]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - include/linux/sched.h
oom: consider multi-threaded tasks in task_will_free_mem
[mirror_ubuntu-artful-kernel.git] / include / linux / sched.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
607ca46e 4#include <uapi/linux/sched.h>
b7b3c76a 5
5c228079
DY
6#include <linux/sched/prio.h>
7
b7b3c76a
DW
8
9struct sched_param {
10 int sched_priority;
11};
12
1da177e4
LT
13#include <asm/param.h> /* for HZ */
14
1da177e4
LT
15#include <linux/capability.h>
16#include <linux/threads.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/timex.h>
20#include <linux/jiffies.h>
fb00aca4 21#include <linux/plist.h>
1da177e4
LT
22#include <linux/rbtree.h>
23#include <linux/thread_info.h>
24#include <linux/cpumask.h>
25#include <linux/errno.h>
26#include <linux/nodemask.h>
c92ff1bd 27#include <linux/mm_types.h>
92cf2118 28#include <linux/preempt.h>
1da177e4 29
1da177e4
LT
30#include <asm/page.h>
31#include <asm/ptrace.h>
bfc3f028 32#include <linux/cputime.h>
1da177e4
LT
33
34#include <linux/smp.h>
35#include <linux/sem.h>
ab602f79 36#include <linux/shm.h>
1da177e4 37#include <linux/signal.h>
1da177e4
LT
38#include <linux/compiler.h>
39#include <linux/completion.h>
40#include <linux/pid.h>
41#include <linux/percpu.h>
42#include <linux/topology.h>
43#include <linux/seccomp.h>
e56d0903 44#include <linux/rcupdate.h>
05725f7e 45#include <linux/rculist.h>
23f78d4a 46#include <linux/rtmutex.h>
1da177e4 47
a3b6714e
DW
48#include <linux/time.h>
49#include <linux/param.h>
50#include <linux/resource.h>
51#include <linux/timer.h>
52#include <linux/hrtimer.h>
5c9a8750 53#include <linux/kcov.h>
7c3ab738 54#include <linux/task_io_accounting.h>
9745512c 55#include <linux/latencytop.h>
9e2b2dc4 56#include <linux/cred.h>
fa14ff4a 57#include <linux/llist.h>
7b44ab97 58#include <linux/uidgid.h>
21caf2fc 59#include <linux/gfp.h>
d4311ff1 60#include <linux/magic.h>
7d7efec3 61#include <linux/cgroup-defs.h>
a3b6714e
DW
62
63#include <asm/processor.h>
36d57ac4 64
d50dde5a
DF
65#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
66
67/*
68 * Extended scheduling parameters data structure.
69 *
70 * This is needed because the original struct sched_param can not be
71 * altered without introducing ABI issues with legacy applications
72 * (e.g., in sched_getparam()).
73 *
74 * However, the possibility of specifying more than just a priority for
75 * the tasks may be useful for a wide variety of application fields, e.g.,
76 * multimedia, streaming, automation and control, and many others.
77 *
78 * This variant (sched_attr) is meant at describing a so-called
79 * sporadic time-constrained task. In such model a task is specified by:
80 * - the activation period or minimum instance inter-arrival time;
81 * - the maximum (or average, depending on the actual scheduling
82 * discipline) computation time of all instances, a.k.a. runtime;
83 * - the deadline (relative to the actual activation time) of each
84 * instance.
85 * Very briefly, a periodic (sporadic) task asks for the execution of
86 * some specific computation --which is typically called an instance--
87 * (at most) every period. Moreover, each instance typically lasts no more
88 * than the runtime and must be completed by time instant t equal to
89 * the instance activation time + the deadline.
90 *
91 * This is reflected by the actual fields of the sched_attr structure:
92 *
93 * @size size of the structure, for fwd/bwd compat.
94 *
95 * @sched_policy task's scheduling policy
96 * @sched_flags for customizing the scheduler behaviour
97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
98 * @sched_priority task's static priority (SCHED_FIFO/RR)
99 * @sched_deadline representative of the task's deadline
100 * @sched_runtime representative of the task's runtime
101 * @sched_period representative of the task's period
102 *
103 * Given this task model, there are a multiplicity of scheduling algorithms
104 * and policies, that can be used to ensure all the tasks will make their
105 * timing constraints.
aab03e05
DF
106 *
107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108 * only user of this new interface. More information about the algorithm
109 * available in the scheduling class file or in Documentation/.
d50dde5a
DF
110 */
111struct sched_attr {
112 u32 size;
113
114 u32 sched_policy;
115 u64 sched_flags;
116
117 /* SCHED_NORMAL, SCHED_BATCH */
118 s32 sched_nice;
119
120 /* SCHED_FIFO, SCHED_RR */
121 u32 sched_priority;
122
123 /* SCHED_DEADLINE */
124 u64 sched_runtime;
125 u64 sched_deadline;
126 u64 sched_period;
127};
128
c87e2837 129struct futex_pi_state;
286100a6 130struct robust_list_head;
bddd87c7 131struct bio_list;
5ad4e53b 132struct fs_struct;
cdd6c482 133struct perf_event_context;
73c10101 134struct blk_plug;
c4ad8f98 135struct filename;
89076bc3 136struct nameidata;
1da177e4 137
615d6e87
DB
138#define VMACACHE_BITS 2
139#define VMACACHE_SIZE (1U << VMACACHE_BITS)
140#define VMACACHE_MASK (VMACACHE_SIZE - 1)
141
1da177e4
LT
142/*
143 * These are the constant used to fake the fixed-point load-average
144 * counting. Some notes:
145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
146 * a load-average precision of 10 bits integer + 11 bits fractional
147 * - if you want to count load-averages more often, you need more
148 * precision, or rounding will get you. With 2-second counting freq,
149 * the EXP_n values would be 1981, 2034 and 2043 if still using only
150 * 11 bit fractions.
151 */
152extern unsigned long avenrun[]; /* Load averages */
2d02494f 153extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
1da177e4
LT
154
155#define FSHIFT 11 /* nr of bits of precision */
156#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
0c2043ab 157#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
1da177e4
LT
158#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
159#define EXP_5 2014 /* 1/exp(5sec/5min) */
160#define EXP_15 2037 /* 1/exp(5sec/15min) */
161
162#define CALC_LOAD(load,exp,n) \
163 load *= exp; \
164 load += n*(FIXED_1-exp); \
165 load >>= FSHIFT;
166
167extern unsigned long total_forks;
168extern int nr_threads;
1da177e4
LT
169DECLARE_PER_CPU(unsigned long, process_counts);
170extern int nr_processes(void);
171extern unsigned long nr_running(void);
2ee507c4 172extern bool single_task_running(void);
1da177e4 173extern unsigned long nr_iowait(void);
8c215bd3 174extern unsigned long nr_iowait_cpu(int cpu);
372ba8cb 175extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
69d25870 176
0f004f5a 177extern void calc_global_load(unsigned long ticks);
3289bdb4
PZ
178
179#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
1f41906a
FW
180extern void cpu_load_update_nohz_start(void);
181extern void cpu_load_update_nohz_stop(void);
3289bdb4 182#else
1f41906a
FW
183static inline void cpu_load_update_nohz_start(void) { }
184static inline void cpu_load_update_nohz_stop(void) { }
3289bdb4 185#endif
1da177e4 186
b637a328
PM
187extern void dump_cpu_task(int cpu);
188
43ae34cb
IM
189struct seq_file;
190struct cfs_rq;
4cf86d77 191struct task_group;
43ae34cb
IM
192#ifdef CONFIG_SCHED_DEBUG
193extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
194extern void proc_sched_set_task(struct task_struct *p);
43ae34cb 195#endif
1da177e4 196
4a8342d2
LT
197/*
198 * Task state bitmask. NOTE! These bits are also
199 * encoded in fs/proc/array.c: get_task_state().
200 *
201 * We have two separate sets of flags: task->state
202 * is about runnability, while task->exit_state are
203 * about the task exiting. Confusing, but this way
204 * modifying one set can't modify the other one by
205 * mistake.
206 */
1da177e4
LT
207#define TASK_RUNNING 0
208#define TASK_INTERRUPTIBLE 1
209#define TASK_UNINTERRUPTIBLE 2
f021a3c2
MW
210#define __TASK_STOPPED 4
211#define __TASK_TRACED 8
4a8342d2 212/* in tsk->exit_state */
ad86622b
ON
213#define EXIT_DEAD 16
214#define EXIT_ZOMBIE 32
abd50b39 215#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
4a8342d2 216/* in tsk->state again */
af927232 217#define TASK_DEAD 64
f021a3c2 218#define TASK_WAKEKILL 128
e9c84311 219#define TASK_WAKING 256
f2530dc7 220#define TASK_PARKED 512
80ed87c8
PZ
221#define TASK_NOLOAD 1024
222#define TASK_STATE_MAX 2048
f021a3c2 223
80ed87c8 224#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN"
73342151 225
e1781538
PZ
226extern char ___assert_task_state[1 - 2*!!(
227 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
f021a3c2
MW
228
229/* Convenience macros for the sake of set_task_state */
230#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
231#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
232#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
1da177e4 233
80ed87c8
PZ
234#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
235
92a1f4bc
MW
236/* Convenience macros for the sake of wake_up */
237#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
f021a3c2 238#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
92a1f4bc
MW
239
240/* get_task_state() */
241#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
f021a3c2 242 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
74e37200 243 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
92a1f4bc 244
f021a3c2
MW
245#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
246#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
92a1f4bc 247#define task_is_stopped_or_traced(task) \
f021a3c2 248 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
92a1f4bc 249#define task_contributes_to_load(task) \
e3c8ca83 250 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
80ed87c8
PZ
251 (task->flags & PF_FROZEN) == 0 && \
252 (task->state & TASK_NOLOAD) == 0)
1da177e4 253
8eb23b9f
PZ
254#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
255
256#define __set_task_state(tsk, state_value) \
257 do { \
258 (tsk)->task_state_change = _THIS_IP_; \
259 (tsk)->state = (state_value); \
260 } while (0)
261#define set_task_state(tsk, state_value) \
262 do { \
263 (tsk)->task_state_change = _THIS_IP_; \
b92b8b35 264 smp_store_mb((tsk)->state, (state_value)); \
8eb23b9f
PZ
265 } while (0)
266
267/*
268 * set_current_state() includes a barrier so that the write of current->state
269 * is correctly serialised wrt the caller's subsequent test of whether to
270 * actually sleep:
271 *
272 * set_current_state(TASK_UNINTERRUPTIBLE);
273 * if (do_i_need_to_sleep())
274 * schedule();
275 *
276 * If the caller does not need such serialisation then use __set_current_state()
277 */
278#define __set_current_state(state_value) \
279 do { \
280 current->task_state_change = _THIS_IP_; \
281 current->state = (state_value); \
282 } while (0)
283#define set_current_state(state_value) \
284 do { \
285 current->task_state_change = _THIS_IP_; \
b92b8b35 286 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
287 } while (0)
288
289#else
290
1da177e4
LT
291#define __set_task_state(tsk, state_value) \
292 do { (tsk)->state = (state_value); } while (0)
293#define set_task_state(tsk, state_value) \
b92b8b35 294 smp_store_mb((tsk)->state, (state_value))
1da177e4 295
498d0c57
AM
296/*
297 * set_current_state() includes a barrier so that the write of current->state
298 * is correctly serialised wrt the caller's subsequent test of whether to
299 * actually sleep:
300 *
301 * set_current_state(TASK_UNINTERRUPTIBLE);
302 * if (do_i_need_to_sleep())
303 * schedule();
304 *
305 * If the caller does not need such serialisation then use __set_current_state()
306 */
8eb23b9f 307#define __set_current_state(state_value) \
1da177e4 308 do { current->state = (state_value); } while (0)
8eb23b9f 309#define set_current_state(state_value) \
b92b8b35 310 smp_store_mb(current->state, (state_value))
1da177e4 311
8eb23b9f
PZ
312#endif
313
1da177e4
LT
314/* Task command name length */
315#define TASK_COMM_LEN 16
316
1da177e4
LT
317#include <linux/spinlock.h>
318
319/*
320 * This serializes "schedule()" and also protects
321 * the run-queue from deletions/modifications (but
322 * _adding_ to the beginning of the run-queue has
323 * a separate lock).
324 */
325extern rwlock_t tasklist_lock;
326extern spinlock_t mmlist_lock;
327
36c8b586 328struct task_struct;
1da177e4 329
db1466b3
PM
330#ifdef CONFIG_PROVE_RCU
331extern int lockdep_tasklist_lock_is_held(void);
332#endif /* #ifdef CONFIG_PROVE_RCU */
333
1da177e4
LT
334extern void sched_init(void);
335extern void sched_init_smp(void);
2d07b255 336extern asmlinkage void schedule_tail(struct task_struct *prev);
36c8b586 337extern void init_idle(struct task_struct *idle, int cpu);
1df21055 338extern void init_idle_bootup_task(struct task_struct *idle);
1da177e4 339
3fa0818b
RR
340extern cpumask_var_t cpu_isolated_map;
341
89f19f04 342extern int runqueue_is_locked(int cpu);
017730c1 343
3451d024 344#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
c1cc017c 345extern void nohz_balance_enter_idle(int cpu);
69e1e811 346extern void set_cpu_sd_state_idle(void);
bc7a34b8 347extern int get_nohz_timer_target(void);
46cb4b7c 348#else
c1cc017c 349static inline void nohz_balance_enter_idle(int cpu) { }
fdaabd80 350static inline void set_cpu_sd_state_idle(void) { }
46cb4b7c 351#endif
1da177e4 352
e59e2ae2 353/*
39bc89fd 354 * Only dump TASK_* tasks. (0 for all tasks)
e59e2ae2
IM
355 */
356extern void show_state_filter(unsigned long state_filter);
357
358static inline void show_state(void)
359{
39bc89fd 360 show_state_filter(0);
e59e2ae2
IM
361}
362
1da177e4
LT
363extern void show_regs(struct pt_regs *);
364
365/*
366 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
367 * task), SP is the stack pointer of the first frame that should be shown in the back
368 * trace (or NULL if the entire call-chain of the task should be shown).
