]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - include/linux/sched.h
Merge branch 'sched/urgent' into sched/core, to pick up fixes before applying new...
[mirror_ubuntu-artful-kernel.git] / include / linux / sched.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
607ca46e 4#include <uapi/linux/sched.h>
b7b3c76a 5
5c228079
DY
6#include <linux/sched/prio.h>
7
b7b3c76a
DW
8
9struct sched_param {
10 int sched_priority;
11};
12
1da177e4
LT
13#include <asm/param.h> /* for HZ */
14
1da177e4
LT
15#include <linux/capability.h>
16#include <linux/threads.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/timex.h>
20#include <linux/jiffies.h>
fb00aca4 21#include <linux/plist.h>
1da177e4
LT
22#include <linux/rbtree.h>
23#include <linux/thread_info.h>
24#include <linux/cpumask.h>
25#include <linux/errno.h>
26#include <linux/nodemask.h>
c92ff1bd 27#include <linux/mm_types.h>
92cf2118 28#include <linux/preempt.h>
1da177e4 29
1da177e4
LT
30#include <asm/page.h>
31#include <asm/ptrace.h>
bfc3f028 32#include <linux/cputime.h>
1da177e4
LT
33
34#include <linux/smp.h>
35#include <linux/sem.h>
ab602f79 36#include <linux/shm.h>
1da177e4 37#include <linux/signal.h>
1da177e4
LT
38#include <linux/compiler.h>
39#include <linux/completion.h>
40#include <linux/pid.h>
41#include <linux/percpu.h>
42#include <linux/topology.h>
3e26c149 43#include <linux/proportions.h>
1da177e4 44#include <linux/seccomp.h>
e56d0903 45#include <linux/rcupdate.h>
05725f7e 46#include <linux/rculist.h>
23f78d4a 47#include <linux/rtmutex.h>
1da177e4 48
a3b6714e
DW
49#include <linux/time.h>
50#include <linux/param.h>
51#include <linux/resource.h>
52#include <linux/timer.h>
53#include <linux/hrtimer.h>
7c3ab738 54#include <linux/task_io_accounting.h>
9745512c 55#include <linux/latencytop.h>
9e2b2dc4 56#include <linux/cred.h>
fa14ff4a 57#include <linux/llist.h>
7b44ab97 58#include <linux/uidgid.h>
21caf2fc 59#include <linux/gfp.h>
d4311ff1 60#include <linux/magic.h>
7d7efec3 61#include <linux/cgroup-defs.h>
a3b6714e
DW
62
63#include <asm/processor.h>
36d57ac4 64
d50dde5a
DF
65#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
66
67/*
68 * Extended scheduling parameters data structure.
69 *
70 * This is needed because the original struct sched_param can not be
71 * altered without introducing ABI issues with legacy applications
72 * (e.g., in sched_getparam()).
73 *
74 * However, the possibility of specifying more than just a priority for
75 * the tasks may be useful for a wide variety of application fields, e.g.,
76 * multimedia, streaming, automation and control, and many others.
77 *
78 * This variant (sched_attr) is meant at describing a so-called
79 * sporadic time-constrained task. In such model a task is specified by:
80 * - the activation period or minimum instance inter-arrival time;
81 * - the maximum (or average, depending on the actual scheduling
82 * discipline) computation time of all instances, a.k.a. runtime;
83 * - the deadline (relative to the actual activation time) of each
84 * instance.
85 * Very briefly, a periodic (sporadic) task asks for the execution of
86 * some specific computation --which is typically called an instance--
87 * (at most) every period. Moreover, each instance typically lasts no more
88 * than the runtime and must be completed by time instant t equal to
89 * the instance activation time + the deadline.
90 *
91 * This is reflected by the actual fields of the sched_attr structure:
92 *
93 * @size size of the structure, for fwd/bwd compat.
94 *
95 * @sched_policy task's scheduling policy
96 * @sched_flags for customizing the scheduler behaviour
97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
98 * @sched_priority task's static priority (SCHED_FIFO/RR)
99 * @sched_deadline representative of the task's deadline
100 * @sched_runtime representative of the task's runtime
101 * @sched_period representative of the task's period
102 *
103 * Given this task model, there are a multiplicity of scheduling algorithms
104 * and policies, that can be used to ensure all the tasks will make their
105 * timing constraints.
aab03e05
DF
106 *
107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108 * only user of this new interface. More information about the algorithm
109 * available in the scheduling class file or in Documentation/.
d50dde5a
DF
110 */
111struct sched_attr {
112 u32 size;
113
114 u32 sched_policy;
115 u64 sched_flags;
116
117 /* SCHED_NORMAL, SCHED_BATCH */
118 s32 sched_nice;
119
120 /* SCHED_FIFO, SCHED_RR */
121 u32 sched_priority;
122
123 /* SCHED_DEADLINE */
124 u64 sched_runtime;
125 u64 sched_deadline;
126 u64 sched_period;
127};
128
c87e2837 129struct futex_pi_state;
286100a6 130struct robust_list_head;
bddd87c7 131struct bio_list;
5ad4e53b 132struct fs_struct;
cdd6c482 133struct perf_event_context;
73c10101 134struct blk_plug;
c4ad8f98 135struct filename;
89076bc3 136struct nameidata;
1da177e4 137
615d6e87
DB
138#define VMACACHE_BITS 2
139#define VMACACHE_SIZE (1U << VMACACHE_BITS)
140#define VMACACHE_MASK (VMACACHE_SIZE - 1)
141
1da177e4
LT
142/*
143 * These are the constant used to fake the fixed-point load-average
144 * counting. Some notes:
145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
146 * a load-average precision of 10 bits integer + 11 bits fractional
147 * - if you want to count load-averages more often, you need more
148 * precision, or rounding will get you. With 2-second counting freq,
149 * the EXP_n values would be 1981, 2034 and 2043 if still using only
150 * 11 bit fractions.
151 */
152extern unsigned long avenrun[]; /* Load averages */
2d02494f 153extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
1da177e4
LT
154
155#define FSHIFT 11 /* nr of bits of precision */
156#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
0c2043ab 157#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
1da177e4
LT
158#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
159#define EXP_5 2014 /* 1/exp(5sec/5min) */
160#define EXP_15 2037 /* 1/exp(5sec/15min) */
161
162#define CALC_LOAD(load,exp,n) \
163 load *= exp; \
164 load += n*(FIXED_1-exp); \
165 load >>= FSHIFT;
166
167extern unsigned long total_forks;
168extern int nr_threads;
1da177e4
LT
169DECLARE_PER_CPU(unsigned long, process_counts);
170extern int nr_processes(void);
171extern unsigned long nr_running(void);
2ee507c4 172extern bool single_task_running(void);
1da177e4 173extern unsigned long nr_iowait(void);
8c215bd3 174extern unsigned long nr_iowait_cpu(int cpu);
372ba8cb 175extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
69d25870 176
0f004f5a 177extern void calc_global_load(unsigned long ticks);
3289bdb4
PZ
178
179#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
5aaa0b7a 180extern void update_cpu_load_nohz(void);
3289bdb4
PZ
181#else
182static inline void update_cpu_load_nohz(void) { }
183#endif
1da177e4 184
7e49fcce
SR
185extern unsigned long get_parent_ip(unsigned long addr);
186
b637a328
PM
187extern void dump_cpu_task(int cpu);
188
43ae34cb
IM
189struct seq_file;
190struct cfs_rq;
4cf86d77 191struct task_group;
43ae34cb
IM
192#ifdef CONFIG_SCHED_DEBUG
193extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
194extern void proc_sched_set_task(struct task_struct *p);
43ae34cb 195#endif
1da177e4 196
4a8342d2
LT
197/*
198 * Task state bitmask. NOTE! These bits are also
199 * encoded in fs/proc/array.c: get_task_state().
200 *
201 * We have two separate sets of flags: task->state
202 * is about runnability, while task->exit_state are
203 * about the task exiting. Confusing, but this way
204 * modifying one set can't modify the other one by
205 * mistake.
206 */
1da177e4
LT
207#define TASK_RUNNING 0
208#define TASK_INTERRUPTIBLE 1
209#define TASK_UNINTERRUPTIBLE 2
f021a3c2
MW
210#define __TASK_STOPPED 4
211#define __TASK_TRACED 8
4a8342d2 212/* in tsk->exit_state */
ad86622b
ON
213#define EXIT_DEAD 16
214#define EXIT_ZOMBIE 32
abd50b39 215#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
4a8342d2 216/* in tsk->state again */
af927232 217#define TASK_DEAD 64
f021a3c2 218#define TASK_WAKEKILL 128
e9c84311 219#define TASK_WAKING 256
f2530dc7 220#define TASK_PARKED 512
80ed87c8
PZ
221#define TASK_NOLOAD 1024
222#define TASK_STATE_MAX 2048
f021a3c2 223
80ed87c8 224#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN"
73342151 225
e1781538
PZ
226extern char ___assert_task_state[1 - 2*!!(
227 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
f021a3c2
MW
228
229/* Convenience macros for the sake of set_task_state */
230#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
231#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
232#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
1da177e4 233
80ed87c8
PZ
234#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
235
92a1f4bc
MW
236/* Convenience macros for the sake of wake_up */
237#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
f021a3c2 238#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
92a1f4bc
MW
239
240/* get_task_state() */
241#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
f021a3c2 242 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
74e37200 243 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
92a1f4bc 244
f021a3c2
MW
245#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
246#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
92a1f4bc 247#define task_is_stopped_or_traced(task) \
f021a3c2 248 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
92a1f4bc 249#define task_contributes_to_load(task) \
e3c8ca83 250 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
80ed87c8
PZ
251 (task->flags & PF_FROZEN) == 0 && \
252 (task->state & TASK_NOLOAD) == 0)
1da177e4 253
8eb23b9f
PZ
254#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
255
256#define __set_task_state(tsk, state_value) \
257 do { \
258 (tsk)->task_state_change = _THIS_IP_; \
259 (tsk)->state = (state_value); \
260 } while (0)
261#define set_task_state(tsk, state_value) \
262 do { \
263 (tsk)->task_state_change = _THIS_IP_; \
b92b8b35 264 smp_store_mb((tsk)->state, (state_value)); \
8eb23b9f
PZ
265 } while (0)
266
267/*
268 * set_current_state() includes a barrier so that the write of current->state
269 * is correctly serialised wrt the caller's subsequent test of whether to
270 * actually sleep:
271 *
272 * set_current_state(TASK_UNINTERRUPTIBLE);
273 * if (do_i_need_to_sleep())
274 * schedule();
275 *
276 * If the caller does not need such serialisation then use __set_current_state()
277 */
278#define __set_current_state(state_value) \
279 do { \
280 current->task_state_change = _THIS_IP_; \
281 current->state = (state_value); \
282 } while (0)
283#define set_current_state(state_value) \
284 do { \
285 current->task_state_change = _THIS_IP_; \
b92b8b35 286 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
287 } while (0)
288
289#else
290
1da177e4
LT
291#define __set_task_state(tsk, state_value) \
292 do { (tsk)->state = (state_value); } while (0)
293#define set_task_state(tsk, state_value) \
b92b8b35 294 smp_store_mb((tsk)->state, (state_value))
1da177e4 295
498d0c57
AM
296/*
297 * set_current_state() includes a barrier so that the write of current->state
298 * is correctly serialised wrt the caller's subsequent test of whether to
299 * actually sleep:
300 *
301 * set_current_state(TASK_UNINTERRUPTIBLE);
302 * if (do_i_need_to_sleep())
303 * schedule();
304 *
305 * If the caller does not need such serialisation then use __set_current_state()
306 */
8eb23b9f 307#define __set_current_state(state_value) \
1da177e4 308 do { current->state = (state_value); } while (0)
8eb23b9f 309#define set_current_state(state_value) \
b92b8b35 310 smp_store_mb(current->state, (state_value))
1da177e4 311
8eb23b9f
PZ
312#endif
313
1da177e4
LT
314/* Task command name length */
315#define TASK_COMM_LEN 16
316
1da177e4
LT
317#include <linux/spinlock.h>
318
319/*
320 * This serializes "schedule()" and also protects
321 * the run-queue from deletions/modifications (but
322 * _adding_ to the beginning of the run-queue has
323 * a separate lock).
324 */
325extern rwlock_t tasklist_lock;
326extern spinlock_t mmlist_lock;
327
36c8b586 328struct task_struct;
1da177e4 329
db1466b3
PM
330#ifdef CONFIG_PROVE_RCU
331extern int lockdep_tasklist_lock_is_held(void);
332#endif /* #ifdef CONFIG_PROVE_RCU */
333
1da177e4
LT
334extern void sched_init(void);
335extern void sched_init_smp(void);
2d07b255 336extern asmlinkage void schedule_tail(struct task_struct *prev);
36c8b586 337extern void init_idle(struct task_struct *idle, int cpu);
1df21055 338extern void init_idle_bootup_task(struct task_struct *idle);
1da177e4 339
3fa0818b
RR
340extern cpumask_var_t cpu_isolated_map;
341
89f19f04 342extern int runqueue_is_locked(int cpu);
017730c1 343
3451d024 344#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
c1cc017c 345extern void nohz_balance_enter_idle(int cpu);
69e1e811 346extern void set_cpu_sd_state_idle(void);
bc7a34b8 347extern int get_nohz_timer_target(void);
46cb4b7c 348#else
c1cc017c 349static inline void nohz_balance_enter_idle(int cpu) { }
fdaabd80 350static inline void set_cpu_sd_state_idle(void) { }
46cb4b7c 351#endif
1da177e4 352
e59e2ae2 353/*
39bc89fd 354 * Only dump TASK_* tasks. (0 for all tasks)
e59e2ae2
IM
355 */
356extern void show_state_filter(unsigned long state_filter);
357
358static inline void show_state(void)
359{
39bc89fd 360 show_state_filter(0);
e59e2ae2
IM
361}
362
1da177e4
LT
363extern void show_regs(struct pt_regs *);
364
365/*
366 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
367 * task), SP is the stack pointer of the first frame that should be shown in the back
368 * trace (or NULL if the entire call-chain of the task should be shown).
