]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched.c
Merge branch 'fix/hda' into for-linus
[mirror_ubuntu-bionic-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
a8d154b0 80#define CREATE_TRACE_POINTS
ad8d75ff 81#include <trace/events/sched.h>
a8d154b0 82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
e05606d3
IM
122static inline int rt_policy(int policy)
123{
3f33a7ce 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
125 return 1;
126 return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
1da177e4 134/*
6aa645ea 135 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 136 */
6aa645ea
IM
137struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140};
141
d0b27fa7 142struct rt_bandwidth {
ea736ed5
IM
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
d0b27fa7
PZ
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
ac086bc2
PZ
181 spin_lock_init(&rt_b->rt_runtime_lock);
182
d0b27fa7
PZ
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
186}
187
c8bfff6d
KH
188static inline int rt_bandwidth_enabled(void)
189{
190 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195 ktime_t now;
196
cac64d00 197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
7f1e2ca9
PZ
205 unsigned long delta;
206 ktime_t soft, hard;
207
d0b27fa7
PZ
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 218 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7
PZ
219 }
220 spin_unlock(&rt_b->rt_runtime_lock);
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226 hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
712555ee
HC
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
052f1dc7 236#ifdef CONFIG_GROUP_SCHED
29f59db3 237
68318b8e
SV
238#include <linux/cgroup.h>
239
29f59db3
SV
240struct cfs_rq;
241
6f505b16
PZ
242static LIST_HEAD(task_groups);
243
29f59db3 244/* task group related information */
4cf86d77 245struct task_group {
052f1dc7 246#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
247 struct cgroup_subsys_state css;
248#endif
052f1dc7 249
6c415b92
AB
250#ifdef CONFIG_USER_SCHED
251 uid_t uid;
252#endif
253
052f1dc7 254#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
052f1dc7
PZ
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
d0b27fa7 266 struct rt_bandwidth rt_bandwidth;
052f1dc7 267#endif
6b2d7700 268
ae8393e5 269 struct rcu_head rcu;
6f505b16 270 struct list_head list;
f473aa5e
PZ
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
29f59db3
SV
275};
276
354d60c2 277#ifdef CONFIG_USER_SCHED
eff766a6 278
6c415b92
AB
279/* Helper function to pass uid information to create_sched_user() */
280void set_tg_uid(struct user_struct *user)
281{
282 user->tg->uid = user->uid;
283}
284
eff766a6
PZ
285/*
286 * Root task group.
84e9dabf
AS
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
eff766a6
PZ
289 */
290struct task_group root_task_group;
291
052f1dc7 292#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
293/* Default task group's sched entity on each cpu */
294static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295/* Default task group's cfs_rq on each cpu */
ada3fa15 296static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
6d6bc0ad 297#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
298
299#ifdef CONFIG_RT_GROUP_SCHED
300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
b9bf3121 301static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
6d6bc0ad 302#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 303#else /* !CONFIG_USER_SCHED */
eff766a6 304#define root_task_group init_task_group
9a7e0b18 305#endif /* CONFIG_USER_SCHED */
6f505b16 306
8ed36996 307/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
308 * a task group's cpu shares.
309 */
8ed36996 310static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 311
57310a98
PZ
312#ifdef CONFIG_SMP
313static int root_task_group_empty(void)
314{
315 return list_empty(&root_task_group.children);
316}
317#endif
318
052f1dc7 319#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
320#ifdef CONFIG_USER_SCHED
321# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 322#else /* !CONFIG_USER_SCHED */
052f1dc7 323# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 324#endif /* CONFIG_USER_SCHED */
052f1dc7 325
cb4ad1ff 326/*
2e084786
LJ
327 * A weight of 0 or 1 can cause arithmetics problems.
328 * A weight of a cfs_rq is the sum of weights of which entities
329 * are queued on this cfs_rq, so a weight of a entity should not be
330 * too large, so as the shares value of a task group.
cb4ad1ff
MX
331 * (The default weight is 1024 - so there's no practical
332 * limitation from this.)
333 */
18d95a28 334#define MIN_SHARES 2
2e084786 335#define MAX_SHARES (1UL << 18)
18d95a28 336
052f1dc7
PZ
337static int init_task_group_load = INIT_TASK_GROUP_LOAD;
338#endif
339
29f59db3 340/* Default task group.
3a252015 341 * Every task in system belong to this group at bootup.
29f59db3 342 */
434d53b0 343struct task_group init_task_group;
29f59db3
SV
344
345/* return group to which a task belongs */
4cf86d77 346static inline struct task_group *task_group(struct task_struct *p)
29f59db3 347{
4cf86d77 348 struct task_group *tg;
9b5b7751 349
052f1dc7 350#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
351 rcu_read_lock();
352 tg = __task_cred(p)->user->tg;
353 rcu_read_unlock();
052f1dc7 354#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
355 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
356 struct task_group, css);
24e377a8 357#else
41a2d6cf 358 tg = &init_task_group;
24e377a8 359#endif
9b5b7751 360 return tg;
29f59db3
SV
361}
362
363/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 364static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 365{
052f1dc7 366#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
367 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
368 p->se.parent = task_group(p)->se[cpu];
052f1dc7 369#endif
6f505b16 370
052f1dc7 371#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
372 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
373 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 374#endif
29f59db3
SV
375}
376
377#else
378
6f505b16 379static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
380static inline struct task_group *task_group(struct task_struct *p)
381{
382 return NULL;
383}
29f59db3 384
052f1dc7 385#endif /* CONFIG_GROUP_SCHED */
29f59db3 386
6aa645ea
IM
387/* CFS-related fields in a runqueue */
388struct cfs_rq {
389 struct load_weight load;
390 unsigned long nr_running;
391
6aa645ea 392 u64 exec_clock;
e9acbff6 393 u64 min_vruntime;
6aa645ea
IM
394
395 struct rb_root tasks_timeline;
396 struct rb_node *rb_leftmost;
4a55bd5e
PZ
397
398 struct list_head tasks;
399 struct list_head *balance_iterator;
400
401 /*
402 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
403 * It is set to NULL otherwise (i.e when none are currently running).
404 */
4793241b 405 struct sched_entity *curr, *next, *last;
ddc97297 406
5ac5c4d6 407 unsigned int nr_spread_over;
ddc97297 408
62160e3f 409#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
410 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
411
41a2d6cf
IM
412 /*
413 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
414 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
415 * (like users, containers etc.)
416 *
417 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
418 * list is used during load balance.
419 */
41a2d6cf
IM
420 struct list_head leaf_cfs_rq_list;
421 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
422
423#ifdef CONFIG_SMP
c09595f6 424 /*
c8cba857 425 * the part of load.weight contributed by tasks
c09595f6 426 */
c8cba857 427 unsigned long task_weight;
c09595f6 428
c8cba857
PZ
429 /*
430 * h_load = weight * f(tg)
431 *
432 * Where f(tg) is the recursive weight fraction assigned to
433 * this group.
434 */
435 unsigned long h_load;
c09595f6 436
c8cba857
PZ
437 /*
438 * this cpu's part of tg->shares
439 */
440 unsigned long shares;
f1d239f7
PZ
441
442 /*
443 * load.weight at the time we set shares
444 */
445 unsigned long rq_weight;
c09595f6 446#endif
6aa645ea
IM
447#endif
448};
1da177e4 449
6aa645ea
IM
450/* Real-Time classes' related field in a runqueue: */
451struct rt_rq {
452 struct rt_prio_array active;
63489e45 453 unsigned long rt_nr_running;
052f1dc7 454#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
455 struct {
456 int curr; /* highest queued rt task prio */
398a153b 457#ifdef CONFIG_SMP
e864c499 458 int next; /* next highest */
398a153b 459#endif
e864c499 460 } highest_prio;
6f505b16 461#endif
fa85ae24 462#ifdef CONFIG_SMP
73fe6aae 463 unsigned long rt_nr_migratory;
a1ba4d8b 464 unsigned long rt_nr_total;
a22d7fc1 465 int overloaded;
917b627d 466 struct plist_head pushable_tasks;
fa85ae24 467#endif
6f505b16 468 int rt_throttled;
fa85ae24 469 u64 rt_time;
ac086bc2 470 u64 rt_runtime;
ea736ed5 471 /* Nests inside the rq lock: */
ac086bc2 472 spinlock_t rt_runtime_lock;
6f505b16 473
052f1dc7 474#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
475 unsigned long rt_nr_boosted;
476
6f505b16
PZ
477 struct rq *rq;
478 struct list_head leaf_rt_rq_list;
479 struct task_group *tg;
480 struct sched_rt_entity *rt_se;
481#endif
6aa645ea
IM
482};
483
57d885fe
GH
484#ifdef CONFIG_SMP
485
486/*
487 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
488 * variables. Each exclusive cpuset essentially defines an island domain by
489 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
490 * exclusive cpuset is created, we also create and attach a new root-domain
491 * object.
492 *
57d885fe
GH
493 */
494struct root_domain {
495 atomic_t refcount;
c6c4927b
RR
496 cpumask_var_t span;
497 cpumask_var_t online;
637f5085 498
0eab9146 499 /*
637f5085
GH
500 * The "RT overload" flag: it gets set if a CPU has more than
501 * one runnable RT task.
502 */
c6c4927b 503 cpumask_var_t rto_mask;
0eab9146 504 atomic_t rto_count;
6e0534f2
GH
505#ifdef CONFIG_SMP
506 struct cpupri cpupri;
507#endif
57d885fe
GH
508};
509
dc938520
GH
510/*
511 * By default the system creates a single root-domain with all cpus as
512 * members (mimicking the global state we have today).
513 */
57d885fe
GH
514static struct root_domain def_root_domain;
515
516#endif
517
1da177e4
LT
518/*
519 * This is the main, per-CPU runqueue data structure.
520 *
521 * Locking rule: those places that want to lock multiple runqueues
522 * (such as the load balancing or the thread migration code), lock
523 * acquire operations must be ordered by ascending &runqueue.
524 */
70b97a7f 525struct rq {
d8016491
IM
526 /* runqueue lock: */
527 spinlock_t lock;
1da177e4
LT
528
529 /*
530 * nr_running and cpu_load should be in the same cacheline because
531 * remote CPUs use both these fields when doing load calculation.
532 */
533 unsigned long nr_running;
6aa645ea
IM
534 #define CPU_LOAD_IDX_MAX 5
535 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 536#ifdef CONFIG_NO_HZ
15934a37 537 unsigned long last_tick_seen;
46cb4b7c
SS
538 unsigned char in_nohz_recently;
539#endif
d8016491
IM
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
6aa645ea
IM
542 unsigned long nr_load_updates;
543 u64 nr_switches;
23a185ca 544 u64 nr_migrations_in;
6aa645ea
IM
545
546 struct cfs_rq cfs;
6f505b16 547 struct rt_rq rt;
6f505b16 548
6aa645ea 549#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
550 /* list of leaf cfs_rq on this cpu: */
551 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
552#endif
553#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 554 struct list_head leaf_rt_rq_list;
1da177e4 555#endif
1da177e4
LT
556
557 /*
558 * This is part of a global counter where only the total sum
559 * over all CPUs matters. A task can increase this counter on
560 * one CPU and if it got migrated afterwards it may decrease
561 * it on another CPU. Always updated under the runqueue lock:
562 */
563 unsigned long nr_uninterruptible;
564
36c8b586 565 struct task_struct *curr, *idle;
c9819f45 566 unsigned long next_balance;
1da177e4 567 struct mm_struct *prev_mm;
6aa645ea 568
3e51f33f 569 u64 clock;
6aa645ea 570
1da177e4
LT
571 atomic_t nr_iowait;
572
573#ifdef CONFIG_SMP
0eab9146 574 struct root_domain *rd;
1da177e4
LT
575 struct sched_domain *sd;
576
a0a522ce 577 unsigned char idle_at_tick;
1da177e4 578 /* For active balancing */
3f029d3c 579 int post_schedule;
1da177e4
LT
580 int active_balance;
581 int push_cpu;
d8016491
IM
582 /* cpu of this runqueue: */
583 int cpu;
1f11eb6a 584 int online;
1da177e4 585
a8a51d5e 586 unsigned long avg_load_per_task;
1da177e4 587
36c8b586 588 struct task_struct *migration_thread;
1da177e4 589 struct list_head migration_queue;
e9e9250b
PZ
590
591 u64 rt_avg;
592 u64 age_stamp;
1da177e4
LT
593#endif
594
dce48a84
TG
595 /* calc_load related fields */
596 unsigned long calc_load_update;
597 long calc_load_active;
598
8f4d37ec 599#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
600#ifdef CONFIG_SMP
601 int hrtick_csd_pending;
602 struct call_single_data hrtick_csd;
603#endif
8f4d37ec
PZ
604 struct hrtimer hrtick_timer;
605#endif
606
1da177e4
LT
607#ifdef CONFIG_SCHEDSTATS
608 /* latency stats */
609 struct sched_info rq_sched_info;
9c2c4802
KC
610 unsigned long long rq_cpu_time;
611 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
612
613 /* sys_sched_yield() stats */
480b9434 614 unsigned int yld_count;
1da177e4
LT
615
616 /* schedule() stats */
480b9434
KC
617 unsigned int sched_switch;
618 unsigned int sched_count;
619 unsigned int sched_goidle;
1da177e4
LT
620
621 /* try_to_wake_up() stats */
480b9434
KC
622 unsigned int ttwu_count;
623 unsigned int ttwu_local;
b8efb561
IM
624
625 /* BKL stats */
480b9434 626 unsigned int bkl_count;
1da177e4
LT
627#endif
628};
629
f34e3b61 630static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 631
7d478721
PZ
632static inline
633void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 634{
7d478721 635 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
636}
637
0a2966b4
CL
638static inline int cpu_of(struct rq *rq)
639{
640#ifdef CONFIG_SMP
641 return rq->cpu;
642#else
643 return 0;
644#endif
645}
646
674311d5
NP
647/*
648 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 649 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
650 *
651 * The domain tree of any CPU may only be accessed from within
652 * preempt-disabled sections.
653 */
48f24c4d
IM
654#define for_each_domain(cpu, __sd) \
655 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
656
657#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
658#define this_rq() (&__get_cpu_var(runqueues))
659#define task_rq(p) cpu_rq(task_cpu(p))
660#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 661#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 662
aa9c4c0f 663inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
664{
665 rq->clock = sched_clock_cpu(cpu_of(rq));
666}
667
bf5c91ba
IM
668/*
669 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
670 */
671#ifdef CONFIG_SCHED_DEBUG
672# define const_debug __read_mostly
673#else
674# define const_debug static const
675#endif
676
017730c1
IM
677/**
678 * runqueue_is_locked
e17b38bf 679 * @cpu: the processor in question.
017730c1
IM
680 *
681 * Returns true if the current cpu runqueue is locked.
682 * This interface allows printk to be called with the runqueue lock
683 * held and know whether or not it is OK to wake up the klogd.
684 */
89f19f04 685int runqueue_is_locked(int cpu)
017730c1 686{
89f19f04 687 return spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
688}
689
bf5c91ba
IM
690/*
691 * Debugging: various feature bits
692 */
f00b45c1
PZ
693
694#define SCHED_FEAT(name, enabled) \
695 __SCHED_FEAT_##name ,
696
bf5c91ba 697enum {
f00b45c1 698#include "sched_features.h"
bf5c91ba
IM
699};
700
f00b45c1
PZ
701#undef SCHED_FEAT
702
703#define SCHED_FEAT(name, enabled) \
704 (1UL << __SCHED_FEAT_##name) * enabled |
705
bf5c91ba 706const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
707#include "sched_features.h"
708 0;
709
710#undef SCHED_FEAT
711
712#ifdef CONFIG_SCHED_DEBUG
713#define SCHED_FEAT(name, enabled) \
714 #name ,
715
983ed7a6 716static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
717#include "sched_features.h"
718 NULL
719};
720
721#undef SCHED_FEAT
722
34f3a814 723static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 724{
f00b45c1
PZ
725 int i;
726
727 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
728 if (!(sysctl_sched_features & (1UL << i)))
729 seq_puts(m, "NO_");
730 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 731 }
34f3a814 732 seq_puts(m, "\n");
f00b45c1 733
34f3a814 734 return 0;
f00b45c1
PZ
735}
736
737static ssize_t
738sched_feat_write(struct file *filp, const char __user *ubuf,
739 size_t cnt, loff_t *ppos)
740{
741 char buf[64];
742 char *cmp = buf;
743 int neg = 0;
744 int i;
745
746 if (cnt > 63)
747 cnt = 63;
748
749 if (copy_from_user(&buf, ubuf, cnt))
750 return -EFAULT;
751
752 buf[cnt] = 0;
753
c24b7c52 754 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
755 neg = 1;
756 cmp += 3;
757 }
758
759 for (i = 0; sched_feat_names[i]; i++) {
760 int len = strlen(sched_feat_names[i]);
761
762 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
763 if (neg)
764 sysctl_sched_features &= ~(1UL << i);
765 else
766 sysctl_sched_features |= (1UL << i);
767 break;
768 }
769 }
770
771 if (!sched_feat_names[i])
772 return -EINVAL;
773
774 filp->f_pos += cnt;
775
776 return cnt;
777}
778
34f3a814
LZ
779static int sched_feat_open(struct inode *inode, struct file *filp)
780{
781 return single_open(filp, sched_feat_show, NULL);
782}
783
828c0950 784static const struct file_operations sched_feat_fops = {
34f3a814
LZ
785 .open = sched_feat_open,
786 .write = sched_feat_write,
787 .read = seq_read,
788 .llseek = seq_lseek,
789 .release = single_release,
f00b45c1
PZ
790};
791
792static __init int sched_init_debug(void)
793{
f00b45c1
PZ
794 debugfs_create_file("sched_features", 0644, NULL, NULL,
795 &sched_feat_fops);
796
797 return 0;
798}
799late_initcall(sched_init_debug);
800
801#endif
802
803#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 804
b82d9fdd
PZ
805/*
806 * Number of tasks to iterate in a single balance run.
807 * Limited because this is done with IRQs disabled.
808 */
809const_debug unsigned int sysctl_sched_nr_migrate = 32;
810
2398f2c6
PZ
811/*
812 * ratelimit for updating the group shares.
55cd5340 813 * default: 0.25ms
2398f2c6 814 */
55cd5340 815unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 816
ffda12a1
PZ
817/*
818 * Inject some fuzzyness into changing the per-cpu group shares
819 * this avoids remote rq-locks at the expense of fairness.
820 * default: 4
821 */
822unsigned int sysctl_sched_shares_thresh = 4;
823
e9e9250b
PZ
824/*
825 * period over which we average the RT time consumption, measured
826 * in ms.
827 *
828 * default: 1s
829 */
830const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
831
fa85ae24 832/*
9f0c1e56 833 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
834 * default: 1s
835 */
9f0c1e56 836unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 837
6892b75e
IM
838static __read_mostly int scheduler_running;
839
9f0c1e56
PZ
840/*
841 * part of the period that we allow rt tasks to run in us.
842 * default: 0.95s
843 */
844int sysctl_sched_rt_runtime = 950000;
fa85ae24 845
d0b27fa7
PZ
846static inline u64 global_rt_period(void)
847{
848 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
849}
850
851static inline u64 global_rt_runtime(void)
852{
e26873bb 853 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
854 return RUNTIME_INF;
855
856 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
857}
fa85ae24 858
1da177e4 859#ifndef prepare_arch_switch
4866cde0
NP
860# define prepare_arch_switch(next) do { } while (0)
861#endif
862#ifndef finish_arch_switch
863# define finish_arch_switch(prev) do { } while (0)
864#endif
865
051a1d1a
DA
866static inline int task_current(struct rq *rq, struct task_struct *p)
867{
868 return rq->curr == p;
869}
870
4866cde0 871#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 872static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 873{
051a1d1a 874 return task_current(rq, p);
4866cde0
NP
875}
876
70b97a7f 877static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
878{
879}
880
70b97a7f 881static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 882{
da04c035
IM
883#ifdef CONFIG_DEBUG_SPINLOCK
884 /* this is a valid case when another task releases the spinlock */
885 rq->lock.owner = current;
886#endif
8a25d5de
IM
887 /*
888 * If we are tracking spinlock dependencies then we have to
889 * fix up the runqueue lock - which gets 'carried over' from
890 * prev into current:
891 */
892 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
893
4866cde0
NP
894 spin_unlock_irq(&rq->lock);
895}
896
897#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 898static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
899{
900#ifdef CONFIG_SMP
901 return p->oncpu;
902#else
051a1d1a 903 return task_current(rq, p);
4866cde0
NP
904#endif
905}
906
70b97a7f 907static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
908{
909#ifdef CONFIG_SMP
910 /*
911 * We can optimise this out completely for !SMP, because the
912 * SMP rebalancing from interrupt is the only thing that cares
913 * here.
914 */
915 next->oncpu = 1;
916#endif
917#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
918 spin_unlock_irq(&rq->lock);
919#else
920 spin_unlock(&rq->lock);
921#endif
922}
923
70b97a7f 924static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
925{
926#ifdef CONFIG_SMP
927 /*
928 * After ->oncpu is cleared, the task can be moved to a different CPU.
929 * We must ensure this doesn't happen until the switch is completely
930 * finished.
931 */
932 smp_wmb();
933 prev->oncpu = 0;
934#endif
935#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
936 local_irq_enable();
1da177e4 937#endif
4866cde0
NP
938}
939#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 940
b29739f9
IM
941/*
942 * __task_rq_lock - lock the runqueue a given task resides on.
943 * Must be called interrupts disabled.
944 */
70b97a7f 945static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
946 __acquires(rq->lock)
947{
3a5c359a
AK
948 for (;;) {
949 struct rq *rq = task_rq(p);
950 spin_lock(&rq->lock);
951 if (likely(rq == task_rq(p)))
952 return rq;
b29739f9 953 spin_unlock(&rq->lock);
b29739f9 954 }
b29739f9
IM
955}
956
1da177e4
LT
957/*
958 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 959 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
960 * explicitly disabling preemption.
961 */
70b97a7f 962static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
963 __acquires(rq->lock)
964{
70b97a7f 965 struct rq *rq;
1da177e4 966
3a5c359a
AK
967 for (;;) {
968 local_irq_save(*flags);
969 rq = task_rq(p);
970 spin_lock(&rq->lock);
971 if (likely(rq == task_rq(p)))
972 return rq;
1da177e4 973 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 974 }
1da177e4
LT
975}
976
ad474cac
ON
977void task_rq_unlock_wait(struct task_struct *p)
978{
979 struct rq *rq = task_rq(p);
980
981 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
982 spin_unlock_wait(&rq->lock);
983}
984
a9957449 985static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
986 __releases(rq->lock)
987{
988 spin_unlock(&rq->lock);
989}
990
70b97a7f 991static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
992 __releases(rq->lock)
993{
994 spin_unlock_irqrestore(&rq->lock, *flags);
995}
996
1da177e4 997/*
cc2a73b5 998 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 999 */
a9957449 1000static struct rq *this_rq_lock(void)
1da177e4
LT
1001 __acquires(rq->lock)
1002{
70b97a7f 1003 struct rq *rq;
1da177e4
LT
1004
1005 local_irq_disable();
1006 rq = this_rq();
1007 spin_lock(&rq->lock);
1008
1009 return rq;
1010}
1011
8f4d37ec
PZ
1012#ifdef CONFIG_SCHED_HRTICK
1013/*
1014 * Use HR-timers to deliver accurate preemption points.
1015 *
1016 * Its all a bit involved since we cannot program an hrt while holding the
1017 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1018 * reschedule event.
1019 *
1020 * When we get rescheduled we reprogram the hrtick_timer outside of the
1021 * rq->lock.
1022 */
8f4d37ec
PZ
1023
1024/*
1025 * Use hrtick when:
1026 * - enabled by features
1027 * - hrtimer is actually high res
1028 */
1029static inline int hrtick_enabled(struct rq *rq)
1030{
1031 if (!sched_feat(HRTICK))
1032 return 0;
ba42059f 1033 if (!cpu_active(cpu_of(rq)))
b328ca18 1034 return 0;
8f4d37ec
PZ
1035 return hrtimer_is_hres_active(&rq->hrtick_timer);
1036}
1037
8f4d37ec
PZ
1038static void hrtick_clear(struct rq *rq)
1039{
1040 if (hrtimer_active(&rq->hrtick_timer))
1041 hrtimer_cancel(&rq->hrtick_timer);
1042}
1043
8f4d37ec
PZ
1044/*
1045 * High-resolution timer tick.
1046 * Runs from hardirq context with interrupts disabled.
1047 */
1048static enum hrtimer_restart hrtick(struct hrtimer *timer)
1049{
1050 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1051
1052 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1053
1054 spin_lock(&rq->lock);
3e51f33f 1055 update_rq_clock(rq);
8f4d37ec
PZ
1056 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1057 spin_unlock(&rq->lock);
1058
1059 return HRTIMER_NORESTART;
1060}
1061
95e904c7 1062#ifdef CONFIG_SMP
31656519
PZ
1063/*
1064 * called from hardirq (IPI) context
1065 */
1066static void __hrtick_start(void *arg)
b328ca18 1067{
31656519 1068 struct rq *rq = arg;
b328ca18 1069
31656519
PZ
1070 spin_lock(&rq->lock);
1071 hrtimer_restart(&rq->hrtick_timer);
1072 rq->hrtick_csd_pending = 0;
1073 spin_unlock(&rq->lock);
b328ca18
PZ
1074}
1075
31656519
PZ
1076/*
1077 * Called to set the hrtick timer state.
