abandon a task
983 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
984 * already in a wake queue, the wakeup will happen soon and the second
985 * waker can just skip it.
986 *
987 * The WAKE_Q macro declares and initializes the list head.
988 * wake_up_q() does NOT reinitialize the list; it's expected to be
989 * called near the end of a function, where the fact that the queue is
990 * not used again will be easy to see by inspection.
991 *
992 * Note that this can cause spurious wakeups. schedule() callers
993 * must ensure the call is done inside a loop, confirming that the
994 * wakeup condition has in fact occurred.
995 */
996struct wake_q_node {
997 struct wake_q_node *next;
998};
999
1000struct wake_q_head {
1001 struct wake_q_node *first;
1002 struct wake_q_node **lastp;
1003};
1004
1005#define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
1006
1007#define WAKE_Q(name) \
1008 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
1009
1010extern void wake_q_add(struct wake_q_head *head,
1011 struct task_struct *task);
1012extern void wake_up_q(struct wake_q_head *head);
1013
1399fa78
NR
1014/*
1015 * sched-domains (multiprocessor balancing) declarations:
1016 */
2dd73a4f 1017#ifdef CONFIG_SMP
b5d978e0
PZ
1018#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
1019#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
1020#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
1021#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
c88d5910 1022#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
b5d978e0 1023#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
5d4dfddd 1024#define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
d77b3ed5 1025#define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
b5d978e0
PZ
1026#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
1027#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
532cb4c4 1028#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
b5d978e0 1029#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
e3589f6c 1030#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
3a7053b3 1031#define SD_NUMA 0x4000 /* cross-node balancing */
5c45bf27 1032
143e1e28 1033#ifdef CONFIG_SCHED_SMT
b6220ad6 1034static inline int cpu_smt_flags(void)
143e1e28 1035{
5d4dfddd 1036 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
143e1e28
VG
1037}
1038#endif
1039
1040#ifdef CONFIG_SCHED_MC
b6220ad6 1041static inline int cpu_core_flags(void)
143e1e28
VG
1042{
1043 return SD_SHARE_PKG_RESOURCES;
1044}
1045#endif
1046
1047#ifdef CONFIG_NUMA
b6220ad6 1048static inline int cpu_numa_flags(void)
143e1e28
VG
1049{
1050 return SD_NUMA;
1051}
1052#endif
532cb4c4 1053
1d3504fc
HS
1054struct sched_domain_attr {
1055 int relax_domain_level;
1056};
1057
1058#define SD_ATTR_INIT (struct sched_domain_attr) { \
1059 .relax_domain_level = -1, \
1060}
1061
60495e77
PZ
1062extern int sched_domain_level_max;
1063
5e6521ea
LZ
1064struct sched_group;
1065
1da177e4
LT
1066struct sched_domain {
1067 /* These fields must be setup */
1068 struct sched_domain *parent; /* top domain must be null terminated */
1a848870 1069 struct sched_domain *child; /* bottom domain must be null terminated */
1da177e4 1070 struct sched_group *groups; /* the balancing groups of the domain */
1da177e4
LT
1071 unsigned long min_interval; /* Minimum balance interval ms */
1072 unsigned long max_interval; /* Maximum balance interval ms */
1073 unsigned int busy_factor; /* less balancing by factor if busy */
1074 unsigned int imbalance_pct; /* No balance until over watermark */
1da177e4 1075 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
7897986b
NP
1076 unsigned int busy_idx;
1077 unsigned int idle_idx;
1078 unsigned int newidle_idx;
1079 unsigned int wake_idx;
147cbb4b 1080 unsigned int forkexec_idx;
a52bfd73 1081 unsigned int smt_gain;
25f55d9d
VG
1082
1083 int nohz_idle; /* NOHZ IDLE status */
1da177e4 1084 int flags; /* See SD_* */
60495e77 1085 int level;
1da177e4
LT
1086
1087 /* Runtime fields. */
1088 unsigned long last_balance; /* init to jiffies. units in jiffies */
1089 unsigned int balance_interval; /* initialise to 1. units in ms. */
1090 unsigned int nr_balance_failed; /* initialise to 0 */
1091
f48627e6 1092 /* idle_balance() stats */
9bd721c5 1093 u64 max_newidle_lb_cost;
f48627e6 1094 unsigned long next_decay_max_lb_cost;
2398f2c6 1095
1da177e4
LT
1096#ifdef CONFIG_SCHEDSTATS
1097 /* load_balance() stats */
480b9434
KC
1098 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1099 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1100 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1101 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1102 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1103 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1104 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1105 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1da177e4
LT
1106
1107 /* Active load balancing */
480b9434
KC
1108 unsigned int alb_count;
1109 unsigned int alb_failed;
1110 unsigned int alb_pushed;
1da177e4 1111
68767a0a 1112 /* SD_BALANCE_EXEC stats */
480b9434
KC
1113 unsigned int sbe_count;
1114 unsigned int sbe_balanced;
1115 unsigned int sbe_pushed;
1da177e4 1116
68767a0a 1117 /* SD_BALANCE_FORK stats */
480b9434
KC
1118 unsigned int sbf_count;
1119 unsigned int sbf_balanced;
1120 unsigned int sbf_pushed;
68767a0a 1121
1da177e4 1122 /* try_to_wake_up() stats */
480b9434
KC
1123 unsigned int ttwu_wake_remote;
1124 unsigned int ttwu_move_affine;
1125 unsigned int ttwu_move_balance;
1da177e4 1126#endif
a5d8c348
IM
1127#ifdef CONFIG_SCHED_DEBUG
1128 char *name;
1129#endif
dce840a0
PZ
1130 union {
1131 void *private; /* used during construction */
1132 struct rcu_head rcu; /* used during destruction */
1133 };
6c99e9ad 1134
669c55e9 1135 unsigned int span_weight;
4200efd9
IM
1136 /*
1137 * Span of all CPUs in this domain.
1138 *
1139 * NOTE: this field is variable length. (Allocated dynamically
1140 * by attaching extra space to the end of the structure,
1141 * depending on how many CPUs the kernel has booted up with)
4200efd9
IM
1142 */
1143 unsigned long span[0];
1da177e4
LT
1144};
1145
758b2cdc
RR
1146static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1147{
6c99e9ad 1148 return to_cpumask(sd->span);
758b2cdc
RR
1149}
1150
acc3f5d7 1151extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 1152 struct sched_domain_attr *dattr_new);
029190c5 1153
acc3f5d7
RR
1154/* Allocate an array of sched domains, for partition_sched_domains(). */
1155cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1156void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1157
39be3501
PZ
1158bool cpus_share_cache(int this_cpu, int that_cpu);
1159
143e1e28 1160typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
b6220ad6 1161typedef int (*sched_domain_flags_f)(void);
143e1e28
VG
1162
1163#define SDTL_OVERLAP 0x01
1164
1165struct sd_data {
1166 struct sched_domain **__percpu sd;
1167 struct sched_group **__percpu sg;
63b2ca30 1168 struct sched_group_capacity **__percpu sgc;
143e1e28
VG
1169};
1170
1171struct sched_domain_topology_level {
1172 sched_domain_mask_f mask;
1173 sched_domain_flags_f sd_flags;
1174 int flags;
1175 int numa_level;
1176 struct sd_data data;
1177#ifdef CONFIG_SCHED_DEBUG
1178 char *name;
1179#endif
1180};
1181
143e1e28 1182extern void set_sched_topology(struct sched_domain_topology_level *tl);
f6be8af1 1183extern void wake_up_if_idle(int cpu);
143e1e28
VG
1184
1185#ifdef CONFIG_SCHED_DEBUG
1186# define SD_INIT_NAME(type) .name = #type
1187#else
1188# define SD_INIT_NAME(type)
1189#endif
1190
1b427c15 1191#else /* CONFIG_SMP */
1da177e4 1192
1b427c15 1193struct sched_domain_attr;
d02c7a8c 1194
1b427c15 1195static inline void
acc3f5d7 1196partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1b427c15
IM
1197 struct sched_domain_attr *dattr_new)
1198{
d02c7a8c 1199}
39be3501
PZ
1200
1201static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1202{
1203 return true;
1204}
1205
1b427c15 1206#endif /* !CONFIG_SMP */
1da177e4 1207
47fe38fc 1208
1da177e4 1209struct io_context; /* See blkdev.h */
1da177e4 1210
1da177e4 1211
383f2835 1212#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
36c8b586 1213extern void prefetch_stack(struct task_struct *t);
383f2835
KC
1214#else
1215static inline void prefetch_stack(struct task_struct *t) { }
1216#endif
1da177e4
LT
1217
1218struct audit_context; /* See audit.c */
1219struct mempolicy;
b92ce558 1220struct pipe_inode_info;
4865ecf1 1221struct uts_namespace;
1da177e4 1222
20b8a59f 1223struct load_weight {
9dbdb155
PZ
1224 unsigned long weight;
1225 u32 inv_weight;
20b8a59f
IM
1226};
1227
9d89c257 1228/*
7b595334
YD
1229 * The load_avg/util_avg accumulates an infinite geometric series
1230 * (see __update_load_avg() in kernel/sched/fair.c).
1231 *
1232 * [load_avg definition]
1233 *
1234 * load_avg = runnable% * scale_load_down(load)
1235 *
1236 * where runnable% is the time ratio that a sched_entity is runnable.
1237 * For cfs_rq, it is the aggregated load_avg of all runnable and
9d89c257 1238 * blocked sched_entities.
7b595334
YD
1239 *
1240 * load_avg may also take frequency scaling into account:
1241 *
1242 * load_avg = runnable% * scale_load_down(load) * freq%
1243 *
1244 * where freq% is the CPU frequency normalized to the highest frequency.
1245 *
1246 * [util_avg definition]
1247 *
1248 * util_avg = running% * SCHED_CAPACITY_SCALE
1249 *
1250 * where running% is the time ratio that a sched_entity is running on
1251 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
1252 * and blocked sched_entities.
1253 *
1254 * util_avg may also factor frequency scaling and CPU capacity scaling:
1255 *
1256 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
1257 *
1258 * where freq% is the same as above, and capacity% is the CPU capacity
1259 * normalized to the greatest capacity (due to uarch differences, etc).
1260 *
1261 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
1262 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
1263 * we therefore scale them to as large a range as necessary. This is for
1264 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
1265 *
1266 * [Overflow issue]
1267 *
1268 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
1269 * with the highest load (=88761), always runnable on a single cfs_rq,
1270 * and should not overflow as the number already hits PID_MAX_LIMIT.
1271 *
1272 * For all other cases (including 32-bit kernels), struct load_weight's
1273 * weight will overflow first before we do, because:
1274 *
1275 * Max(load_avg) <= Max(load.weight)
1276 *
1277 * Then it is the load_weight's responsibility to consider overflow
1278 * issues.
