]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - include/linux/sched.h
mm, oom_reaper: report success/failure
[mirror_ubuntu-artful-kernel.git] / include / linux / sched.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
607ca46e 4#include <uapi/linux/sched.h>
b7b3c76a 5
5c228079
DY
6#include <linux/sched/prio.h>
7
b7b3c76a
DW
8
9struct sched_param {
10 int sched_priority;
11};
12
1da177e4
LT
13#include <asm/param.h> /* for HZ */
14
1da177e4
LT
15#include <linux/capability.h>
16#include <linux/threads.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/timex.h>
20#include <linux/jiffies.h>
fb00aca4 21#include <linux/plist.h>
1da177e4
LT
22#include <linux/rbtree.h>
23#include <linux/thread_info.h>
24#include <linux/cpumask.h>
25#include <linux/errno.h>
26#include <linux/nodemask.h>
c92ff1bd 27#include <linux/mm_types.h>
92cf2118 28#include <linux/preempt.h>
1da177e4 29
1da177e4
LT
30#include <asm/page.h>
31#include <asm/ptrace.h>
bfc3f028 32#include <linux/cputime.h>
1da177e4
LT
33
34#include <linux/smp.h>
35#include <linux/sem.h>
ab602f79 36#include <linux/shm.h>
1da177e4 37#include <linux/signal.h>
1da177e4
LT
38#include <linux/compiler.h>
39#include <linux/completion.h>
40#include <linux/pid.h>
41#include <linux/percpu.h>
42#include <linux/topology.h>
3e26c149 43#include <linux/proportions.h>
1da177e4 44#include <linux/seccomp.h>
e56d0903 45#include <linux/rcupdate.h>
05725f7e 46#include <linux/rculist.h>
23f78d4a 47#include <linux/rtmutex.h>
1da177e4 48
a3b6714e
DW
49#include <linux/time.h>
50#include <linux/param.h>
51#include <linux/resource.h>
52#include <linux/timer.h>
53#include <linux/hrtimer.h>
5c9a8750 54#include <linux/kcov.h>
7c3ab738 55#include <linux/task_io_accounting.h>
9745512c 56#include <linux/latencytop.h>
9e2b2dc4 57#include <linux/cred.h>
fa14ff4a 58#include <linux/llist.h>
7b44ab97 59#include <linux/uidgid.h>
21caf2fc 60#include <linux/gfp.h>
d4311ff1 61#include <linux/magic.h>
7d7efec3 62#include <linux/cgroup-defs.h>
a3b6714e
DW
63
64#include <asm/processor.h>
36d57ac4 65
d50dde5a
DF
66#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
67
68/*
69 * Extended scheduling parameters data structure.
70 *
71 * This is needed because the original struct sched_param can not be
72 * altered without introducing ABI issues with legacy applications
73 * (e.g., in sched_getparam()).
74 *
75 * However, the possibility of specifying more than just a priority for
76 * the tasks may be useful for a wide variety of application fields, e.g.,
77 * multimedia, streaming, automation and control, and many others.
78 *
79 * This variant (sched_attr) is meant at describing a so-called
80 * sporadic time-constrained task. In such model a task is specified by:
81 * - the activation period or minimum instance inter-arrival time;
82 * - the maximum (or average, depending on the actual scheduling
83 * discipline) computation time of all instances, a.k.a. runtime;
84 * - the deadline (relative to the actual activation time) of each
85 * instance.
86 * Very briefly, a periodic (sporadic) task asks for the execution of
87 * some specific computation --which is typically called an instance--
88 * (at most) every period. Moreover, each instance typically lasts no more
89 * than the runtime and must be completed by time instant t equal to
90 * the instance activation time + the deadline.
91 *
92 * This is reflected by the actual fields of the sched_attr structure:
93 *
94 * @size size of the structure, for fwd/bwd compat.
95 *
96 * @sched_policy task's scheduling policy
97 * @sched_flags for customizing the scheduler behaviour
98 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
99 * @sched_priority task's static priority (SCHED_FIFO/RR)
100 * @sched_deadline representative of the task's deadline
101 * @sched_runtime representative of the task's runtime
102 * @sched_period representative of the task's period
103 *
104 * Given this task model, there are a multiplicity of scheduling algorithms
105 * and policies, that can be used to ensure all the tasks will make their
106 * timing constraints.
aab03e05
DF
107 *
108 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
109 * only user of this new interface. More information about the algorithm
110 * available in the scheduling class file or in Documentation/.
d50dde5a
DF
111 */
112struct sched_attr {
113 u32 size;
114
115 u32 sched_policy;
116 u64 sched_flags;
117
118 /* SCHED_NORMAL, SCHED_BATCH */
119 s32 sched_nice;
120
121 /* SCHED_FIFO, SCHED_RR */
122 u32 sched_priority;
123
124 /* SCHED_DEADLINE */
125 u64 sched_runtime;
126 u64 sched_deadline;
127 u64 sched_period;
128};
129
c87e2837 130struct futex_pi_state;
286100a6 131struct robust_list_head;
bddd87c7 132struct bio_list;
5ad4e53b 133struct fs_struct;
cdd6c482 134struct perf_event_context;
73c10101 135struct blk_plug;
c4ad8f98 136struct filename;
89076bc3 137struct nameidata;
1da177e4 138
615d6e87
DB
139#define VMACACHE_BITS 2
140#define VMACACHE_SIZE (1U << VMACACHE_BITS)
141#define VMACACHE_MASK (VMACACHE_SIZE - 1)
142
1da177e4
LT
143/*
144 * These are the constant used to fake the fixed-point load-average
145 * counting. Some notes:
146 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
147 * a load-average precision of 10 bits integer + 11 bits fractional
148 * - if you want to count load-averages more often, you need more
149 * precision, or rounding will get you. With 2-second counting freq,
150 * the EXP_n values would be 1981, 2034 and 2043 if still using only
151 * 11 bit fractions.
152 */
153extern unsigned long avenrun[]; /* Load averages */
2d02494f 154extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
1da177e4
LT
155
156#define FSHIFT 11 /* nr of bits of precision */
157#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
0c2043ab 158#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
1da177e4
LT
159#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
160#define EXP_5 2014 /* 1/exp(5sec/5min) */
161#define EXP_15 2037 /* 1/exp(5sec/15min) */
162
163#define CALC_LOAD(load,exp,n) \
164 load *= exp; \
165 load += n*(FIXED_1-exp); \
166 load >>= FSHIFT;
167
168extern unsigned long total_forks;
169extern int nr_threads;
1da177e4
LT
170DECLARE_PER_CPU(unsigned long, process_counts);
171extern int nr_processes(void);
172extern unsigned long nr_running(void);
2ee507c4 173extern bool single_task_running(void);
1da177e4 174extern unsigned long nr_iowait(void);
8c215bd3 175extern unsigned long nr_iowait_cpu(int cpu);
372ba8cb 176extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
69d25870 177
0f004f5a 178extern void calc_global_load(unsigned long ticks);
3289bdb4
PZ
179
180#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
525705d1 181extern void update_cpu_load_nohz(int active);
3289bdb4 182#else
525705d1 183static inline void update_cpu_load_nohz(int active) { }
3289bdb4 184#endif
1da177e4 185
b637a328
PM
186extern void dump_cpu_task(int cpu);
187
43ae34cb
IM
188struct seq_file;
189struct cfs_rq;
4cf86d77 190struct task_group;
43ae34cb
IM
191#ifdef CONFIG_SCHED_DEBUG
192extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
193extern void proc_sched_set_task(struct task_struct *p);
43ae34cb 194#endif
1da177e4 195
4a8342d2
LT
196/*
197 * Task state bitmask. NOTE! These bits are also
198 * encoded in fs/proc/array.c: get_task_state().
199 *
200 * We have two separate sets of flags: task->state
201 * is about runnability, while task->exit_state are
202 * about the task exiting. Confusing, but this way
203 * modifying one set can't modify the other one by
204 * mistake.
205 */
1da177e4
LT
206#define TASK_RUNNING 0
207#define TASK_INTERRUPTIBLE 1
208#define TASK_UNINTERRUPTIBLE 2
f021a3c2
MW
209#define __TASK_STOPPED 4
210#define __TASK_TRACED 8
4a8342d2 211/* in tsk->exit_state */
ad86622b
ON
212#define EXIT_DEAD 16
213#define EXIT_ZOMBIE 32
abd50b39 214#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
4a8342d2 215/* in tsk->state again */
af927232 216#define TASK_DEAD 64
f021a3c2 217#define TASK_WAKEKILL 128
e9c84311 218#define TASK_WAKING 256
f2530dc7 219#define TASK_PARKED 512
80ed87c8
PZ
220#define TASK_NOLOAD 1024
221#define TASK_STATE_MAX 2048
f021a3c2 222
80ed87c8 223#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN"
73342151 224
e1781538
PZ
225extern char ___assert_task_state[1 - 2*!!(
226 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
f021a3c2
MW
227
228/* Convenience macros for the sake of set_task_state */
229#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
230#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
231#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
1da177e4 232
80ed87c8
PZ
233#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
234
92a1f4bc
MW
235/* Convenience macros for the sake of wake_up */
236#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
f021a3c2 237#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
92a1f4bc
MW
238
239/* get_task_state() */
240#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
f021a3c2 241 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
74e37200 242 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
92a1f4bc 243
f021a3c2
MW
244#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
245#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
92a1f4bc 246#define task_is_stopped_or_traced(task) \
f021a3c2 247 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
92a1f4bc 248#define task_contributes_to_load(task) \
e3c8ca83 249 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
80ed87c8
PZ
250 (task->flags & PF_FROZEN) == 0 && \
251 (task->state & TASK_NOLOAD) == 0)
1da177e4 252
8eb23b9f
PZ
253#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
254
255#define __set_task_state(tsk, state_value) \
256 do { \
257 (tsk)->task_state_change = _THIS_IP_; \
258 (tsk)->state = (state_value); \
259 } while (0)
260#define set_task_state(tsk, state_value) \
261 do { \
262 (tsk)->task_state_change = _THIS_IP_; \
b92b8b35 263 smp_store_mb((tsk)->state, (state_value)); \
8eb23b9f
PZ
264 } while (0)
265
266/*
267 * set_current_state() includes a barrier so that the write of current->state
268 * is correctly serialised wrt the caller's subsequent test of whether to
269 * actually sleep:
270 *
271 * set_current_state(TASK_UNINTERRUPTIBLE);
272 * if (do_i_need_to_sleep())
273 * schedule();
274 *
275 * If the caller does not need such serialisation then use __set_current_state()
276 */
277#define __set_current_state(state_value) \
278 do { \
279 current->task_state_change = _THIS_IP_; \
280 current->state = (state_value); \
281 } while (0)
282#define set_current_state(state_value) \
283 do { \
284 current->task_state_change = _THIS_IP_; \
b92b8b35 285 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
286 } while (0)
287
288#else
289
1da177e4
LT
290#define __set_task_state(tsk, state_value) \
291 do { (tsk)->state = (state_value); } while (0)
292#define set_task_state(tsk, state_value) \
b92b8b35 293 smp_store_mb((tsk)->state, (state_value))
1da177e4 294
498d0c57
AM
295/*
296 * set_current_state() includes a barrier so that the write of current->state
297 * is correctly serialised wrt the caller's subsequent test of whether to
298 * actually sleep:
299 *
300 * set_current_state(TASK_UNINTERRUPTIBLE);
301 * if (do_i_need_to_sleep())
302 * schedule();
303 *
304 * If the caller does not need such serialisation then use __set_current_state()
305 */
8eb23b9f 306#define __set_current_state(state_value) \
1da177e4 307 do { current->state = (state_value); } while (0)
8eb23b9f 308#define set_current_state(state_value) \
b92b8b35 309 smp_store_mb(current->state, (state_value))
1da177e4 310
8eb23b9f
PZ
311#endif
312
1da177e4
LT
313/* Task command name length */
314#define TASK_COMM_LEN 16
315
1da177e4
LT
316#include <linux/spinlock.h>
317
318/*
319 * This serializes "schedule()" and also protects
320 * the run-queue from deletions/modifications (but
321 * _adding_ to the beginning of the run-queue has
322 * a separate lock).
323 */
324extern rwlock_t tasklist_lock;
325extern spinlock_t mmlist_lock;
326
36c8b586 327struct task_struct;
1da177e4 328
db1466b3
PM
329#ifdef CONFIG_PROVE_RCU
330extern int lockdep_tasklist_lock_is_held(void);
331#endif /* #ifdef CONFIG_PROVE_RCU */
332
1da177e4
LT
333extern void sched_init(void);
334extern void sched_init_smp(void);
2d07b255 335extern asmlinkage void schedule_tail(struct task_struct *prev);
36c8b586 336extern void init_idle(struct task_struct *idle, int cpu);
1df21055 337extern void init_idle_bootup_task(struct task_struct *idle);
1da177e4 338
3fa0818b
RR
339extern cpumask_var_t cpu_isolated_map;
340
89f19f04 341extern int runqueue_is_locked(int cpu);
017730c1 342
3451d024 343#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
c1cc017c 344extern void nohz_balance_enter_idle(int cpu);
69e1e811 345extern void set_cpu_sd_state_idle(void);
bc7a34b8 346extern int get_nohz_timer_target(void);
46cb4b7c 347#else
c1cc017c 348static inline void nohz_balance_enter_idle(int cpu) { }
fdaabd80 349static inline void set_cpu_sd_state_idle(void) { }
46cb4b7c 350#endif
1da177e4 351
e59e2ae2 352/*
39bc89fd 353 * Only dump TASK_* tasks. (0 for all tasks)
e59e2ae2
IM
354 */
355extern void show_state_filter(unsigned long state_filter);
356
357static inline void show_state(void)
358{
39bc89fd 359 show_state_filter(0);
e59e2ae2
IM
360}
361
1da177e4
LT
362extern void show_regs(struct pt_regs *);
363
364/*
365 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
366 * task), SP is the stack pointer of the first frame that should be shown in the back
367 * trace (or NULL if the entire call-chain of the task should be shown).