369 */
370extern void show_stack(struct task_struct *task, unsigned long *sp);
371
1da177e4
LT
372extern void cpu_init (void);
373extern void trap_init(void);
374extern void update_process_times(int user);
375extern void scheduler_tick(void);
9cf7243d 376extern int sched_cpu_starting(unsigned int cpu);
40190a78
TG
377extern int sched_cpu_activate(unsigned int cpu);
378extern int sched_cpu_deactivate(unsigned int cpu);
1da177e4 379
f2785ddb
TG
380#ifdef CONFIG_HOTPLUG_CPU
381extern int sched_cpu_dying(unsigned int cpu);
382#else
383# define sched_cpu_dying NULL
384#endif
1da177e4 385
82a1fcb9
IM
386extern void sched_show_task(struct task_struct *p);
387
19cc36c0 388#ifdef CONFIG_LOCKUP_DETECTOR
03e0d461 389extern void touch_softlockup_watchdog_sched(void);
8446f1d3 390extern void touch_softlockup_watchdog(void);
d6ad3e28 391extern void touch_softlockup_watchdog_sync(void);
04c9167f 392extern void touch_all_softlockup_watchdogs(void);
332fbdbc
DZ
393extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
394 void __user *buffer,
395 size_t *lenp, loff_t *ppos);
9c44bc03 396extern unsigned int softlockup_panic;
ac1f5912 397extern unsigned int hardlockup_panic;
004417a6 398void lockup_detector_init(void);
8446f1d3 399#else
03e0d461
TH
400static inline void touch_softlockup_watchdog_sched(void)
401{
402}
8446f1d3
IM
403static inline void touch_softlockup_watchdog(void)
404{
405}
d6ad3e28
JW
406static inline void touch_softlockup_watchdog_sync(void)
407{
408}
04c9167f
JF
409static inline void touch_all_softlockup_watchdogs(void)
410{
411}
004417a6
PZ
412static inline void lockup_detector_init(void)
413{
414}
8446f1d3
IM
415#endif
416
8b414521
MT
417#ifdef CONFIG_DETECT_HUNG_TASK
418void reset_hung_task_detector(void);
419#else
420static inline void reset_hung_task_detector(void)
421{
422}
423#endif
424
1da177e4
LT
425/* Attach to any functions which should be ignored in wchan output. */
426#define __sched __attribute__((__section__(".sched.text")))
deaf2227
IM
427
428/* Linker adds these: start and end of __sched functions */
429extern char __sched_text_start[], __sched_text_end[];
430
1da177e4
LT
431/* Is this address in the __sched functions? */
432extern int in_sched_functions(unsigned long addr);
433
434#define MAX_SCHEDULE_TIMEOUT LONG_MAX
b3c97528 435extern signed long schedule_timeout(signed long timeout);
64ed93a2 436extern signed long schedule_timeout_interruptible(signed long timeout);
294d5cc2 437extern signed long schedule_timeout_killable(signed long timeout);
64ed93a2 438extern signed long schedule_timeout_uninterruptible(signed long timeout);
69b27baf 439extern signed long schedule_timeout_idle(signed long timeout);
1da177e4 440asmlinkage void schedule(void);
c5491ea7 441extern void schedule_preempt_disabled(void);
1da177e4 442
9cff8ade
N
443extern long io_schedule_timeout(long timeout);
444
445static inline void io_schedule(void)
446{
447 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
448}
449
ab516013 450struct nsproxy;
acce292c 451struct user_namespace;
1da177e4 452
efc1a3b1
DH
453#ifdef CONFIG_MMU
454extern void arch_pick_mmap_layout(struct mm_struct *mm);
1da177e4
LT
455extern unsigned long
456arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
457 unsigned long, unsigned long);
458extern unsigned long
459arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
460 unsigned long len, unsigned long pgoff,
461 unsigned long flags);
efc1a3b1
DH
462#else
463static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
464#endif
1da177e4 465
d049f74f
KC
466#define SUID_DUMP_DISABLE 0 /* No setuid dumping */
467#define SUID_DUMP_USER 1 /* Dump as user of process */
468#define SUID_DUMP_ROOT 2 /* Dump as root */
469
6c5d5238 470/* mm flags */
f8af4da3 471
7288e118 472/* for SUID_DUMP_* above */
3cb4a0bb 473#define MMF_DUMPABLE_BITS 2
f8af4da3 474#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
3cb4a0bb 475
942be387
ON
476extern void set_dumpable(struct mm_struct *mm, int value);
477/*
478 * This returns the actual value of the suid_dumpable flag. For things
479 * that are using this for checking for privilege transitions, it must
480 * test against SUID_DUMP_USER rather than treating it as a boolean
481 * value.
482 */
483static inline int __get_dumpable(unsigned long mm_flags)
484{
485 return mm_flags & MMF_DUMPABLE_MASK;
486}
487
488static inline int get_dumpable(struct mm_struct *mm)
489{
490 return __get_dumpable(mm->flags);
491}
492
3cb4a0bb
KH
493/* coredump filter bits */
494#define MMF_DUMP_ANON_PRIVATE 2
495#define MMF_DUMP_ANON_SHARED 3
496#define MMF_DUMP_MAPPED_PRIVATE 4
497#define MMF_DUMP_MAPPED_SHARED 5
82df3973 498#define MMF_DUMP_ELF_HEADERS 6
e575f111
KM
499#define MMF_DUMP_HUGETLB_PRIVATE 7
500#define MMF_DUMP_HUGETLB_SHARED 8
5037835c
RZ
501#define MMF_DUMP_DAX_PRIVATE 9
502#define MMF_DUMP_DAX_SHARED 10
f8af4da3 503
3cb4a0bb 504#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
5037835c 505#define MMF_DUMP_FILTER_BITS 9
3cb4a0bb
KH
506#define MMF_DUMP_FILTER_MASK \
507 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
508#define MMF_DUMP_FILTER_DEFAULT \
e575f111 509 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
656eb2cd
RM
510 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
511
512#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
513# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
514#else
515# define MMF_DUMP_MASK_DEFAULT_ELF 0
516#endif
f8af4da3
HD
517 /* leave room for more dump flags */
518#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
ba76149f 519#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
bafb282d 520#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
f8af4da3 521
9f68f672
ON
522#define MMF_HAS_UPROBES 19 /* has uprobes */
523#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
bb8a4b7f 524#define MMF_OOM_REAPED 21 /* mm has been already reaped */
f8ac4ec9 525
f8af4da3 526#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
6c5d5238 527
1da177e4
LT
528struct sighand_struct {
529 atomic_t count;
530 struct k_sigaction action[_NSIG];
531 spinlock_t siglock;
b8fceee1 532 wait_queue_head_t signalfd_wqh;
1da177e4
LT
533};
534
0e464814 535struct pacct_struct {
f6ec29a4
KK
536 int ac_flag;
537 long ac_exitcode;
0e464814 538 unsigned long ac_mem;
77787bfb
KK
539 cputime_t ac_utime, ac_stime;
540 unsigned long ac_minflt, ac_majflt;
0e464814
KK
541};
542
42c4ab41
SG
543struct cpu_itimer {
544 cputime_t expires;
545 cputime_t incr;
8356b5f9
SG
546 u32 error;
547 u32 incr_error;
42c4ab41
SG
548};
549
d37f761d 550/**
9d7fb042 551 * struct prev_cputime - snaphsot of system and user cputime
d37f761d
FW
552 * @utime: time spent in user mode
553 * @stime: time spent in system mode
9d7fb042 554 * @lock: protects the above two fields
d37f761d 555 *
9d7fb042
PZ
556 * Stores previous user/system time values such that we can guarantee
557 * monotonicity.
d37f761d 558 */
9d7fb042
PZ
559struct prev_cputime {
560#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
d37f761d
FW
561 cputime_t utime;
562 cputime_t stime;
9d7fb042
PZ
563 raw_spinlock_t lock;
564#endif
d37f761d
FW
565};
566
9d7fb042
PZ
567static inline void prev_cputime_init(struct prev_cputime *prev)
568{
569#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
570 prev->utime = prev->stime = 0;
571 raw_spin_lock_init(&prev->lock);
572#endif
573}
574
f06febc9
FM
575/**
576 * struct task_cputime - collected CPU time counts
577 * @utime: time spent in user mode, in &cputime_t units
578 * @stime: time spent in kernel mode, in &cputime_t units
579 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 580 *
9d7fb042
PZ
581 * This structure groups together three kinds of CPU time that are tracked for
582 * threads and thread groups. Most things considering CPU time want to group
583 * these counts together and treat all three of them in parallel.
f06febc9
FM
584 */
585struct task_cputime {
586 cputime_t utime;
587 cputime_t stime;
588 unsigned long long sum_exec_runtime;
589};
9d7fb042 590
f06febc9 591/* Alternate field names when used to cache expirations. */
f06febc9 592#define virt_exp utime
9d7fb042 593#define prof_exp stime
f06febc9
FM
594#define sched_exp sum_exec_runtime
595
4cd4c1b4
PZ
596#define INIT_CPUTIME \
597 (struct task_cputime) { \
64861634
MS
598 .utime = 0, \
599 .stime = 0, \
4cd4c1b4
PZ
600 .sum_exec_runtime = 0, \
601 }
602
971e8a98
JL
603/*
604 * This is the atomic variant of task_cputime, which can be used for
605 * storing and updating task_cputime statistics without locking.
606 */
607struct task_cputime_atomic {
608 atomic64_t utime;
609 atomic64_t stime;
610 atomic64_t sum_exec_runtime;
611};
612
613#define INIT_CPUTIME_ATOMIC \
614 (struct task_cputime_atomic) { \
615 .utime = ATOMIC64_INIT(0), \
616 .stime = ATOMIC64_INIT(0), \
617 .sum_exec_runtime = ATOMIC64_INIT(0), \
618 }
619
609ca066 620#define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
a233f112 621
c99e6efe 622/*
87dcbc06
PZ
623 * Disable preemption until the scheduler is running -- use an unconditional
624 * value so that it also works on !PREEMPT_COUNT kernels.
d86ee480 625 *
87dcbc06 626 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
c99e6efe 627 */
87dcbc06 628#define INIT_PREEMPT_COUNT PREEMPT_OFFSET
a233f112 629
c99e6efe 630/*
609ca066
PZ
631 * Initial preempt_count value; reflects the preempt_count schedule invariant
632 * which states that during context switches:
d86ee480 633 *
609ca066
PZ
634 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
635 *
636 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
637 * Note: See finish_task_switch().
c99e6efe 638 */
609ca066 639#define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
c99e6efe 640
f06febc9 641/**
4cd4c1b4 642 * struct thread_group_cputimer - thread group interval timer counts
920ce39f 643 * @cputime_atomic: atomic thread group interval timers.
d5c373eb
JL
644 * @running: true when there are timers running and
645 * @cputime_atomic receives updates.
c8d75aa4
JL
646 * @checking_timer: true when a thread in the group is in the
647 * process of checking for thread group timers.
f06febc9
FM
648 *
649 * This structure contains the version of task_cputime, above, that is
4cd4c1b4 650 * used for thread group CPU timer calculations.
f06febc9 651 */
4cd4c1b4 652struct thread_group_cputimer {
71107445 653 struct task_cputime_atomic cputime_atomic;
d5c373eb 654 bool running;
c8d75aa4 655 bool checking_timer;
f06febc9 656};
f06febc9 657
4714d1d3 658#include <linux/rwsem.h>
5091faa4
MG
659struct autogroup;
660
1da177e4 661/*
e815f0a8 662 * NOTE! "signal_struct" does not have its own
1da177e4
LT
663 * locking, because a shared signal_struct always
664 * implies a shared sighand_struct, so locking
665 * sighand_struct is always a proper superset of
666 * the locking of signal_struct.
667 */
668struct signal_struct {
ea6d290c 669 atomic_t sigcnt;
1da177e4 670 atomic_t live;
b3ac022c 671 int nr_threads;
0c740d0a 672 struct list_head thread_head;
1da177e4
LT
673
674 wait_queue_head_t wait_chldexit; /* for wait4() */
675
676 /* current thread group signal load-balancing target: */
36c8b586 677 struct task_struct *curr_target;
1da177e4
LT
678
679 /* shared signal handling: */
680 struct sigpending shared_pending;
681
682 /* thread group exit support */
683 int group_exit_code;
684 /* overloaded:
685 * - notify group_exit_task when ->count is equal to notify_count
686 * - everyone except group_exit_task is stopped during signal delivery
687 * of fatal signals, group_exit_task processes the signal.
688 */
1da177e4 689 int notify_count;
07dd20e0 690 struct task_struct *group_exit_task;
1da177e4
LT
691
692 /* thread group stop support, overloads group_exit_code too */
693 int group_stop_count;
694 unsigned int flags; /* see SIGNAL_* flags below */
695
ebec18a6
LP
696 /*
697 * PR_SET_CHILD_SUBREAPER marks a process, like a service
698 * manager, to re-parent orphan (double-forking) child processes
699 * to this process instead of 'init'. The service manager is
700 * able to receive SIGCHLD signals and is able to investigate
701 * the process until it calls wait(). All children of this
702 * process will inherit a flag if they should look for a
703 * child_subreaper process at exit.
704 */
705 unsigned int is_child_subreaper:1;
706 unsigned int has_child_subreaper:1;
707
1da177e4 708 /* POSIX.1b Interval Timers */
5ed67f05
PE
709 int posix_timer_id;
710 struct list_head posix_timers;
1da177e4
LT
711
712 /* ITIMER_REAL timer for the process */
2ff678b8 713 struct hrtimer real_timer;
fea9d175 714 struct pid *leader_pid;
2ff678b8 715 ktime_t it_real_incr;
1da177e4 716
42c4ab41
SG
717 /*
718 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
719 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
720 * values are defined to 0 and 1 respectively
721 */
722 struct cpu_itimer it[2];
1da177e4 723
f06febc9 724 /*
4cd4c1b4
PZ
725 * Thread group totals for process CPU timers.
726 * See thread_group_cputimer(), et al, for details.
f06febc9 727 */
4cd4c1b4 728 struct thread_group_cputimer cputimer;
f06febc9
FM
729
730 /* Earliest-expiration cache. */
731 struct task_cputime cputime_expires;
732
d027d45d 733#ifdef CONFIG_NO_HZ_FULL
f009a7a7 734 atomic_t tick_dep_mask;
d027d45d
FW
735#endif
736
f06febc9
FM
737 struct list_head cpu_timers[3];
738
ab521dc0 739 struct pid *tty_old_pgrp;
1ec320af 740
1da177e4
LT
741 /* boolean value for session group leader */
742 int leader;
743
744 struct tty_struct *tty; /* NULL if no tty */
745
5091faa4
MG
746#ifdef CONFIG_SCHED_AUTOGROUP
747 struct autogroup *autogroup;
748#endif
1da177e4
LT
749 /*
750 * Cumulative resource counters for dead threads in the group,
751 * and for reaped dead child processes forked by this group.
752 * Live threads maintain their own counters and add to these
753 * in __exit_signal, except for the group leader.
754 */
e78c3496 755 seqlock_t stats_lock;
32bd671d 756 cputime_t utime, stime, cutime, cstime;
9ac52315
LV
757 cputime_t gtime;
758 cputime_t cgtime;
9d7fb042 759 struct prev_cputime prev_cputime;
1da177e4
LT
760 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
761 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
6eaeeaba 762 unsigned long inblock, oublock, cinblock, coublock;
1f10206c 763 unsigned long maxrss, cmaxrss;
940389b8 764 struct task_io_accounting ioac;
1da177e4 765
32bd671d
PZ
766 /*
767 * Cumulative ns of schedule CPU time fo dead threads in the
768 * group, not including a zombie group leader, (This only differs
769 * from jiffies_to_ns(utime + stime) if sched_clock uses something
770 * other than jiffies.)
771 */
772 unsigned long long sum_sched_runtime;
773
1da177e4
LT
774 /*
775 * We don't bother to synchronize most readers of this at all,
776 * because there is no reader checking a limit that actually needs
777 * to get both rlim_cur and rlim_max atomically, and either one
778 * alone is a single word that can safely be read normally.
779 * getrlimit/setrlimit use task_lock(current->group_leader) to
780 * protect this instead of the siglock, because they really
781 * have no need to disable irqs.
782 */
783 struct rlimit rlim[RLIM_NLIMITS];
784
0e464814
KK
785#ifdef CONFIG_BSD_PROCESS_ACCT
786 struct pacct_struct pacct; /* per-process accounting information */
787#endif
ad4ecbcb 788#ifdef CONFIG_TASKSTATS
ad4ecbcb
SN
789 struct taskstats *stats;
790#endif
522ed776
MT
791#ifdef CONFIG_AUDIT
792 unsigned audit_tty;
793 struct tty_audit_buf *tty_audit_buf;
794#endif
28b83c51 795
e1e12d2f 796 oom_flags_t oom_flags;
a9c58b90
DR
797 short oom_score_adj; /* OOM kill score adjustment */
798 short oom_score_adj_min; /* OOM kill score adjustment min value.
799 * Only settable by CAP_SYS_RESOURCE. */
9b1bf12d
KM
800
801 struct mutex cred_guard_mutex; /* guard against foreign influences on
802 * credential calculations
803 * (notably. ptrace) */
1da177e4
LT
804};
805
806/*
807 * Bits in flags field of signal_struct.
808 */
809#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
ee77f075
ON
810#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
811#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
403bad72 812#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
e4420551
ON
813/*
814 * Pending notifications to parent.
815 */
816#define SIGNAL_CLD_STOPPED 0x00000010
817#define SIGNAL_CLD_CONTINUED 0x00000020
818#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
1da177e4 819
fae5fa44
ON
820#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
821
ed5d2cac
ON
822/* If true, all threads except ->group_exit_task have pending SIGKILL */
823static inline int signal_group_exit(const struct signal_struct *sig)
824{
825 return (sig->flags & SIGNAL_GROUP_EXIT) ||
826 (sig->group_exit_task != NULL);
827}
828
1da177e4
LT
829/*
830 * Some day this will be a full-fledged user tracking system..