9d89c257 1279 */
9d85f21c 1280struct sched_avg {
9d89c257
YD
1281 u64 last_update_time, load_sum;
1282 u32 util_sum, period_contrib;
1283 unsigned long load_avg, util_avg;
9d85f21c
PT
1284};
1285
94c18227 1286#ifdef CONFIG_SCHEDSTATS
41acab88 1287struct sched_statistics {
20b8a59f 1288 u64 wait_start;
94c18227 1289 u64 wait_max;
6d082592
AV
1290 u64 wait_count;
1291 u64 wait_sum;
8f0dfc34
AV
1292 u64 iowait_count;
1293 u64 iowait_sum;
94c18227 1294
20b8a59f 1295 u64 sleep_start;
20b8a59f 1296 u64 sleep_max;
94c18227
IM
1297 s64 sum_sleep_runtime;
1298
1299 u64 block_start;
20b8a59f
IM
1300 u64 block_max;
1301 u64 exec_max;
eba1ed4b 1302 u64 slice_max;
cc367732 1303
cc367732
IM
1304 u64 nr_migrations_cold;
1305 u64 nr_failed_migrations_affine;
1306 u64 nr_failed_migrations_running;
1307 u64 nr_failed_migrations_hot;
1308 u64 nr_forced_migrations;
cc367732
IM
1309
1310 u64 nr_wakeups;
1311 u64 nr_wakeups_sync;
1312 u64 nr_wakeups_migrate;
1313 u64 nr_wakeups_local;
1314 u64 nr_wakeups_remote;
1315 u64 nr_wakeups_affine;
1316 u64 nr_wakeups_affine_attempts;
1317 u64 nr_wakeups_passive;
1318 u64 nr_wakeups_idle;
41acab88
LDM
1319};
1320#endif
1321
1322struct sched_entity {
1323 struct load_weight load; /* for load-balancing */
1324 struct rb_node run_node;
1325 struct list_head group_node;
1326 unsigned int on_rq;
1327
1328 u64 exec_start;
1329 u64 sum_exec_runtime;
1330 u64 vruntime;
1331 u64 prev_sum_exec_runtime;
1332
41acab88
LDM
1333 u64 nr_migrations;
1334
41acab88
LDM
1335#ifdef CONFIG_SCHEDSTATS
1336 struct sched_statistics statistics;
94c18227
IM
1337#endif
1338
20b8a59f 1339#ifdef CONFIG_FAIR_GROUP_SCHED
fed14d45 1340 int depth;
20b8a59f
IM
1341 struct sched_entity *parent;
1342 /* rq on which this entity is (to be) queued: */
1343 struct cfs_rq *cfs_rq;
1344 /* rq "owned" by this entity/group: */
1345 struct cfs_rq *my_q;
1346#endif
8bd75c77 1347
141965c7 1348#ifdef CONFIG_SMP
5a107804
JO
1349 /*
1350 * Per entity load average tracking.
1351 *
1352 * Put into separate cache line so it does not
1353 * collide with read-mostly values above.
1354 */
1355 struct sched_avg avg ____cacheline_aligned_in_smp;
9d85f21c 1356#endif
20b8a59f 1357};
70b97a7f 1358
fa717060
PZ
1359struct sched_rt_entity {
1360 struct list_head run_list;
78f2c7db 1361 unsigned long timeout;
57d2aa00 1362 unsigned long watchdog_stamp;
bee367ed 1363 unsigned int time_slice;
ff77e468
PZ
1364 unsigned short on_rq;
1365 unsigned short on_list;
6f505b16 1366
58d6c2d7 1367 struct sched_rt_entity *back;
052f1dc7 1368#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
1369 struct sched_rt_entity *parent;
1370 /* rq on which this entity is (to be) queued: */
1371 struct rt_rq *rt_rq;
1372 /* rq "owned" by this entity/group: */
1373 struct rt_rq *my_q;
1374#endif
fa717060
PZ
1375};
1376
aab03e05
DF
1377struct sched_dl_entity {
1378 struct rb_node rb_node;
1379
1380 /*
1381 * Original scheduling parameters. Copied here from sched_attr
4027d080 1382 * during sched_setattr(), they will remain the same until
1383 * the next sched_setattr().
aab03e05
DF
1384 */
1385 u64 dl_runtime; /* maximum runtime for each instance */
1386 u64 dl_deadline; /* relative deadline of each instance */
755378a4 1387 u64 dl_period; /* separation of two instances (period) */
332ac17e 1388 u64 dl_bw; /* dl_runtime / dl_deadline */
aab03e05
DF
1389
1390 /*
1391 * Actual scheduling parameters. Initialized with the values above,
1392 * they are continously updated during task execution. Note that
1393 * the remaining runtime could be < 0 in case we are in overrun.
1394 */
1395 s64 runtime; /* remaining runtime for this instance */
1396 u64 deadline; /* absolute deadline for this instance */
1397 unsigned int flags; /* specifying the scheduler behaviour */
1398
1399 /*
1400 * Some bool flags:
1401 *
1402 * @dl_throttled tells if we exhausted the runtime. If so, the
1403 * task has to wait for a replenishment to be performed at the
1404 * next firing of dl_timer.
1405 *
2d3d891d
DF
1406 * @dl_boosted tells if we are boosted due to DI. If so we are
1407 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
1408 * exit the critical section);
1409 *
1410 * @dl_yielded tells if task gave up the cpu before consuming
1411 * all its available runtime during the last job.
aab03e05 1412 */
72f9f3fd 1413 int dl_throttled, dl_boosted, dl_yielded;
aab03e05
DF
1414
1415 /*
1416 * Bandwidth enforcement timer. Each -deadline task has its
1417 * own bandwidth to be enforced, thus we need one timer per task.
1418 */
1419 struct hrtimer dl_timer;
1420};
8bd75c77 1421
1d082fd0
PM
1422union rcu_special {
1423 struct {
8203d6d0
PM
1424 u8 blocked;
1425 u8 need_qs;
1426 u8 exp_need_qs;
1427 u8 pad; /* Otherwise the compiler can store garbage here. */
1428 } b; /* Bits. */
1429 u32 s; /* Set of bits. */
1d082fd0 1430};
86848966
PM
1431struct rcu_node;
1432
8dc85d54
PZ
1433enum perf_event_task_context {
1434 perf_invalid_context = -1,
1435 perf_hw_context = 0,
89a1e187 1436 perf_sw_context,
8dc85d54
PZ
1437 perf_nr_task_contexts,
1438};
1439
72b252ae
MG
1440/* Track pages that require TLB flushes */
1441struct tlbflush_unmap_batch {
1442 /*
1443 * Each bit set is a CPU that potentially has a TLB entry for one of
1444 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1445 */
1446 struct cpumask cpumask;
1447
1448 /* True if any bit in cpumask is set */
1449 bool flush_required;
d950c947
MG
1450
1451 /*
1452 * If true then the PTE was dirty when unmapped. The entry must be
1453 * flushed before IO is initiated or a stale TLB entry potentially
1454 * allows an update without redirtying the page.
1455 */
1456 bool writable;
72b252ae
MG
1457};
1458
1da177e4
LT
1459struct task_struct {
1460 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
f7e4217b 1461 void *stack;
1da177e4 1462 atomic_t usage;
97dc32cd
WC
1463 unsigned int flags; /* per process flags, defined below */
1464 unsigned int ptrace;
1da177e4 1465
2dd73a4f 1466#ifdef CONFIG_SMP
fa14ff4a 1467 struct llist_node wake_entry;
3ca7a440 1468 int on_cpu;
63b0e9ed 1469 unsigned int wakee_flips;
62470419 1470 unsigned long wakee_flip_decay_ts;
63b0e9ed 1471 struct task_struct *last_wakee;
ac66f547
PZ
1472
1473 int wake_cpu;
2dd73a4f 1474#endif
fd2f4419 1475 int on_rq;
50e645a8 1476
b29739f9 1477 int prio, static_prio, normal_prio;
c7aceaba 1478 unsigned int rt_priority;
5522d5d5 1479 const struct sched_class *sched_class;
20b8a59f 1480 struct sched_entity se;
fa717060 1481 struct sched_rt_entity rt;
8323f26c
PZ
1482#ifdef CONFIG_CGROUP_SCHED
1483 struct task_group *sched_task_group;
1484#endif
aab03e05 1485 struct sched_dl_entity dl;
1da177e4 1486
e107be36
AK
1487#ifdef CONFIG_PREEMPT_NOTIFIERS
1488 /* list of struct preempt_notifier: */
1489 struct hlist_head preempt_notifiers;
1490#endif
1491
6c5c9341 1492#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1493 unsigned int btrace_seq;
6c5c9341 1494#endif
1da177e4 1495
97dc32cd 1496 unsigned int policy;
29baa747 1497 int nr_cpus_allowed;
1da177e4 1498 cpumask_t cpus_allowed;
1da177e4 1499
a57eb940 1500#ifdef CONFIG_PREEMPT_RCU
e260be67 1501 int rcu_read_lock_nesting;
1d082fd0 1502 union rcu_special rcu_read_unlock_special;
f41d911f 1503 struct list_head rcu_node_entry;
a57eb940 1504 struct rcu_node *rcu_blocked_node;
28f6569a 1505#endif /* #ifdef CONFIG_PREEMPT_RCU */
8315f422
PM
1506#ifdef CONFIG_TASKS_RCU
1507 unsigned long rcu_tasks_nvcsw;
1508 bool rcu_tasks_holdout;
1509 struct list_head rcu_tasks_holdout_list;
176f8f7a 1510 int rcu_tasks_idle_cpu;
8315f422 1511#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 1512
f6db8347 1513#ifdef CONFIG_SCHED_INFO
1da177e4
LT
1514 struct sched_info sched_info;
1515#endif
1516
1517 struct list_head tasks;
806c09a7 1518#ifdef CONFIG_SMP
917b627d 1519 struct plist_node pushable_tasks;
1baca4ce 1520 struct rb_node pushable_dl_tasks;
806c09a7 1521#endif
1da177e4
LT
1522
1523 struct mm_struct *mm, *active_mm;
615d6e87
DB
1524 /* per-thread vma caching */
1525 u32 vmacache_seqnum;
1526 struct vm_area_struct *vmacache[VMACACHE_SIZE];
34e55232
KH
1527#if defined(SPLIT_RSS_COUNTING)
1528 struct task_rss_stat rss_stat;
1529#endif
1da177e4 1530/* task state */
97dc32cd 1531 int exit_state;
1da177e4
LT
1532 int exit_code, exit_signal;
1533 int pdeath_signal; /* The signal sent when the parent dies */
e7cc4173 1534 unsigned long jobctl; /* JOBCTL_*, siglock protected */
9b89f6ba
AE
1535
1536 /* Used for emulating ABI behavior of previous Linux versions */
97dc32cd 1537 unsigned int personality;
9b89f6ba 1538
be958bdc 1539 /* scheduler bits, serialized by scheduler locks */
ca94c442 1540 unsigned sched_reset_on_fork:1;
a8e4f2ea 1541 unsigned sched_contributes_to_load:1;
ff303e66 1542 unsigned sched_migrated:1;
b7e7ade3 1543 unsigned sched_remote_wakeup:1;
be958bdc
PZ
1544 unsigned :0; /* force alignment to the next boundary */
1545
1546 /* unserialized, strictly 'current' */
1547 unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1548 unsigned in_iowait:1;
626ebc41
TH
1549#ifdef CONFIG_MEMCG
1550 unsigned memcg_may_oom:1;
127424c8 1551#ifndef CONFIG_SLOB
6f185c29
VD
1552 unsigned memcg_kmem_skip_account:1;
1553#endif
127424c8 1554#endif
ff303e66
PZ
1555#ifdef CONFIG_COMPAT_BRK
1556 unsigned brk_randomized:1;
1557#endif
6f185c29 1558
1d4457f9
KC
1559 unsigned long atomic_flags; /* Flags needing atomic access. */
1560
f56141e3
AL
1561 struct restart_block restart_block;
1562
1da177e4
LT
1563 pid_t pid;
1564 pid_t tgid;
0a425405 1565
1314562a 1566#ifdef CONFIG_CC_STACKPROTECTOR
0a425405
AV
1567 /* Canary value for the -fstack-protector gcc feature */
1568 unsigned long stack_canary;
1314562a 1569#endif
4d1d61a6 1570 /*
1da177e4 1571 * pointers to (original) parent process, youngest child, younger sibling,
4d1d61a6 1572 * older sibling, respectively. (p->father can be replaced with
f470021a 1573 * p->real_parent->pid)
1da177e4 1574 */
abd63bc3
KC
1575 struct task_struct __rcu *real_parent; /* real parent process */
1576 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1da177e4 1577 /*
f470021a 1578 * children/sibling forms the list of my natural children
1da177e4
LT
1579 */
1580 struct list_head children; /* list of my children */
1581 struct list_head sibling; /* linkage in my parent's children list */
1582 struct task_struct *group_leader; /* threadgroup leader */
1583
f470021a
RM
1584 /*
1585 * ptraced is the list of tasks this task is using ptrace on.