369 */
370extern void show_stack(struct task_struct *task, unsigned long *sp);
371
1da177e4
LT
372extern void cpu_init (void);
373extern void trap_init(void);
374extern void update_process_times(int user);
375extern void scheduler_tick(void);
376
82a1fcb9
IM
377extern void sched_show_task(struct task_struct *p);
378
19cc36c0 379#ifdef CONFIG_LOCKUP_DETECTOR
8446f1d3 380extern void touch_softlockup_watchdog(void);
d6ad3e28 381extern void touch_softlockup_watchdog_sync(void);
04c9167f 382extern void touch_all_softlockup_watchdogs(void);
332fbdbc
DZ
383extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
384 void __user *buffer,
385 size_t *lenp, loff_t *ppos);
9c44bc03 386extern unsigned int softlockup_panic;
004417a6 387void lockup_detector_init(void);
8446f1d3 388#else
8446f1d3
IM
389static inline void touch_softlockup_watchdog(void)
390{
391}
d6ad3e28
JW
392static inline void touch_softlockup_watchdog_sync(void)
393{
394}
04c9167f
JF
395static inline void touch_all_softlockup_watchdogs(void)
396{
397}
004417a6
PZ
398static inline void lockup_detector_init(void)
399{
400}
8446f1d3
IM
401#endif
402
8b414521
MT
403#ifdef CONFIG_DETECT_HUNG_TASK
404void reset_hung_task_detector(void);
405#else
406static inline void reset_hung_task_detector(void)
407{
408}
409#endif
410
1da177e4
LT
411/* Attach to any functions which should be ignored in wchan output. */
412#define __sched __attribute__((__section__(".sched.text")))
deaf2227
IM
413
414/* Linker adds these: start and end of __sched functions */
415extern char __sched_text_start[], __sched_text_end[];
416
1da177e4
LT
417/* Is this address in the __sched functions? */
418extern int in_sched_functions(unsigned long addr);
419
420#define MAX_SCHEDULE_TIMEOUT LONG_MAX
b3c97528 421extern signed long schedule_timeout(signed long timeout);
64ed93a2 422extern signed long schedule_timeout_interruptible(signed long timeout);
294d5cc2 423extern signed long schedule_timeout_killable(signed long timeout);
64ed93a2 424extern signed long schedule_timeout_uninterruptible(signed long timeout);
1da177e4 425asmlinkage void schedule(void);
c5491ea7 426extern void schedule_preempt_disabled(void);
1da177e4 427
9cff8ade
N
428extern long io_schedule_timeout(long timeout);
429
430static inline void io_schedule(void)
431{
432 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
433}
434
ab516013 435struct nsproxy;
acce292c 436struct user_namespace;
1da177e4 437
efc1a3b1
DH
438#ifdef CONFIG_MMU
439extern void arch_pick_mmap_layout(struct mm_struct *mm);
1da177e4
LT
440extern unsigned long
441arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
442 unsigned long, unsigned long);
443extern unsigned long
444arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
445 unsigned long len, unsigned long pgoff,
446 unsigned long flags);
efc1a3b1
DH
447#else
448static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
449#endif
1da177e4 450
d049f74f
KC
451#define SUID_DUMP_DISABLE 0 /* No setuid dumping */
452#define SUID_DUMP_USER 1 /* Dump as user of process */
453#define SUID_DUMP_ROOT 2 /* Dump as root */
454
6c5d5238 455/* mm flags */
f8af4da3 456
7288e118 457/* for SUID_DUMP_* above */
3cb4a0bb 458#define MMF_DUMPABLE_BITS 2
f8af4da3 459#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
3cb4a0bb 460
942be387
ON
461extern void set_dumpable(struct mm_struct *mm, int value);
462/*
463 * This returns the actual value of the suid_dumpable flag. For things
464 * that are using this for checking for privilege transitions, it must
465 * test against SUID_DUMP_USER rather than treating it as a boolean
466 * value.
467 */
468static inline int __get_dumpable(unsigned long mm_flags)
469{
470 return mm_flags & MMF_DUMPABLE_MASK;
471}
472
473static inline int get_dumpable(struct mm_struct *mm)
474{
475 return __get_dumpable(mm->flags);
476}
477
3cb4a0bb
KH
478/* coredump filter bits */
479#define MMF_DUMP_ANON_PRIVATE 2
480#define MMF_DUMP_ANON_SHARED 3
481#define MMF_DUMP_MAPPED_PRIVATE 4
482#define MMF_DUMP_MAPPED_SHARED 5
82df3973 483#define MMF_DUMP_ELF_HEADERS 6
e575f111
KM
484#define MMF_DUMP_HUGETLB_PRIVATE 7
485#define MMF_DUMP_HUGETLB_SHARED 8
f8af4da3 486
3cb4a0bb 487#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
e575f111 488#define MMF_DUMP_FILTER_BITS 7
3cb4a0bb
KH
489#define MMF_DUMP_FILTER_MASK \
490 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
491#define MMF_DUMP_FILTER_DEFAULT \
e575f111 492 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
656eb2cd
RM
493 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
494
495#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
496# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
497#else
498# define MMF_DUMP_MASK_DEFAULT_ELF 0
499#endif
f8af4da3
HD
500 /* leave room for more dump flags */
501#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
ba76149f 502#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
bafb282d 503#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
f8af4da3 504
9f68f672
ON
505#define MMF_HAS_UPROBES 19 /* has uprobes */
506#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
f8ac4ec9 507
f8af4da3 508#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
6c5d5238 509
1da177e4
LT
510struct sighand_struct {
511 atomic_t count;
512 struct k_sigaction action[_NSIG];
513 spinlock_t siglock;
b8fceee1 514 wait_queue_head_t signalfd_wqh;
1da177e4
LT
515};
516
0e464814 517struct pacct_struct {
f6ec29a4
KK
518 int ac_flag;
519 long ac_exitcode;
0e464814 520 unsigned long ac_mem;
77787bfb
KK
521 cputime_t ac_utime, ac_stime;
522 unsigned long ac_minflt, ac_majflt;
0e464814
KK
523};
524
42c4ab41
SG
525struct cpu_itimer {
526 cputime_t expires;
527 cputime_t incr;
8356b5f9
SG
528 u32 error;
529 u32 incr_error;
42c4ab41
SG
530};
531
d37f761d 532/**
9d7fb042 533 * struct prev_cputime - snaphsot of system and user cputime
d37f761d
FW
534 * @utime: time spent in user mode
535 * @stime: time spent in system mode
9d7fb042 536 * @lock: protects the above two fields
d37f761d 537 *
9d7fb042
PZ
538 * Stores previous user/system time values such that we can guarantee
539 * monotonicity.
d37f761d 540 */
9d7fb042
PZ
541struct prev_cputime {
542#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
d37f761d
FW
543 cputime_t utime;
544 cputime_t stime;
9d7fb042
PZ
545 raw_spinlock_t lock;
546#endif
d37f761d
FW
547};
548
9d7fb042
PZ
549static inline void prev_cputime_init(struct prev_cputime *prev)
550{
551#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
552 prev->utime = prev->stime = 0;
553 raw_spin_lock_init(&prev->lock);
554#endif
555}
556
f06febc9
FM
557/**
558 * struct task_cputime - collected CPU time counts
559 * @utime: time spent in user mode, in &cputime_t units
560 * @stime: time spent in kernel mode, in &cputime_t units
561 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 562 *
9d7fb042
PZ
563 * This structure groups together three kinds of CPU time that are tracked for
564 * threads and thread groups. Most things considering CPU time want to group
565 * these counts together and treat all three of them in parallel.
f06febc9
FM
566 */
567struct task_cputime {
568 cputime_t utime;
569 cputime_t stime;
570 unsigned long long sum_exec_runtime;
571};
9d7fb042 572
f06febc9 573/* Alternate field names when used to cache expirations. */
f06febc9 574#define virt_exp utime
9d7fb042 575#define prof_exp stime
f06febc9
FM
576#define sched_exp sum_exec_runtime
577
4cd4c1b4
PZ
578#define INIT_CPUTIME \
579 (struct task_cputime) { \
64861634
MS
580 .utime = 0, \
581 .stime = 0, \
4cd4c1b4
PZ
582 .sum_exec_runtime = 0, \
583 }
584
971e8a98
JL
585/*
586 * This is the atomic variant of task_cputime, which can be used for
587 * storing and updating task_cputime statistics without locking.
588 */
589struct task_cputime_atomic {
590 atomic64_t utime;
591 atomic64_t stime;
592 atomic64_t sum_exec_runtime;
593};
594
595#define INIT_CPUTIME_ATOMIC \
596 (struct task_cputime_atomic) { \
597 .utime = ATOMIC64_INIT(0), \
598 .stime = ATOMIC64_INIT(0), \
599 .sum_exec_runtime = ATOMIC64_INIT(0), \
600 }
601
a233f112
PZ
602#ifdef CONFIG_PREEMPT_COUNT
603#define PREEMPT_DISABLED (1 + PREEMPT_ENABLED)
604#else
605#define PREEMPT_DISABLED PREEMPT_ENABLED
606#endif
607
c99e6efe
PZ
608/*
609 * Disable preemption until the scheduler is running.
610 * Reset by start_kernel()->sched_init()->init_idle().
d86ee480
PZ
611 *
612 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
613 * before the scheduler is active -- see should_resched().
c99e6efe 614 */
a233f112 615#define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE)
c99e6efe 616
f06febc9 617/**
4cd4c1b4 618 * struct thread_group_cputimer - thread group interval timer counts
920ce39f 619 * @cputime_atomic: atomic thread group interval timers.
4cd4c1b4
PZ
620 * @running: non-zero when there are timers running and
621 * @cputime receives updates.
f06febc9
FM
622 *
623 * This structure contains the version of task_cputime, above, that is
4cd4c1b4 624 * used for thread group CPU timer calculations.
f06febc9 625 */
4cd4c1b4 626struct thread_group_cputimer {
71107445 627 struct task_cputime_atomic cputime_atomic;
4cd4c1b4 628 int running;
f06febc9 629};
f06febc9 630
4714d1d3 631#include <linux/rwsem.h>
5091faa4
MG
632struct autogroup;
633
1da177e4 634/*
e815f0a8 635 * NOTE! "signal_struct" does not have its own
1da177e4
LT
636 * locking, because a shared signal_struct always
637 * implies a shared sighand_struct, so locking
638 * sighand_struct is always a proper superset of
639 * the locking of signal_struct.
640 */
641struct signal_struct {
ea6d290c 642 atomic_t sigcnt;
1da177e4 643 atomic_t live;
b3ac022c 644 int nr_threads;
0c740d0a 645 struct list_head thread_head;
1da177e4
LT
646
647 wait_queue_head_t wait_chldexit; /* for wait4() */
648
649 /* current thread group signal load-balancing target: */
36c8b586 650 struct task_struct *curr_target;
1da177e4
LT
651
652 /* shared signal handling: */
653 struct sigpending shared_pending;
654
655 /* thread group exit support */
656 int group_exit_code;
657 /* overloaded:
658 * - notify group_exit_task when ->count is equal to notify_count
659 * - everyone except group_exit_task is stopped during signal delivery
660 * of fatal signals, group_exit_task processes the signal.
661 */
1da177e4 662 int notify_count;
07dd20e0 663 struct task_struct *group_exit_task;
1da177e4
LT
664
665 /* thread group stop support, overloads group_exit_code too */
666 int group_stop_count;
667 unsigned int flags; /* see SIGNAL_* flags below */
668
ebec18a6
LP
669 /*
670 * PR_SET_CHILD_SUBREAPER marks a process, like a service
671 * manager, to re-parent orphan (double-forking) child processes
672 * to this process instead of 'init'. The service manager is
673 * able to receive SIGCHLD signals and is able to investigate
674 * the process until it calls wait(). All children of this
675 * process will inherit a flag if they should look for a
676 * child_subreaper process at exit.
677 */
678 unsigned int is_child_subreaper:1;
679 unsigned int has_child_subreaper:1;
680
1da177e4 681 /* POSIX.1b Interval Timers */
5ed67f05
PE
682 int posix_timer_id;
683 struct list_head posix_timers;
1da177e4
LT
684
685 /* ITIMER_REAL timer for the process */
2ff678b8 686 struct hrtimer real_timer;
fea9d175 687 struct pid *leader_pid;
2ff678b8 688 ktime_t it_real_incr;
1da177e4 689
42c4ab41
SG
690 /*
691 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
692 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
693 * values are defined to 0 and 1 respectively
694 */
695 struct cpu_itimer it[2];
1da177e4 696
f06febc9 697 /*
4cd4c1b4
PZ
698 * Thread group totals for process CPU timers.
699 * See thread_group_cputimer(), et al, for details.
f06febc9 700 */
4cd4c1b4 701 struct thread_group_cputimer cputimer;
f06febc9
FM
702
703 /* Earliest-expiration cache. */
704 struct task_cputime cputime_expires;
705
706 struct list_head cpu_timers[3];
707
ab521dc0 708 struct pid *tty_old_pgrp;
1ec320af 709
1da177e4
LT
710 /* boolean value for session group leader */
711 int leader;
712
713 struct tty_struct *tty; /* NULL if no tty */
714
5091faa4
MG
715#ifdef CONFIG_SCHED_AUTOGROUP
716 struct autogroup *autogroup;
717#endif
1da177e4
LT
718 /*
719 * Cumulative resource counters for dead threads in the group,
720 * and for reaped dead child processes forked by this group.
721 * Live threads maintain their own counters and add to these
722 * in __exit_signal, except for the group leader.
723 */
e78c3496 724 seqlock_t stats_lock;
32bd671d 725 cputime_t utime, stime, cutime, cstime;
9ac52315
LV
726 cputime_t gtime;
727 cputime_t cgtime;
9d7fb042 728 struct prev_cputime prev_cputime;
1da177e4
LT
729 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
730 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
6eaeeaba 731 unsigned long inblock, oublock, cinblock, coublock;
1f10206c 732 unsigned long maxrss, cmaxrss;
940389b8 733 struct task_io_accounting ioac;
1da177e4 734
32bd671d
PZ
735 /*
736 * Cumulative ns of schedule CPU time fo dead threads in the
737 * group, not including a zombie group leader, (This only differs
738 * from jiffies_to_ns(utime + stime) if sched_clock uses something
739 * other than jiffies.)
740 */
741 unsigned long long sum_sched_runtime;
742
1da177e4
LT
743 /*
744 * We don't bother to synchronize most readers of this at all,
745 * because there is no reader checking a limit that actually needs
746 * to get both rlim_cur and rlim_max atomically, and either one
747 * alone is a single word that can safely be read normally.
748 * getrlimit/setrlimit use task_lock(current->group_leader) to
749 * protect this instead of the siglock, because they really
750 * have no need to disable irqs.
751 */
752 struct rlimit rlim[RLIM_NLIMITS];
753
0e464814
KK
754#ifdef CONFIG_BSD_PROCESS_ACCT
755 struct pacct_struct pacct; /* per-process accounting information */
756#endif
ad4ecbcb 757#ifdef CONFIG_TASKSTATS
ad4ecbcb
SN
758 struct taskstats *stats;
759#endif
522ed776
MT
760#ifdef CONFIG_AUDIT
761 unsigned audit_tty;
46e959ea 762 unsigned audit_tty_log_passwd;
522ed776
MT
763 struct tty_audit_buf *tty_audit_buf;
764#endif
0c986253
TH
765#ifdef CONFIG_CGROUPS
766 /*
767 * group_rwsem prevents new tasks from entering the threadgroup and
768 * member tasks from exiting,a more specifically, setting of
769 * PF_EXITING. fork and exit paths are protected with this rwsem
770 * using threadgroup_change_begin/end(). Users which require
771 * threadgroup to remain stable should use threadgroup_[un]lock()
772 * which also takes care of exec path. Currently, cgroup is the
773 * only user.