368 */
369extern void show_stack(struct task_struct *task, unsigned long *sp);
370
1da177e4
LT
371extern void cpu_init (void);
372extern void trap_init(void);
373extern void update_process_times(int user);
374extern void scheduler_tick(void);
375
82a1fcb9
IM
376extern void sched_show_task(struct task_struct *p);
377
19cc36c0 378#ifdef CONFIG_LOCKUP_DETECTOR
03e0d461 379extern void touch_softlockup_watchdog_sched(void);
8446f1d3 380extern void touch_softlockup_watchdog(void);
d6ad3e28 381extern void touch_softlockup_watchdog_sync(void);
04c9167f 382extern void touch_all_softlockup_watchdogs(void);
332fbdbc
DZ
383extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
384 void __user *buffer,
385 size_t *lenp, loff_t *ppos);
9c44bc03 386extern unsigned int softlockup_panic;
ac1f5912 387extern unsigned int hardlockup_panic;
004417a6 388void lockup_detector_init(void);
8446f1d3 389#else
03e0d461
TH
390static inline void touch_softlockup_watchdog_sched(void)
391{
392}
8446f1d3
IM
393static inline void touch_softlockup_watchdog(void)
394{
395}
d6ad3e28
JW
396static inline void touch_softlockup_watchdog_sync(void)
397{
398}
04c9167f
JF
399static inline void touch_all_softlockup_watchdogs(void)
400{
401}
004417a6
PZ
402static inline void lockup_detector_init(void)
403{
404}
8446f1d3
IM
405#endif
406
8b414521
MT
407#ifdef CONFIG_DETECT_HUNG_TASK
408void reset_hung_task_detector(void);
409#else
410static inline void reset_hung_task_detector(void)
411{
412}
413#endif
414
1da177e4
LT
415/* Attach to any functions which should be ignored in wchan output. */
416#define __sched __attribute__((__section__(".sched.text")))
deaf2227
IM
417
418/* Linker adds these: start and end of __sched functions */
419extern char __sched_text_start[], __sched_text_end[];
420
1da177e4
LT
421/* Is this address in the __sched functions? */
422extern int in_sched_functions(unsigned long addr);
423
424#define MAX_SCHEDULE_TIMEOUT LONG_MAX
b3c97528 425extern signed long schedule_timeout(signed long timeout);
64ed93a2 426extern signed long schedule_timeout_interruptible(signed long timeout);
294d5cc2 427extern signed long schedule_timeout_killable(signed long timeout);
64ed93a2 428extern signed long schedule_timeout_uninterruptible(signed long timeout);
69b27baf 429extern signed long schedule_timeout_idle(signed long timeout);
1da177e4 430asmlinkage void schedule(void);
c5491ea7 431extern void schedule_preempt_disabled(void);
1da177e4 432
9cff8ade
N
433extern long io_schedule_timeout(long timeout);
434
435static inline void io_schedule(void)
436{
437 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
438}
439
ab516013 440struct nsproxy;
acce292c 441struct user_namespace;
1da177e4 442
efc1a3b1
DH
443#ifdef CONFIG_MMU
444extern void arch_pick_mmap_layout(struct mm_struct *mm);
1da177e4
LT
445extern unsigned long
446arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
447 unsigned long, unsigned long);
448extern unsigned long
449arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
450 unsigned long len, unsigned long pgoff,
451 unsigned long flags);
efc1a3b1
DH
452#else
453static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
454#endif
1da177e4 455
d049f74f
KC
456#define SUID_DUMP_DISABLE 0 /* No setuid dumping */
457#define SUID_DUMP_USER 1 /* Dump as user of process */
458#define SUID_DUMP_ROOT 2 /* Dump as root */
459
6c5d5238 460/* mm flags */
f8af4da3 461
7288e118 462/* for SUID_DUMP_* above */
3cb4a0bb 463#define MMF_DUMPABLE_BITS 2
f8af4da3 464#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
3cb4a0bb 465
942be387
ON
466extern void set_dumpable(struct mm_struct *mm, int value);
467/*
468 * This returns the actual value of the suid_dumpable flag. For things
469 * that are using this for checking for privilege transitions, it must
470 * test against SUID_DUMP_USER rather than treating it as a boolean
471 * value.
472 */
473static inline int __get_dumpable(unsigned long mm_flags)
474{
475 return mm_flags & MMF_DUMPABLE_MASK;
476}
477
478static inline int get_dumpable(struct mm_struct *mm)
479{
480 return __get_dumpable(mm->flags);
481}
482
3cb4a0bb
KH
483/* coredump filter bits */
484#define MMF_DUMP_ANON_PRIVATE 2
485#define MMF_DUMP_ANON_SHARED 3
486#define MMF_DUMP_MAPPED_PRIVATE 4
487#define MMF_DUMP_MAPPED_SHARED 5
82df3973 488#define MMF_DUMP_ELF_HEADERS 6
e575f111
KM
489#define MMF_DUMP_HUGETLB_PRIVATE 7
490#define MMF_DUMP_HUGETLB_SHARED 8
5037835c
RZ
491#define MMF_DUMP_DAX_PRIVATE 9
492#define MMF_DUMP_DAX_SHARED 10
f8af4da3 493
3cb4a0bb 494#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
5037835c 495#define MMF_DUMP_FILTER_BITS 9
3cb4a0bb
KH
496#define MMF_DUMP_FILTER_MASK \
497 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
498#define MMF_DUMP_FILTER_DEFAULT \
e575f111 499 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
656eb2cd
RM
500 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
501
502#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
503# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
504#else
505# define MMF_DUMP_MASK_DEFAULT_ELF 0
506#endif
f8af4da3
HD
507 /* leave room for more dump flags */
508#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
ba76149f 509#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
bafb282d 510#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
f8af4da3 511
9f68f672
ON
512#define MMF_HAS_UPROBES 19 /* has uprobes */
513#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
f8ac4ec9 514
f8af4da3 515#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
6c5d5238 516
1da177e4
LT
517struct sighand_struct {
518 atomic_t count;
519 struct k_sigaction action[_NSIG];
520 spinlock_t siglock;
b8fceee1 521 wait_queue_head_t signalfd_wqh;
1da177e4
LT
522};
523
0e464814 524struct pacct_struct {
f6ec29a4
KK
525 int ac_flag;
526 long ac_exitcode;
0e464814 527 unsigned long ac_mem;
77787bfb
KK
528 cputime_t ac_utime, ac_stime;
529 unsigned long ac_minflt, ac_majflt;
0e464814
KK
530};
531
42c4ab41
SG
532struct cpu_itimer {
533 cputime_t expires;
534 cputime_t incr;
8356b5f9
SG
535 u32 error;
536 u32 incr_error;
42c4ab41
SG
537};
538
d37f761d 539/**
9d7fb042 540 * struct prev_cputime - snaphsot of system and user cputime
d37f761d
FW
541 * @utime: time spent in user mode
542 * @stime: time spent in system mode
9d7fb042 543 * @lock: protects the above two fields
d37f761d 544 *
9d7fb042
PZ
545 * Stores previous user/system time values such that we can guarantee
546 * monotonicity.
d37f761d 547 */
9d7fb042
PZ
548struct prev_cputime {
549#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
d37f761d
FW
550 cputime_t utime;
551 cputime_t stime;
9d7fb042
PZ
552 raw_spinlock_t lock;
553#endif
d37f761d
FW
554};
555
9d7fb042
PZ
556static inline void prev_cputime_init(struct prev_cputime *prev)
557{
558#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
559 prev->utime = prev->stime = 0;
560 raw_spin_lock_init(&prev->lock);
561#endif
562}
563
f06febc9
FM
564/**
565 * struct task_cputime - collected CPU time counts
566 * @utime: time spent in user mode, in &cputime_t units
567 * @stime: time spent in kernel mode, in &cputime_t units
568 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 569 *
9d7fb042
PZ
570 * This structure groups together three kinds of CPU time that are tracked for
571 * threads and thread groups. Most things considering CPU time want to group
572 * these counts together and treat all three of them in parallel.
f06febc9
FM
573 */
574struct task_cputime {
575 cputime_t utime;
576 cputime_t stime;
577 unsigned long long sum_exec_runtime;
578};
9d7fb042 579
f06febc9 580/* Alternate field names when used to cache expirations. */
f06febc9 581#define virt_exp utime
9d7fb042 582#define prof_exp stime
f06febc9
FM
583#define sched_exp sum_exec_runtime
584
4cd4c1b4
PZ
585#define INIT_CPUTIME \
586 (struct task_cputime) { \
64861634
MS
587 .utime = 0, \
588 .stime = 0, \
4cd4c1b4
PZ
589 .sum_exec_runtime = 0, \
590 }
591
971e8a98
JL
592/*
593 * This is the atomic variant of task_cputime, which can be used for
594 * storing and updating task_cputime statistics without locking.
595 */
596struct task_cputime_atomic {
597 atomic64_t utime;
598 atomic64_t stime;
599 atomic64_t sum_exec_runtime;
600};
601
602#define INIT_CPUTIME_ATOMIC \
603 (struct task_cputime_atomic) { \
604 .utime = ATOMIC64_INIT(0), \
605 .stime = ATOMIC64_INIT(0), \
606 .sum_exec_runtime = ATOMIC64_INIT(0), \
607 }
608
609ca066 609#define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
a233f112 610
c99e6efe 611/*
87dcbc06
PZ
612 * Disable preemption until the scheduler is running -- use an unconditional
613 * value so that it also works on !PREEMPT_COUNT kernels.
d86ee480 614 *
87dcbc06 615 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
c99e6efe 616 */
87dcbc06 617#define INIT_PREEMPT_COUNT PREEMPT_OFFSET
a233f112 618
c99e6efe 619/*
609ca066
PZ
620 * Initial preempt_count value; reflects the preempt_count schedule invariant
621 * which states that during context switches:
d86ee480 622 *
609ca066
PZ
623 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
624 *
625 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
626 * Note: See finish_task_switch().
c99e6efe 627 */
609ca066 628#define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
c99e6efe 629
f06febc9 630/**
4cd4c1b4 631 * struct thread_group_cputimer - thread group interval timer counts
920ce39f 632 * @cputime_atomic: atomic thread group interval timers.
d5c373eb
JL
633 * @running: true when there are timers running and
634 * @cputime_atomic receives updates.
c8d75aa4
JL
635 * @checking_timer: true when a thread in the group is in the
636 * process of checking for thread group timers.
f06febc9
FM
637 *
638 * This structure contains the version of task_cputime, above, that is
4cd4c1b4 639 * used for thread group CPU timer calculations.
f06febc9 640 */
4cd4c1b4 641struct thread_group_cputimer {
71107445 642 struct task_cputime_atomic cputime_atomic;
d5c373eb 643 bool running;
c8d75aa4 644 bool checking_timer;
f06febc9 645};
f06febc9 646
4714d1d3 647#include <linux/rwsem.h>
5091faa4
MG
648struct autogroup;
649
1da177e4 650/*
e815f0a8 651 * NOTE! "signal_struct" does not have its own
1da177e4
LT
652 * locking, because a shared signal_struct always
653 * implies a shared sighand_struct, so locking
654 * sighand_struct is always a proper superset of
655 * the locking of signal_struct.
656 */
657struct signal_struct {
ea6d290c 658 atomic_t sigcnt;
1da177e4 659 atomic_t live;
b3ac022c 660 int nr_threads;
0c740d0a 661 struct list_head thread_head;
1da177e4
LT
662
663 wait_queue_head_t wait_chldexit; /* for wait4() */
664
665 /* current thread group signal load-balancing target: */
36c8b586 666 struct task_struct *curr_target;
1da177e4
LT
667
668 /* shared signal handling: */
669 struct sigpending shared_pending;
670
671 /* thread group exit support */
672 int group_exit_code;
673 /* overloaded:
674 * - notify group_exit_task when ->count is equal to notify_count
675 * - everyone except group_exit_task is stopped during signal delivery
676 * of fatal signals, group_exit_task processes the signal.
677 */
1da177e4 678 int notify_count;
07dd20e0 679 struct task_struct *group_exit_task;
1da177e4
LT
680
681 /* thread group stop support, overloads group_exit_code too */
682 int group_stop_count;
683 unsigned int flags; /* see SIGNAL_* flags below */
684
ebec18a6
LP
685 /*
686 * PR_SET_CHILD_SUBREAPER marks a process, like a service
687 * manager, to re-parent orphan (double-forking) child processes
688 * to this process instead of 'init'. The service manager is
689 * able to receive SIGCHLD signals and is able to investigate
690 * the process until it calls wait(). All children of this
691 * process will inherit a flag if they should look for a
692 * child_subreaper process at exit.
693 */
694 unsigned int is_child_subreaper:1;
695 unsigned int has_child_subreaper:1;
696
1da177e4 697 /* POSIX.1b Interval Timers */
5ed67f05
PE
698 int posix_timer_id;
699 struct list_head posix_timers;
1da177e4
LT
700
701 /* ITIMER_REAL timer for the process */
2ff678b8 702 struct hrtimer real_timer;
fea9d175 703 struct pid *leader_pid;
2ff678b8 704 ktime_t it_real_incr;
1da177e4 705
42c4ab41
SG
706 /*
707 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
708 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
709 * values are defined to 0 and 1 respectively
710 */
711 struct cpu_itimer it[2];
1da177e4 712
f06febc9 713 /*
4cd4c1b4
PZ
714 * Thread group totals for process CPU timers.
715 * See thread_group_cputimer(), et al, for details.
f06febc9 716 */
4cd4c1b4 717 struct thread_group_cputimer cputimer;
f06febc9
FM
718
719 /* Earliest-expiration cache. */
720 struct task_cputime cputime_expires;
721
d027d45d
FW
722#ifdef CONFIG_NO_HZ_FULL
723 unsigned long tick_dep_mask;
724#endif
725
f06febc9
FM
726 struct list_head cpu_timers[3];
727
ab521dc0 728 struct pid *tty_old_pgrp;
1ec320af 729
1da177e4
LT
730 /* boolean value for session group leader */
731 int leader;
732
733 struct tty_struct *tty; /* NULL if no tty */
734
5091faa4
MG
735#ifdef CONFIG_SCHED_AUTOGROUP
736 struct autogroup *autogroup;
737#endif
1da177e4
LT
738 /*
739 * Cumulative resource counters for dead threads in the group,
740 * and for reaped dead child processes forked by this group.
741 * Live threads maintain their own counters and add to these
742 * in __exit_signal, except for the group leader.
743 */
e78c3496 744 seqlock_t stats_lock;
32bd671d 745 cputime_t utime, stime, cutime, cstime;
9ac52315
LV
746 cputime_t gtime;
747 cputime_t cgtime;
9d7fb042 748 struct prev_cputime prev_cputime;
1da177e4
LT
749 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
750 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
6eaeeaba 751 unsigned long inblock, oublock, cinblock, coublock;
1f10206c 752 unsigned long maxrss, cmaxrss;
940389b8 753 struct task_io_accounting ioac;
1da177e4 754
32bd671d
PZ
755 /*
756 * Cumulative ns of schedule CPU time fo dead threads in the
757 * group, not including a zombie group leader, (This only differs
758 * from jiffies_to_ns(utime + stime) if sched_clock uses something
759 * other than jiffies.)
760 */
761 unsigned long long sum_sched_runtime;
762
1da177e4
LT
763 /*
764 * We don't bother to synchronize most readers of this at all,
765 * because there is no reader checking a limit that actually needs
766 * to get both rlim_cur and rlim_max atomically, and either one
767 * alone is a single word that can safely be read normally.
768 * getrlimit/setrlimit use task_lock(current->group_leader) to
769 * protect this instead of the siglock, because they really
770 * have no need to disable irqs.
771 */
772 struct rlimit rlim[RLIM_NLIMITS];
773
0e464814
KK
774#ifdef CONFIG_BSD_PROCESS_ACCT
775 struct pacct_struct pacct; /* per-process accounting information */
776#endif
ad4ecbcb 777#ifdef CONFIG_TASKSTATS
ad4ecbcb
SN
778 struct taskstats *stats;
779#endif
522ed776
MT
780#ifdef CONFIG_AUDIT
781 unsigned audit_tty;
782 struct tty_audit_buf *tty_audit_buf;
783#endif
28b83c51 784
e1e12d2f 785 oom_flags_t oom_flags;
a9c58b90
DR
786 short oom_score_adj; /* OOM kill score adjustment */
787 short oom_score_adj_min; /* OOM kill score adjustment min value.
788 * Only settable by CAP_SYS_RESOURCE. */
9b1bf12d
KM
789
790 struct mutex cred_guard_mutex; /* guard against foreign influences on
791 * credential calculations
792 * (notably. ptrace) */
1da177e4
LT
793};
794
795/*
796 * Bits in flags field of signal_struct.
797 */
798#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
ee77f075
ON
799#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
800#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
403bad72 801#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
e4420551
ON
802/*
803 * Pending notifications to parent.