1586 * This includes both natural children and PTRACE_ATTACH targets.
1587 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1588 */
1589 struct list_head ptraced;
1590 struct list_head ptrace_entry;
1591
1da177e4 1592 /* PID/PID hash table linkage. */
92476d7f 1593 struct pid_link pids[PIDTYPE_MAX];
47e65328 1594 struct list_head thread_group;
0c740d0a 1595 struct list_head thread_node;
1da177e4
LT
1596
1597 struct completion *vfork_done; /* for vfork() */
1598 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1599 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1600
c66f08be 1601 cputime_t utime, stime, utimescaled, stimescaled;
9ac52315 1602 cputime_t gtime;
9d7fb042 1603 struct prev_cputime prev_cputime;
6a61671b 1604#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
b7ce2277 1605 seqcount_t vtime_seqcount;
6a61671b
FW
1606 unsigned long long vtime_snap;
1607 enum {
7098c1ea
FW
1608 /* Task is sleeping or running in a CPU with VTIME inactive */
1609 VTIME_INACTIVE = 0,
1610 /* Task runs in userspace in a CPU with VTIME active */
6a61671b 1611 VTIME_USER,
7098c1ea 1612 /* Task runs in kernelspace in a CPU with VTIME active */
6a61671b
FW
1613 VTIME_SYS,
1614 } vtime_snap_whence;
d99ca3b9 1615#endif
d027d45d
FW
1616
1617#ifdef CONFIG_NO_HZ_FULL
f009a7a7 1618 atomic_t tick_dep_mask;
d027d45d 1619#endif
1da177e4 1620 unsigned long nvcsw, nivcsw; /* context switch counts */
ccbf62d8 1621 u64 start_time; /* monotonic time in nsec */
57e0be04 1622 u64 real_start_time; /* boot based time in nsec */
1da177e4
LT
1623/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1624 unsigned long min_flt, maj_flt;
1625
f06febc9 1626 struct task_cputime cputime_expires;
1da177e4
LT
1627 struct list_head cpu_timers[3];
1628
1629/* process credentials */
1b0ba1c9 1630 const struct cred __rcu *real_cred; /* objective and real subjective task
3b11a1de 1631 * credentials (COW) */
1b0ba1c9 1632 const struct cred __rcu *cred; /* effective (overridable) subjective task
3b11a1de 1633 * credentials (COW) */
36772092
PBG
1634 char comm[TASK_COMM_LEN]; /* executable name excluding path
1635 - access with [gs]et_task_comm (which lock
1636 it with task_lock())
221af7f8 1637 - initialized normally by setup_new_exec */
1da177e4 1638/* file system info */
756daf26 1639 struct nameidata *nameidata;
3d5b6fcc 1640#ifdef CONFIG_SYSVIPC
1da177e4
LT
1641/* ipc stuff */
1642 struct sysv_sem sysvsem;
ab602f79 1643 struct sysv_shm sysvshm;
3d5b6fcc 1644#endif
e162b39a 1645#ifdef CONFIG_DETECT_HUNG_TASK
82a1fcb9 1646/* hung task detection */
82a1fcb9
IM
1647 unsigned long last_switch_count;
1648#endif
1da177e4
LT
1649/* filesystem information */
1650 struct fs_struct *fs;
1651/* open file information */
1652 struct files_struct *files;
1651e14e 1653/* namespaces */
ab516013 1654 struct nsproxy *nsproxy;
1da177e4
LT
1655/* signal handlers */
1656 struct signal_struct *signal;
1657 struct sighand_struct *sighand;
1658
1659 sigset_t blocked, real_blocked;
f3de272b 1660 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1da177e4
LT
1661 struct sigpending pending;
1662
1663 unsigned long sas_ss_sp;
1664 size_t sas_ss_size;
2a742138 1665 unsigned sas_ss_flags;
2e01fabe 1666
67d12145 1667 struct callback_head *task_works;
e73f8959 1668
1da177e4 1669 struct audit_context *audit_context;
bfef93a5 1670#ifdef CONFIG_AUDITSYSCALL
e1760bd5 1671 kuid_t loginuid;
4746ec5b 1672 unsigned int sessionid;
bfef93a5 1673#endif
932ecebb 1674 struct seccomp seccomp;
1da177e4
LT
1675
1676/* Thread group tracking */
1677 u32 parent_exec_id;
1678 u32 self_exec_id;
58568d2a
MX
1679/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1680 * mempolicy */
1da177e4 1681 spinlock_t alloc_lock;
1da177e4 1682
b29739f9 1683 /* Protection of the PI data structures: */
1d615482 1684 raw_spinlock_t pi_lock;
b29739f9 1685
76751049
PZ
1686 struct wake_q_node wake_q;
1687
23f78d4a
IM
1688#ifdef CONFIG_RT_MUTEXES
1689 /* PI waiters blocked on a rt_mutex held by this task */
fb00aca4
PZ
1690 struct rb_root pi_waiters;
1691 struct rb_node *pi_waiters_leftmost;
23f78d4a
IM
1692 /* Deadlock detection and priority inheritance handling */
1693 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1694#endif
1695
408894ee
IM
1696#ifdef CONFIG_DEBUG_MUTEXES
1697 /* mutex deadlock detection */
1698 struct mutex_waiter *blocked_on;
1699#endif
de30a2b3
IM
1700#ifdef CONFIG_TRACE_IRQFLAGS
1701 unsigned int irq_events;
de30a2b3 1702 unsigned long hardirq_enable_ip;
de30a2b3 1703 unsigned long hardirq_disable_ip;
fa1452e8 1704 unsigned int hardirq_enable_event;
de30a2b3 1705 unsigned int hardirq_disable_event;
fa1452e8
HS
1706 int hardirqs_enabled;
1707 int hardirq_context;
de30a2b3 1708 unsigned long softirq_disable_ip;
de30a2b3 1709 unsigned long softirq_enable_ip;
fa1452e8 1710 unsigned int softirq_disable_event;
de30a2b3 1711 unsigned int softirq_enable_event;
fa1452e8 1712 int softirqs_enabled;
de30a2b3
IM
1713 int softirq_context;
1714#endif
fbb9ce95 1715#ifdef CONFIG_LOCKDEP
bdb9441e 1716# define MAX_LOCK_DEPTH 48UL
fbb9ce95
IM
1717 u64 curr_chain_key;
1718 int lockdep_depth;
fbb9ce95 1719 unsigned int lockdep_recursion;
c7aceaba 1720 struct held_lock held_locks[MAX_LOCK_DEPTH];
cf40bd16 1721 gfp_t lockdep_reclaim_gfp;
fbb9ce95 1722#endif
c6d30853
AR
1723#ifdef CONFIG_UBSAN
1724 unsigned int in_ubsan;
1725#endif
408894ee 1726
1da177e4
LT
1727/* journalling filesystem info */
1728 void *journal_info;
1729
d89d8796 1730/* stacked block device info */
bddd87c7 1731 struct bio_list *bio_list;
d89d8796 1732
73c10101
JA
1733#ifdef CONFIG_BLOCK
1734/* stack plugging */
1735 struct blk_plug *plug;
1736#endif
1737
1da177e4
LT
1738/* VM state */
1739 struct reclaim_state *reclaim_state;
1740
1da177e4
LT
1741 struct backing_dev_info *backing_dev_info;
1742
1743 struct io_context *io_context;
1744
1745 unsigned long ptrace_message;
1746 siginfo_t *last_siginfo; /* For ptrace use. */
7c3ab738 1747 struct task_io_accounting ioac;
8f0ab514 1748#if defined(CONFIG_TASK_XACCT)
1da177e4
LT
1749 u64 acct_rss_mem1; /* accumulated rss usage */
1750 u64 acct_vm_mem1; /* accumulated virtual memory usage */
49b5cf34 1751 cputime_t acct_timexpd; /* stime + utime since last update */
1da177e4
LT
1752#endif
1753#ifdef CONFIG_CPUSETS
58568d2a 1754 nodemask_t mems_allowed; /* Protected by alloc_lock */
cc9a6c87 1755 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
825a46af 1756 int cpuset_mem_spread_rotor;
6adef3eb 1757 int cpuset_slab_spread_rotor;
1da177e4 1758#endif
ddbcc7e8 1759#ifdef CONFIG_CGROUPS
817929ec 1760 /* Control Group info protected by css_set_lock */
2c392b8c 1761 struct css_set __rcu *cgroups;
817929ec
PM
1762 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1763 struct list_head cg_list;
ddbcc7e8 1764#endif
42b2dd0a 1765#ifdef CONFIG_FUTEX
0771dfef 1766 struct robust_list_head __user *robust_list;
34f192c6
IM
1767#ifdef CONFIG_COMPAT
1768 struct compat_robust_list_head __user *compat_robust_list;
1769#endif
c87e2837
IM
1770 struct list_head pi_state_list;
1771 struct futex_pi_state *pi_state_cache;
c7aceaba 1772#endif
cdd6c482 1773#ifdef CONFIG_PERF_EVENTS
8dc85d54 1774 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
cdd6c482
IM
1775 struct mutex perf_event_mutex;
1776 struct list_head perf_event_list;
a63eaf34 1777#endif
8f47b187
TG
1778#ifdef CONFIG_DEBUG_PREEMPT
1779 unsigned long preempt_disable_ip;
1780#endif
c7aceaba 1781#ifdef CONFIG_NUMA
58568d2a 1782 struct mempolicy *mempolicy; /* Protected by alloc_lock */
c7aceaba 1783 short il_next;
207205a2 1784 short pref_node_fork;
42b2dd0a 1785#endif
cbee9f88
PZ
1786#ifdef CONFIG_NUMA_BALANCING
1787 int numa_scan_seq;
cbee9f88 1788 unsigned int numa_scan_period;
598f0ec0 1789 unsigned int numa_scan_period_max;
de1c9ce6 1790 int numa_preferred_nid;
6b9a7460 1791 unsigned long numa_migrate_retry;
cbee9f88 1792 u64 node_stamp; /* migration stamp */
7e2703e6
RR
1793 u64 last_task_numa_placement;
1794 u64 last_sum_exec_runtime;
cbee9f88 1795 struct callback_head numa_work;
f809ca9a 1796
8c8a743c
PZ
1797 struct list_head numa_entry;
1798 struct numa_group *numa_group;
1799
745d6147 1800 /*
44dba3d5
IM
1801 * numa_faults is an array split into four regions:
1802 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1803 * in this precise order.
1804 *
1805 * faults_memory: Exponential decaying average of faults on a per-node
1806 * basis. Scheduling placement decisions are made based on these
1807 * counts. The values remain static for the duration of a PTE scan.
1808 * faults_cpu: Track the nodes the process was running on when a NUMA
1809 * hinting fault was incurred.