774 */
775 struct rw_semaphore group_rwsem;
776#endif
28b83c51 777
e1e12d2f 778 oom_flags_t oom_flags;
a9c58b90
DR
779 short oom_score_adj; /* OOM kill score adjustment */
780 short oom_score_adj_min; /* OOM kill score adjustment min value.
781 * Only settable by CAP_SYS_RESOURCE. */
9b1bf12d
KM
782
783 struct mutex cred_guard_mutex; /* guard against foreign influences on
784 * credential calculations
785 * (notably. ptrace) */
1da177e4
LT
786};
787
788/*
789 * Bits in flags field of signal_struct.
790 */
791#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
ee77f075
ON
792#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
793#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
403bad72 794#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
e4420551
ON
795/*
796 * Pending notifications to parent.
797 */
798#define SIGNAL_CLD_STOPPED 0x00000010
799#define SIGNAL_CLD_CONTINUED 0x00000020
800#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
1da177e4 801
fae5fa44
ON
802#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
803
ed5d2cac
ON
804/* If true, all threads except ->group_exit_task have pending SIGKILL */
805static inline int signal_group_exit(const struct signal_struct *sig)
806{
807 return (sig->flags & SIGNAL_GROUP_EXIT) ||
808 (sig->group_exit_task != NULL);
809}
810
1da177e4
LT
811/*
812 * Some day this will be a full-fledged user tracking system..
813 */
814struct user_struct {
815 atomic_t __count; /* reference count */
816 atomic_t processes; /* How many processes does this user have? */
1da177e4 817 atomic_t sigpending; /* How many pending signals does this user have? */
2d9048e2 818#ifdef CONFIG_INOTIFY_USER
0eeca283
RL
819 atomic_t inotify_watches; /* How many inotify watches does this user have? */
820 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
821#endif
4afeff85
EP
822#ifdef CONFIG_FANOTIFY
823 atomic_t fanotify_listeners;
824#endif
7ef9964e 825#ifdef CONFIG_EPOLL
52bd19f7 826 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
7ef9964e 827#endif
970a8645 828#ifdef CONFIG_POSIX_MQUEUE
1da177e4
LT
829 /* protected by mq_lock */
830 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
970a8645 831#endif
1da177e4
LT
832 unsigned long locked_shm; /* How many pages of mlocked shm ? */
833
834#ifdef CONFIG_KEYS
835 struct key *uid_keyring; /* UID specific keyring */
836 struct key *session_keyring; /* UID's default session keyring */
837#endif
838
839 /* Hash table maintenance information */
735de223 840 struct hlist_node uidhash_node;
7b44ab97 841 kuid_t uid;
24e377a8 842
cdd6c482 843#ifdef CONFIG_PERF_EVENTS
789f90fc
PZ
844 atomic_long_t locked_vm;
845#endif
1da177e4
LT
846};
847
eb41d946 848extern int uids_sysfs_init(void);
5cb350ba 849
7b44ab97 850extern struct user_struct *find_user(kuid_t);
1da177e4
LT
851
852extern struct user_struct root_user;
853#define INIT_USER (&root_user)
854
b6dff3ec 855
1da177e4
LT
856struct backing_dev_info;
857struct reclaim_state;
858
f6db8347 859#ifdef CONFIG_SCHED_INFO
1da177e4
LT
860struct sched_info {
861 /* cumulative counters */
2d72376b 862 unsigned long pcount; /* # of times run on this cpu */
9c2c4802 863 unsigned long long run_delay; /* time spent waiting on a runqueue */
1da177e4
LT
864
865 /* timestamps */
172ba844
BS
866 unsigned long long last_arrival,/* when we last ran on a cpu */
867 last_queued; /* when we were last queued to run */
1da177e4 868};
f6db8347 869#endif /* CONFIG_SCHED_INFO */
1da177e4 870
ca74e92b
SN
871#ifdef CONFIG_TASK_DELAY_ACCT
872struct task_delay_info {
873 spinlock_t lock;
874 unsigned int flags; /* Private per-task flags */
875
876 /* For each stat XXX, add following, aligned appropriately
877 *
878 * struct timespec XXX_start, XXX_end;
879 * u64 XXX_delay;
880 * u32 XXX_count;
881 *
882 * Atomicity of updates to XXX_delay, XXX_count protected by
883 * single lock above (split into XXX_lock if contention is an issue).
884 */
0ff92245
SN
885
886 /*
887 * XXX_count is incremented on every XXX operation, the delay
888 * associated with the operation is added to XXX_delay.
889 * XXX_delay contains the accumulated delay time in nanoseconds.
890 */
9667a23d 891 u64 blkio_start; /* Shared by blkio, swapin */
0ff92245
SN
892 u64 blkio_delay; /* wait for sync block io completion */
893 u64 swapin_delay; /* wait for swapin block io completion */
894 u32 blkio_count; /* total count of the number of sync block */
895 /* io operations performed */
896 u32 swapin_count; /* total count of the number of swapin block */
897 /* io operations performed */
873b4771 898
9667a23d 899 u64 freepages_start;
873b4771
KK
900 u64 freepages_delay; /* wait for memory reclaim */
901 u32 freepages_count; /* total count of memory reclaim */
ca74e92b 902};
52f17b6c
CS
903#endif /* CONFIG_TASK_DELAY_ACCT */
904
905static inline int sched_info_on(void)
906{
907#ifdef CONFIG_SCHEDSTATS
908 return 1;
909#elif defined(CONFIG_TASK_DELAY_ACCT)
910 extern int delayacct_on;
911 return delayacct_on;
912#else
913 return 0;
ca74e92b 914#endif
52f17b6c 915}
ca74e92b 916
d15bcfdb
IM
917enum cpu_idle_type {
918 CPU_IDLE,
919 CPU_NOT_IDLE,
920 CPU_NEWLY_IDLE,
921 CPU_MAX_IDLE_TYPES
1da177e4
LT
922};
923
1399fa78 924/*
ca8ce3d0 925 * Increase resolution of cpu_capacity calculations
1399fa78 926 */
ca8ce3d0
NP
927#define SCHED_CAPACITY_SHIFT 10
928#define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
1da177e4 929
76751049
PZ
930/*
931 * Wake-queues are lists of tasks with a pending wakeup, whose
932 * callers have already marked the task as woken internally,
933 * and can thus carry on. A common use case is being able to
934 * do the wakeups once the corresponding user lock as been
935 * released.
936 *
937 * We hold reference to each task in the list across the wakeup,
938 * thus guaranteeing that the memory is still valid by the time
939 * the actual wakeups are performed in wake_up_q().
940 *
941 * One per task suffices, because there's never a need for a task to be
942 * in two wake queues simultaneously; it is forbidden to abandon a task
943 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
944 * already in a wake queue, the wakeup will happen soon and the second
945 * waker can just skip it.
946 *
947 * The WAKE_Q macro declares and initializes the list head.
948 * wake_up_q() does NOT reinitialize the list; it's expected to be
949 * called near the end of a function, where the fact that the queue is
950 * not used again will be easy to see by inspection.
951 *
952 * Note that this can cause spurious wakeups. schedule() callers
953 * must ensure the call is done inside a loop, confirming that the
954 * wakeup condition has in fact occurred.
955 */
956struct wake_q_node {
957 struct wake_q_node *next;
958};
959
960struct wake_q_head {
961 struct wake_q_node *first;
962 struct wake_q_node **lastp;
963};
964
965#define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
966
967#define WAKE_Q(name) \
968 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
969
970extern void wake_q_add(struct wake_q_head *head,
971 struct task_struct *task);
972extern void wake_up_q(struct wake_q_head *head);
973
1399fa78
NR
974/*
975 * sched-domains (multiprocessor balancing) declarations:
976 */
2dd73a4f 977#ifdef CONFIG_SMP
b5d978e0
PZ
978#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
979#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
980#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
981#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
c88d5910 982#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
b5d978e0 983#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
5d4dfddd 984#define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
d77b3ed5 985#define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
b5d978e0
PZ
986#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
987#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
532cb4c4 988#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
b5d978e0 989#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
e3589f6c 990#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
3a7053b3 991#define SD_NUMA 0x4000 /* cross-node balancing */
5c45bf27 992
143e1e28 993#ifdef CONFIG_SCHED_SMT
b6220ad6 994static inline int cpu_smt_flags(void)
143e1e28 995{
5d4dfddd 996 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
143e1e28
VG
997}
998#endif
999
1000#ifdef CONFIG_SCHED_MC
b6220ad6 1001static inline int cpu_core_flags(void)
143e1e28
VG
1002{
1003 return SD_SHARE_PKG_RESOURCES;
1004}
1005#endif
1006
1007#ifdef CONFIG_NUMA
b6220ad6 1008static inline int cpu_numa_flags(void)
143e1e28
VG
1009{
1010 return SD_NUMA;
1011}
1012#endif
532cb4c4 1013
1d3504fc
HS
1014struct sched_domain_attr {
1015 int relax_domain_level;
1016};
1017
1018#define SD_ATTR_INIT (struct sched_domain_attr) { \
1019 .relax_domain_level = -1, \
1020}
1021
60495e77
PZ
1022extern int sched_domain_level_max;
1023
5e6521ea
LZ
1024struct sched_group;
1025
1da177e4
LT
1026struct sched_domain {
1027 /* These fields must be setup */
1028 struct sched_domain *parent; /* top domain must be null terminated */
1a848870 1029 struct sched_domain *child; /* bottom domain must be null terminated */
1da177e4 1030 struct sched_group *groups; /* the balancing groups of the domain */
1da177e4
LT
1031 unsigned long min_interval; /* Minimum balance interval ms */
1032 unsigned long max_interval; /* Maximum balance interval ms */
1033 unsigned int busy_factor; /* less balancing by factor if busy */
1034 unsigned int imbalance_pct; /* No balance until over watermark */
1da177e4 1035 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
7897986b
NP
1036 unsigned int busy_idx;
1037 unsigned int idle_idx;
1038 unsigned int newidle_idx;
1039 unsigned int wake_idx;
147cbb4b 1040 unsigned int forkexec_idx;
a52bfd73 1041 unsigned int smt_gain;
25f55d9d
VG
1042
1043 int nohz_idle; /* NOHZ IDLE status */
1da177e4 1044 int flags; /* See SD_* */
60495e77 1045 int level;
1da177e4
LT
1046
1047 /* Runtime fields. */
1048 unsigned long last_balance; /* init to jiffies. units in jiffies */
1049 unsigned int balance_interval; /* initialise to 1. units in ms. */
1050 unsigned int nr_balance_failed; /* initialise to 0 */
1051
f48627e6 1052 /* idle_balance() stats */
9bd721c5 1053 u64 max_newidle_lb_cost;
f48627e6 1054 unsigned long next_decay_max_lb_cost;
2398f2c6 1055
1da177e4
LT
1056#ifdef CONFIG_SCHEDSTATS
1057 /* load_balance() stats */
480b9434
KC
1058 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1059 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1060 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1061 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1062 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1063 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1064 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1065 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1da177e4
LT
1066
1067 /* Active load balancing */
480b9434
KC
1068 unsigned int alb_count;
1069 unsigned int alb_failed;
1070 unsigned int alb_pushed;
1da177e4 1071
68767a0a 1072 /* SD_BALANCE_EXEC stats */
480b9434
KC
1073 unsigned int sbe_count;
1074 unsigned int sbe_balanced;
1075 unsigned int sbe_pushed;
1da177e4 1076
68767a0a 1077 /* SD_BALANCE_FORK stats */
480b9434
KC
1078 unsigned int sbf_count;
1079 unsigned int sbf_balanced;
1080 unsigned int sbf_pushed;
68767a0a 1081
1da177e4 1082 /* try_to_wake_up() stats */
480b9434
KC
1083 unsigned int ttwu_wake_remote;
1084 unsigned int ttwu_move_affine;
1085 unsigned int ttwu_move_balance;
1da177e4 1086#endif
a5d8c348
IM
1087#ifdef CONFIG_SCHED_DEBUG
1088 char *name;
1089#endif
dce840a0
PZ
1090 union {
1091 void *private; /* used during construction */
1092 struct rcu_head rcu; /* used during destruction */
1093 };
6c99e9ad 1094
669c55e9 1095 unsigned int span_weight;
4200efd9
IM
1096 /*
1097 * Span of all CPUs in this domain.
1098 *
1099 * NOTE: this field is variable length. (Allocated dynamically
1100 * by attaching extra space to the end of the structure,
1101 * depending on how many CPUs the kernel has booted up with)
4200efd9
IM
1102 */
1103 unsigned long span[0];
1da177e4
LT
1104};
1105
758b2cdc
RR
1106static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1107{
6c99e9ad 1108 return to_cpumask(sd->span);
758b2cdc
RR
1109}
1110
acc3f5d7 1111extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 1112 struct sched_domain_attr *dattr_new);
029190c5 1113
acc3f5d7
RR
1114/* Allocate an array of sched domains, for partition_sched_domains(). */
1115cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1116void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1117
39be3501
PZ
1118bool cpus_share_cache(int this_cpu, int that_cpu);
1119
143e1e28 1120typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
b6220ad6 1121typedef int (*sched_domain_flags_f)(void);
143e1e28
VG
1122
1123#define SDTL_OVERLAP 0x01
1124
1125struct sd_data {
1126 struct sched_domain **__percpu sd;
1127 struct sched_group **__percpu sg;
63b2ca30 1128 struct sched_group_capacity **__percpu sgc;
143e1e28
VG
1129};
1130
1131struct sched_domain_topology_level {
1132 sched_domain_mask_f mask;
1133 sched_domain_flags_f sd_flags;
1134 int flags;
1135 int numa_level;
1136 struct sd_data data;
1137#ifdef CONFIG_SCHED_DEBUG
1138 char *name;
1139#endif
1140};
1141
143e1e28 1142extern void set_sched_topology(struct sched_domain_topology_level *tl);
f6be8af1 1143extern void wake_up_if_idle(int cpu);
143e1e28
VG
1144
1145#ifdef CONFIG_SCHED_DEBUG
1146# define SD_INIT_NAME(type) .name = #type
1147#else
1148# define SD_INIT_NAME(type)
1149#endif
1150
1b427c15 1151#else /* CONFIG_SMP */
1da177e4 1152
1b427c15 1153struct sched_domain_attr;
d02c7a8c 1154
1b427c15 1155static inline void
acc3f5d7 1156partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1b427c15
IM
1157 struct sched_domain_attr *dattr_new)
1158{
d02c7a8c 1159}
39be3501
PZ
1160
1161static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1162{
1163 return true;
1164}
1165
1b427c15 1166#endif /* !CONFIG_SMP */
1da177e4 1167
47fe38fc 1168
1da177e4 1169struct io_context; /* See blkdev.h */
1da177e4 1170
1da177e4 1171
383f2835 1172#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
36c8b586 1173extern void prefetch_stack(struct task_struct *t);
383f2835
KC
1174#else
1175static inline void prefetch_stack(struct task_struct *t) { }
1176#endif
1da177e4
LT
1177
1178struct audit_context; /* See audit.c */
1179struct mempolicy;
b92ce558 1180struct pipe_inode_info;
4865ecf1 1181struct uts_namespace;
1da177e4 1182
20b8a59f 1183struct load_weight {
9dbdb155
PZ
1184 unsigned long weight;
1185 u32 inv_weight;
20b8a59f
IM
1186};
1187
9d89c257
YD
1188/*
1189 * The load_avg/util_avg accumulates an infinite geometric series.
e0f5f3af
DE
1190 * 1) load_avg factors frequency scaling into the amount of time that a
1191 * sched_entity is runnable on a rq into its weight. For cfs_rq, it is the
1192 * aggregated such weights of all runnable and blocked sched_entities.
e3279a2e 1193 * 2) util_avg factors frequency and cpu scaling into the amount of time
9d89c257
YD
1194 * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE].