831 */
832struct user_struct {
833 atomic_t __count; /* reference count */
834 atomic_t processes; /* How many processes does this user have? */
1da177e4 835 atomic_t sigpending; /* How many pending signals does this user have? */
2d9048e2 836#ifdef CONFIG_INOTIFY_USER
0eeca283
RL
837 atomic_t inotify_watches; /* How many inotify watches does this user have? */
838 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
839#endif
4afeff85
EP
840#ifdef CONFIG_FANOTIFY
841 atomic_t fanotify_listeners;
842#endif
7ef9964e 843#ifdef CONFIG_EPOLL
52bd19f7 844 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
7ef9964e 845#endif
970a8645 846#ifdef CONFIG_POSIX_MQUEUE
1da177e4
LT
847 /* protected by mq_lock */
848 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
970a8645 849#endif
1da177e4 850 unsigned long locked_shm; /* How many pages of mlocked shm ? */
712f4aad 851 unsigned long unix_inflight; /* How many files in flight in unix sockets */
759c0114 852 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */
1da177e4
LT
853
854#ifdef CONFIG_KEYS
855 struct key *uid_keyring; /* UID specific keyring */
856 struct key *session_keyring; /* UID's default session keyring */
857#endif
858
859 /* Hash table maintenance information */
735de223 860 struct hlist_node uidhash_node;
7b44ab97 861 kuid_t uid;
24e377a8 862
aaac3ba9 863#if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
789f90fc
PZ
864 atomic_long_t locked_vm;
865#endif
1da177e4
LT
866};
867
eb41d946 868extern int uids_sysfs_init(void);
5cb350ba 869
7b44ab97 870extern struct user_struct *find_user(kuid_t);
1da177e4
LT
871
872extern struct user_struct root_user;
873#define INIT_USER (&root_user)
874
b6dff3ec 875
1da177e4
LT
876struct backing_dev_info;
877struct reclaim_state;
878
f6db8347 879#ifdef CONFIG_SCHED_INFO
1da177e4
LT
880struct sched_info {
881 /* cumulative counters */
2d72376b 882 unsigned long pcount; /* # of times run on this cpu */
9c2c4802 883 unsigned long long run_delay; /* time spent waiting on a runqueue */
1da177e4
LT
884
885 /* timestamps */
172ba844
BS
886 unsigned long long last_arrival,/* when we last ran on a cpu */
887 last_queued; /* when we were last queued to run */
1da177e4 888};
f6db8347 889#endif /* CONFIG_SCHED_INFO */
1da177e4 890
ca74e92b
SN
891#ifdef CONFIG_TASK_DELAY_ACCT
892struct task_delay_info {
893 spinlock_t lock;
894 unsigned int flags; /* Private per-task flags */
895
896 /* For each stat XXX, add following, aligned appropriately
897 *
898 * struct timespec XXX_start, XXX_end;
899 * u64 XXX_delay;
900 * u32 XXX_count;
901 *
902 * Atomicity of updates to XXX_delay, XXX_count protected by
903 * single lock above (split into XXX_lock if contention is an issue).
904 */
0ff92245
SN
905
906 /*
907 * XXX_count is incremented on every XXX operation, the delay
908 * associated with the operation is added to XXX_delay.
909 * XXX_delay contains the accumulated delay time in nanoseconds.
910 */
9667a23d 911 u64 blkio_start; /* Shared by blkio, swapin */
0ff92245
SN
912 u64 blkio_delay; /* wait for sync block io completion */
913 u64 swapin_delay; /* wait for swapin block io completion */
914 u32 blkio_count; /* total count of the number of sync block */
915 /* io operations performed */
916 u32 swapin_count; /* total count of the number of swapin block */
917 /* io operations performed */
873b4771 918
9667a23d 919 u64 freepages_start;
873b4771
KK
920 u64 freepages_delay; /* wait for memory reclaim */
921 u32 freepages_count; /* total count of memory reclaim */
ca74e92b 922};
52f17b6c
CS
923#endif /* CONFIG_TASK_DELAY_ACCT */
924
925static inline int sched_info_on(void)
926{
927#ifdef CONFIG_SCHEDSTATS
928 return 1;
929#elif defined(CONFIG_TASK_DELAY_ACCT)
930 extern int delayacct_on;
931 return delayacct_on;
932#else
933 return 0;
ca74e92b 934#endif
52f17b6c 935}
ca74e92b 936
cb251765
MG
937#ifdef CONFIG_SCHEDSTATS
938void force_schedstat_enabled(void);
939#endif
940
d15bcfdb
IM
941enum cpu_idle_type {
942 CPU_IDLE,
943 CPU_NOT_IDLE,
944 CPU_NEWLY_IDLE,
945 CPU_MAX_IDLE_TYPES
1da177e4
LT
946};
947
6ecdd749
YD
948/*
949 * Integer metrics need fixed point arithmetic, e.g., sched/fair
950 * has a few: load, load_avg, util_avg, freq, and capacity.
951 *
952 * We define a basic fixed point arithmetic range, and then formalize
953 * all these metrics based on that basic range.
954 */
955# define SCHED_FIXEDPOINT_SHIFT 10
956# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
957
1399fa78 958/*
ca8ce3d0 959 * Increase resolution of cpu_capacity calculations
1399fa78 960 */
6ecdd749 961#define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
ca8ce3d0 962#define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
1da177e4 963
76751049
PZ
964/*
965 * Wake-queues are lists of tasks with a pending wakeup, whose
966 * callers have already marked the task as woken internally,
967 * and can thus carry on. A common use case is being able to
968 * do the wakeups once the corresponding user lock as been
969 * released.
970 *
971 * We hold reference to each task in the list across the wakeup,
972 * thus guaranteeing that the memory is still valid by the time
973 * the actual wakeups are performed in wake_up_q().
974 *
975 * One per task suffices, because there's never a need for a task to be
976 * in two wake queues simultaneously; it is forbidden to abandon a task
977 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
978 * already in a wake queue, the wakeup will happen soon and the second
979 * waker can just skip it.
980 *
981 * The WAKE_Q macro declares and initializes the list head.
982 * wake_up_q() does NOT reinitialize the list; it's expected to be
983 * called near the end of a function, where the fact that the queue is
984 * not used again will be easy to see by inspection.
985 *
986 * Note that this can cause spurious wakeups. schedule() callers
987 * must ensure the call is done inside a loop, confirming that the
988 * wakeup condition has in fact occurred.
989 */
990struct wake_q_node {
991 struct wake_q_node *next;
992};
993
994struct wake_q_head {
995 struct wake_q_node *first;
996 struct wake_q_node **lastp;
997};
998
999#define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
1000
1001#define WAKE_Q(name) \
1002 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
1003
1004extern void wake_q_add(struct wake_q_head *head,
1005 struct task_struct *task);
1006extern void wake_up_q(struct wake_q_head *head);
1007
1399fa78
NR
1008/*
1009 * sched-domains (multiprocessor balancing) declarations:
1010 */
2dd73a4f 1011#ifdef CONFIG_SMP
b5d978e0
PZ
1012#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
1013#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
1014#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
1015#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
c88d5910 1016#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
b5d978e0 1017#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
5d4dfddd 1018#define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
d77b3ed5 1019#define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
b5d978e0
PZ
1020#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
1021#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
532cb4c4 1022#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
b5d978e0 1023#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
e3589f6c 1024#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
3a7053b3 1025#define SD_NUMA 0x4000 /* cross-node balancing */
5c45bf27 1026
143e1e28 1027#ifdef CONFIG_SCHED_SMT
b6220ad6 1028static inline int cpu_smt_flags(void)
143e1e28 1029{
5d4dfddd 1030 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
143e1e28
VG
1031}
1032#endif
1033
1034#ifdef CONFIG_SCHED_MC
b6220ad6 1035static inline int cpu_core_flags(void)
143e1e28
VG
1036{
1037 return SD_SHARE_PKG_RESOURCES;
1038}
1039#endif
1040
1041#ifdef CONFIG_NUMA
b6220ad6 1042static inline int cpu_numa_flags(void)
143e1e28
VG
1043{
1044 return SD_NUMA;
1045}
1046#endif
532cb4c4 1047
1d3504fc
HS
1048struct sched_domain_attr {
1049 int relax_domain_level;
1050};
1051
1052#define SD_ATTR_INIT (struct sched_domain_attr) { \
1053 .relax_domain_level = -1, \
1054}
1055
60495e77
PZ
1056extern int sched_domain_level_max;
1057
5e6521ea
LZ
1058struct sched_group;
1059
1da177e4
LT
1060struct sched_domain {
1061 /* These fields must be setup */
1062 struct sched_domain *parent; /* top domain must be null terminated */
1a848870 1063 struct sched_domain *child; /* bottom domain must be null terminated */
1da177e4 1064 struct sched_group *groups; /* the balancing groups of the domain */
1da177e4
LT
1065 unsigned long min_interval; /* Minimum balance interval ms */
1066 unsigned long max_interval; /* Maximum balance interval ms */
1067 unsigned int busy_factor; /* less balancing by factor if busy */
1068 unsigned int imbalance_pct; /* No balance until over watermark */
1da177e4 1069 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
7897986b
NP
1070 unsigned int busy_idx;
1071 unsigned int idle_idx;
1072 unsigned int newidle_idx;
1073 unsigned int wake_idx;
147cbb4b 1074 unsigned int forkexec_idx;
a52bfd73 1075 unsigned int smt_gain;
25f55d9d
VG
1076
1077 int nohz_idle; /* NOHZ IDLE status */
1da177e4 1078 int flags; /* See SD_* */
60495e77 1079 int level;
1da177e4
LT
1080
1081 /* Runtime fields. */
1082 unsigned long last_balance; /* init to jiffies. units in jiffies */
1083 unsigned int balance_interval; /* initialise to 1. units in ms. */
1084 unsigned int nr_balance_failed; /* initialise to 0 */
1085
f48627e6 1086 /* idle_balance() stats */
9bd721c5 1087 u64 max_newidle_lb_cost;
f48627e6 1088 unsigned long next_decay_max_lb_cost;
2398f2c6 1089
1da177e4
LT
1090#ifdef CONFIG_SCHEDSTATS
1091 /* load_balance() stats */
480b9434
KC
1092 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1093 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1094 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1095 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1096 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1097 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1098 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1099 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1da177e4
LT
1100
1101 /* Active load balancing */
480b9434
KC
1102 unsigned int alb_count;
1103 unsigned int alb_failed;
1104 unsigned int alb_pushed;
1da177e4 1105
68767a0a 1106 /* SD_BALANCE_EXEC stats */
480b9434
KC
1107 unsigned int sbe_count;
1108 unsigned int sbe_balanced;
1109 unsigned int sbe_pushed;
1da177e4 1110
68767a0a 1111 /* SD_BALANCE_FORK stats */
480b9434
KC
1112 unsigned int sbf_count;
1113 unsigned int sbf_balanced;
1114 unsigned int sbf_pushed;
68767a0a 1115
1da177e4 1116 /* try_to_wake_up() stats */
480b9434
KC
1117 unsigned int ttwu_wake_remote;
1118 unsigned int ttwu_move_affine;
1119 unsigned int ttwu_move_balance;
1da177e4 1120#endif
a5d8c348
IM
1121#ifdef CONFIG_SCHED_DEBUG
1122 char *name;
1123#endif
dce840a0
PZ
1124 union {
1125 void *private; /* used during construction */
1126 struct rcu_head rcu; /* used during destruction */
1127 };
6c99e9ad 1128
669c55e9 1129 unsigned int span_weight;
4200efd9
IM
1130 /*
1131 * Span of all CPUs in this domain.
1132 *
1133 * NOTE: this field is variable length. (Allocated dynamically
1134 * by attaching extra space to the end of the structure,
1135 * depending on how many CPUs the kernel has booted up with)
4200efd9
IM
1136 */
1137 unsigned long span[0];
1da177e4
LT
1138};
1139
758b2cdc
RR
1140static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1141{
6c99e9ad 1142 return to_cpumask(sd->span);
758b2cdc
RR
1143}
1144
acc3f5d7 1145extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 1146 struct sched_domain_attr *dattr_new);
029190c5 1147
acc3f5d7
RR
1148/* Allocate an array of sched domains, for partition_sched_domains(). */
1149cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1150void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1151
39be3501
PZ
1152bool cpus_share_cache(int this_cpu, int that_cpu);
1153
143e1e28 1154typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
b6220ad6 1155typedef int (*sched_domain_flags_f)(void);
143e1e28
VG
1156
1157#define SDTL_OVERLAP 0x01
1158
1159struct sd_data {
1160 struct sched_domain **__percpu sd;
1161 struct sched_group **__percpu sg;
63b2ca30 1162 struct sched_group_capacity **__percpu sgc;
143e1e28
VG
1163};
1164
1165struct sched_domain_topology_level {
1166 sched_domain_mask_f mask;
1167 sched_domain_flags_f sd_flags;
1168 int flags;
1169 int numa_level;
1170 struct sd_data data;
1171#ifdef CONFIG_SCHED_DEBUG
1172 char *name;
1173#endif
1174};
1175
143e1e28 1176extern void set_sched_topology(struct sched_domain_topology_level *tl);
f6be8af1 1177extern void wake_up_if_idle(int cpu);
143e1e28
VG
1178
1179#ifdef CONFIG_SCHED_DEBUG
1180# define SD_INIT_NAME(type) .name = #type
1181#else
1182# define SD_INIT_NAME(type)
1183#endif
1184
1b427c15 1185#else /* CONFIG_SMP */
1da177e4 1186
1b427c15 1187struct sched_domain_attr;
d02c7a8c 1188
1b427c15 1189static inline void
acc3f5d7 1190partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1b427c15
IM
1191 struct sched_domain_attr *dattr_new)
1192{
d02c7a8c 1193}
39be3501
PZ
1194
1195static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1196{
1197 return true;
1198}
1199
1b427c15 1200#endif /* !CONFIG_SMP */
1da177e4 1201
47fe38fc 1202
1da177e4 1203struct io_context; /* See blkdev.h */
1da177e4 1204
1da177e4 1205
383f2835 1206#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
36c8b586 1207extern void prefetch_stack(struct task_struct *t);
383f2835
KC
1208#else
1209static inline void prefetch_stack(struct task_struct *t) { }
1210#endif
1da177e4
LT
1211
1212struct audit_context; /* See audit.c */
1213struct mempolicy;
b92ce558 1214struct pipe_inode_info;
4865ecf1 1215struct uts_namespace;
1da177e4 1216
20b8a59f 1217struct load_weight {
9dbdb155
PZ
1218 unsigned long weight;
1219 u32 inv_weight;
20b8a59f
IM
1220};
1221
9d89c257 1222/*
7b595334
YD
1223 * The load_avg/util_avg accumulates an infinite geometric series
1224 * (see __update_load_avg() in kernel/sched/fair.c).
1225 *
1226 * [load_avg definition]
1227 *
1228 * load_avg = runnable% * scale_load_down(load)
1229 *
1230 * where runnable% is the time ratio that a sched_entity is runnable.
1231 * For cfs_rq, it is the aggregated load_avg of all runnable and
9d89c257 1232 * blocked sched_entities.
7b595334
YD
1233 *
1234 * load_avg may also take frequency scaling into account:
1235 *
1236 * load_avg = runnable% * scale_load_down(load) * freq%
1237 *
1238 * where freq% is the CPU frequency normalized to the highest frequency.
1239 *
1240 * [util_avg definition]
1241 *
1242 * util_avg = running% * SCHED_CAPACITY_SCALE
1243 *
1244 * where running% is the time ratio that a sched_entity is running on
1245 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
1246 * and blocked sched_entities.
1247 *
1248 * util_avg may also factor frequency scaling and CPU capacity scaling:
1249 *
1250 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
1251 *
1252 * where freq% is the same as above, and capacity% is the CPU capacity
1253 * normalized to the greatest capacity (due to uarch differences, etc).