1810 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1811 * during the current scan window. When the scan completes, the counts
1812 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1813 */
44dba3d5 1814 unsigned long *numa_faults;
83e1d2cd 1815 unsigned long total_numa_faults;
745d6147 1816
04bb2f94
RR
1817 /*
1818 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1819 * scan window were remote/local or failed to migrate. The task scan
1820 * period is adapted based on the locality of the faults with different
1821 * weights depending on whether they were shared or private faults
04bb2f94 1822 */
074c2381 1823 unsigned long numa_faults_locality[3];
04bb2f94 1824
b32e86b4 1825 unsigned long numa_pages_migrated;
cbee9f88
PZ
1826#endif /* CONFIG_NUMA_BALANCING */
1827
72b252ae
MG
1828#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1829 struct tlbflush_unmap_batch tlb_ubc;
1830#endif
1831
e56d0903 1832 struct rcu_head rcu;
b92ce558
JA
1833
1834 /*
1835 * cache last used pipe for splice
1836 */
1837 struct pipe_inode_info *splice_pipe;
5640f768
ED
1838
1839 struct page_frag task_frag;
1840
ca74e92b
SN
1841#ifdef CONFIG_TASK_DELAY_ACCT
1842 struct task_delay_info *delays;
f4f154fd
AM
1843#endif
1844#ifdef CONFIG_FAULT_INJECTION
1845 int make_it_fail;
ca74e92b 1846#endif
9d823e8f
WF
1847 /*
1848 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1849 * balance_dirty_pages() for some dirty throttling pause
1850 */
1851 int nr_dirtied;
1852 int nr_dirtied_pause;
83712358 1853 unsigned long dirty_paused_when; /* start of a write-and-pause period */
9d823e8f 1854
9745512c
AV
1855#ifdef CONFIG_LATENCYTOP
1856 int latency_record_count;
1857 struct latency_record latency_record[LT_SAVECOUNT];
1858#endif
6976675d
AV
1859 /*
1860 * time slack values; these are used to round up poll() and
1861 * select() etc timeout values. These are in nanoseconds.
1862 */
da8b44d5
JS
1863 u64 timer_slack_ns;
1864 u64 default_timer_slack_ns;
f8d570a4 1865
0b24becc
AR
1866#ifdef CONFIG_KASAN
1867 unsigned int kasan_depth;
1868#endif
fb52607a 1869#ifdef CONFIG_FUNCTION_GRAPH_TRACER
3ad2f3fb 1870 /* Index of current stored address in ret_stack */
f201ae23
FW
1871 int curr_ret_stack;
1872 /* Stack of return addresses for return function tracing */
1873 struct ftrace_ret_stack *ret_stack;
8aef2d28
SR
1874 /* time stamp for last schedule */
1875 unsigned long long ftrace_timestamp;
f201ae23
FW
1876 /*
1877 * Number of functions that haven't been traced
1878 * because of depth overrun.
1879 */
1880 atomic_t trace_overrun;
380c4b14
FW
1881 /* Pause for the tracing */
1882 atomic_t tracing_graph_pause;
f201ae23 1883#endif
ea4e2bc4
SR
1884#ifdef CONFIG_TRACING
1885 /* state flags for use by tracers */
1886 unsigned long trace;
b1cff0ad 1887 /* bitmask and counter of trace recursion */
261842b7
SR
1888 unsigned long trace_recursion;
1889#endif /* CONFIG_TRACING */
5c9a8750
DV
1890#ifdef CONFIG_KCOV
1891 /* Coverage collection mode enabled for this task (0 if disabled). */
1892 enum kcov_mode kcov_mode;
1893 /* Size of the kcov_area. */
1894 unsigned kcov_size;
1895 /* Buffer for coverage collection. */
1896 void *kcov_area;
1897 /* kcov desciptor wired with this task or NULL. */
1898 struct kcov *kcov;
1899#endif
6f185c29 1900#ifdef CONFIG_MEMCG
626ebc41
TH
1901 struct mem_cgroup *memcg_in_oom;
1902 gfp_t memcg_oom_gfp_mask;
1903 int memcg_oom_order;
b23afb93
TH
1904
1905 /* number of pages to reclaim on returning to userland */
1906 unsigned int memcg_nr_pages_over_high;
569b846d 1907#endif
0326f5a9
SD
1908#ifdef CONFIG_UPROBES
1909 struct uprobe_task *utask;
0326f5a9 1910#endif
cafe5635
KO
1911#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1912 unsigned int sequential_io;
1913 unsigned int sequential_io_avg;
1914#endif
8eb23b9f
PZ
1915#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1916 unsigned long task_state_change;
1917#endif
8bcbde54 1918 int pagefault_disabled;
03049269 1919#ifdef CONFIG_MMU
29c696e1 1920 struct task_struct *oom_reaper_list;
03049269 1921#endif
0c8c0f03
DH
1922/* CPU-specific state of this task */
1923 struct thread_struct thread;
1924/*
1925 * WARNING: on x86, 'thread_struct' contains a variable-sized
1926 * structure. It *MUST* be at the end of 'task_struct'.
1927 *
1928 * Do not put anything below here!
1929 */
1da177e4
LT
1930};
1931
5aaeb5c0
IM
1932#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1933extern int arch_task_struct_size __read_mostly;
1934#else
1935# define arch_task_struct_size (sizeof(struct task_struct))
1936#endif
0c8c0f03 1937
76e6eee0 1938/* Future-safe accessor for struct task_struct's cpus_allowed. */
a4636818 1939#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
76e6eee0 1940
50605ffb
TG
1941static inline int tsk_nr_cpus_allowed(struct task_struct *p)
1942{
1943 return p->nr_cpus_allowed;
1944}
1945
6688cc05
PZ
1946#define TNF_MIGRATED 0x01
1947#define TNF_NO_GROUP 0x02
dabe1d99 1948#define TNF_SHARED 0x04
04bb2f94 1949#define TNF_FAULT_LOCAL 0x08
074c2381 1950#define TNF_MIGRATE_FAIL 0x10
6688cc05 1951
b18dc5f2
MH
1952static inline bool in_vfork(struct task_struct *tsk)
1953{
1954 bool ret;
1955
1956 /*
1957 * need RCU to access ->real_parent if CLONE_VM was used along with
1958 * CLONE_PARENT.
1959 *
1960 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
1961 * imply CLONE_VM
1962 *
1963 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
1964 * ->real_parent is not necessarily the task doing vfork(), so in
1965 * theory we can't rely on task_lock() if we want to dereference it.
1966 *
1967 * And in this case we can't trust the real_parent->mm == tsk->mm
1968 * check, it can be false negative. But we do not care, if init or
1969 * another oom-unkillable task does this it should blame itself.
1970 */
1971 rcu_read_lock();
1972 ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm;
1973 rcu_read_unlock();
1974
1975 return ret;
1976}
1977
cbee9f88 1978#ifdef CONFIG_NUMA_BALANCING
6688cc05 1979extern void task_numa_fault(int last_node, int node, int pages, int flags);
e29cf08b 1980extern pid_t task_numa_group_id(struct task_struct *p);
1a687c2e 1981extern void set_numabalancing_state(bool enabled);
82727018 1982extern void task_numa_free(struct task_struct *p);
10f39042
RR
1983extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1984 int src_nid, int dst_cpu);
cbee9f88 1985#else
ac8e895b 1986static inline void task_numa_fault(int last_node, int node, int pages,
6688cc05 1987 int flags)
cbee9f88
PZ
1988{
1989}
e29cf08b
MG
1990static inline pid_t task_numa_group_id(struct task_struct *p)
1991{
1992 return 0;
1993}
1a687c2e
MG
1994static inline void set_numabalancing_state(bool enabled)
1995{
1996}
82727018
RR
1997static inline void task_numa_free(struct task_struct *p)
1998{
1999}
10f39042
RR
2000static inline bool should_numa_migrate_memory(struct task_struct *p,
2001 struct page *page, int src_nid, int dst_cpu)
2002{
2003 return true;
2004}
cbee9f88
PZ
2005#endif
2006
e868171a 2007static inline struct pid *task_pid(struct task_struct *task)
22c935f4
EB
2008{
2009 return task->pids[PIDTYPE_PID].pid;
2010}
2011
e868171a 2012static inline struct pid *task_tgid(struct task_struct *task)
22c935f4
EB
2013{
2014 return task->group_leader->pids[PIDTYPE_PID].pid;
2015}
2016
6dda81f4
ON
2017/*
2018 * Without tasklist or rcu lock it is not safe to dereference
2019 * the result of task_pgrp/task_session even if task == current,
2020 * we can race with another thread doing sys_setsid/sys_setpgid.
2021 */
e868171a 2022static inline struct pid *task_pgrp(struct task_struct *task)
22c935f4
EB
2023{
2024 return task->group_leader->pids[PIDTYPE_PGID].pid;
2025}
2026
e868171a 2027static inline struct pid *task_session(struct task_struct *task)
22c935f4
EB
2028{
2029 return task->group_leader->pids[PIDTYPE_SID].pid;
2030}
2031
7af57294
PE
2032struct pid_namespace;
2033
2034/*
2035 * the helpers to get the task's different pids as they are seen
2036 * from various namespaces
2037 *
2038 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
2039 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
2040 * current.
7af57294
PE
2041 * task_xid_nr_ns() : id seen from the ns specified;
2042 *
2043 * set_task_vxid() : assigns a virtual id to a task;
2044 *
7af57294
PE
2045 * see also pid_nr() etc in include/linux/pid.h
2046 */
52ee2dfd
ON
2047pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
2048 struct pid_namespace *ns);
7af57294 2049
e868171a 2050static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
2051{
2052 return tsk->pid;
2053}
2054
52ee2dfd
ON
2055static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
2056 struct pid_namespace *ns)
2057{
2058 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
2059}
7af57294
PE
2060
2061static inline pid_t task_pid_vnr(struct task_struct *tsk)
2062{
52ee2dfd 2063 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
2064}
2065
2066
e868171a 2067static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
2068{
2069 return tsk->tgid;
2070}
2071
2f2a3a46 2072pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
7af57294
PE
2073
2074static inline pid_t task_tgid_vnr(struct task_struct *tsk)
2075{
2076 return pid_vnr(task_tgid(tsk));
2077}
2078
2079
80e0b6e8 2080static inline int pid_alive(const struct task_struct *p);
ad36d282
RGB
2081static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
2082{
2083 pid_t pid = 0;
2084
2085 rcu_read_lock();
2086 if (pid_alive(tsk))
2087 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
2088 rcu_read_unlock();
2089
2090 return pid;
2091}
2092
2093static inline pid_t task_ppid_nr(const struct task_struct *tsk)
2094{
2095 return task_ppid_nr_ns(tsk, &init_pid_ns);
2096}
2097
52ee2dfd
ON
2098static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
2099 struct pid_namespace *ns)
7af57294 2100{
52ee2dfd 2101 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
2102}
2103
7af57294
PE
2104static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
2105{
52ee2dfd 2106 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
2107}
2108
2109
52ee2dfd
ON
2110static inline pid_t task_session_nr_ns(struct task_struct *tsk,
2111 struct pid_namespace *ns)
7af57294 2112{
52ee2dfd 2113 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
2114}
2115
7af57294
PE
2116static inline pid_t task_session_vnr(struct task_struct *tsk)
2117{
52ee2dfd 2118 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
2119}
2120
1b0f7ffd
ON
2121/* obsolete, do not use */
2122static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2123{
2124 return task_pgrp_nr_ns(tsk, &init_pid_ns);
2125}
7af57294 2126
1da177e4
LT
2127/**
2128 * pid_alive - check that a task structure is not stale
2129 * @p: Task structure to be checked.