1078 *
1079 * called with rq->lock held and irqs disabled
1080 */
1081static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1082{
31656519
PZ
1083 struct hrtimer *timer = &rq->hrtick_timer;
1084 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1085
cc584b21 1086 hrtimer_set_expires(timer, time);
31656519
PZ
1087
1088 if (rq == this_rq()) {
1089 hrtimer_restart(timer);
1090 } else if (!rq->hrtick_csd_pending) {
6e275637 1091 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1092 rq->hrtick_csd_pending = 1;
1093 }
b328ca18
PZ
1094}
1095
1096static int
1097hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1098{
1099 int cpu = (int)(long)hcpu;
1100
1101 switch (action) {
1102 case CPU_UP_CANCELED:
1103 case CPU_UP_CANCELED_FROZEN:
1104 case CPU_DOWN_PREPARE:
1105 case CPU_DOWN_PREPARE_FROZEN:
1106 case CPU_DEAD:
1107 case CPU_DEAD_FROZEN:
31656519 1108 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1109 return NOTIFY_OK;
1110 }
1111
1112 return NOTIFY_DONE;
1113}
1114
fa748203 1115static __init void init_hrtick(void)
b328ca18
PZ
1116{
1117 hotcpu_notifier(hotplug_hrtick, 0);
1118}
31656519
PZ
1119#else
1120/*
1121 * Called to set the hrtick timer state.
1122 *
1123 * called with rq->lock held and irqs disabled
1124 */
1125static void hrtick_start(struct rq *rq, u64 delay)
1126{
7f1e2ca9 1127 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1128 HRTIMER_MODE_REL_PINNED, 0);
31656519 1129}
b328ca18 1130
006c75f1 1131static inline void init_hrtick(void)
8f4d37ec 1132{
8f4d37ec 1133}
31656519 1134#endif /* CONFIG_SMP */
8f4d37ec 1135
31656519 1136static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1137{
31656519
PZ
1138#ifdef CONFIG_SMP
1139 rq->hrtick_csd_pending = 0;
8f4d37ec 1140
31656519
PZ
1141 rq->hrtick_csd.flags = 0;
1142 rq->hrtick_csd.func = __hrtick_start;
1143 rq->hrtick_csd.info = rq;
1144#endif
8f4d37ec 1145
31656519
PZ
1146 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1147 rq->hrtick_timer.function = hrtick;
8f4d37ec 1148}
006c75f1 1149#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1150static inline void hrtick_clear(struct rq *rq)
1151{
1152}
1153
8f4d37ec
PZ
1154static inline void init_rq_hrtick(struct rq *rq)
1155{
1156}
1157
b328ca18
PZ
1158static inline void init_hrtick(void)
1159{
1160}
006c75f1 1161#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1162
c24d20db
IM
1163/*
1164 * resched_task - mark a task 'to be rescheduled now'.
1165 *
1166 * On UP this means the setting of the need_resched flag, on SMP it
1167 * might also involve a cross-CPU call to trigger the scheduler on
1168 * the target CPU.
1169 */
1170#ifdef CONFIG_SMP
1171
1172#ifndef tsk_is_polling
1173#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1174#endif
1175
31656519 1176static void resched_task(struct task_struct *p)
c24d20db
IM
1177{
1178 int cpu;
1179
1180 assert_spin_locked(&task_rq(p)->lock);
1181
5ed0cec0 1182 if (test_tsk_need_resched(p))
c24d20db
IM
1183 return;
1184
5ed0cec0 1185 set_tsk_need_resched(p);
c24d20db
IM
1186
1187 cpu = task_cpu(p);
1188 if (cpu == smp_processor_id())
1189 return;
1190
1191 /* NEED_RESCHED must be visible before we test polling */
1192 smp_mb();
1193 if (!tsk_is_polling(p))
1194 smp_send_reschedule(cpu);
1195}
1196
1197static void resched_cpu(int cpu)
1198{
1199 struct rq *rq = cpu_rq(cpu);
1200 unsigned long flags;
1201
1202 if (!spin_trylock_irqsave(&rq->lock, flags))
1203 return;
1204 resched_task(cpu_curr(cpu));
1205 spin_unlock_irqrestore(&rq->lock, flags);
1206}
06d8308c
TG
1207
1208#ifdef CONFIG_NO_HZ
1209/*
1210 * When add_timer_on() enqueues a timer into the timer wheel of an
1211 * idle CPU then this timer might expire before the next timer event
1212 * which is scheduled to wake up that CPU. In case of a completely
1213 * idle system the next event might even be infinite time into the
1214 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1215 * leaves the inner idle loop so the newly added timer is taken into
1216 * account when the CPU goes back to idle and evaluates the timer
1217 * wheel for the next timer event.
1218 */
1219void wake_up_idle_cpu(int cpu)
1220{
1221 struct rq *rq = cpu_rq(cpu);
1222
1223 if (cpu == smp_processor_id())
1224 return;
1225
1226 /*
1227 * This is safe, as this function is called with the timer
1228 * wheel base lock of (cpu) held. When the CPU is on the way
1229 * to idle and has not yet set rq->curr to idle then it will
1230 * be serialized on the timer wheel base lock and take the new
1231 * timer into account automatically.
1232 */
1233 if (rq->curr != rq->idle)
1234 return;
1235
1236 /*
1237 * We can set TIF_RESCHED on the idle task of the other CPU
1238 * lockless. The worst case is that the other CPU runs the
1239 * idle task through an additional NOOP schedule()
1240 */
5ed0cec0 1241 set_tsk_need_resched(rq->idle);
06d8308c
TG
1242
1243 /* NEED_RESCHED must be visible before we test polling */
1244 smp_mb();
1245 if (!tsk_is_polling(rq->idle))
1246 smp_send_reschedule(cpu);
1247}
6d6bc0ad 1248#endif /* CONFIG_NO_HZ */
06d8308c 1249
e9e9250b
PZ
1250static u64 sched_avg_period(void)
1251{
1252 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1253}
1254
1255static void sched_avg_update(struct rq *rq)
1256{
1257 s64 period = sched_avg_period();
1258
1259 while ((s64)(rq->clock - rq->age_stamp) > period) {
1260 rq->age_stamp += period;
1261 rq->rt_avg /= 2;
1262 }
1263}
1264
1265static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1266{
1267 rq->rt_avg += rt_delta;
1268 sched_avg_update(rq);
1269}
1270
6d6bc0ad 1271#else /* !CONFIG_SMP */
31656519 1272static void resched_task(struct task_struct *p)
c24d20db
IM
1273{
1274 assert_spin_locked(&task_rq(p)->lock);
31656519 1275 set_tsk_need_resched(p);
c24d20db 1276}
e9e9250b
PZ
1277
1278static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1279{
1280}
6d6bc0ad 1281#endif /* CONFIG_SMP */
c24d20db 1282
45bf76df
IM
1283#if BITS_PER_LONG == 32
1284# define WMULT_CONST (~0UL)
1285#else
1286# define WMULT_CONST (1UL << 32)
1287#endif
1288
1289#define WMULT_SHIFT 32
1290
194081eb
IM
1291/*
1292 * Shift right and round:
1293 */
cf2ab469 1294#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1295
a7be37ac
PZ
1296/*
1297 * delta *= weight / lw
1298 */
cb1c4fc9 1299static unsigned long
45bf76df
IM
1300calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1301 struct load_weight *lw)
1302{
1303 u64 tmp;
1304
7a232e03
LJ
1305 if (!lw->inv_weight) {
1306 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1307 lw->inv_weight = 1;
1308 else
1309 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1310 / (lw->weight+1);
1311 }
45bf76df
IM
1312
1313 tmp = (u64)delta_exec * weight;
1314 /*
1315 * Check whether we'd overflow the 64-bit multiplication:
1316 */
194081eb 1317 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1318 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1319 WMULT_SHIFT/2);
1320 else
cf2ab469 1321 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1322
ecf691da 1323 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1324}
1325
1091985b 1326static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1327{
1328 lw->weight += inc;
e89996ae 1329 lw->inv_weight = 0;
45bf76df
IM
1330}
1331
1091985b 1332static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1333{
1334 lw->weight -= dec;
e89996ae 1335 lw->inv_weight = 0;
45bf76df
IM
1336}
1337
2dd73a4f
PW
1338/*
1339 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1340 * of tasks with abnormal "nice" values across CPUs the contribution that
1341 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1342 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1343 * scaled version of the new time slice allocation that they receive on time
1344 * slice expiry etc.
1345 */
1346
cce7ade8
PZ
1347#define WEIGHT_IDLEPRIO 3
1348#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1349
1350/*
1351 * Nice levels are multiplicative, with a gentle 10% change for every
1352 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1353 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1354 * that remained on nice 0.
1355 *
1356 * The "10% effect" is relative and cumulative: from _any_ nice level,
1357 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1358 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1359 * If a task goes up by ~10% and another task goes down by ~10% then
1360 * the relative distance between them is ~25%.)
dd41f596
IM
1361 */
1362static const int prio_to_weight[40] = {
254753dc
IM
1363 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1364 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1365 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1366 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1367 /* 0 */ 1024, 820, 655, 526, 423,
1368 /* 5 */ 335, 272, 215, 172, 137,
1369 /* 10 */ 110, 87, 70, 56, 45,
1370 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1371};
1372
5714d2de
IM
1373/*
1374 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1375 *
1376 * In cases where the weight does not change often, we can use the
1377 * precalculated inverse to speed up arithmetics by turning divisions
1378 * into multiplications:
1379 */
dd41f596 1380static const u32 prio_to_wmult[40] = {
254753dc
IM
1381 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1382 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1383 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1384 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1385 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1386 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1387 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1388 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1389};
2dd73a4f 1390
dd41f596
IM
1391static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1392
1393/*
1394 * runqueue iterator, to support SMP load-balancing between different
1395 * scheduling classes, without having to expose their internal data
1396 * structures to the load-balancing proper:
1397 */
1398struct rq_iterator {
1399 void *arg;
1400 struct task_struct *(*start)(void *);
1401 struct task_struct *(*next)(void *);
1402};
1403
e1d1484f
PW
1404#ifdef CONFIG_SMP
1405static unsigned long
1406balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1407 unsigned long max_load_move, struct sched_domain *sd,
1408 enum cpu_idle_type idle, int *all_pinned,
1409 int *this_best_prio, struct rq_iterator *iterator);
1410
1411static int
1412iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1413 struct sched_domain *sd, enum cpu_idle_type idle,
1414 struct rq_iterator *iterator);
e1d1484f 1415#endif
dd41f596 1416
ef12fefa
BR
1417/* Time spent by the tasks of the cpu accounting group executing in ... */
1418enum cpuacct_stat_index {
1419 CPUACCT_STAT_USER, /* ... user mode */
1420 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1421
1422 CPUACCT_STAT_NSTATS,
1423};
1424
d842de87
SV
1425#ifdef CONFIG_CGROUP_CPUACCT
1426static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1427static void cpuacct_update_stats(struct task_struct *tsk,
1428 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1429#else
1430static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1431static inline void cpuacct_update_stats(struct task_struct *tsk,
1432 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1433#endif
1434
18d95a28
PZ
1435static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1436{
1437 update_load_add(&rq->load, load);
1438}
1439
1440static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1441{
1442 update_load_sub(&rq->load, load);
1443}
1444
7940ca36 1445#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1446typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1447
1448/*
1449 * Iterate the full tree, calling @down when first entering a node and @up when
1450 * leaving it for the final time.
1451 */
eb755805 1452static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1453{
1454 struct task_group *parent, *child;
eb755805 1455 int ret;
c09595f6
PZ
1456
1457 rcu_read_lock();
1458 parent = &root_task_group;
1459down:
eb755805
PZ
1460 ret = (*down)(parent, data);
1461 if (ret)
1462 goto out_unlock;
c09595f6
PZ
1463 list_for_each_entry_rcu(child, &parent->children, siblings) {
1464 parent = child;
1465 goto down;
1466
1467up:
1468 continue;
1469 }
eb755805
PZ
1470 ret = (*up)(parent, data);
1471 if (ret)
1472 goto out_unlock;
c09595f6
PZ
1473
1474 child = parent;
1475 parent = parent->parent;
1476 if (parent)
1477 goto up;
eb755805 1478out_unlock:
c09595f6 1479 rcu_read_unlock();
eb755805
PZ
1480
1481 return ret;
c09595f6
PZ
1482}
1483
eb755805
PZ
1484static int tg_nop(struct task_group *tg, void *data)
1485{
1486 return 0;
c09595f6 1487}
eb755805
PZ
1488#endif
1489
1490#ifdef CONFIG_SMP
f5f08f39
PZ
1491/* Used instead of source_load when we know the type == 0 */
1492static unsigned long weighted_cpuload(const int cpu)
1493{
1494 return cpu_rq(cpu)->load.weight;
1495}
1496
1497/*
1498 * Return a low guess at the load of a migration-source cpu weighted
1499 * according to the scheduling class and "nice" value.
1500 *
1501 * We want to under-estimate the load of migration sources, to
1502 * balance conservatively.
1503 */
1504static unsigned long source_load(int cpu, int type)
1505{
1506 struct rq *rq = cpu_rq(cpu);
1507 unsigned long total = weighted_cpuload(cpu);
1508
1509 if (type == 0 || !sched_feat(LB_BIAS))
1510 return total;
1511
1512 return min(rq->cpu_load[type-1], total);
1513}
1514
1515/*
1516 * Return a high guess at the load of a migration-target cpu weighted
1517 * according to the scheduling class and "nice" value.
1518 */
1519static unsigned long target_load(int cpu, int type)
1520{
1521 struct rq *rq = cpu_rq(cpu);
1522 unsigned long total = weighted_cpuload(cpu);
1523
1524 if (type == 0 || !sched_feat(LB_BIAS))
1525 return total;
1526
1527 return max(rq->cpu_load[type-1], total);
1528}
1529
ae154be1
PZ
1530static struct sched_group *group_of(int cpu)
1531{
1532 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1533
1534 if (!sd)
1535 return NULL;
1536
1537 return sd->groups;
1538}
1539
1540static unsigned long power_of(int cpu)
1541{
1542 struct sched_group *group = group_of(cpu);
1543
1544 if (!group)
1545 return SCHED_LOAD_SCALE;
1546
1547 return group->cpu_power;
1548}
1549
eb755805
PZ
1550static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1551
1552static unsigned long cpu_avg_load_per_task(int cpu)
1553{
1554 struct rq *rq = cpu_rq(cpu);
af6d596f 1555 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1556
4cd42620
SR
1557 if (nr_running)
1558 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1559 else
1560 rq->avg_load_per_task = 0;
eb755805
PZ
1561
1562 return rq->avg_load_per_task;
1563}
1564
1565#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1566
4a6cc4bd 1567static __read_mostly unsigned long *update_shares_data;
34d76c41 1568
c09595f6
PZ
1569static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1570
1571/*
1572 * Calculate and set the cpu's group shares.
1573 */
34d76c41
PZ
1574static void update_group_shares_cpu(struct task_group *tg, int cpu,
1575 unsigned long sd_shares,
1576 unsigned long sd_rq_weight,
4a6cc4bd 1577 unsigned long *usd_rq_weight)
18d95a28 1578{
34d76c41 1579 unsigned long shares, rq_weight;
a5004278 1580 int boost = 0;
c09595f6 1581
4a6cc4bd 1582 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1583 if (!rq_weight) {
1584 boost = 1;
1585 rq_weight = NICE_0_LOAD;
1586 }
c8cba857 1587
c09595f6 1588 /*
a8af7246
PZ
1589 * \Sum_j shares_j * rq_weight_i
1590 * shares_i = -----------------------------
1591 * \Sum_j rq_weight_j
c09595f6 1592 */
ec4e0e2f 1593 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1594 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1595
ffda12a1
PZ
1596 if (abs(shares - tg->se[cpu]->load.weight) >
1597 sysctl_sched_shares_thresh) {
1598 struct rq *rq = cpu_rq(cpu);
1599 unsigned long flags;
c09595f6 1600
ffda12a1 1601 spin_lock_irqsave(&rq->lock, flags);
34d76c41 1602 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1603 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1
PZ
1604 __set_se_shares(tg->se[cpu], shares);
1605 spin_unlock_irqrestore(&rq->lock, flags);
1606 }
18d95a28 1607}
c09595f6
PZ
1608
1609/*
c8cba857
PZ
1610 * Re-compute the task group their per cpu shares over the given domain.
1611 * This needs to be done in a bottom-up fashion because the rq weight of a
1612 * parent group depends on the shares of its child groups.
c09595f6 1613 */
eb755805 1614static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1615{
34d76c41 1616 unsigned long weight, rq_weight = 0, shares = 0;
4a6cc4bd 1617 unsigned long *usd_rq_weight;
eb755805 1618 struct sched_domain *sd = data;
34d76c41 1619 unsigned long flags;
c8cba857 1620 int i;
c09595f6 1621
34d76c41
PZ
1622 if (!tg->se[0])
1623 return 0;
1624
1625 local_irq_save(flags);
4a6cc4bd 1626 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1627
758b2cdc 1628 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1629 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1630 usd_rq_weight[i] = weight;
34d76c41 1631
ec4e0e2f
KC
1632 /*
1633 * If there are currently no tasks on the cpu pretend there
1634 * is one of average load so that when a new task gets to
1635 * run here it will not get delayed by group starvation.
1636 */
ec4e0e2f
KC
1637 if (!weight)
1638 weight = NICE_0_LOAD;
1639
ec4e0e2f 1640 rq_weight += weight;
c8cba857 1641 shares += tg->cfs_rq[i]->shares;
c09595f6 1642 }
c09595f6 1643
c8cba857
PZ
1644 if ((!shares && rq_weight) || shares > tg->shares)
1645 shares = tg->shares;
1646
1647 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1648 shares = tg->shares;
c09595f6 1649
758b2cdc 1650 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1651 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1652
1653 local_irq_restore(flags);
eb755805
PZ
1654
1655 return 0;
c09595f6
PZ
1656}
1657
1658/*
c8cba857
PZ
1659 * Compute the cpu's hierarchical load factor for each task group.
1660 * This needs to be done in a top-down fashion because the load of a child
1661 * group is a fraction of its parents load.
c09595f6 1662 */
eb755805 1663static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1664{
c8cba857 1665 unsigned long load;
eb755805 1666 long cpu = (long)data;
c09595f6 1667
c8cba857
PZ
1668 if (!tg->parent) {
1669 load = cpu_rq(cpu)->load.weight;
1670 } else {
1671 load = tg->parent->cfs_rq[cpu]->h_load;
1672 load *= tg->cfs_rq[cpu]->shares;
1673 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1674 }
c09595f6 1675
c8cba857 1676 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1677
eb755805 1678 return 0;
c09595f6
PZ
1679}
1680
c8cba857 1681static void update_shares(struct sched_domain *sd)
4d8d595d 1682{
e7097159
PZ
1683 s64 elapsed;
1684 u64 now;
1685
1686 if (root_task_group_empty())
1687 return;
1688
1689 now = cpu_clock(raw_smp_processor_id());
1690 elapsed = now - sd->last_update;
2398f2c6
PZ
1691
1692 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1693 sd->last_update = now;
eb755805 1694 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1695 }
4d8d595d
PZ
1696}
1697
3e5459b4
PZ
1698static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1699{
e7097159
PZ
1700 if (root_task_group_empty())
1701 return;
1702
3e5459b4
PZ
1703 spin_unlock(&rq->lock);
1704 update_shares(sd);
1705 spin_lock(&rq->lock);
1706}
1707
eb755805 1708static void update_h_load(long cpu)
c09595f6 1709{
e7097159
PZ
1710 if (root_task_group_empty())
1711 return;
1712
eb755805 1713 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1714}
1715
c09595f6
PZ
1716#else
1717
c8cba857 1718static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1719{
1720}
1721
3e5459b4
PZ
1722static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1723{
1724}
1725
18d95a28
PZ
1726#endif
1727
8f45e2b5
GH
1728#ifdef CONFIG_PREEMPT
1729
b78bb868
PZ
1730static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1731
70574a99 1732/*
8f45e2b5
GH
1733 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1734 * way at the expense of forcing extra atomic operations in all
1735 * invocations. This assures that the double_lock is acquired using the
1736 * same underlying policy as the spinlock_t on this architecture, which
1737 * reduces latency compared to the unfair variant below. However, it
1738 * also adds more overhead and therefore may reduce throughput.
70574a99 1739 */
8f45e2b5
GH
1740static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1741 __releases(this_rq->lock)
1742 __acquires(busiest->lock)
1743 __acquires(this_rq->lock)
1744{
1745 spin_unlock(&this_rq->lock);
1746 double_rq_lock(this_rq, busiest);
1747
1748 return 1;
1749}
1750
1751#else
1752/*
1753 * Unfair double_lock_balance: Optimizes throughput at the expense of
1754 * latency by eliminating extra atomic operations when the locks are
1755 * already in proper order on entry. This favors lower cpu-ids and will
1756 * grant the double lock to lower cpus over higher ids under contention,
1757 * regardless of entry order into the function.
1758 */
1759static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1760 __releases(this_rq->lock)
1761 __acquires(busiest->lock)
1762 __acquires(this_rq->lock)
1763{
1764 int ret = 0;
1765
70574a99
AD
1766 if (unlikely(!spin_trylock(&busiest->lock))) {
1767 if (busiest < this_rq) {
1768 spin_unlock(&this_rq->lock);
1769 spin_lock(&busiest->lock);
1770 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1771 ret = 1;
1772 } else
1773 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1774 }
1775 return ret;
1776}
1777
8f45e2b5
GH
1778#endif /* CONFIG_PREEMPT */
1779
1780/*
1781 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1782 */
1783static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1784{
1785 if (unlikely(!irqs_disabled())) {
1786 /* printk() doesn't work good under rq->lock */
1787 spin_unlock(&this_rq->lock);
1788 BUG_ON(1);
1789 }
1790
1791 return _double_lock_balance(this_rq, busiest);
1792}
1793
70574a99
AD
1794static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1795 __releases(busiest->lock)
1796{
1797 spin_unlock(&busiest->lock);
1798 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1799}
18d95a28
PZ
1800#endif
1801
30432094 1802#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1803static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1804{
30432094 1805#ifdef CONFIG_SMP
34e83e85
IM
1806 cfs_rq->shares = shares;
1807#endif
1808}
30432094 1809#endif
e7693a36 1810
dce48a84
TG
1811static void calc_load_account_active(struct rq *this_rq);
1812
dd41f596 1813#include "sched_stats.h"
dd41f596 1814#include "sched_idletask.c"
5522d5d5
IM
1815#include "sched_fair.c"
1816#include "sched_rt.c"
dd41f596
IM
1817#ifdef CONFIG_SCHED_DEBUG
1818# include "sched_debug.c"
1819#endif
1820
1821#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1822#define for_each_class(class) \
1823 for (class = sched_class_highest; class; class = class->next)
dd41f596 1824
c09595f6 1825static void inc_nr_running(struct rq *rq)
9c217245
IM
1826{
1827 rq->nr_running++;
9c217245
IM
1828}
1829
c09595f6 1830static void dec_nr_running(struct rq *rq)
9c217245
IM
1831{
1832 rq->nr_running--;
9c217245
IM
1833}
1834
45bf76df
IM
1835static void set_load_weight(struct task_struct *p)
1836{
1837 if (task_has_rt_policy(p)) {
dd41f596
IM
1838 p->se.load.weight = prio_to_weight[0] * 2;
1839 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1840 return;
1841 }
45bf76df 1842
dd41f596
IM
1843 /*
1844 * SCHED_IDLE tasks get minimal weight:
1845 */
1846 if (p->policy == SCHED_IDLE) {
1847 p->se.load.weight = WEIGHT_IDLEPRIO;
1848 p->se.load.inv_weight = WMULT_IDLEPRIO;
1849 return;
1850 }
71f8bd46 1851
dd41f596
IM
1852 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1853 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1854}
1855
2087a1ad
GH
1856static void update_avg(u64 *avg, u64 sample)
1857{
1858 s64 diff = sample - *avg;
1859 *avg += diff >> 3;
1860}
1861
8159f87e 1862static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1863{
831451ac
PZ
1864 if (wakeup)
1865 p->se.start_runtime = p->se.sum_exec_runtime;
1866
dd41f596 1867 sched_info_queued(p);
fd390f6a 1868 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1869 p->se.on_rq = 1;
71f8bd46
IM
1870}
1871
69be72c1 1872static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1873{
831451ac
PZ
1874 if (sleep) {
1875 if (p->se.last_wakeup) {
1876 update_avg(&p->se.avg_overlap,
1877 p->se.sum_exec_runtime - p->se.last_wakeup);
1878 p->se.last_wakeup = 0;
1879 } else {
1880 update_avg(&p->se.avg_wakeup,
1881 sysctl_sched_wakeup_granularity);
1882 }
2087a1ad
GH
1883 }
1884
46ac22ba 1885 sched_info_dequeued(p);
f02231e5 1886 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1887 p->se.on_rq = 0;
71f8bd46
IM
1888}
1889
14531189 1890/*
dd41f596 1891 * __normal_prio - return the priority that is based on the static prio
14531189 1892 */
14531189
IM
1893static inline int __normal_prio(struct task_struct *p)
1894{
dd41f596 1895 return p->static_prio;
14531189
IM
1896}
1897
b29739f9
IM
1898/*
1899 * Calculate the expected normal priority: i.e. priority
1900 * without taking RT-inheritance into account. Might be
1901 * boosted by interactivity modifiers. Changes upon fork,
1902 * setprio syscalls, and whenever the interactivity
1903 * estimator recalculates.
1904 */
36c8b586 1905static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1906{
1907 int prio;
1908
e05606d3 1909 if (task_has_rt_policy(p))
b29739f9
IM
1910 prio = MAX_RT_PRIO-1 - p->rt_priority;
1911 else
1912 prio = __normal_prio(p);
1913 return prio;
1914}
1915
1916/*
1917 * Calculate the current priority, i.e. the priority
1918 * taken into account by the scheduler. This value might
1919 * be boosted by RT tasks, or might be boosted by
1920 * interactivity modifiers. Will be RT if the task got
1921 * RT-boosted. If not then it returns p->normal_prio.
1922 */
36c8b586 1923static int effective_prio(struct task_struct *p)
b29739f9
IM
1924{
1925 p->normal_prio = normal_prio(p);
1926 /*
1927 * If we are RT tasks or we were boosted to RT priority,
1928 * keep the priority unchanged. Otherwise, update priority
1929 * to the normal priority:
1930 */
1931 if (!rt_prio(p->prio))
1932 return p->normal_prio;
1933 return p->prio;
1934}
1935
1da177e4 1936/*
dd41f596 1937 * activate_task - move a task to the runqueue.