804 */
805#define SIGNAL_CLD_STOPPED 0x00000010
806#define SIGNAL_CLD_CONTINUED 0x00000020
807#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
1da177e4 808
fae5fa44
ON
809#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
810
ed5d2cac
ON
811/* If true, all threads except ->group_exit_task have pending SIGKILL */
812static inline int signal_group_exit(const struct signal_struct *sig)
813{
814 return (sig->flags & SIGNAL_GROUP_EXIT) ||
815 (sig->group_exit_task != NULL);
816}
817
1da177e4
LT
818/*
819 * Some day this will be a full-fledged user tracking system..
820 */
821struct user_struct {
822 atomic_t __count; /* reference count */
823 atomic_t processes; /* How many processes does this user have? */
1da177e4 824 atomic_t sigpending; /* How many pending signals does this user have? */
2d9048e2 825#ifdef CONFIG_INOTIFY_USER
0eeca283
RL
826 atomic_t inotify_watches; /* How many inotify watches does this user have? */
827 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
828#endif
4afeff85
EP
829#ifdef CONFIG_FANOTIFY
830 atomic_t fanotify_listeners;
831#endif
7ef9964e 832#ifdef CONFIG_EPOLL
52bd19f7 833 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
7ef9964e 834#endif
970a8645 835#ifdef CONFIG_POSIX_MQUEUE
1da177e4
LT
836 /* protected by mq_lock */
837 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
970a8645 838#endif
1da177e4 839 unsigned long locked_shm; /* How many pages of mlocked shm ? */
712f4aad 840 unsigned long unix_inflight; /* How many files in flight in unix sockets */
759c0114 841 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */
1da177e4
LT
842
843#ifdef CONFIG_KEYS
844 struct key *uid_keyring; /* UID specific keyring */
845 struct key *session_keyring; /* UID's default session keyring */
846#endif
847
848 /* Hash table maintenance information */
735de223 849 struct hlist_node uidhash_node;
7b44ab97 850 kuid_t uid;
24e377a8 851
aaac3ba9 852#if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
789f90fc
PZ
853 atomic_long_t locked_vm;
854#endif
1da177e4
LT
855};
856
eb41d946 857extern int uids_sysfs_init(void);
5cb350ba 858
7b44ab97 859extern struct user_struct *find_user(kuid_t);
1da177e4
LT
860
861extern struct user_struct root_user;
862#define INIT_USER (&root_user)
863
b6dff3ec 864
1da177e4
LT
865struct backing_dev_info;
866struct reclaim_state;
867
f6db8347 868#ifdef CONFIG_SCHED_INFO
1da177e4
LT
869struct sched_info {
870 /* cumulative counters */
2d72376b 871 unsigned long pcount; /* # of times run on this cpu */
9c2c4802 872 unsigned long long run_delay; /* time spent waiting on a runqueue */
1da177e4
LT
873
874 /* timestamps */
172ba844
BS
875 unsigned long long last_arrival,/* when we last ran on a cpu */
876 last_queued; /* when we were last queued to run */
1da177e4 877};
f6db8347 878#endif /* CONFIG_SCHED_INFO */
1da177e4 879
ca74e92b
SN
880#ifdef CONFIG_TASK_DELAY_ACCT
881struct task_delay_info {
882 spinlock_t lock;
883 unsigned int flags; /* Private per-task flags */
884
885 /* For each stat XXX, add following, aligned appropriately
886 *
887 * struct timespec XXX_start, XXX_end;
888 * u64 XXX_delay;
889 * u32 XXX_count;
890 *
891 * Atomicity of updates to XXX_delay, XXX_count protected by
892 * single lock above (split into XXX_lock if contention is an issue).
893 */
0ff92245
SN
894
895 /*
896 * XXX_count is incremented on every XXX operation, the delay
897 * associated with the operation is added to XXX_delay.
898 * XXX_delay contains the accumulated delay time in nanoseconds.
899 */
9667a23d 900 u64 blkio_start; /* Shared by blkio, swapin */
0ff92245
SN
901 u64 blkio_delay; /* wait for sync block io completion */
902 u64 swapin_delay; /* wait for swapin block io completion */
903 u32 blkio_count; /* total count of the number of sync block */
904 /* io operations performed */
905 u32 swapin_count; /* total count of the number of swapin block */
906 /* io operations performed */
873b4771 907
9667a23d 908 u64 freepages_start;
873b4771
KK
909 u64 freepages_delay; /* wait for memory reclaim */
910 u32 freepages_count; /* total count of memory reclaim */
ca74e92b 911};
52f17b6c
CS
912#endif /* CONFIG_TASK_DELAY_ACCT */
913
914static inline int sched_info_on(void)
915{
916#ifdef CONFIG_SCHEDSTATS
917 return 1;
918#elif defined(CONFIG_TASK_DELAY_ACCT)
919 extern int delayacct_on;
920 return delayacct_on;
921#else
922 return 0;
ca74e92b 923#endif
52f17b6c 924}
ca74e92b 925
cb251765
MG
926#ifdef CONFIG_SCHEDSTATS
927void force_schedstat_enabled(void);
928#endif
929
d15bcfdb
IM
930enum cpu_idle_type {
931 CPU_IDLE,
932 CPU_NOT_IDLE,
933 CPU_NEWLY_IDLE,
934 CPU_MAX_IDLE_TYPES
1da177e4
LT
935};
936
1399fa78 937/*
ca8ce3d0 938 * Increase resolution of cpu_capacity calculations
1399fa78 939 */
ca8ce3d0
NP
940#define SCHED_CAPACITY_SHIFT 10
941#define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
1da177e4 942
76751049
PZ
943/*
944 * Wake-queues are lists of tasks with a pending wakeup, whose
945 * callers have already marked the task as woken internally,
946 * and can thus carry on. A common use case is being able to
947 * do the wakeups once the corresponding user lock as been
948 * released.
949 *
950 * We hold reference to each task in the list across the wakeup,
951 * thus guaranteeing that the memory is still valid by the time
952 * the actual wakeups are performed in wake_up_q().
953 *
954 * One per task suffices, because there's never a need for a task to be
955 * in two wake queues simultaneously; it is forbidden to abandon a task
956 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
957 * already in a wake queue, the wakeup will happen soon and the second
958 * waker can just skip it.
959 *
960 * The WAKE_Q macro declares and initializes the list head.
961 * wake_up_q() does NOT reinitialize the list; it's expected to be
962 * called near the end of a function, where the fact that the queue is
963 * not used again will be easy to see by inspection.
964 *
965 * Note that this can cause spurious wakeups. schedule() callers
966 * must ensure the call is done inside a loop, confirming that the
967 * wakeup condition has in fact occurred.
968 */
969struct wake_q_node {
970 struct wake_q_node *next;
971};
972
973struct wake_q_head {
974 struct wake_q_node *first;
975 struct wake_q_node **lastp;
976};
977
978#define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
979
980#define WAKE_Q(name) \
981 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
982
983extern void wake_q_add(struct wake_q_head *head,
984 struct task_struct *task);
985extern void wake_up_q(struct wake_q_head *head);
986
1399fa78
NR
987/*
988 * sched-domains (multiprocessor balancing) declarations:
989 */
2dd73a4f 990#ifdef CONFIG_SMP
b5d978e0
PZ
991#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
992#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
993#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
994#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
c88d5910 995#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
b5d978e0 996#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
5d4dfddd 997#define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
d77b3ed5 998#define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
b5d978e0
PZ
999#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
1000#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
532cb4c4 1001#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
b5d978e0 1002#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
e3589f6c 1003#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
3a7053b3 1004#define SD_NUMA 0x4000 /* cross-node balancing */
5c45bf27 1005
143e1e28 1006#ifdef CONFIG_SCHED_SMT
b6220ad6 1007static inline int cpu_smt_flags(void)
143e1e28 1008{
5d4dfddd 1009 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
143e1e28
VG
1010}
1011#endif
1012
1013#ifdef CONFIG_SCHED_MC
b6220ad6 1014static inline int cpu_core_flags(void)
143e1e28
VG
1015{
1016 return SD_SHARE_PKG_RESOURCES;
1017}
1018#endif
1019
1020#ifdef CONFIG_NUMA
b6220ad6 1021static inline int cpu_numa_flags(void)
143e1e28
VG
1022{
1023 return SD_NUMA;
1024}
1025#endif
532cb4c4 1026
1d3504fc
HS
1027struct sched_domain_attr {
1028 int relax_domain_level;
1029};
1030
1031#define SD_ATTR_INIT (struct sched_domain_attr) { \
1032 .relax_domain_level = -1, \
1033}
1034
60495e77
PZ
1035extern int sched_domain_level_max;
1036
5e6521ea
LZ
1037struct sched_group;
1038
1da177e4
LT
1039struct sched_domain {
1040 /* These fields must be setup */
1041 struct sched_domain *parent; /* top domain must be null terminated */
1a848870 1042 struct sched_domain *child; /* bottom domain must be null terminated */
1da177e4 1043 struct sched_group *groups; /* the balancing groups of the domain */
1da177e4
LT
1044 unsigned long min_interval; /* Minimum balance interval ms */
1045 unsigned long max_interval; /* Maximum balance interval ms */
1046 unsigned int busy_factor; /* less balancing by factor if busy */
1047 unsigned int imbalance_pct; /* No balance until over watermark */
1da177e4 1048 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
7897986b
NP
1049 unsigned int busy_idx;
1050 unsigned int idle_idx;
1051 unsigned int newidle_idx;
1052 unsigned int wake_idx;
147cbb4b 1053 unsigned int forkexec_idx;
a52bfd73 1054 unsigned int smt_gain;
25f55d9d
VG
1055
1056 int nohz_idle; /* NOHZ IDLE status */
1da177e4 1057 int flags; /* See SD_* */
60495e77 1058 int level;
1da177e4
LT
1059
1060 /* Runtime fields. */
1061 unsigned long last_balance; /* init to jiffies. units in jiffies */
1062 unsigned int balance_interval; /* initialise to 1. units in ms. */
1063 unsigned int nr_balance_failed; /* initialise to 0 */
1064
f48627e6 1065 /* idle_balance() stats */
9bd721c5 1066 u64 max_newidle_lb_cost;
f48627e6 1067 unsigned long next_decay_max_lb_cost;
2398f2c6 1068
1da177e4
LT
1069#ifdef CONFIG_SCHEDSTATS
1070 /* load_balance() stats */
480b9434
KC
1071 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1072 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1073 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1074 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1075 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1076 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1077 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1078 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1da177e4
LT
1079
1080 /* Active load balancing */
480b9434
KC
1081 unsigned int alb_count;
1082 unsigned int alb_failed;
1083 unsigned int alb_pushed;
1da177e4 1084
68767a0a 1085 /* SD_BALANCE_EXEC stats */
480b9434
KC
1086 unsigned int sbe_count;
1087 unsigned int sbe_balanced;
1088 unsigned int sbe_pushed;
1da177e4 1089
68767a0a 1090 /* SD_BALANCE_FORK stats */
480b9434
KC
1091 unsigned int sbf_count;
1092 unsigned int sbf_balanced;
1093 unsigned int sbf_pushed;
68767a0a 1094
1da177e4 1095 /* try_to_wake_up() stats */
480b9434
KC
1096 unsigned int ttwu_wake_remote;
1097 unsigned int ttwu_move_affine;
1098 unsigned int ttwu_move_balance;
1da177e4 1099#endif
a5d8c348
IM
1100#ifdef CONFIG_SCHED_DEBUG
1101 char *name;
1102#endif
dce840a0
PZ
1103 union {
1104 void *private; /* used during construction */
1105 struct rcu_head rcu; /* used during destruction */
1106 };
6c99e9ad 1107
669c55e9 1108 unsigned int span_weight;
4200efd9
IM
1109 /*
1110 * Span of all CPUs in this domain.
1111 *
1112 * NOTE: this field is variable length. (Allocated dynamically
1113 * by attaching extra space to the end of the structure,
1114 * depending on how many CPUs the kernel has booted up with)
4200efd9
IM
1115 */
1116 unsigned long span[0];
1da177e4
LT
1117};
1118
758b2cdc
RR
1119static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1120{
6c99e9ad 1121 return to_cpumask(sd->span);
758b2cdc
RR
1122}
1123
acc3f5d7 1124extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 1125 struct sched_domain_attr *dattr_new);
029190c5 1126
acc3f5d7
RR
1127/* Allocate an array of sched domains, for partition_sched_domains(). */
1128cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1129void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1130
39be3501
PZ
1131bool cpus_share_cache(int this_cpu, int that_cpu);
1132
143e1e28 1133typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
b6220ad6 1134typedef int (*sched_domain_flags_f)(void);
143e1e28
VG
1135
1136#define SDTL_OVERLAP 0x01
1137
1138struct sd_data {
1139 struct sched_domain **__percpu sd;
1140 struct sched_group **__percpu sg;
63b2ca30 1141 struct sched_group_capacity **__percpu sgc;
143e1e28
VG
1142};
1143
1144struct sched_domain_topology_level {
1145 sched_domain_mask_f mask;
1146 sched_domain_flags_f sd_flags;
1147 int flags;
1148 int numa_level;
1149 struct sd_data data;
1150#ifdef CONFIG_SCHED_DEBUG
1151 char *name;
1152#endif
1153};
1154
143e1e28 1155extern void set_sched_topology(struct sched_domain_topology_level *tl);
f6be8af1 1156extern void wake_up_if_idle(int cpu);
143e1e28
VG
1157
1158#ifdef CONFIG_SCHED_DEBUG
1159# define SD_INIT_NAME(type) .name = #type
1160#else
1161# define SD_INIT_NAME(type)
1162#endif
1163
1b427c15 1164#else /* CONFIG_SMP */
1da177e4 1165
1b427c15 1166struct sched_domain_attr;
d02c7a8c 1167
1b427c15 1168static inline void
acc3f5d7 1169partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1b427c15
IM
1170 struct sched_domain_attr *dattr_new)
1171{
d02c7a8c 1172}
39be3501
PZ
1173
1174static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1175{
1176 return true;
1177}
1178
1b427c15 1179#endif /* !CONFIG_SMP */
1da177e4 1180
47fe38fc 1181
1da177e4 1182struct io_context; /* See blkdev.h */
1da177e4 1183
1da177e4 1184
383f2835 1185#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
36c8b586 1186extern void prefetch_stack(struct task_struct *t);
383f2835
KC
1187#else
1188static inline void prefetch_stack(struct task_struct *t) { }
1189#endif
1da177e4
LT
1190
1191struct audit_context; /* See audit.c */
1192struct mempolicy;
b92ce558 1193struct pipe_inode_info;
4865ecf1 1194struct uts_namespace;
1da177e4 1195
20b8a59f 1196struct load_weight {
9dbdb155
PZ
1197 unsigned long weight;
1198 u32 inv_weight;
20b8a59f
IM
1199};
1200
9d89c257
YD
1201/*
1202 * The load_avg/util_avg accumulates an infinite geometric series.
e0f5f3af
DE
1203 * 1) load_avg factors frequency scaling into the amount of time that a
1204 * sched_entity is runnable on a rq into its weight. For cfs_rq, it is the
1205 * aggregated such weights of all runnable and blocked sched_entities.
e3279a2e 1206 * 2) util_avg factors frequency and cpu scaling into the amount of time
9d89c257
YD
1207 * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE].