1254 *
1255 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
1256 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
1257 * we therefore scale them to as large a range as necessary. This is for
1258 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
1259 *
1260 * [Overflow issue]
1261 *
1262 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
1263 * with the highest load (=88761), always runnable on a single cfs_rq,
1264 * and should not overflow as the number already hits PID_MAX_LIMIT.
1265 *
1266 * For all other cases (including 32-bit kernels), struct load_weight's
1267 * weight will overflow first before we do, because:
1268 *
1269 * Max(load_avg) <= Max(load.weight)
1270 *
1271 * Then it is the load_weight's responsibility to consider overflow
1272 * issues.
9d89c257 1273 */
9d85f21c 1274struct sched_avg {
9d89c257
YD
1275 u64 last_update_time, load_sum;
1276 u32 util_sum, period_contrib;
1277 unsigned long load_avg, util_avg;
9d85f21c
PT
1278};
1279
94c18227 1280#ifdef CONFIG_SCHEDSTATS
41acab88 1281struct sched_statistics {
20b8a59f 1282 u64 wait_start;
94c18227 1283 u64 wait_max;
6d082592
AV
1284 u64 wait_count;
1285 u64 wait_sum;
8f0dfc34
AV
1286 u64 iowait_count;
1287 u64 iowait_sum;
94c18227 1288
20b8a59f 1289 u64 sleep_start;
20b8a59f 1290 u64 sleep_max;
94c18227
IM
1291 s64 sum_sleep_runtime;
1292
1293 u64 block_start;
20b8a59f
IM
1294 u64 block_max;
1295 u64 exec_max;
eba1ed4b 1296 u64 slice_max;
cc367732 1297
cc367732
IM
1298 u64 nr_migrations_cold;
1299 u64 nr_failed_migrations_affine;
1300 u64 nr_failed_migrations_running;
1301 u64 nr_failed_migrations_hot;
1302 u64 nr_forced_migrations;
cc367732
IM
1303
1304 u64 nr_wakeups;
1305 u64 nr_wakeups_sync;
1306 u64 nr_wakeups_migrate;
1307 u64 nr_wakeups_local;
1308 u64 nr_wakeups_remote;
1309 u64 nr_wakeups_affine;
1310 u64 nr_wakeups_affine_attempts;
1311 u64 nr_wakeups_passive;
1312 u64 nr_wakeups_idle;
41acab88
LDM
1313};
1314#endif
1315
1316struct sched_entity {
1317 struct load_weight load; /* for load-balancing */
1318 struct rb_node run_node;
1319 struct list_head group_node;
1320 unsigned int on_rq;
1321
1322 u64 exec_start;
1323 u64 sum_exec_runtime;
1324 u64 vruntime;
1325 u64 prev_sum_exec_runtime;
1326
41acab88
LDM
1327 u64 nr_migrations;
1328
41acab88
LDM
1329#ifdef CONFIG_SCHEDSTATS
1330 struct sched_statistics statistics;
94c18227
IM
1331#endif
1332
20b8a59f 1333#ifdef CONFIG_FAIR_GROUP_SCHED
fed14d45 1334 int depth;
20b8a59f
IM
1335 struct sched_entity *parent;
1336 /* rq on which this entity is (to be) queued: */
1337 struct cfs_rq *cfs_rq;
1338 /* rq "owned" by this entity/group: */
1339 struct cfs_rq *my_q;
1340#endif
8bd75c77 1341
141965c7 1342#ifdef CONFIG_SMP
5a107804
JO
1343 /*
1344 * Per entity load average tracking.
1345 *
1346 * Put into separate cache line so it does not
1347 * collide with read-mostly values above.
1348 */
1349 struct sched_avg avg ____cacheline_aligned_in_smp;
9d85f21c 1350#endif
20b8a59f 1351};
70b97a7f 1352
fa717060
PZ
1353struct sched_rt_entity {
1354 struct list_head run_list;
78f2c7db 1355 unsigned long timeout;
57d2aa00 1356 unsigned long watchdog_stamp;
bee367ed 1357 unsigned int time_slice;
ff77e468
PZ
1358 unsigned short on_rq;
1359 unsigned short on_list;
6f505b16 1360
58d6c2d7 1361 struct sched_rt_entity *back;
052f1dc7 1362#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
1363 struct sched_rt_entity *parent;
1364 /* rq on which this entity is (to be) queued: */
1365 struct rt_rq *rt_rq;
1366 /* rq "owned" by this entity/group: */
1367 struct rt_rq *my_q;
1368#endif
fa717060
PZ
1369};
1370
aab03e05
DF
1371struct sched_dl_entity {
1372 struct rb_node rb_node;
1373
1374 /*
1375 * Original scheduling parameters. Copied here from sched_attr
4027d080 1376 * during sched_setattr(), they will remain the same until
1377 * the next sched_setattr().
aab03e05
DF
1378 */
1379 u64 dl_runtime; /* maximum runtime for each instance */
1380 u64 dl_deadline; /* relative deadline of each instance */
755378a4 1381 u64 dl_period; /* separation of two instances (period) */
332ac17e 1382 u64 dl_bw; /* dl_runtime / dl_deadline */
aab03e05
DF
1383
1384 /*
1385 * Actual scheduling parameters. Initialized with the values above,
1386 * they are continously updated during task execution. Note that
1387 * the remaining runtime could be < 0 in case we are in overrun.
1388 */
1389 s64 runtime; /* remaining runtime for this instance */
1390 u64 deadline; /* absolute deadline for this instance */
1391 unsigned int flags; /* specifying the scheduler behaviour */
1392
1393 /*
1394 * Some bool flags:
1395 *
1396 * @dl_throttled tells if we exhausted the runtime. If so, the
1397 * task has to wait for a replenishment to be performed at the
1398 * next firing of dl_timer.
1399 *
2d3d891d
DF
1400 * @dl_boosted tells if we are boosted due to DI. If so we are
1401 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
1402 * exit the critical section);
1403 *
1404 * @dl_yielded tells if task gave up the cpu before consuming
1405 * all its available runtime during the last job.
aab03e05 1406 */
72f9f3fd 1407 int dl_throttled, dl_boosted, dl_yielded;
aab03e05
DF
1408
1409 /*
1410 * Bandwidth enforcement timer. Each -deadline task has its
1411 * own bandwidth to be enforced, thus we need one timer per task.
1412 */
1413 struct hrtimer dl_timer;
1414};
8bd75c77 1415
1d082fd0
PM
1416union rcu_special {
1417 struct {
8203d6d0
PM
1418 u8 blocked;
1419 u8 need_qs;
1420 u8 exp_need_qs;
1421 u8 pad; /* Otherwise the compiler can store garbage here. */
1422 } b; /* Bits. */
1423 u32 s; /* Set of bits. */
1d082fd0 1424};
86848966
PM
1425struct rcu_node;
1426
8dc85d54
PZ
1427enum perf_event_task_context {
1428 perf_invalid_context = -1,
1429 perf_hw_context = 0,
89a1e187 1430 perf_sw_context,
8dc85d54
PZ
1431 perf_nr_task_contexts,
1432};
1433
72b252ae
MG
1434/* Track pages that require TLB flushes */
1435struct tlbflush_unmap_batch {
1436 /*
1437 * Each bit set is a CPU that potentially has a TLB entry for one of
1438 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1439 */
1440 struct cpumask cpumask;
1441
1442 /* True if any bit in cpumask is set */
1443 bool flush_required;
d950c947
MG
1444
1445 /*
1446 * If true then the PTE was dirty when unmapped. The entry must be
1447 * flushed before IO is initiated or a stale TLB entry potentially
1448 * allows an update without redirtying the page.
1449 */
1450 bool writable;
72b252ae
MG
1451};
1452
1da177e4
LT
1453struct task_struct {
1454 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
f7e4217b 1455 void *stack;
1da177e4 1456 atomic_t usage;
97dc32cd
WC
1457 unsigned int flags; /* per process flags, defined below */
1458 unsigned int ptrace;
1da177e4 1459
2dd73a4f 1460#ifdef CONFIG_SMP
fa14ff4a 1461 struct llist_node wake_entry;
3ca7a440 1462 int on_cpu;
63b0e9ed 1463 unsigned int wakee_flips;
62470419 1464 unsigned long wakee_flip_decay_ts;
63b0e9ed 1465 struct task_struct *last_wakee;
ac66f547
PZ
1466
1467 int wake_cpu;
2dd73a4f 1468#endif
fd2f4419 1469 int on_rq;
50e645a8 1470
b29739f9 1471 int prio, static_prio, normal_prio;
c7aceaba 1472 unsigned int rt_priority;
5522d5d5 1473 const struct sched_class *sched_class;
20b8a59f 1474 struct sched_entity se;
fa717060 1475 struct sched_rt_entity rt;
8323f26c
PZ
1476#ifdef CONFIG_CGROUP_SCHED
1477 struct task_group *sched_task_group;
1478#endif
aab03e05 1479 struct sched_dl_entity dl;
1da177e4 1480
e107be36
AK
1481#ifdef CONFIG_PREEMPT_NOTIFIERS
1482 /* list of struct preempt_notifier: */
1483 struct hlist_head preempt_notifiers;
1484#endif
1485
6c5c9341 1486#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1487 unsigned int btrace_seq;
6c5c9341 1488#endif
1da177e4 1489
97dc32cd 1490 unsigned int policy;
29baa747 1491 int nr_cpus_allowed;
1da177e4 1492 cpumask_t cpus_allowed;
1da177e4 1493
a57eb940 1494#ifdef CONFIG_PREEMPT_RCU
e260be67 1495 int rcu_read_lock_nesting;
1d082fd0 1496 union rcu_special rcu_read_unlock_special;
f41d911f 1497 struct list_head rcu_node_entry;
a57eb940 1498 struct rcu_node *rcu_blocked_node;
28f6569a 1499#endif /* #ifdef CONFIG_PREEMPT_RCU */
8315f422
PM
1500#ifdef CONFIG_TASKS_RCU
1501 unsigned long rcu_tasks_nvcsw;
1502 bool rcu_tasks_holdout;
1503 struct list_head rcu_tasks_holdout_list;
176f8f7a 1504 int rcu_tasks_idle_cpu;
8315f422 1505#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 1506
f6db8347 1507#ifdef CONFIG_SCHED_INFO
1da177e4
LT
1508 struct sched_info sched_info;
1509#endif
1510
1511 struct list_head tasks;
806c09a7 1512#ifdef CONFIG_SMP
917b627d 1513 struct plist_node pushable_tasks;
1baca4ce 1514 struct rb_node pushable_dl_tasks;
806c09a7 1515#endif
1da177e4
LT
1516
1517 struct mm_struct *mm, *active_mm;
615d6e87
DB
1518 /* per-thread vma caching */
1519 u32 vmacache_seqnum;
1520 struct vm_area_struct *vmacache[VMACACHE_SIZE];
34e55232
KH
1521#if defined(SPLIT_RSS_COUNTING)
1522 struct task_rss_stat rss_stat;
1523#endif
1da177e4 1524/* task state */
97dc32cd 1525 int exit_state;
1da177e4
LT
1526 int exit_code, exit_signal;
1527 int pdeath_signal; /* The signal sent when the parent dies */
e7cc4173 1528 unsigned long jobctl; /* JOBCTL_*, siglock protected */
9b89f6ba
AE
1529
1530 /* Used for emulating ABI behavior of previous Linux versions */
97dc32cd 1531 unsigned int personality;
9b89f6ba 1532
be958bdc 1533 /* scheduler bits, serialized by scheduler locks */
ca94c442 1534 unsigned sched_reset_on_fork:1;
a8e4f2ea 1535 unsigned sched_contributes_to_load:1;
ff303e66 1536 unsigned sched_migrated:1;
be958bdc
PZ
1537 unsigned :0; /* force alignment to the next boundary */
1538
1539 /* unserialized, strictly 'current' */
1540 unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1541 unsigned in_iowait:1;
626ebc41
TH
1542#ifdef CONFIG_MEMCG
1543 unsigned memcg_may_oom:1;
127424c8 1544#ifndef CONFIG_SLOB
6f185c29
VD
1545 unsigned memcg_kmem_skip_account:1;
1546#endif
127424c8 1547#endif
ff303e66
PZ
1548#ifdef CONFIG_COMPAT_BRK
1549 unsigned brk_randomized:1;
1550#endif
6f185c29 1551
1d4457f9
KC
1552 unsigned long atomic_flags; /* Flags needing atomic access. */
1553
f56141e3
AL
1554 struct restart_block restart_block;
1555
1da177e4
LT
1556 pid_t pid;
1557 pid_t tgid;
0a425405 1558
1314562a 1559#ifdef CONFIG_CC_STACKPROTECTOR
0a425405
AV
1560 /* Canary value for the -fstack-protector gcc feature */
1561 unsigned long stack_canary;
1314562a 1562#endif
4d1d61a6 1563 /*
1da177e4 1564 * pointers to (original) parent process, youngest child, younger sibling,
4d1d61a6 1565 * older sibling, respectively. (p->father can be replaced with
f470021a 1566 * p->real_parent->pid)
1da177e4 1567 */
abd63bc3
KC
1568 struct task_struct __rcu *real_parent; /* real parent process */
1569 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1da177e4 1570 /*
f470021a 1571 * children/sibling forms the list of my natural children
1da177e4
LT
1572 */
1573 struct list_head children; /* list of my children */
1574 struct list_head sibling; /* linkage in my parent's children list */
1575 struct task_struct *group_leader; /* threadgroup leader */
1576
f470021a
RM
1577 /*
1578 * ptraced is the list of tasks this task is using ptrace on.
1579 * This includes both natural children and PTRACE_ATTACH targets.