1da177e4 1938 */
dd41f596 1939static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1940{
d9514f6c 1941 if (task_contributes_to_load(p))
dd41f596 1942 rq->nr_uninterruptible--;
1da177e4 1943
8159f87e 1944 enqueue_task(rq, p, wakeup);
c09595f6 1945 inc_nr_running(rq);
1da177e4
LT
1946}
1947
1da177e4
LT
1948/*
1949 * deactivate_task - remove a task from the runqueue.
1950 */
2e1cb74a 1951static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1952{
d9514f6c 1953 if (task_contributes_to_load(p))
dd41f596
IM
1954 rq->nr_uninterruptible++;
1955
69be72c1 1956 dequeue_task(rq, p, sleep);
c09595f6 1957 dec_nr_running(rq);
1da177e4
LT
1958}
1959
1da177e4
LT
1960/**
1961 * task_curr - is this task currently executing on a CPU?
1962 * @p: the task in question.
1963 */
36c8b586 1964inline int task_curr(const struct task_struct *p)
1da177e4
LT
1965{
1966 return cpu_curr(task_cpu(p)) == p;
1967}
1968
dd41f596
IM
1969static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1970{
6f505b16 1971 set_task_rq(p, cpu);
dd41f596 1972#ifdef CONFIG_SMP
ce96b5ac
DA
1973 /*
1974 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1975 * successfuly executed on another CPU. We must ensure that updates of
1976 * per-task data have been completed by this moment.
1977 */
1978 smp_wmb();
dd41f596 1979 task_thread_info(p)->cpu = cpu;
dd41f596 1980#endif
2dd73a4f
PW
1981}
1982
cb469845
SR
1983static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1984 const struct sched_class *prev_class,
1985 int oldprio, int running)
1986{
1987 if (prev_class != p->sched_class) {
1988 if (prev_class->switched_from)
1989 prev_class->switched_from(rq, p, running);
1990 p->sched_class->switched_to(rq, p, running);
1991 } else
1992 p->sched_class->prio_changed(rq, p, oldprio, running);
1993}
1994
1da177e4 1995#ifdef CONFIG_SMP
cc367732
IM
1996/*
1997 * Is this task likely cache-hot:
1998 */
e7693a36 1999static int
cc367732
IM
2000task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2001{
2002 s64 delta;
2003
f540a608
IM
2004 /*
2005 * Buddy candidates are cache hot:
2006 */
4793241b
PZ
2007 if (sched_feat(CACHE_HOT_BUDDY) &&
2008 (&p->se == cfs_rq_of(&p->se)->next ||
2009 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2010 return 1;
2011
cc367732
IM
2012 if (p->sched_class != &fair_sched_class)
2013 return 0;
2014
6bc1665b
IM
2015 if (sysctl_sched_migration_cost == -1)
2016 return 1;
2017 if (sysctl_sched_migration_cost == 0)
2018 return 0;
2019
cc367732
IM
2020 delta = now - p->se.exec_start;
2021
2022 return delta < (s64)sysctl_sched_migration_cost;
2023}
2024
2025
dd41f596 2026void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2027{
dd41f596
IM
2028 int old_cpu = task_cpu(p);
2029 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
2030 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2031 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 2032 u64 clock_offset;
dd41f596
IM
2033
2034 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 2035
de1d7286 2036 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2037
6cfb0d5d
IM
2038#ifdef CONFIG_SCHEDSTATS
2039 if (p->se.wait_start)
2040 p->se.wait_start -= clock_offset;
dd41f596
IM
2041 if (p->se.sleep_start)
2042 p->se.sleep_start -= clock_offset;
2043 if (p->se.block_start)
2044 p->se.block_start -= clock_offset;
6c594c21 2045#endif
cc367732 2046 if (old_cpu != new_cpu) {
6c594c21 2047 p->se.nr_migrations++;
23a185ca 2048 new_rq->nr_migrations_in++;
6c594c21 2049#ifdef CONFIG_SCHEDSTATS
cc367732
IM
2050 if (task_hot(p, old_rq->clock, NULL))
2051 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 2052#endif
cdd6c482 2053 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
e5289d4a 2054 1, 1, NULL, 0);
6c594c21 2055 }
2830cf8c
SV
2056 p->se.vruntime -= old_cfsrq->min_vruntime -
2057 new_cfsrq->min_vruntime;
dd41f596
IM
2058
2059 __set_task_cpu(p, new_cpu);
c65cc870
IM
2060}
2061
70b97a7f 2062struct migration_req {
1da177e4 2063 struct list_head list;
1da177e4 2064
36c8b586 2065 struct task_struct *task;
1da177e4
LT
2066 int dest_cpu;
2067
1da177e4 2068 struct completion done;
70b97a7f 2069};
1da177e4
LT
2070
2071/*
2072 * The task's runqueue lock must be held.
2073 * Returns true if you have to wait for migration thread.
2074 */
36c8b586 2075static int
70b97a7f 2076migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2077{
70b97a7f 2078 struct rq *rq = task_rq(p);
1da177e4
LT
2079
2080 /*
2081 * If the task is not on a runqueue (and not running), then
2082 * it is sufficient to simply update the task's cpu field.
2083 */
dd41f596 2084 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2085 set_task_cpu(p, dest_cpu);
2086 return 0;
2087 }
2088
2089 init_completion(&req->done);
1da177e4
LT
2090 req->task = p;
2091 req->dest_cpu = dest_cpu;
2092 list_add(&req->list, &rq->migration_queue);
48f24c4d 2093
1da177e4
LT
2094 return 1;
2095}
2096
a26b89f0
MM
2097/*
2098 * wait_task_context_switch - wait for a thread to complete at least one
2099 * context switch.
2100 *
2101 * @p must not be current.
2102 */
2103void wait_task_context_switch(struct task_struct *p)
2104{
2105 unsigned long nvcsw, nivcsw, flags;
2106 int running;
2107 struct rq *rq;
2108
2109 nvcsw = p->nvcsw;
2110 nivcsw = p->nivcsw;
2111 for (;;) {
2112 /*
2113 * The runqueue is assigned before the actual context
2114 * switch. We need to take the runqueue lock.
2115 *
2116 * We could check initially without the lock but it is
2117 * very likely that we need to take the lock in every
2118 * iteration.
2119 */
2120 rq = task_rq_lock(p, &flags);
2121 running = task_running(rq, p);
2122 task_rq_unlock(rq, &flags);
2123
2124 if (likely(!running))
2125 break;
2126 /*
2127 * The switch count is incremented before the actual
2128 * context switch. We thus wait for two switches to be
2129 * sure at least one completed.
2130 */
2131 if ((p->nvcsw - nvcsw) > 1)
2132 break;
2133 if ((p->nivcsw - nivcsw) > 1)
2134 break;
2135
2136 cpu_relax();
2137 }
2138}
2139
1da177e4
LT
2140/*
2141 * wait_task_inactive - wait for a thread to unschedule.
2142 *
85ba2d86
RM
2143 * If @match_state is nonzero, it's the @p->state value just checked and
2144 * not expected to change. If it changes, i.e. @p might have woken up,
2145 * then return zero. When we succeed in waiting for @p to be off its CPU,
2146 * we return a positive number (its total switch count). If a second call
2147 * a short while later returns the same number, the caller can be sure that
2148 * @p has remained unscheduled the whole time.
2149 *
1da177e4
LT
2150 * The caller must ensure that the task *will* unschedule sometime soon,
2151 * else this function might spin for a *long* time. This function can't
2152 * be called with interrupts off, or it may introduce deadlock with
2153 * smp_call_function() if an IPI is sent by the same process we are
2154 * waiting to become inactive.
2155 */
85ba2d86 2156unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2157{
2158 unsigned long flags;
dd41f596 2159 int running, on_rq;
85ba2d86 2160 unsigned long ncsw;
70b97a7f 2161 struct rq *rq;
1da177e4 2162
3a5c359a
AK
2163 for (;;) {
2164 /*
2165 * We do the initial early heuristics without holding
2166 * any task-queue locks at all. We'll only try to get
2167 * the runqueue lock when things look like they will
2168 * work out!
2169 */
2170 rq = task_rq(p);
fa490cfd 2171
3a5c359a
AK
2172 /*
2173 * If the task is actively running on another CPU
2174 * still, just relax and busy-wait without holding
2175 * any locks.
2176 *
2177 * NOTE! Since we don't hold any locks, it's not
2178 * even sure that "rq" stays as the right runqueue!
2179 * But we don't care, since "task_running()" will
2180 * return false if the runqueue has changed and p
2181 * is actually now running somewhere else!
2182 */
85ba2d86
RM
2183 while (task_running(rq, p)) {
2184 if (match_state && unlikely(p->state != match_state))
2185 return 0;
3a5c359a 2186 cpu_relax();
85ba2d86 2187 }
fa490cfd 2188
3a5c359a
AK
2189 /*
2190 * Ok, time to look more closely! We need the rq
2191 * lock now, to be *sure*. If we're wrong, we'll
2192 * just go back and repeat.
2193 */
2194 rq = task_rq_lock(p, &flags);
0a16b607 2195 trace_sched_wait_task(rq, p);
3a5c359a
AK
2196 running = task_running(rq, p);
2197 on_rq = p->se.on_rq;
85ba2d86 2198 ncsw = 0;
f31e11d8 2199 if (!match_state || p->state == match_state)
93dcf55f 2200 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2201 task_rq_unlock(rq, &flags);
fa490cfd 2202
85ba2d86
RM
2203 /*
2204 * If it changed from the expected state, bail out now.
2205 */
2206 if (unlikely(!ncsw))
2207 break;
2208
3a5c359a
AK
2209 /*
2210 * Was it really running after all now that we
2211 * checked with the proper locks actually held?
2212 *
2213 * Oops. Go back and try again..
2214 */
2215 if (unlikely(running)) {
2216 cpu_relax();
2217 continue;
2218 }
fa490cfd 2219
3a5c359a
AK
2220 /*
2221 * It's not enough that it's not actively running,
2222 * it must be off the runqueue _entirely_, and not
2223 * preempted!
2224 *
80dd99b3 2225 * So if it was still runnable (but just not actively
3a5c359a
AK
2226 * running right now), it's preempted, and we should
2227 * yield - it could be a while.
2228 */
2229 if (unlikely(on_rq)) {
2230 schedule_timeout_uninterruptible(1);
2231 continue;
2232 }
fa490cfd 2233
3a5c359a
AK
2234 /*
2235 * Ahh, all good. It wasn't running, and it wasn't
2236 * runnable, which means that it will never become
2237 * running in the future either. We're all done!
2238 */
2239 break;
2240 }
85ba2d86
RM
2241
2242 return ncsw;
1da177e4
LT
2243}
2244
2245/***
2246 * kick_process - kick a running thread to enter/exit the kernel
2247 * @p: the to-be-kicked thread
2248 *
2249 * Cause a process which is running on another CPU to enter
2250 * kernel-mode, without any delay. (to get signals handled.)
2251 *
2252 * NOTE: this function doesnt have to take the runqueue lock,
2253 * because all it wants to ensure is that the remote task enters
2254 * the kernel. If the IPI races and the task has been migrated
2255 * to another CPU then no harm is done and the purpose has been
2256 * achieved as well.
2257 */
36c8b586 2258void kick_process(struct task_struct *p)
1da177e4
LT
2259{
2260 int cpu;
2261
2262 preempt_disable();
2263 cpu = task_cpu(p);
2264 if ((cpu != smp_processor_id()) && task_curr(p))
2265 smp_send_reschedule(cpu);
2266 preempt_enable();
2267}
b43e3521 2268EXPORT_SYMBOL_GPL(kick_process);
476d139c 2269#endif /* CONFIG_SMP */
1da177e4 2270
0793a61d
TG
2271/**
2272 * task_oncpu_function_call - call a function on the cpu on which a task runs
2273 * @p: the task to evaluate
2274 * @func: the function to be called
2275 * @info: the function call argument
2276 *
2277 * Calls the function @func when the task is currently running. This might
2278 * be on the current CPU, which just calls the function directly
2279 */
2280void task_oncpu_function_call(struct task_struct *p,
2281 void (*func) (void *info), void *info)
2282{
2283 int cpu;
2284
2285 preempt_disable();
2286 cpu = task_cpu(p);
2287 if (task_curr(p))
2288 smp_call_function_single(cpu, func, info, 1);
2289 preempt_enable();
2290}
2291
1da177e4
LT
2292/***
2293 * try_to_wake_up - wake up a thread
2294 * @p: the to-be-woken-up thread
2295 * @state: the mask of task states that can be woken
2296 * @sync: do a synchronous wakeup?
2297 *
2298 * Put it on the run-queue if it's not already there. The "current"
2299 * thread is always on the run-queue (except when the actual
2300 * re-schedule is in progress), and as such you're allowed to do
2301 * the simpler "current->state = TASK_RUNNING" to mark yourself
2302 * runnable without the overhead of this.
2303 *
2304 * returns failure only if the task is already active.
2305 */
7d478721
PZ
2306static int try_to_wake_up(struct task_struct *p, unsigned int state,
2307 int wake_flags)
1da177e4 2308{
cc367732 2309 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2310 unsigned long flags;
f5dc3753 2311 struct rq *rq, *orig_rq;
1da177e4 2312
b85d0667 2313 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2314 wake_flags &= ~WF_SYNC;
2398f2c6 2315
e9c84311 2316 this_cpu = get_cpu();
2398f2c6 2317
04e2f174 2318 smp_wmb();
f5dc3753 2319 rq = orig_rq = task_rq_lock(p, &flags);
03e89e45 2320 update_rq_clock(rq);
e9c84311 2321 if (!(p->state & state))
1da177e4
LT
2322 goto out;
2323
dd41f596 2324 if (p->se.on_rq)
1da177e4
LT
2325 goto out_running;
2326
2327 cpu = task_cpu(p);
cc367732 2328 orig_cpu = cpu;
1da177e4
LT
2329
2330#ifdef CONFIG_SMP
2331 if (unlikely(task_running(rq, p)))
2332 goto out_activate;
2333
e9c84311
PZ
2334 /*
2335 * In order to handle concurrent wakeups and release the rq->lock
2336 * we put the task in TASK_WAKING state.
eb24073b
IM
2337 *
2338 * First fix up the nr_uninterruptible count:
e9c84311 2339 */
eb24073b
IM
2340 if (task_contributes_to_load(p))
2341 rq->nr_uninterruptible--;
e9c84311
PZ
2342 p->state = TASK_WAKING;
2343 task_rq_unlock(rq, &flags);
2344
7d478721 2345 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
e9c84311 2346 if (cpu != orig_cpu)
5d2f5a61 2347 set_task_cpu(p, cpu);
1da177e4 2348
e9c84311 2349 rq = task_rq_lock(p, &flags);
f5dc3753
MG
2350
2351 if (rq != orig_rq)
2352 update_rq_clock(rq);
2353
e9c84311
PZ
2354 WARN_ON(p->state != TASK_WAKING);
2355 cpu = task_cpu(p);
1da177e4 2356
e7693a36
GH
2357#ifdef CONFIG_SCHEDSTATS
2358 schedstat_inc(rq, ttwu_count);
2359 if (cpu == this_cpu)
2360 schedstat_inc(rq, ttwu_local);
2361 else {
2362 struct sched_domain *sd;
2363 for_each_domain(this_cpu, sd) {
758b2cdc 2364 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2365 schedstat_inc(sd, ttwu_wake_remote);
2366 break;
2367 }
2368 }
2369 }
6d6bc0ad 2370#endif /* CONFIG_SCHEDSTATS */
e7693a36 2371
1da177e4
LT
2372out_activate:
2373#endif /* CONFIG_SMP */
cc367732 2374 schedstat_inc(p, se.nr_wakeups);
7d478721 2375 if (wake_flags & WF_SYNC)
cc367732
IM
2376 schedstat_inc(p, se.nr_wakeups_sync);
2377 if (orig_cpu != cpu)
2378 schedstat_inc(p, se.nr_wakeups_migrate);
2379 if (cpu == this_cpu)
2380 schedstat_inc(p, se.nr_wakeups_local);
2381 else
2382 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2383 activate_task(rq, p, 1);
1da177e4
LT
2384 success = 1;
2385
831451ac
PZ
2386 /*
2387 * Only attribute actual wakeups done by this task.
2388 */
2389 if (!in_interrupt()) {
2390 struct sched_entity *se = &current->se;
2391 u64 sample = se->sum_exec_runtime;
2392
2393 if (se->last_wakeup)
2394 sample -= se->last_wakeup;
2395 else
2396 sample -= se->start_runtime;
2397 update_avg(&se->avg_wakeup, sample);
2398
2399 se->last_wakeup = se->sum_exec_runtime;
2400 }
2401
1da177e4 2402out_running:
468a15bb 2403 trace_sched_wakeup(rq, p, success);
7d478721 2404 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2405
1da177e4 2406 p->state = TASK_RUNNING;
9a897c5a
SR
2407#ifdef CONFIG_SMP
2408 if (p->sched_class->task_wake_up)
2409 p->sched_class->task_wake_up(rq, p);
2410#endif
1da177e4
LT
2411out:
2412 task_rq_unlock(rq, &flags);
e9c84311 2413 put_cpu();
1da177e4
LT
2414
2415 return success;
2416}
2417
50fa610a
DH
2418/**
2419 * wake_up_process - Wake up a specific process
2420 * @p: The process to be woken up.
2421 *
2422 * Attempt to wake up the nominated process and move it to the set of runnable
2423 * processes. Returns 1 if the process was woken up, 0 if it was already
2424 * running.
2425 *
2426 * It may be assumed that this function implies a write memory barrier before
2427 * changing the task state if and only if any tasks are woken up.
2428 */
7ad5b3a5 2429int wake_up_process(struct task_struct *p)
1da177e4 2430{
d9514f6c 2431 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2432}
1da177e4
LT
2433EXPORT_SYMBOL(wake_up_process);
2434
7ad5b3a5 2435int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2436{
2437 return try_to_wake_up(p, state, 0);
2438}
2439
1da177e4
LT
2440/*
2441 * Perform scheduler related setup for a newly forked process p.
2442 * p is forked by current.
dd41f596
IM
2443 *
2444 * __sched_fork() is basic setup used by init_idle() too:
2445 */
2446static void __sched_fork(struct task_struct *p)
2447{
dd41f596
IM
2448 p->se.exec_start = 0;
2449 p->se.sum_exec_runtime = 0;
f6cf891c 2450 p->se.prev_sum_exec_runtime = 0;
6c594c21 2451 p->se.nr_migrations = 0;
4ae7d5ce
IM
2452 p->se.last_wakeup = 0;
2453 p->se.avg_overlap = 0;
831451ac
PZ
2454 p->se.start_runtime = 0;
2455 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
ad4b78bb 2456 p->se.avg_running = 0;
6cfb0d5d
IM
2457
2458#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2459 p->se.wait_start = 0;
2460 p->se.wait_max = 0;
2461 p->se.wait_count = 0;
2462 p->se.wait_sum = 0;
2463
2464 p->se.sleep_start = 0;
2465 p->se.sleep_max = 0;
2466 p->se.sum_sleep_runtime = 0;
2467
2468 p->se.block_start = 0;
2469 p->se.block_max = 0;
2470 p->se.exec_max = 0;
2471 p->se.slice_max = 0;
2472
2473 p->se.nr_migrations_cold = 0;
2474 p->se.nr_failed_migrations_affine = 0;
2475 p->se.nr_failed_migrations_running = 0;
2476 p->se.nr_failed_migrations_hot = 0;
2477 p->se.nr_forced_migrations = 0;
2478 p->se.nr_forced2_migrations = 0;
2479
2480 p->se.nr_wakeups = 0;
2481 p->se.nr_wakeups_sync = 0;
2482 p->se.nr_wakeups_migrate = 0;
2483 p->se.nr_wakeups_local = 0;
2484 p->se.nr_wakeups_remote = 0;
2485 p->se.nr_wakeups_affine = 0;
2486 p->se.nr_wakeups_affine_attempts = 0;
2487 p->se.nr_wakeups_passive = 0;
2488 p->se.nr_wakeups_idle = 0;
2489
6cfb0d5d 2490#endif
476d139c 2491
fa717060 2492 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2493 p->se.on_rq = 0;
4a55bd5e 2494 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2495
e107be36
AK
2496#ifdef CONFIG_PREEMPT_NOTIFIERS
2497 INIT_HLIST_HEAD(&p->preempt_notifiers);
2498#endif
2499
1da177e4
LT
2500 /*
2501 * We mark the process as running here, but have not actually
2502 * inserted it onto the runqueue yet. This guarantees that
2503 * nobody will actually run it, and a signal or other external
2504 * event cannot wake it up and insert it on the runqueue either.
2505 */
2506 p->state = TASK_RUNNING;
dd41f596
IM
2507}
2508
2509/*
2510 * fork()/clone()-time setup:
2511 */
2512void sched_fork(struct task_struct *p, int clone_flags)
2513{
2514 int cpu = get_cpu();
2515
2516 __sched_fork(p);
2517
b9dc29e7
MG
2518 /*
2519 * Revert to default priority/policy on fork if requested.
2520 */
2521 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2522 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2523 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2524 p->normal_prio = p->static_prio;
2525 }
b9dc29e7 2526
6c697bdf
MG
2527 if (PRIO_TO_NICE(p->static_prio) < 0) {
2528 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2529 p->normal_prio = p->static_prio;
6c697bdf
MG
2530 set_load_weight(p);
2531 }
2532
b9dc29e7
MG
2533 /*
2534 * We don't need the reset flag anymore after the fork. It has
2535 * fulfilled its duty:
2536 */
2537 p->sched_reset_on_fork = 0;
2538 }
ca94c442 2539
f83f9ac2
PW
2540 /*
2541 * Make sure we do not leak PI boosting priority to the child.
2542 */
2543 p->prio = current->normal_prio;
2544
2ddbf952
HS
2545 if (!rt_prio(p->prio))
2546 p->sched_class = &fair_sched_class;
b29739f9 2547
5f3edc1b
PZ
2548#ifdef CONFIG_SMP
2549 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
2550#endif
2551 set_task_cpu(p, cpu);
2552
52f17b6c 2553#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2554 if (likely(sched_info_on()))
52f17b6c 2555 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2556#endif
d6077cb8 2557#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2558 p->oncpu = 0;
2559#endif
1da177e4 2560#ifdef CONFIG_PREEMPT
4866cde0 2561 /* Want to start with kernel preemption disabled. */
a1261f54 2562 task_thread_info(p)->preempt_count = 1;
1da177e4 2563#endif
917b627d
GH
2564 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2565
476d139c 2566 put_cpu();
1da177e4
LT
2567}
2568
2569/*
2570 * wake_up_new_task - wake up a newly created task for the first time.
2571 *
2572 * This function will do some initial scheduler statistics housekeeping
2573 * that must be done for every newly created context, then puts the task
2574 * on the runqueue and wakes it.
2575 */
7ad5b3a5 2576void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2577{
2578 unsigned long flags;
dd41f596 2579 struct rq *rq;
1da177e4
LT
2580
2581 rq = task_rq_lock(p, &flags);
147cbb4b 2582 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2583 update_rq_clock(rq);
1da177e4 2584
b9dca1e0 2585 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2586 activate_task(rq, p, 0);
1da177e4 2587 } else {
1da177e4 2588 /*
dd41f596
IM
2589 * Let the scheduling class do new task startup
2590 * management (if any):
1da177e4 2591 */
ee0827d8 2592 p->sched_class->task_new(rq, p);
c09595f6 2593 inc_nr_running(rq);
1da177e4 2594 }
c71dd42d 2595 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2596 check_preempt_curr(rq, p, WF_FORK);
9a897c5a
SR
2597#ifdef CONFIG_SMP
2598 if (p->sched_class->task_wake_up)
2599 p->sched_class->task_wake_up(rq, p);
2600#endif
dd41f596 2601 task_rq_unlock(rq, &flags);
1da177e4
LT
2602}
2603
e107be36
AK
2604#ifdef CONFIG_PREEMPT_NOTIFIERS
2605
2606/**
80dd99b3 2607 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2608 * @notifier: notifier struct to register
e107be36
AK
2609 */
2610void preempt_notifier_register(struct preempt_notifier *notifier)
2611{
2612 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2613}
2614EXPORT_SYMBOL_GPL(preempt_notifier_register);
2615
2616/**
2617 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2618 * @notifier: notifier struct to unregister
e107be36
AK
2619 *
2620 * This is safe to call from within a preemption notifier.
2621 */
2622void preempt_notifier_unregister(struct preempt_notifier *notifier)
2623{
2624 hlist_del(&notifier->link);
2625}
2626EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2627
2628static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2629{
2630 struct preempt_notifier *notifier;
2631 struct hlist_node *node;
2632
2633 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2634 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2635}
2636
2637static void
2638fire_sched_out_preempt_notifiers(struct task_struct *curr,
2639 struct task_struct *next)
2640{
2641 struct preempt_notifier *notifier;
2642 struct hlist_node *node;
2643
2644 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2645 notifier->ops->sched_out(notifier, next);
2646}
2647
6d6bc0ad 2648#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2649
2650static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2651{
2652}
2653
2654static void
2655fire_sched_out_preempt_notifiers(struct task_struct *curr,
2656 struct task_struct *next)
2657{
2658}
2659
6d6bc0ad 2660#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2661
4866cde0
NP
2662/**
2663 * prepare_task_switch - prepare to switch tasks
2664 * @rq: the runqueue preparing to switch
421cee29 2665 * @prev: the current task that is being switched out
4866cde0
NP
2666 * @next: the task we are going to switch to.
2667 *
2668 * This is called with the rq lock held and interrupts off. It must
2669 * be paired with a subsequent finish_task_switch after the context
2670 * switch.
2671 *
2672 * prepare_task_switch sets up locking and calls architecture specific
2673 * hooks.
