]> git.proxmox.com Git - qemu.git/blame - include/sysemu/dma.h
Merge remote-tracking branch 'bonzini/configure' into staging
[qemu.git] / include / sysemu / dma.h
CommitLineData
244ab90e
AL
1/*
2 * DMA helper functions
3 *
4 * Copyright (c) 2009 Red Hat
5 *
6 * This work is licensed under the terms of the GNU General Public License
7 * (GNU GPL), version 2 or later.
8 */
9
10#ifndef DMA_H
11#define DMA_H
12
13#include <stdio.h>
022c62cb 14#include "exec/memory.h"
df32fd1c 15#include "exec/address-spaces.h"
1ad2134f 16#include "hw/hw.h"
737e150e 17#include "block/block.h"
9c17d615 18#include "sysemu/kvm.h"
244ab90e 19
10dc8aef
PB
20typedef struct ScatterGatherEntry ScatterGatherEntry;
21
43cf8ae6
DG
22typedef enum {
23 DMA_DIRECTION_TO_DEVICE = 0,
24 DMA_DIRECTION_FROM_DEVICE = 1,
25} DMADirection;
26
fead0c24
PB
27struct QEMUSGList {
28 ScatterGatherEntry *sg;
29 int nsg;
30 int nalloc;
31 size_t size;
f487b677 32 DeviceState *dev;
df32fd1c 33 AddressSpace *as;
fead0c24
PB
34};
35
4be403c8 36#ifndef CONFIG_USER_ONLY
d9d1055e 37
e5332e63
DG
38/*
39 * When an IOMMU is present, bus addresses become distinct from
40 * CPU/memory physical addresses and may be a different size. Because
41 * the IOVA size depends more on the bus than on the platform, we more
42 * or less have to treat these as 64-bit always to cover all (or at
43 * least most) cases.
44 */
45typedef uint64_t dma_addr_t;
46
47#define DMA_ADDR_BITS 64
48#define DMA_ADDR_FMT "%" PRIx64
49
df32fd1c 50static inline void dma_barrier(AddressSpace *as, DMADirection dir)
7a0bac4d
BH
51{
52 /*
53 * This is called before DMA read and write operations
54 * unless the _relaxed form is used and is responsible
55 * for providing some sane ordering of accesses vs
56 * concurrently running VCPUs.
57 *
58 * Users of map(), unmap() or lower level st/ld_*
59 * operations are responsible for providing their own
60 * ordering via barriers.
61 *
62 * This primitive implementation does a simple smp_mb()
63 * before each operation which provides pretty much full
64 * ordering.
65 *
66 * A smarter implementation can be devised if needed to
67 * use lighter barriers based on the direction of the
68 * transfer, the DMA context, etc...
69 */
70 if (kvm_enabled()) {
71 smp_mb();
72 }
73}
74
d86a77f8
DG
75/* Checks that the given range of addresses is valid for DMA. This is
76 * useful for certain cases, but usually you should just use
77 * dma_memory_{read,write}() and check for errors */
df32fd1c 78static inline bool dma_memory_valid(AddressSpace *as,
e5332e63
DG
79 dma_addr_t addr, dma_addr_t len,
80 DMADirection dir)
d86a77f8 81{
df32fd1c 82 return address_space_access_valid(as, addr, len,
24addbc7 83 dir == DMA_DIRECTION_FROM_DEVICE);
d86a77f8
DG
84}
85
df32fd1c 86static inline int dma_memory_rw_relaxed(AddressSpace *as, dma_addr_t addr,
7a0bac4d
BH
87 void *buf, dma_addr_t len,
88 DMADirection dir)
d86a77f8 89{
df32fd1c 90 return address_space_rw(as, addr, buf, len, dir == DMA_DIRECTION_FROM_DEVICE);
d86a77f8
DG
91}
92
df32fd1c 93static inline int dma_memory_read_relaxed(AddressSpace *as, dma_addr_t addr,
7a0bac4d
BH
94 void *buf, dma_addr_t len)
95{
df32fd1c 96 return dma_memory_rw_relaxed(as, addr, buf, len, DMA_DIRECTION_TO_DEVICE);
7a0bac4d
BH
97}
98
df32fd1c 99static inline int dma_memory_write_relaxed(AddressSpace *as, dma_addr_t addr,
7a0bac4d
BH
100 const void *buf, dma_addr_t len)
101{
df32fd1c 102 return dma_memory_rw_relaxed(as, addr, (void *)buf, len,
7a0bac4d
BH
103 DMA_DIRECTION_FROM_DEVICE);
104}
105
df32fd1c 106static inline int dma_memory_rw(AddressSpace *as, dma_addr_t addr,
7a0bac4d
BH
107 void *buf, dma_addr_t len,
108 DMADirection dir)
109{
df32fd1c 110 dma_barrier(as, dir);
7a0bac4d 111
df32fd1c 112 return dma_memory_rw_relaxed(as, addr, buf, len, dir);
7a0bac4d
BH
113}
114