2130 *
2131 * Test if a process is not yet dead (at most zombie state)
2132 * If pid_alive fails, then pointers within the task structure
2133 * can be stale and must not be dereferenced.
e69f6186
YB
2134 *
2135 * Return: 1 if the process is alive. 0 otherwise.
1da177e4 2136 */
ad36d282 2137static inline int pid_alive(const struct task_struct *p)
1da177e4 2138{
92476d7f 2139 return p->pids[PIDTYPE_PID].pid != NULL;
1da177e4
LT
2140}
2141
f400e198 2142/**
570f5241
SS
2143 * is_global_init - check if a task structure is init. Since init
2144 * is free to have sub-threads we need to check tgid.
3260259f
HK
2145 * @tsk: Task structure to be checked.
2146 *
2147 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
2148 *
2149 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 2150 */
e868171a 2151static inline int is_global_init(struct task_struct *tsk)
b461cc03 2152{
570f5241 2153 return task_tgid_nr(tsk) == 1;
b461cc03 2154}
b460cbc5 2155
9ec52099
CLG
2156extern struct pid *cad_pid;
2157
1da177e4 2158extern void free_task(struct task_struct *tsk);
1da177e4 2159#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
e56d0903 2160
158d9ebd 2161extern void __put_task_struct(struct task_struct *t);
e56d0903
IM
2162
2163static inline void put_task_struct(struct task_struct *t)
2164{
2165 if (atomic_dec_and_test(&t->usage))
8c7904a0 2166 __put_task_struct(t);
e56d0903 2167}
1da177e4 2168
150593bf
ON
2169struct task_struct *task_rcu_dereference(struct task_struct **ptask);
2170struct task_struct *try_get_task_struct(struct task_struct **ptask);
2171
6a61671b
FW
2172#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2173extern void task_cputime(struct task_struct *t,
2174 cputime_t *utime, cputime_t *stime);
2175extern void task_cputime_scaled(struct task_struct *t,
2176 cputime_t *utimescaled, cputime_t *stimescaled);
2177extern cputime_t task_gtime(struct task_struct *t);
2178#else
6fac4829
FW
2179static inline void task_cputime(struct task_struct *t,
2180 cputime_t *utime, cputime_t *stime)
2181{
2182 if (utime)
2183 *utime = t->utime;
2184 if (stime)
2185 *stime = t->stime;
2186}
2187
2188static inline void task_cputime_scaled(struct task_struct *t,
2189 cputime_t *utimescaled,
2190 cputime_t *stimescaled)
2191{
2192 if (utimescaled)
2193 *utimescaled = t->utimescaled;
2194 if (stimescaled)
2195 *stimescaled = t->stimescaled;
2196}
6a61671b
FW
2197
2198static inline cputime_t task_gtime(struct task_struct *t)
2199{
2200 return t->gtime;
2201}
2202#endif
e80d0a1a
FW
2203extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2204extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
49048622 2205
1da177e4
LT
2206/*
2207 * Per process flags
2208 */
1da177e4 2209#define PF_EXITING 0x00000004 /* getting shut down */
778e9a9c 2210#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
94886b84 2211#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
21aa9af0 2212#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1da177e4 2213#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
4db96cf0 2214#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1da177e4
LT
2215#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2216#define PF_DUMPCORE 0x00000200 /* dumped core */
2217#define PF_SIGNALED 0x00000400 /* killed by a signal */
2218#define PF_MEMALLOC 0x00000800 /* Allocating memory */
72fa5997 2219#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1da177e4 2220#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
774a1221 2221#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1da177e4
LT
2222#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2223#define PF_FROZEN 0x00010000 /* frozen for system suspend */
2224#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2225#define PF_KSWAPD 0x00040000 /* I am kswapd */
21caf2fc 2226#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1da177e4 2227#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
246bb0b1 2228#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
b31dc66a
JA
2229#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2230#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
14a40ffc 2231#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
4db96cf0 2232#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
61a87122 2233#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
58a69cb4 2234#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2b44c4db 2235#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1da177e4
LT
2236
2237/*
2238 * Only the _current_ task can read/write to tsk->flags, but other
2239 * tasks can access tsk->flags in readonly mode for example
2240 * with tsk_used_math (like during threaded core dumping).
2241 * There is however an exception to this rule during ptrace
2242 * or during fork: the ptracer task is allowed to write to the
2243 * child->flags of its traced child (same goes for fork, the parent
2244 * can write to the child->flags), because we're guaranteed the
2245 * child is not running and in turn not changing child->flags
2246 * at the same time the parent does it.
2247 */
2248#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2249#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2250#define clear_used_math() clear_stopped_child_used_math(current)
2251#define set_used_math() set_stopped_child_used_math(current)
2252#define conditional_stopped_child_used_math(condition, child) \
2253 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2254#define conditional_used_math(condition) \
2255 conditional_stopped_child_used_math(condition, current)
2256#define copy_to_stopped_child_used_math(child) \
2257 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2258/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2259#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2260#define used_math() tsk_used_math(current)
2261
934f3072
JB
2262/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2263 * __GFP_FS is also cleared as it implies __GFP_IO.
2264 */
21caf2fc
ML
2265static inline gfp_t memalloc_noio_flags(gfp_t flags)
2266{
2267 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
934f3072 2268 flags &= ~(__GFP_IO | __GFP_FS);
21caf2fc
ML
2269 return flags;
2270}
2271
2272static inline unsigned int memalloc_noio_save(void)
2273{
2274 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2275 current->flags |= PF_MEMALLOC_NOIO;
2276 return flags;
2277}
2278
2279static inline void memalloc_noio_restore(unsigned int flags)
2280{
2281 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2282}
2283
1d4457f9 2284/* Per-process atomic flags. */
a2b86f77 2285#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2ad654bc
ZL
2286#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2287#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
77ed2c57 2288#define PFA_LMK_WAITING 3 /* Lowmemorykiller is waiting */
2ad654bc 2289
1d4457f9 2290
e0e5070b
ZL
2291#define TASK_PFA_TEST(name, func) \
2292 static inline bool task_##func(struct task_struct *p) \
2293 { return test_bit(PFA_##name, &p->atomic_flags); }
2294#define TASK_PFA_SET(name, func) \
2295 static inline void task_set_##func(struct task_struct *p) \
2296 { set_bit(PFA_##name, &p->atomic_flags); }
2297#define TASK_PFA_CLEAR(name, func) \
2298 static inline void task_clear_##func(struct task_struct *p) \
2299 { clear_bit(PFA_##name, &p->atomic_flags); }
2300
2301TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2302TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 2303
2ad654bc
ZL
2304TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2305TASK_PFA_SET(SPREAD_PAGE, spread_page)
2306TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2307
2308TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2309TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2310TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 2311
77ed2c57
TH
2312TASK_PFA_TEST(LMK_WAITING, lmk_waiting)
2313TASK_PFA_SET(LMK_WAITING, lmk_waiting)
2314
e5c1902e 2315/*
a8f072c1 2316 * task->jobctl flags
e5c1902e 2317 */
a8f072c1 2318#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
e5c1902e 2319
a8f072c1
TH
2320#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2321#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2322#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
73ddff2b 2323#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
fb1d910c 2324#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
a8f072c1 2325#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
544b2c91 2326#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
a8f072c1 2327
b76808e6
PD
2328#define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2329#define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2330#define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2331#define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2332#define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2333#define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2334#define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
a8f072c1 2335
fb1d910c 2336#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
73ddff2b 2337#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
3759a0d9 2338
7dd3db54 2339extern bool task_set_jobctl_pending(struct task_struct *task,
b76808e6 2340 unsigned long mask);
73ddff2b 2341extern void task_clear_jobctl_trapping(struct task_struct *task);
3759a0d9 2342extern void task_clear_jobctl_pending(struct task_struct *task,
b76808e6 2343 unsigned long mask);
39efa3ef 2344
f41d911f
PM
2345static inline void rcu_copy_process(struct task_struct *p)
2346{
8315f422 2347#ifdef CONFIG_PREEMPT_RCU
f41d911f 2348 p->rcu_read_lock_nesting = 0;
1d082fd0 2349 p->rcu_read_unlock_special.s = 0;
dd5d19ba 2350 p->rcu_blocked_node = NULL;
f41d911f 2351 INIT_LIST_HEAD(&p->rcu_node_entry);
8315f422
PM
2352#endif /* #ifdef CONFIG_PREEMPT_RCU */
2353#ifdef CONFIG_TASKS_RCU
2354 p->rcu_tasks_holdout = false;
2355 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
176f8f7a 2356 p->rcu_tasks_idle_cpu = -1;
8315f422 2357#endif /* #ifdef CONFIG_TASKS_RCU */
f41d911f
PM
2358}
2359
907aed48
MG
2360static inline void tsk_restore_flags(struct task_struct *task,
2361 unsigned long orig_flags, unsigned long flags)
2362{
2363 task->flags &= ~flags;
2364 task->flags |= orig_flags & flags;
2365}
2366
f82f8042
JL
2367extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2368 const struct cpumask *trial);
7f51412a
JL
2369extern int task_can_attach(struct task_struct *p,
2370 const struct cpumask *cs_cpus_allowed);
1da177e4 2371#ifdef CONFIG_SMP
1e1b6c51
KM
2372extern void do_set_cpus_allowed(struct task_struct *p,
2373 const struct cpumask *new_mask);
2374
cd8ba7cd 2375extern int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2376 const struct cpumask *new_mask);
1da177e4 2377#else
1e1b6c51
KM
2378static inline void do_set_cpus_allowed(struct task_struct *p,
2379 const struct cpumask *new_mask)
2380{
2381}
cd8ba7cd 2382static inline int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2383 const struct cpumask *new_mask)
1da177e4 2384{
96f874e2 2385 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
2386 return -EINVAL;
2387 return 0;
2388}
2389#endif
e0ad9556 2390
3451d024 2391#ifdef CONFIG_NO_HZ_COMMON
5167e8d5
PZ
2392void calc_load_enter_idle(void);
2393void calc_load_exit_idle(void);
2394#else
2395static inline void calc_load_enter_idle(void) { }
2396static inline void calc_load_exit_idle(void) { }
3451d024 2397#endif /* CONFIG_NO_HZ_COMMON */
5167e8d5 2398
b342501c 2399/*
c676329a
PZ
2400 * Do not use outside of architecture code which knows its limitations.
2401 *
2402 * sched_clock() has no promise of monotonicity or bounded drift between
2403 * CPUs, use (which you should not) requires disabling IRQs.
2404 *
2405 * Please use one of the three interfaces below.
b342501c 2406 */
1bbfa6f2 2407extern unsigned long long notrace sched_clock(void);
c676329a 2408/*
489a71b0 2409 * See the comment in kernel/sched/clock.c
c676329a 2410 */
545a2bf7 2411extern u64 running_clock(void);
c676329a
PZ
2412extern u64 sched_clock_cpu(int cpu);
2413
e436d800 2414
c1955a3d 2415extern void sched_clock_init(void);
3e51f33f 2416
c1955a3d 2417#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3e51f33f
PZ
2418static inline void sched_clock_tick(void)
2419{
2420}
2421
2422static inline void sched_clock_idle_sleep_event(void)
2423{
2424}
2425
2426static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2427{
2428}
2c923e94
DL
2429
2430static inline u64 cpu_clock(int cpu)
2431{
2432 return sched_clock();
2433}
2434
2435static inline u64 local_clock(void)
2436{
2437 return sched_clock();
2438}
3e51f33f 2439#else
c676329a
PZ
2440/*
2441 * Architectures can set this to 1 if they have specified
2442 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2443 * but then during bootup it turns out that sched_clock()
2444 * is reliable after all:
2445 */
35af99e6
PZ
2446extern int sched_clock_stable(void);
2447extern void set_sched_clock_stable(void);
2448extern void clear_sched_clock_stable(void);
c676329a 2449
3e51f33f
PZ
2450extern void sched_clock_tick(void);
2451extern void sched_clock_idle_sleep_event(void);
2452extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2c923e94
DL
2453
2454/*
2455 * As outlined in clock.c, provides a fast, high resolution, nanosecond
2456 * time source that is monotonic per cpu argument and has bounded drift
2457 * between cpus.