2674 */
e107be36
AK
2675static inline void
2676prepare_task_switch(struct rq *rq, struct task_struct *prev,
2677 struct task_struct *next)
4866cde0 2678{
e107be36 2679 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2680 prepare_lock_switch(rq, next);
2681 prepare_arch_switch(next);
2682}
2683
1da177e4
LT
2684/**
2685 * finish_task_switch - clean up after a task-switch
344babaa 2686 * @rq: runqueue associated with task-switch
1da177e4
LT
2687 * @prev: the thread we just switched away from.
2688 *
4866cde0
NP
2689 * finish_task_switch must be called after the context switch, paired
2690 * with a prepare_task_switch call before the context switch.
2691 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2692 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2693 *
2694 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2695 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2696 * with the lock held can cause deadlocks; see schedule() for
2697 * details.)
2698 */
a9957449 2699static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2700 __releases(rq->lock)
2701{
1da177e4 2702 struct mm_struct *mm = rq->prev_mm;
55a101f8 2703 long prev_state;
1da177e4
LT
2704
2705 rq->prev_mm = NULL;
2706
2707 /*
2708 * A task struct has one reference for the use as "current".
c394cc9f 2709 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2710 * schedule one last time. The schedule call will never return, and
2711 * the scheduled task must drop that reference.
c394cc9f 2712 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2713 * still held, otherwise prev could be scheduled on another cpu, die
2714 * there before we look at prev->state, and then the reference would
2715 * be dropped twice.
2716 * Manfred Spraul <manfred@colorfullife.com>
2717 */
55a101f8 2718 prev_state = prev->state;
4866cde0 2719 finish_arch_switch(prev);
cdd6c482 2720 perf_event_task_sched_in(current, cpu_of(rq));
4866cde0 2721 finish_lock_switch(rq, prev);
e8fa1362 2722
e107be36 2723 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2724 if (mm)
2725 mmdrop(mm);
c394cc9f 2726 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2727 /*
2728 * Remove function-return probe instances associated with this
2729 * task and put them back on the free list.
9761eea8 2730 */
c6fd91f0 2731 kprobe_flush_task(prev);
1da177e4 2732 put_task_struct(prev);
c6fd91f0 2733 }
1da177e4
LT
2734}
2735
3f029d3c
GH
2736#ifdef CONFIG_SMP
2737
2738/* assumes rq->lock is held */
2739static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2740{
2741 if (prev->sched_class->pre_schedule)
2742 prev->sched_class->pre_schedule(rq, prev);
2743}
2744
2745/* rq->lock is NOT held, but preemption is disabled */
2746static inline void post_schedule(struct rq *rq)
2747{
2748 if (rq->post_schedule) {
2749 unsigned long flags;
2750
2751 spin_lock_irqsave(&rq->lock, flags);
2752 if (rq->curr->sched_class->post_schedule)
2753 rq->curr->sched_class->post_schedule(rq);
2754 spin_unlock_irqrestore(&rq->lock, flags);
2755
2756 rq->post_schedule = 0;
2757 }
2758}
2759
2760#else
da19ab51 2761
3f029d3c
GH
2762static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2763{
2764}
2765
2766static inline void post_schedule(struct rq *rq)
2767{
1da177e4
LT
2768}
2769
3f029d3c
GH
2770#endif
2771
1da177e4
LT
2772/**
2773 * schedule_tail - first thing a freshly forked thread must call.
2774 * @prev: the thread we just switched away from.
2775 */
36c8b586 2776asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2777 __releases(rq->lock)
2778{
70b97a7f
IM
2779 struct rq *rq = this_rq();
2780
4866cde0 2781 finish_task_switch(rq, prev);
da19ab51 2782
3f029d3c
GH
2783 /*
2784 * FIXME: do we need to worry about rq being invalidated by the
2785 * task_switch?
2786 */
2787 post_schedule(rq);
70b97a7f 2788
4866cde0
NP
2789#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2790 /* In this case, finish_task_switch does not reenable preemption */
2791 preempt_enable();
2792#endif
1da177e4 2793 if (current->set_child_tid)
b488893a 2794 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2795}
2796
2797/*
2798 * context_switch - switch to the new MM and the new
2799 * thread's register state.
2800 */
dd41f596 2801static inline void
70b97a7f 2802context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2803 struct task_struct *next)
1da177e4 2804{
dd41f596 2805 struct mm_struct *mm, *oldmm;
1da177e4 2806
e107be36 2807 prepare_task_switch(rq, prev, next);
0a16b607 2808 trace_sched_switch(rq, prev, next);
dd41f596
IM
2809 mm = next->mm;
2810 oldmm = prev->active_mm;
9226d125
ZA
2811 /*
2812 * For paravirt, this is coupled with an exit in switch_to to
2813 * combine the page table reload and the switch backend into
2814 * one hypercall.
2815 */
224101ed 2816 arch_start_context_switch(prev);
9226d125 2817
dd41f596 2818 if (unlikely(!mm)) {
1da177e4
LT
2819 next->active_mm = oldmm;
2820 atomic_inc(&oldmm->mm_count);
2821 enter_lazy_tlb(oldmm, next);
2822 } else
2823 switch_mm(oldmm, mm, next);
2824
dd41f596 2825 if (unlikely(!prev->mm)) {
1da177e4 2826 prev->active_mm = NULL;
1da177e4
LT
2827 rq->prev_mm = oldmm;
2828 }
3a5f5e48
IM
2829 /*
2830 * Since the runqueue lock will be released by the next
2831 * task (which is an invalid locking op but in the case
2832 * of the scheduler it's an obvious special-case), so we
2833 * do an early lockdep release here:
2834 */
2835#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2836 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2837#endif
1da177e4
LT
2838
2839 /* Here we just switch the register state and the stack. */
2840 switch_to(prev, next, prev);
2841
dd41f596
IM
2842 barrier();
2843 /*
2844 * this_rq must be evaluated again because prev may have moved
2845 * CPUs since it called schedule(), thus the 'rq' on its stack
2846 * frame will be invalid.
2847 */
2848 finish_task_switch(this_rq(), prev);
1da177e4
LT
2849}
2850
2851/*
2852 * nr_running, nr_uninterruptible and nr_context_switches:
2853 *
2854 * externally visible scheduler statistics: current number of runnable
2855 * threads, current number of uninterruptible-sleeping threads, total
2856 * number of context switches performed since bootup.
2857 */
2858unsigned long nr_running(void)
2859{
2860 unsigned long i, sum = 0;
2861
2862 for_each_online_cpu(i)
2863 sum += cpu_rq(i)->nr_running;
2864
2865 return sum;
2866}
2867
2868unsigned long nr_uninterruptible(void)
2869{
2870 unsigned long i, sum = 0;
2871
0a945022 2872 for_each_possible_cpu(i)
1da177e4
LT
2873 sum += cpu_rq(i)->nr_uninterruptible;
2874
2875 /*
2876 * Since we read the counters lockless, it might be slightly
2877 * inaccurate. Do not allow it to go below zero though:
2878 */
2879 if (unlikely((long)sum < 0))
2880 sum = 0;
2881
2882 return sum;
2883}
2884
2885unsigned long long nr_context_switches(void)
2886{
cc94abfc
SR
2887 int i;
2888 unsigned long long sum = 0;
1da177e4 2889
0a945022 2890 for_each_possible_cpu(i)
1da177e4
LT
2891 sum += cpu_rq(i)->nr_switches;
2892
2893 return sum;
2894}
2895
2896unsigned long nr_iowait(void)
2897{
2898 unsigned long i, sum = 0;
2899
0a945022 2900 for_each_possible_cpu(i)
1da177e4
LT
2901 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2902
2903 return sum;
2904}
2905
69d25870
AV
2906unsigned long nr_iowait_cpu(void)
2907{
2908 struct rq *this = this_rq();
2909 return atomic_read(&this->nr_iowait);
2910}
2911
2912unsigned long this_cpu_load(void)
2913{
2914 struct rq *this = this_rq();
2915 return this->cpu_load[0];
2916}
2917
2918
dce48a84
TG
2919/* Variables and functions for calc_load */
2920static atomic_long_t calc_load_tasks;
2921static unsigned long calc_load_update;
2922unsigned long avenrun[3];
2923EXPORT_SYMBOL(avenrun);
2924
2d02494f
TG
2925/**
2926 * get_avenrun - get the load average array
2927 * @loads: pointer to dest load array
2928 * @offset: offset to add
2929 * @shift: shift count to shift the result left
2930 *
2931 * These values are estimates at best, so no need for locking.
2932 */
2933void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2934{
2935 loads[0] = (avenrun[0] + offset) << shift;
2936 loads[1] = (avenrun[1] + offset) << shift;
2937 loads[2] = (avenrun[2] + offset) << shift;
2938}
2939
dce48a84
TG
2940static unsigned long
2941calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2942{
dce48a84
TG
2943 load *= exp;
2944 load += active * (FIXED_1 - exp);
2945 return load >> FSHIFT;
2946}
db1b1fef 2947
dce48a84
TG
2948/*
2949 * calc_load - update the avenrun load estimates 10 ticks after the
2950 * CPUs have updated calc_load_tasks.
2951 */
2952void calc_global_load(void)
2953{
2954 unsigned long upd = calc_load_update + 10;
2955 long active;
2956
2957 if (time_before(jiffies, upd))
2958 return;
db1b1fef 2959
dce48a84
TG
2960 active = atomic_long_read(&calc_load_tasks);
2961 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 2962
dce48a84
TG
2963 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2964 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2965 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2966
2967 calc_load_update += LOAD_FREQ;
2968}
2969
2970/*
2971 * Either called from update_cpu_load() or from a cpu going idle
2972 */
2973static void calc_load_account_active(struct rq *this_rq)
2974{
2975 long nr_active, delta;
2976
2977 nr_active = this_rq->nr_running;
2978 nr_active += (long) this_rq->nr_uninterruptible;
2979
2980 if (nr_active != this_rq->calc_load_active) {
2981 delta = nr_active - this_rq->calc_load_active;
2982 this_rq->calc_load_active = nr_active;
2983 atomic_long_add(delta, &calc_load_tasks);
2984 }
db1b1fef
JS
2985}
2986
23a185ca
PM
2987/*
2988 * Externally visible per-cpu scheduler statistics:
23a185ca
PM
2989 * cpu_nr_migrations(cpu) - number of migrations into that cpu
2990 */
23a185ca
PM
2991u64 cpu_nr_migrations(int cpu)
2992{
2993 return cpu_rq(cpu)->nr_migrations_in;
2994}
2995
48f24c4d 2996/*
dd41f596
IM
2997 * Update rq->cpu_load[] statistics. This function is usually called every
2998 * scheduler tick (TICK_NSEC).
48f24c4d 2999 */
dd41f596 3000static void update_cpu_load(struct rq *this_rq)
48f24c4d 3001{
495eca49 3002 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3003 int i, scale;
3004
3005 this_rq->nr_load_updates++;
dd41f596
IM
3006
3007 /* Update our load: */
3008 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3009 unsigned long old_load, new_load;
3010
3011 /* scale is effectively 1 << i now, and >> i divides by scale */
3012
3013 old_load = this_rq->cpu_load[i];
3014 new_load = this_load;
a25707f3
IM
3015 /*
3016 * Round up the averaging division if load is increasing. This
3017 * prevents us from getting stuck on 9 if the load is 10, for
3018 * example.
3019 */
3020 if (new_load > old_load)
3021 new_load += scale-1;
dd41f596
IM
3022 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3023 }
dce48a84
TG
3024
3025 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3026 this_rq->calc_load_update += LOAD_FREQ;
3027 calc_load_account_active(this_rq);
3028 }
48f24c4d
IM
3029}
3030
dd41f596
IM
3031#ifdef CONFIG_SMP
3032
1da177e4
LT
3033/*
3034 * double_rq_lock - safely lock two runqueues
3035 *
3036 * Note this does not disable interrupts like task_rq_lock,
3037 * you need to do so manually before calling.
3038 */
70b97a7f 3039static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3040 __acquires(rq1->lock)
3041 __acquires(rq2->lock)
3042{
054b9108 3043 BUG_ON(!irqs_disabled());
1da177e4
LT
3044 if (rq1 == rq2) {
3045 spin_lock(&rq1->lock);
3046 __acquire(rq2->lock); /* Fake it out ;) */
3047 } else {
c96d145e 3048 if (rq1 < rq2) {
1da177e4 3049 spin_lock(&rq1->lock);
5e710e37 3050 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3051 } else {
3052 spin_lock(&rq2->lock);
5e710e37 3053 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3054 }
3055 }
6e82a3be
IM
3056 update_rq_clock(rq1);
3057 update_rq_clock(rq2);
1da177e4
LT
3058}
3059
3060/*
3061 * double_rq_unlock - safely unlock two runqueues
3062 *
3063 * Note this does not restore interrupts like task_rq_unlock,
3064 * you need to do so manually after calling.
3065 */
70b97a7f 3066static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3067 __releases(rq1->lock)
3068 __releases(rq2->lock)
3069{
3070 spin_unlock(&rq1->lock);
3071 if (rq1 != rq2)
3072 spin_unlock(&rq2->lock);
3073 else
3074 __release(rq2->lock);
3075}
3076
1da177e4
LT
3077/*
3078 * If dest_cpu is allowed for this process, migrate the task to it.
3079 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3080 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3081 * the cpu_allowed mask is restored.
3082 */
36c8b586 3083static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3084{
70b97a7f 3085 struct migration_req req;
1da177e4 3086 unsigned long flags;
70b97a7f 3087 struct rq *rq;
1da177e4
LT
3088
3089 rq = task_rq_lock(p, &flags);
96f874e2 3090 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3091 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3092 goto out;
3093
3094 /* force the process onto the specified CPU */
3095 if (migrate_task(p, dest_cpu, &req)) {
3096 /* Need to wait for migration thread (might exit: take ref). */
3097 struct task_struct *mt = rq->migration_thread;
36c8b586 3098
1da177e4
LT
3099 get_task_struct(mt);
3100 task_rq_unlock(rq, &flags);
3101 wake_up_process(mt);
3102 put_task_struct(mt);
3103 wait_for_completion(&req.done);
36c8b586 3104
1da177e4
LT
3105 return;
3106 }
3107out:
3108 task_rq_unlock(rq, &flags);
3109}
3110
3111/*
476d139c
NP
3112 * sched_exec - execve() is a valuable balancing opportunity, because at
3113 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3114 */
3115void sched_exec(void)
3116{
1da177e4 3117 int new_cpu, this_cpu = get_cpu();
5f3edc1b 3118 new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
1da177e4 3119 put_cpu();
476d139c
NP
3120 if (new_cpu != this_cpu)
3121 sched_migrate_task(current, new_cpu);
1da177e4
LT
3122}
3123
3124/*
3125 * pull_task - move a task from a remote runqueue to the local runqueue.
3126 * Both runqueues must be locked.
3127 */
dd41f596
IM
3128static void pull_task(struct rq *src_rq, struct task_struct *p,
3129 struct rq *this_rq, int this_cpu)
1da177e4 3130{
2e1cb74a 3131 deactivate_task(src_rq, p, 0);
1da177e4 3132 set_task_cpu(p, this_cpu);
dd41f596 3133 activate_task(this_rq, p, 0);
1da177e4
LT
3134 /*
3135 * Note that idle threads have a prio of MAX_PRIO, for this test
3136 * to be always true for them.
3137 */
15afe09b 3138 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3139}
3140
3141/*
3142 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3143 */
858119e1 3144static
70b97a7f 3145int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3146 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3147 int *all_pinned)
1da177e4 3148{
708dc512 3149 int tsk_cache_hot = 0;
1da177e4
LT
3150 /*
3151 * We do not migrate tasks that are:
3152 * 1) running (obviously), or
3153 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3154 * 3) are cache-hot on their current CPU.
3155 */
96f874e2 3156 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3157 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3158 return 0;
cc367732 3159 }
81026794
NP
3160 *all_pinned = 0;
3161
cc367732
IM
3162 if (task_running(rq, p)) {
3163 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3164 return 0;
cc367732 3165 }
1da177e4 3166
da84d961
IM
3167 /*
3168 * Aggressive migration if:
3169 * 1) task is cache cold, or
3170 * 2) too many balance attempts have failed.
3171 */
3172
708dc512
LH
3173 tsk_cache_hot = task_hot(p, rq->clock, sd);
3174 if (!tsk_cache_hot ||
3175 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3176#ifdef CONFIG_SCHEDSTATS
708dc512 3177 if (tsk_cache_hot) {
da84d961 3178 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3179 schedstat_inc(p, se.nr_forced_migrations);
3180 }
da84d961
IM
3181#endif
3182 return 1;
3183 }
3184
708dc512 3185 if (tsk_cache_hot) {
cc367732 3186 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3187 return 0;
cc367732 3188 }
1da177e4
LT
3189 return 1;
3190}
3191
e1d1484f
PW
3192static unsigned long
3193balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3194 unsigned long max_load_move, struct sched_domain *sd,
3195 enum cpu_idle_type idle, int *all_pinned,
3196 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3197{
051c6764 3198 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3199 struct task_struct *p;
3200 long rem_load_move = max_load_move;
1da177e4 3201
e1d1484f 3202 if (max_load_move == 0)
1da177e4
LT
3203 goto out;
3204
81026794
NP
3205 pinned = 1;
3206
1da177e4 3207 /*
dd41f596 3208 * Start the load-balancing iterator:
1da177e4 3209 */
dd41f596
IM
3210 p = iterator->start(iterator->arg);
3211next:
b82d9fdd 3212 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3213 goto out;
051c6764
PZ
3214
3215 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3216 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3217 p = iterator->next(iterator->arg);
3218 goto next;
1da177e4
LT
3219 }
3220
dd41f596 3221 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3222 pulled++;
dd41f596 3223 rem_load_move -= p->se.load.weight;
1da177e4 3224
7e96fa58
GH
3225#ifdef CONFIG_PREEMPT
3226 /*
3227 * NEWIDLE balancing is a source of latency, so preemptible kernels
3228 * will stop after the first task is pulled to minimize the critical
3229 * section.
3230 */
3231 if (idle == CPU_NEWLY_IDLE)
3232 goto out;
3233#endif
3234
2dd73a4f 3235 /*
b82d9fdd 3236 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3237 */
e1d1484f 3238 if (rem_load_move > 0) {
a4ac01c3
PW
3239 if (p->prio < *this_best_prio)
3240 *this_best_prio = p->prio;
dd41f596
IM
3241 p = iterator->next(iterator->arg);
3242 goto next;
1da177e4
LT
3243 }
3244out:
3245 /*
e1d1484f 3246 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3247 * so we can safely collect pull_task() stats here rather than
3248 * inside pull_task().
3249 */
3250 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3251
3252 if (all_pinned)
3253 *all_pinned = pinned;
e1d1484f
PW
3254
3255 return max_load_move - rem_load_move;
1da177e4
LT
3256}
3257
dd41f596 3258/*
43010659
PW
3259 * move_tasks tries to move up to max_load_move weighted load from busiest to
3260 * this_rq, as part of a balancing operation within domain "sd".
3261 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3262 *
3263 * Called with both runqueues locked.
3264 */
3265static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3266 unsigned long max_load_move,
dd41f596
IM
3267 struct sched_domain *sd, enum cpu_idle_type idle,
3268 int *all_pinned)
3269{
5522d5d5 3270 const struct sched_class *class = sched_class_highest;
43010659 3271 unsigned long total_load_moved = 0;
a4ac01c3 3272 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3273
3274 do {
43010659
PW
3275 total_load_moved +=
3276 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3277 max_load_move - total_load_moved,
a4ac01c3 3278 sd, idle, all_pinned, &this_best_prio);
dd41f596 3279 class = class->next;
c4acb2c0 3280
7e96fa58
GH
3281#ifdef CONFIG_PREEMPT
3282 /*
3283 * NEWIDLE balancing is a source of latency, so preemptible
3284 * kernels will stop after the first task is pulled to minimize
3285 * the critical section.
3286 */
c4acb2c0
GH
3287 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3288 break;
7e96fa58 3289#endif
43010659 3290 } while (class && max_load_move > total_load_moved);
dd41f596 3291
43010659
PW
3292 return total_load_moved > 0;
3293}
3294
e1d1484f
PW
3295static int
3296iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3297 struct sched_domain *sd, enum cpu_idle_type idle,
3298 struct rq_iterator *iterator)
3299{
3300 struct task_struct *p = iterator->start(iterator->arg);
3301 int pinned = 0;
3302
3303 while (p) {
3304 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3305 pull_task(busiest, p, this_rq, this_cpu);
3306 /*
3307 * Right now, this is only the second place pull_task()
3308 * is called, so we can safely collect pull_task()
3309 * stats here rather than inside pull_task().
3310 */
3311 schedstat_inc(sd, lb_gained[idle]);
3312
3313 return 1;
3314 }
3315 p = iterator->next(iterator->arg);
3316 }
3317
3318 return 0;
3319}
3320
43010659
PW
3321/*
3322 * move_one_task tries to move exactly one task from busiest to this_rq, as
3323 * part of active balancing operations within "domain".
3324 * Returns 1 if successful and 0 otherwise.
3325 *
3326 * Called with both runqueues locked.
3327 */
3328static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3329 struct sched_domain *sd, enum cpu_idle_type idle)
3330{
5522d5d5 3331 const struct sched_class *class;
43010659 3332
cde7e5ca 3333 for_each_class(class) {
e1d1484f 3334 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3335 return 1;
cde7e5ca 3336 }
43010659
PW
3337
3338 return 0;
dd41f596 3339}
67bb6c03 3340/********** Helpers for find_busiest_group ************************/
1da177e4 3341/*
222d656d
GS
3342 * sd_lb_stats - Structure to store the statistics of a sched_domain
3343 * during load balancing.
1da177e4 3344 */
222d656d
GS
3345struct sd_lb_stats {
3346 struct sched_group *busiest; /* Busiest group in this sd */
3347 struct sched_group *this; /* Local group in this sd */
3348 unsigned long total_load; /* Total load of all groups in sd */
3349 unsigned long total_pwr; /* Total power of all groups in sd */
3350 unsigned long avg_load; /* Average load across all groups in sd */
3351
3352 /** Statistics of this group */
3353 unsigned long this_load;
3354 unsigned long this_load_per_task;
3355 unsigned long this_nr_running;
3356
3357 /* Statistics of the busiest group */
3358 unsigned long max_load;
3359 unsigned long busiest_load_per_task;
3360 unsigned long busiest_nr_running;
3361
3362 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3363#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3364 int power_savings_balance; /* Is powersave balance needed for this sd */
3365 struct sched_group *group_min; /* Least loaded group in sd */
3366 struct sched_group *group_leader; /* Group which relieves group_min */
3367 unsigned long min_load_per_task; /* load_per_task in group_min */
3368 unsigned long leader_nr_running; /* Nr running of group_leader */
3369 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3370#endif
222d656d 3371};
1da177e4 3372
d5ac537e 3373/*
381be78f
GS
3374 * sg_lb_stats - stats of a sched_group required for load_balancing
3375 */
3376struct sg_lb_stats {
3377 unsigned long avg_load; /*Avg load across the CPUs of the group */
3378 unsigned long group_load; /* Total load over the CPUs of the group */
3379 unsigned long sum_nr_running; /* Nr tasks running in the group */
3380 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3381 unsigned long group_capacity;
3382 int group_imb; /* Is there an imbalance in the group ? */
3383};
408ed066 3384
67bb6c03
GS
3385/**
3386 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3387 * @group: The group whose first cpu is to be returned.
3388 */
3389static inline unsigned int group_first_cpu(struct sched_group *group)
3390{
3391 return cpumask_first(sched_group_cpus(group));
3392}
3393
3394/**
3395 * get_sd_load_idx - Obtain the load index for a given sched domain.
3396 * @sd: The sched_domain whose load_idx is to be obtained.
3397 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3398 */
3399static inline int get_sd_load_idx(struct sched_domain *sd,
3400 enum cpu_idle_type idle)
3401{
3402 int load_idx;
3403
3404 switch (idle) {
3405 case CPU_NOT_IDLE:
7897986b 3406 load_idx = sd->busy_idx;
67bb6c03
GS
3407 break;
3408
3409 case CPU_NEWLY_IDLE:
7897986b 3410 load_idx = sd->newidle_idx;
67bb6c03
GS
3411 break;
3412 default:
7897986b 3413 load_idx = sd->idle_idx;
67bb6c03
GS
3414 break;
3415 }
1da177e4 3416
67bb6c03
GS
3417 return load_idx;
3418}
1da177e4 3419
1da177e4 3420
c071df18
GS
3421#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3422/**
3423 * init_sd_power_savings_stats - Initialize power savings statistics for
3424 * the given sched_domain, during load balancing.
3425 *
3426 * @sd: Sched domain whose power-savings statistics are to be initialized.
3427 * @sds: Variable containing the statistics for sd.
3428 * @idle: Idle status of the CPU at which we're performing load-balancing.
3429 */
3430static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3431 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3432{
3433 /*
3434 * Busy processors will not participate in power savings
3435 * balance.
3436 */
3437 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3438 sds->power_savings_balance = 0;
3439 else {
3440 sds->power_savings_balance = 1;
3441 sds->min_nr_running = ULONG_MAX;
3442 sds->leader_nr_running = 0;
3443 }
3444}
783609c6 3445
c071df18
GS
3446/**
3447 * update_sd_power_savings_stats - Update the power saving stats for a
3448 * sched_domain while performing load balancing.
3449 *
3450 * @group: sched_group belonging to the sched_domain under consideration.
3451 * @sds: Variable containing the statistics of the sched_domain
3452 * @local_group: Does group contain the CPU for which we're performing
3453 * load balancing ?
3454 * @sgs: Variable containing the statistics of the group.
3455 */
3456static inline void update_sd_power_savings_stats(struct sched_group *group,
3457 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3458{
408ed066 3459
c071df18
GS
3460 if (!sds->power_savings_balance)
3461 return;
1da177e4 3462
c071df18
GS
3463 /*
3464 * If the local group is idle or completely loaded
3465 * no need to do power savings balance at this domain
3466 */
3467 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3468 !sds->this_nr_running))
3469 sds->power_savings_balance = 0;
2dd73a4f 3470
c071df18
GS
3471 /*
3472 * If a group is already running at full capacity or idle,
3473 * don't include that group in power savings calculations
3474 */
3475 if (!sds->power_savings_balance ||
3476 sgs->sum_nr_running >= sgs->group_capacity ||
3477 !sgs->sum_nr_running)
3478 return;
5969fe06 3479
c071df18
GS
3480 /*
3481 * Calculate the group which has the least non-idle load.