1580 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1581 */
1582 struct list_head ptraced;
1583 struct list_head ptrace_entry;
1584
1da177e4 1585 /* PID/PID hash table linkage. */
92476d7f 1586 struct pid_link pids[PIDTYPE_MAX];
47e65328 1587 struct list_head thread_group;
0c740d0a 1588 struct list_head thread_node;
1da177e4
LT
1589
1590 struct completion *vfork_done; /* for vfork() */
1591 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1592 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1593
c66f08be 1594 cputime_t utime, stime, utimescaled, stimescaled;
9ac52315 1595 cputime_t gtime;
9d7fb042 1596 struct prev_cputime prev_cputime;
6a61671b 1597#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
b7ce2277 1598 seqcount_t vtime_seqcount;
6a61671b
FW
1599 unsigned long long vtime_snap;
1600 enum {
7098c1ea
FW
1601 /* Task is sleeping or running in a CPU with VTIME inactive */
1602 VTIME_INACTIVE = 0,
1603 /* Task runs in userspace in a CPU with VTIME active */
6a61671b 1604 VTIME_USER,
7098c1ea 1605 /* Task runs in kernelspace in a CPU with VTIME active */
6a61671b
FW
1606 VTIME_SYS,
1607 } vtime_snap_whence;
d99ca3b9 1608#endif
d027d45d
FW
1609
1610#ifdef CONFIG_NO_HZ_FULL
f009a7a7 1611 atomic_t tick_dep_mask;
d027d45d 1612#endif
1da177e4 1613 unsigned long nvcsw, nivcsw; /* context switch counts */
ccbf62d8 1614 u64 start_time; /* monotonic time in nsec */
57e0be04 1615 u64 real_start_time; /* boot based time in nsec */
1da177e4
LT
1616/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1617 unsigned long min_flt, maj_flt;
1618
f06febc9 1619 struct task_cputime cputime_expires;
1da177e4
LT
1620 struct list_head cpu_timers[3];
1621
1622/* process credentials */
1b0ba1c9 1623 const struct cred __rcu *real_cred; /* objective and real subjective task
3b11a1de 1624 * credentials (COW) */
1b0ba1c9 1625 const struct cred __rcu *cred; /* effective (overridable) subjective task
3b11a1de 1626 * credentials (COW) */
36772092
PBG
1627 char comm[TASK_COMM_LEN]; /* executable name excluding path
1628 - access with [gs]et_task_comm (which lock
1629 it with task_lock())
221af7f8 1630 - initialized normally by setup_new_exec */
1da177e4 1631/* file system info */
756daf26 1632 struct nameidata *nameidata;
3d5b6fcc 1633#ifdef CONFIG_SYSVIPC
1da177e4
LT
1634/* ipc stuff */
1635 struct sysv_sem sysvsem;
ab602f79 1636 struct sysv_shm sysvshm;
3d5b6fcc 1637#endif
e162b39a 1638#ifdef CONFIG_DETECT_HUNG_TASK
82a1fcb9 1639/* hung task detection */
82a1fcb9
IM
1640 unsigned long last_switch_count;
1641#endif
1da177e4
LT
1642/* filesystem information */
1643 struct fs_struct *fs;
1644/* open file information */
1645 struct files_struct *files;
1651e14e 1646/* namespaces */
ab516013 1647 struct nsproxy *nsproxy;
1da177e4
LT
1648/* signal handlers */
1649 struct signal_struct *signal;
1650 struct sighand_struct *sighand;
1651
1652 sigset_t blocked, real_blocked;
f3de272b 1653 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1da177e4
LT
1654 struct sigpending pending;
1655
1656 unsigned long sas_ss_sp;
1657 size_t sas_ss_size;
2a742138 1658 unsigned sas_ss_flags;
2e01fabe 1659
67d12145 1660 struct callback_head *task_works;
e73f8959 1661
1da177e4 1662 struct audit_context *audit_context;
bfef93a5 1663#ifdef CONFIG_AUDITSYSCALL
e1760bd5 1664 kuid_t loginuid;
4746ec5b 1665 unsigned int sessionid;
bfef93a5 1666#endif
932ecebb 1667 struct seccomp seccomp;
1da177e4
LT
1668
1669/* Thread group tracking */
1670 u32 parent_exec_id;
1671 u32 self_exec_id;
58568d2a
MX
1672/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1673 * mempolicy */
1da177e4 1674 spinlock_t alloc_lock;
1da177e4 1675
b29739f9 1676 /* Protection of the PI data structures: */
1d615482 1677 raw_spinlock_t pi_lock;
b29739f9 1678
76751049
PZ
1679 struct wake_q_node wake_q;
1680
23f78d4a
IM
1681#ifdef CONFIG_RT_MUTEXES
1682 /* PI waiters blocked on a rt_mutex held by this task */
fb00aca4
PZ
1683 struct rb_root pi_waiters;
1684 struct rb_node *pi_waiters_leftmost;
23f78d4a
IM
1685 /* Deadlock detection and priority inheritance handling */
1686 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1687#endif
1688
408894ee
IM
1689#ifdef CONFIG_DEBUG_MUTEXES
1690 /* mutex deadlock detection */
1691 struct mutex_waiter *blocked_on;
1692#endif
de30a2b3
IM
1693#ifdef CONFIG_TRACE_IRQFLAGS
1694 unsigned int irq_events;
de30a2b3 1695 unsigned long hardirq_enable_ip;
de30a2b3 1696 unsigned long hardirq_disable_ip;
fa1452e8 1697 unsigned int hardirq_enable_event;
de30a2b3 1698 unsigned int hardirq_disable_event;
fa1452e8
HS
1699 int hardirqs_enabled;
1700 int hardirq_context;
de30a2b3 1701 unsigned long softirq_disable_ip;
de30a2b3 1702 unsigned long softirq_enable_ip;
fa1452e8 1703 unsigned int softirq_disable_event;
de30a2b3 1704 unsigned int softirq_enable_event;
fa1452e8 1705 int softirqs_enabled;
de30a2b3
IM
1706 int softirq_context;
1707#endif
fbb9ce95 1708#ifdef CONFIG_LOCKDEP
bdb9441e 1709# define MAX_LOCK_DEPTH 48UL
fbb9ce95
IM
1710 u64 curr_chain_key;
1711 int lockdep_depth;
fbb9ce95 1712 unsigned int lockdep_recursion;
c7aceaba 1713 struct held_lock held_locks[MAX_LOCK_DEPTH];
cf40bd16 1714 gfp_t lockdep_reclaim_gfp;
fbb9ce95 1715#endif
c6d30853
AR
1716#ifdef CONFIG_UBSAN
1717 unsigned int in_ubsan;
1718#endif
408894ee 1719
1da177e4
LT
1720/* journalling filesystem info */
1721 void *journal_info;
1722
d89d8796 1723/* stacked block device info */
bddd87c7 1724 struct bio_list *bio_list;
d89d8796 1725
73c10101
JA
1726#ifdef CONFIG_BLOCK
1727/* stack plugging */
1728 struct blk_plug *plug;
1729#endif
1730
1da177e4
LT
1731/* VM state */
1732 struct reclaim_state *reclaim_state;
1733
1da177e4
LT
1734 struct backing_dev_info *backing_dev_info;
1735
1736 struct io_context *io_context;
1737
1738 unsigned long ptrace_message;
1739 siginfo_t *last_siginfo; /* For ptrace use. */
7c3ab738 1740 struct task_io_accounting ioac;
8f0ab514 1741#if defined(CONFIG_TASK_XACCT)
1da177e4
LT
1742 u64 acct_rss_mem1; /* accumulated rss usage */
1743 u64 acct_vm_mem1; /* accumulated virtual memory usage */
49b5cf34 1744 cputime_t acct_timexpd; /* stime + utime since last update */
1da177e4
LT
1745#endif
1746#ifdef CONFIG_CPUSETS
58568d2a 1747 nodemask_t mems_allowed; /* Protected by alloc_lock */
cc9a6c87 1748 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
825a46af 1749 int cpuset_mem_spread_rotor;
6adef3eb 1750 int cpuset_slab_spread_rotor;
1da177e4 1751#endif
ddbcc7e8 1752#ifdef CONFIG_CGROUPS
817929ec 1753 /* Control Group info protected by css_set_lock */
2c392b8c 1754 struct css_set __rcu *cgroups;
817929ec
PM
1755 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1756 struct list_head cg_list;
ddbcc7e8 1757#endif
42b2dd0a 1758#ifdef CONFIG_FUTEX
0771dfef 1759 struct robust_list_head __user *robust_list;
34f192c6
IM
1760#ifdef CONFIG_COMPAT
1761 struct compat_robust_list_head __user *compat_robust_list;
1762#endif
c87e2837
IM
1763 struct list_head pi_state_list;
1764 struct futex_pi_state *pi_state_cache;
c7aceaba 1765#endif
cdd6c482 1766#ifdef CONFIG_PERF_EVENTS
8dc85d54 1767 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
cdd6c482
IM
1768 struct mutex perf_event_mutex;
1769 struct list_head perf_event_list;
a63eaf34 1770#endif
8f47b187
TG
1771#ifdef CONFIG_DEBUG_PREEMPT
1772 unsigned long preempt_disable_ip;
1773#endif
c7aceaba 1774#ifdef CONFIG_NUMA
58568d2a 1775 struct mempolicy *mempolicy; /* Protected by alloc_lock */
c7aceaba 1776 short il_next;
207205a2 1777 short pref_node_fork;
42b2dd0a 1778#endif
cbee9f88
PZ
1779#ifdef CONFIG_NUMA_BALANCING
1780 int numa_scan_seq;
cbee9f88 1781 unsigned int numa_scan_period;
598f0ec0 1782 unsigned int numa_scan_period_max;
de1c9ce6 1783 int numa_preferred_nid;
6b9a7460 1784 unsigned long numa_migrate_retry;
cbee9f88 1785 u64 node_stamp; /* migration stamp */
7e2703e6
RR
1786 u64 last_task_numa_placement;
1787 u64 last_sum_exec_runtime;
cbee9f88 1788 struct callback_head numa_work;
f809ca9a 1789
8c8a743c
PZ
1790 struct list_head numa_entry;
1791 struct numa_group *numa_group;
1792
745d6147 1793 /*
44dba3d5
IM
1794 * numa_faults is an array split into four regions:
1795 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1796 * in this precise order.
1797 *
1798 * faults_memory: Exponential decaying average of faults on a per-node
1799 * basis. Scheduling placement decisions are made based on these
1800 * counts. The values remain static for the duration of a PTE scan.
1801 * faults_cpu: Track the nodes the process was running on when a NUMA
1802 * hinting fault was incurred.
1803 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1804 * during the current scan window. When the scan completes, the counts
1805 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1806 */
44dba3d5 1807 unsigned long *numa_faults;
83e1d2cd 1808 unsigned long total_numa_faults;
745d6147 1809
04bb2f94
RR
1810 /*
1811 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1812 * scan window were remote/local or failed to migrate. The task scan
1813 * period is adapted based on the locality of the faults with different
1814 * weights depending on whether they were shared or private faults
04bb2f94 1815 */
074c2381 1816 unsigned long numa_faults_locality[3];
04bb2f94 1817
b32e86b4 1818 unsigned long numa_pages_migrated;
cbee9f88
PZ
1819#endif /* CONFIG_NUMA_BALANCING */
1820
72b252ae
MG
1821#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1822 struct tlbflush_unmap_batch tlb_ubc;
1823#endif
1824
e56d0903 1825 struct rcu_head rcu;
b92ce558
JA
1826
1827 /*
1828 * cache last used pipe for splice
1829 */
1830 struct pipe_inode_info *splice_pipe;
5640f768
ED
1831
1832 struct page_frag task_frag;
1833
ca74e92b
SN
1834#ifdef CONFIG_TASK_DELAY_ACCT
1835 struct task_delay_info *delays;
f4f154fd
AM
1836#endif
1837#ifdef CONFIG_FAULT_INJECTION
1838 int make_it_fail;
ca74e92b 1839#endif
9d823e8f
WF
1840 /*
1841 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1842 * balance_dirty_pages() for some dirty throttling pause
1843 */
1844 int nr_dirtied;
1845 int nr_dirtied_pause;
83712358 1846 unsigned long dirty_paused_when; /* start of a write-and-pause period */
9d823e8f 1847
9745512c
AV
1848#ifdef CONFIG_LATENCYTOP
1849 int latency_record_count;
1850 struct latency_record latency_record[LT_SAVECOUNT];
1851#endif
6976675d
AV
1852 /*
1853 * time slack values; these are used to round up poll() and
1854 * select() etc timeout values. These are in nanoseconds.
1855 */
da8b44d5
JS
1856 u64 timer_slack_ns;
1857 u64 default_timer_slack_ns;
f8d570a4 1858
0b24becc
AR
1859#ifdef CONFIG_KASAN
1860 unsigned int kasan_depth;
1861#endif
fb52607a 1862#ifdef CONFIG_FUNCTION_GRAPH_TRACER
3ad2f3fb 1863 /* Index of current stored address in ret_stack */
f201ae23
FW
1864 int curr_ret_stack;
1865 /* Stack of return addresses for return function tracing */
1866 struct ftrace_ret_stack *ret_stack;
8aef2d28
SR
1867 /* time stamp for last schedule */
1868 unsigned long long ftrace_timestamp;
f201ae23
FW
1869 /*
1870 * Number of functions that haven't been traced
1871 * because of depth overrun.
1872 */
1873 atomic_t trace_overrun;
380c4b14
FW
1874 /* Pause for the tracing */
1875 atomic_t tracing_graph_pause;
f201ae23 1876#endif
ea4e2bc4
SR
1877#ifdef CONFIG_TRACING
1878 /* state flags for use by tracers */
1879 unsigned long trace;
b1cff0ad 1880 /* bitmask and counter of trace recursion */
261842b7
SR
1881 unsigned long trace_recursion;
1882#endif /* CONFIG_TRACING */
5c9a8750
DV
1883#ifdef CONFIG_KCOV
1884 /* Coverage collection mode enabled for this task (0 if disabled). */
1885 enum kcov_mode kcov_mode;
1886 /* Size of the kcov_area. */
1887 unsigned kcov_size;
1888 /* Buffer for coverage collection. */
1889 void *kcov_area;
1890 /* kcov desciptor wired with this task or NULL. */
1891 struct kcov *kcov;
1892#endif
6f185c29 1893#ifdef CONFIG_MEMCG
626ebc41
TH
1894 struct mem_cgroup *memcg_in_oom;
1895 gfp_t memcg_oom_gfp_mask;
1896 int memcg_oom_order;
b23afb93
TH
1897
1898 /* number of pages to reclaim on returning to userland */
1899 unsigned int memcg_nr_pages_over_high;
569b846d 1900#endif
0326f5a9
SD
1901#ifdef CONFIG_UPROBES
1902 struct uprobe_task *utask;
0326f5a9 1903#endif
cafe5635
KO
1904#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1905 unsigned int sequential_io;
1906 unsigned int sequential_io_avg;
1907#endif
8eb23b9f
PZ
1908#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1909 unsigned long task_state_change;
1910#endif
8bcbde54 1911 int pagefault_disabled;
03049269 1912#ifdef CONFIG_MMU
29c696e1 1913 struct task_struct *oom_reaper_list;
03049269 1914#endif
0c8c0f03
DH
1915/* CPU-specific state of this task */
1916 struct thread_struct thread;
1917/*
1918 * WARNING: on x86, 'thread_struct' contains a variable-sized
1919 * structure. It *MUST* be at the end of 'task_struct'.
1920 *
1921 * Do not put anything below here!
1922 */
1da177e4
LT
1923};
1924
5aaeb5c0
IM
1925#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1926extern int arch_task_struct_size __read_mostly;
1927#else
1928# define arch_task_struct_size (sizeof(struct task_struct))
1929#endif
0c8c0f03 1930
76e6eee0 1931/* Future-safe accessor for struct task_struct's cpus_allowed. */
a4636818 1932#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
76e6eee0 1933
50605ffb
TG
1934static inline int tsk_nr_cpus_allowed(struct task_struct *p)
1935{
1936 return p->nr_cpus_allowed;
1937}
1938
6688cc05
PZ
1939#define TNF_MIGRATED 0x01
1940#define TNF_NO_GROUP 0x02
dabe1d99 1941#define TNF_SHARED 0x04
04bb2f94 1942#define TNF_FAULT_LOCAL 0x08
074c2381 1943#define TNF_MIGRATE_FAIL 0x10
6688cc05 1944
cbee9f88 1945#ifdef CONFIG_NUMA_BALANCING
6688cc05 1946extern void task_numa_fault(int last_node, int node, int pages, int flags);
e29cf08b 1947extern pid_t task_numa_group_id(struct task_struct *p);
1a687c2e 1948extern void set_numabalancing_state(bool enabled);
82727018 1949extern void task_numa_free(struct task_struct *p);
10f39042
RR
1950extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1951 int src_nid, int dst_cpu);
cbee9f88 1952#else
ac8e895b 1953static inline void task_numa_fault(int last_node, int node, int pages,
6688cc05 1954 int flags)
cbee9f88
PZ
1955{
1956}
e29cf08b
MG
1957static inline pid_t task_numa_group_id(struct task_struct *p)
1958{
1959 return 0;
1960}
1a687c2e
MG
1961static inline void set_numabalancing_state(bool enabled)
1962{
1963}
82727018
RR
1964static inline void task_numa_free(struct task_struct *p)
1965{
1966}
10f39042
RR
1967static inline bool should_numa_migrate_memory(struct task_struct *p,
1968 struct page *page, int src_nid, int dst_cpu)
1969{
1970 return true;
1971}
cbee9f88
PZ
1972#endif
1973
e868171a 1974static inline struct pid *task_pid(struct task_struct *task)
22c935f4
EB
1975{
1976 return task->pids[PIDTYPE_PID].pid;
1977}
1978
e868171a 1979static inline struct pid *task_tgid(struct task_struct *task)
22c935f4
EB
1980{
1981 return task->group_leader->pids[PIDTYPE_PID].pid;
1982}
1983
6dda81f4
ON
1984/*
1985 * Without tasklist or rcu lock it is not safe to dereference
1986 * the result of task_pgrp/task_session even if task == current,
1987 * we can race with another thread doing sys_setsid/sys_setpgid.