df32fd1c 115static inline int dma_memory_read(AddressSpace *as, dma_addr_t addr,
d86a77f8
DG
116 void *buf, dma_addr_t len)
117{
df32fd1c 118 return dma_memory_rw(as, addr, buf, len, DMA_DIRECTION_TO_DEVICE);
d86a77f8
DG
119}
120
df32fd1c 121static inline int dma_memory_write(AddressSpace *as, dma_addr_t addr,
d86a77f8
DG
122 const void *buf, dma_addr_t len)
123{
df32fd1c 124 return dma_memory_rw(as, addr, (void *)buf, len,
d86a77f8
DG
125 DMA_DIRECTION_FROM_DEVICE);
126}
127
df32fd1c 128int dma_memory_set(AddressSpace *as, dma_addr_t addr, uint8_t c, dma_addr_t len);
d86a77f8 129
df32fd1c 130static inline void *dma_memory_map(AddressSpace *as,
d86a77f8
DG
131 dma_addr_t addr, dma_addr_t *len,
132 DMADirection dir)
133{
24addbc7
PB
134 hwaddr xlen = *len;
135 void *p;
136
df32fd1c 137 p = address_space_map(as, addr, &xlen, dir == DMA_DIRECTION_FROM_DEVICE);
24addbc7
PB
138 *len = xlen;
139 return p;
d86a77f8
DG
140}
141
df32fd1c 142static inline void dma_memory_unmap(AddressSpace *as,
d86a77f8
DG
143 void *buffer, dma_addr_t len,
144 DMADirection dir, dma_addr_t access_len)
145{
df32fd1c 146 address_space_unmap(as, buffer, (hwaddr)len,
24addbc7 147 dir == DMA_DIRECTION_FROM_DEVICE, access_len);
d86a77f8
DG
148}
149
150#define DEFINE_LDST_DMA(_lname, _sname, _bits, _end) \
df32fd1c 151 static inline uint##_bits##_t ld##_lname##_##_end##_dma(AddressSpace *as, \
d86a77f8
DG
152 dma_addr_t addr) \
153 { \
154 uint##_bits##_t val; \
df32fd1c 155 dma_memory_read(as, addr, &val, (_bits) / 8); \
d86a77f8
DG
156 return _end##_bits##_to_cpu(val); \
157 } \
df32fd1c 158 static inline void st##_sname##_##_end##_dma(AddressSpace *as, \
d86a77f8
DG
159 dma_addr_t addr, \
160 uint##_bits##_t val) \
161 { \
162 val = cpu_to_##_end##_bits(val); \
df32fd1c 163 dma_memory_write(as, addr, &val, (_bits) / 8); \
d86a77f8
DG
164 }
165
df32fd1c 166static inline uint8_t ldub_dma(AddressSpace *as, dma_addr_t addr)
d86a77f8
DG
167{
168 uint8_t val;
169
df32fd1c 170 dma_memory_read(as, addr, &val, 1);
d86a77f8
DG
171 return val;
172}
173
df32fd1c 174static inline void stb_dma(AddressSpace *as, dma_addr_t addr, uint8_t val)
d86a77f8 175{
df32fd1c 176 dma_memory_write(as, addr, &val, 1);
d86a77f8
DG
177}
178
179DEFINE_LDST_DMA(uw, w, 16, le);
180DEFINE_LDST_DMA(l, l, 32, le);
181DEFINE_LDST_DMA(q, q, 64, le);
182DEFINE_LDST_DMA(uw, w, 16, be);
183DEFINE_LDST_DMA(l, l, 32, be);
184DEFINE_LDST_DMA(q, q, 64, be);
185
186#undef DEFINE_LDST_DMA
187
10dc8aef 188struct ScatterGatherEntry {
d3231181
DG
189 dma_addr_t base;
190 dma_addr_t len;
10dc8aef 191};
244ab90e 192
f487b677
PB
193void qemu_sglist_init(QEMUSGList *qsg, DeviceState *dev, int alloc_hint,
194 AddressSpace *as);
d3231181 195void qemu_sglist_add(QEMUSGList *qsg, dma_addr_t base, dma_addr_t len);
244ab90e 196void qemu_sglist_destroy(QEMUSGList *qsg);
10dc8aef 197#endif
244ab90e 198
cb144ccb
CH
199typedef BlockDriverAIOCB *DMAIOFunc(BlockDriverState *bs, int64_t sector_num,
200 QEMUIOVector *iov, int nb_sectors,
201 BlockDriverCompletionFunc *cb, void *opaque);
202
203BlockDriverAIOCB *dma_bdrv_io(BlockDriverState *bs,
204 QEMUSGList *sg, uint64_t sector_num,
205 DMAIOFunc *io_func, BlockDriverCompletionFunc *cb,
43cf8ae6 206 void *opaque, DMADirection dir);
59a703eb
AL
207BlockDriverAIOCB *dma_bdrv_read(BlockDriverState *bs,
208 QEMUSGList *sg, uint64_t sector,
209 BlockDriverCompletionFunc *cb, void *opaque);
210BlockDriverAIOCB *dma_bdrv_write(BlockDriverState *bs,
211 QEMUSGList *sg, uint64_t sector,
212 BlockDriverCompletionFunc *cb, void *opaque);
8171ee35
PB
213uint64_t dma_buf_read(uint8_t *ptr, int32_t len, QEMUSGList *sg);
214uint64_t dma_buf_write(uint8_t *ptr, int32_t len, QEMUSGList *sg);
215
84a69356
PB
216void dma_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie,
217 QEMUSGList *sg, enum BlockAcctType type);
218
244ab90e 219#endif