2458 *
2459 * ######################### BIG FAT WARNING ##########################
2460 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
2461 * # go backwards !! #
2462 * ####################################################################
2463 */
2464static inline u64 cpu_clock(int cpu)
2465{
2466 return sched_clock_cpu(cpu);
2467}
2468
2469static inline u64 local_clock(void)
2470{
2471 return sched_clock_cpu(raw_smp_processor_id());
2472}
3e51f33f
PZ
2473#endif
2474
b52bfee4
VP
2475#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2476/*
2477 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2478 * The reason for this explicit opt-in is not to have perf penalty with
2479 * slow sched_clocks.
2480 */
2481extern void enable_sched_clock_irqtime(void);
2482extern void disable_sched_clock_irqtime(void);
2483#else
2484static inline void enable_sched_clock_irqtime(void) {}
2485static inline void disable_sched_clock_irqtime(void) {}
2486#endif
2487
36c8b586 2488extern unsigned long long
41b86e9c 2489task_sched_runtime(struct task_struct *task);
1da177e4
LT
2490
2491/* sched_exec is called by processes performing an exec */
2492#ifdef CONFIG_SMP
2493extern void sched_exec(void);
2494#else
2495#define sched_exec() {}
2496#endif
2497
2aa44d05
IM
2498extern void sched_clock_idle_sleep_event(void);
2499extern void sched_clock_idle_wakeup_event(u64 delta_ns);
bb29ab26 2500
1da177e4
LT
2501#ifdef CONFIG_HOTPLUG_CPU
2502extern void idle_task_exit(void);
2503#else
2504static inline void idle_task_exit(void) {}
2505#endif
2506
3451d024 2507#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1c20091e 2508extern void wake_up_nohz_cpu(int cpu);
06d8308c 2509#else
1c20091e 2510static inline void wake_up_nohz_cpu(int cpu) { }
06d8308c
TG
2511#endif
2512
ce831b38 2513#ifdef CONFIG_NO_HZ_FULL
265f22a9 2514extern u64 scheduler_tick_max_deferment(void);
06d8308c
TG
2515#endif
2516
5091faa4 2517#ifdef CONFIG_SCHED_AUTOGROUP
5091faa4
MG
2518extern void sched_autogroup_create_attach(struct task_struct *p);
2519extern void sched_autogroup_detach(struct task_struct *p);
2520extern void sched_autogroup_fork(struct signal_struct *sig);
2521extern void sched_autogroup_exit(struct signal_struct *sig);
2522#ifdef CONFIG_PROC_FS
2523extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2e5b5b3a 2524extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
5091faa4
MG
2525#endif
2526#else
2527static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2528static inline void sched_autogroup_detach(struct task_struct *p) { }
2529static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2530static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2531#endif
2532
fa93384f 2533extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
2534extern void set_user_nice(struct task_struct *p, long nice);
2535extern int task_prio(const struct task_struct *p);
d0ea0268
DY
2536/**
2537 * task_nice - return the nice value of a given task.
2538 * @p: the task in question.
2539 *
2540 * Return: The nice value [ -20 ... 0 ... 19 ].
2541 */
2542static inline int task_nice(const struct task_struct *p)
2543{
2544 return PRIO_TO_NICE((p)->static_prio);
2545}
36c8b586
IM
2546extern int can_nice(const struct task_struct *p, const int nice);
2547extern int task_curr(const struct task_struct *p);
1da177e4 2548extern int idle_cpu(int cpu);
fe7de49f
KM
2549extern int sched_setscheduler(struct task_struct *, int,
2550 const struct sched_param *);
961ccddd 2551extern int sched_setscheduler_nocheck(struct task_struct *, int,
fe7de49f 2552 const struct sched_param *);
d50dde5a
DF
2553extern int sched_setattr(struct task_struct *,
2554 const struct sched_attr *);
36c8b586 2555extern struct task_struct *idle_task(int cpu);
c4f30608
PM
2556/**
2557 * is_idle_task - is the specified task an idle task?
fa757281 2558 * @p: the task in question.
e69f6186
YB
2559 *
2560 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 2561 */
7061ca3b 2562static inline bool is_idle_task(const struct task_struct *p)
c4f30608
PM
2563{
2564 return p->pid == 0;
2565}
36c8b586
IM
2566extern struct task_struct *curr_task(int cpu);
2567extern void set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
2568
2569void yield(void);
2570
1da177e4
LT
2571union thread_union {
2572 struct thread_info thread_info;
2573 unsigned long stack[THREAD_SIZE/sizeof(long)];
2574};
2575
2576#ifndef __HAVE_ARCH_KSTACK_END
2577static inline int kstack_end(void *addr)
2578{
2579 /* Reliable end of stack detection:
2580 * Some APM bios versions misalign the stack
2581 */
2582 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2583}
2584#endif
2585
2586extern union thread_union init_thread_union;
2587extern struct task_struct init_task;
2588
2589extern struct mm_struct init_mm;
2590
198fe21b
PE
2591extern struct pid_namespace init_pid_ns;
2592
2593/*
2594 * find a task by one of its numerical ids
2595 *
198fe21b
PE
2596 * find_task_by_pid_ns():
2597 * finds a task by its pid in the specified namespace
228ebcbe
PE
2598 * find_task_by_vpid():
2599 * finds a task by its virtual pid
198fe21b 2600 *
e49859e7 2601 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
2602 */
2603
228ebcbe
PE
2604extern struct task_struct *find_task_by_vpid(pid_t nr);
2605extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2606 struct pid_namespace *ns);
198fe21b 2607
1da177e4 2608/* per-UID process charging. */
7b44ab97 2609extern struct user_struct * alloc_uid(kuid_t);
1da177e4
LT
2610static inline struct user_struct *get_uid(struct user_struct *u)
2611{
2612 atomic_inc(&u->__count);
2613 return u;
2614}
2615extern void free_uid(struct user_struct *);
1da177e4
LT
2616
2617#include <asm/current.h>
2618
f0af911a 2619extern void xtime_update(unsigned long ticks);
1da177e4 2620
b3c97528
HH
2621extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2622extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 2623extern void wake_up_new_task(struct task_struct *tsk);
1da177e4
LT
2624#ifdef CONFIG_SMP
2625 extern void kick_process(struct task_struct *tsk);
2626#else
2627 static inline void kick_process(struct task_struct *tsk) { }
2628#endif
aab03e05 2629extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
ad46c2c4 2630extern void sched_dead(struct task_struct *p);
1da177e4 2631
1da177e4
LT
2632extern void proc_caches_init(void);
2633extern void flush_signals(struct task_struct *);
10ab825b 2634extern void ignore_signals(struct task_struct *);
1da177e4
LT
2635extern void flush_signal_handlers(struct task_struct *, int force_default);
2636extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2637
be0e6f29 2638static inline int kernel_dequeue_signal(siginfo_t *info)
1da177e4 2639{
be0e6f29
ON
2640 struct task_struct *tsk = current;
2641 siginfo_t __info;
1da177e4
LT
2642 int ret;
2643
be0e6f29
ON
2644 spin_lock_irq(&tsk->sighand->siglock);
2645 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2646 spin_unlock_irq(&tsk->sighand->siglock);
1da177e4
LT
2647
2648 return ret;
53c8f9f1 2649}
1da177e4 2650
9a13049e
ON
2651static inline void kernel_signal_stop(void)
2652{
2653 spin_lock_irq(&current->sighand->siglock);
2654 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2655 __set_current_state(TASK_STOPPED);
2656 spin_unlock_irq(&current->sighand->siglock);
2657
2658 schedule();
2659}
2660
1da177e4
LT
2661extern void release_task(struct task_struct * p);
2662extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1da177e4
LT
2663extern int force_sigsegv(int, struct task_struct *);
2664extern int force_sig_info(int, struct siginfo *, struct task_struct *);
c4b92fc1 2665extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
c4b92fc1 2666extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
d178bc3a
SH
2667extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2668 const struct cred *, u32);
c4b92fc1
EB
2669extern int kill_pgrp(struct pid *pid, int sig, int priv);
2670extern int kill_pid(struct pid *pid, int sig, int priv);
c3de4b38 2671extern int kill_proc_info(int, struct siginfo *, pid_t);
86773473 2672extern __must_check bool do_notify_parent(struct task_struct *, int);
a7f0765e 2673extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
1da177e4 2674extern void force_sig(int, struct task_struct *);
1da177e4 2675extern int send_sig(int, struct task_struct *, int);
09faef11 2676extern int zap_other_threads(struct task_struct *p);
1da177e4
LT
2677extern struct sigqueue *sigqueue_alloc(void);
2678extern void sigqueue_free(struct sigqueue *);
ac5c2153 2679extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
9ac95f2f 2680extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1da177e4 2681
51a7b448
AV
2682static inline void restore_saved_sigmask(void)
2683{
2684 if (test_and_clear_restore_sigmask())
77097ae5 2685 __set_current_blocked(&current->saved_sigmask);
51a7b448
AV
2686}
2687
b7f9a11a
AV
2688static inline sigset_t *sigmask_to_save(void)
2689{
2690 sigset_t *res = &current->blocked;
2691 if (unlikely(test_restore_sigmask()))
2692 res = &current->saved_sigmask;
2693 return res;
2694}
2695
9ec52099
CLG
2696static inline int kill_cad_pid(int sig, int priv)
2697{
2698 return kill_pid(cad_pid, sig, priv);
2699}
2700
1da177e4
LT
2701/* These can be the second arg to send_sig_info/send_group_sig_info. */
2702#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2703#define SEND_SIG_PRIV ((struct siginfo *) 1)
2704#define SEND_SIG_FORCED ((struct siginfo *) 2)
2705
2a855dd0
SAS
2706/*
2707 * True if we are on the alternate signal stack.
2708 */
1da177e4
LT
2709static inline int on_sig_stack(unsigned long sp)
2710{
c876eeab
AL
2711 /*
2712 * If the signal stack is SS_AUTODISARM then, by construction, we
2713 * can't be on the signal stack unless user code deliberately set
2714 * SS_AUTODISARM when we were already on it.
2715 *
2716 * This improves reliability: if user state gets corrupted such that
2717 * the stack pointer points very close to the end of the signal stack,
2718 * then this check will enable the signal to be handled anyway.