1195 * For cfs_rq, it is the aggregated such times of all runnable and
1196 * blocked sched_entities.
1197 * The 64 bit load_sum can:
1198 * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with
1199 * the highest weight (=88761) always runnable, we should not overflow
1200 * 2) for entity, support any load.weight always runnable
1201 */
9d85f21c 1202struct sched_avg {
9d89c257
YD
1203 u64 last_update_time, load_sum;
1204 u32 util_sum, period_contrib;
1205 unsigned long load_avg, util_avg;
9d85f21c
PT
1206};
1207
94c18227 1208#ifdef CONFIG_SCHEDSTATS
41acab88 1209struct sched_statistics {
20b8a59f 1210 u64 wait_start;
94c18227 1211 u64 wait_max;
6d082592
AV
1212 u64 wait_count;
1213 u64 wait_sum;
8f0dfc34
AV
1214 u64 iowait_count;
1215 u64 iowait_sum;
94c18227 1216
20b8a59f 1217 u64 sleep_start;
20b8a59f 1218 u64 sleep_max;
94c18227
IM
1219 s64 sum_sleep_runtime;
1220
1221 u64 block_start;
20b8a59f
IM
1222 u64 block_max;
1223 u64 exec_max;
eba1ed4b 1224 u64 slice_max;
cc367732 1225
cc367732
IM
1226 u64 nr_migrations_cold;
1227 u64 nr_failed_migrations_affine;
1228 u64 nr_failed_migrations_running;
1229 u64 nr_failed_migrations_hot;
1230 u64 nr_forced_migrations;
cc367732
IM
1231
1232 u64 nr_wakeups;
1233 u64 nr_wakeups_sync;
1234 u64 nr_wakeups_migrate;
1235 u64 nr_wakeups_local;
1236 u64 nr_wakeups_remote;
1237 u64 nr_wakeups_affine;
1238 u64 nr_wakeups_affine_attempts;
1239 u64 nr_wakeups_passive;
1240 u64 nr_wakeups_idle;
41acab88
LDM
1241};
1242#endif
1243
1244struct sched_entity {
1245 struct load_weight load; /* for load-balancing */
1246 struct rb_node run_node;
1247 struct list_head group_node;
1248 unsigned int on_rq;
1249
1250 u64 exec_start;
1251 u64 sum_exec_runtime;
1252 u64 vruntime;
1253 u64 prev_sum_exec_runtime;
1254
41acab88
LDM
1255 u64 nr_migrations;
1256
41acab88
LDM
1257#ifdef CONFIG_SCHEDSTATS
1258 struct sched_statistics statistics;
94c18227
IM
1259#endif
1260
20b8a59f 1261#ifdef CONFIG_FAIR_GROUP_SCHED
fed14d45 1262 int depth;
20b8a59f
IM
1263 struct sched_entity *parent;
1264 /* rq on which this entity is (to be) queued: */
1265 struct cfs_rq *cfs_rq;
1266 /* rq "owned" by this entity/group: */
1267 struct cfs_rq *my_q;
1268#endif
8bd75c77 1269
141965c7 1270#ifdef CONFIG_SMP
9d89c257 1271 /* Per entity load average tracking */
9d85f21c
PT
1272 struct sched_avg avg;
1273#endif
20b8a59f 1274};
70b97a7f 1275
fa717060
PZ
1276struct sched_rt_entity {
1277 struct list_head run_list;
78f2c7db 1278 unsigned long timeout;
57d2aa00 1279 unsigned long watchdog_stamp;
bee367ed 1280 unsigned int time_slice;
6f505b16 1281
58d6c2d7 1282 struct sched_rt_entity *back;
052f1dc7 1283#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
1284 struct sched_rt_entity *parent;
1285 /* rq on which this entity is (to be) queued: */
1286 struct rt_rq *rt_rq;
1287 /* rq "owned" by this entity/group: */
1288 struct rt_rq *my_q;
1289#endif
fa717060
PZ
1290};
1291
aab03e05
DF
1292struct sched_dl_entity {
1293 struct rb_node rb_node;
1294
1295 /*
1296 * Original scheduling parameters. Copied here from sched_attr
4027d080 1297 * during sched_setattr(), they will remain the same until
1298 * the next sched_setattr().
aab03e05
DF
1299 */
1300 u64 dl_runtime; /* maximum runtime for each instance */
1301 u64 dl_deadline; /* relative deadline of each instance */
755378a4 1302 u64 dl_period; /* separation of two instances (period) */
332ac17e 1303 u64 dl_bw; /* dl_runtime / dl_deadline */
aab03e05
DF
1304
1305 /*
1306 * Actual scheduling parameters. Initialized with the values above,
1307 * they are continously updated during task execution. Note that
1308 * the remaining runtime could be < 0 in case we are in overrun.
1309 */
1310 s64 runtime; /* remaining runtime for this instance */
1311 u64 deadline; /* absolute deadline for this instance */
1312 unsigned int flags; /* specifying the scheduler behaviour */
1313
1314 /*
1315 * Some bool flags:
1316 *
1317 * @dl_throttled tells if we exhausted the runtime. If so, the
1318 * task has to wait for a replenishment to be performed at the
1319 * next firing of dl_timer.
1320 *
1321 * @dl_new tells if a new instance arrived. If so we must
1322 * start executing it with full runtime and reset its absolute
1323 * deadline;
2d3d891d
DF
1324 *
1325 * @dl_boosted tells if we are boosted due to DI. If so we are
1326 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
1327 * exit the critical section);
1328 *
1329 * @dl_yielded tells if task gave up the cpu before consuming
1330 * all its available runtime during the last job.
aab03e05 1331 */
5bfd126e 1332 int dl_throttled, dl_new, dl_boosted, dl_yielded;
aab03e05
DF
1333
1334 /*
1335 * Bandwidth enforcement timer. Each -deadline task has its
1336 * own bandwidth to be enforced, thus we need one timer per task.
1337 */
1338 struct hrtimer dl_timer;
1339};
8bd75c77 1340
1d082fd0
PM
1341union rcu_special {
1342 struct {
1343 bool blocked;
1344 bool need_qs;
1345 } b;
1346 short s;
1347};
86848966
PM
1348struct rcu_node;
1349
8dc85d54
PZ
1350enum perf_event_task_context {
1351 perf_invalid_context = -1,
1352 perf_hw_context = 0,
89a1e187 1353 perf_sw_context,
8dc85d54
PZ
1354 perf_nr_task_contexts,
1355};
1356
72b252ae
MG
1357/* Track pages that require TLB flushes */
1358struct tlbflush_unmap_batch {
1359 /*
1360 * Each bit set is a CPU that potentially has a TLB entry for one of
1361 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1362 */
1363 struct cpumask cpumask;
1364
1365 /* True if any bit in cpumask is set */
1366 bool flush_required;
d950c947
MG
1367
1368 /*
1369 * If true then the PTE was dirty when unmapped. The entry must be
1370 * flushed before IO is initiated or a stale TLB entry potentially
1371 * allows an update without redirtying the page.
1372 */
1373 bool writable;
72b252ae
MG
1374};
1375
1da177e4
LT
1376struct task_struct {
1377 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
f7e4217b 1378 void *stack;
1da177e4 1379 atomic_t usage;
97dc32cd
WC
1380 unsigned int flags; /* per process flags, defined below */
1381 unsigned int ptrace;
1da177e4 1382
2dd73a4f 1383#ifdef CONFIG_SMP
fa14ff4a 1384 struct llist_node wake_entry;
3ca7a440 1385 int on_cpu;
63b0e9ed 1386 unsigned int wakee_flips;
62470419 1387 unsigned long wakee_flip_decay_ts;
63b0e9ed 1388 struct task_struct *last_wakee;
ac66f547
PZ
1389
1390 int wake_cpu;
2dd73a4f 1391#endif
fd2f4419 1392 int on_rq;
50e645a8 1393
b29739f9 1394 int prio, static_prio, normal_prio;
c7aceaba 1395 unsigned int rt_priority;
5522d5d5 1396 const struct sched_class *sched_class;
20b8a59f 1397 struct sched_entity se;
fa717060 1398 struct sched_rt_entity rt;
8323f26c
PZ
1399#ifdef CONFIG_CGROUP_SCHED
1400 struct task_group *sched_task_group;
1401#endif
aab03e05 1402 struct sched_dl_entity dl;
1da177e4 1403
e107be36
AK
1404#ifdef CONFIG_PREEMPT_NOTIFIERS
1405 /* list of struct preempt_notifier: */
1406 struct hlist_head preempt_notifiers;
1407#endif
1408
6c5c9341 1409#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1410 unsigned int btrace_seq;
6c5c9341 1411#endif
1da177e4 1412
97dc32cd 1413 unsigned int policy;
29baa747 1414 int nr_cpus_allowed;
1da177e4 1415 cpumask_t cpus_allowed;
1da177e4 1416
a57eb940 1417#ifdef CONFIG_PREEMPT_RCU
e260be67 1418 int rcu_read_lock_nesting;
1d082fd0 1419 union rcu_special rcu_read_unlock_special;
f41d911f 1420 struct list_head rcu_node_entry;
a57eb940 1421 struct rcu_node *rcu_blocked_node;
28f6569a 1422#endif /* #ifdef CONFIG_PREEMPT_RCU */
8315f422
PM
1423#ifdef CONFIG_TASKS_RCU
1424 unsigned long rcu_tasks_nvcsw;
1425 bool rcu_tasks_holdout;
1426 struct list_head rcu_tasks_holdout_list;
176f8f7a 1427 int rcu_tasks_idle_cpu;
8315f422 1428#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 1429
f6db8347 1430#ifdef CONFIG_SCHED_INFO
1da177e4
LT
1431 struct sched_info sched_info;
1432#endif
1433
1434 struct list_head tasks;
806c09a7 1435#ifdef CONFIG_SMP
917b627d 1436 struct plist_node pushable_tasks;
1baca4ce 1437 struct rb_node pushable_dl_tasks;
806c09a7 1438#endif
1da177e4
LT
1439
1440 struct mm_struct *mm, *active_mm;
615d6e87
DB
1441 /* per-thread vma caching */
1442 u32 vmacache_seqnum;
1443 struct vm_area_struct *vmacache[VMACACHE_SIZE];
34e55232
KH
1444#if defined(SPLIT_RSS_COUNTING)
1445 struct task_rss_stat rss_stat;
1446#endif
1da177e4 1447/* task state */
97dc32cd 1448 int exit_state;
1da177e4
LT
1449 int exit_code, exit_signal;
1450 int pdeath_signal; /* The signal sent when the parent dies */
e7cc4173 1451 unsigned long jobctl; /* JOBCTL_*, siglock protected */
9b89f6ba
AE
1452
1453 /* Used for emulating ABI behavior of previous Linux versions */
97dc32cd 1454 unsigned int personality;
9b89f6ba 1455
f9ce1f1c
KT
1456 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1457 * execve */
8f0dfc34
AV
1458 unsigned in_iowait:1;
1459
ca94c442
LP
1460 /* Revert to default priority/policy when forking */
1461 unsigned sched_reset_on_fork:1;
a8e4f2ea 1462 unsigned sched_contributes_to_load:1;
ff303e66 1463 unsigned sched_migrated:1;
ca94c442 1464
6f185c29
VD
1465#ifdef CONFIG_MEMCG_KMEM
1466 unsigned memcg_kmem_skip_account:1;
1467#endif
ff303e66
PZ
1468#ifdef CONFIG_COMPAT_BRK
1469 unsigned brk_randomized:1;
1470#endif
6f185c29 1471
1d4457f9
KC
1472 unsigned long atomic_flags; /* Flags needing atomic access. */
1473
f56141e3
AL
1474 struct restart_block restart_block;
1475
1da177e4
LT
1476 pid_t pid;
1477 pid_t tgid;
0a425405 1478
1314562a 1479#ifdef CONFIG_CC_STACKPROTECTOR
0a425405
AV
1480 /* Canary value for the -fstack-protector gcc feature */
1481 unsigned long stack_canary;
1314562a 1482#endif
4d1d61a6 1483 /*
1da177e4 1484 * pointers to (original) parent process, youngest child, younger sibling,
4d1d61a6 1485 * older sibling, respectively. (p->father can be replaced with
f470021a 1486 * p->real_parent->pid)
1da177e4 1487 */
abd63bc3
KC
1488 struct task_struct __rcu *real_parent; /* real parent process */
1489 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1da177e4 1490 /*
f470021a 1491 * children/sibling forms the list of my natural children
1da177e4
LT
1492 */
1493 struct list_head children; /* list of my children */
1494 struct list_head sibling; /* linkage in my parent's children list */
1495 struct task_struct *group_leader; /* threadgroup leader */
1496
f470021a
RM
1497 /*
1498 * ptraced is the list of tasks this task is using ptrace on.
1499 * This includes both natural children and PTRACE_ATTACH targets.