3482 * This is the group from where we need to pick up the load
3483 * for saving power
3484 */
3485 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3486 (sgs->sum_nr_running == sds->min_nr_running &&
3487 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3488 sds->group_min = group;
3489 sds->min_nr_running = sgs->sum_nr_running;
3490 sds->min_load_per_task = sgs->sum_weighted_load /
3491 sgs->sum_nr_running;
3492 }
783609c6 3493
c071df18
GS
3494 /*
3495 * Calculate the group which is almost near its
3496 * capacity but still has some space to pick up some load
3497 * from other group and save more power
3498 */
d899a789 3499 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
c071df18 3500 return;
1da177e4 3501
c071df18
GS
3502 if (sgs->sum_nr_running > sds->leader_nr_running ||
3503 (sgs->sum_nr_running == sds->leader_nr_running &&
3504 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3505 sds->group_leader = group;
3506 sds->leader_nr_running = sgs->sum_nr_running;
3507 }
3508}
408ed066 3509
c071df18 3510/**
d5ac537e 3511 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3512 * @sds: Variable containing the statistics of the sched_domain
3513 * under consideration.
3514 * @this_cpu: Cpu at which we're currently performing load-balancing.
3515 * @imbalance: Variable to store the imbalance.
3516 *
d5ac537e
RD
3517 * Description:
3518 * Check if we have potential to perform some power-savings balance.
3519 * If yes, set the busiest group to be the least loaded group in the
3520 * sched_domain, so that it's CPUs can be put to idle.
3521 *
c071df18
GS
3522 * Returns 1 if there is potential to perform power-savings balance.
3523 * Else returns 0.
3524 */
3525static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3526 int this_cpu, unsigned long *imbalance)
3527{
3528 if (!sds->power_savings_balance)
3529 return 0;
1da177e4 3530
c071df18
GS
3531 if (sds->this != sds->group_leader ||
3532 sds->group_leader == sds->group_min)
3533 return 0;
783609c6 3534
c071df18
GS
3535 *imbalance = sds->min_load_per_task;
3536 sds->busiest = sds->group_min;
1da177e4 3537
c071df18 3538 return 1;
1da177e4 3539
c071df18
GS
3540}
3541#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3542static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3543 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3544{
3545 return;
3546}
408ed066 3547
c071df18
GS
3548static inline void update_sd_power_savings_stats(struct sched_group *group,
3549 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3550{
3551 return;
3552}
3553
3554static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3555 int this_cpu, unsigned long *imbalance)
3556{
3557 return 0;
3558}
3559#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3560
d6a59aa3
PZ
3561
3562unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3563{
3564 return SCHED_LOAD_SCALE;
3565}
3566
3567unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3568{
3569 return default_scale_freq_power(sd, cpu);
3570}
3571
3572unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
ab29230e
PZ
3573{
3574 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3575 unsigned long smt_gain = sd->smt_gain;
3576
3577 smt_gain /= weight;
3578
3579 return smt_gain;
3580}
3581
d6a59aa3
PZ
3582unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3583{
3584 return default_scale_smt_power(sd, cpu);
3585}
3586
e9e9250b
PZ
3587unsigned long scale_rt_power(int cpu)
3588{
3589 struct rq *rq = cpu_rq(cpu);
3590 u64 total, available;
3591
3592 sched_avg_update(rq);
3593
3594 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3595 available = total - rq->rt_avg;
3596
3597 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3598 total = SCHED_LOAD_SCALE;
3599
3600 total >>= SCHED_LOAD_SHIFT;
3601
3602 return div_u64(available, total);
3603}
3604
ab29230e
PZ
3605static void update_cpu_power(struct sched_domain *sd, int cpu)
3606{
3607 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3608 unsigned long power = SCHED_LOAD_SCALE;
3609 struct sched_group *sdg = sd->groups;
ab29230e 3610
8e6598af
PZ
3611 if (sched_feat(ARCH_POWER))
3612 power *= arch_scale_freq_power(sd, cpu);
3613 else
3614 power *= default_scale_freq_power(sd, cpu);
3615
d6a59aa3 3616 power >>= SCHED_LOAD_SHIFT;
ab29230e
PZ
3617
3618 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8e6598af
PZ
3619 if (sched_feat(ARCH_POWER))
3620 power *= arch_scale_smt_power(sd, cpu);
3621 else
3622 power *= default_scale_smt_power(sd, cpu);
3623
ab29230e
PZ
3624 power >>= SCHED_LOAD_SHIFT;
3625 }
3626
e9e9250b
PZ
3627 power *= scale_rt_power(cpu);
3628 power >>= SCHED_LOAD_SHIFT;
3629
3630 if (!power)
3631 power = 1;
ab29230e 3632
18a3885f 3633 sdg->cpu_power = power;
ab29230e
PZ
3634}
3635
3636static void update_group_power(struct sched_domain *sd, int cpu)
cc9fba7d
PZ
3637{
3638 struct sched_domain *child = sd->child;
3639 struct sched_group *group, *sdg = sd->groups;
d7ea17a7 3640 unsigned long power;
cc9fba7d
PZ
3641
3642 if (!child) {
ab29230e 3643 update_cpu_power(sd, cpu);
cc9fba7d
PZ
3644 return;
3645 }
3646
d7ea17a7 3647 power = 0;
cc9fba7d
PZ
3648
3649 group = child->groups;
3650 do {
d7ea17a7 3651 power += group->cpu_power;
cc9fba7d
PZ
3652 group = group->next;
3653 } while (group != child->groups);
d7ea17a7
IM
3654
3655 sdg->cpu_power = power;
cc9fba7d 3656}
c071df18 3657
1f8c553d
GS
3658/**
3659 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
e17b38bf 3660 * @sd: The sched_domain whose statistics are to be updated.
1f8c553d
GS
3661 * @group: sched_group whose statistics are to be updated.
3662 * @this_cpu: Cpu for which load balance is currently performed.
3663 * @idle: Idle status of this_cpu
3664 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3665 * @sd_idle: Idle status of the sched_domain containing group.
3666 * @local_group: Does group contain this_cpu.
3667 * @cpus: Set of cpus considered for load balancing.
3668 * @balance: Should we balance.
3669 * @sgs: variable to hold the statistics for this group.
3670 */
cc9fba7d
PZ
3671static inline void update_sg_lb_stats(struct sched_domain *sd,
3672 struct sched_group *group, int this_cpu,
1f8c553d
GS
3673 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3674 int local_group, const struct cpumask *cpus,
3675 int *balance, struct sg_lb_stats *sgs)
3676{
3677 unsigned long load, max_cpu_load, min_cpu_load;
3678 int i;
3679 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3680 unsigned long sum_avg_load_per_task;
3681 unsigned long avg_load_per_task;
3682
cc9fba7d 3683 if (local_group) {
1f8c553d 3684 balance_cpu = group_first_cpu(group);
cc9fba7d 3685 if (balance_cpu == this_cpu)
ab29230e 3686 update_group_power(sd, this_cpu);
cc9fba7d 3687 }
1f8c553d
GS
3688
3689 /* Tally up the load of all CPUs in the group */
3690 sum_avg_load_per_task = avg_load_per_task = 0;
3691 max_cpu_load = 0;
3692 min_cpu_load = ~0UL;
408ed066 3693
1f8c553d
GS
3694 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3695 struct rq *rq = cpu_rq(i);
908a7c1b 3696
1f8c553d
GS
3697 if (*sd_idle && rq->nr_running)
3698 *sd_idle = 0;
5c45bf27 3699
1f8c553d 3700 /* Bias balancing toward cpus of our domain */
1da177e4 3701 if (local_group) {
1f8c553d
GS
3702 if (idle_cpu(i) && !first_idle_cpu) {
3703 first_idle_cpu = 1;
3704 balance_cpu = i;
3705 }
3706
3707 load = target_load(i, load_idx);
3708 } else {
3709 load = source_load(i, load_idx);
3710 if (load > max_cpu_load)
3711 max_cpu_load = load;
3712 if (min_cpu_load > load)
3713 min_cpu_load = load;
1da177e4 3714 }
5c45bf27 3715
1f8c553d
GS
3716 sgs->group_load += load;
3717 sgs->sum_nr_running += rq->nr_running;
3718 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3719
1f8c553d
GS
3720 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3721 }
5c45bf27 3722
1f8c553d
GS
3723 /*
3724 * First idle cpu or the first cpu(busiest) in this sched group
3725 * is eligible for doing load balancing at this and above
3726 * domains. In the newly idle case, we will allow all the cpu's
3727 * to do the newly idle load balance.
3728 */
3729 if (idle != CPU_NEWLY_IDLE && local_group &&
3730 balance_cpu != this_cpu && balance) {
3731 *balance = 0;
3732 return;
3733 }
5c45bf27 3734
1f8c553d 3735 /* Adjust by relative CPU power of the group */
18a3885f 3736 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
5c45bf27 3737
1f8c553d
GS
3738
3739 /*
3740 * Consider the group unbalanced when the imbalance is larger
3741 * than the average weight of two tasks.
3742 *
3743 * APZ: with cgroup the avg task weight can vary wildly and
3744 * might not be a suitable number - should we keep a
3745 * normalized nr_running number somewhere that negates
3746 * the hierarchy?
3747 */
18a3885f
PZ
3748 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3749 group->cpu_power;
1f8c553d
GS
3750
3751 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3752 sgs->group_imb = 1;
3753
bdb94aa5 3754 sgs->group_capacity =
18a3885f 3755 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
1f8c553d 3756}
dd41f596 3757
37abe198
GS
3758/**
3759 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3760 * @sd: sched_domain whose statistics are to be updated.
3761 * @this_cpu: Cpu for which load balance is currently performed.
3762 * @idle: Idle status of this_cpu
3763 * @sd_idle: Idle status of the sched_domain containing group.
3764 * @cpus: Set of cpus considered for load balancing.
3765 * @balance: Should we balance.
3766 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3767 */
37abe198
GS
3768static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3769 enum cpu_idle_type idle, int *sd_idle,
3770 const struct cpumask *cpus, int *balance,
3771 struct sd_lb_stats *sds)
1da177e4 3772{
b5d978e0 3773 struct sched_domain *child = sd->child;
222d656d 3774 struct sched_group *group = sd->groups;
37abe198 3775 struct sg_lb_stats sgs;
b5d978e0
PZ
3776 int load_idx, prefer_sibling = 0;
3777
3778 if (child && child->flags & SD_PREFER_SIBLING)
3779 prefer_sibling = 1;
222d656d 3780
c071df18 3781 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3782 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3783
3784 do {
1da177e4 3785 int local_group;
1da177e4 3786
758b2cdc
RR
3787 local_group = cpumask_test_cpu(this_cpu,
3788 sched_group_cpus(group));
381be78f 3789 memset(&sgs, 0, sizeof(sgs));
cc9fba7d 3790 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
1f8c553d 3791 local_group, cpus, balance, &sgs);
1da177e4 3792
37abe198
GS
3793 if (local_group && balance && !(*balance))
3794 return;
783609c6 3795
37abe198 3796 sds->total_load += sgs.group_load;
18a3885f 3797 sds->total_pwr += group->cpu_power;
1da177e4 3798
b5d978e0
PZ
3799 /*
3800 * In case the child domain prefers tasks go to siblings
3801 * first, lower the group capacity to one so that we'll try
3802 * and move all the excess tasks away.
3803 */
3804 if (prefer_sibling)
bdb94aa5 3805 sgs.group_capacity = min(sgs.group_capacity, 1UL);
1da177e4 3806
1da177e4 3807 if (local_group) {
37abe198
GS
3808 sds->this_load = sgs.avg_load;
3809 sds->this = group;
3810 sds->this_nr_running = sgs.sum_nr_running;
3811 sds->this_load_per_task = sgs.sum_weighted_load;
3812 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3813 (sgs.sum_nr_running > sgs.group_capacity ||
3814 sgs.group_imb)) {
37abe198
GS
3815 sds->max_load = sgs.avg_load;
3816 sds->busiest = group;
3817 sds->busiest_nr_running = sgs.sum_nr_running;
3818 sds->busiest_load_per_task = sgs.sum_weighted_load;
3819 sds->group_imb = sgs.group_imb;
48f24c4d 3820 }
5c45bf27 3821
c071df18 3822 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3823 group = group->next;
3824 } while (group != sd->groups);
37abe198 3825}
1da177e4 3826
2e6f44ae
GS
3827/**
3828 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3829 * amongst the groups of a sched_domain, during
3830 * load balancing.
2e6f44ae
GS
3831 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3832 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3833 * @imbalance: Variable to store the imbalance.
3834 */
3835static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3836 int this_cpu, unsigned long *imbalance)
3837{
3838 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3839 unsigned int imbn = 2;
3840
3841 if (sds->this_nr_running) {
3842 sds->this_load_per_task /= sds->this_nr_running;
3843 if (sds->busiest_load_per_task >
3844 sds->this_load_per_task)
3845 imbn = 1;
3846 } else
3847 sds->this_load_per_task =
3848 cpu_avg_load_per_task(this_cpu);
1da177e4 3849
2e6f44ae
GS
3850 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3851 sds->busiest_load_per_task * imbn) {
3852 *imbalance = sds->busiest_load_per_task;
3853 return;
3854 }
908a7c1b 3855
1da177e4 3856 /*
2e6f44ae
GS
3857 * OK, we don't have enough imbalance to justify moving tasks,
3858 * however we may be able to increase total CPU power used by
3859 * moving them.
1da177e4 3860 */
2dd73a4f 3861
18a3885f 3862 pwr_now += sds->busiest->cpu_power *
2e6f44ae 3863 min(sds->busiest_load_per_task, sds->max_load);
18a3885f 3864 pwr_now += sds->this->cpu_power *
2e6f44ae
GS
3865 min(sds->this_load_per_task, sds->this_load);
3866 pwr_now /= SCHED_LOAD_SCALE;
3867
3868 /* Amount of load we'd subtract */
18a3885f
PZ
3869 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3870 sds->busiest->cpu_power;
2e6f44ae 3871 if (sds->max_load > tmp)
18a3885f 3872 pwr_move += sds->busiest->cpu_power *
2e6f44ae
GS
3873 min(sds->busiest_load_per_task, sds->max_load - tmp);
3874
3875 /* Amount of load we'd add */
18a3885f 3876 if (sds->max_load * sds->busiest->cpu_power <
2e6f44ae 3877 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
18a3885f
PZ
3878 tmp = (sds->max_load * sds->busiest->cpu_power) /
3879 sds->this->cpu_power;
2e6f44ae 3880 else
18a3885f
PZ
3881 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3882 sds->this->cpu_power;
3883 pwr_move += sds->this->cpu_power *
2e6f44ae
GS
3884 min(sds->this_load_per_task, sds->this_load + tmp);
3885 pwr_move /= SCHED_LOAD_SCALE;
3886
3887 /* Move if we gain throughput */
3888 if (pwr_move > pwr_now)
3889 *imbalance = sds->busiest_load_per_task;
3890}
dbc523a3
GS
3891
3892/**
3893 * calculate_imbalance - Calculate the amount of imbalance present within the
3894 * groups of a given sched_domain during load balance.
3895 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3896 * @this_cpu: Cpu for which currently load balance is being performed.
3897 * @imbalance: The variable to store the imbalance.
3898 */
3899static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3900 unsigned long *imbalance)
3901{
3902 unsigned long max_pull;
2dd73a4f
PW
3903 /*
3904 * In the presence of smp nice balancing, certain scenarios can have
3905 * max load less than avg load(as we skip the groups at or below
3906 * its cpu_power, while calculating max_load..)
3907 */
dbc523a3 3908 if (sds->max_load < sds->avg_load) {
2dd73a4f 3909 *imbalance = 0;
dbc523a3 3910 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3911 }
0c117f1b
SS
3912
3913 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3914 max_pull = min(sds->max_load - sds->avg_load,
3915 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3916
1da177e4 3917 /* How much load to actually move to equalise the imbalance */
18a3885f
PZ
3918 *imbalance = min(max_pull * sds->busiest->cpu_power,
3919 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
1da177e4
LT
3920 / SCHED_LOAD_SCALE;
3921
2dd73a4f
PW
3922 /*
3923 * if *imbalance is less than the average load per runnable task
3924 * there is no gaurantee that any tasks will be moved so we'll have
3925 * a think about bumping its value to force at least one task to be
3926 * moved
3927 */
dbc523a3
GS
3928 if (*imbalance < sds->busiest_load_per_task)
3929 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3930
dbc523a3 3931}
37abe198 3932/******* find_busiest_group() helpers end here *********************/
1da177e4 3933
b7bb4c9b
GS
3934/**
3935 * find_busiest_group - Returns the busiest group within the sched_domain
3936 * if there is an imbalance. If there isn't an imbalance, and
3937 * the user has opted for power-savings, it returns a group whose
3938 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3939 * such a group exists.
3940 *
3941 * Also calculates the amount of weighted load which should be moved
3942 * to restore balance.
3943 *
3944 * @sd: The sched_domain whose busiest group is to be returned.
3945 * @this_cpu: The cpu for which load balancing is currently being performed.
3946 * @imbalance: Variable which stores amount of weighted load which should
3947 * be moved to restore balance/put a group to idle.
3948 * @idle: The idle status of this_cpu.
3949 * @sd_idle: The idleness of sd
3950 * @cpus: The set of CPUs under consideration for load-balancing.
3951 * @balance: Pointer to a variable indicating if this_cpu
3952 * is the appropriate cpu to perform load balancing at this_level.
3953 *
3954 * Returns: - the busiest group if imbalance exists.
3955 * - If no imbalance and user has opted for power-savings balance,
3956 * return the least loaded group whose CPUs can be
3957 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3958 */
3959static struct sched_group *
3960find_busiest_group(struct sched_domain *sd, int this_cpu,
3961 unsigned long *imbalance, enum cpu_idle_type idle,
3962 int *sd_idle, const struct cpumask *cpus, int *balance)
3963{
3964 struct sd_lb_stats sds;
1da177e4 3965
37abe198 3966 memset(&sds, 0, sizeof(sds));
1da177e4 3967
37abe198
GS
3968 /*
3969 * Compute the various statistics relavent for load balancing at
3970 * this level.
3971 */
3972 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3973 balance, &sds);
3974
b7bb4c9b
GS
3975 /* Cases where imbalance does not exist from POV of this_cpu */
3976 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3977 * at this level.
3978 * 2) There is no busy sibling group to pull from.
3979 * 3) This group is the busiest group.
3980 * 4) This group is more busy than the avg busieness at this
3981 * sched_domain.
3982 * 5) The imbalance is within the specified limit.
3983 * 6) Any rebalance would lead to ping-pong
3984 */
37abe198
GS
3985 if (balance && !(*balance))
3986 goto ret;
1da177e4 3987
b7bb4c9b
GS
3988 if (!sds.busiest || sds.busiest_nr_running == 0)
3989 goto out_balanced;
1da177e4 3990
b7bb4c9b 3991 if (sds.this_load >= sds.max_load)
1da177e4 3992 goto out_balanced;
1da177e4 3993
222d656d 3994 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 3995
b7bb4c9b
GS
3996 if (sds.this_load >= sds.avg_load)
3997 goto out_balanced;
3998
3999 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
4000 goto out_balanced;
4001
222d656d
GS
4002 sds.busiest_load_per_task /= sds.busiest_nr_running;
4003 if (sds.group_imb)
4004 sds.busiest_load_per_task =
4005 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 4006
1da177e4
LT
4007 /*
4008 * We're trying to get all the cpus to the average_load, so we don't
4009 * want to push ourselves above the average load, nor do we wish to
4010 * reduce the max loaded cpu below the average load, as either of these
4011 * actions would just result in more rebalancing later, and ping-pong
4012 * tasks around. Thus we look for the minimum possible imbalance.
4013 * Negative imbalances (*we* are more loaded than anyone else) will
4014 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4015 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4016 * appear as very large values with unsigned longs.
4017 */
222d656d 4018 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4019 goto out_balanced;
4020
dbc523a3
GS
4021 /* Looks like there is an imbalance. Compute it */
4022 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4023 return sds.busiest;
1da177e4
LT
4024
4025out_balanced:
c071df18
GS
4026 /*
4027 * There is no obvious imbalance. But check if we can do some balancing
4028 * to save power.
4029 */
4030 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4031 return sds.busiest;
783609c6 4032ret:
1da177e4
LT
4033 *imbalance = 0;
4034 return NULL;
4035}
4036
4037/*
4038 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4039 */
70b97a7f 4040static struct rq *
d15bcfdb 4041find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4042 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4043{
70b97a7f 4044 struct rq *busiest = NULL, *rq;
2dd73a4f 4045 unsigned long max_load = 0;
1da177e4
LT
4046 int i;
4047
758b2cdc 4048 for_each_cpu(i, sched_group_cpus(group)) {
bdb94aa5
PZ
4049 unsigned long power = power_of(i);
4050 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
dd41f596 4051 unsigned long wl;
0a2966b4 4052
96f874e2 4053 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4054 continue;
4055
48f24c4d 4056 rq = cpu_rq(i);
bdb94aa5
PZ
4057 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4058 wl /= power;
2dd73a4f 4059
bdb94aa5 4060 if (capacity && rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4061 continue;
1da177e4 4062
dd41f596
IM
4063 if (wl > max_load) {
4064 max_load = wl;
48f24c4d 4065 busiest = rq;
1da177e4
LT
4066 }
4067 }
4068
4069 return busiest;
4070}
4071
77391d71
NP
4072/*
4073 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4074 * so long as it is large enough.
4075 */
4076#define MAX_PINNED_INTERVAL 512
4077
df7c8e84
RR
4078/* Working cpumask for load_balance and load_balance_newidle. */
4079static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4080
1da177e4
LT
4081/*
4082 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4083 * tasks if there is an imbalance.
1da177e4 4084 */
70b97a7f 4085static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4086 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4087 int *balance)
1da177e4 4088{
43010659 4089 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4090 struct sched_group *group;
1da177e4 4091 unsigned long imbalance;
70b97a7f 4092 struct rq *busiest;
fe2eea3f 4093 unsigned long flags;
df7c8e84 4094 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4095
96f874e2 4096 cpumask_setall(cpus);
7c16ec58 4097
89c4710e
SS
4098 /*
4099 * When power savings policy is enabled for the parent domain, idle
4100 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4101 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4102 * portraying it as CPU_NOT_IDLE.
89c4710e 4103 */
d15bcfdb 4104 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4105 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4106 sd_idle = 1;
1da177e4 4107
2d72376b 4108 schedstat_inc(sd, lb_count[idle]);
1da177e4 4109
0a2966b4 4110redo:
c8cba857 4111 update_shares(sd);
0a2966b4 4112 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4113 cpus, balance);
783609c6 4114
06066714 4115 if (*balance == 0)
783609c6 4116 goto out_balanced;
783609c6 4117
1da177e4
LT
4118 if (!group) {
4119 schedstat_inc(sd, lb_nobusyg[idle]);
4120 goto out_balanced;
4121 }
4122
7c16ec58 4123 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4124 if (!busiest) {
4125 schedstat_inc(sd, lb_nobusyq[idle]);
4126 goto out_balanced;
4127 }
4128
db935dbd 4129 BUG_ON(busiest == this_rq);
1da177e4
LT
4130
4131 schedstat_add(sd, lb_imbalance[idle], imbalance);
4132
43010659 4133 ld_moved = 0;
1da177e4
LT
4134 if (busiest->nr_running > 1) {
4135 /*
4136 * Attempt to move tasks. If find_busiest_group has found
4137 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4138 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4139 * correctly treated as an imbalance.
4140 */
fe2eea3f 4141 local_irq_save(flags);
e17224bf 4142 double_rq_lock(this_rq, busiest);
43010659 4143 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4144 imbalance, sd, idle, &all_pinned);
e17224bf 4145 double_rq_unlock(this_rq, busiest);
fe2eea3f 4146 local_irq_restore(flags);
81026794 4147
46cb4b7c
SS
4148 /*
4149 * some other cpu did the load balance for us.
4150 */
43010659 4151 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4152 resched_cpu(this_cpu);
4153
81026794 4154 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4155 if (unlikely(all_pinned)) {
96f874e2
RR
4156 cpumask_clear_cpu(cpu_of(busiest), cpus);
4157 if (!cpumask_empty(cpus))
0a2966b4 4158 goto redo;
81026794 4159 goto out_balanced;
0a2966b4 4160 }
1da177e4 4161 }
81026794 4162
43010659 4163 if (!ld_moved) {
1da177e4
LT
4164 schedstat_inc(sd, lb_failed[idle]);
4165 sd->nr_balance_failed++;
4166
4167 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4168
fe2eea3f 4169 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4170
4171 /* don't kick the migration_thread, if the curr
4172 * task on busiest cpu can't be moved to this_cpu
4173 */
96f874e2
RR
4174 if (!cpumask_test_cpu(this_cpu,
4175 &busiest->curr->cpus_allowed)) {
fe2eea3f 4176 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4177 all_pinned = 1;
4178 goto out_one_pinned;
4179 }
4180
1da177e4
LT
4181 if (!busiest->active_balance) {
4182 busiest->active_balance = 1;
4183 busiest->push_cpu = this_cpu;
81026794 4184 active_balance = 1;
1da177e4 4185 }
fe2eea3f 4186 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4187 if (active_balance)
1da177e4
LT
4188 wake_up_process(busiest->migration_thread);
4189
4190 /*
4191 * We've kicked active balancing, reset the failure
4192 * counter.
4193 */
39507451 4194 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4195 }
81026794 4196 } else
1da177e4
LT
4197 sd->nr_balance_failed = 0;
4198
81026794 4199 if (likely(!active_balance)) {
1da177e4
LT
4200 /* We were unbalanced, so reset the balancing interval */
4201 sd->balance_interval = sd->min_interval;
81026794
NP
4202 } else {
4203 /*
4204 * If we've begun active balancing, start to back off. This
4205 * case may not be covered by the all_pinned logic if there
4206 * is only 1 task on the busy runqueue (because we don't call
4207 * move_tasks).