2719 */
2720 if (current->sas_ss_flags & SS_AUTODISARM)
2721 return 0;
2722
2a855dd0
SAS
2723#ifdef CONFIG_STACK_GROWSUP
2724 return sp >= current->sas_ss_sp &&
2725 sp - current->sas_ss_sp < current->sas_ss_size;
2726#else
2727 return sp > current->sas_ss_sp &&
2728 sp - current->sas_ss_sp <= current->sas_ss_size;
2729#endif
1da177e4
LT
2730}
2731
2732static inline int sas_ss_flags(unsigned long sp)
2733{
72f15c03
RW
2734 if (!current->sas_ss_size)
2735 return SS_DISABLE;
2736
2737 return on_sig_stack(sp) ? SS_ONSTACK : 0;
1da177e4
LT
2738}
2739
2a742138
SS
2740static inline void sas_ss_reset(struct task_struct *p)
2741{
2742 p->sas_ss_sp = 0;
2743 p->sas_ss_size = 0;
2744 p->sas_ss_flags = SS_DISABLE;
2745}
2746
5a1b98d3
AV
2747static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2748{
2749 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2750#ifdef CONFIG_STACK_GROWSUP
2751 return current->sas_ss_sp;
2752#else
2753 return current->sas_ss_sp + current->sas_ss_size;
2754#endif
2755 return sp;
2756}
2757
1da177e4
LT
2758/*
2759 * Routines for handling mm_structs
2760 */
2761extern struct mm_struct * mm_alloc(void);
2762
2763/* mmdrop drops the mm and the page tables */
b3c97528 2764extern void __mmdrop(struct mm_struct *);
d2005e3f 2765static inline void mmdrop(struct mm_struct *mm)
1da177e4 2766{
6fb43d7b 2767 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1da177e4
LT
2768 __mmdrop(mm);
2769}
2770
d2005e3f
ON
2771static inline bool mmget_not_zero(struct mm_struct *mm)
2772{
2773 return atomic_inc_not_zero(&mm->mm_users);
2774}
2775
1da177e4
LT
2776/* mmput gets rid of the mappings and all user-space */
2777extern void mmput(struct mm_struct *);
7ef949d7
MH
2778#ifdef CONFIG_MMU
2779/* same as above but performs the slow path from the async context. Can
ec8d7c14
MH
2780 * be called from the atomic context as well
2781 */
2782extern void mmput_async(struct mm_struct *);
7ef949d7 2783#endif
ec8d7c14 2784
1da177e4
LT
2785/* Grab a reference to a task's mm, if it is not already going away */
2786extern struct mm_struct *get_task_mm(struct task_struct *task);
8cdb878d
CY
2787/*
2788 * Grab a reference to a task's mm, if it is not already going away
2789 * and ptrace_may_access with the mode parameter passed to it
2790 * succeeds.
2791 */
2792extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
1da177e4
LT
2793/* Remove the current tasks stale references to the old mm_struct */
2794extern void mm_release(struct task_struct *, struct mm_struct *);
2795
3033f14a
JT
2796#ifdef CONFIG_HAVE_COPY_THREAD_TLS
2797extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2798 struct task_struct *, unsigned long);
2799#else
6f2c55b8 2800extern int copy_thread(unsigned long, unsigned long, unsigned long,
afa86fc4 2801 struct task_struct *);
3033f14a
JT
2802
2803/* Architectures that haven't opted into copy_thread_tls get the tls argument
2804 * via pt_regs, so ignore the tls argument passed via C. */
2805static inline int copy_thread_tls(
2806 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2807 struct task_struct *p, unsigned long tls)
2808{
2809 return copy_thread(clone_flags, sp, arg, p);
2810}
2811#endif
1da177e4 2812extern void flush_thread(void);
5f56a5df
JS
2813
2814#ifdef CONFIG_HAVE_EXIT_THREAD
e6464694 2815extern void exit_thread(struct task_struct *tsk);
5f56a5df 2816#else
e6464694 2817static inline void exit_thread(struct task_struct *tsk)
5f56a5df
JS
2818{
2819}
2820#endif
1da177e4 2821
1da177e4 2822extern void exit_files(struct task_struct *);
a7e5328a 2823extern void __cleanup_sighand(struct sighand_struct *);
cbaffba1 2824
1da177e4 2825extern void exit_itimers(struct signal_struct *);
cbaffba1 2826extern void flush_itimer_signals(void);
1da177e4 2827
9402c95f 2828extern void do_group_exit(int);
1da177e4 2829
c4ad8f98 2830extern int do_execve(struct filename *,
d7627467 2831 const char __user * const __user *,
da3d4c5f 2832 const char __user * const __user *);
51f39a1f
DD
2833extern int do_execveat(int, struct filename *,
2834 const char __user * const __user *,
2835 const char __user * const __user *,
2836 int);
3033f14a 2837extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
e80d6661 2838extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
36c8b586 2839struct task_struct *fork_idle(int);
2aa3a7f8 2840extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
1da177e4 2841
82b89778
AH
2842extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2843static inline void set_task_comm(struct task_struct *tsk, const char *from)
2844{
2845 __set_task_comm(tsk, from, false);
2846}
59714d65 2847extern char *get_task_comm(char *to, struct task_struct *tsk);
1da177e4
LT
2848
2849#ifdef CONFIG_SMP
317f3941 2850void scheduler_ipi(void);
85ba2d86 2851extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 2852#else
184748cc 2853static inline void scheduler_ipi(void) { }
85ba2d86
RM
2854static inline unsigned long wait_task_inactive(struct task_struct *p,
2855 long match_state)
2856{
2857 return 1;
2858}
1da177e4
LT
2859#endif
2860
fafe870f
FW
2861#define tasklist_empty() \
2862 list_empty(&init_task.tasks)
2863
05725f7e
JP
2864#define next_task(p) \
2865 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
1da177e4
LT
2866
2867#define for_each_process(p) \
2868 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2869
5bb459bb 2870extern bool current_is_single_threaded(void);
d84f4f99 2871
1da177e4
LT
2872/*
2873 * Careful: do_each_thread/while_each_thread is a double loop so
2874 * 'break' will not work as expected - use goto instead.
2875 */
2876#define do_each_thread(g, t) \
2877 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2878
2879#define while_each_thread(g, t) \
2880 while ((t = next_thread(t)) != g)
2881
0c740d0a
ON
2882#define __for_each_thread(signal, t) \
2883 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2884
2885#define for_each_thread(p, t) \
2886 __for_each_thread((p)->signal, t)
2887
2888/* Careful: this is a double loop, 'break' won't work as expected. */
2889#define for_each_process_thread(p, t) \
2890 for_each_process(p) for_each_thread(p, t)
2891
7e49827c
ON
2892static inline int get_nr_threads(struct task_struct *tsk)
2893{
b3ac022c 2894 return tsk->signal->nr_threads;
7e49827c
ON
2895}
2896
087806b1
ON
2897static inline bool thread_group_leader(struct task_struct *p)
2898{
2899 return p->exit_signal >= 0;
2900}
1da177e4 2901
0804ef4b
EB
2902/* Do to the insanities of de_thread it is possible for a process
2903 * to have the pid of the thread group leader without actually being
2904 * the thread group leader. For iteration through the pids in proc
2905 * all we care about is that we have a task with the appropriate
2906 * pid, we don't actually care if we have the right task.
2907 */
e1403b8e 2908static inline bool has_group_leader_pid(struct task_struct *p)
0804ef4b 2909{
e1403b8e 2910 return task_pid(p) == p->signal->leader_pid;
0804ef4b
EB
2911}
2912
bac0abd6 2913static inline
e1403b8e 2914bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
bac0abd6 2915{
e1403b8e 2916 return p1->signal == p2->signal;
bac0abd6
PE
2917}
2918
36c8b586 2919static inline struct task_struct *next_thread(const struct task_struct *p)
47e65328 2920{
05725f7e
JP
2921 return list_entry_rcu(p->thread_group.next,
2922 struct task_struct, thread_group);
47e65328
ON
2923}
2924
e868171a 2925static inline int thread_group_empty(struct task_struct *p)
1da177e4 2926{
47e65328 2927 return list_empty(&p->thread_group);
1da177e4
LT
2928}
2929
2930#define delay_group_leader(p) \
2931 (thread_group_leader(p) && !thread_group_empty(p))
2932
1da177e4 2933/*
260ea101 2934 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
22e2c507 2935 * subscriptions and synchronises with wait4(). Also used in procfs. Also
ddbcc7e8 2936 * pins the final release of task.io_context. Also protects ->cpuset and
d68b46fe 2937 * ->cgroup.subsys[]. And ->vfork_done.
1da177e4
LT
2938 *
2939 * Nests both inside and outside of read_lock(&tasklist_lock).
2940 * It must not be nested with write_lock_irq(&tasklist_lock),
2941 * neither inside nor outside.
2942 */
2943static inline void task_lock(struct task_struct *p)
2944{
2945 spin_lock(&p->alloc_lock);
2946}
2947
2948static inline void task_unlock(struct task_struct *p)
2949{
2950 spin_unlock(&p->alloc_lock);
2951}
2952
b8ed374e 2953extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
f63ee72e
ON
2954 unsigned long *flags);
2955
9388dc30
AV
2956static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2957 unsigned long *flags)
2958{
2959 struct sighand_struct *ret;
2960
2961 ret = __lock_task_sighand(tsk, flags);
2962 (void)__cond_lock(&tsk->sighand->siglock, ret);
2963 return ret;
2964}
b8ed374e 2965
f63ee72e
ON
2966static inline void unlock_task_sighand(struct task_struct *tsk,
2967 unsigned long *flags)
2968{
2969 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2970}
2971
77e4ef99 2972/**
7d7efec3
TH
2973 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
2974 * @tsk: task causing the changes
77e4ef99 2975 *
7d7efec3
TH
2976 * All operations which modify a threadgroup - a new thread joining the
2977 * group, death of a member thread (the assertion of PF_EXITING) and
2978 * exec(2) dethreading the process and replacing the leader - are wrapped
2979 * by threadgroup_change_{begin|end}(). This is to provide a place which
2980 * subsystems needing threadgroup stability can hook into for
2981 * synchronization.
77e4ef99 2982 */
7d7efec3 2983static inline void threadgroup_change_begin(struct task_struct *tsk)
4714d1d3 2984{
7d7efec3
TH
2985 might_sleep();
2986 cgroup_threadgroup_change_begin(tsk);
4714d1d3 2987}
77e4ef99
TH
2988
2989/**
7d7efec3
TH
2990 * threadgroup_change_end - mark the end of changes to a threadgroup
2991 * @tsk: task causing the changes
77e4ef99 2992 *
7d7efec3 2993 * See threadgroup_change_begin().
77e4ef99 2994 */
7d7efec3 2995static inline void threadgroup_change_end(struct task_struct *tsk)
4714d1d3 2996{
7d7efec3 2997 cgroup_threadgroup_change_end(tsk);
4714d1d3 2998}
4714d1d3 2999
f037360f
AV
3000#ifndef __HAVE_THREAD_FUNCTIONS
3001
f7e4217b
RZ
3002#define task_thread_info(task) ((struct thread_info *)(task)->stack)
3003#define task_stack_page(task) ((task)->stack)
a1261f54 3004
10ebffde
AV
3005static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
3006{
3007 *task_thread_info(p) = *task_thread_info(org);
3008 task_thread_info(p)->task = p;
3009}
3010
6a40281a
CE
3011/*
3012 * Return the address of the last usable long on the stack.
3013 *
3014 * When the stack grows down, this is just above the thread
3015 * info struct. Going any lower will corrupt the threadinfo.
3016 *
3017 * When the stack grows up, this is the highest address.
3018 * Beyond that position, we corrupt data on the next page.