1500 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1501 */
1502 struct list_head ptraced;
1503 struct list_head ptrace_entry;
1504
1da177e4 1505 /* PID/PID hash table linkage. */
92476d7f 1506 struct pid_link pids[PIDTYPE_MAX];
47e65328 1507 struct list_head thread_group;
0c740d0a 1508 struct list_head thread_node;
1da177e4
LT
1509
1510 struct completion *vfork_done; /* for vfork() */
1511 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1512 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1513
c66f08be 1514 cputime_t utime, stime, utimescaled, stimescaled;
9ac52315 1515 cputime_t gtime;
9d7fb042 1516 struct prev_cputime prev_cputime;
6a61671b
FW
1517#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1518 seqlock_t vtime_seqlock;
1519 unsigned long long vtime_snap;
1520 enum {
1521 VTIME_SLEEPING = 0,
1522 VTIME_USER,
1523 VTIME_SYS,
1524 } vtime_snap_whence;
d99ca3b9 1525#endif
1da177e4 1526 unsigned long nvcsw, nivcsw; /* context switch counts */
ccbf62d8 1527 u64 start_time; /* monotonic time in nsec */
57e0be04 1528 u64 real_start_time; /* boot based time in nsec */
1da177e4
LT
1529/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1530 unsigned long min_flt, maj_flt;
1531
f06febc9 1532 struct task_cputime cputime_expires;
1da177e4
LT
1533 struct list_head cpu_timers[3];
1534
1535/* process credentials */
1b0ba1c9 1536 const struct cred __rcu *real_cred; /* objective and real subjective task
3b11a1de 1537 * credentials (COW) */
1b0ba1c9 1538 const struct cred __rcu *cred; /* effective (overridable) subjective task
3b11a1de 1539 * credentials (COW) */
36772092
PBG
1540 char comm[TASK_COMM_LEN]; /* executable name excluding path
1541 - access with [gs]et_task_comm (which lock
1542 it with task_lock())
221af7f8 1543 - initialized normally by setup_new_exec */
1da177e4 1544/* file system info */
756daf26 1545 struct nameidata *nameidata;
3d5b6fcc 1546#ifdef CONFIG_SYSVIPC
1da177e4
LT
1547/* ipc stuff */
1548 struct sysv_sem sysvsem;
ab602f79 1549 struct sysv_shm sysvshm;
3d5b6fcc 1550#endif
e162b39a 1551#ifdef CONFIG_DETECT_HUNG_TASK
82a1fcb9 1552/* hung task detection */
82a1fcb9
IM
1553 unsigned long last_switch_count;
1554#endif
1da177e4
LT
1555/* filesystem information */
1556 struct fs_struct *fs;
1557/* open file information */
1558 struct files_struct *files;
1651e14e 1559/* namespaces */
ab516013 1560 struct nsproxy *nsproxy;
1da177e4
LT
1561/* signal handlers */
1562 struct signal_struct *signal;
1563 struct sighand_struct *sighand;
1564
1565 sigset_t blocked, real_blocked;
f3de272b 1566 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1da177e4
LT
1567 struct sigpending pending;
1568
1569 unsigned long sas_ss_sp;
1570 size_t sas_ss_size;
1571 int (*notifier)(void *priv);
1572 void *notifier_data;
1573 sigset_t *notifier_mask;
67d12145 1574 struct callback_head *task_works;
e73f8959 1575
1da177e4 1576 struct audit_context *audit_context;
bfef93a5 1577#ifdef CONFIG_AUDITSYSCALL
e1760bd5 1578 kuid_t loginuid;
4746ec5b 1579 unsigned int sessionid;
bfef93a5 1580#endif
932ecebb 1581 struct seccomp seccomp;
1da177e4
LT
1582
1583/* Thread group tracking */
1584 u32 parent_exec_id;
1585 u32 self_exec_id;
58568d2a
MX
1586/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1587 * mempolicy */
1da177e4 1588 spinlock_t alloc_lock;
1da177e4 1589
b29739f9 1590 /* Protection of the PI data structures: */
1d615482 1591 raw_spinlock_t pi_lock;
b29739f9 1592
76751049
PZ
1593 struct wake_q_node wake_q;
1594
23f78d4a
IM
1595#ifdef CONFIG_RT_MUTEXES
1596 /* PI waiters blocked on a rt_mutex held by this task */
fb00aca4
PZ
1597 struct rb_root pi_waiters;
1598 struct rb_node *pi_waiters_leftmost;
23f78d4a
IM
1599 /* Deadlock detection and priority inheritance handling */
1600 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1601#endif
1602
408894ee
IM
1603#ifdef CONFIG_DEBUG_MUTEXES
1604 /* mutex deadlock detection */
1605 struct mutex_waiter *blocked_on;
1606#endif
de30a2b3
IM
1607#ifdef CONFIG_TRACE_IRQFLAGS
1608 unsigned int irq_events;
de30a2b3 1609 unsigned long hardirq_enable_ip;
de30a2b3 1610 unsigned long hardirq_disable_ip;
fa1452e8 1611 unsigned int hardirq_enable_event;
de30a2b3 1612 unsigned int hardirq_disable_event;
fa1452e8
HS
1613 int hardirqs_enabled;
1614 int hardirq_context;
de30a2b3 1615 unsigned long softirq_disable_ip;
de30a2b3 1616 unsigned long softirq_enable_ip;
fa1452e8 1617 unsigned int softirq_disable_event;
de30a2b3 1618 unsigned int softirq_enable_event;
fa1452e8 1619 int softirqs_enabled;
de30a2b3
IM
1620 int softirq_context;
1621#endif
fbb9ce95 1622#ifdef CONFIG_LOCKDEP
bdb9441e 1623# define MAX_LOCK_DEPTH 48UL
fbb9ce95
IM
1624 u64 curr_chain_key;
1625 int lockdep_depth;
fbb9ce95 1626 unsigned int lockdep_recursion;
c7aceaba 1627 struct held_lock held_locks[MAX_LOCK_DEPTH];
cf40bd16 1628 gfp_t lockdep_reclaim_gfp;
fbb9ce95 1629#endif
408894ee 1630
1da177e4
LT
1631/* journalling filesystem info */
1632 void *journal_info;
1633
d89d8796 1634/* stacked block device info */
bddd87c7 1635 struct bio_list *bio_list;
d89d8796 1636
73c10101
JA
1637#ifdef CONFIG_BLOCK
1638/* stack plugging */
1639 struct blk_plug *plug;
1640#endif
1641
1da177e4
LT
1642/* VM state */
1643 struct reclaim_state *reclaim_state;
1644
1da177e4
LT
1645 struct backing_dev_info *backing_dev_info;
1646
1647 struct io_context *io_context;
1648
1649 unsigned long ptrace_message;
1650 siginfo_t *last_siginfo; /* For ptrace use. */
7c3ab738 1651 struct task_io_accounting ioac;
8f0ab514 1652#if defined(CONFIG_TASK_XACCT)
1da177e4
LT
1653 u64 acct_rss_mem1; /* accumulated rss usage */
1654 u64 acct_vm_mem1; /* accumulated virtual memory usage */
49b5cf34 1655 cputime_t acct_timexpd; /* stime + utime since last update */
1da177e4
LT
1656#endif
1657#ifdef CONFIG_CPUSETS
58568d2a 1658 nodemask_t mems_allowed; /* Protected by alloc_lock */
cc9a6c87 1659 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
825a46af 1660 int cpuset_mem_spread_rotor;
6adef3eb 1661 int cpuset_slab_spread_rotor;
1da177e4 1662#endif
ddbcc7e8 1663#ifdef CONFIG_CGROUPS
817929ec 1664 /* Control Group info protected by css_set_lock */
2c392b8c 1665 struct css_set __rcu *cgroups;
817929ec
PM
1666 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1667 struct list_head cg_list;
ddbcc7e8 1668#endif
42b2dd0a 1669#ifdef CONFIG_FUTEX
0771dfef 1670 struct robust_list_head __user *robust_list;
34f192c6
IM
1671#ifdef CONFIG_COMPAT
1672 struct compat_robust_list_head __user *compat_robust_list;
1673#endif
c87e2837
IM
1674 struct list_head pi_state_list;
1675 struct futex_pi_state *pi_state_cache;
c7aceaba 1676#endif
cdd6c482 1677#ifdef CONFIG_PERF_EVENTS
8dc85d54 1678 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
cdd6c482
IM
1679 struct mutex perf_event_mutex;
1680 struct list_head perf_event_list;
a63eaf34 1681#endif
8f47b187
TG
1682#ifdef CONFIG_DEBUG_PREEMPT
1683 unsigned long preempt_disable_ip;
1684#endif
c7aceaba 1685#ifdef CONFIG_NUMA
58568d2a 1686 struct mempolicy *mempolicy; /* Protected by alloc_lock */
c7aceaba 1687 short il_next;
207205a2 1688 short pref_node_fork;
42b2dd0a 1689#endif
cbee9f88
PZ
1690#ifdef CONFIG_NUMA_BALANCING
1691 int numa_scan_seq;
cbee9f88 1692 unsigned int numa_scan_period;
598f0ec0 1693 unsigned int numa_scan_period_max;
de1c9ce6 1694 int numa_preferred_nid;
6b9a7460 1695 unsigned long numa_migrate_retry;
cbee9f88 1696 u64 node_stamp; /* migration stamp */
7e2703e6
RR
1697 u64 last_task_numa_placement;
1698 u64 last_sum_exec_runtime;
cbee9f88 1699 struct callback_head numa_work;
f809ca9a 1700
8c8a743c
PZ
1701 struct list_head numa_entry;
1702 struct numa_group *numa_group;
1703
745d6147 1704 /*
44dba3d5
IM
1705 * numa_faults is an array split into four regions:
1706 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1707 * in this precise order.
1708 *
1709 * faults_memory: Exponential decaying average of faults on a per-node
1710 * basis. Scheduling placement decisions are made based on these
1711 * counts. The values remain static for the duration of a PTE scan.
1712 * faults_cpu: Track the nodes the process was running on when a NUMA
1713 * hinting fault was incurred.
1714 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1715 * during the current scan window. When the scan completes, the counts
1716 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1717 */
44dba3d5 1718 unsigned long *numa_faults;
83e1d2cd 1719 unsigned long total_numa_faults;
745d6147 1720
04bb2f94
RR
1721 /*
1722 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1723 * scan window were remote/local or failed to migrate. The task scan
1724 * period is adapted based on the locality of the faults with different
1725 * weights depending on whether they were shared or private faults
04bb2f94 1726 */
074c2381 1727 unsigned long numa_faults_locality[3];
04bb2f94 1728
b32e86b4 1729 unsigned long numa_pages_migrated;
cbee9f88
PZ
1730#endif /* CONFIG_NUMA_BALANCING */
1731
72b252ae
MG
1732#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1733 struct tlbflush_unmap_batch tlb_ubc;
1734#endif
1735
e56d0903 1736 struct rcu_head rcu;
b92ce558
JA
1737
1738 /*
1739 * cache last used pipe for splice
1740 */
1741 struct pipe_inode_info *splice_pipe;
5640f768
ED
1742
1743 struct page_frag task_frag;
1744
ca74e92b
SN
1745#ifdef CONFIG_TASK_DELAY_ACCT
1746 struct task_delay_info *delays;
f4f154fd
AM
1747#endif
1748#ifdef CONFIG_FAULT_INJECTION
1749 int make_it_fail;
ca74e92b 1750#endif
9d823e8f
WF
1751 /*
1752 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1753 * balance_dirty_pages() for some dirty throttling pause
1754 */
1755 int nr_dirtied;
1756 int nr_dirtied_pause;
83712358 1757 unsigned long dirty_paused_when; /* start of a write-and-pause period */
9d823e8f 1758
9745512c
AV
1759#ifdef CONFIG_LATENCYTOP
1760 int latency_record_count;
1761 struct latency_record latency_record[LT_SAVECOUNT];
1762#endif
6976675d
AV
1763 /*
1764 * time slack values; these are used to round up poll() and
1765 * select() etc timeout values. These are in nanoseconds.
1766 */
1767 unsigned long timer_slack_ns;
1768 unsigned long default_timer_slack_ns;
f8d570a4 1769
0b24becc
AR
1770#ifdef CONFIG_KASAN
1771 unsigned int kasan_depth;
1772#endif
fb52607a 1773#ifdef CONFIG_FUNCTION_GRAPH_TRACER
3ad2f3fb 1774 /* Index of current stored address in ret_stack */
f201ae23
FW
1775 int curr_ret_stack;
1776 /* Stack of return addresses for return function tracing */
1777 struct ftrace_ret_stack *ret_stack;
8aef2d28
SR
1778 /* time stamp for last schedule */
1779 unsigned long long ftrace_timestamp;
f201ae23
FW
1780 /*
1781 * Number of functions that haven't been traced
1782 * because of depth overrun.
1783 */
1784 atomic_t trace_overrun;
380c4b14
FW
1785 /* Pause for the tracing */
1786 atomic_t tracing_graph_pause;
f201ae23 1787#endif
ea4e2bc4
SR
1788#ifdef CONFIG_TRACING
1789 /* state flags for use by tracers */
1790 unsigned long trace;
b1cff0ad 1791 /* bitmask and counter of trace recursion */
261842b7
SR
1792 unsigned long trace_recursion;
1793#endif /* CONFIG_TRACING */
6f185c29 1794#ifdef CONFIG_MEMCG
519e5247 1795 struct memcg_oom_info {
49426420
JW
1796 struct mem_cgroup *memcg;
1797 gfp_t gfp_mask;
1798 int order;
519e5247
JW
1799 unsigned int may_oom:1;
1800 } memcg_oom;
569b846d 1801#endif
0326f5a9
SD
1802#ifdef CONFIG_UPROBES
1803 struct uprobe_task *utask;
0326f5a9 1804#endif
cafe5635
KO
1805#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1806 unsigned int sequential_io;
1807 unsigned int sequential_io_avg;
1808#endif
8eb23b9f
PZ
1809#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1810 unsigned long task_state_change;
1811#endif
8bcbde54 1812 int pagefault_disabled;
0c8c0f03
DH
1813/* CPU-specific state of this task */
1814 struct thread_struct thread;
1815/*
1816 * WARNING: on x86, 'thread_struct' contains a variable-sized
1817 * structure. It *MUST* be at the end of 'task_struct'.
1818 *
1819 * Do not put anything below here!
1820 */
1da177e4
LT
1821};
1822
5aaeb5c0
IM
1823#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1824extern int arch_task_struct_size __read_mostly;
1825#else
1826# define arch_task_struct_size (sizeof(struct task_struct))
1827#endif
0c8c0f03 1828
76e6eee0 1829/* Future-safe accessor for struct task_struct's cpus_allowed. */
a4636818 1830#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
76e6eee0 1831
6688cc05
PZ
1832#define TNF_MIGRATED 0x01
1833#define TNF_NO_GROUP 0x02
dabe1d99 1834#define TNF_SHARED 0x04
04bb2f94 1835#define TNF_FAULT_LOCAL 0x08
074c2381 1836#define TNF_MIGRATE_FAIL 0x10
6688cc05 1837
cbee9f88 1838#ifdef CONFIG_NUMA_BALANCING
6688cc05 1839extern void task_numa_fault(int last_node, int node, int pages, int flags);
e29cf08b 1840extern pid_t task_numa_group_id(struct task_struct *p);
1a687c2e 1841extern void set_numabalancing_state(bool enabled);
82727018 1842extern void task_numa_free(struct task_struct *p);
10f39042
RR
1843extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1844 int src_nid, int dst_cpu);
cbee9f88 1845#else
ac8e895b 1846static inline void task_numa_fault(int last_node, int node, int pages,
6688cc05 1847 int flags)
cbee9f88
PZ
1848{
1849}
e29cf08b
MG
1850static inline pid_t task_numa_group_id(struct task_struct *p)
1851{
1852 return 0;
1853}
1a687c2e
MG
1854static inline void set_numabalancing_state(bool enabled)
1855{
1856}
82727018
RR
1857static inline void task_numa_free(struct task_struct *p)
1858{
1859}
10f39042
RR
1860static inline bool should_numa_migrate_memory(struct task_struct *p,
1861 struct page *page, int src_nid, int dst_cpu)
1862{
1863 return true;
1864}
cbee9f88
PZ
1865#endif
1866
e868171a 1867static inline struct pid *task_pid(struct task_struct *task)
22c935f4
EB
1868{
1869 return task->pids[PIDTYPE_PID].pid;
1870}
1871
e868171a 1872static inline struct pid *task_tgid(struct task_struct *task)
22c935f4
EB
1873{
1874 return task->group_leader->pids[PIDTYPE_PID].pid;
1875}
1876
6dda81f4
ON
1877/*
1878 * Without tasklist or rcu lock it is not safe to dereference
1879 * the result of task_pgrp/task_session even if task == current,
1880 * we can race with another thread doing sys_setsid/sys_setpgid.