1988 */
e868171a 1989static inline struct pid *task_pgrp(struct task_struct *task)
22c935f4
EB
1990{
1991 return task->group_leader->pids[PIDTYPE_PGID].pid;
1992}
1993
e868171a 1994static inline struct pid *task_session(struct task_struct *task)
22c935f4
EB
1995{
1996 return task->group_leader->pids[PIDTYPE_SID].pid;
1997}
1998
7af57294
PE
1999struct pid_namespace;
2000
2001/*
2002 * the helpers to get the task's different pids as they are seen
2003 * from various namespaces
2004 *
2005 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
2006 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
2007 * current.
7af57294
PE
2008 * task_xid_nr_ns() : id seen from the ns specified;
2009 *
2010 * set_task_vxid() : assigns a virtual id to a task;
2011 *
7af57294
PE
2012 * see also pid_nr() etc in include/linux/pid.h
2013 */
52ee2dfd
ON
2014pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
2015 struct pid_namespace *ns);
7af57294 2016
e868171a 2017static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
2018{
2019 return tsk->pid;
2020}
2021
52ee2dfd
ON
2022static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
2023 struct pid_namespace *ns)
2024{
2025 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
2026}
7af57294
PE
2027
2028static inline pid_t task_pid_vnr(struct task_struct *tsk)
2029{
52ee2dfd 2030 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
2031}
2032
2033
e868171a 2034static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
2035{
2036 return tsk->tgid;
2037}
2038
2f2a3a46 2039pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
7af57294
PE
2040
2041static inline pid_t task_tgid_vnr(struct task_struct *tsk)
2042{
2043 return pid_vnr(task_tgid(tsk));
2044}
2045
2046
80e0b6e8 2047static inline int pid_alive(const struct task_struct *p);
ad36d282
RGB
2048static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
2049{
2050 pid_t pid = 0;
2051
2052 rcu_read_lock();
2053 if (pid_alive(tsk))
2054 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
2055 rcu_read_unlock();
2056
2057 return pid;
2058}
2059
2060static inline pid_t task_ppid_nr(const struct task_struct *tsk)
2061{
2062 return task_ppid_nr_ns(tsk, &init_pid_ns);
2063}
2064
52ee2dfd
ON
2065static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
2066 struct pid_namespace *ns)
7af57294 2067{
52ee2dfd 2068 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
2069}
2070
7af57294
PE
2071static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
2072{
52ee2dfd 2073 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
2074}
2075
2076
52ee2dfd
ON
2077static inline pid_t task_session_nr_ns(struct task_struct *tsk,
2078 struct pid_namespace *ns)
7af57294 2079{
52ee2dfd 2080 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
2081}
2082
7af57294
PE
2083static inline pid_t task_session_vnr(struct task_struct *tsk)
2084{
52ee2dfd 2085 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
2086}
2087
1b0f7ffd
ON
2088/* obsolete, do not use */
2089static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2090{
2091 return task_pgrp_nr_ns(tsk, &init_pid_ns);
2092}
7af57294 2093
1da177e4
LT
2094/**
2095 * pid_alive - check that a task structure is not stale
2096 * @p: Task structure to be checked.
2097 *
2098 * Test if a process is not yet dead (at most zombie state)
2099 * If pid_alive fails, then pointers within the task structure
2100 * can be stale and must not be dereferenced.
e69f6186
YB
2101 *
2102 * Return: 1 if the process is alive. 0 otherwise.
1da177e4 2103 */
ad36d282 2104static inline int pid_alive(const struct task_struct *p)
1da177e4 2105{
92476d7f 2106 return p->pids[PIDTYPE_PID].pid != NULL;
1da177e4
LT
2107}
2108
f400e198 2109/**
570f5241
SS
2110 * is_global_init - check if a task structure is init. Since init
2111 * is free to have sub-threads we need to check tgid.
3260259f
HK
2112 * @tsk: Task structure to be checked.
2113 *
2114 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
2115 *
2116 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 2117 */
e868171a 2118static inline int is_global_init(struct task_struct *tsk)
b461cc03 2119{
570f5241 2120 return task_tgid_nr(tsk) == 1;
b461cc03 2121}
b460cbc5 2122
9ec52099
CLG
2123extern struct pid *cad_pid;
2124
1da177e4 2125extern void free_task(struct task_struct *tsk);
1da177e4 2126#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
e56d0903 2127
158d9ebd 2128extern void __put_task_struct(struct task_struct *t);
e56d0903
IM
2129
2130static inline void put_task_struct(struct task_struct *t)
2131{
2132 if (atomic_dec_and_test(&t->usage))
8c7904a0 2133 __put_task_struct(t);
e56d0903 2134}
1da177e4 2135
6a61671b
FW
2136#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2137extern void task_cputime(struct task_struct *t,
2138 cputime_t *utime, cputime_t *stime);
2139extern void task_cputime_scaled(struct task_struct *t,
2140 cputime_t *utimescaled, cputime_t *stimescaled);
2141extern cputime_t task_gtime(struct task_struct *t);
2142#else
6fac4829
FW
2143static inline void task_cputime(struct task_struct *t,
2144 cputime_t *utime, cputime_t *stime)
2145{
2146 if (utime)
2147 *utime = t->utime;
2148 if (stime)
2149 *stime = t->stime;
2150}
2151
2152static inline void task_cputime_scaled(struct task_struct *t,
2153 cputime_t *utimescaled,
2154 cputime_t *stimescaled)
2155{
2156 if (utimescaled)
2157 *utimescaled = t->utimescaled;
2158 if (stimescaled)
2159 *stimescaled = t->stimescaled;
2160}
6a61671b
FW
2161
2162static inline cputime_t task_gtime(struct task_struct *t)
2163{
2164 return t->gtime;
2165}
2166#endif
e80d0a1a
FW
2167extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2168extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
49048622 2169
1da177e4
LT
2170/*
2171 * Per process flags
2172 */
1da177e4 2173#define PF_EXITING 0x00000004 /* getting shut down */
778e9a9c 2174#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
94886b84 2175#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
21aa9af0 2176#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1da177e4 2177#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
4db96cf0 2178#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1da177e4
LT
2179#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2180#define PF_DUMPCORE 0x00000200 /* dumped core */
2181#define PF_SIGNALED 0x00000400 /* killed by a signal */
2182#define PF_MEMALLOC 0x00000800 /* Allocating memory */
72fa5997 2183#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1da177e4 2184#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
774a1221 2185#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1da177e4
LT
2186#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2187#define PF_FROZEN 0x00010000 /* frozen for system suspend */
2188#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2189#define PF_KSWAPD 0x00040000 /* I am kswapd */
21caf2fc 2190#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1da177e4 2191#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
246bb0b1 2192#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
b31dc66a
JA
2193#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2194#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
14a40ffc 2195#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
4db96cf0 2196#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
61a87122 2197#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
58a69cb4 2198#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2b44c4db 2199#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1da177e4
LT
2200
2201/*
2202 * Only the _current_ task can read/write to tsk->flags, but other
2203 * tasks can access tsk->flags in readonly mode for example
2204 * with tsk_used_math (like during threaded core dumping).
2205 * There is however an exception to this rule during ptrace
2206 * or during fork: the ptracer task is allowed to write to the
2207 * child->flags of its traced child (same goes for fork, the parent
2208 * can write to the child->flags), because we're guaranteed the
2209 * child is not running and in turn not changing child->flags
2210 * at the same time the parent does it.
2211 */
2212#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2213#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2214#define clear_used_math() clear_stopped_child_used_math(current)
2215#define set_used_math() set_stopped_child_used_math(current)
2216#define conditional_stopped_child_used_math(condition, child) \
2217 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2218#define conditional_used_math(condition) \
2219 conditional_stopped_child_used_math(condition, current)
2220#define copy_to_stopped_child_used_math(child) \
2221 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2222/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2223#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2224#define used_math() tsk_used_math(current)
2225
934f3072
JB
2226/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2227 * __GFP_FS is also cleared as it implies __GFP_IO.
2228 */
21caf2fc
ML
2229static inline gfp_t memalloc_noio_flags(gfp_t flags)
2230{
2231 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
934f3072 2232 flags &= ~(__GFP_IO | __GFP_FS);
21caf2fc
ML
2233 return flags;
2234}
2235
2236static inline unsigned int memalloc_noio_save(void)
2237{
2238 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2239 current->flags |= PF_MEMALLOC_NOIO;
2240 return flags;
2241}
2242
2243static inline void memalloc_noio_restore(unsigned int flags)
2244{
2245 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2246}
2247
1d4457f9 2248/* Per-process atomic flags. */
a2b86f77 2249#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2ad654bc
ZL
2250#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2251#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2252
1d4457f9 2253
e0e5070b
ZL
2254#define TASK_PFA_TEST(name, func) \
2255 static inline bool task_##func(struct task_struct *p) \
2256 { return test_bit(PFA_##name, &p->atomic_flags); }
2257#define TASK_PFA_SET(name, func) \
2258 static inline void task_set_##func(struct task_struct *p) \
2259 { set_bit(PFA_##name, &p->atomic_flags); }
2260#define TASK_PFA_CLEAR(name, func) \
2261 static inline void task_clear_##func(struct task_struct *p) \
2262 { clear_bit(PFA_##name, &p->atomic_flags); }
2263
2264TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2265TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 2266
2ad654bc
ZL
2267TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2268TASK_PFA_SET(SPREAD_PAGE, spread_page)
2269TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2270
2271TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2272TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2273TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 2274
e5c1902e 2275/*
a8f072c1 2276 * task->jobctl flags
e5c1902e 2277 */
a8f072c1 2278#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
e5c1902e 2279
a8f072c1
TH
2280#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2281#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2282#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
73ddff2b 2283#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
fb1d910c 2284#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
a8f072c1 2285#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
544b2c91 2286#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
a8f072c1 2287
b76808e6
PD
2288#define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2289#define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2290#define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2291#define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2292#define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2293#define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2294#define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
a8f072c1 2295
fb1d910c 2296#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
73ddff2b 2297#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
3759a0d9 2298
7dd3db54 2299extern bool task_set_jobctl_pending(struct task_struct *task,
b76808e6 2300 unsigned long mask);
73ddff2b 2301extern void task_clear_jobctl_trapping(struct task_struct *task);
3759a0d9 2302extern void task_clear_jobctl_pending(struct task_struct *task,
b76808e6 2303 unsigned long mask);
39efa3ef 2304
f41d911f
PM
2305static inline void rcu_copy_process(struct task_struct *p)
2306{
8315f422 2307#ifdef CONFIG_PREEMPT_RCU
f41d911f 2308 p->rcu_read_lock_nesting = 0;
1d082fd0 2309 p->rcu_read_unlock_special.s = 0;
dd5d19ba 2310 p->rcu_blocked_node = NULL;
f41d911f 2311 INIT_LIST_HEAD(&p->rcu_node_entry);
8315f422
PM
2312#endif /* #ifdef CONFIG_PREEMPT_RCU */
2313#ifdef CONFIG_TASKS_RCU
2314 p->rcu_tasks_holdout = false;
2315 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
176f8f7a 2316 p->rcu_tasks_idle_cpu = -1;
8315f422 2317#endif /* #ifdef CONFIG_TASKS_RCU */
f41d911f
PM
2318}
2319
907aed48
MG
2320static inline void tsk_restore_flags(struct task_struct *task,
2321 unsigned long orig_flags, unsigned long flags)
2322{
2323 task->flags &= ~flags;
2324 task->flags |= orig_flags & flags;
2325}
2326
f82f8042
JL
2327extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2328 const struct cpumask *trial);
7f51412a
JL
2329extern int task_can_attach(struct task_struct *p,
2330 const struct cpumask *cs_cpus_allowed);
1da177e4 2331#ifdef CONFIG_SMP
1e1b6c51
KM
2332extern void do_set_cpus_allowed(struct task_struct *p,
2333 const struct cpumask *new_mask);
2334
cd8ba7cd 2335extern int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2336 const struct cpumask *new_mask);
1da177e4 2337#else
1e1b6c51
KM
2338static inline void do_set_cpus_allowed(struct task_struct *p,
2339 const struct cpumask *new_mask)
2340{
2341}
cd8ba7cd 2342static inline int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2343 const struct cpumask *new_mask)
1da177e4 2344{
96f874e2 2345 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
2346 return -EINVAL;
2347 return 0;
2348}
2349#endif
e0ad9556 2350
3451d024 2351#ifdef CONFIG_NO_HZ_COMMON
5167e8d5
PZ
2352void calc_load_enter_idle(void);
2353void calc_load_exit_idle(void);
2354#else
2355static inline void calc_load_enter_idle(void) { }
2356static inline void calc_load_exit_idle(void) { }
3451d024 2357#endif /* CONFIG_NO_HZ_COMMON */
5167e8d5 2358
b342501c 2359/*
c676329a
PZ
2360 * Do not use outside of architecture code which knows its limitations.
2361 *
2362 * sched_clock() has no promise of monotonicity or bounded drift between
2363 * CPUs, use (which you should not) requires disabling IRQs.
2364 *
2365 * Please use one of the three interfaces below.
b342501c 2366 */
1bbfa6f2 2367extern unsigned long long notrace sched_clock(void);
c676329a 2368/*
489a71b0 2369 * See the comment in kernel/sched/clock.c
c676329a 2370 */
545a2bf7 2371extern u64 running_clock(void);
c676329a
PZ
2372extern u64 sched_clock_cpu(int cpu);
2373
e436d800 2374
c1955a3d 2375extern void sched_clock_init(void);
3e51f33f 2376
c1955a3d 2377#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3e51f33f
PZ
2378static inline void sched_clock_tick(void)
2379{
2380}
2381
2382static inline void sched_clock_idle_sleep_event(void)
2383{
2384}
2385
2386static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2387{
2388}
2c923e94
DL
2389
2390static inline u64 cpu_clock(int cpu)
2391{
2392 return sched_clock();
2393}
2394
2395static inline u64 local_clock(void)
2396{
2397 return sched_clock();
2398}
3e51f33f 2399#else
c676329a
PZ
2400/*
2401 * Architectures can set this to 1 if they have specified
2402 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2403 * but then during bootup it turns out that sched_clock()
2404 * is reliable after all:
2405 */
35af99e6
PZ
2406extern int sched_clock_stable(void);
2407extern void set_sched_clock_stable(void);
2408extern void clear_sched_clock_stable(void);
c676329a 2409
3e51f33f
PZ
2410extern void sched_clock_tick(void);
2411extern void sched_clock_idle_sleep_event(void);
2412extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2c923e94
DL
2413
2414/*
2415 * As outlined in clock.c, provides a fast, high resolution, nanosecond
2416 * time source that is monotonic per cpu argument and has bounded drift
2417 * between cpus.
2418 *
2419 * ######################### BIG FAT WARNING ##########################
2420 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
2421 * # go backwards !! #
2422 * ####################################################################
2423 */
2424static inline u64 cpu_clock(int cpu)
2425{
2426 return sched_clock_cpu(cpu);
2427}
2428
2429static inline u64 local_clock(void)
2430{
2431 return sched_clock_cpu(raw_smp_processor_id());
2432}
3e51f33f
PZ
2433#endif
2434
b52bfee4
VP
2435#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2436/*
2437 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2438 * The reason for this explicit opt-in is not to have perf penalty with
2439 * slow sched_clocks.