3019 */
10ebffde
AV
3020static inline unsigned long *end_of_stack(struct task_struct *p)
3021{
6a40281a
CE
3022#ifdef CONFIG_STACK_GROWSUP
3023 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
3024#else
f7e4217b 3025 return (unsigned long *)(task_thread_info(p) + 1);
6a40281a 3026#endif
10ebffde
AV
3027}
3028
f037360f 3029#endif
a70857e4
AT
3030#define task_stack_end_corrupted(task) \
3031 (*(end_of_stack(task)) != STACK_END_MAGIC)
f037360f 3032
8b05c7e6
FT
3033static inline int object_is_on_stack(void *obj)
3034{
3035 void *stack = task_stack_page(current);
3036
3037 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
3038}
3039
b235beea 3040extern void thread_stack_cache_init(void);
8c9843e5 3041
7c9f8861
ES
3042#ifdef CONFIG_DEBUG_STACK_USAGE
3043static inline unsigned long stack_not_used(struct task_struct *p)
3044{
3045 unsigned long *n = end_of_stack(p);
3046
3047 do { /* Skip over canary */
6c31da34
HD
3048# ifdef CONFIG_STACK_GROWSUP
3049 n--;
3050# else
7c9f8861 3051 n++;
6c31da34 3052# endif
7c9f8861
ES
3053 } while (!*n);
3054
6c31da34
HD
3055# ifdef CONFIG_STACK_GROWSUP
3056 return (unsigned long)end_of_stack(p) - (unsigned long)n;
3057# else
7c9f8861 3058 return (unsigned long)n - (unsigned long)end_of_stack(p);
6c31da34 3059# endif
7c9f8861
ES
3060}
3061#endif
d4311ff1 3062extern void set_task_stack_end_magic(struct task_struct *tsk);
7c9f8861 3063
1da177e4
LT
3064/* set thread flags in other task's structures
3065 * - see asm/thread_info.h for TIF_xxxx flags available
3066 */
3067static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
3068{
a1261f54 3069 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3070}
3071
3072static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3073{
a1261f54 3074 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3075}
3076
3077static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
3078{
a1261f54 3079 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3080}
3081
3082static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3083{
a1261f54 3084 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3085}
3086
3087static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
3088{
a1261f54 3089 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3090}
3091
3092static inline void set_tsk_need_resched(struct task_struct *tsk)
3093{
3094 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3095}
3096
3097static inline void clear_tsk_need_resched(struct task_struct *tsk)
3098{
3099 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3100}
3101
8ae121ac
GH
3102static inline int test_tsk_need_resched(struct task_struct *tsk)
3103{
3104 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
3105}
3106
690cc3ff
EB
3107static inline int restart_syscall(void)
3108{
3109 set_tsk_thread_flag(current, TIF_SIGPENDING);
3110 return -ERESTARTNOINTR;
3111}
3112
1da177e4
LT
3113static inline int signal_pending(struct task_struct *p)
3114{
3115 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
3116}
f776d12d 3117
d9588725
RM
3118static inline int __fatal_signal_pending(struct task_struct *p)
3119{
3120 return unlikely(sigismember(&p->pending.signal, SIGKILL));
3121}
f776d12d
MW
3122
3123static inline int fatal_signal_pending(struct task_struct *p)
3124{
3125 return signal_pending(p) && __fatal_signal_pending(p);
3126}
3127
16882c1e
ON
3128static inline int signal_pending_state(long state, struct task_struct *p)
3129{
3130 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
3131 return 0;
3132 if (!signal_pending(p))
3133 return 0;
3134
16882c1e
ON
3135 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
3136}
3137
1da177e4
LT
3138/*
3139 * cond_resched() and cond_resched_lock(): latency reduction via
3140 * explicit rescheduling in places that are safe. The return
3141 * value indicates whether a reschedule was done in fact.
3142 * cond_resched_lock() will drop the spinlock before scheduling,
3143 * cond_resched_softirq() will enable bhs before scheduling.
3144 */
c3921ab7 3145extern int _cond_resched(void);
6f80bd98 3146
613afbf8 3147#define cond_resched() ({ \
3427445a 3148 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
3149 _cond_resched(); \
3150})
6f80bd98 3151
613afbf8
FW
3152extern int __cond_resched_lock(spinlock_t *lock);
3153
3154#define cond_resched_lock(lock) ({ \
3427445a 3155 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
3156 __cond_resched_lock(lock); \
3157})
3158
3159extern int __cond_resched_softirq(void);
3160
75e1056f 3161#define cond_resched_softirq() ({ \
3427445a 3162 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
75e1056f 3163 __cond_resched_softirq(); \
613afbf8 3164})
1da177e4 3165
f6f3c437
SH
3166static inline void cond_resched_rcu(void)
3167{
3168#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
3169 rcu_read_unlock();
3170 cond_resched();
3171 rcu_read_lock();
3172#endif
3173}
3174
1da177e4
LT
3175/*
3176 * Does a critical section need to be broken due to another
95c354fe
NP
3177 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
3178 * but a general need for low latency)
1da177e4 3179 */
95c354fe 3180static inline int spin_needbreak(spinlock_t *lock)
1da177e4 3181{
95c354fe
NP
3182#ifdef CONFIG_PREEMPT
3183 return spin_is_contended(lock);
3184#else
1da177e4 3185 return 0;
95c354fe 3186#endif
1da177e4
LT
3187}
3188
ee761f62
TG
3189/*
3190 * Idle thread specific functions to determine the need_resched
69dd0f84 3191 * polling state.
ee761f62 3192 */
69dd0f84 3193#ifdef TIF_POLLING_NRFLAG
ee761f62
TG
3194static inline int tsk_is_polling(struct task_struct *p)
3195{
3196 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3197}
ea811747
PZ
3198
3199static inline void __current_set_polling(void)
3a98f871
TG
3200{
3201 set_thread_flag(TIF_POLLING_NRFLAG);
3202}
3203
ea811747
PZ
3204static inline bool __must_check current_set_polling_and_test(void)
3205{
3206 __current_set_polling();
3207
3208 /*
3209 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3210 * paired by resched_curr()
ea811747 3211 */
4e857c58 3212 smp_mb__after_atomic();
ea811747
PZ
3213
3214 return unlikely(tif_need_resched());
3215}
3216
3217static inline void __current_clr_polling(void)
3a98f871
TG
3218{
3219 clear_thread_flag(TIF_POLLING_NRFLAG);
3220}
ea811747
PZ
3221
3222static inline bool __must_check current_clr_polling_and_test(void)
3223{
3224 __current_clr_polling();
3225
3226 /*
3227 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3228 * paired by resched_curr()
ea811747 3229 */
4e857c58 3230 smp_mb__after_atomic();
ea811747
PZ
3231
3232 return unlikely(tif_need_resched());
3233}
3234
ee761f62
TG
3235#else
3236static inline int tsk_is_polling(struct task_struct *p) { return 0; }
ea811747
PZ
3237static inline void __current_set_polling(void) { }
3238static inline void __current_clr_polling(void) { }
3239
3240static inline bool __must_check current_set_polling_and_test(void)
3241{
3242 return unlikely(tif_need_resched());
3243}
3244static inline bool __must_check current_clr_polling_and_test(void)
3245{
3246 return unlikely(tif_need_resched());
3247}
ee761f62
TG
3248#endif
3249
8cb75e0c
PZ
3250static inline void current_clr_polling(void)
3251{
3252 __current_clr_polling();
3253
3254 /*
3255 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3256 * Once the bit is cleared, we'll get IPIs with every new
3257 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3258 * fold.
3259 */
8875125e 3260 smp_mb(); /* paired with resched_curr() */
8cb75e0c
PZ
3261
3262 preempt_fold_need_resched();
3263}
3264
75f93fed
PZ
3265static __always_inline bool need_resched(void)
3266{
3267 return unlikely(tif_need_resched());
3268}
3269
f06febc9
FM
3270/*
3271 * Thread group CPU time accounting.
3272 */
4cd4c1b4 3273void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
4da94d49 3274void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
f06febc9 3275
7bb44ade
RM
3276/*
3277 * Reevaluate whether the task has signals pending delivery.
3278 * Wake the task if so.
3279 * This is required every time the blocked sigset_t changes.
3280 * callers must hold sighand->siglock.
3281 */
3282extern void recalc_sigpending_and_wake(struct task_struct *t);
1da177e4
LT
3283extern void recalc_sigpending(void);
3284
910ffdb1
ON
3285extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3286
3287static inline void signal_wake_up(struct task_struct *t, bool resume)
3288{
3289 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3290}
3291static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3292{
3293 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3294}
1da177e4
LT
3295
3296/*
3297 * Wrappers for p->thread_info->cpu access. No-op on UP.
3298 */
3299#ifdef CONFIG_SMP
3300
3301static inline unsigned int task_cpu(const struct task_struct *p)
3302{
a1261f54 3303 return task_thread_info(p)->cpu;
1da177e4
LT
3304}
3305
b32e86b4
IM
3306static inline int task_node(const struct task_struct *p)
3307{
3308 return cpu_to_node(task_cpu(p));
3309}
3310
c65cc870 3311extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
3312
3313#else
3314
3315static inline unsigned int task_cpu(const struct task_struct *p)
3316{
3317 return 0;
3318}
3319
3320static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3321{
3322}
3323
3324#endif /* CONFIG_SMP */
3325
96f874e2
RR
3326extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3327extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 3328
7c941438 3329#ifdef CONFIG_CGROUP_SCHED
07e06b01 3330extern struct task_group root_task_group;
8323f26c 3331#endif /* CONFIG_CGROUP_SCHED */
9b5b7751 3332
54e99124
DG
3333extern int task_can_switch_user(struct user_struct *up,
3334 struct task_struct *tsk);
3335
4b98d11b
AD
3336#ifdef CONFIG_TASK_XACCT
3337static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3338{
940389b8 3339 tsk->ioac.rchar += amt;
4b98d11b
AD
3340}
3341
3342static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3343{
940389b8 3344 tsk->ioac.wchar += amt;
4b98d11b
AD
3345}
3346
3347static inline void inc_syscr(struct task_struct *tsk)
3348{
940389b8 3349 tsk->ioac.syscr++;
4b98d11b
AD
3350}
3351
3352static inline void inc_syscw(struct task_struct *tsk)
3353{
940389b8 3354 tsk->ioac.syscw++;
4b98d11b
AD
3355}
3356#else
3357static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3358{
3359}
3360
3361static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3362{
3363}
3364
3365static inline void inc_syscr(struct task_struct *tsk)
3366{
3367}
3368
3369static inline void inc_syscw(struct task_struct *tsk)
3370{
3371}
3372#endif
3373
82455257
DH
3374#ifndef TASK_SIZE_OF
3375#define TASK_SIZE_OF(tsk) TASK_SIZE
3376#endif
3377
f98bafa0 3378#ifdef CONFIG_MEMCG
cf475ad2 3379extern void mm_update_next_owner(struct mm_struct *mm);
cf475ad2
BS
3380#else
3381static inline void mm_update_next_owner(struct mm_struct *mm)
3382{
3383}
f98bafa0 3384#endif /* CONFIG_MEMCG */
cf475ad2 3385
3e10e716
JS
3386static inline unsigned long task_rlimit(const struct task_struct *tsk,
3387 unsigned int limit)
3388{
316c1608 3389 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3e10e716
JS
3390}
3391
3392static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3393 unsigned int limit)
3394{
316c1608 3395 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3e10e716
JS
3396}
3397
3398static inline unsigned long rlimit(unsigned int limit)
3399{
3400 return task_rlimit(current, limit);
3401}
3402
3403static inline unsigned long rlimit_max(unsigned int limit)
3404{
3405 return task_rlimit_max(current, limit);
3406}
3407
adaf9fcd
RW
3408#ifdef CONFIG_CPU_FREQ
3409struct update_util_data {
3410 void (*func)(struct update_util_data *data,
3411 u64 time, unsigned long util, unsigned long max);
3412};
3413
0bed612b
RW
3414void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data,
3415 void (*func)(struct update_util_data *data, u64 time,
3416 unsigned long util, unsigned long max));
3417void cpufreq_remove_update_util_hook(int cpu);
adaf9fcd
RW
3418#endif /* CONFIG_CPU_FREQ */
3419
1da177e4 3420#endif