1881 */
e868171a 1882static inline struct pid *task_pgrp(struct task_struct *task)
22c935f4
EB
1883{
1884 return task->group_leader->pids[PIDTYPE_PGID].pid;
1885}
1886
e868171a 1887static inline struct pid *task_session(struct task_struct *task)
22c935f4
EB
1888{
1889 return task->group_leader->pids[PIDTYPE_SID].pid;
1890}
1891
7af57294
PE
1892struct pid_namespace;
1893
1894/*
1895 * the helpers to get the task's different pids as they are seen
1896 * from various namespaces
1897 *
1898 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1899 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1900 * current.
7af57294
PE
1901 * task_xid_nr_ns() : id seen from the ns specified;
1902 *
1903 * set_task_vxid() : assigns a virtual id to a task;
1904 *
7af57294
PE
1905 * see also pid_nr() etc in include/linux/pid.h
1906 */
52ee2dfd
ON
1907pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1908 struct pid_namespace *ns);
7af57294 1909
e868171a 1910static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1911{
1912 return tsk->pid;
1913}
1914
52ee2dfd
ON
1915static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1916 struct pid_namespace *ns)
1917{
1918 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1919}
7af57294
PE
1920
1921static inline pid_t task_pid_vnr(struct task_struct *tsk)
1922{
52ee2dfd 1923 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1924}
1925
1926
e868171a 1927static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1928{
1929 return tsk->tgid;
1930}
1931
2f2a3a46 1932pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
7af57294
PE
1933
1934static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1935{
1936 return pid_vnr(task_tgid(tsk));
1937}
1938
1939
80e0b6e8 1940static inline int pid_alive(const struct task_struct *p);
ad36d282
RGB
1941static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1942{
1943 pid_t pid = 0;
1944
1945 rcu_read_lock();
1946 if (pid_alive(tsk))
1947 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1948 rcu_read_unlock();
1949
1950 return pid;
1951}
1952
1953static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1954{
1955 return task_ppid_nr_ns(tsk, &init_pid_ns);
1956}
1957
52ee2dfd
ON
1958static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1959 struct pid_namespace *ns)
7af57294 1960{
52ee2dfd 1961 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1962}
1963
7af57294
PE
1964static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1965{
52ee2dfd 1966 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1967}
1968
1969
52ee2dfd
ON
1970static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1971 struct pid_namespace *ns)
7af57294 1972{
52ee2dfd 1973 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1974}
1975
7af57294
PE
1976static inline pid_t task_session_vnr(struct task_struct *tsk)
1977{
52ee2dfd 1978 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1979}
1980
1b0f7ffd
ON
1981/* obsolete, do not use */
1982static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1983{
1984 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1985}
7af57294 1986
1da177e4
LT
1987/**
1988 * pid_alive - check that a task structure is not stale
1989 * @p: Task structure to be checked.
1990 *
1991 * Test if a process is not yet dead (at most zombie state)
1992 * If pid_alive fails, then pointers within the task structure
1993 * can be stale and must not be dereferenced.
e69f6186
YB
1994 *
1995 * Return: 1 if the process is alive. 0 otherwise.
1da177e4 1996 */
ad36d282 1997static inline int pid_alive(const struct task_struct *p)
1da177e4 1998{
92476d7f 1999 return p->pids[PIDTYPE_PID].pid != NULL;
1da177e4
LT
2000}
2001
f400e198 2002/**
b460cbc5 2003 * is_global_init - check if a task structure is init
3260259f
HK
2004 * @tsk: Task structure to be checked.
2005 *
2006 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
2007 *
2008 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 2009 */
e868171a 2010static inline int is_global_init(struct task_struct *tsk)
b461cc03
PE
2011{
2012 return tsk->pid == 1;
2013}
b460cbc5 2014
9ec52099
CLG
2015extern struct pid *cad_pid;
2016
1da177e4 2017extern void free_task(struct task_struct *tsk);
1da177e4 2018#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
e56d0903 2019
158d9ebd 2020extern void __put_task_struct(struct task_struct *t);
e56d0903
IM
2021
2022static inline void put_task_struct(struct task_struct *t)
2023{
2024 if (atomic_dec_and_test(&t->usage))
8c7904a0 2025 __put_task_struct(t);
e56d0903 2026}
1da177e4 2027
6a61671b
FW
2028#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2029extern void task_cputime(struct task_struct *t,
2030 cputime_t *utime, cputime_t *stime);
2031extern void task_cputime_scaled(struct task_struct *t,
2032 cputime_t *utimescaled, cputime_t *stimescaled);
2033extern cputime_t task_gtime(struct task_struct *t);
2034#else
6fac4829
FW
2035static inline void task_cputime(struct task_struct *t,
2036 cputime_t *utime, cputime_t *stime)
2037{
2038 if (utime)
2039 *utime = t->utime;
2040 if (stime)
2041 *stime = t->stime;
2042}
2043
2044static inline void task_cputime_scaled(struct task_struct *t,
2045 cputime_t *utimescaled,
2046 cputime_t *stimescaled)
2047{
2048 if (utimescaled)
2049 *utimescaled = t->utimescaled;
2050 if (stimescaled)
2051 *stimescaled = t->stimescaled;
2052}
6a61671b
FW
2053
2054static inline cputime_t task_gtime(struct task_struct *t)
2055{
2056 return t->gtime;
2057}
2058#endif
e80d0a1a
FW
2059extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2060extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
49048622 2061
1da177e4
LT
2062/*
2063 * Per process flags
2064 */
1da177e4 2065#define PF_EXITING 0x00000004 /* getting shut down */
778e9a9c 2066#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
94886b84 2067#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
21aa9af0 2068#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1da177e4 2069#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
4db96cf0 2070#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1da177e4
LT
2071#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2072#define PF_DUMPCORE 0x00000200 /* dumped core */
2073#define PF_SIGNALED 0x00000400 /* killed by a signal */
2074#define PF_MEMALLOC 0x00000800 /* Allocating memory */
72fa5997 2075#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1da177e4 2076#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
774a1221 2077#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1da177e4
LT
2078#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2079#define PF_FROZEN 0x00010000 /* frozen for system suspend */
2080#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2081#define PF_KSWAPD 0x00040000 /* I am kswapd */
21caf2fc 2082#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1da177e4 2083#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
246bb0b1 2084#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
b31dc66a
JA
2085#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2086#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
14a40ffc 2087#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
4db96cf0 2088#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
61a87122 2089#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
58a69cb4 2090#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2b44c4db 2091#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1da177e4
LT
2092
2093/*
2094 * Only the _current_ task can read/write to tsk->flags, but other
2095 * tasks can access tsk->flags in readonly mode for example
2096 * with tsk_used_math (like during threaded core dumping).
2097 * There is however an exception to this rule during ptrace
2098 * or during fork: the ptracer task is allowed to write to the
2099 * child->flags of its traced child (same goes for fork, the parent
2100 * can write to the child->flags), because we're guaranteed the
2101 * child is not running and in turn not changing child->flags
2102 * at the same time the parent does it.
2103 */
2104#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2105#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2106#define clear_used_math() clear_stopped_child_used_math(current)
2107#define set_used_math() set_stopped_child_used_math(current)
2108#define conditional_stopped_child_used_math(condition, child) \
2109 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2110#define conditional_used_math(condition) \
2111 conditional_stopped_child_used_math(condition, current)
2112#define copy_to_stopped_child_used_math(child) \
2113 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2114/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2115#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2116#define used_math() tsk_used_math(current)
2117
934f3072
JB
2118/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2119 * __GFP_FS is also cleared as it implies __GFP_IO.
2120 */
21caf2fc
ML
2121static inline gfp_t memalloc_noio_flags(gfp_t flags)
2122{
2123 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
934f3072 2124 flags &= ~(__GFP_IO | __GFP_FS);
21caf2fc
ML
2125 return flags;
2126}
2127
2128static inline unsigned int memalloc_noio_save(void)
2129{
2130 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2131 current->flags |= PF_MEMALLOC_NOIO;
2132 return flags;
2133}
2134
2135static inline void memalloc_noio_restore(unsigned int flags)
2136{
2137 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2138}
2139
1d4457f9 2140/* Per-process atomic flags. */
a2b86f77 2141#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2ad654bc
ZL
2142#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2143#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2144
1d4457f9 2145
e0e5070b
ZL
2146#define TASK_PFA_TEST(name, func) \
2147 static inline bool task_##func(struct task_struct *p) \
2148 { return test_bit(PFA_##name, &p->atomic_flags); }
2149#define TASK_PFA_SET(name, func) \
2150 static inline void task_set_##func(struct task_struct *p) \
2151 { set_bit(PFA_##name, &p->atomic_flags); }
2152#define TASK_PFA_CLEAR(name, func) \
2153 static inline void task_clear_##func(struct task_struct *p) \
2154 { clear_bit(PFA_##name, &p->atomic_flags); }
2155
2156TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2157TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 2158
2ad654bc
ZL
2159TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2160TASK_PFA_SET(SPREAD_PAGE, spread_page)
2161TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2162
2163TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2164TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2165TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 2166
e5c1902e 2167/*
a8f072c1 2168 * task->jobctl flags
e5c1902e 2169 */
a8f072c1 2170#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
e5c1902e 2171
a8f072c1
TH
2172#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2173#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2174#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
73ddff2b 2175#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
fb1d910c 2176#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
a8f072c1 2177#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
544b2c91 2178#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
a8f072c1 2179
b76808e6
PD
2180#define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2181#define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2182#define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2183#define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2184#define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2185#define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2186#define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
a8f072c1 2187
fb1d910c 2188#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
73ddff2b 2189#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
3759a0d9 2190
7dd3db54 2191extern bool task_set_jobctl_pending(struct task_struct *task,
b76808e6 2192 unsigned long mask);
73ddff2b 2193extern void task_clear_jobctl_trapping(struct task_struct *task);
3759a0d9 2194extern void task_clear_jobctl_pending(struct task_struct *task,
b76808e6 2195 unsigned long mask);
39efa3ef 2196
f41d911f
PM
2197static inline void rcu_copy_process(struct task_struct *p)
2198{
8315f422 2199#ifdef CONFIG_PREEMPT_RCU
f41d911f 2200 p->rcu_read_lock_nesting = 0;
1d082fd0 2201 p->rcu_read_unlock_special.s = 0;
dd5d19ba 2202 p->rcu_blocked_node = NULL;
f41d911f 2203 INIT_LIST_HEAD(&p->rcu_node_entry);
8315f422
PM
2204#endif /* #ifdef CONFIG_PREEMPT_RCU */
2205#ifdef CONFIG_TASKS_RCU
2206 p->rcu_tasks_holdout = false;
2207 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
176f8f7a 2208 p->rcu_tasks_idle_cpu = -1;
8315f422 2209#endif /* #ifdef CONFIG_TASKS_RCU */
f41d911f
PM
2210}
2211
907aed48
MG
2212static inline void tsk_restore_flags(struct task_struct *task,
2213 unsigned long orig_flags, unsigned long flags)
2214{
2215 task->flags &= ~flags;
2216 task->flags |= orig_flags & flags;
2217}
2218
f82f8042
JL
2219extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2220 const struct cpumask *trial);
7f51412a
JL
2221extern int task_can_attach(struct task_struct *p,
2222 const struct cpumask *cs_cpus_allowed);
1da177e4 2223#ifdef CONFIG_SMP
1e1b6c51
KM
2224extern void do_set_cpus_allowed(struct task_struct *p,
2225 const struct cpumask *new_mask);
2226
cd8ba7cd 2227extern int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2228 const struct cpumask *new_mask);
1da177e4 2229#else
1e1b6c51
KM
2230static inline void do_set_cpus_allowed(struct task_struct *p,
2231 const struct cpumask *new_mask)
2232{
2233}
cd8ba7cd 2234static inline int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2235 const struct cpumask *new_mask)
1da177e4 2236{
96f874e2 2237 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
2238 return -EINVAL;
2239 return 0;
2240}
2241#endif
e0ad9556 2242
3451d024 2243#ifdef CONFIG_NO_HZ_COMMON
5167e8d5
PZ
2244void calc_load_enter_idle(void);
2245void calc_load_exit_idle(void);
2246#else
2247static inline void calc_load_enter_idle(void) { }
2248static inline void calc_load_exit_idle(void) { }
3451d024 2249#endif /* CONFIG_NO_HZ_COMMON */
5167e8d5 2250
b342501c 2251/*
c676329a
PZ
2252 * Do not use outside of architecture code which knows its limitations.
2253 *
2254 * sched_clock() has no promise of monotonicity or bounded drift between
2255 * CPUs, use (which you should not) requires disabling IRQs.
2256 *
2257 * Please use one of the three interfaces below.
b342501c 2258 */
1bbfa6f2 2259extern unsigned long long notrace sched_clock(void);
c676329a 2260/*
489a71b0 2261 * See the comment in kernel/sched/clock.c
c676329a
PZ
2262 */
2263extern u64 cpu_clock(int cpu);
2264extern u64 local_clock(void);
545a2bf7 2265extern u64 running_clock(void);
c676329a
PZ
2266extern u64 sched_clock_cpu(int cpu);
2267
e436d800 2268
c1955a3d 2269extern void sched_clock_init(void);
3e51f33f 2270
c1955a3d 2271#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3e51f33f
PZ
2272static inline void sched_clock_tick(void)
2273{
2274}
2275
2276static inline void sched_clock_idle_sleep_event(void)
2277{
2278}
2279
2280static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2281{
2282}
2283#else
c676329a
PZ
2284/*
2285 * Architectures can set this to 1 if they have specified
2286 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2287 * but then during bootup it turns out that sched_clock()
2288 * is reliable after all:
2289 */
35af99e6
PZ
2290extern int sched_clock_stable(void);
2291extern void set_sched_clock_stable(void);
2292extern void clear_sched_clock_stable(void);
c676329a 2293
3e51f33f
PZ
2294extern void sched_clock_tick(void);
2295extern void sched_clock_idle_sleep_event(void);
2296extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2297#endif
2298
b52bfee4
VP
2299#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2300/*
2301 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2302 * The reason for this explicit opt-in is not to have perf penalty with
2303 * slow sched_clocks.