4208 */
4209 if (sd->balance_interval < sd->max_interval)
4210 sd->balance_interval *= 2;
1da177e4
LT
4211 }
4212
43010659 4213 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4214 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4215 ld_moved = -1;
4216
4217 goto out;
1da177e4
LT
4218
4219out_balanced:
1da177e4
LT
4220 schedstat_inc(sd, lb_balanced[idle]);
4221
16cfb1c0 4222 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4223
4224out_one_pinned:
1da177e4 4225 /* tune up the balancing interval */
77391d71
NP
4226 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4227 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4228 sd->balance_interval *= 2;
4229
48f24c4d 4230 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4231 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4232 ld_moved = -1;
4233 else
4234 ld_moved = 0;
4235out:
c8cba857
PZ
4236 if (ld_moved)
4237 update_shares(sd);
c09595f6 4238 return ld_moved;
1da177e4
LT
4239}
4240
4241/*
4242 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4243 * tasks if there is an imbalance.
4244 *
d15bcfdb 4245 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4246 * this_rq is locked.
4247 */
48f24c4d 4248static int
df7c8e84 4249load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4250{
4251 struct sched_group *group;
70b97a7f 4252 struct rq *busiest = NULL;
1da177e4 4253 unsigned long imbalance;
43010659 4254 int ld_moved = 0;
5969fe06 4255 int sd_idle = 0;
969bb4e4 4256 int all_pinned = 0;
df7c8e84 4257 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4258
96f874e2 4259 cpumask_setall(cpus);
5969fe06 4260
89c4710e
SS
4261 /*
4262 * When power savings policy is enabled for the parent domain, idle
4263 * sibling can pick up load irrespective of busy siblings. In this case,
4264 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4265 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4266 */
4267 if (sd->flags & SD_SHARE_CPUPOWER &&
4268 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4269 sd_idle = 1;
1da177e4 4270
2d72376b 4271 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4272redo:
3e5459b4 4273 update_shares_locked(this_rq, sd);
d15bcfdb 4274 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4275 &sd_idle, cpus, NULL);
1da177e4 4276 if (!group) {
d15bcfdb 4277 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4278 goto out_balanced;
1da177e4
LT
4279 }
4280
7c16ec58 4281 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4282 if (!busiest) {
d15bcfdb 4283 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4284 goto out_balanced;
1da177e4
LT
4285 }
4286
db935dbd
NP
4287 BUG_ON(busiest == this_rq);
4288
d15bcfdb 4289 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4290
43010659 4291 ld_moved = 0;
d6d5cfaf
NP
4292 if (busiest->nr_running > 1) {
4293 /* Attempt to move tasks */
4294 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4295 /* this_rq->clock is already updated */
4296 update_rq_clock(busiest);
43010659 4297 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4298 imbalance, sd, CPU_NEWLY_IDLE,
4299 &all_pinned);
1b12bbc7 4300 double_unlock_balance(this_rq, busiest);
0a2966b4 4301
969bb4e4 4302 if (unlikely(all_pinned)) {
96f874e2
RR
4303 cpumask_clear_cpu(cpu_of(busiest), cpus);
4304 if (!cpumask_empty(cpus))
0a2966b4
CL
4305 goto redo;
4306 }
d6d5cfaf
NP
4307 }
4308
43010659 4309 if (!ld_moved) {
36dffab6 4310 int active_balance = 0;
ad273b32 4311
d15bcfdb 4312 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4313 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4314 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4315 return -1;
ad273b32
VS
4316
4317 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4318 return -1;
4319
4320 if (sd->nr_balance_failed++ < 2)
4321 return -1;
4322
4323 /*
4324 * The only task running in a non-idle cpu can be moved to this
4325 * cpu in an attempt to completely freeup the other CPU
4326 * package. The same method used to move task in load_balance()
4327 * have been extended for load_balance_newidle() to speedup
4328 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4329 *
4330 * The package power saving logic comes from
4331 * find_busiest_group(). If there are no imbalance, then
4332 * f_b_g() will return NULL. However when sched_mc={1,2} then
4333 * f_b_g() will select a group from which a running task may be
4334 * pulled to this cpu in order to make the other package idle.
4335 * If there is no opportunity to make a package idle and if
4336 * there are no imbalance, then f_b_g() will return NULL and no
4337 * action will be taken in load_balance_newidle().
4338 *
4339 * Under normal task pull operation due to imbalance, there
4340 * will be more than one task in the source run queue and
4341 * move_tasks() will succeed. ld_moved will be true and this
4342 * active balance code will not be triggered.
4343 */
4344
4345 /* Lock busiest in correct order while this_rq is held */
4346 double_lock_balance(this_rq, busiest);
4347
4348 /*
4349 * don't kick the migration_thread, if the curr
4350 * task on busiest cpu can't be moved to this_cpu
4351 */
6ca09dfc 4352 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4353 double_unlock_balance(this_rq, busiest);
4354 all_pinned = 1;
4355 return ld_moved;
4356 }
4357
4358 if (!busiest->active_balance) {
4359 busiest->active_balance = 1;
4360 busiest->push_cpu = this_cpu;
4361 active_balance = 1;
4362 }
4363
4364 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4365 /*
4366 * Should not call ttwu while holding a rq->lock
4367 */
4368 spin_unlock(&this_rq->lock);
ad273b32
VS
4369 if (active_balance)
4370 wake_up_process(busiest->migration_thread);
da8d5089 4371 spin_lock(&this_rq->lock);
ad273b32 4372
5969fe06 4373 } else
16cfb1c0 4374 sd->nr_balance_failed = 0;
1da177e4 4375
3e5459b4 4376 update_shares_locked(this_rq, sd);
43010659 4377 return ld_moved;
16cfb1c0
NP
4378
4379out_balanced:
d15bcfdb 4380 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4381 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4382 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4383 return -1;
16cfb1c0 4384 sd->nr_balance_failed = 0;
48f24c4d 4385
16cfb1c0 4386 return 0;
1da177e4
LT
4387}
4388
4389/*
4390 * idle_balance is called by schedule() if this_cpu is about to become
4391 * idle. Attempts to pull tasks from other CPUs.
4392 */
70b97a7f 4393static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4394{
4395 struct sched_domain *sd;
efbe027e 4396 int pulled_task = 0;
dd41f596 4397 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
4398
4399 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4400 unsigned long interval;
4401
4402 if (!(sd->flags & SD_LOAD_BALANCE))
4403 continue;
4404
4405 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4406 /* If we've pulled tasks over stop searching: */
7c16ec58 4407 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4408 sd);
92c4ca5c
CL
4409
4410 interval = msecs_to_jiffies(sd->balance_interval);
4411 if (time_after(next_balance, sd->last_balance + interval))
4412 next_balance = sd->last_balance + interval;
4413 if (pulled_task)
4414 break;
1da177e4 4415 }
dd41f596 4416 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4417 /*
4418 * We are going idle. next_balance may be set based on
4419 * a busy processor. So reset next_balance.
4420 */
4421 this_rq->next_balance = next_balance;
dd41f596 4422 }
1da177e4
LT
4423}
4424
4425/*
4426 * active_load_balance is run by migration threads. It pushes running tasks
4427 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4428 * running on each physical CPU where possible, and avoids physical /
4429 * logical imbalances.
4430 *
4431 * Called with busiest_rq locked.
4432 */
70b97a7f 4433static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4434{
39507451 4435 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4436 struct sched_domain *sd;
4437 struct rq *target_rq;
39507451 4438
48f24c4d 4439 /* Is there any task to move? */
39507451 4440 if (busiest_rq->nr_running <= 1)
39507451
NP
4441 return;
4442
4443 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4444
4445 /*
39507451 4446 * This condition is "impossible", if it occurs
41a2d6cf 4447 * we need to fix it. Originally reported by
39507451 4448 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4449 */
39507451 4450 BUG_ON(busiest_rq == target_rq);
1da177e4 4451
39507451
NP
4452 /* move a task from busiest_rq to target_rq */
4453 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4454 update_rq_clock(busiest_rq);
4455 update_rq_clock(target_rq);
39507451
NP
4456
4457 /* Search for an sd spanning us and the target CPU. */
c96d145e 4458 for_each_domain(target_cpu, sd) {
39507451 4459 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4460 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4461 break;
c96d145e 4462 }
39507451 4463
48f24c4d 4464 if (likely(sd)) {
2d72376b 4465 schedstat_inc(sd, alb_count);
39507451 4466
43010659
PW
4467 if (move_one_task(target_rq, target_cpu, busiest_rq,
4468 sd, CPU_IDLE))
48f24c4d
IM
4469 schedstat_inc(sd, alb_pushed);
4470 else
4471 schedstat_inc(sd, alb_failed);
4472 }
1b12bbc7 4473 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4474}
4475
46cb4b7c
SS
4476#ifdef CONFIG_NO_HZ
4477static struct {
4478 atomic_t load_balancer;
7d1e6a9b 4479 cpumask_var_t cpu_mask;
f711f609 4480 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4481} nohz ____cacheline_aligned = {
4482 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4483};
4484
eea08f32
AB
4485int get_nohz_load_balancer(void)
4486{
4487 return atomic_read(&nohz.load_balancer);
4488}
4489
f711f609
GS
4490#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4491/**
4492 * lowest_flag_domain - Return lowest sched_domain containing flag.
4493 * @cpu: The cpu whose lowest level of sched domain is to
4494 * be returned.
4495 * @flag: The flag to check for the lowest sched_domain
4496 * for the given cpu.
4497 *
4498 * Returns the lowest sched_domain of a cpu which contains the given flag.
4499 */
4500static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4501{
4502 struct sched_domain *sd;
4503
4504 for_each_domain(cpu, sd)
4505 if (sd && (sd->flags & flag))
4506 break;
4507
4508 return sd;
4509}
4510
4511/**
4512 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4513 * @cpu: The cpu whose domains we're iterating over.
4514 * @sd: variable holding the value of the power_savings_sd
4515 * for cpu.
4516 * @flag: The flag to filter the sched_domains to be iterated.
4517 *
4518 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4519 * set, starting from the lowest sched_domain to the highest.
4520 */
4521#define for_each_flag_domain(cpu, sd, flag) \
4522 for (sd = lowest_flag_domain(cpu, flag); \
4523 (sd && (sd->flags & flag)); sd = sd->parent)
4524
4525/**
4526 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4527 * @ilb_group: group to be checked for semi-idleness
4528 *
4529 * Returns: 1 if the group is semi-idle. 0 otherwise.
4530 *
4531 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4532 * and atleast one non-idle CPU. This helper function checks if the given
4533 * sched_group is semi-idle or not.
4534 */
4535static inline int is_semi_idle_group(struct sched_group *ilb_group)
4536{
4537 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4538 sched_group_cpus(ilb_group));
4539
4540 /*
4541 * A sched_group is semi-idle when it has atleast one busy cpu
4542 * and atleast one idle cpu.
4543 */
4544 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4545 return 0;
4546
4547 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4548 return 0;
4549
4550 return 1;
4551}
4552/**
4553 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4554 * @cpu: The cpu which is nominating a new idle_load_balancer.
4555 *
4556 * Returns: Returns the id of the idle load balancer if it exists,
4557 * Else, returns >= nr_cpu_ids.
4558 *
4559 * This algorithm picks the idle load balancer such that it belongs to a
4560 * semi-idle powersavings sched_domain. The idea is to try and avoid
4561 * completely idle packages/cores just for the purpose of idle load balancing
4562 * when there are other idle cpu's which are better suited for that job.
4563 */
4564static int find_new_ilb(int cpu)
4565{
4566 struct sched_domain *sd;
4567 struct sched_group *ilb_group;
4568
4569 /*
4570 * Have idle load balancer selection from semi-idle packages only
4571 * when power-aware load balancing is enabled
4572 */
4573 if (!(sched_smt_power_savings || sched_mc_power_savings))
4574 goto out_done;
4575
4576 /*
4577 * Optimize for the case when we have no idle CPUs or only one
4578 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4579 */
4580 if (cpumask_weight(nohz.cpu_mask) < 2)
4581 goto out_done;
4582
4583 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4584 ilb_group = sd->groups;
4585
4586 do {
4587 if (is_semi_idle_group(ilb_group))
4588 return cpumask_first(nohz.ilb_grp_nohz_mask);
4589
4590 ilb_group = ilb_group->next;
4591
4592 } while (ilb_group != sd->groups);
4593 }
4594
4595out_done:
4596 return cpumask_first(nohz.cpu_mask);
4597}
4598#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4599static inline int find_new_ilb(int call_cpu)
4600{
6e29ec57 4601 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4602}
4603#endif
4604
7835b98b 4605/*
46cb4b7c
SS
4606 * This routine will try to nominate the ilb (idle load balancing)
4607 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4608 * load balancing on behalf of all those cpus. If all the cpus in the system
4609 * go into this tickless mode, then there will be no ilb owner (as there is
4610 * no need for one) and all the cpus will sleep till the next wakeup event
4611 * arrives...
4612 *
4613 * For the ilb owner, tick is not stopped. And this tick will be used
4614 * for idle load balancing. ilb owner will still be part of
4615 * nohz.cpu_mask..
7835b98b 4616 *
46cb4b7c
SS
4617 * While stopping the tick, this cpu will become the ilb owner if there
4618 * is no other owner. And will be the owner till that cpu becomes busy
4619 * or if all cpus in the system stop their ticks at which point
4620 * there is no need for ilb owner.
4621 *
4622 * When the ilb owner becomes busy, it nominates another owner, during the
4623 * next busy scheduler_tick()
4624 */
4625int select_nohz_load_balancer(int stop_tick)
4626{
4627 int cpu = smp_processor_id();
4628
4629 if (stop_tick) {
46cb4b7c
SS
4630 cpu_rq(cpu)->in_nohz_recently = 1;
4631
483b4ee6
SS
4632 if (!cpu_active(cpu)) {
4633 if (atomic_read(&nohz.load_balancer) != cpu)
4634 return 0;
4635
4636 /*
4637 * If we are going offline and still the leader,
4638 * give up!
4639 */
46cb4b7c
SS
4640 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4641 BUG();
483b4ee6 4642
46cb4b7c
SS
4643 return 0;
4644 }
4645
483b4ee6
SS
4646 cpumask_set_cpu(cpu, nohz.cpu_mask);
4647
46cb4b7c 4648 /* time for ilb owner also to sleep */
7d1e6a9b 4649 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4650 if (atomic_read(&nohz.load_balancer) == cpu)
4651 atomic_set(&nohz.load_balancer, -1);
4652 return 0;
4653 }
4654
4655 if (atomic_read(&nohz.load_balancer) == -1) {
4656 /* make me the ilb owner */
4657 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4658 return 1;
e790fb0b
GS
4659 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4660 int new_ilb;
4661
4662 if (!(sched_smt_power_savings ||
4663 sched_mc_power_savings))
4664 return 1;
4665 /*
4666 * Check to see if there is a more power-efficient
4667 * ilb.
4668 */
4669 new_ilb = find_new_ilb(cpu);
4670 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4671 atomic_set(&nohz.load_balancer, -1);
4672 resched_cpu(new_ilb);
4673 return 0;
4674 }
46cb4b7c 4675 return 1;
e790fb0b 4676 }
46cb4b7c 4677 } else {
7d1e6a9b 4678 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4679 return 0;
4680
7d1e6a9b 4681 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4682
4683 if (atomic_read(&nohz.load_balancer) == cpu)
4684 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4685 BUG();
4686 }
4687 return 0;
4688}
4689#endif
4690
4691static DEFINE_SPINLOCK(balancing);
4692
4693/*
7835b98b
CL
4694 * It checks each scheduling domain to see if it is due to be balanced,
4695 * and initiates a balancing operation if so.
4696 *
4697 * Balancing parameters are set up in arch_init_sched_domains.
4698 */
a9957449 4699static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4700{
46cb4b7c
SS
4701 int balance = 1;
4702 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4703 unsigned long interval;
4704 struct sched_domain *sd;
46cb4b7c 4705 /* Earliest time when we have to do rebalance again */
c9819f45 4706 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4707 int update_next_balance = 0;
d07355f5 4708 int need_serialize;
1da177e4 4709
46cb4b7c 4710 for_each_domain(cpu, sd) {
1da177e4
LT
4711 if (!(sd->flags & SD_LOAD_BALANCE))
4712 continue;
4713
4714 interval = sd->balance_interval;
d15bcfdb 4715 if (idle != CPU_IDLE)
1da177e4
LT
4716 interval *= sd->busy_factor;
4717
4718 /* scale ms to jiffies */
4719 interval = msecs_to_jiffies(interval);
4720 if (unlikely(!interval))
4721 interval = 1;
dd41f596
IM
4722 if (interval > HZ*NR_CPUS/10)
4723 interval = HZ*NR_CPUS/10;
4724
d07355f5 4725 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4726
d07355f5 4727 if (need_serialize) {
08c183f3
CL
4728 if (!spin_trylock(&balancing))
4729 goto out;
4730 }
4731
c9819f45 4732 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4733 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4734 /*
4735 * We've pulled tasks over so either we're no
5969fe06
NP
4736 * longer idle, or one of our SMT siblings is
4737 * not idle.
4738 */
d15bcfdb 4739 idle = CPU_NOT_IDLE;
1da177e4 4740 }
1bd77f2d 4741 sd->last_balance = jiffies;
1da177e4 4742 }
d07355f5 4743 if (need_serialize)
08c183f3
CL
4744 spin_unlock(&balancing);
4745out:
f549da84 4746 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4747 next_balance = sd->last_balance + interval;
f549da84
SS
4748 update_next_balance = 1;
4749 }
783609c6
SS
4750
4751 /*
4752 * Stop the load balance at this level. There is another
4753 * CPU in our sched group which is doing load balancing more
4754 * actively.
4755 */
4756 if (!balance)
4757 break;
1da177e4 4758 }
f549da84
SS
4759
4760 /*
4761 * next_balance will be updated only when there is a need.
4762 * When the cpu is attached to null domain for ex, it will not be
4763 * updated.
4764 */
4765 if (likely(update_next_balance))
4766 rq->next_balance = next_balance;
46cb4b7c
SS
4767}
4768
4769/*
4770 * run_rebalance_domains is triggered when needed from the scheduler tick.
4771 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4772 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4773 */
4774static void run_rebalance_domains(struct softirq_action *h)
4775{
dd41f596
IM
4776 int this_cpu = smp_processor_id();
4777 struct rq *this_rq = cpu_rq(this_cpu);
4778 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4779 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4780
dd41f596 4781 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4782
4783#ifdef CONFIG_NO_HZ
4784 /*
4785 * If this cpu is the owner for idle load balancing, then do the
4786 * balancing on behalf of the other idle cpus whose ticks are
4787 * stopped.
4788 */
dd41f596
IM
4789 if (this_rq->idle_at_tick &&
4790 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4791 struct rq *rq;
4792 int balance_cpu;
4793
7d1e6a9b
RR
4794 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4795 if (balance_cpu == this_cpu)
4796 continue;
4797
46cb4b7c
SS
4798 /*
4799 * If this cpu gets work to do, stop the load balancing
4800 * work being done for other cpus. Next load
4801 * balancing owner will pick it up.
4802 */
4803 if (need_resched())
4804 break;
4805
de0cf899 4806 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4807
4808 rq = cpu_rq(balance_cpu);
dd41f596
IM
4809 if (time_after(this_rq->next_balance, rq->next_balance))
4810 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4811 }
4812 }
4813#endif
4814}
4815
8a0be9ef
FW
4816static inline int on_null_domain(int cpu)
4817{
4818 return !rcu_dereference(cpu_rq(cpu)->sd);
4819}
4820
46cb4b7c
SS
4821/*
4822 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4823 *
4824 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4825 * idle load balancing owner or decide to stop the periodic load balancing,
4826 * if the whole system is idle.
4827 */
dd41f596 4828static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4829{
46cb4b7c
SS
4830#ifdef CONFIG_NO_HZ
4831 /*
4832 * If we were in the nohz mode recently and busy at the current
4833 * scheduler tick, then check if we need to nominate new idle
4834 * load balancer.
4835 */
4836 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4837 rq->in_nohz_recently = 0;
4838
4839 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4840 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4841 atomic_set(&nohz.load_balancer, -1);
4842 }
4843
4844 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4845 int ilb = find_new_ilb(cpu);
46cb4b7c 4846
434d53b0 4847 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4848 resched_cpu(ilb);
4849 }
4850 }
4851
4852 /*
4853 * If this cpu is idle and doing idle load balancing for all the
4854 * cpus with ticks stopped, is it time for that to stop?
4855 */
4856 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4857 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4858 resched_cpu(cpu);
4859 return;
4860 }
4861
4862 /*
4863 * If this cpu is idle and the idle load balancing is done by
4864 * someone else, then no need raise the SCHED_SOFTIRQ
4865 */
4866 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4867 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4868 return;
4869#endif
8a0be9ef
FW
4870 /* Don't need to rebalance while attached to NULL domain */
4871 if (time_after_eq(jiffies, rq->next_balance) &&
4872 likely(!on_null_domain(cpu)))
46cb4b7c 4873 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4874}
dd41f596
IM
4875
4876#else /* CONFIG_SMP */
4877
1da177e4
LT
4878/*
4879 * on UP we do not need to balance between CPUs:
4880 */
70b97a7f 4881static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4882{
4883}
dd41f596 4884
1da177e4
LT
4885#endif
4886
1da177e4
LT
4887DEFINE_PER_CPU(struct kernel_stat, kstat);
4888
4889EXPORT_PER_CPU_SYMBOL(kstat);
4890
4891/*
c5f8d995 4892 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4893 * @p in case that task is currently running.
c5f8d995
HS
4894 *
4895 * Called with task_rq_lock() held on @rq.
1da177e4 4896 */
c5f8d995
HS
4897static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4898{
4899 u64 ns = 0;
4900
4901 if (task_current(rq, p)) {
4902 update_rq_clock(rq);
4903 ns = rq->clock - p->se.exec_start;
4904 if ((s64)ns < 0)
4905 ns = 0;
4906 }
4907
4908 return ns;
4909}
4910
bb34d92f 4911unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4912{
1da177e4 4913 unsigned long flags;
41b86e9c 4914 struct rq *rq;
bb34d92f 4915 u64 ns = 0;
48f24c4d 4916
41b86e9c 4917 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4918 ns = do_task_delta_exec(p, rq);
4919 task_rq_unlock(rq, &flags);
1508487e 4920
c5f8d995
HS
4921 return ns;
4922}
f06febc9 4923
c5f8d995
HS
4924/*
4925 * Return accounted runtime for the task.
4926 * In case the task is currently running, return the runtime plus current's
4927 * pending runtime that have not been accounted yet.
4928 */
4929unsigned long long task_sched_runtime(struct task_struct *p)
4930{
4931 unsigned long flags;
4932 struct rq *rq;
4933 u64 ns = 0;
4934
4935 rq = task_rq_lock(p, &flags);
4936 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4937 task_rq_unlock(rq, &flags);
4938
4939 return ns;
4940}
48f24c4d 4941
c5f8d995
HS
4942/*
4943 * Return sum_exec_runtime for the thread group.
4944 * In case the task is currently running, return the sum plus current's
4945 * pending runtime that have not been accounted yet.
4946 *
4947 * Note that the thread group might have other running tasks as well,
4948 * so the return value not includes other pending runtime that other
4949 * running tasks might have.
4950 */
4951unsigned long long thread_group_sched_runtime(struct task_struct *p)
4952{
4953 struct task_cputime totals;
4954 unsigned long flags;
4955 struct rq *rq;
4956 u64 ns;
4957
4958 rq = task_rq_lock(p, &flags);
4959 thread_group_cputime(p, &totals);
4960 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4961 task_rq_unlock(rq, &flags);
48f24c4d 4962
1da177e4
LT
4963 return ns;
4964}
4965
1da177e4
LT
4966/*
4967 * Account user cpu time to a process.
4968 * @p: the process that the cpu time gets accounted to
1da177e4 4969 * @cputime: the cpu time spent in user space since the last update
457533a7 4970 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4971 */
457533a7
MS
4972void account_user_time(struct task_struct *p, cputime_t cputime,
4973 cputime_t cputime_scaled)
1da177e4
LT
4974{
4975 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4976 cputime64_t tmp;
4977
457533a7 4978 /* Add user time to process. */
1da177e4 4979 p->utime = cputime_add(p->utime, cputime);
457533a7 4980 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4981 account_group_user_time(p, cputime);
1da177e4
LT
4982
4983 /* Add user time to cpustat. */
4984 tmp = cputime_to_cputime64(cputime);
4985 if (TASK_NICE(p) > 0)
4986 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4987 else
4988 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
4989
4990 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
4991 /* Account for user time used */
4992 acct_update_integrals(p);
1da177e4
LT
4993}
4994
94886b84
LV
4995/*
4996 * Account guest cpu time to a process.
4997 * @p: the process that the cpu time gets accounted to
4998 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4999 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 5000 */
457533a7
MS
5001static void account_guest_time(struct task_struct *p, cputime_t cputime,
5002 cputime_t cputime_scaled)
94886b84
LV
5003{
5004 cputime64_t tmp;
5005 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5006
5007 tmp = cputime_to_cputime64(cputime);
5008
457533a7 5009 /* Add guest time to process. */
94886b84 5010 p->utime = cputime_add(p->utime, cputime);
457533a7 5011 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5012 account_group_user_time(p, cputime);
94886b84
LV
5013 p->gtime = cputime_add(p->gtime, cputime);
5014
457533a7 5015 /* Add guest time to cpustat. */
94886b84
LV
5016 cpustat->user = cputime64_add(cpustat->user, tmp);
5017 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5018}
5019
1da177e4
LT
5020/*
5021 * Account system cpu time to a process.