1208 * For cfs_rq, it is the aggregated such times of all runnable and
1209 * blocked sched_entities.
1210 * The 64 bit load_sum can:
1211 * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with
1212 * the highest weight (=88761) always runnable, we should not overflow
1213 * 2) for entity, support any load.weight always runnable
1214 */
9d85f21c 1215struct sched_avg {
9d89c257
YD
1216 u64 last_update_time, load_sum;
1217 u32 util_sum, period_contrib;
1218 unsigned long load_avg, util_avg;
9d85f21c
PT
1219};
1220
94c18227 1221#ifdef CONFIG_SCHEDSTATS
41acab88 1222struct sched_statistics {
20b8a59f 1223 u64 wait_start;
94c18227 1224 u64 wait_max;
6d082592
AV
1225 u64 wait_count;
1226 u64 wait_sum;
8f0dfc34
AV
1227 u64 iowait_count;
1228 u64 iowait_sum;
94c18227 1229
20b8a59f 1230 u64 sleep_start;
20b8a59f 1231 u64 sleep_max;
94c18227
IM
1232 s64 sum_sleep_runtime;
1233
1234 u64 block_start;
20b8a59f
IM
1235 u64 block_max;
1236 u64 exec_max;
eba1ed4b 1237 u64 slice_max;
cc367732 1238
cc367732
IM
1239 u64 nr_migrations_cold;
1240 u64 nr_failed_migrations_affine;
1241 u64 nr_failed_migrations_running;
1242 u64 nr_failed_migrations_hot;
1243 u64 nr_forced_migrations;
cc367732
IM
1244
1245 u64 nr_wakeups;
1246 u64 nr_wakeups_sync;
1247 u64 nr_wakeups_migrate;
1248 u64 nr_wakeups_local;
1249 u64 nr_wakeups_remote;
1250 u64 nr_wakeups_affine;
1251 u64 nr_wakeups_affine_attempts;
1252 u64 nr_wakeups_passive;
1253 u64 nr_wakeups_idle;
41acab88
LDM
1254};
1255#endif
1256
1257struct sched_entity {
1258 struct load_weight load; /* for load-balancing */
1259 struct rb_node run_node;
1260 struct list_head group_node;
1261 unsigned int on_rq;
1262
1263 u64 exec_start;
1264 u64 sum_exec_runtime;
1265 u64 vruntime;
1266 u64 prev_sum_exec_runtime;
1267
41acab88
LDM
1268 u64 nr_migrations;
1269
41acab88
LDM
1270#ifdef CONFIG_SCHEDSTATS
1271 struct sched_statistics statistics;
94c18227
IM
1272#endif
1273
20b8a59f 1274#ifdef CONFIG_FAIR_GROUP_SCHED
fed14d45 1275 int depth;
20b8a59f
IM
1276 struct sched_entity *parent;
1277 /* rq on which this entity is (to be) queued: */
1278 struct cfs_rq *cfs_rq;
1279 /* rq "owned" by this entity/group: */
1280 struct cfs_rq *my_q;
1281#endif
8bd75c77 1282
141965c7 1283#ifdef CONFIG_SMP
5a107804
JO
1284 /*
1285 * Per entity load average tracking.
1286 *
1287 * Put into separate cache line so it does not
1288 * collide with read-mostly values above.
1289 */
1290 struct sched_avg avg ____cacheline_aligned_in_smp;
9d85f21c 1291#endif
20b8a59f 1292};
70b97a7f 1293
fa717060
PZ
1294struct sched_rt_entity {
1295 struct list_head run_list;
78f2c7db 1296 unsigned long timeout;
57d2aa00 1297 unsigned long watchdog_stamp;
bee367ed 1298 unsigned int time_slice;
ff77e468
PZ
1299 unsigned short on_rq;
1300 unsigned short on_list;
6f505b16 1301
58d6c2d7 1302 struct sched_rt_entity *back;
052f1dc7 1303#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
1304 struct sched_rt_entity *parent;
1305 /* rq on which this entity is (to be) queued: */
1306 struct rt_rq *rt_rq;
1307 /* rq "owned" by this entity/group: */
1308 struct rt_rq *my_q;
1309#endif
fa717060
PZ
1310};
1311
aab03e05
DF
1312struct sched_dl_entity {
1313 struct rb_node rb_node;
1314
1315 /*
1316 * Original scheduling parameters. Copied here from sched_attr
4027d080 1317 * during sched_setattr(), they will remain the same until
1318 * the next sched_setattr().
aab03e05
DF
1319 */
1320 u64 dl_runtime; /* maximum runtime for each instance */
1321 u64 dl_deadline; /* relative deadline of each instance */
755378a4 1322 u64 dl_period; /* separation of two instances (period) */
332ac17e 1323 u64 dl_bw; /* dl_runtime / dl_deadline */
aab03e05
DF
1324
1325 /*
1326 * Actual scheduling parameters. Initialized with the values above,
1327 * they are continously updated during task execution. Note that
1328 * the remaining runtime could be < 0 in case we are in overrun.
1329 */
1330 s64 runtime; /* remaining runtime for this instance */
1331 u64 deadline; /* absolute deadline for this instance */
1332 unsigned int flags; /* specifying the scheduler behaviour */
1333
1334 /*
1335 * Some bool flags:
1336 *
1337 * @dl_throttled tells if we exhausted the runtime. If so, the
1338 * task has to wait for a replenishment to be performed at the
1339 * next firing of dl_timer.
1340 *
2d3d891d
DF
1341 * @dl_boosted tells if we are boosted due to DI. If so we are
1342 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
1343 * exit the critical section);
1344 *
1345 * @dl_yielded tells if task gave up the cpu before consuming
1346 * all its available runtime during the last job.
aab03e05 1347 */
72f9f3fd 1348 int dl_throttled, dl_boosted, dl_yielded;
aab03e05
DF
1349
1350 /*
1351 * Bandwidth enforcement timer. Each -deadline task has its
1352 * own bandwidth to be enforced, thus we need one timer per task.
1353 */
1354 struct hrtimer dl_timer;
1355};
8bd75c77 1356
1d082fd0
PM
1357union rcu_special {
1358 struct {
8203d6d0
PM
1359 u8 blocked;
1360 u8 need_qs;
1361 u8 exp_need_qs;
1362 u8 pad; /* Otherwise the compiler can store garbage here. */
1363 } b; /* Bits. */
1364 u32 s; /* Set of bits. */
1d082fd0 1365};
86848966
PM
1366struct rcu_node;
1367
8dc85d54
PZ
1368enum perf_event_task_context {
1369 perf_invalid_context = -1,
1370 perf_hw_context = 0,
89a1e187 1371 perf_sw_context,
8dc85d54
PZ
1372 perf_nr_task_contexts,
1373};
1374
72b252ae
MG
1375/* Track pages that require TLB flushes */
1376struct tlbflush_unmap_batch {
1377 /*
1378 * Each bit set is a CPU that potentially has a TLB entry for one of
1379 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1380 */
1381 struct cpumask cpumask;
1382
1383 /* True if any bit in cpumask is set */
1384 bool flush_required;
d950c947
MG
1385
1386 /*
1387 * If true then the PTE was dirty when unmapped. The entry must be
1388 * flushed before IO is initiated or a stale TLB entry potentially
1389 * allows an update without redirtying the page.
1390 */
1391 bool writable;
72b252ae
MG
1392};
1393
1da177e4
LT
1394struct task_struct {
1395 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
f7e4217b 1396 void *stack;
1da177e4 1397 atomic_t usage;
97dc32cd
WC
1398 unsigned int flags; /* per process flags, defined below */
1399 unsigned int ptrace;
1da177e4 1400
2dd73a4f 1401#ifdef CONFIG_SMP
fa14ff4a 1402 struct llist_node wake_entry;
3ca7a440 1403 int on_cpu;
63b0e9ed 1404 unsigned int wakee_flips;
62470419 1405 unsigned long wakee_flip_decay_ts;
63b0e9ed 1406 struct task_struct *last_wakee;
ac66f547
PZ
1407
1408 int wake_cpu;
2dd73a4f 1409#endif
fd2f4419 1410 int on_rq;
50e645a8 1411
b29739f9 1412 int prio, static_prio, normal_prio;
c7aceaba 1413 unsigned int rt_priority;
5522d5d5 1414 const struct sched_class *sched_class;
20b8a59f 1415 struct sched_entity se;
fa717060 1416 struct sched_rt_entity rt;
8323f26c
PZ
1417#ifdef CONFIG_CGROUP_SCHED
1418 struct task_group *sched_task_group;
1419#endif
aab03e05 1420 struct sched_dl_entity dl;
1da177e4 1421
e107be36
AK
1422#ifdef CONFIG_PREEMPT_NOTIFIERS
1423 /* list of struct preempt_notifier: */
1424 struct hlist_head preempt_notifiers;
1425#endif
1426
6c5c9341 1427#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1428 unsigned int btrace_seq;
6c5c9341 1429#endif
1da177e4 1430
97dc32cd 1431 unsigned int policy;
29baa747 1432 int nr_cpus_allowed;
1da177e4 1433 cpumask_t cpus_allowed;
1da177e4 1434
a57eb940 1435#ifdef CONFIG_PREEMPT_RCU
e260be67 1436 int rcu_read_lock_nesting;
1d082fd0 1437 union rcu_special rcu_read_unlock_special;
f41d911f 1438 struct list_head rcu_node_entry;
a57eb940 1439 struct rcu_node *rcu_blocked_node;
28f6569a 1440#endif /* #ifdef CONFIG_PREEMPT_RCU */
8315f422
PM
1441#ifdef CONFIG_TASKS_RCU
1442 unsigned long rcu_tasks_nvcsw;
1443 bool rcu_tasks_holdout;
1444 struct list_head rcu_tasks_holdout_list;
176f8f7a 1445 int rcu_tasks_idle_cpu;
8315f422 1446#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 1447
f6db8347 1448#ifdef CONFIG_SCHED_INFO
1da177e4
LT
1449 struct sched_info sched_info;
1450#endif
1451
1452 struct list_head tasks;
806c09a7 1453#ifdef CONFIG_SMP
917b627d 1454 struct plist_node pushable_tasks;
1baca4ce 1455 struct rb_node pushable_dl_tasks;
806c09a7 1456#endif
1da177e4
LT
1457
1458 struct mm_struct *mm, *active_mm;
615d6e87
DB
1459 /* per-thread vma caching */
1460 u32 vmacache_seqnum;
1461 struct vm_area_struct *vmacache[VMACACHE_SIZE];
34e55232
KH
1462#if defined(SPLIT_RSS_COUNTING)
1463 struct task_rss_stat rss_stat;
1464#endif
1da177e4 1465/* task state */
97dc32cd 1466 int exit_state;
1da177e4
LT
1467 int exit_code, exit_signal;
1468 int pdeath_signal; /* The signal sent when the parent dies */
e7cc4173 1469 unsigned long jobctl; /* JOBCTL_*, siglock protected */
9b89f6ba
AE
1470
1471 /* Used for emulating ABI behavior of previous Linux versions */
97dc32cd 1472 unsigned int personality;
9b89f6ba 1473
be958bdc 1474 /* scheduler bits, serialized by scheduler locks */
ca94c442 1475 unsigned sched_reset_on_fork:1;
a8e4f2ea 1476 unsigned sched_contributes_to_load:1;
ff303e66 1477 unsigned sched_migrated:1;
be958bdc
PZ
1478 unsigned :0; /* force alignment to the next boundary */
1479
1480 /* unserialized, strictly 'current' */
1481 unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1482 unsigned in_iowait:1;
626ebc41
TH
1483#ifdef CONFIG_MEMCG
1484 unsigned memcg_may_oom:1;
127424c8 1485#ifndef CONFIG_SLOB
6f185c29
VD
1486 unsigned memcg_kmem_skip_account:1;
1487#endif
127424c8 1488#endif
ff303e66
PZ
1489#ifdef CONFIG_COMPAT_BRK
1490 unsigned brk_randomized:1;
1491#endif
6f185c29 1492
1d4457f9
KC
1493 unsigned long atomic_flags; /* Flags needing atomic access. */
1494
f56141e3
AL
1495 struct restart_block restart_block;
1496
1da177e4
LT
1497 pid_t pid;
1498 pid_t tgid;
0a425405 1499
1314562a 1500#ifdef CONFIG_CC_STACKPROTECTOR
0a425405
AV
1501 /* Canary value for the -fstack-protector gcc feature */
1502 unsigned long stack_canary;
1314562a 1503#endif
4d1d61a6 1504 /*
1da177e4 1505 * pointers to (original) parent process, youngest child, younger sibling,
4d1d61a6 1506 * older sibling, respectively. (p->father can be replaced with
f470021a 1507 * p->real_parent->pid)
1da177e4 1508 */
abd63bc3
KC
1509 struct task_struct __rcu *real_parent; /* real parent process */
1510 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1da177e4 1511 /*
f470021a 1512 * children/sibling forms the list of my natural children
1da177e4
LT
1513 */
1514 struct list_head children; /* list of my children */
1515 struct list_head sibling; /* linkage in my parent's children list */
1516 struct task_struct *group_leader; /* threadgroup leader */
1517
f470021a
RM
1518 /*
1519 * ptraced is the list of tasks this task is using ptrace on.
1520 * This includes both natural children and PTRACE_ATTACH targets.