2440 */
2441extern void enable_sched_clock_irqtime(void);
2442extern void disable_sched_clock_irqtime(void);
2443#else
2444static inline void enable_sched_clock_irqtime(void) {}
2445static inline void disable_sched_clock_irqtime(void) {}
2446#endif
2447
36c8b586 2448extern unsigned long long
41b86e9c 2449task_sched_runtime(struct task_struct *task);
1da177e4
LT
2450
2451/* sched_exec is called by processes performing an exec */
2452#ifdef CONFIG_SMP
2453extern void sched_exec(void);
2454#else
2455#define sched_exec() {}
2456#endif
2457
2aa44d05
IM
2458extern void sched_clock_idle_sleep_event(void);
2459extern void sched_clock_idle_wakeup_event(u64 delta_ns);
bb29ab26 2460
1da177e4
LT
2461#ifdef CONFIG_HOTPLUG_CPU
2462extern void idle_task_exit(void);
2463#else
2464static inline void idle_task_exit(void) {}
2465#endif
2466
3451d024 2467#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1c20091e 2468extern void wake_up_nohz_cpu(int cpu);
06d8308c 2469#else
1c20091e 2470static inline void wake_up_nohz_cpu(int cpu) { }
06d8308c
TG
2471#endif
2472
ce831b38 2473#ifdef CONFIG_NO_HZ_FULL
265f22a9 2474extern u64 scheduler_tick_max_deferment(void);
06d8308c
TG
2475#endif
2476
5091faa4 2477#ifdef CONFIG_SCHED_AUTOGROUP
5091faa4
MG
2478extern void sched_autogroup_create_attach(struct task_struct *p);
2479extern void sched_autogroup_detach(struct task_struct *p);
2480extern void sched_autogroup_fork(struct signal_struct *sig);
2481extern void sched_autogroup_exit(struct signal_struct *sig);
2482#ifdef CONFIG_PROC_FS
2483extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2e5b5b3a 2484extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
5091faa4
MG
2485#endif
2486#else
2487static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2488static inline void sched_autogroup_detach(struct task_struct *p) { }
2489static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2490static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2491#endif
2492
fa93384f 2493extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
2494extern void set_user_nice(struct task_struct *p, long nice);
2495extern int task_prio(const struct task_struct *p);
d0ea0268
DY
2496/**
2497 * task_nice - return the nice value of a given task.
2498 * @p: the task in question.
2499 *
2500 * Return: The nice value [ -20 ... 0 ... 19 ].
2501 */
2502static inline int task_nice(const struct task_struct *p)
2503{
2504 return PRIO_TO_NICE((p)->static_prio);
2505}
36c8b586
IM
2506extern int can_nice(const struct task_struct *p, const int nice);
2507extern int task_curr(const struct task_struct *p);
1da177e4 2508extern int idle_cpu(int cpu);
fe7de49f
KM
2509extern int sched_setscheduler(struct task_struct *, int,
2510 const struct sched_param *);
961ccddd 2511extern int sched_setscheduler_nocheck(struct task_struct *, int,
fe7de49f 2512 const struct sched_param *);
d50dde5a
DF
2513extern int sched_setattr(struct task_struct *,
2514 const struct sched_attr *);
36c8b586 2515extern struct task_struct *idle_task(int cpu);
c4f30608
PM
2516/**
2517 * is_idle_task - is the specified task an idle task?
fa757281 2518 * @p: the task in question.
e69f6186
YB
2519 *
2520 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 2521 */
7061ca3b 2522static inline bool is_idle_task(const struct task_struct *p)
c4f30608
PM
2523{
2524 return p->pid == 0;
2525}
36c8b586
IM
2526extern struct task_struct *curr_task(int cpu);
2527extern void set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
2528
2529void yield(void);
2530
1da177e4
LT
2531union thread_union {
2532 struct thread_info thread_info;
2533 unsigned long stack[THREAD_SIZE/sizeof(long)];
2534};
2535
2536#ifndef __HAVE_ARCH_KSTACK_END
2537static inline int kstack_end(void *addr)
2538{
2539 /* Reliable end of stack detection:
2540 * Some APM bios versions misalign the stack
2541 */
2542 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2543}
2544#endif
2545
2546extern union thread_union init_thread_union;
2547extern struct task_struct init_task;
2548
2549extern struct mm_struct init_mm;
2550
198fe21b
PE
2551extern struct pid_namespace init_pid_ns;
2552
2553/*
2554 * find a task by one of its numerical ids
2555 *
198fe21b
PE
2556 * find_task_by_pid_ns():
2557 * finds a task by its pid in the specified namespace
228ebcbe
PE
2558 * find_task_by_vpid():
2559 * finds a task by its virtual pid
198fe21b 2560 *
e49859e7 2561 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
2562 */
2563
228ebcbe
PE
2564extern struct task_struct *find_task_by_vpid(pid_t nr);
2565extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2566 struct pid_namespace *ns);
198fe21b 2567
1da177e4 2568/* per-UID process charging. */
7b44ab97 2569extern struct user_struct * alloc_uid(kuid_t);
1da177e4
LT
2570static inline struct user_struct *get_uid(struct user_struct *u)
2571{
2572 atomic_inc(&u->__count);
2573 return u;
2574}
2575extern void free_uid(struct user_struct *);
1da177e4
LT
2576
2577#include <asm/current.h>
2578
f0af911a 2579extern void xtime_update(unsigned long ticks);
1da177e4 2580
b3c97528
HH
2581extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2582extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 2583extern void wake_up_new_task(struct task_struct *tsk);
1da177e4
LT
2584#ifdef CONFIG_SMP
2585 extern void kick_process(struct task_struct *tsk);
2586#else
2587 static inline void kick_process(struct task_struct *tsk) { }
2588#endif
aab03e05 2589extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
ad46c2c4 2590extern void sched_dead(struct task_struct *p);
1da177e4 2591
1da177e4
LT
2592extern void proc_caches_init(void);
2593extern void flush_signals(struct task_struct *);
10ab825b 2594extern void ignore_signals(struct task_struct *);
1da177e4
LT
2595extern void flush_signal_handlers(struct task_struct *, int force_default);
2596extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2597
be0e6f29 2598static inline int kernel_dequeue_signal(siginfo_t *info)
1da177e4 2599{
be0e6f29
ON
2600 struct task_struct *tsk = current;
2601 siginfo_t __info;
1da177e4
LT
2602 int ret;
2603
be0e6f29
ON
2604 spin_lock_irq(&tsk->sighand->siglock);
2605 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2606 spin_unlock_irq(&tsk->sighand->siglock);
1da177e4
LT
2607
2608 return ret;
53c8f9f1 2609}
1da177e4 2610
9a13049e
ON
2611static inline void kernel_signal_stop(void)
2612{
2613 spin_lock_irq(&current->sighand->siglock);
2614 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2615 __set_current_state(TASK_STOPPED);
2616 spin_unlock_irq(&current->sighand->siglock);
2617
2618 schedule();
2619}
2620
1da177e4
LT
2621extern void release_task(struct task_struct * p);
2622extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1da177e4
LT
2623extern int force_sigsegv(int, struct task_struct *);
2624extern int force_sig_info(int, struct siginfo *, struct task_struct *);
c4b92fc1 2625extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
c4b92fc1 2626extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
d178bc3a
SH
2627extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2628 const struct cred *, u32);
c4b92fc1
EB
2629extern int kill_pgrp(struct pid *pid, int sig, int priv);
2630extern int kill_pid(struct pid *pid, int sig, int priv);
c3de4b38 2631extern int kill_proc_info(int, struct siginfo *, pid_t);
86773473 2632extern __must_check bool do_notify_parent(struct task_struct *, int);
a7f0765e 2633extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
1da177e4 2634extern void force_sig(int, struct task_struct *);
1da177e4 2635extern int send_sig(int, struct task_struct *, int);
09faef11 2636extern int zap_other_threads(struct task_struct *p);
1da177e4
LT
2637extern struct sigqueue *sigqueue_alloc(void);
2638extern void sigqueue_free(struct sigqueue *);
ac5c2153 2639extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
9ac95f2f 2640extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1da177e4 2641
51a7b448
AV
2642static inline void restore_saved_sigmask(void)
2643{
2644 if (test_and_clear_restore_sigmask())
77097ae5 2645 __set_current_blocked(&current->saved_sigmask);
51a7b448
AV
2646}
2647
b7f9a11a
AV
2648static inline sigset_t *sigmask_to_save(void)
2649{
2650 sigset_t *res = &current->blocked;
2651 if (unlikely(test_restore_sigmask()))
2652 res = &current->saved_sigmask;
2653 return res;
2654}
2655
9ec52099
CLG
2656static inline int kill_cad_pid(int sig, int priv)
2657{
2658 return kill_pid(cad_pid, sig, priv);
2659}
2660
1da177e4
LT
2661/* These can be the second arg to send_sig_info/send_group_sig_info. */
2662#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2663#define SEND_SIG_PRIV ((struct siginfo *) 1)
2664#define SEND_SIG_FORCED ((struct siginfo *) 2)
2665
2a855dd0
SAS
2666/*
2667 * True if we are on the alternate signal stack.
2668 */
1da177e4
LT
2669static inline int on_sig_stack(unsigned long sp)
2670{
c876eeab
AL
2671 /*
2672 * If the signal stack is SS_AUTODISARM then, by construction, we
2673 * can't be on the signal stack unless user code deliberately set
2674 * SS_AUTODISARM when we were already on it.
2675 *
2676 * This improves reliability: if user state gets corrupted such that
2677 * the stack pointer points very close to the end of the signal stack,
2678 * then this check will enable the signal to be handled anyway.
2679 */
2680 if (current->sas_ss_flags & SS_AUTODISARM)
2681 return 0;
2682
2a855dd0
SAS
2683#ifdef CONFIG_STACK_GROWSUP
2684 return sp >= current->sas_ss_sp &&
2685 sp - current->sas_ss_sp < current->sas_ss_size;
2686#else
2687 return sp > current->sas_ss_sp &&
2688 sp - current->sas_ss_sp <= current->sas_ss_size;
2689#endif
1da177e4
LT
2690}
2691
2692static inline int sas_ss_flags(unsigned long sp)
2693{
72f15c03
RW
2694 if (!current->sas_ss_size)
2695 return SS_DISABLE;
2696
2697 return on_sig_stack(sp) ? SS_ONSTACK : 0;
1da177e4
LT
2698}
2699
2a742138
SS
2700static inline void sas_ss_reset(struct task_struct *p)
2701{
2702 p->sas_ss_sp = 0;
2703 p->sas_ss_size = 0;
2704 p->sas_ss_flags = SS_DISABLE;
2705}
2706
5a1b98d3
AV
2707static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2708{
2709 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2710#ifdef CONFIG_STACK_GROWSUP
2711 return current->sas_ss_sp;
2712#else
2713 return current->sas_ss_sp + current->sas_ss_size;
2714#endif
2715 return sp;
2716}
2717
1da177e4
LT
2718/*
2719 * Routines for handling mm_structs
2720 */
2721extern struct mm_struct * mm_alloc(void);
2722
2723/* mmdrop drops the mm and the page tables */
b3c97528 2724extern void __mmdrop(struct mm_struct *);
1da177e4
LT
2725static inline void mmdrop(struct mm_struct * mm)
2726{
6fb43d7b 2727 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1da177e4
LT
2728 __mmdrop(mm);
2729}
2730
2731/* mmput gets rid of the mappings and all user-space */
2732extern void mmput(struct mm_struct *);
ec8d7c14
MH
2733/* same as above but performs the slow path from the async kontext. Can
2734 * be called from the atomic context as well
2735 */
2736extern void mmput_async(struct mm_struct *);
2737
1da177e4
LT
2738/* Grab a reference to a task's mm, if it is not already going away */
2739extern struct mm_struct *get_task_mm(struct task_struct *task);
8cdb878d
CY
2740/*
2741 * Grab a reference to a task's mm, if it is not already going away
2742 * and ptrace_may_access with the mode parameter passed to it
2743 * succeeds.
2744 */
2745extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
1da177e4
LT
2746/* Remove the current tasks stale references to the old mm_struct */
2747extern void mm_release(struct task_struct *, struct mm_struct *);
2748
3033f14a
JT
2749#ifdef CONFIG_HAVE_COPY_THREAD_TLS
2750extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2751 struct task_struct *, unsigned long);
2752#else
6f2c55b8 2753extern int copy_thread(unsigned long, unsigned long, unsigned long,
afa86fc4 2754 struct task_struct *);
3033f14a
JT
2755
2756/* Architectures that haven't opted into copy_thread_tls get the tls argument
2757 * via pt_regs, so ignore the tls argument passed via C. */
2758static inline int copy_thread_tls(
2759 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2760 struct task_struct *p, unsigned long tls)
2761{
2762 return copy_thread(clone_flags, sp, arg, p);
2763}
2764#endif
1da177e4
LT
2765extern void flush_thread(void);
2766extern void exit_thread(void);
2767
1da177e4 2768extern void exit_files(struct task_struct *);
a7e5328a 2769extern void __cleanup_sighand(struct sighand_struct *);
cbaffba1 2770
1da177e4 2771extern void exit_itimers(struct signal_struct *);
cbaffba1 2772extern void flush_itimer_signals(void);
1da177e4 2773
9402c95f 2774extern void do_group_exit(int);
1da177e4 2775
c4ad8f98 2776extern int do_execve(struct filename *,
d7627467 2777 const char __user * const __user *,
da3d4c5f 2778 const char __user * const __user *);
51f39a1f
DD
2779extern int do_execveat(int, struct filename *,
2780 const char __user * const __user *,
2781 const char __user * const __user *,
2782 int);
3033f14a 2783extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
e80d6661 2784extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
36c8b586 2785struct task_struct *fork_idle(int);
2aa3a7f8 2786extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
1da177e4 2787
82b89778
AH
2788extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2789static inline void set_task_comm(struct task_struct *tsk, const char *from)
2790{
2791 __set_task_comm(tsk, from, false);
2792}
59714d65 2793extern char *get_task_comm(char *to, struct task_struct *tsk);
1da177e4
LT
2794
2795#ifdef CONFIG_SMP
317f3941 2796void scheduler_ipi(void);
85ba2d86 2797extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 2798#else
184748cc 2799static inline void scheduler_ipi(void) { }
85ba2d86
RM
2800static inline unsigned long wait_task_inactive(struct task_struct *p,
2801 long match_state)
2802{
2803 return 1;
2804}
1da177e4
LT
2805#endif
2806
fafe870f
FW
2807#define tasklist_empty() \
2808 list_empty(&init_task.tasks)
2809
05725f7e
JP
2810#define next_task(p) \
2811 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
1da177e4
LT
2812
2813#define for_each_process(p) \
2814 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2815
5bb459bb 2816extern bool current_is_single_threaded(void);
d84f4f99 2817
1da177e4
LT
2818/*
2819 * Careful: do_each_thread/while_each_thread is a double loop so
2820 * 'break' will not work as expected - use goto instead.
2821 */
2822#define do_each_thread(g, t) \
2823 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2824
2825#define while_each_thread(g, t) \
2826 while ((t = next_thread(t)) != g)
2827
0c740d0a
ON
2828#define __for_each_thread(signal, t) \
2829 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2830
2831#define for_each_thread(p, t) \
2832 __for_each_thread((p)->signal, t)
2833
2834/* Careful: this is a double loop, 'break' won't work as expected. */
2835#define for_each_process_thread(p, t) \
2836 for_each_process(p) for_each_thread(p, t)
2837
7e49827c
ON
2838static inline int get_nr_threads(struct task_struct *tsk)
2839{
b3ac022c 2840 return tsk->signal->nr_threads;
7e49827c
ON
2841}
2842
087806b1
ON
2843static inline bool thread_group_leader(struct task_struct *p)
2844{
2845 return p->exit_signal >= 0;
2846}
1da177e4 2847
0804ef4b
EB
2848/* Do to the insanities of de_thread it is possible for a process
2849 * to have the pid of the thread group leader without actually being
2850 * the thread group leader. For iteration through the pids in proc
2851 * all we care about is that we have a task with the appropriate
2852 * pid, we don't actually care if we have the right task.