2304 */
2305extern void enable_sched_clock_irqtime(void);
2306extern void disable_sched_clock_irqtime(void);
2307#else
2308static inline void enable_sched_clock_irqtime(void) {}
2309static inline void disable_sched_clock_irqtime(void) {}
2310#endif
2311
36c8b586 2312extern unsigned long long
41b86e9c 2313task_sched_runtime(struct task_struct *task);
1da177e4
LT
2314
2315/* sched_exec is called by processes performing an exec */
2316#ifdef CONFIG_SMP
2317extern void sched_exec(void);
2318#else
2319#define sched_exec() {}
2320#endif
2321
2aa44d05
IM
2322extern void sched_clock_idle_sleep_event(void);
2323extern void sched_clock_idle_wakeup_event(u64 delta_ns);
bb29ab26 2324
1da177e4
LT
2325#ifdef CONFIG_HOTPLUG_CPU
2326extern void idle_task_exit(void);
2327#else
2328static inline void idle_task_exit(void) {}
2329#endif
2330
3451d024 2331#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1c20091e 2332extern void wake_up_nohz_cpu(int cpu);
06d8308c 2333#else
1c20091e 2334static inline void wake_up_nohz_cpu(int cpu) { }
06d8308c
TG
2335#endif
2336
ce831b38
FW
2337#ifdef CONFIG_NO_HZ_FULL
2338extern bool sched_can_stop_tick(void);
265f22a9 2339extern u64 scheduler_tick_max_deferment(void);
ce831b38
FW
2340#else
2341static inline bool sched_can_stop_tick(void) { return false; }
06d8308c
TG
2342#endif
2343
5091faa4 2344#ifdef CONFIG_SCHED_AUTOGROUP
5091faa4
MG
2345extern void sched_autogroup_create_attach(struct task_struct *p);
2346extern void sched_autogroup_detach(struct task_struct *p);
2347extern void sched_autogroup_fork(struct signal_struct *sig);
2348extern void sched_autogroup_exit(struct signal_struct *sig);
2349#ifdef CONFIG_PROC_FS
2350extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2e5b5b3a 2351extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
5091faa4
MG
2352#endif
2353#else
2354static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2355static inline void sched_autogroup_detach(struct task_struct *p) { }
2356static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2357static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2358#endif
2359
fa93384f 2360extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
2361extern void set_user_nice(struct task_struct *p, long nice);
2362extern int task_prio(const struct task_struct *p);
d0ea0268
DY
2363/**
2364 * task_nice - return the nice value of a given task.
2365 * @p: the task in question.
2366 *
2367 * Return: The nice value [ -20 ... 0 ... 19 ].
2368 */
2369static inline int task_nice(const struct task_struct *p)
2370{
2371 return PRIO_TO_NICE((p)->static_prio);
2372}
36c8b586
IM
2373extern int can_nice(const struct task_struct *p, const int nice);
2374extern int task_curr(const struct task_struct *p);
1da177e4 2375extern int idle_cpu(int cpu);
fe7de49f
KM
2376extern int sched_setscheduler(struct task_struct *, int,
2377 const struct sched_param *);
961ccddd 2378extern int sched_setscheduler_nocheck(struct task_struct *, int,
fe7de49f 2379 const struct sched_param *);
d50dde5a
DF
2380extern int sched_setattr(struct task_struct *,
2381 const struct sched_attr *);
36c8b586 2382extern struct task_struct *idle_task(int cpu);
c4f30608
PM
2383/**
2384 * is_idle_task - is the specified task an idle task?
fa757281 2385 * @p: the task in question.
e69f6186
YB
2386 *
2387 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 2388 */
7061ca3b 2389static inline bool is_idle_task(const struct task_struct *p)
c4f30608
PM
2390{
2391 return p->pid == 0;
2392}
36c8b586
IM
2393extern struct task_struct *curr_task(int cpu);
2394extern void set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
2395
2396void yield(void);
2397
1da177e4
LT
2398union thread_union {
2399 struct thread_info thread_info;
2400 unsigned long stack[THREAD_SIZE/sizeof(long)];
2401};
2402
2403#ifndef __HAVE_ARCH_KSTACK_END
2404static inline int kstack_end(void *addr)
2405{
2406 /* Reliable end of stack detection:
2407 * Some APM bios versions misalign the stack
2408 */
2409 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2410}
2411#endif
2412
2413extern union thread_union init_thread_union;
2414extern struct task_struct init_task;
2415
2416extern struct mm_struct init_mm;
2417
198fe21b
PE
2418extern struct pid_namespace init_pid_ns;
2419
2420/*
2421 * find a task by one of its numerical ids
2422 *
198fe21b
PE
2423 * find_task_by_pid_ns():
2424 * finds a task by its pid in the specified namespace
228ebcbe
PE
2425 * find_task_by_vpid():
2426 * finds a task by its virtual pid
198fe21b 2427 *
e49859e7 2428 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
2429 */
2430
228ebcbe
PE
2431extern struct task_struct *find_task_by_vpid(pid_t nr);
2432extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2433 struct pid_namespace *ns);
198fe21b 2434
1da177e4 2435/* per-UID process charging. */
7b44ab97 2436extern struct user_struct * alloc_uid(kuid_t);
1da177e4
LT
2437static inline struct user_struct *get_uid(struct user_struct *u)
2438{
2439 atomic_inc(&u->__count);
2440 return u;
2441}
2442extern void free_uid(struct user_struct *);
1da177e4
LT
2443
2444#include <asm/current.h>
2445
f0af911a 2446extern void xtime_update(unsigned long ticks);
1da177e4 2447
b3c97528
HH
2448extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2449extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 2450extern void wake_up_new_task(struct task_struct *tsk);
1da177e4
LT
2451#ifdef CONFIG_SMP
2452 extern void kick_process(struct task_struct *tsk);
2453#else
2454 static inline void kick_process(struct task_struct *tsk) { }
2455#endif
aab03e05 2456extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
ad46c2c4 2457extern void sched_dead(struct task_struct *p);
1da177e4 2458
1da177e4
LT
2459extern void proc_caches_init(void);
2460extern void flush_signals(struct task_struct *);
10ab825b 2461extern void ignore_signals(struct task_struct *);
1da177e4
LT
2462extern void flush_signal_handlers(struct task_struct *, int force_default);
2463extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2464
2465static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2466{
2467 unsigned long flags;
2468 int ret;
2469
2470 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2471 ret = dequeue_signal(tsk, mask, info);
2472 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2473
2474 return ret;
53c8f9f1 2475}
1da177e4
LT
2476
2477extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2478 sigset_t *mask);
2479extern void unblock_all_signals(void);
2480extern void release_task(struct task_struct * p);
2481extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1da177e4
LT
2482extern int force_sigsegv(int, struct task_struct *);
2483extern int force_sig_info(int, struct siginfo *, struct task_struct *);
c4b92fc1 2484extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
c4b92fc1 2485extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
d178bc3a
SH
2486extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2487 const struct cred *, u32);
c4b92fc1
EB
2488extern int kill_pgrp(struct pid *pid, int sig, int priv);
2489extern int kill_pid(struct pid *pid, int sig, int priv);
c3de4b38 2490extern int kill_proc_info(int, struct siginfo *, pid_t);
86773473 2491extern __must_check bool do_notify_parent(struct task_struct *, int);
a7f0765e 2492extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
1da177e4 2493extern void force_sig(int, struct task_struct *);
1da177e4 2494extern int send_sig(int, struct task_struct *, int);
09faef11 2495extern int zap_other_threads(struct task_struct *p);
1da177e4
LT
2496extern struct sigqueue *sigqueue_alloc(void);
2497extern void sigqueue_free(struct sigqueue *);
ac5c2153 2498extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
9ac95f2f 2499extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1da177e4 2500
51a7b448
AV
2501static inline void restore_saved_sigmask(void)
2502{
2503 if (test_and_clear_restore_sigmask())
77097ae5 2504 __set_current_blocked(&current->saved_sigmask);
51a7b448
AV
2505}
2506
b7f9a11a
AV
2507static inline sigset_t *sigmask_to_save(void)
2508{
2509 sigset_t *res = &current->blocked;
2510 if (unlikely(test_restore_sigmask()))
2511 res = &current->saved_sigmask;
2512 return res;
2513}
2514
9ec52099
CLG
2515static inline int kill_cad_pid(int sig, int priv)
2516{
2517 return kill_pid(cad_pid, sig, priv);
2518}
2519
1da177e4
LT
2520/* These can be the second arg to send_sig_info/send_group_sig_info. */
2521#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2522#define SEND_SIG_PRIV ((struct siginfo *) 1)
2523#define SEND_SIG_FORCED ((struct siginfo *) 2)
2524
2a855dd0
SAS
2525/*
2526 * True if we are on the alternate signal stack.
2527 */
1da177e4
LT
2528static inline int on_sig_stack(unsigned long sp)
2529{
2a855dd0
SAS
2530#ifdef CONFIG_STACK_GROWSUP
2531 return sp >= current->sas_ss_sp &&
2532 sp - current->sas_ss_sp < current->sas_ss_size;
2533#else
2534 return sp > current->sas_ss_sp &&
2535 sp - current->sas_ss_sp <= current->sas_ss_size;
2536#endif
1da177e4
LT
2537}
2538
2539static inline int sas_ss_flags(unsigned long sp)
2540{
72f15c03
RW
2541 if (!current->sas_ss_size)
2542 return SS_DISABLE;
2543
2544 return on_sig_stack(sp) ? SS_ONSTACK : 0;
1da177e4
LT
2545}
2546
5a1b98d3
AV
2547static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2548{
2549 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2550#ifdef CONFIG_STACK_GROWSUP
2551 return current->sas_ss_sp;
2552#else
2553 return current->sas_ss_sp + current->sas_ss_size;
2554#endif
2555 return sp;
2556}
2557
1da177e4
LT
2558/*
2559 * Routines for handling mm_structs
2560 */
2561extern struct mm_struct * mm_alloc(void);
2562
2563/* mmdrop drops the mm and the page tables */
b3c97528 2564extern void __mmdrop(struct mm_struct *);
1da177e4
LT
2565static inline void mmdrop(struct mm_struct * mm)
2566{
6fb43d7b 2567 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1da177e4
LT
2568 __mmdrop(mm);
2569}
2570
2571/* mmput gets rid of the mappings and all user-space */
2572extern void mmput(struct mm_struct *);
2573/* Grab a reference to a task's mm, if it is not already going away */
2574extern struct mm_struct *get_task_mm(struct task_struct *task);
8cdb878d
CY
2575/*
2576 * Grab a reference to a task's mm, if it is not already going away
2577 * and ptrace_may_access with the mode parameter passed to it
2578 * succeeds.
2579 */
2580extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
1da177e4
LT
2581/* Remove the current tasks stale references to the old mm_struct */
2582extern void mm_release(struct task_struct *, struct mm_struct *);
2583
3033f14a
JT
2584#ifdef CONFIG_HAVE_COPY_THREAD_TLS
2585extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2586 struct task_struct *, unsigned long);
2587#else
6f2c55b8 2588extern int copy_thread(unsigned long, unsigned long, unsigned long,
afa86fc4 2589 struct task_struct *);
3033f14a
JT
2590
2591/* Architectures that haven't opted into copy_thread_tls get the tls argument
2592 * via pt_regs, so ignore the tls argument passed via C. */
2593static inline int copy_thread_tls(
2594 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2595 struct task_struct *p, unsigned long tls)
2596{
2597 return copy_thread(clone_flags, sp, arg, p);
2598}
2599#endif
1da177e4
LT
2600extern void flush_thread(void);
2601extern void exit_thread(void);
2602
1da177e4 2603extern void exit_files(struct task_struct *);
a7e5328a 2604extern void __cleanup_sighand(struct sighand_struct *);
cbaffba1 2605
1da177e4 2606extern void exit_itimers(struct signal_struct *);
cbaffba1 2607extern void flush_itimer_signals(void);
1da177e4 2608
9402c95f 2609extern void do_group_exit(int);
1da177e4 2610
c4ad8f98 2611extern int do_execve(struct filename *,
d7627467 2612 const char __user * const __user *,
da3d4c5f 2613 const char __user * const __user *);
51f39a1f
DD
2614extern int do_execveat(int, struct filename *,
2615 const char __user * const __user *,
2616 const char __user * const __user *,
2617 int);
3033f14a 2618extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
e80d6661 2619extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
36c8b586 2620struct task_struct *fork_idle(int);
2aa3a7f8 2621extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
1da177e4 2622
82b89778
AH
2623extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2624static inline void set_task_comm(struct task_struct *tsk, const char *from)
2625{
2626 __set_task_comm(tsk, from, false);
2627}
59714d65 2628extern char *get_task_comm(char *to, struct task_struct *tsk);
1da177e4
LT
2629
2630#ifdef CONFIG_SMP
317f3941 2631void scheduler_ipi(void);
85ba2d86 2632extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 2633#else
184748cc 2634static inline void scheduler_ipi(void) { }
85ba2d86
RM
2635static inline unsigned long wait_task_inactive(struct task_struct *p,
2636 long match_state)
2637{
2638 return 1;
2639}
1da177e4
LT
2640#endif
2641
fafe870f
FW
2642#define tasklist_empty() \
2643 list_empty(&init_task.tasks)
2644
05725f7e
JP
2645#define next_task(p) \
2646 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
1da177e4
LT
2647
2648#define for_each_process(p) \
2649 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2650
5bb459bb 2651extern bool current_is_single_threaded(void);
d84f4f99 2652
1da177e4
LT
2653/*
2654 * Careful: do_each_thread/while_each_thread is a double loop so
2655 * 'break' will not work as expected - use goto instead.
2656 */
2657#define do_each_thread(g, t) \
2658 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2659
2660#define while_each_thread(g, t) \
2661 while ((t = next_thread(t)) != g)
2662
0c740d0a
ON
2663#define __for_each_thread(signal, t) \
2664 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2665
2666#define for_each_thread(p, t) \
2667 __for_each_thread((p)->signal, t)
2668
2669/* Careful: this is a double loop, 'break' won't work as expected. */
2670#define for_each_process_thread(p, t) \
2671 for_each_process(p) for_each_thread(p, t)
2672
7e49827c
ON
2673static inline int get_nr_threads(struct task_struct *tsk)
2674{
b3ac022c 2675 return tsk->signal->nr_threads;
7e49827c
ON
2676}
2677
087806b1
ON
2678static inline bool thread_group_leader(struct task_struct *p)
2679{
2680 return p->exit_signal >= 0;
2681}
1da177e4 2682
0804ef4b
EB
2683/* Do to the insanities of de_thread it is possible for a process
2684 * to have the pid of the thread group leader without actually being
2685 * the thread group leader. For iteration through the pids in proc
2686 * all we care about is that we have a task with the appropriate
2687 * pid, we don't actually care if we have the right task.
2688 */
e1403b8e 2689static inline bool has_group_leader_pid(struct task_struct *p)
0804ef4b 2690{
e1403b8e 2691 return task_pid(p) == p->signal->leader_pid;
0804ef4b
EB
2692}
2693
bac0abd6 2694static inline
e1403b8e 2695bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
bac0abd6 2696{
e1403b8e 2697 return p1->signal == p2->signal;
bac0abd6
PE
2698}
2699
36c8b586 2700static inline struct task_struct *next_thread(const struct task_struct *p)
47e65328 2701{
05725f7e
JP
2702 return list_entry_rcu(p->thread_group.next,
2703 struct task_struct, thread_group);
47e65328
ON
2704}
2705
e868171a 2706static inline int thread_group_empty(struct task_struct *p)
1da177e4 2707{
47e65328 2708 return list_empty(&p->thread_group);
1da177e4
LT
2709}
2710
2711#define delay_group_leader(p) \
2712 (thread_group_leader(p) && !thread_group_empty(p))
2713
1da177e4 2714/*
260ea101 2715 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
22e2c507 2716 * subscriptions and synchronises with wait4(). Also used in procfs. Also
ddbcc7e8 2717 * pins the final release of task.io_context. Also protects ->cpuset and
d68b46fe 2718 * ->cgroup.subsys[]. And ->vfork_done.