1521 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1522 */
1523 struct list_head ptraced;
1524 struct list_head ptrace_entry;
1525
1da177e4 1526 /* PID/PID hash table linkage. */
92476d7f 1527 struct pid_link pids[PIDTYPE_MAX];
47e65328 1528 struct list_head thread_group;
0c740d0a 1529 struct list_head thread_node;
1da177e4
LT
1530
1531 struct completion *vfork_done; /* for vfork() */
1532 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1533 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1534
c66f08be 1535 cputime_t utime, stime, utimescaled, stimescaled;
9ac52315 1536 cputime_t gtime;
9d7fb042 1537 struct prev_cputime prev_cputime;
6a61671b 1538#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
b7ce2277 1539 seqcount_t vtime_seqcount;
6a61671b
FW
1540 unsigned long long vtime_snap;
1541 enum {
7098c1ea
FW
1542 /* Task is sleeping or running in a CPU with VTIME inactive */
1543 VTIME_INACTIVE = 0,
1544 /* Task runs in userspace in a CPU with VTIME active */
6a61671b 1545 VTIME_USER,
7098c1ea 1546 /* Task runs in kernelspace in a CPU with VTIME active */
6a61671b
FW
1547 VTIME_SYS,
1548 } vtime_snap_whence;
d99ca3b9 1549#endif
d027d45d
FW
1550
1551#ifdef CONFIG_NO_HZ_FULL
1552 unsigned long tick_dep_mask;
1553#endif
1da177e4 1554 unsigned long nvcsw, nivcsw; /* context switch counts */
ccbf62d8 1555 u64 start_time; /* monotonic time in nsec */
57e0be04 1556 u64 real_start_time; /* boot based time in nsec */
1da177e4
LT
1557/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1558 unsigned long min_flt, maj_flt;
1559
f06febc9 1560 struct task_cputime cputime_expires;
1da177e4
LT
1561 struct list_head cpu_timers[3];
1562
1563/* process credentials */
1b0ba1c9 1564 const struct cred __rcu *real_cred; /* objective and real subjective task
3b11a1de 1565 * credentials (COW) */
1b0ba1c9 1566 const struct cred __rcu *cred; /* effective (overridable) subjective task
3b11a1de 1567 * credentials (COW) */
36772092
PBG
1568 char comm[TASK_COMM_LEN]; /* executable name excluding path
1569 - access with [gs]et_task_comm (which lock
1570 it with task_lock())
221af7f8 1571 - initialized normally by setup_new_exec */
1da177e4 1572/* file system info */
756daf26 1573 struct nameidata *nameidata;
3d5b6fcc 1574#ifdef CONFIG_SYSVIPC
1da177e4
LT
1575/* ipc stuff */
1576 struct sysv_sem sysvsem;
ab602f79 1577 struct sysv_shm sysvshm;
3d5b6fcc 1578#endif
e162b39a 1579#ifdef CONFIG_DETECT_HUNG_TASK
82a1fcb9 1580/* hung task detection */
82a1fcb9
IM
1581 unsigned long last_switch_count;
1582#endif
1da177e4
LT
1583/* filesystem information */
1584 struct fs_struct *fs;
1585/* open file information */
1586 struct files_struct *files;
1651e14e 1587/* namespaces */
ab516013 1588 struct nsproxy *nsproxy;
1da177e4
LT
1589/* signal handlers */
1590 struct signal_struct *signal;
1591 struct sighand_struct *sighand;
1592
1593 sigset_t blocked, real_blocked;
f3de272b 1594 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1da177e4
LT
1595 struct sigpending pending;
1596
1597 unsigned long sas_ss_sp;
1598 size_t sas_ss_size;
2e01fabe 1599
67d12145 1600 struct callback_head *task_works;
e73f8959 1601
1da177e4 1602 struct audit_context *audit_context;
bfef93a5 1603#ifdef CONFIG_AUDITSYSCALL
e1760bd5 1604 kuid_t loginuid;
4746ec5b 1605 unsigned int sessionid;
bfef93a5 1606#endif
932ecebb 1607 struct seccomp seccomp;
1da177e4
LT
1608
1609/* Thread group tracking */
1610 u32 parent_exec_id;
1611 u32 self_exec_id;
58568d2a
MX
1612/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1613 * mempolicy */
1da177e4 1614 spinlock_t alloc_lock;
1da177e4 1615
b29739f9 1616 /* Protection of the PI data structures: */
1d615482 1617 raw_spinlock_t pi_lock;
b29739f9 1618
76751049
PZ
1619 struct wake_q_node wake_q;
1620
23f78d4a
IM
1621#ifdef CONFIG_RT_MUTEXES
1622 /* PI waiters blocked on a rt_mutex held by this task */
fb00aca4
PZ
1623 struct rb_root pi_waiters;
1624 struct rb_node *pi_waiters_leftmost;
23f78d4a
IM
1625 /* Deadlock detection and priority inheritance handling */
1626 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1627#endif
1628
408894ee
IM
1629#ifdef CONFIG_DEBUG_MUTEXES
1630 /* mutex deadlock detection */
1631 struct mutex_waiter *blocked_on;
1632#endif
de30a2b3
IM
1633#ifdef CONFIG_TRACE_IRQFLAGS
1634 unsigned int irq_events;
de30a2b3 1635 unsigned long hardirq_enable_ip;
de30a2b3 1636 unsigned long hardirq_disable_ip;
fa1452e8 1637 unsigned int hardirq_enable_event;
de30a2b3 1638 unsigned int hardirq_disable_event;
fa1452e8
HS
1639 int hardirqs_enabled;
1640 int hardirq_context;
de30a2b3 1641 unsigned long softirq_disable_ip;
de30a2b3 1642 unsigned long softirq_enable_ip;
fa1452e8 1643 unsigned int softirq_disable_event;
de30a2b3 1644 unsigned int softirq_enable_event;
fa1452e8 1645 int softirqs_enabled;
de30a2b3
IM
1646 int softirq_context;
1647#endif
fbb9ce95 1648#ifdef CONFIG_LOCKDEP
bdb9441e 1649# define MAX_LOCK_DEPTH 48UL
fbb9ce95
IM
1650 u64 curr_chain_key;
1651 int lockdep_depth;
fbb9ce95 1652 unsigned int lockdep_recursion;
c7aceaba 1653 struct held_lock held_locks[MAX_LOCK_DEPTH];
cf40bd16 1654 gfp_t lockdep_reclaim_gfp;
fbb9ce95 1655#endif
c6d30853
AR
1656#ifdef CONFIG_UBSAN
1657 unsigned int in_ubsan;
1658#endif
408894ee 1659
1da177e4
LT
1660/* journalling filesystem info */
1661 void *journal_info;
1662
d89d8796 1663/* stacked block device info */
bddd87c7 1664 struct bio_list *bio_list;
d89d8796 1665
73c10101
JA
1666#ifdef CONFIG_BLOCK
1667/* stack plugging */
1668 struct blk_plug *plug;
1669#endif
1670
1da177e4
LT
1671/* VM state */
1672 struct reclaim_state *reclaim_state;
1673
1da177e4
LT
1674 struct backing_dev_info *backing_dev_info;
1675
1676 struct io_context *io_context;
1677
1678 unsigned long ptrace_message;
1679 siginfo_t *last_siginfo; /* For ptrace use. */
7c3ab738 1680 struct task_io_accounting ioac;
8f0ab514 1681#if defined(CONFIG_TASK_XACCT)
1da177e4
LT
1682 u64 acct_rss_mem1; /* accumulated rss usage */
1683 u64 acct_vm_mem1; /* accumulated virtual memory usage */
49b5cf34 1684 cputime_t acct_timexpd; /* stime + utime since last update */
1da177e4
LT
1685#endif
1686#ifdef CONFIG_CPUSETS
58568d2a 1687 nodemask_t mems_allowed; /* Protected by alloc_lock */
cc9a6c87 1688 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
825a46af 1689 int cpuset_mem_spread_rotor;
6adef3eb 1690 int cpuset_slab_spread_rotor;
1da177e4 1691#endif
ddbcc7e8 1692#ifdef CONFIG_CGROUPS
817929ec 1693 /* Control Group info protected by css_set_lock */
2c392b8c 1694 struct css_set __rcu *cgroups;
817929ec
PM
1695 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1696 struct list_head cg_list;
ddbcc7e8 1697#endif
42b2dd0a 1698#ifdef CONFIG_FUTEX
0771dfef 1699 struct robust_list_head __user *robust_list;
34f192c6
IM
1700#ifdef CONFIG_COMPAT
1701 struct compat_robust_list_head __user *compat_robust_list;
1702#endif
c87e2837
IM
1703 struct list_head pi_state_list;
1704 struct futex_pi_state *pi_state_cache;
c7aceaba 1705#endif
cdd6c482 1706#ifdef CONFIG_PERF_EVENTS
8dc85d54 1707 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
cdd6c482
IM
1708 struct mutex perf_event_mutex;
1709 struct list_head perf_event_list;
a63eaf34 1710#endif
8f47b187
TG
1711#ifdef CONFIG_DEBUG_PREEMPT
1712 unsigned long preempt_disable_ip;
1713#endif
c7aceaba 1714#ifdef CONFIG_NUMA
58568d2a 1715 struct mempolicy *mempolicy; /* Protected by alloc_lock */
c7aceaba 1716 short il_next;
207205a2 1717 short pref_node_fork;
42b2dd0a 1718#endif
cbee9f88
PZ
1719#ifdef CONFIG_NUMA_BALANCING
1720 int numa_scan_seq;
cbee9f88 1721 unsigned int numa_scan_period;
598f0ec0 1722 unsigned int numa_scan_period_max;
de1c9ce6 1723 int numa_preferred_nid;
6b9a7460 1724 unsigned long numa_migrate_retry;
cbee9f88 1725 u64 node_stamp; /* migration stamp */
7e2703e6
RR
1726 u64 last_task_numa_placement;
1727 u64 last_sum_exec_runtime;
cbee9f88 1728 struct callback_head numa_work;
f809ca9a 1729
8c8a743c
PZ
1730 struct list_head numa_entry;
1731 struct numa_group *numa_group;
1732
745d6147 1733 /*
44dba3d5
IM
1734 * numa_faults is an array split into four regions:
1735 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1736 * in this precise order.
1737 *
1738 * faults_memory: Exponential decaying average of faults on a per-node
1739 * basis. Scheduling placement decisions are made based on these
1740 * counts. The values remain static for the duration of a PTE scan.
1741 * faults_cpu: Track the nodes the process was running on when a NUMA
1742 * hinting fault was incurred.
1743 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1744 * during the current scan window. When the scan completes, the counts
1745 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1746 */
44dba3d5 1747 unsigned long *numa_faults;
83e1d2cd 1748 unsigned long total_numa_faults;
745d6147 1749
04bb2f94
RR
1750 /*
1751 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1752 * scan window were remote/local or failed to migrate. The task scan
1753 * period is adapted based on the locality of the faults with different
1754 * weights depending on whether they were shared or private faults
04bb2f94 1755 */
074c2381 1756 unsigned long numa_faults_locality[3];
04bb2f94 1757
b32e86b4 1758 unsigned long numa_pages_migrated;
cbee9f88
PZ
1759#endif /* CONFIG_NUMA_BALANCING */
1760
72b252ae
MG
1761#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1762 struct tlbflush_unmap_batch tlb_ubc;
1763#endif
1764
e56d0903 1765 struct rcu_head rcu;
b92ce558
JA
1766
1767 /*
1768 * cache last used pipe for splice
1769 */
1770 struct pipe_inode_info *splice_pipe;
5640f768
ED
1771
1772 struct page_frag task_frag;
1773
ca74e92b
SN
1774#ifdef CONFIG_TASK_DELAY_ACCT
1775 struct task_delay_info *delays;
f4f154fd
AM
1776#endif
1777#ifdef CONFIG_FAULT_INJECTION
1778 int make_it_fail;
ca74e92b 1779#endif
9d823e8f
WF
1780 /*
1781 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1782 * balance_dirty_pages() for some dirty throttling pause
1783 */
1784 int nr_dirtied;
1785 int nr_dirtied_pause;
83712358 1786 unsigned long dirty_paused_when; /* start of a write-and-pause period */
9d823e8f 1787
9745512c
AV
1788#ifdef CONFIG_LATENCYTOP
1789 int latency_record_count;
1790 struct latency_record latency_record[LT_SAVECOUNT];
1791#endif
6976675d
AV
1792 /*
1793 * time slack values; these are used to round up poll() and
1794 * select() etc timeout values. These are in nanoseconds.
1795 */
da8b44d5
JS
1796 u64 timer_slack_ns;
1797 u64 default_timer_slack_ns;
f8d570a4 1798
0b24becc
AR
1799#ifdef CONFIG_KASAN
1800 unsigned int kasan_depth;
1801#endif
fb52607a 1802#ifdef CONFIG_FUNCTION_GRAPH_TRACER
3ad2f3fb 1803 /* Index of current stored address in ret_stack */
f201ae23
FW
1804 int curr_ret_stack;
1805 /* Stack of return addresses for return function tracing */
1806 struct ftrace_ret_stack *ret_stack;
8aef2d28
SR
1807 /* time stamp for last schedule */
1808 unsigned long long ftrace_timestamp;
f201ae23
FW
1809 /*
1810 * Number of functions that haven't been traced
1811 * because of depth overrun.
1812 */
1813 atomic_t trace_overrun;
380c4b14
FW
1814 /* Pause for the tracing */
1815 atomic_t tracing_graph_pause;
f201ae23 1816#endif
ea4e2bc4
SR
1817#ifdef CONFIG_TRACING
1818 /* state flags for use by tracers */
1819 unsigned long trace;
b1cff0ad 1820 /* bitmask and counter of trace recursion */
261842b7
SR
1821 unsigned long trace_recursion;
1822#endif /* CONFIG_TRACING */
5c9a8750
DV
1823#ifdef CONFIG_KCOV
1824 /* Coverage collection mode enabled for this task (0 if disabled). */
1825 enum kcov_mode kcov_mode;
1826 /* Size of the kcov_area. */
1827 unsigned kcov_size;
1828 /* Buffer for coverage collection. */
1829 void *kcov_area;
1830 /* kcov desciptor wired with this task or NULL. */
1831 struct kcov *kcov;
1832#endif
6f185c29 1833#ifdef CONFIG_MEMCG
626ebc41
TH
1834 struct mem_cgroup *memcg_in_oom;
1835 gfp_t memcg_oom_gfp_mask;
1836 int memcg_oom_order;
b23afb93
TH
1837
1838 /* number of pages to reclaim on returning to userland */
1839 unsigned int memcg_nr_pages_over_high;
569b846d 1840#endif
0326f5a9
SD
1841#ifdef CONFIG_UPROBES
1842 struct uprobe_task *utask;
0326f5a9 1843#endif
cafe5635
KO
1844#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1845 unsigned int sequential_io;
1846 unsigned int sequential_io_avg;
1847#endif
8eb23b9f
PZ
1848#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1849 unsigned long task_state_change;
1850#endif
8bcbde54 1851 int pagefault_disabled;
0c8c0f03
DH
1852/* CPU-specific state of this task */
1853 struct thread_struct thread;
1854/*
1855 * WARNING: on x86, 'thread_struct' contains a variable-sized
1856 * structure. It *MUST* be at the end of 'task_struct'.
1857 *
1858 * Do not put anything below here!
1859 */
1da177e4
LT
1860};
1861
5aaeb5c0
IM
1862#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1863extern int arch_task_struct_size __read_mostly;
1864#else
1865# define arch_task_struct_size (sizeof(struct task_struct))
1866#endif
0c8c0f03 1867
76e6eee0 1868/* Future-safe accessor for struct task_struct's cpus_allowed. */
a4636818 1869#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
76e6eee0 1870
6688cc05
PZ
1871#define TNF_MIGRATED 0x01
1872#define TNF_NO_GROUP 0x02
dabe1d99 1873#define TNF_SHARED 0x04
04bb2f94 1874#define TNF_FAULT_LOCAL 0x08
074c2381 1875#define TNF_MIGRATE_FAIL 0x10
6688cc05 1876
cbee9f88 1877#ifdef CONFIG_NUMA_BALANCING
6688cc05 1878extern void task_numa_fault(int last_node, int node, int pages, int flags);
e29cf08b 1879extern pid_t task_numa_group_id(struct task_struct *p);
1a687c2e 1880extern void set_numabalancing_state(bool enabled);
82727018 1881extern void task_numa_free(struct task_struct *p);
10f39042
RR
1882extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1883 int src_nid, int dst_cpu);
cbee9f88 1884#else
ac8e895b 1885static inline void task_numa_fault(int last_node, int node, int pages,
6688cc05 1886 int flags)
cbee9f88
PZ
1887{
1888}
e29cf08b
MG
1889static inline pid_t task_numa_group_id(struct task_struct *p)
1890{
1891 return 0;
1892}
1a687c2e
MG
1893static inline void set_numabalancing_state(bool enabled)
1894{
1895}
82727018
RR
1896static inline void task_numa_free(struct task_struct *p)
1897{
1898}
10f39042
RR
1899static inline bool should_numa_migrate_memory(struct task_struct *p,
1900 struct page *page, int src_nid, int dst_cpu)
1901{
1902 return true;
1903}
cbee9f88
PZ
1904#endif
1905
e868171a 1906static inline struct pid *task_pid(struct task_struct *task)
22c935f4
EB
1907{
1908 return task->pids[PIDTYPE_PID].pid;
1909}
1910
e868171a 1911static inline struct pid *task_tgid(struct task_struct *task)
22c935f4
EB
1912{
1913 return task->group_leader->pids[PIDTYPE_PID].pid;
1914}
1915
6dda81f4
ON
1916/*
1917 * Without tasklist or rcu lock it is not safe to dereference
1918 * the result of task_pgrp/task_session even if task == current,
1919 * we can race with another thread doing sys_setsid/sys_setpgid.