5022 * @p: the process that the cpu time gets accounted to
5023 * @hardirq_offset: the offset to subtract from hardirq_count()
5024 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5025 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5026 */
5027void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5028 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5029{
5030 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5031 cputime64_t tmp;
5032
983ed7a6 5033 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5034 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5035 return;
5036 }
94886b84 5037
457533a7 5038 /* Add system time to process. */
1da177e4 5039 p->stime = cputime_add(p->stime, cputime);
457533a7 5040 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5041 account_group_system_time(p, cputime);
1da177e4
LT
5042
5043 /* Add system time to cpustat. */
5044 tmp = cputime_to_cputime64(cputime);
5045 if (hardirq_count() - hardirq_offset)
5046 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5047 else if (softirq_count())
5048 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5049 else
79741dd3
MS
5050 cpustat->system = cputime64_add(cpustat->system, tmp);
5051
ef12fefa
BR
5052 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5053
1da177e4
LT
5054 /* Account for system time used */
5055 acct_update_integrals(p);
1da177e4
LT
5056}
5057
c66f08be 5058/*
1da177e4 5059 * Account for involuntary wait time.
1da177e4 5060 * @steal: the cpu time spent in involuntary wait
c66f08be 5061 */
79741dd3 5062void account_steal_time(cputime_t cputime)
c66f08be 5063{
79741dd3
MS
5064 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5065 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5066
5067 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5068}
5069
1da177e4 5070/*
79741dd3
MS
5071 * Account for idle time.
5072 * @cputime: the cpu time spent in idle wait
1da177e4 5073 */
79741dd3 5074void account_idle_time(cputime_t cputime)
1da177e4
LT
5075{
5076 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5077 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5078 struct rq *rq = this_rq();
1da177e4 5079
79741dd3
MS
5080 if (atomic_read(&rq->nr_iowait) > 0)
5081 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5082 else
5083 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5084}
5085
79741dd3
MS
5086#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5087
5088/*
5089 * Account a single tick of cpu time.
5090 * @p: the process that the cpu time gets accounted to
5091 * @user_tick: indicates if the tick is a user or a system tick
5092 */
5093void account_process_tick(struct task_struct *p, int user_tick)
5094{
a42548a1 5095 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
5096 struct rq *rq = this_rq();
5097
5098 if (user_tick)
a42548a1 5099 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 5100 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 5101 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
5102 one_jiffy_scaled);
5103 else
a42548a1 5104 account_idle_time(cputime_one_jiffy);
79741dd3
MS
5105}
5106
5107/*
5108 * Account multiple ticks of steal time.
5109 * @p: the process from which the cpu time has been stolen
5110 * @ticks: number of stolen ticks
5111 */
5112void account_steal_ticks(unsigned long ticks)
5113{
5114 account_steal_time(jiffies_to_cputime(ticks));
5115}
5116
5117/*
5118 * Account multiple ticks of idle time.
5119 * @ticks: number of stolen ticks
5120 */
5121void account_idle_ticks(unsigned long ticks)
5122{
5123 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5124}
5125
79741dd3
MS
5126#endif
5127
49048622
BS
5128/*
5129 * Use precise platform statistics if available:
5130 */
5131#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5132cputime_t task_utime(struct task_struct *p)
5133{
5134 return p->utime;
5135}
5136
5137cputime_t task_stime(struct task_struct *p)
5138{
5139 return p->stime;
5140}
5141#else
5142cputime_t task_utime(struct task_struct *p)
5143{
5144 clock_t utime = cputime_to_clock_t(p->utime),
5145 total = utime + cputime_to_clock_t(p->stime);
5146 u64 temp;
5147
5148 /*
5149 * Use CFS's precise accounting:
5150 */
5151 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5152
5153 if (total) {
5154 temp *= utime;
5155 do_div(temp, total);
5156 }
5157 utime = (clock_t)temp;
5158
5159 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5160 return p->prev_utime;
5161}
5162
5163cputime_t task_stime(struct task_struct *p)
5164{
5165 clock_t stime;
5166
5167 /*
5168 * Use CFS's precise accounting. (we subtract utime from
5169 * the total, to make sure the total observed by userspace
5170 * grows monotonically - apps rely on that):
5171 */
5172 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5173 cputime_to_clock_t(task_utime(p));
5174
5175 if (stime >= 0)
5176 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5177
5178 return p->prev_stime;
5179}
5180#endif
5181
5182inline cputime_t task_gtime(struct task_struct *p)
5183{
5184 return p->gtime;
5185}
5186
7835b98b
CL
5187/*
5188 * This function gets called by the timer code, with HZ frequency.
5189 * We call it with interrupts disabled.
5190 *
5191 * It also gets called by the fork code, when changing the parent's
5192 * timeslices.
5193 */
5194void scheduler_tick(void)
5195{
7835b98b
CL
5196 int cpu = smp_processor_id();
5197 struct rq *rq = cpu_rq(cpu);
dd41f596 5198 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5199
5200 sched_clock_tick();
dd41f596
IM
5201
5202 spin_lock(&rq->lock);
3e51f33f 5203 update_rq_clock(rq);
f1a438d8 5204 update_cpu_load(rq);
fa85ae24 5205 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5206 spin_unlock(&rq->lock);
7835b98b 5207
cdd6c482 5208 perf_event_task_tick(curr, cpu);
e220d2dc 5209
e418e1c2 5210#ifdef CONFIG_SMP
dd41f596
IM
5211 rq->idle_at_tick = idle_cpu(cpu);
5212 trigger_load_balance(rq, cpu);
e418e1c2 5213#endif
1da177e4
LT
5214}
5215
132380a0 5216notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5217{
5218 if (in_lock_functions(addr)) {
5219 addr = CALLER_ADDR2;
5220 if (in_lock_functions(addr))
5221 addr = CALLER_ADDR3;
5222 }
5223 return addr;
5224}
1da177e4 5225
7e49fcce
SR
5226#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5227 defined(CONFIG_PREEMPT_TRACER))
5228
43627582 5229void __kprobes add_preempt_count(int val)
1da177e4 5230{
6cd8a4bb 5231#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5232 /*
5233 * Underflow?
5234 */
9a11b49a
IM
5235 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5236 return;
6cd8a4bb 5237#endif
1da177e4 5238 preempt_count() += val;
6cd8a4bb 5239#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5240 /*
5241 * Spinlock count overflowing soon?
5242 */
33859f7f
MOS
5243 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5244 PREEMPT_MASK - 10);
6cd8a4bb
SR
5245#endif
5246 if (preempt_count() == val)
5247 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5248}
5249EXPORT_SYMBOL(add_preempt_count);
5250
43627582 5251void __kprobes sub_preempt_count(int val)
1da177e4 5252{
6cd8a4bb 5253#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5254 /*
5255 * Underflow?
5256 */
01e3eb82 5257 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5258 return;
1da177e4
LT
5259 /*
5260 * Is the spinlock portion underflowing?
5261 */
9a11b49a
IM
5262 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5263 !(preempt_count() & PREEMPT_MASK)))
5264 return;
6cd8a4bb 5265#endif
9a11b49a 5266
6cd8a4bb
SR
5267 if (preempt_count() == val)
5268 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5269 preempt_count() -= val;
5270}
5271EXPORT_SYMBOL(sub_preempt_count);
5272
5273#endif
5274
5275/*
dd41f596 5276 * Print scheduling while atomic bug:
1da177e4 5277 */
dd41f596 5278static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5279{
838225b4
SS
5280 struct pt_regs *regs = get_irq_regs();
5281
5282 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5283 prev->comm, prev->pid, preempt_count());
5284
dd41f596 5285 debug_show_held_locks(prev);
e21f5b15 5286 print_modules();
dd41f596
IM
5287 if (irqs_disabled())
5288 print_irqtrace_events(prev);
838225b4
SS
5289
5290 if (regs)
5291 show_regs(regs);
5292 else
5293 dump_stack();
dd41f596 5294}
1da177e4 5295
dd41f596
IM
5296/*
5297 * Various schedule()-time debugging checks and statistics:
5298 */
5299static inline void schedule_debug(struct task_struct *prev)
5300{
1da177e4 5301 /*
41a2d6cf 5302 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5303 * schedule() atomically, we ignore that path for now.
5304 * Otherwise, whine if we are scheduling when we should not be.
5305 */
3f33a7ce 5306 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5307 __schedule_bug(prev);
5308
1da177e4
LT
5309 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5310
2d72376b 5311 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5312#ifdef CONFIG_SCHEDSTATS
5313 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5314 schedstat_inc(this_rq(), bkl_count);
5315 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5316 }
5317#endif
dd41f596
IM
5318}
5319
ad4b78bb 5320static void put_prev_task(struct rq *rq, struct task_struct *p)
df1c99d4 5321{
ad4b78bb 5322 u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
df1c99d4 5323
ad4b78bb 5324 update_avg(&p->se.avg_running, runtime);
df1c99d4 5325
ad4b78bb 5326 if (p->state == TASK_RUNNING) {
df1c99d4
MG
5327 /*
5328 * In order to avoid avg_overlap growing stale when we are
5329 * indeed overlapping and hence not getting put to sleep, grow
5330 * the avg_overlap on preemption.
5331 *
5332 * We use the average preemption runtime because that
5333 * correlates to the amount of cache footprint a task can
5334 * build up.
5335 */
ad4b78bb
PZ
5336 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5337 update_avg(&p->se.avg_overlap, runtime);
5338 } else {
5339 update_avg(&p->se.avg_running, 0);
df1c99d4 5340 }
ad4b78bb 5341 p->sched_class->put_prev_task(rq, p);
df1c99d4
MG
5342}
5343
dd41f596
IM
5344/*
5345 * Pick up the highest-prio task:
5346 */
5347static inline struct task_struct *
b67802ea 5348pick_next_task(struct rq *rq)
dd41f596 5349{
5522d5d5 5350 const struct sched_class *class;
dd41f596 5351 struct task_struct *p;
1da177e4
LT
5352
5353 /*
dd41f596
IM
5354 * Optimization: we know that if all tasks are in
5355 * the fair class we can call that function directly:
1da177e4 5356 */
dd41f596 5357 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5358 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5359 if (likely(p))
5360 return p;
1da177e4
LT
5361 }
5362
dd41f596
IM
5363 class = sched_class_highest;
5364 for ( ; ; ) {
fb8d4724 5365 p = class->pick_next_task(rq);
dd41f596
IM
5366 if (p)
5367 return p;
5368 /*
5369 * Will never be NULL as the idle class always
5370 * returns a non-NULL p:
5371 */
5372 class = class->next;
5373 }
5374}
1da177e4 5375
dd41f596
IM
5376/*
5377 * schedule() is the main scheduler function.
5378 */
ff743345 5379asmlinkage void __sched schedule(void)
dd41f596
IM
5380{
5381 struct task_struct *prev, *next;
67ca7bde 5382 unsigned long *switch_count;
dd41f596 5383 struct rq *rq;
31656519 5384 int cpu;
dd41f596 5385
ff743345
PZ
5386need_resched:
5387 preempt_disable();
dd41f596
IM
5388 cpu = smp_processor_id();
5389 rq = cpu_rq(cpu);
d6714c22 5390 rcu_sched_qs(cpu);
dd41f596
IM
5391 prev = rq->curr;
5392 switch_count = &prev->nivcsw;
5393
5394 release_kernel_lock(prev);
5395need_resched_nonpreemptible:
5396
5397 schedule_debug(prev);
1da177e4 5398
31656519 5399 if (sched_feat(HRTICK))
f333fdc9 5400 hrtick_clear(rq);
8f4d37ec 5401
8cd162ce 5402 spin_lock_irq(&rq->lock);
3e51f33f 5403 update_rq_clock(rq);
1e819950 5404 clear_tsk_need_resched(prev);
1da177e4 5405
1da177e4 5406 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5407 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5408 prev->state = TASK_RUNNING;
16882c1e 5409 else
2e1cb74a 5410 deactivate_task(rq, prev, 1);
dd41f596 5411 switch_count = &prev->nvcsw;
1da177e4
LT
5412 }
5413
3f029d3c 5414 pre_schedule(rq, prev);
f65eda4f 5415
dd41f596 5416 if (unlikely(!rq->nr_running))
1da177e4 5417 idle_balance(cpu, rq);
1da177e4 5418
df1c99d4 5419 put_prev_task(rq, prev);
b67802ea 5420 next = pick_next_task(rq);
1da177e4 5421
1da177e4 5422 if (likely(prev != next)) {
673a90a1 5423 sched_info_switch(prev, next);
cdd6c482 5424 perf_event_task_sched_out(prev, next, cpu);
673a90a1 5425
1da177e4
LT
5426 rq->nr_switches++;
5427 rq->curr = next;
5428 ++*switch_count;
5429
dd41f596 5430 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5431 /*
5432 * the context switch might have flipped the stack from under
5433 * us, hence refresh the local variables.
5434 */
5435 cpu = smp_processor_id();
5436 rq = cpu_rq(cpu);
1da177e4
LT
5437 } else
5438 spin_unlock_irq(&rq->lock);
5439
3f029d3c 5440 post_schedule(rq);
1da177e4 5441
8f4d37ec 5442 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5443 goto need_resched_nonpreemptible;
8f4d37ec 5444
1da177e4 5445 preempt_enable_no_resched();
ff743345 5446 if (need_resched())
1da177e4
LT
5447 goto need_resched;
5448}
1da177e4
LT
5449EXPORT_SYMBOL(schedule);
5450
0d66bf6d
PZ
5451#ifdef CONFIG_SMP
5452/*
5453 * Look out! "owner" is an entirely speculative pointer
5454 * access and not reliable.
5455 */
5456int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5457{
5458 unsigned int cpu;
5459 struct rq *rq;
5460
5461 if (!sched_feat(OWNER_SPIN))
5462 return 0;
5463
5464#ifdef CONFIG_DEBUG_PAGEALLOC
5465 /*
5466 * Need to access the cpu field knowing that
5467 * DEBUG_PAGEALLOC could have unmapped it if
5468 * the mutex owner just released it and exited.
5469 */
5470 if (probe_kernel_address(&owner->cpu, cpu))
5471 goto out;
5472#else
5473 cpu = owner->cpu;
5474#endif
5475
5476 /*
5477 * Even if the access succeeded (likely case),
5478 * the cpu field may no longer be valid.
5479 */
5480 if (cpu >= nr_cpumask_bits)
5481 goto out;
5482
5483 /*
5484 * We need to validate that we can do a
5485 * get_cpu() and that we have the percpu area.
5486 */
5487 if (!cpu_online(cpu))
5488 goto out;
5489
5490 rq = cpu_rq(cpu);
5491
5492 for (;;) {
5493 /*
5494 * Owner changed, break to re-assess state.
5495 */
5496 if (lock->owner != owner)
5497 break;
5498
5499 /*
5500 * Is that owner really running on that cpu?
5501 */
5502 if (task_thread_info(rq->curr) != owner || need_resched())
5503 return 0;
5504
5505 cpu_relax();
5506 }
5507out:
5508 return 1;
5509}
5510#endif
5511
1da177e4
LT
5512#ifdef CONFIG_PREEMPT
5513/*
2ed6e34f 5514 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5515 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5516 * occur there and call schedule directly.
5517 */
5518asmlinkage void __sched preempt_schedule(void)
5519{
5520 struct thread_info *ti = current_thread_info();
6478d880 5521
1da177e4
LT
5522 /*
5523 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5524 * we do not want to preempt the current task. Just return..
1da177e4 5525 */
beed33a8 5526 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5527 return;
5528
3a5c359a
AK
5529 do {
5530 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5531 schedule();
3a5c359a 5532 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5533
3a5c359a
AK
5534 /*
5535 * Check again in case we missed a preemption opportunity
5536 * between schedule and now.
5537 */
5538 barrier();
5ed0cec0 5539 } while (need_resched());
1da177e4 5540}
1da177e4
LT
5541EXPORT_SYMBOL(preempt_schedule);
5542
5543/*
2ed6e34f 5544 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5545 * off of irq context.
5546 * Note, that this is called and return with irqs disabled. This will
5547 * protect us against recursive calling from irq.
5548 */
5549asmlinkage void __sched preempt_schedule_irq(void)
5550{
5551 struct thread_info *ti = current_thread_info();
6478d880 5552
2ed6e34f 5553 /* Catch callers which need to be fixed */
1da177e4
LT
5554 BUG_ON(ti->preempt_count || !irqs_disabled());
5555
3a5c359a
AK
5556 do {
5557 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5558 local_irq_enable();
5559 schedule();
5560 local_irq_disable();
3a5c359a 5561 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5562
3a5c359a
AK
5563 /*
5564 * Check again in case we missed a preemption opportunity
5565 * between schedule and now.
5566 */
5567 barrier();
5ed0cec0 5568 } while (need_resched());
1da177e4
LT
5569}
5570
5571#endif /* CONFIG_PREEMPT */
5572
63859d4f 5573int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 5574 void *key)
1da177e4 5575{
63859d4f 5576 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 5577}
1da177e4
LT
5578EXPORT_SYMBOL(default_wake_function);
5579
5580/*
41a2d6cf
IM
5581 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5582 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5583 * number) then we wake all the non-exclusive tasks and one exclusive task.
5584 *
5585 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5586 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5587 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5588 */
78ddb08f 5589static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 5590 int nr_exclusive, int wake_flags, void *key)
1da177e4 5591{
2e45874c 5592 wait_queue_t *curr, *next;
1da177e4 5593
2e45874c 5594 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5595 unsigned flags = curr->flags;
5596
63859d4f 5597 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 5598 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5599 break;
5600 }
5601}
5602
5603/**
5604 * __wake_up - wake up threads blocked on a waitqueue.
5605 * @q: the waitqueue
5606 * @mode: which threads
5607 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5608 * @key: is directly passed to the wakeup function
50fa610a
DH
5609 *
5610 * It may be assumed that this function implies a write memory barrier before
5611 * changing the task state if and only if any tasks are woken up.
1da177e4 5612 */
7ad5b3a5 5613void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5614 int nr_exclusive, void *key)
1da177e4
LT
5615{
5616 unsigned long flags;
5617
5618 spin_lock_irqsave(&q->lock, flags);
5619 __wake_up_common(q, mode, nr_exclusive, 0, key);
5620 spin_unlock_irqrestore(&q->lock, flags);
5621}
1da177e4
LT
5622EXPORT_SYMBOL(__wake_up);
5623
5624/*
5625 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5626 */
7ad5b3a5 5627void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5628{
5629 __wake_up_common(q, mode, 1, 0, NULL);
5630}
5631
4ede816a
DL
5632void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5633{
5634 __wake_up_common(q, mode, 1, 0, key);
5635}
5636
1da177e4 5637/**
4ede816a 5638 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5639 * @q: the waitqueue
5640 * @mode: which threads
5641 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5642 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5643 *
5644 * The sync wakeup differs that the waker knows that it will schedule
5645 * away soon, so while the target thread will be woken up, it will not
5646 * be migrated to another CPU - ie. the two threads are 'synchronized'
5647 * with each other. This can prevent needless bouncing between CPUs.
5648 *
5649 * On UP it can prevent extra preemption.
50fa610a
DH
5650 *
5651 * It may be assumed that this function implies a write memory barrier before
5652 * changing the task state if and only if any tasks are woken up.
1da177e4 5653 */
4ede816a
DL
5654void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5655 int nr_exclusive, void *key)
1da177e4
LT
5656{
5657 unsigned long flags;
7d478721 5658 int wake_flags = WF_SYNC;
1da177e4
LT
5659
5660 if (unlikely(!q))
5661 return;
5662
5663 if (unlikely(!nr_exclusive))
7d478721 5664 wake_flags = 0;
1da177e4
LT
5665
5666 spin_lock_irqsave(&q->lock, flags);
7d478721 5667 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
5668 spin_unlock_irqrestore(&q->lock, flags);
5669}
4ede816a
DL
5670EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5671
5672/*
5673 * __wake_up_sync - see __wake_up_sync_key()
5674 */
5675void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5676{
5677 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5678}
1da177e4
LT
5679EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5680
65eb3dc6
KD
5681/**
5682 * complete: - signals a single thread waiting on this completion
5683 * @x: holds the state of this particular completion
5684 *
5685 * This will wake up a single thread waiting on this completion. Threads will be
5686 * awakened in the same order in which they were queued.
5687 *
5688 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5689 *
5690 * It may be assumed that this function implies a write memory barrier before
5691 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5692 */
b15136e9 5693void complete(struct completion *x)
1da177e4
LT
5694{
5695 unsigned long flags;
5696
5697 spin_lock_irqsave(&x->wait.lock, flags);
5698 x->done++;
d9514f6c 5699 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5700 spin_unlock_irqrestore(&x->wait.lock, flags);
5701}
5702EXPORT_SYMBOL(complete);
5703
65eb3dc6
KD
5704/**
5705 * complete_all: - signals all threads waiting on this completion
5706 * @x: holds the state of this particular completion
5707 *
5708 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5709 *
5710 * It may be assumed that this function implies a write memory barrier before
5711 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5712 */
b15136e9 5713void complete_all(struct completion *x)
1da177e4
LT
5714{
5715 unsigned long flags;
5716
5717 spin_lock_irqsave(&x->wait.lock, flags);
5718 x->done += UINT_MAX/2;
d9514f6c 5719 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5720 spin_unlock_irqrestore(&x->wait.lock, flags);
5721}
5722EXPORT_SYMBOL(complete_all);
5723
8cbbe86d
AK
5724static inline long __sched
5725do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5726{
1da177e4
LT
5727 if (!x->done) {
5728 DECLARE_WAITQUEUE(wait, current);
5729
5730 wait.flags |= WQ_FLAG_EXCLUSIVE;
5731 __add_wait_queue_tail(&x->wait, &wait);
5732 do {
94d3d824 5733 if (signal_pending_state(state, current)) {
ea71a546
ON
5734 timeout = -ERESTARTSYS;
5735 break;
8cbbe86d
AK
5736 }
5737 __set_current_state(state);
1da177e4
LT
5738 spin_unlock_irq(&x->wait.lock);
5739 timeout = schedule_timeout(timeout);
5740 spin_lock_irq(&x->wait.lock);
ea71a546 5741 } while (!x->done && timeout);
1da177e4 5742 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5743 if (!x->done)
5744 return timeout;
1da177e4
LT
5745 }
5746 x->done--;
ea71a546 5747 return timeout ?: 1;
1da177e4 5748}
1da177e4 5749
8cbbe86d
AK
5750static long __sched
5751wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5752{
1da177e4
LT
5753 might_sleep();
5754
5755 spin_lock_irq(&x->wait.lock);
8cbbe86d 5756 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5757 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5758 return timeout;
5759}
1da177e4 5760
65eb3dc6
KD
5761/**
5762 * wait_for_completion: - waits for completion of a task
5763 * @x: holds the state of this particular completion
5764 *
5765 * This waits to be signaled for completion of a specific task. It is NOT
5766 * interruptible and there is no timeout.
5767 *
5768 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5769 * and interrupt capability. Also see complete().
5770 */
b15136e9 5771void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5772{
5773 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5774}
8cbbe86d 5775EXPORT_SYMBOL(wait_for_completion);
1da177e4 5776
65eb3dc6
KD
5777/**
5778 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5779 * @x: holds the state of this particular completion
5780 * @timeout: timeout value in jiffies
5781 *
5782 * This waits for either a completion of a specific task to be signaled or for a
5783 * specified timeout to expire. The timeout is in jiffies. It is not
5784 * interruptible.
5785 */
b15136e9 5786unsigned long __sched
8cbbe86d 5787wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5788{
8cbbe86d 5789 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5790}
8cbbe86d 5791EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5792
65eb3dc6
KD
5793/**
5794 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5795 * @x: holds the state of this particular completion
5796 *
5797 * This waits for completion of a specific task to be signaled. It is
5798 * interruptible.
5799 */
8cbbe86d 5800int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5801{
51e97990
AK
5802 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5803 if (t == -ERESTARTSYS)
5804 return t;
5805 return 0;
0fec171c 5806}
8cbbe86d 5807EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5808
65eb3dc6
KD
5809/**
5810 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5811 * @x: holds the state of this particular completion
5812 * @timeout: timeout value in jiffies
5813 *
5814 * This waits for either a completion of a specific task to be signaled or for a
5815 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5816 */
b15136e9 5817unsigned long __sched
8cbbe86d
AK
5818wait_for_completion_interruptible_timeout(struct completion *x,
5819 unsigned long timeout)
0fec171c 5820{
8cbbe86d 5821 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5822}
8cbbe86d 5823EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5824
65eb3dc6
KD
5825/**
5826 * wait_for_completion_killable: - waits for completion of a task (killable)
5827 * @x: holds the state of this particular completion
5828 *
5829 * This waits to be signaled for completion of a specific task. It can be
5830 * interrupted by a kill signal.
5831 */
009e577e
MW
5832int __sched wait_for_completion_killable(struct completion *x)
5833{
5834 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5835 if (t == -ERESTARTSYS)
5836 return t;
5837 return 0;
5838}
5839EXPORT_SYMBOL(wait_for_completion_killable);
5840
be4de352
DC
5841/**
5842 * try_wait_for_completion - try to decrement a completion without blocking
5843 * @x: completion structure
5844 *
5845 * Returns: 0 if a decrement cannot be done without blocking
5846 * 1 if a decrement succeeded.
5847 *
5848 * If a completion is being used as a counting completion,
5849 * attempt to decrement the counter without blocking. This
5850 * enables us to avoid waiting if the resource the completion
5851 * is protecting is not available.
5852 */
5853bool try_wait_for_completion(struct completion *x)
5854{
5855 int ret = 1;
5856
5857 spin_lock_irq(&x->wait.lock);
5858 if (!x->done)
5859 ret = 0;
5860 else
5861 x->done--;
5862 spin_unlock_irq(&x->wait.lock);
5863 return ret;
5864}
5865EXPORT_SYMBOL(try_wait_for_completion);
5866
5867/**
5868 * completion_done - Test to see if a completion has any waiters
5869 * @x: completion structure
5870 *
5871 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5872 * 1 if there are no waiters.