1da177e4
LT
2719 *
2720 * Nests both inside and outside of read_lock(&tasklist_lock).
2721 * It must not be nested with write_lock_irq(&tasklist_lock),
2722 * neither inside nor outside.
2723 */
2724static inline void task_lock(struct task_struct *p)
2725{
2726 spin_lock(&p->alloc_lock);
2727}
2728
2729static inline void task_unlock(struct task_struct *p)
2730{
2731 spin_unlock(&p->alloc_lock);
2732}
2733
b8ed374e 2734extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
f63ee72e
ON
2735 unsigned long *flags);
2736
9388dc30
AV
2737static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2738 unsigned long *flags)
2739{
2740 struct sighand_struct *ret;
2741
2742 ret = __lock_task_sighand(tsk, flags);
2743 (void)__cond_lock(&tsk->sighand->siglock, ret);
2744 return ret;
2745}
b8ed374e 2746
f63ee72e
ON
2747static inline void unlock_task_sighand(struct task_struct *tsk,
2748 unsigned long *flags)
2749{
2750 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2751}
2752
77e4ef99 2753/**
7d7efec3
TH
2754 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
2755 * @tsk: task causing the changes
77e4ef99 2756 *
7d7efec3
TH
2757 * All operations which modify a threadgroup - a new thread joining the
2758 * group, death of a member thread (the assertion of PF_EXITING) and
2759 * exec(2) dethreading the process and replacing the leader - are wrapped
2760 * by threadgroup_change_{begin|end}(). This is to provide a place which
2761 * subsystems needing threadgroup stability can hook into for
2762 * synchronization.
77e4ef99 2763 */
7d7efec3 2764static inline void threadgroup_change_begin(struct task_struct *tsk)
4714d1d3 2765{
7d7efec3
TH
2766 might_sleep();
2767 cgroup_threadgroup_change_begin(tsk);
4714d1d3 2768}
77e4ef99
TH
2769
2770/**
7d7efec3
TH
2771 * threadgroup_change_end - mark the end of changes to a threadgroup
2772 * @tsk: task causing the changes
77e4ef99 2773 *
7d7efec3 2774 * See threadgroup_change_begin().
77e4ef99 2775 */
7d7efec3 2776static inline void threadgroup_change_end(struct task_struct *tsk)
4714d1d3 2777{
7d7efec3 2778 cgroup_threadgroup_change_end(tsk);
4714d1d3 2779}
4714d1d3 2780
f037360f
AV
2781#ifndef __HAVE_THREAD_FUNCTIONS
2782
f7e4217b
RZ
2783#define task_thread_info(task) ((struct thread_info *)(task)->stack)
2784#define task_stack_page(task) ((task)->stack)
a1261f54 2785
10ebffde
AV
2786static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2787{
2788 *task_thread_info(p) = *task_thread_info(org);
2789 task_thread_info(p)->task = p;
2790}
2791
6a40281a
CE
2792/*
2793 * Return the address of the last usable long on the stack.
2794 *
2795 * When the stack grows down, this is just above the thread
2796 * info struct. Going any lower will corrupt the threadinfo.
2797 *
2798 * When the stack grows up, this is the highest address.
2799 * Beyond that position, we corrupt data on the next page.
2800 */
10ebffde
AV
2801static inline unsigned long *end_of_stack(struct task_struct *p)
2802{
6a40281a
CE
2803#ifdef CONFIG_STACK_GROWSUP
2804 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2805#else
f7e4217b 2806 return (unsigned long *)(task_thread_info(p) + 1);
6a40281a 2807#endif
10ebffde
AV
2808}
2809
f037360f 2810#endif
a70857e4
AT
2811#define task_stack_end_corrupted(task) \
2812 (*(end_of_stack(task)) != STACK_END_MAGIC)
f037360f 2813
8b05c7e6
FT
2814static inline int object_is_on_stack(void *obj)
2815{
2816 void *stack = task_stack_page(current);
2817
2818 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2819}
2820
8c9843e5
BH
2821extern void thread_info_cache_init(void);
2822
7c9f8861
ES
2823#ifdef CONFIG_DEBUG_STACK_USAGE
2824static inline unsigned long stack_not_used(struct task_struct *p)
2825{
2826 unsigned long *n = end_of_stack(p);
2827
2828 do { /* Skip over canary */
2829 n++;
2830 } while (!*n);
2831
2832 return (unsigned long)n - (unsigned long)end_of_stack(p);
2833}
2834#endif
d4311ff1 2835extern void set_task_stack_end_magic(struct task_struct *tsk);
7c9f8861 2836
1da177e4
LT
2837/* set thread flags in other task's structures
2838 * - see asm/thread_info.h for TIF_xxxx flags available
2839 */
2840static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2841{
a1261f54 2842 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2843}
2844
2845static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2846{
a1261f54 2847 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2848}
2849
2850static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2851{
a1261f54 2852 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2853}
2854
2855static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2856{
a1261f54 2857 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2858}
2859
2860static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2861{
a1261f54 2862 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2863}
2864
2865static inline void set_tsk_need_resched(struct task_struct *tsk)
2866{
2867 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2868}
2869
2870static inline void clear_tsk_need_resched(struct task_struct *tsk)
2871{
2872 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2873}
2874
8ae121ac
GH
2875static inline int test_tsk_need_resched(struct task_struct *tsk)
2876{
2877 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2878}
2879
690cc3ff
EB
2880static inline int restart_syscall(void)
2881{
2882 set_tsk_thread_flag(current, TIF_SIGPENDING);
2883 return -ERESTARTNOINTR;
2884}
2885
1da177e4
LT
2886static inline int signal_pending(struct task_struct *p)
2887{
2888 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2889}
f776d12d 2890
d9588725
RM
2891static inline int __fatal_signal_pending(struct task_struct *p)
2892{
2893 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2894}
f776d12d
MW
2895
2896static inline int fatal_signal_pending(struct task_struct *p)
2897{
2898 return signal_pending(p) && __fatal_signal_pending(p);
2899}
2900
16882c1e
ON
2901static inline int signal_pending_state(long state, struct task_struct *p)
2902{
2903 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2904 return 0;
2905 if (!signal_pending(p))
2906 return 0;
2907
16882c1e
ON
2908 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2909}
2910
1da177e4
LT
2911/*
2912 * cond_resched() and cond_resched_lock(): latency reduction via
2913 * explicit rescheduling in places that are safe. The return
2914 * value indicates whether a reschedule was done in fact.
2915 * cond_resched_lock() will drop the spinlock before scheduling,
2916 * cond_resched_softirq() will enable bhs before scheduling.
2917 */
c3921ab7 2918extern int _cond_resched(void);
6f80bd98 2919
613afbf8 2920#define cond_resched() ({ \
3427445a 2921 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
2922 _cond_resched(); \
2923})
6f80bd98 2924
613afbf8
FW
2925extern int __cond_resched_lock(spinlock_t *lock);
2926
2927#define cond_resched_lock(lock) ({ \
3427445a 2928 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
2929 __cond_resched_lock(lock); \
2930})
2931
2932extern int __cond_resched_softirq(void);
2933
75e1056f 2934#define cond_resched_softirq() ({ \
3427445a 2935 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
75e1056f 2936 __cond_resched_softirq(); \
613afbf8 2937})
1da177e4 2938
f6f3c437
SH
2939static inline void cond_resched_rcu(void)
2940{
2941#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2942 rcu_read_unlock();
2943 cond_resched();
2944 rcu_read_lock();
2945#endif
2946}
2947
1da177e4
LT
2948/*
2949 * Does a critical section need to be broken due to another
95c354fe
NP
2950 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2951 * but a general need for low latency)
1da177e4 2952 */
95c354fe 2953static inline int spin_needbreak(spinlock_t *lock)
1da177e4 2954{
95c354fe
NP
2955#ifdef CONFIG_PREEMPT
2956 return spin_is_contended(lock);
2957#else
1da177e4 2958 return 0;
95c354fe 2959#endif
1da177e4
LT
2960}
2961
ee761f62
TG
2962/*
2963 * Idle thread specific functions to determine the need_resched
69dd0f84 2964 * polling state.
ee761f62 2965 */
69dd0f84 2966#ifdef TIF_POLLING_NRFLAG
ee761f62
TG
2967static inline int tsk_is_polling(struct task_struct *p)
2968{
2969 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2970}
ea811747
PZ
2971
2972static inline void __current_set_polling(void)
3a98f871
TG
2973{
2974 set_thread_flag(TIF_POLLING_NRFLAG);
2975}
2976
ea811747
PZ
2977static inline bool __must_check current_set_polling_and_test(void)
2978{
2979 __current_set_polling();
2980
2981 /*
2982 * Polling state must be visible before we test NEED_RESCHED,
8875125e 2983 * paired by resched_curr()
ea811747 2984 */
4e857c58 2985 smp_mb__after_atomic();
ea811747
PZ
2986
2987 return unlikely(tif_need_resched());
2988}
2989
2990static inline void __current_clr_polling(void)
3a98f871
TG
2991{
2992 clear_thread_flag(TIF_POLLING_NRFLAG);
2993}
ea811747
PZ
2994
2995static inline bool __must_check current_clr_polling_and_test(void)
2996{
2997 __current_clr_polling();
2998
2999 /*
3000 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3001 * paired by resched_curr()
ea811747 3002 */
4e857c58 3003 smp_mb__after_atomic();
ea811747
PZ
3004
3005 return unlikely(tif_need_resched());
3006}
3007
ee761f62
TG
3008#else
3009static inline int tsk_is_polling(struct task_struct *p) { return 0; }
ea811747
PZ
3010static inline void __current_set_polling(void) { }
3011static inline void __current_clr_polling(void) { }
3012
3013static inline bool __must_check current_set_polling_and_test(void)
3014{
3015 return unlikely(tif_need_resched());
3016}
3017static inline bool __must_check current_clr_polling_and_test(void)
3018{
3019 return unlikely(tif_need_resched());
3020}
ee761f62
TG
3021#endif
3022
8cb75e0c
PZ
3023static inline void current_clr_polling(void)
3024{
3025 __current_clr_polling();
3026
3027 /*
3028 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3029 * Once the bit is cleared, we'll get IPIs with every new
3030 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3031 * fold.
3032 */
8875125e 3033 smp_mb(); /* paired with resched_curr() */
8cb75e0c
PZ
3034
3035 preempt_fold_need_resched();
3036}
3037
75f93fed
PZ
3038static __always_inline bool need_resched(void)
3039{
3040 return unlikely(tif_need_resched());
3041}
3042
f06febc9
FM
3043/*
3044 * Thread group CPU time accounting.
3045 */
4cd4c1b4 3046void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
4da94d49 3047void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
f06febc9 3048
7bb44ade
RM
3049/*
3050 * Reevaluate whether the task has signals pending delivery.
3051 * Wake the task if so.
3052 * This is required every time the blocked sigset_t changes.
3053 * callers must hold sighand->siglock.
3054 */
3055extern void recalc_sigpending_and_wake(struct task_struct *t);
1da177e4
LT
3056extern void recalc_sigpending(void);
3057
910ffdb1
ON
3058extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3059
3060static inline void signal_wake_up(struct task_struct *t, bool resume)
3061{
3062 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3063}
3064static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3065{
3066 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3067}
1da177e4
LT
3068
3069/*
3070 * Wrappers for p->thread_info->cpu access. No-op on UP.
3071 */
3072#ifdef CONFIG_SMP
3073
3074static inline unsigned int task_cpu(const struct task_struct *p)
3075{
a1261f54 3076 return task_thread_info(p)->cpu;
1da177e4
LT
3077}
3078
b32e86b4
IM
3079static inline int task_node(const struct task_struct *p)
3080{
3081 return cpu_to_node(task_cpu(p));
3082}
3083
c65cc870 3084extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
3085
3086#else
3087
3088static inline unsigned int task_cpu(const struct task_struct *p)
3089{
3090 return 0;
3091}
3092
3093static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3094{
3095}
3096
3097#endif /* CONFIG_SMP */
3098
96f874e2
RR
3099extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3100extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 3101
7c941438 3102#ifdef CONFIG_CGROUP_SCHED
07e06b01 3103extern struct task_group root_task_group;
8323f26c 3104#endif /* CONFIG_CGROUP_SCHED */
9b5b7751 3105
54e99124
DG
3106extern int task_can_switch_user(struct user_struct *up,
3107 struct task_struct *tsk);
3108
4b98d11b
AD
3109#ifdef CONFIG_TASK_XACCT
3110static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3111{
940389b8 3112 tsk->ioac.rchar += amt;
4b98d11b
AD
3113}
3114
3115static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3116{
940389b8 3117 tsk->ioac.wchar += amt;
4b98d11b
AD
3118}
3119
3120static inline void inc_syscr(struct task_struct *tsk)
3121{
940389b8 3122 tsk->ioac.syscr++;
4b98d11b
AD
3123}
3124
3125static inline void inc_syscw(struct task_struct *tsk)
3126{
940389b8 3127 tsk->ioac.syscw++;
4b98d11b
AD
3128}
3129#else
3130static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3131{
3132}
3133
3134static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3135{
3136}
3137
3138static inline void inc_syscr(struct task_struct *tsk)
3139{
3140}
3141
3142static inline void inc_syscw(struct task_struct *tsk)
3143{
3144}
3145#endif
3146
82455257
DH
3147#ifndef TASK_SIZE_OF
3148#define TASK_SIZE_OF(tsk) TASK_SIZE
3149#endif
3150
f98bafa0 3151#ifdef CONFIG_MEMCG
cf475ad2 3152extern void mm_update_next_owner(struct mm_struct *mm);
cf475ad2
BS
3153#else
3154static inline void mm_update_next_owner(struct mm_struct *mm)
3155{
3156}
f98bafa0 3157#endif /* CONFIG_MEMCG */
cf475ad2 3158
3e10e716
JS
3159static inline unsigned long task_rlimit(const struct task_struct *tsk,
3160 unsigned int limit)
3161{
316c1608 3162 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3e10e716
JS
3163}
3164
3165static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3166 unsigned int limit)
3167{
316c1608 3168 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3e10e716
JS
3169}
3170
3171static inline unsigned long rlimit(unsigned int limit)
3172{
3173 return task_rlimit(current, limit);
3174}
3175
3176static inline unsigned long rlimit_max(unsigned int limit)
3177{
3178 return task_rlimit_max(current, limit);
3179}
3180
1da177e4 3181#endif