1920 */
e868171a 1921static inline struct pid *task_pgrp(struct task_struct *task)
22c935f4
EB
1922{
1923 return task->group_leader->pids[PIDTYPE_PGID].pid;
1924}
1925
e868171a 1926static inline struct pid *task_session(struct task_struct *task)
22c935f4
EB
1927{
1928 return task->group_leader->pids[PIDTYPE_SID].pid;
1929}
1930
7af57294
PE
1931struct pid_namespace;
1932
1933/*
1934 * the helpers to get the task's different pids as they are seen
1935 * from various namespaces
1936 *
1937 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1938 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1939 * current.
7af57294
PE
1940 * task_xid_nr_ns() : id seen from the ns specified;
1941 *
1942 * set_task_vxid() : assigns a virtual id to a task;
1943 *
7af57294
PE
1944 * see also pid_nr() etc in include/linux/pid.h
1945 */
52ee2dfd
ON
1946pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1947 struct pid_namespace *ns);
7af57294 1948
e868171a 1949static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1950{
1951 return tsk->pid;
1952}
1953
52ee2dfd
ON
1954static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1955 struct pid_namespace *ns)
1956{
1957 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1958}
7af57294
PE
1959
1960static inline pid_t task_pid_vnr(struct task_struct *tsk)
1961{
52ee2dfd 1962 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1963}
1964
1965
e868171a 1966static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1967{
1968 return tsk->tgid;
1969}
1970
2f2a3a46 1971pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
7af57294
PE
1972
1973static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1974{
1975 return pid_vnr(task_tgid(tsk));
1976}
1977
1978
80e0b6e8 1979static inline int pid_alive(const struct task_struct *p);
ad36d282
RGB
1980static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1981{
1982 pid_t pid = 0;
1983
1984 rcu_read_lock();
1985 if (pid_alive(tsk))
1986 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1987 rcu_read_unlock();
1988
1989 return pid;
1990}
1991
1992static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1993{
1994 return task_ppid_nr_ns(tsk, &init_pid_ns);
1995}
1996
52ee2dfd
ON
1997static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1998 struct pid_namespace *ns)
7af57294 1999{
52ee2dfd 2000 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
2001}
2002
7af57294
PE
2003static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
2004{
52ee2dfd 2005 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
2006}
2007
2008
52ee2dfd
ON
2009static inline pid_t task_session_nr_ns(struct task_struct *tsk,
2010 struct pid_namespace *ns)
7af57294 2011{
52ee2dfd 2012 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
2013}
2014
7af57294
PE
2015static inline pid_t task_session_vnr(struct task_struct *tsk)
2016{
52ee2dfd 2017 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
2018}
2019
1b0f7ffd
ON
2020/* obsolete, do not use */
2021static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2022{
2023 return task_pgrp_nr_ns(tsk, &init_pid_ns);
2024}
7af57294 2025
1da177e4
LT
2026/**
2027 * pid_alive - check that a task structure is not stale
2028 * @p: Task structure to be checked.
2029 *
2030 * Test if a process is not yet dead (at most zombie state)
2031 * If pid_alive fails, then pointers within the task structure
2032 * can be stale and must not be dereferenced.
e69f6186
YB
2033 *
2034 * Return: 1 if the process is alive. 0 otherwise.
1da177e4 2035 */
ad36d282 2036static inline int pid_alive(const struct task_struct *p)
1da177e4 2037{
92476d7f 2038 return p->pids[PIDTYPE_PID].pid != NULL;
1da177e4
LT
2039}
2040
f400e198 2041/**
570f5241
SS
2042 * is_global_init - check if a task structure is init. Since init
2043 * is free to have sub-threads we need to check tgid.
3260259f
HK
2044 * @tsk: Task structure to be checked.
2045 *
2046 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
2047 *
2048 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 2049 */
e868171a 2050static inline int is_global_init(struct task_struct *tsk)
b461cc03 2051{
570f5241 2052 return task_tgid_nr(tsk) == 1;
b461cc03 2053}
b460cbc5 2054
9ec52099
CLG
2055extern struct pid *cad_pid;
2056
1da177e4 2057extern void free_task(struct task_struct *tsk);
1da177e4 2058#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
e56d0903 2059
158d9ebd 2060extern void __put_task_struct(struct task_struct *t);
e56d0903
IM
2061
2062static inline void put_task_struct(struct task_struct *t)
2063{
2064 if (atomic_dec_and_test(&t->usage))
8c7904a0 2065 __put_task_struct(t);
e56d0903 2066}
1da177e4 2067
6a61671b
FW
2068#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2069extern void task_cputime(struct task_struct *t,
2070 cputime_t *utime, cputime_t *stime);
2071extern void task_cputime_scaled(struct task_struct *t,
2072 cputime_t *utimescaled, cputime_t *stimescaled);
2073extern cputime_t task_gtime(struct task_struct *t);
2074#else
6fac4829
FW
2075static inline void task_cputime(struct task_struct *t,
2076 cputime_t *utime, cputime_t *stime)
2077{
2078 if (utime)
2079 *utime = t->utime;
2080 if (stime)
2081 *stime = t->stime;
2082}
2083
2084static inline void task_cputime_scaled(struct task_struct *t,
2085 cputime_t *utimescaled,
2086 cputime_t *stimescaled)
2087{
2088 if (utimescaled)
2089 *utimescaled = t->utimescaled;
2090 if (stimescaled)
2091 *stimescaled = t->stimescaled;
2092}
6a61671b
FW
2093
2094static inline cputime_t task_gtime(struct task_struct *t)
2095{
2096 return t->gtime;
2097}
2098#endif
e80d0a1a
FW
2099extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2100extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
49048622 2101
1da177e4
LT
2102/*
2103 * Per process flags
2104 */
1da177e4 2105#define PF_EXITING 0x00000004 /* getting shut down */
778e9a9c 2106#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
94886b84 2107#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
21aa9af0 2108#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1da177e4 2109#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
4db96cf0 2110#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1da177e4
LT
2111#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2112#define PF_DUMPCORE 0x00000200 /* dumped core */
2113#define PF_SIGNALED 0x00000400 /* killed by a signal */
2114#define PF_MEMALLOC 0x00000800 /* Allocating memory */
72fa5997 2115#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1da177e4 2116#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
774a1221 2117#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1da177e4
LT
2118#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2119#define PF_FROZEN 0x00010000 /* frozen for system suspend */
2120#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2121#define PF_KSWAPD 0x00040000 /* I am kswapd */
21caf2fc 2122#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1da177e4 2123#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
246bb0b1 2124#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
b31dc66a
JA
2125#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2126#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
14a40ffc 2127#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
4db96cf0 2128#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
61a87122 2129#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
58a69cb4 2130#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2b44c4db 2131#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1da177e4
LT
2132
2133/*
2134 * Only the _current_ task can read/write to tsk->flags, but other
2135 * tasks can access tsk->flags in readonly mode for example
2136 * with tsk_used_math (like during threaded core dumping).
2137 * There is however an exception to this rule during ptrace
2138 * or during fork: the ptracer task is allowed to write to the
2139 * child->flags of its traced child (same goes for fork, the parent
2140 * can write to the child->flags), because we're guaranteed the
2141 * child is not running and in turn not changing child->flags
2142 * at the same time the parent does it.
2143 */
2144#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2145#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2146#define clear_used_math() clear_stopped_child_used_math(current)
2147#define set_used_math() set_stopped_child_used_math(current)
2148#define conditional_stopped_child_used_math(condition, child) \
2149 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2150#define conditional_used_math(condition) \
2151 conditional_stopped_child_used_math(condition, current)
2152#define copy_to_stopped_child_used_math(child) \
2153 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2154/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2155#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2156#define used_math() tsk_used_math(current)
2157
934f3072
JB
2158/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2159 * __GFP_FS is also cleared as it implies __GFP_IO.
2160 */
21caf2fc
ML
2161static inline gfp_t memalloc_noio_flags(gfp_t flags)
2162{
2163 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
934f3072 2164 flags &= ~(__GFP_IO | __GFP_FS);
21caf2fc
ML
2165 return flags;
2166}
2167
2168static inline unsigned int memalloc_noio_save(void)
2169{
2170 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2171 current->flags |= PF_MEMALLOC_NOIO;
2172 return flags;
2173}
2174
2175static inline void memalloc_noio_restore(unsigned int flags)
2176{
2177 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2178}
2179
1d4457f9 2180/* Per-process atomic flags. */
a2b86f77 2181#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2ad654bc
ZL
2182#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2183#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2184
1d4457f9 2185
e0e5070b
ZL
2186#define TASK_PFA_TEST(name, func) \
2187 static inline bool task_##func(struct task_struct *p) \
2188 { return test_bit(PFA_##name, &p->atomic_flags); }
2189#define TASK_PFA_SET(name, func) \
2190 static inline void task_set_##func(struct task_struct *p) \
2191 { set_bit(PFA_##name, &p->atomic_flags); }
2192#define TASK_PFA_CLEAR(name, func) \
2193 static inline void task_clear_##func(struct task_struct *p) \
2194 { clear_bit(PFA_##name, &p->atomic_flags); }
2195
2196TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2197TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 2198
2ad654bc
ZL
2199TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2200TASK_PFA_SET(SPREAD_PAGE, spread_page)
2201TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2202
2203TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2204TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2205TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 2206
e5c1902e 2207/*
a8f072c1 2208 * task->jobctl flags
e5c1902e 2209 */
a8f072c1 2210#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
e5c1902e 2211
a8f072c1
TH
2212#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2213#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2214#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
73ddff2b 2215#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
fb1d910c 2216#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
a8f072c1 2217#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
544b2c91 2218#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
a8f072c1 2219
b76808e6
PD
2220#define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2221#define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2222#define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2223#define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2224#define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2225#define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2226#define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
a8f072c1 2227
fb1d910c 2228#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
73ddff2b 2229#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
3759a0d9 2230
7dd3db54 2231extern bool task_set_jobctl_pending(struct task_struct *task,
b76808e6 2232 unsigned long mask);
73ddff2b 2233extern void task_clear_jobctl_trapping(struct task_struct *task);
3759a0d9 2234extern void task_clear_jobctl_pending(struct task_struct *task,
b76808e6 2235 unsigned long mask);
39efa3ef 2236
f41d911f
PM
2237static inline void rcu_copy_process(struct task_struct *p)
2238{
8315f422 2239#ifdef CONFIG_PREEMPT_RCU
f41d911f 2240 p->rcu_read_lock_nesting = 0;
1d082fd0 2241 p->rcu_read_unlock_special.s = 0;
dd5d19ba 2242 p->rcu_blocked_node = NULL;
f41d911f 2243 INIT_LIST_HEAD(&p->rcu_node_entry);
8315f422
PM
2244#endif /* #ifdef CONFIG_PREEMPT_RCU */
2245#ifdef CONFIG_TASKS_RCU
2246 p->rcu_tasks_holdout = false;
2247 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
176f8f7a 2248 p->rcu_tasks_idle_cpu = -1;
8315f422 2249#endif /* #ifdef CONFIG_TASKS_RCU */
f41d911f
PM
2250}
2251
907aed48
MG
2252static inline void tsk_restore_flags(struct task_struct *task,
2253 unsigned long orig_flags, unsigned long flags)
2254{
2255 task->flags &= ~flags;
2256 task->flags |= orig_flags & flags;
2257}
2258
f82f8042
JL
2259extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2260 const struct cpumask *trial);
7f51412a
JL
2261extern int task_can_attach(struct task_struct *p,
2262 const struct cpumask *cs_cpus_allowed);
1da177e4 2263#ifdef CONFIG_SMP
1e1b6c51
KM
2264extern void do_set_cpus_allowed(struct task_struct *p,
2265 const struct cpumask *new_mask);
2266
cd8ba7cd 2267extern int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2268 const struct cpumask *new_mask);
1da177e4 2269#else
1e1b6c51
KM
2270static inline void do_set_cpus_allowed(struct task_struct *p,
2271 const struct cpumask *new_mask)
2272{
2273}
cd8ba7cd 2274static inline int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2275 const struct cpumask *new_mask)
1da177e4 2276{
96f874e2 2277 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
2278 return -EINVAL;
2279 return 0;
2280}
2281#endif
e0ad9556 2282
3451d024 2283#ifdef CONFIG_NO_HZ_COMMON
5167e8d5
PZ
2284void calc_load_enter_idle(void);
2285void calc_load_exit_idle(void);
2286#else
2287static inline void calc_load_enter_idle(void) { }
2288static inline void calc_load_exit_idle(void) { }
3451d024 2289#endif /* CONFIG_NO_HZ_COMMON */
5167e8d5 2290
b342501c 2291/*
c676329a
PZ
2292 * Do not use outside of architecture code which knows its limitations.
2293 *
2294 * sched_clock() has no promise of monotonicity or bounded drift between
2295 * CPUs, use (which you should not) requires disabling IRQs.
2296 *
2297 * Please use one of the three interfaces below.
b342501c 2298 */
1bbfa6f2 2299extern unsigned long long notrace sched_clock(void);
c676329a 2300/*
489a71b0 2301 * See the comment in kernel/sched/clock.c
c676329a
PZ
2302 */
2303extern u64 cpu_clock(int cpu);
2304extern u64 local_clock(void);
545a2bf7 2305extern u64 running_clock(void);
c676329a
PZ
2306extern u64 sched_clock_cpu(int cpu);
2307
e436d800 2308
c1955a3d 2309extern void sched_clock_init(void);
3e51f33f 2310
c1955a3d 2311#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3e51f33f
PZ
2312static inline void sched_clock_tick(void)
2313{
2314}
2315
2316static inline void sched_clock_idle_sleep_event(void)
2317{
2318}
2319
2320static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2321{
2322}
2323#else
c676329a
PZ
2324/*
2325 * Architectures can set this to 1 if they have specified
2326 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2327 * but then during bootup it turns out that sched_clock()
2328 * is reliable after all:
2329 */
35af99e6
PZ
2330extern int sched_clock_stable(void);
2331extern void set_sched_clock_stable(void);
2332extern void clear_sched_clock_stable(void);
c676329a 2333
3e51f33f
PZ
2334extern void sched_clock_tick(void);
2335extern void sched_clock_idle_sleep_event(void);
2336extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2337#endif
2338
b52bfee4
VP
2339#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2340/*
2341 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2342 * The reason for this explicit opt-in is not to have perf penalty with
2343 * slow sched_clocks.