2853 */
e1403b8e 2854static inline bool has_group_leader_pid(struct task_struct *p)
0804ef4b 2855{
e1403b8e 2856 return task_pid(p) == p->signal->leader_pid;
0804ef4b
EB
2857}
2858
bac0abd6 2859static inline
e1403b8e 2860bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
bac0abd6 2861{
e1403b8e 2862 return p1->signal == p2->signal;
bac0abd6
PE
2863}
2864
36c8b586 2865static inline struct task_struct *next_thread(const struct task_struct *p)
47e65328 2866{
05725f7e
JP
2867 return list_entry_rcu(p->thread_group.next,
2868 struct task_struct, thread_group);
47e65328
ON
2869}
2870
e868171a 2871static inline int thread_group_empty(struct task_struct *p)
1da177e4 2872{
47e65328 2873 return list_empty(&p->thread_group);
1da177e4
LT
2874}
2875
2876#define delay_group_leader(p) \
2877 (thread_group_leader(p) && !thread_group_empty(p))
2878
1da177e4 2879/*
260ea101 2880 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
22e2c507 2881 * subscriptions and synchronises with wait4(). Also used in procfs. Also
ddbcc7e8 2882 * pins the final release of task.io_context. Also protects ->cpuset and
d68b46fe 2883 * ->cgroup.subsys[]. And ->vfork_done.
1da177e4
LT
2884 *
2885 * Nests both inside and outside of read_lock(&tasklist_lock).
2886 * It must not be nested with write_lock_irq(&tasklist_lock),
2887 * neither inside nor outside.
2888 */
2889static inline void task_lock(struct task_struct *p)
2890{
2891 spin_lock(&p->alloc_lock);
2892}
2893
2894static inline void task_unlock(struct task_struct *p)
2895{
2896 spin_unlock(&p->alloc_lock);
2897}
2898
b8ed374e 2899extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
f63ee72e
ON
2900 unsigned long *flags);
2901
9388dc30
AV
2902static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2903 unsigned long *flags)
2904{
2905 struct sighand_struct *ret;
2906
2907 ret = __lock_task_sighand(tsk, flags);
2908 (void)__cond_lock(&tsk->sighand->siglock, ret);
2909 return ret;
2910}
b8ed374e 2911
f63ee72e
ON
2912static inline void unlock_task_sighand(struct task_struct *tsk,
2913 unsigned long *flags)
2914{
2915 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2916}
2917
77e4ef99 2918/**
7d7efec3
TH
2919 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
2920 * @tsk: task causing the changes
77e4ef99 2921 *
7d7efec3
TH
2922 * All operations which modify a threadgroup - a new thread joining the
2923 * group, death of a member thread (the assertion of PF_EXITING) and
2924 * exec(2) dethreading the process and replacing the leader - are wrapped
2925 * by threadgroup_change_{begin|end}(). This is to provide a place which
2926 * subsystems needing threadgroup stability can hook into for
2927 * synchronization.
77e4ef99 2928 */
7d7efec3 2929static inline void threadgroup_change_begin(struct task_struct *tsk)
4714d1d3 2930{
7d7efec3
TH
2931 might_sleep();
2932 cgroup_threadgroup_change_begin(tsk);
4714d1d3 2933}
77e4ef99
TH
2934
2935/**
7d7efec3
TH
2936 * threadgroup_change_end - mark the end of changes to a threadgroup
2937 * @tsk: task causing the changes
77e4ef99 2938 *
7d7efec3 2939 * See threadgroup_change_begin().
77e4ef99 2940 */
7d7efec3 2941static inline void threadgroup_change_end(struct task_struct *tsk)
4714d1d3 2942{
7d7efec3 2943 cgroup_threadgroup_change_end(tsk);
4714d1d3 2944}
4714d1d3 2945
f037360f
AV
2946#ifndef __HAVE_THREAD_FUNCTIONS
2947
f7e4217b
RZ
2948#define task_thread_info(task) ((struct thread_info *)(task)->stack)
2949#define task_stack_page(task) ((task)->stack)
a1261f54 2950
10ebffde
AV
2951static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2952{
2953 *task_thread_info(p) = *task_thread_info(org);
2954 task_thread_info(p)->task = p;
2955}
2956
6a40281a
CE
2957/*
2958 * Return the address of the last usable long on the stack.
2959 *
2960 * When the stack grows down, this is just above the thread
2961 * info struct. Going any lower will corrupt the threadinfo.
2962 *
2963 * When the stack grows up, this is the highest address.
2964 * Beyond that position, we corrupt data on the next page.
2965 */
10ebffde
AV
2966static inline unsigned long *end_of_stack(struct task_struct *p)
2967{
6a40281a
CE
2968#ifdef CONFIG_STACK_GROWSUP
2969 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2970#else
f7e4217b 2971 return (unsigned long *)(task_thread_info(p) + 1);
6a40281a 2972#endif
10ebffde
AV
2973}
2974
f037360f 2975#endif
a70857e4
AT
2976#define task_stack_end_corrupted(task) \
2977 (*(end_of_stack(task)) != STACK_END_MAGIC)
f037360f 2978
8b05c7e6
FT
2979static inline int object_is_on_stack(void *obj)
2980{
2981 void *stack = task_stack_page(current);
2982
2983 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2984}
2985
8c9843e5
BH
2986extern void thread_info_cache_init(void);
2987
7c9f8861
ES
2988#ifdef CONFIG_DEBUG_STACK_USAGE
2989static inline unsigned long stack_not_used(struct task_struct *p)
2990{
2991 unsigned long *n = end_of_stack(p);
2992
2993 do { /* Skip over canary */
6c31da34
HD
2994# ifdef CONFIG_STACK_GROWSUP
2995 n--;
2996# else
7c9f8861 2997 n++;
6c31da34 2998# endif
7c9f8861
ES
2999 } while (!*n);
3000
6c31da34
HD
3001# ifdef CONFIG_STACK_GROWSUP
3002 return (unsigned long)end_of_stack(p) - (unsigned long)n;
3003# else
7c9f8861 3004 return (unsigned long)n - (unsigned long)end_of_stack(p);
6c31da34 3005# endif
7c9f8861
ES
3006}
3007#endif
d4311ff1 3008extern void set_task_stack_end_magic(struct task_struct *tsk);
7c9f8861 3009
1da177e4
LT
3010/* set thread flags in other task's structures
3011 * - see asm/thread_info.h for TIF_xxxx flags available
3012 */
3013static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
3014{
a1261f54 3015 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3016}
3017
3018static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3019{
a1261f54 3020 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3021}
3022
3023static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
3024{
a1261f54 3025 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3026}
3027
3028static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3029{
a1261f54 3030 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3031}
3032
3033static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
3034{
a1261f54 3035 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3036}
3037
3038static inline void set_tsk_need_resched(struct task_struct *tsk)
3039{
3040 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3041}
3042
3043static inline void clear_tsk_need_resched(struct task_struct *tsk)
3044{
3045 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3046}
3047
8ae121ac
GH
3048static inline int test_tsk_need_resched(struct task_struct *tsk)
3049{
3050 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
3051}
3052
690cc3ff
EB
3053static inline int restart_syscall(void)
3054{
3055 set_tsk_thread_flag(current, TIF_SIGPENDING);
3056 return -ERESTARTNOINTR;
3057}
3058
1da177e4
LT
3059static inline int signal_pending(struct task_struct *p)
3060{
3061 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
3062}
f776d12d 3063
d9588725
RM
3064static inline int __fatal_signal_pending(struct task_struct *p)
3065{
3066 return unlikely(sigismember(&p->pending.signal, SIGKILL));
3067}
f776d12d
MW
3068
3069static inline int fatal_signal_pending(struct task_struct *p)
3070{
3071 return signal_pending(p) && __fatal_signal_pending(p);
3072}
3073
16882c1e
ON
3074static inline int signal_pending_state(long state, struct task_struct *p)
3075{
3076 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
3077 return 0;
3078 if (!signal_pending(p))
3079 return 0;
3080
16882c1e
ON
3081 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
3082}
3083
1da177e4
LT
3084/*
3085 * cond_resched() and cond_resched_lock(): latency reduction via
3086 * explicit rescheduling in places that are safe. The return
3087 * value indicates whether a reschedule was done in fact.
3088 * cond_resched_lock() will drop the spinlock before scheduling,
3089 * cond_resched_softirq() will enable bhs before scheduling.
3090 */
c3921ab7 3091extern int _cond_resched(void);
6f80bd98 3092
613afbf8 3093#define cond_resched() ({ \
3427445a 3094 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
3095 _cond_resched(); \
3096})
6f80bd98 3097
613afbf8
FW
3098extern int __cond_resched_lock(spinlock_t *lock);
3099
3100#define cond_resched_lock(lock) ({ \
3427445a 3101 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
3102 __cond_resched_lock(lock); \
3103})
3104
3105extern int __cond_resched_softirq(void);
3106
75e1056f 3107#define cond_resched_softirq() ({ \
3427445a 3108 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
75e1056f 3109 __cond_resched_softirq(); \
613afbf8 3110})
1da177e4 3111
f6f3c437
SH
3112static inline void cond_resched_rcu(void)
3113{
3114#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
3115 rcu_read_unlock();
3116 cond_resched();
3117 rcu_read_lock();
3118#endif
3119}
3120
1da177e4
LT
3121/*
3122 * Does a critical section need to be broken due to another
95c354fe
NP
3123 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
3124 * but a general need for low latency)
1da177e4 3125 */
95c354fe 3126static inline int spin_needbreak(spinlock_t *lock)
1da177e4 3127{
95c354fe
NP
3128#ifdef CONFIG_PREEMPT
3129 return spin_is_contended(lock);
3130#else
1da177e4 3131 return 0;
95c354fe 3132#endif
1da177e4
LT
3133}
3134
ee761f62
TG
3135/*
3136 * Idle thread specific functions to determine the need_resched
69dd0f84 3137 * polling state.
ee761f62 3138 */
69dd0f84 3139#ifdef TIF_POLLING_NRFLAG
ee761f62
TG
3140static inline int tsk_is_polling(struct task_struct *p)
3141{
3142 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3143}
ea811747
PZ
3144
3145static inline void __current_set_polling(void)
3a98f871
TG
3146{
3147 set_thread_flag(TIF_POLLING_NRFLAG);
3148}
3149
ea811747
PZ
3150static inline bool __must_check current_set_polling_and_test(void)
3151{
3152 __current_set_polling();
3153
3154 /*
3155 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3156 * paired by resched_curr()
ea811747 3157 */
4e857c58 3158 smp_mb__after_atomic();
ea811747
PZ
3159
3160 return unlikely(tif_need_resched());
3161}
3162
3163static inline void __current_clr_polling(void)
3a98f871
TG
3164{
3165 clear_thread_flag(TIF_POLLING_NRFLAG);
3166}
ea811747
PZ
3167
3168static inline bool __must_check current_clr_polling_and_test(void)
3169{
3170 __current_clr_polling();
3171
3172 /*
3173 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3174 * paired by resched_curr()
ea811747 3175 */
4e857c58 3176 smp_mb__after_atomic();
ea811747
PZ
3177
3178 return unlikely(tif_need_resched());
3179}
3180
ee761f62
TG
3181#else
3182static inline int tsk_is_polling(struct task_struct *p) { return 0; }
ea811747
PZ
3183static inline void __current_set_polling(void) { }
3184static inline void __current_clr_polling(void) { }
3185
3186static inline bool __must_check current_set_polling_and_test(void)
3187{
3188 return unlikely(tif_need_resched());
3189}
3190static inline bool __must_check current_clr_polling_and_test(void)
3191{
3192 return unlikely(tif_need_resched());
3193}
ee761f62
TG
3194#endif
3195
8cb75e0c
PZ
3196static inline void current_clr_polling(void)
3197{
3198 __current_clr_polling();
3199
3200 /*
3201 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3202 * Once the bit is cleared, we'll get IPIs with every new
3203 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3204 * fold.
3205 */
8875125e 3206 smp_mb(); /* paired with resched_curr() */
8cb75e0c
PZ
3207
3208 preempt_fold_need_resched();
3209}
3210
75f93fed
PZ
3211static __always_inline bool need_resched(void)
3212{
3213 return unlikely(tif_need_resched());
3214}
3215
f06febc9
FM
3216/*
3217 * Thread group CPU time accounting.
3218 */
4cd4c1b4 3219void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
4da94d49 3220void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
f06febc9 3221
7bb44ade
RM
3222/*
3223 * Reevaluate whether the task has signals pending delivery.
3224 * Wake the task if so.
3225 * This is required every time the blocked sigset_t changes.
3226 * callers must hold sighand->siglock.
3227 */
3228extern void recalc_sigpending_and_wake(struct task_struct *t);
1da177e4
LT
3229extern void recalc_sigpending(void);
3230
910ffdb1
ON
3231extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3232
3233static inline void signal_wake_up(struct task_struct *t, bool resume)
3234{
3235 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3236}
3237static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3238{
3239 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3240}
1da177e4
LT
3241
3242/*
3243 * Wrappers for p->thread_info->cpu access. No-op on UP.
3244 */
3245#ifdef CONFIG_SMP
3246
3247static inline unsigned int task_cpu(const struct task_struct *p)
3248{
a1261f54 3249 return task_thread_info(p)->cpu;
1da177e4
LT
3250}
3251
b32e86b4
IM
3252static inline int task_node(const struct task_struct *p)
3253{
3254 return cpu_to_node(task_cpu(p));
3255}
3256
c65cc870 3257extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
3258
3259#else
3260
3261static inline unsigned int task_cpu(const struct task_struct *p)
3262{
3263 return 0;
3264}
3265
3266static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3267{
3268}
3269
3270#endif /* CONFIG_SMP */
3271
96f874e2
RR
3272extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3273extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 3274
7c941438 3275#ifdef CONFIG_CGROUP_SCHED
07e06b01 3276extern struct task_group root_task_group;
8323f26c 3277#endif /* CONFIG_CGROUP_SCHED */
9b5b7751 3278
54e99124
DG
3279extern int task_can_switch_user(struct user_struct *up,
3280 struct task_struct *tsk);
3281
4b98d11b
AD
3282#ifdef CONFIG_TASK_XACCT
3283static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3284{
940389b8 3285 tsk->ioac.rchar += amt;
4b98d11b
AD
3286}
3287
3288static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3289{
940389b8 3290 tsk->ioac.wchar += amt;
4b98d11b
AD
3291}
3292
3293static inline void inc_syscr(struct task_struct *tsk)
3294{
940389b8 3295 tsk->ioac.syscr++;
4b98d11b
AD
3296}
3297
3298static inline void inc_syscw(struct task_struct *tsk)
3299{
940389b8 3300 tsk->ioac.syscw++;
4b98d11b
AD
3301}
3302#else
3303static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3304{
3305}
3306
3307static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3308{
3309}
3310
3311static inline void inc_syscr(struct task_struct *tsk)
3312{
3313}
3314
3315static inline void inc_syscw(struct task_struct *tsk)
3316{
3317}
3318#endif
3319
82455257
DH
3320#ifndef TASK_SIZE_OF
3321#define TASK_SIZE_OF(tsk) TASK_SIZE
3322#endif
3323
f98bafa0 3324#ifdef CONFIG_MEMCG
cf475ad2 3325extern void mm_update_next_owner(struct mm_struct *mm);
cf475ad2
BS
3326#else
3327static inline void mm_update_next_owner(struct mm_struct *mm)
3328{
3329}
f98bafa0 3330#endif /* CONFIG_MEMCG */
cf475ad2 3331
3e10e716
JS
3332static inline unsigned long task_rlimit(const struct task_struct *tsk,
3333 unsigned int limit)
3334{
316c1608 3335 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3e10e716
JS
3336}
3337
3338static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3339 unsigned int limit)
3340{
316c1608 3341 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3e10e716
JS
3342}
3343
3344static inline unsigned long rlimit(unsigned int limit)
3345{
3346 return task_rlimit(current, limit);
3347}
3348
3349static inline unsigned long rlimit_max(unsigned int limit)
3350{
3351 return task_rlimit_max(current, limit);
3352}
3353
adaf9fcd
RW
3354#ifdef CONFIG_CPU_FREQ
3355struct update_util_data {
3356 void (*func)(struct update_util_data *data,
3357 u64 time, unsigned long util, unsigned long max);
3358};
3359
0bed612b
RW
3360void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data,
3361 void (*func)(struct update_util_data *data, u64 time,
3362 unsigned long util, unsigned long max));
3363void cpufreq_remove_update_util_hook(int cpu);
adaf9fcd
RW
3364#endif /* CONFIG_CPU_FREQ */
3365
1da177e4 3366#endif