2344 */
2345extern void enable_sched_clock_irqtime(void);
2346extern void disable_sched_clock_irqtime(void);
2347#else
2348static inline void enable_sched_clock_irqtime(void) {}
2349static inline void disable_sched_clock_irqtime(void) {}
2350#endif
2351
36c8b586 2352extern unsigned long long
41b86e9c 2353task_sched_runtime(struct task_struct *task);
1da177e4
LT
2354
2355/* sched_exec is called by processes performing an exec */
2356#ifdef CONFIG_SMP
2357extern void sched_exec(void);
2358#else
2359#define sched_exec() {}
2360#endif
2361
2aa44d05
IM
2362extern void sched_clock_idle_sleep_event(void);
2363extern void sched_clock_idle_wakeup_event(u64 delta_ns);
bb29ab26 2364
1da177e4
LT
2365#ifdef CONFIG_HOTPLUG_CPU
2366extern void idle_task_exit(void);
2367#else
2368static inline void idle_task_exit(void) {}
2369#endif
2370
3451d024 2371#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1c20091e 2372extern void wake_up_nohz_cpu(int cpu);
06d8308c 2373#else
1c20091e 2374static inline void wake_up_nohz_cpu(int cpu) { }
06d8308c
TG
2375#endif
2376
ce831b38 2377#ifdef CONFIG_NO_HZ_FULL
265f22a9 2378extern u64 scheduler_tick_max_deferment(void);
06d8308c
TG
2379#endif
2380
5091faa4 2381#ifdef CONFIG_SCHED_AUTOGROUP
5091faa4
MG
2382extern void sched_autogroup_create_attach(struct task_struct *p);
2383extern void sched_autogroup_detach(struct task_struct *p);
2384extern void sched_autogroup_fork(struct signal_struct *sig);
2385extern void sched_autogroup_exit(struct signal_struct *sig);
2386#ifdef CONFIG_PROC_FS
2387extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2e5b5b3a 2388extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
5091faa4
MG
2389#endif
2390#else
2391static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2392static inline void sched_autogroup_detach(struct task_struct *p) { }
2393static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2394static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2395#endif
2396
fa93384f 2397extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
2398extern void set_user_nice(struct task_struct *p, long nice);
2399extern int task_prio(const struct task_struct *p);
d0ea0268
DY
2400/**
2401 * task_nice - return the nice value of a given task.
2402 * @p: the task in question.
2403 *
2404 * Return: The nice value [ -20 ... 0 ... 19 ].
2405 */
2406static inline int task_nice(const struct task_struct *p)
2407{
2408 return PRIO_TO_NICE((p)->static_prio);
2409}
36c8b586
IM
2410extern int can_nice(const struct task_struct *p, const int nice);
2411extern int task_curr(const struct task_struct *p);
1da177e4 2412extern int idle_cpu(int cpu);
fe7de49f
KM
2413extern int sched_setscheduler(struct task_struct *, int,
2414 const struct sched_param *);
961ccddd 2415extern int sched_setscheduler_nocheck(struct task_struct *, int,
fe7de49f 2416 const struct sched_param *);
d50dde5a
DF
2417extern int sched_setattr(struct task_struct *,
2418 const struct sched_attr *);
36c8b586 2419extern struct task_struct *idle_task(int cpu);
c4f30608
PM
2420/**
2421 * is_idle_task - is the specified task an idle task?
fa757281 2422 * @p: the task in question.
e69f6186
YB
2423 *
2424 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 2425 */
7061ca3b 2426static inline bool is_idle_task(const struct task_struct *p)
c4f30608
PM
2427{
2428 return p->pid == 0;
2429}
36c8b586
IM
2430extern struct task_struct *curr_task(int cpu);
2431extern void set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
2432
2433void yield(void);
2434
1da177e4
LT
2435union thread_union {
2436 struct thread_info thread_info;
2437 unsigned long stack[THREAD_SIZE/sizeof(long)];
2438};
2439
2440#ifndef __HAVE_ARCH_KSTACK_END
2441static inline int kstack_end(void *addr)
2442{
2443 /* Reliable end of stack detection:
2444 * Some APM bios versions misalign the stack
2445 */
2446 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2447}
2448#endif
2449
2450extern union thread_union init_thread_union;
2451extern struct task_struct init_task;
2452
2453extern struct mm_struct init_mm;
2454
198fe21b
PE
2455extern struct pid_namespace init_pid_ns;
2456
2457/*
2458 * find a task by one of its numerical ids
2459 *
198fe21b
PE
2460 * find_task_by_pid_ns():
2461 * finds a task by its pid in the specified namespace
228ebcbe
PE
2462 * find_task_by_vpid():
2463 * finds a task by its virtual pid
198fe21b 2464 *
e49859e7 2465 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
2466 */
2467
228ebcbe
PE
2468extern struct task_struct *find_task_by_vpid(pid_t nr);
2469extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2470 struct pid_namespace *ns);
198fe21b 2471
1da177e4 2472/* per-UID process charging. */
7b44ab97 2473extern struct user_struct * alloc_uid(kuid_t);
1da177e4
LT
2474static inline struct user_struct *get_uid(struct user_struct *u)
2475{
2476 atomic_inc(&u->__count);
2477 return u;
2478}
2479extern void free_uid(struct user_struct *);
1da177e4
LT
2480
2481#include <asm/current.h>
2482
f0af911a 2483extern void xtime_update(unsigned long ticks);
1da177e4 2484
b3c97528
HH
2485extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2486extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 2487extern void wake_up_new_task(struct task_struct *tsk);
1da177e4
LT
2488#ifdef CONFIG_SMP
2489 extern void kick_process(struct task_struct *tsk);
2490#else
2491 static inline void kick_process(struct task_struct *tsk) { }
2492#endif
aab03e05 2493extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
ad46c2c4 2494extern void sched_dead(struct task_struct *p);
1da177e4 2495
1da177e4
LT
2496extern void proc_caches_init(void);
2497extern void flush_signals(struct task_struct *);
10ab825b 2498extern void ignore_signals(struct task_struct *);
1da177e4
LT
2499extern void flush_signal_handlers(struct task_struct *, int force_default);
2500extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2501
be0e6f29 2502static inline int kernel_dequeue_signal(siginfo_t *info)
1da177e4 2503{
be0e6f29
ON
2504 struct task_struct *tsk = current;
2505 siginfo_t __info;
1da177e4
LT
2506 int ret;
2507
be0e6f29
ON
2508 spin_lock_irq(&tsk->sighand->siglock);
2509 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2510 spin_unlock_irq(&tsk->sighand->siglock);
1da177e4
LT
2511
2512 return ret;
53c8f9f1 2513}
1da177e4 2514
9a13049e
ON
2515static inline void kernel_signal_stop(void)
2516{
2517 spin_lock_irq(&current->sighand->siglock);
2518 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2519 __set_current_state(TASK_STOPPED);
2520 spin_unlock_irq(&current->sighand->siglock);
2521
2522 schedule();
2523}
2524
1da177e4
LT
2525extern void release_task(struct task_struct * p);
2526extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1da177e4
LT
2527extern int force_sigsegv(int, struct task_struct *);
2528extern int force_sig_info(int, struct siginfo *, struct task_struct *);
c4b92fc1 2529extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
c4b92fc1 2530extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
d178bc3a
SH
2531extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2532 const struct cred *, u32);
c4b92fc1
EB
2533extern int kill_pgrp(struct pid *pid, int sig, int priv);
2534extern int kill_pid(struct pid *pid, int sig, int priv);
c3de4b38 2535extern int kill_proc_info(int, struct siginfo *, pid_t);
86773473 2536extern __must_check bool do_notify_parent(struct task_struct *, int);
a7f0765e 2537extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
1da177e4 2538extern void force_sig(int, struct task_struct *);
1da177e4 2539extern int send_sig(int, struct task_struct *, int);
09faef11 2540extern int zap_other_threads(struct task_struct *p);
1da177e4
LT
2541extern struct sigqueue *sigqueue_alloc(void);
2542extern void sigqueue_free(struct sigqueue *);
ac5c2153 2543extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
9ac95f2f 2544extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1da177e4 2545
51a7b448
AV
2546static inline void restore_saved_sigmask(void)
2547{
2548 if (test_and_clear_restore_sigmask())
77097ae5 2549 __set_current_blocked(&current->saved_sigmask);
51a7b448
AV
2550}
2551
b7f9a11a
AV
2552static inline sigset_t *sigmask_to_save(void)
2553{
2554 sigset_t *res = &current->blocked;
2555 if (unlikely(test_restore_sigmask()))
2556 res = &current->saved_sigmask;
2557 return res;
2558}
2559
9ec52099
CLG
2560static inline int kill_cad_pid(int sig, int priv)
2561{
2562 return kill_pid(cad_pid, sig, priv);
2563}
2564
1da177e4
LT
2565/* These can be the second arg to send_sig_info/send_group_sig_info. */
2566#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2567#define SEND_SIG_PRIV ((struct siginfo *) 1)
2568#define SEND_SIG_FORCED ((struct siginfo *) 2)
2569
2a855dd0
SAS
2570/*
2571 * True if we are on the alternate signal stack.
2572 */
1da177e4
LT
2573static inline int on_sig_stack(unsigned long sp)
2574{
2a855dd0
SAS
2575#ifdef CONFIG_STACK_GROWSUP
2576 return sp >= current->sas_ss_sp &&
2577 sp - current->sas_ss_sp < current->sas_ss_size;
2578#else
2579 return sp > current->sas_ss_sp &&
2580 sp - current->sas_ss_sp <= current->sas_ss_size;
2581#endif
1da177e4
LT
2582}
2583
2584static inline int sas_ss_flags(unsigned long sp)
2585{
72f15c03
RW
2586 if (!current->sas_ss_size)
2587 return SS_DISABLE;
2588
2589 return on_sig_stack(sp) ? SS_ONSTACK : 0;
1da177e4
LT
2590}
2591
5a1b98d3
AV
2592static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2593{
2594 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2595#ifdef CONFIG_STACK_GROWSUP
2596 return current->sas_ss_sp;
2597#else
2598 return current->sas_ss_sp + current->sas_ss_size;
2599#endif
2600 return sp;
2601}
2602
1da177e4
LT
2603/*
2604 * Routines for handling mm_structs
2605 */
2606extern struct mm_struct * mm_alloc(void);
2607
2608/* mmdrop drops the mm and the page tables */
b3c97528 2609extern void __mmdrop(struct mm_struct *);
1da177e4
LT
2610static inline void mmdrop(struct mm_struct * mm)
2611{
6fb43d7b 2612 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1da177e4
LT
2613 __mmdrop(mm);
2614}
2615
2616/* mmput gets rid of the mappings and all user-space */
2617extern void mmput(struct mm_struct *);
2618/* Grab a reference to a task's mm, if it is not already going away */
2619extern struct mm_struct *get_task_mm(struct task_struct *task);
8cdb878d
CY
2620/*
2621 * Grab a reference to a task's mm, if it is not already going away
2622 * and ptrace_may_access with the mode parameter passed to it
2623 * succeeds.
2624 */
2625extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
1da177e4
LT
2626/* Remove the current tasks stale references to the old mm_struct */
2627extern void mm_release(struct task_struct *, struct mm_struct *);
2628
3033f14a
JT
2629#ifdef CONFIG_HAVE_COPY_THREAD_TLS
2630extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2631 struct task_struct *, unsigned long);
2632#else
6f2c55b8 2633extern int copy_thread(unsigned long, unsigned long, unsigned long,
afa86fc4 2634 struct task_struct *);
3033f14a
JT
2635
2636/* Architectures that haven't opted into copy_thread_tls get the tls argument
2637 * via pt_regs, so ignore the tls argument passed via C. */
2638static inline int copy_thread_tls(
2639 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2640 struct task_struct *p, unsigned long tls)
2641{
2642 return copy_thread(clone_flags, sp, arg, p);
2643}
2644#endif
1da177e4
LT
2645extern void flush_thread(void);
2646extern void exit_thread(void);
2647
1da177e4 2648extern void exit_files(struct task_struct *);
a7e5328a 2649extern void __cleanup_sighand(struct sighand_struct *);
cbaffba1 2650
1da177e4 2651extern void exit_itimers(struct signal_struct *);
cbaffba1 2652extern void flush_itimer_signals(void);
1da177e4 2653
9402c95f 2654extern void do_group_exit(int);
1da177e4 2655
c4ad8f98 2656extern int do_execve(struct filename *,
d7627467 2657 const char __user * const __user *,
da3d4c5f 2658 const char __user * const __user *);
51f39a1f
DD
2659extern int do_execveat(int, struct filename *,
2660 const char __user * const __user *,
2661 const char __user * const __user *,
2662 int);
3033f14a 2663extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
e80d6661 2664extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
36c8b586 2665struct task_struct *fork_idle(int);
2aa3a7f8 2666extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
1da177e4 2667
82b89778
AH
2668extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2669static inline void set_task_comm(struct task_struct *tsk, const char *from)
2670{
2671 __set_task_comm(tsk, from, false);
2672}
59714d65 2673extern char *get_task_comm(char *to, struct task_struct *tsk);
1da177e4
LT
2674
2675#ifdef CONFIG_SMP
317f3941 2676void scheduler_ipi(void);
85ba2d86 2677extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 2678#else
184748cc 2679static inline void scheduler_ipi(void) { }
85ba2d86
RM
2680static inline unsigned long wait_task_inactive(struct task_struct *p,
2681 long match_state)
2682{
2683 return 1;
2684}
1da177e4
LT
2685#endif
2686
fafe870f
FW
2687#define tasklist_empty() \
2688 list_empty(&init_task.tasks)
2689
05725f7e
JP
2690#define next_task(p) \
2691 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
1da177e4
LT
2692
2693#define for_each_process(p) \
2694 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2695
5bb459bb 2696extern bool current_is_single_threaded(void);
d84f4f99 2697
1da177e4
LT
2698/*
2699 * Careful: do_each_thread/while_each_thread is a double loop so
2700 * 'break' will not work as expected - use goto instead.
2701 */
2702#define do_each_thread(g, t) \
2703 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2704
2705#define while_each_thread(g, t) \
2706 while ((t = next_thread(t)) != g)
2707
0c740d0a
ON
2708#define __for_each_thread(signal, t) \
2709 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2710
2711#define for_each_thread(p, t) \
2712 __for_each_thread((p)->signal, t)
2713
2714/* Careful: this is a double loop, 'break' won't work as expected. */
2715#define for_each_process_thread(p, t) \
2716 for_each_process(p) for_each_thread(p, t)
2717
7e49827c
ON
2718static inline int get_nr_threads(struct task_struct *tsk)
2719{
b3ac022c 2720 return tsk->signal->nr_threads;
7e49827c
ON
2721}
2722
087806b1
ON
2723static inline bool thread_group_leader(struct task_struct *p)
2724{
2725 return p->exit_signal >= 0;
2726}
1da177e4 2727
0804ef4b
EB
2728/* Do to the insanities of de_thread it is possible for a process
2729 * to have the pid of the thread group leader without actually being
2730 * the thread group leader. For iteration through the pids in proc
2731 * all we care about is that we have a task with the appropriate
2732 * pid, we don't actually care if we have the right task.
2733 */
e1403b8e 2734static inline bool has_group_leader_pid(struct task_struct *p)
0804ef4b 2735{
e1403b8e 2736 return task_pid(p) == p->signal->leader_pid;
0804ef4b
EB
2737}
2738
bac0abd6 2739static inline
e1403b8e 2740bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
bac0abd6 2741{
e1403b8e 2742 return p1->signal == p2->signal;
bac0abd6
PE
2743}
2744
36c8b586 2745static inline struct task_struct *next_thread(const struct task_struct *p)
47e65328 2746{
05725f7e
JP
2747 return list_entry_rcu(p->thread_group.next,
2748 struct task_struct, thread_group);
47e65328
ON
2749}
2750
e868171a 2751static inline int thread_group_empty(struct task_struct *p)
1da177e4 2752{
47e65328 2753 return list_empty(&p->thread_group);
1da177e4
LT
2754}
2755
2756#define delay_group_leader(p) \
2757 (thread_group_leader(p) && !thread_group_empty(p))
2758
1da177e4 2759/*
260ea101 2760 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
22e2c507 2761 * subscriptions and synchronises with wait4(). Also used in procfs. Also
ddbcc7e8 2762 * pins the final release of task.io_context. Also protects ->cpuset and
d68b46fe 2763 * ->cgroup.subsys[]. And ->vfork_done.
1da177e4
LT
2764 *
2765 * Nests both inside and outside of read_lock(&tasklist_lock).
2766 * It must not be nested with write_lock_irq(&tasklist_lock),
2767 * neither inside nor outside.
2768 */
2769static inline void task_lock(struct task_struct *p)
2770{
2771 spin_lock(&p->alloc_lock);
2772}
2773
2774static inline void task_unlock(struct task_struct *p)
2775{
2776 spin_unlock(&p->alloc_lock);
2777}
2778
b8ed374e 2779extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
f63ee72e
ON
2780 unsigned long *flags);
2781
9388dc30
AV
2782static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2783 unsigned long *flags)
2784{
2785 struct sighand_struct *ret;
2786
2787 ret = __lock_task_sighand(tsk, flags);
2788 (void)__cond_lock(&tsk->sighand->siglock, ret);
2789 return ret;
2790}
b8ed374e 2791
f63ee72e
ON
2792static inline void unlock_task_sighand(struct task_struct *tsk,
2793 unsigned long *flags)
2794{
2795 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2796}
2797
77e4ef99 2798/**
7d7efec3
TH
2799 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
2800 * @tsk: task causing the changes
77e4ef99 2801 *
7d7efec3
TH
2802 * All operations which modify a threadgroup - a new thread joining the
2803 * group, death of a member thread (the assertion of PF_EXITING) and
2804 * exec(2) dethreading the process and replacing the leader - are wrapped
2805 * by threadgroup_change_{begin|end}(). This is to provide a place which
2806 * subsystems needing threadgroup stability can hook into for
2807 * synchronization.
77e4ef99 2808 */
7d7efec3 2809static inline void threadgroup_change_begin(struct task_struct *tsk)
4714d1d3 2810{
7d7efec3
TH
2811 might_sleep();
2812 cgroup_threadgroup_change_begin(tsk);
4714d1d3 2813}
77e4ef99
TH
2814
2815/**
7d7efec3
TH
2816 * threadgroup_change_end - mark the end of changes to a threadgroup
2817 * @tsk: task causing the changes
77e4ef99 2818 *
7d7efec3 2819 * See threadgroup_change_begin().
77e4ef99 2820 */
7d7efec3 2821static inline void threadgroup_change_end(struct task_struct *tsk)
4714d1d3 2822{
7d7efec3 2823 cgroup_threadgroup_change_end(tsk);
4714d1d3 2824}
4714d1d3 2825
f037360f
AV
2826#ifndef __HAVE_THREAD_FUNCTIONS
2827
f7e4217b
RZ
2828#define task_thread_info(task) ((struct thread_info *)(task)->stack)
2829#define task_stack_page(task) ((task)->stack)
a1261f54 2830
10ebffde
AV
2831static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2832{
2833 *task_thread_info(p) = *task_thread_info(org);
2834 task_thread_info(p)->task = p;
2835}
2836
6a40281a
CE
2837/*
2838 * Return the address of the last usable long on the stack.
2839 *
2840 * When the stack grows down, this is just above the thread
2841 * info struct. Going any lower will corrupt the threadinfo.
2842 *
2843 * When the stack grows up, this is the highest address.
2844 * Beyond that position, we corrupt data on the next page.
2845 */
10ebffde
AV
2846static inline unsigned long *end_of_stack(struct task_struct *p)
2847{
6a40281a
CE
2848#ifdef CONFIG_STACK_GROWSUP
2849 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2850#else
f7e4217b 2851 return (unsigned long *)(task_thread_info(p) + 1);
6a40281a 2852#endif
10ebffde
AV
2853}
2854
f037360f 2855#endif
a70857e4
AT
2856#define task_stack_end_corrupted(task) \
2857 (*(end_of_stack(task)) != STACK_END_MAGIC)
f037360f 2858
8b05c7e6
FT
2859static inline int object_is_on_stack(void *obj)
2860{
2861 void *stack = task_stack_page(current);
2862
2863 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2864}
2865
8c9843e5
BH
2866extern void thread_info_cache_init(void);
2867
7c9f8861
ES
2868#ifdef CONFIG_DEBUG_STACK_USAGE
2869static inline unsigned long stack_not_used(struct task_struct *p)
2870{
2871 unsigned long *n = end_of_stack(p);
2872
2873 do { /* Skip over canary */
6c31da34
HD
2874# ifdef CONFIG_STACK_GROWSUP
2875 n--;
2876# else
7c9f8861 2877 n++;
6c31da34 2878# endif
7c9f8861
ES
2879 } while (!*n);
2880
6c31da34
HD
2881# ifdef CONFIG_STACK_GROWSUP
2882 return (unsigned long)end_of_stack(p) - (unsigned long)n;
2883# else
7c9f8861 2884 return (unsigned long)n - (unsigned long)end_of_stack(p);
6c31da34 2885# endif
7c9f8861
ES
2886}
2887#endif
d4311ff1 2888extern void set_task_stack_end_magic(struct task_struct *tsk);
7c9f8861 2889
1da177e4
LT
2890/* set thread flags in other task's structures
2891 * - see asm/thread_info.h for TIF_xxxx flags available
2892 */
2893static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2894{
a1261f54 2895 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2896}
2897
2898static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2899{
a1261f54 2900 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2901}
2902
2903static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2904{
a1261f54 2905 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2906}
2907
2908static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2909{
a1261f54 2910 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2911}
2912
2913static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2914{
a1261f54 2915 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2916}
2917
2918static inline void set_tsk_need_resched(struct task_struct *tsk)
2919{
2920 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2921}
2922
2923static inline void clear_tsk_need_resched(struct task_struct *tsk)
2924{
2925 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2926}
2927
8ae121ac
GH
2928static inline int test_tsk_need_resched(struct task_struct *tsk)
2929{
2930 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2931}
2932
690cc3ff
EB
2933static inline int restart_syscall(void)
2934{
2935 set_tsk_thread_flag(current, TIF_SIGPENDING);
2936 return -ERESTARTNOINTR;
2937}
2938
1da177e4
LT
2939static inline int signal_pending(struct task_struct *p)
2940{
2941 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2942}
f776d12d 2943
d9588725
RM
2944static inline int __fatal_signal_pending(struct task_struct *p)
2945{
2946 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2947}
f776d12d
MW
2948
2949static inline int fatal_signal_pending(struct task_struct *p)
2950{
2951 return signal_pending(p) && __fatal_signal_pending(p);
2952}
2953
16882c1e
ON
2954static inline int signal_pending_state(long state, struct task_struct *p)
2955{
2956 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2957 return 0;
2958 if (!signal_pending(p))
2959 return 0;
2960
16882c1e
ON
2961 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2962}
2963
1da177e4
LT
2964/*
2965 * cond_resched() and cond_resched_lock(): latency reduction via
2966 * explicit rescheduling in places that are safe. The return
2967 * value indicates whether a reschedule was done in fact.
2968 * cond_resched_lock() will drop the spinlock before scheduling,
2969 * cond_resched_softirq() will enable bhs before scheduling.
2970 */
c3921ab7 2971extern int _cond_resched(void);
6f80bd98 2972
613afbf8 2973#define cond_resched() ({ \
3427445a 2974 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
2975 _cond_resched(); \
2976})
6f80bd98 2977
613afbf8
FW
2978extern int __cond_resched_lock(spinlock_t *lock);
2979
2980#define cond_resched_lock(lock) ({ \
3427445a 2981 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
2982 __cond_resched_lock(lock); \
2983})
2984
2985extern int __cond_resched_softirq(void);
2986
75e1056f 2987#define cond_resched_softirq() ({ \
3427445a 2988 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
75e1056f 2989 __cond_resched_softirq(); \
613afbf8 2990})
1da177e4 2991
f6f3c437
SH
2992static inline void cond_resched_rcu(void)
2993{
2994#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2995 rcu_read_unlock();
2996 cond_resched();
2997 rcu_read_lock();
2998#endif
2999}
3000
1da177e4
LT
3001/*
3002 * Does a critical section need to be broken due to another
95c354fe
NP
3003 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
3004 * but a general need for low latency)
1da177e4 3005 */
95c354fe 3006static inline int spin_needbreak(spinlock_t *lock)
1da177e4 3007{
95c354fe
NP
3008#ifdef CONFIG_PREEMPT
3009 return spin_is_contended(lock);
3010#else
1da177e4 3011 return 0;
95c354fe 3012#endif
1da177e4
LT
3013}
3014
ee761f62
TG
3015/*
3016 * Idle thread specific functions to determine the need_resched
69dd0f84 3017 * polling state.
ee761f62 3018 */
69dd0f84 3019#ifdef TIF_POLLING_NRFLAG
ee761f62
TG
3020static inline int tsk_is_polling(struct task_struct *p)
3021{
3022 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3023}
ea811747
PZ
3024
3025static inline void __current_set_polling(void)
3a98f871
TG
3026{
3027 set_thread_flag(TIF_POLLING_NRFLAG);
3028}
3029
ea811747
PZ
3030static inline bool __must_check current_set_polling_and_test(void)
3031{
3032 __current_set_polling();
3033
3034 /*
3035 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3036 * paired by resched_curr()
ea811747 3037 */
4e857c58 3038 smp_mb__after_atomic();
ea811747
PZ
3039
3040 return unlikely(tif_need_resched());
3041}
3042
3043static inline void __current_clr_polling(void)
3a98f871
TG
3044{
3045 clear_thread_flag(TIF_POLLING_NRFLAG);
3046}
ea811747
PZ
3047
3048static inline bool __must_check current_clr_polling_and_test(void)
3049{
3050 __current_clr_polling();
3051
3052 /*
3053 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3054 * paired by resched_curr()
ea811747 3055 */
4e857c58 3056 smp_mb__after_atomic();
ea811747
PZ
3057
3058 return unlikely(tif_need_resched());
3059}
3060
ee761f62
TG
3061#else
3062static inline int tsk_is_polling(struct task_struct *p) { return 0; }
ea811747
PZ
3063static inline void __current_set_polling(void) { }
3064static inline void __current_clr_polling(void) { }
3065
3066static inline bool __must_check current_set_polling_and_test(void)
3067{
3068 return unlikely(tif_need_resched());
3069}
3070static inline bool __must_check current_clr_polling_and_test(void)
3071{
3072 return unlikely(tif_need_resched());
3073}
ee761f62
TG
3074#endif
3075
8cb75e0c
PZ
3076static inline void current_clr_polling(void)
3077{
3078 __current_clr_polling();
3079
3080 /*
3081 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3082 * Once the bit is cleared, we'll get IPIs with every new
3083 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3084 * fold.
3085 */
8875125e 3086 smp_mb(); /* paired with resched_curr() */
8cb75e0c
PZ
3087
3088 preempt_fold_need_resched();
3089}
3090
75f93fed
PZ
3091static __always_inline bool need_resched(void)
3092{
3093 return unlikely(tif_need_resched());
3094}
3095
f06febc9
FM
3096/*
3097 * Thread group CPU time accounting.
3098 */
4cd4c1b4 3099void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
4da94d49 3100void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
f06febc9 3101
7bb44ade
RM
3102/*
3103 * Reevaluate whether the task has signals pending delivery.
3104 * Wake the task if so.
3105 * This is required every time the blocked sigset_t changes.
3106 * callers must hold sighand->siglock.
3107 */
3108extern void recalc_sigpending_and_wake(struct task_struct *t);
1da177e4
LT
3109extern void recalc_sigpending(void);
3110
910ffdb1
ON
3111extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3112
3113static inline void signal_wake_up(struct task_struct *t, bool resume)
3114{
3115 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3116}
3117static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3118{
3119 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3120}
1da177e4
LT
3121
3122/*
3123 * Wrappers for p->thread_info->cpu access. No-op on UP.
3124 */
3125#ifdef CONFIG_SMP
3126
3127static inline unsigned int task_cpu(const struct task_struct *p)
3128{
a1261f54 3129 return task_thread_info(p)->cpu;
1da177e4
LT
3130}
3131
b32e86b4
IM
3132static inline int task_node(const struct task_struct *p)
3133{
3134 return cpu_to_node(task_cpu(p));
3135}
3136
c65cc870 3137extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
3138
3139#else
3140
3141static inline unsigned int task_cpu(const struct task_struct *p)
3142{
3143 return 0;
3144}
3145
3146static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3147{
3148}
3149
3150#endif /* CONFIG_SMP */
3151
96f874e2
RR
3152extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3153extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 3154
7c941438 3155#ifdef CONFIG_CGROUP_SCHED
07e06b01 3156extern struct task_group root_task_group;
8323f26c 3157#endif /* CONFIG_CGROUP_SCHED */
9b5b7751 3158
54e99124
DG
3159extern int task_can_switch_user(struct user_struct *up,
3160 struct task_struct *tsk);
3161
4b98d11b
AD
3162#ifdef CONFIG_TASK_XACCT
3163static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3164{
940389b8 3165 tsk->ioac.rchar += amt;
4b98d11b
AD
3166}
3167
3168static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3169{
940389b8 3170 tsk->ioac.wchar += amt;
4b98d11b
AD
3171}
3172
3173static inline void inc_syscr(struct task_struct *tsk)
3174{
940389b8 3175 tsk->ioac.syscr++;
4b98d11b
AD
3176}
3177
3178static inline void inc_syscw(struct task_struct *tsk)
3179{
940389b8 3180 tsk->ioac.syscw++;
4b98d11b
AD
3181}
3182#else
3183static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3184{
3185}
3186
3187static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3188{
3189}
3190
3191static inline void inc_syscr(struct task_struct *tsk)
3192{
3193}
3194
3195static inline void inc_syscw(struct task_struct *tsk)
3196{
3197}
3198#endif
3199
82455257
DH
3200#ifndef TASK_SIZE_OF
3201#define TASK_SIZE_OF(tsk) TASK_SIZE
3202#endif
3203
f98bafa0 3204#ifdef CONFIG_MEMCG
cf475ad2 3205extern void mm_update_next_owner(struct mm_struct *mm);
cf475ad2
BS
3206#else
3207static inline void mm_update_next_owner(struct mm_struct *mm)
3208{
3209}
f98bafa0 3210#endif /* CONFIG_MEMCG */
cf475ad2 3211
3e10e716
JS
3212static inline unsigned long task_rlimit(const struct task_struct *tsk,
3213 unsigned int limit)
3214{
316c1608 3215 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3e10e716
JS
3216}
3217
3218static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3219 unsigned int limit)
3220{
316c1608 3221 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3e10e716
JS
3222}
3223
3224static inline unsigned long rlimit(unsigned int limit)
3225{
3226 return task_rlimit(current, limit);
3227}
3228
3229static inline unsigned long rlimit_max(unsigned int limit)
3230{
3231 return task_rlimit_max(current, limit);
3232}
3233
adaf9fcd
RW
3234#ifdef CONFIG_CPU_FREQ
3235struct update_util_data {
3236 void (*func)(struct update_util_data *data,
3237 u64 time, unsigned long util, unsigned long max);
3238};
3239
3240void cpufreq_set_update_util_data(int cpu, struct update_util_data *data);
3241#endif /* CONFIG_CPU_FREQ */
3242
1da177e4 3243#endif