5873 *
5874 */
5875bool completion_done(struct completion *x)
5876{
5877 int ret = 1;
5878
5879 spin_lock_irq(&x->wait.lock);
5880 if (!x->done)
5881 ret = 0;
5882 spin_unlock_irq(&x->wait.lock);
5883 return ret;
5884}
5885EXPORT_SYMBOL(completion_done);
5886
8cbbe86d
AK
5887static long __sched
5888sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5889{
0fec171c
IM
5890 unsigned long flags;
5891 wait_queue_t wait;
5892
5893 init_waitqueue_entry(&wait, current);
1da177e4 5894
8cbbe86d 5895 __set_current_state(state);
1da177e4 5896
8cbbe86d
AK
5897 spin_lock_irqsave(&q->lock, flags);
5898 __add_wait_queue(q, &wait);
5899 spin_unlock(&q->lock);
5900 timeout = schedule_timeout(timeout);
5901 spin_lock_irq(&q->lock);
5902 __remove_wait_queue(q, &wait);
5903 spin_unlock_irqrestore(&q->lock, flags);
5904
5905 return timeout;
5906}
5907
5908void __sched interruptible_sleep_on(wait_queue_head_t *q)
5909{
5910 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5911}
1da177e4
LT
5912EXPORT_SYMBOL(interruptible_sleep_on);
5913
0fec171c 5914long __sched
95cdf3b7 5915interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5916{
8cbbe86d 5917 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5918}
1da177e4
LT
5919EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5920
0fec171c 5921void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5922{
8cbbe86d 5923 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5924}
1da177e4
LT
5925EXPORT_SYMBOL(sleep_on);
5926
0fec171c 5927long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5928{
8cbbe86d 5929 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5930}
1da177e4
LT
5931EXPORT_SYMBOL(sleep_on_timeout);
5932
b29739f9
IM
5933#ifdef CONFIG_RT_MUTEXES
5934
5935/*
5936 * rt_mutex_setprio - set the current priority of a task
5937 * @p: task
5938 * @prio: prio value (kernel-internal form)
5939 *
5940 * This function changes the 'effective' priority of a task. It does
5941 * not touch ->normal_prio like __setscheduler().
5942 *
5943 * Used by the rt_mutex code to implement priority inheritance logic.
5944 */
36c8b586 5945void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5946{
5947 unsigned long flags;
83b699ed 5948 int oldprio, on_rq, running;
70b97a7f 5949 struct rq *rq;
cb469845 5950 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5951
5952 BUG_ON(prio < 0 || prio > MAX_PRIO);
5953
5954 rq = task_rq_lock(p, &flags);
a8e504d2 5955 update_rq_clock(rq);
b29739f9 5956
d5f9f942 5957 oldprio = p->prio;
dd41f596 5958 on_rq = p->se.on_rq;
051a1d1a 5959 running = task_current(rq, p);
0e1f3483 5960 if (on_rq)
69be72c1 5961 dequeue_task(rq, p, 0);
0e1f3483
HS
5962 if (running)
5963 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5964
5965 if (rt_prio(prio))
5966 p->sched_class = &rt_sched_class;
5967 else
5968 p->sched_class = &fair_sched_class;
5969
b29739f9
IM
5970 p->prio = prio;
5971
0e1f3483
HS
5972 if (running)
5973 p->sched_class->set_curr_task(rq);
dd41f596 5974 if (on_rq) {
8159f87e 5975 enqueue_task(rq, p, 0);
cb469845
SR
5976
5977 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5978 }
5979 task_rq_unlock(rq, &flags);
5980}
5981
5982#endif
5983
36c8b586 5984void set_user_nice(struct task_struct *p, long nice)
1da177e4 5985{
dd41f596 5986 int old_prio, delta, on_rq;
1da177e4 5987 unsigned long flags;
70b97a7f 5988 struct rq *rq;
1da177e4
LT
5989
5990 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5991 return;
5992 /*
5993 * We have to be careful, if called from sys_setpriority(),
5994 * the task might be in the middle of scheduling on another CPU.
5995 */
5996 rq = task_rq_lock(p, &flags);
a8e504d2 5997 update_rq_clock(rq);
1da177e4
LT
5998 /*
5999 * The RT priorities are set via sched_setscheduler(), but we still
6000 * allow the 'normal' nice value to be set - but as expected
6001 * it wont have any effect on scheduling until the task is
dd41f596 6002 * SCHED_FIFO/SCHED_RR:
1da177e4 6003 */
e05606d3 6004 if (task_has_rt_policy(p)) {
1da177e4
LT
6005 p->static_prio = NICE_TO_PRIO(nice);
6006 goto out_unlock;
6007 }
dd41f596 6008 on_rq = p->se.on_rq;
c09595f6 6009 if (on_rq)
69be72c1 6010 dequeue_task(rq, p, 0);
1da177e4 6011
1da177e4 6012 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6013 set_load_weight(p);
b29739f9
IM
6014 old_prio = p->prio;
6015 p->prio = effective_prio(p);
6016 delta = p->prio - old_prio;
1da177e4 6017
dd41f596 6018 if (on_rq) {
8159f87e 6019 enqueue_task(rq, p, 0);
1da177e4 6020 /*
d5f9f942
AM
6021 * If the task increased its priority or is running and
6022 * lowered its priority, then reschedule its CPU:
1da177e4 6023 */
d5f9f942 6024 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6025 resched_task(rq->curr);
6026 }
6027out_unlock:
6028 task_rq_unlock(rq, &flags);
6029}
1da177e4
LT
6030EXPORT_SYMBOL(set_user_nice);
6031
e43379f1
MM
6032/*
6033 * can_nice - check if a task can reduce its nice value
6034 * @p: task
6035 * @nice: nice value
6036 */
36c8b586 6037int can_nice(const struct task_struct *p, const int nice)
e43379f1 6038{
024f4747
MM
6039 /* convert nice value [19,-20] to rlimit style value [1,40] */
6040 int nice_rlim = 20 - nice;
48f24c4d 6041
e43379f1
MM
6042 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6043 capable(CAP_SYS_NICE));
6044}
6045
1da177e4
LT
6046#ifdef __ARCH_WANT_SYS_NICE
6047
6048/*
6049 * sys_nice - change the priority of the current process.
6050 * @increment: priority increment
6051 *
6052 * sys_setpriority is a more generic, but much slower function that
6053 * does similar things.
6054 */
5add95d4 6055SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6056{
48f24c4d 6057 long nice, retval;
1da177e4
LT
6058
6059 /*
6060 * Setpriority might change our priority at the same moment.
6061 * We don't have to worry. Conceptually one call occurs first
6062 * and we have a single winner.
6063 */
e43379f1
MM
6064 if (increment < -40)
6065 increment = -40;
1da177e4
LT
6066 if (increment > 40)
6067 increment = 40;
6068
2b8f836f 6069 nice = TASK_NICE(current) + increment;
1da177e4
LT
6070 if (nice < -20)
6071 nice = -20;
6072 if (nice > 19)
6073 nice = 19;
6074
e43379f1
MM
6075 if (increment < 0 && !can_nice(current, nice))
6076 return -EPERM;
6077
1da177e4
LT
6078 retval = security_task_setnice(current, nice);
6079 if (retval)
6080 return retval;
6081
6082 set_user_nice(current, nice);
6083 return 0;
6084}
6085
6086#endif
6087
6088/**
6089 * task_prio - return the priority value of a given task.
6090 * @p: the task in question.
6091 *
6092 * This is the priority value as seen by users in /proc.
6093 * RT tasks are offset by -200. Normal tasks are centered
6094 * around 0, value goes from -16 to +15.
6095 */
36c8b586 6096int task_prio(const struct task_struct *p)
1da177e4
LT
6097{
6098 return p->prio - MAX_RT_PRIO;
6099}
6100
6101/**
6102 * task_nice - return the nice value of a given task.
6103 * @p: the task in question.
6104 */
36c8b586 6105int task_nice(const struct task_struct *p)
1da177e4
LT
6106{
6107 return TASK_NICE(p);
6108}
150d8bed 6109EXPORT_SYMBOL(task_nice);
1da177e4
LT
6110
6111/**
6112 * idle_cpu - is a given cpu idle currently?
6113 * @cpu: the processor in question.
6114 */
6115int idle_cpu(int cpu)
6116{
6117 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6118}
6119
1da177e4
LT
6120/**
6121 * idle_task - return the idle task for a given cpu.
6122 * @cpu: the processor in question.
6123 */
36c8b586 6124struct task_struct *idle_task(int cpu)
1da177e4
LT
6125{
6126 return cpu_rq(cpu)->idle;
6127}
6128
6129/**
6130 * find_process_by_pid - find a process with a matching PID value.
6131 * @pid: the pid in question.
6132 */
a9957449 6133static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6134{
228ebcbe 6135 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6136}
6137
6138/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6139static void
6140__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6141{
dd41f596 6142 BUG_ON(p->se.on_rq);
48f24c4d 6143
1da177e4 6144 p->policy = policy;
dd41f596
IM
6145 switch (p->policy) {
6146 case SCHED_NORMAL:
6147 case SCHED_BATCH:
6148 case SCHED_IDLE:
6149 p->sched_class = &fair_sched_class;
6150 break;
6151 case SCHED_FIFO:
6152 case SCHED_RR:
6153 p->sched_class = &rt_sched_class;
6154 break;
6155 }
6156
1da177e4 6157 p->rt_priority = prio;
b29739f9
IM
6158 p->normal_prio = normal_prio(p);
6159 /* we are holding p->pi_lock already */
6160 p->prio = rt_mutex_getprio(p);
2dd73a4f 6161 set_load_weight(p);
1da177e4
LT
6162}
6163
c69e8d9c
DH
6164/*
6165 * check the target process has a UID that matches the current process's
6166 */
6167static bool check_same_owner(struct task_struct *p)
6168{
6169 const struct cred *cred = current_cred(), *pcred;
6170 bool match;
6171
6172 rcu_read_lock();
6173 pcred = __task_cred(p);
6174 match = (cred->euid == pcred->euid ||
6175 cred->euid == pcred->uid);
6176 rcu_read_unlock();
6177 return match;
6178}
6179
961ccddd
RR
6180static int __sched_setscheduler(struct task_struct *p, int policy,
6181 struct sched_param *param, bool user)
1da177e4 6182{
83b699ed 6183 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6184 unsigned long flags;
cb469845 6185 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6186 struct rq *rq;
ca94c442 6187 int reset_on_fork;
1da177e4 6188
66e5393a
SR
6189 /* may grab non-irq protected spin_locks */
6190 BUG_ON(in_interrupt());
1da177e4
LT
6191recheck:
6192 /* double check policy once rq lock held */
ca94c442
LP
6193 if (policy < 0) {
6194 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6195 policy = oldpolicy = p->policy;
ca94c442
LP
6196 } else {
6197 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6198 policy &= ~SCHED_RESET_ON_FORK;
6199
6200 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6201 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6202 policy != SCHED_IDLE)
6203 return -EINVAL;
6204 }
6205
1da177e4
LT
6206 /*
6207 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6208 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6209 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6210 */
6211 if (param->sched_priority < 0 ||
95cdf3b7 6212 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6213 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6214 return -EINVAL;
e05606d3 6215 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6216 return -EINVAL;
6217
37e4ab3f
OC
6218 /*
6219 * Allow unprivileged RT tasks to decrease priority:
6220 */
961ccddd 6221 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6222 if (rt_policy(policy)) {
8dc3e909 6223 unsigned long rlim_rtprio;
8dc3e909
ON
6224
6225 if (!lock_task_sighand(p, &flags))
6226 return -ESRCH;
6227 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6228 unlock_task_sighand(p, &flags);
6229
6230 /* can't set/change the rt policy */
6231 if (policy != p->policy && !rlim_rtprio)
6232 return -EPERM;
6233
6234 /* can't increase priority */
6235 if (param->sched_priority > p->rt_priority &&
6236 param->sched_priority > rlim_rtprio)
6237 return -EPERM;
6238 }
dd41f596
IM
6239 /*
6240 * Like positive nice levels, dont allow tasks to
6241 * move out of SCHED_IDLE either:
6242 */
6243 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6244 return -EPERM;
5fe1d75f 6245
37e4ab3f 6246 /* can't change other user's priorities */
c69e8d9c 6247 if (!check_same_owner(p))
37e4ab3f 6248 return -EPERM;
ca94c442
LP
6249
6250 /* Normal users shall not reset the sched_reset_on_fork flag */
6251 if (p->sched_reset_on_fork && !reset_on_fork)
6252 return -EPERM;
37e4ab3f 6253 }
1da177e4 6254
725aad24 6255 if (user) {
b68aa230 6256#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6257 /*
6258 * Do not allow realtime tasks into groups that have no runtime
6259 * assigned.
6260 */
9a7e0b18
PZ
6261 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6262 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6263 return -EPERM;
b68aa230
PZ
6264#endif
6265
725aad24
JF
6266 retval = security_task_setscheduler(p, policy, param);
6267 if (retval)
6268 return retval;
6269 }
6270
b29739f9
IM
6271 /*
6272 * make sure no PI-waiters arrive (or leave) while we are
6273 * changing the priority of the task:
6274 */
6275 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6276 /*
6277 * To be able to change p->policy safely, the apropriate
6278 * runqueue lock must be held.
6279 */
b29739f9 6280 rq = __task_rq_lock(p);
1da177e4
LT
6281 /* recheck policy now with rq lock held */
6282 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6283 policy = oldpolicy = -1;
b29739f9
IM
6284 __task_rq_unlock(rq);
6285 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6286 goto recheck;
6287 }
2daa3577 6288 update_rq_clock(rq);
dd41f596 6289 on_rq = p->se.on_rq;
051a1d1a 6290 running = task_current(rq, p);
0e1f3483 6291 if (on_rq)
2e1cb74a 6292 deactivate_task(rq, p, 0);
0e1f3483
HS
6293 if (running)
6294 p->sched_class->put_prev_task(rq, p);
f6b53205 6295
ca94c442
LP
6296 p->sched_reset_on_fork = reset_on_fork;
6297
1da177e4 6298 oldprio = p->prio;
dd41f596 6299 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6300
0e1f3483
HS
6301 if (running)
6302 p->sched_class->set_curr_task(rq);
dd41f596
IM
6303 if (on_rq) {
6304 activate_task(rq, p, 0);
cb469845
SR
6305
6306 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6307 }
b29739f9
IM
6308 __task_rq_unlock(rq);
6309 spin_unlock_irqrestore(&p->pi_lock, flags);
6310
95e02ca9
TG
6311 rt_mutex_adjust_pi(p);
6312
1da177e4
LT
6313 return 0;
6314}
961ccddd
RR
6315
6316/**
6317 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6318 * @p: the task in question.
6319 * @policy: new policy.
6320 * @param: structure containing the new RT priority.
6321 *
6322 * NOTE that the task may be already dead.
6323 */
6324int sched_setscheduler(struct task_struct *p, int policy,
6325 struct sched_param *param)
6326{
6327 return __sched_setscheduler(p, policy, param, true);
6328}
1da177e4
LT
6329EXPORT_SYMBOL_GPL(sched_setscheduler);
6330
961ccddd
RR
6331/**
6332 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6333 * @p: the task in question.
6334 * @policy: new policy.
6335 * @param: structure containing the new RT priority.
6336 *
6337 * Just like sched_setscheduler, only don't bother checking if the
6338 * current context has permission. For example, this is needed in
6339 * stop_machine(): we create temporary high priority worker threads,
6340 * but our caller might not have that capability.
6341 */
6342int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6343 struct sched_param *param)
6344{
6345 return __sched_setscheduler(p, policy, param, false);
6346}
6347
95cdf3b7
IM
6348static int
6349do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6350{
1da177e4
LT
6351 struct sched_param lparam;
6352 struct task_struct *p;
36c8b586 6353 int retval;
1da177e4
LT
6354
6355 if (!param || pid < 0)
6356 return -EINVAL;
6357 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6358 return -EFAULT;
5fe1d75f
ON
6359
6360 rcu_read_lock();
6361 retval = -ESRCH;
1da177e4 6362 p = find_process_by_pid(pid);
5fe1d75f
ON
6363 if (p != NULL)
6364 retval = sched_setscheduler(p, policy, &lparam);
6365 rcu_read_unlock();
36c8b586 6366
1da177e4
LT
6367 return retval;
6368}
6369
6370/**
6371 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6372 * @pid: the pid in question.
6373 * @policy: new policy.
6374 * @param: structure containing the new RT priority.
6375 */
5add95d4
HC
6376SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6377 struct sched_param __user *, param)
1da177e4 6378{
c21761f1
JB
6379 /* negative values for policy are not valid */
6380 if (policy < 0)
6381 return -EINVAL;
6382
1da177e4
LT
6383 return do_sched_setscheduler(pid, policy, param);
6384}
6385
6386/**
6387 * sys_sched_setparam - set/change the RT priority of a thread
6388 * @pid: the pid in question.
6389 * @param: structure containing the new RT priority.
6390 */
5add95d4 6391SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6392{
6393 return do_sched_setscheduler(pid, -1, param);
6394}
6395
6396/**
6397 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6398 * @pid: the pid in question.
6399 */
5add95d4 6400SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6401{
36c8b586 6402 struct task_struct *p;
3a5c359a 6403 int retval;
1da177e4
LT
6404
6405 if (pid < 0)
3a5c359a 6406 return -EINVAL;
1da177e4
LT
6407
6408 retval = -ESRCH;
6409 read_lock(&tasklist_lock);
6410 p = find_process_by_pid(pid);
6411 if (p) {
6412 retval = security_task_getscheduler(p);
6413 if (!retval)
ca94c442
LP
6414 retval = p->policy
6415 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4
LT
6416 }
6417 read_unlock(&tasklist_lock);
1da177e4
LT
6418 return retval;
6419}
6420
6421/**
ca94c442 6422 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6423 * @pid: the pid in question.
6424 * @param: structure containing the RT priority.
6425 */
5add95d4 6426SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6427{
6428 struct sched_param lp;
36c8b586 6429 struct task_struct *p;
3a5c359a 6430 int retval;
1da177e4
LT
6431
6432 if (!param || pid < 0)
3a5c359a 6433 return -EINVAL;
1da177e4
LT
6434
6435 read_lock(&tasklist_lock);
6436 p = find_process_by_pid(pid);
6437 retval = -ESRCH;
6438 if (!p)
6439 goto out_unlock;
6440
6441 retval = security_task_getscheduler(p);
6442 if (retval)
6443 goto out_unlock;
6444
6445 lp.sched_priority = p->rt_priority;
6446 read_unlock(&tasklist_lock);
6447
6448 /*
6449 * This one might sleep, we cannot do it with a spinlock held ...
6450 */
6451 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6452
1da177e4
LT
6453 return retval;
6454
6455out_unlock:
6456 read_unlock(&tasklist_lock);
6457 return retval;
6458}
6459
96f874e2 6460long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6461{
5a16f3d3 6462 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6463 struct task_struct *p;
6464 int retval;
1da177e4 6465
95402b38 6466 get_online_cpus();
1da177e4
LT
6467 read_lock(&tasklist_lock);
6468
6469 p = find_process_by_pid(pid);
6470 if (!p) {
6471 read_unlock(&tasklist_lock);
95402b38 6472 put_online_cpus();
1da177e4
LT
6473 return -ESRCH;
6474 }
6475
6476 /*
6477 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6478 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6479 * usage count and then drop tasklist_lock.
6480 */
6481 get_task_struct(p);
6482 read_unlock(&tasklist_lock);
6483
5a16f3d3
RR
6484 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6485 retval = -ENOMEM;
6486 goto out_put_task;
6487 }
6488 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6489 retval = -ENOMEM;
6490 goto out_free_cpus_allowed;
6491 }
1da177e4 6492 retval = -EPERM;
c69e8d9c 6493 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6494 goto out_unlock;
6495
e7834f8f
DQ
6496 retval = security_task_setscheduler(p, 0, NULL);
6497 if (retval)
6498 goto out_unlock;
6499
5a16f3d3
RR
6500 cpuset_cpus_allowed(p, cpus_allowed);
6501 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6502 again:
5a16f3d3 6503 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6504
8707d8b8 6505 if (!retval) {
5a16f3d3
RR
6506 cpuset_cpus_allowed(p, cpus_allowed);
6507 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6508 /*
6509 * We must have raced with a concurrent cpuset
6510 * update. Just reset the cpus_allowed to the
6511 * cpuset's cpus_allowed
6512 */
5a16f3d3 6513 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6514 goto again;
6515 }
6516 }
1da177e4 6517out_unlock:
5a16f3d3
RR
6518 free_cpumask_var(new_mask);
6519out_free_cpus_allowed:
6520 free_cpumask_var(cpus_allowed);
6521out_put_task:
1da177e4 6522 put_task_struct(p);
95402b38 6523 put_online_cpus();
1da177e4
LT
6524 return retval;
6525}
6526
6527static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6528 struct cpumask *new_mask)
1da177e4 6529{
96f874e2
RR
6530 if (len < cpumask_size())
6531 cpumask_clear(new_mask);
6532 else if (len > cpumask_size())
6533 len = cpumask_size();
6534
1da177e4
LT
6535 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6536}
6537
6538/**
6539 * sys_sched_setaffinity - set the cpu affinity of a process
6540 * @pid: pid of the process
6541 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6542 * @user_mask_ptr: user-space pointer to the new cpu mask
6543 */
5add95d4
HC
6544SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6545 unsigned long __user *, user_mask_ptr)
1da177e4 6546{
5a16f3d3 6547 cpumask_var_t new_mask;
1da177e4
LT
6548 int retval;
6549
5a16f3d3
RR
6550 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6551 return -ENOMEM;
1da177e4 6552
5a16f3d3
RR
6553 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6554 if (retval == 0)
6555 retval = sched_setaffinity(pid, new_mask);
6556 free_cpumask_var(new_mask);
6557 return retval;
1da177e4
LT
6558}
6559
96f874e2 6560long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6561{
36c8b586 6562 struct task_struct *p;
1da177e4 6563 int retval;
1da177e4 6564
95402b38 6565 get_online_cpus();
1da177e4
LT
6566 read_lock(&tasklist_lock);
6567
6568 retval = -ESRCH;
6569 p = find_process_by_pid(pid);
6570 if (!p)
6571 goto out_unlock;
6572
e7834f8f
DQ
6573 retval = security_task_getscheduler(p);
6574 if (retval)
6575 goto out_unlock;
6576
96f874e2 6577 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6578
6579out_unlock:
6580 read_unlock(&tasklist_lock);
95402b38 6581 put_online_cpus();
1da177e4 6582
9531b62f 6583 return retval;
1da177e4
LT
6584}
6585
6586/**
6587 * sys_sched_getaffinity - get the cpu affinity of a process
6588 * @pid: pid of the process
6589 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6590 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6591 */
5add95d4
HC
6592SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6593 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6594{
6595 int ret;
f17c8607 6596 cpumask_var_t mask;
1da177e4 6597
f17c8607 6598 if (len < cpumask_size())
1da177e4
LT
6599 return -EINVAL;
6600
f17c8607
RR
6601 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6602 return -ENOMEM;
1da177e4 6603
f17c8607
RR
6604 ret = sched_getaffinity(pid, mask);
6605 if (ret == 0) {
6606 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6607 ret = -EFAULT;
6608 else
6609 ret = cpumask_size();
6610 }
6611 free_cpumask_var(mask);
1da177e4 6612
f17c8607 6613 return ret;
1da177e4
LT
6614}
6615
6616/**
6617 * sys_sched_yield - yield the current processor to other threads.
6618 *
dd41f596
IM
6619 * This function yields the current CPU to other tasks. If there are no
6620 * other threads running on this CPU then this function will return.
1da177e4 6621 */
5add95d4 6622SYSCALL_DEFINE0(sched_yield)
1da177e4 6623{
70b97a7f 6624 struct rq *rq = this_rq_lock();
1da177e4 6625
2d72376b 6626 schedstat_inc(rq, yld_count);
4530d7ab 6627 current->sched_class->yield_task(rq);
1da177e4
LT
6628
6629 /*
6630 * Since we are going to call schedule() anyway, there's
6631 * no need to preempt or enable interrupts:
6632 */
6633 __release(rq->lock);
8a25d5de 6634 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6635 _raw_spin_unlock(&rq->lock);
6636 preempt_enable_no_resched();
6637
6638 schedule();
6639
6640 return 0;
6641}
6642
d86ee480
PZ
6643static inline int should_resched(void)
6644{
6645 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6646}
6647
e7b38404 6648static void __cond_resched(void)
1da177e4 6649{
e7aaaa69
FW
6650 add_preempt_count(PREEMPT_ACTIVE);
6651 schedule();
6652 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6653}
6654
02b67cc3 6655int __sched _cond_resched(void)
1da177e4 6656{
d86ee480 6657 if (should_resched()) {
1da177e4
LT
6658 __cond_resched();
6659 return 1;
6660 }
6661 return 0;
6662}
02b67cc3 6663EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6664
6665/*
613afbf8 6666 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6667 * call schedule, and on return reacquire the lock.
6668 *
41a2d6cf 6669 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6670 * operations here to prevent schedule() from being called twice (once via
6671 * spin_unlock(), once by hand).
6672 */
613afbf8 6673int __cond_resched_lock(spinlock_t *lock)
1da177e4 6674{
d86ee480 6675 int resched = should_resched();
6df3cecb
JK
6676 int ret = 0;
6677
f607c668
PZ
6678 lockdep_assert_held(lock);
6679
95c354fe 6680 if (spin_needbreak(lock) || resched) {
1da177e4 6681 spin_unlock(lock);
d86ee480 6682 if (resched)
95c354fe
NP
6683 __cond_resched();
6684 else
6685 cpu_relax();
6df3cecb 6686 ret = 1;
1da177e4 6687 spin_lock(lock);
1da177e4 6688 }
6df3cecb 6689 return ret;
1da177e4 6690}
613afbf8 6691EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6692
613afbf8 6693int __sched __cond_resched_softirq(void)
1da177e4
LT
6694{
6695 BUG_ON(!in_softirq());
6696
d86ee480 6697 if (should_resched()) {
98d82567 6698 local_bh_enable();
1da177e4
LT
6699 __cond_resched();
6700 local_bh_disable();
6701 return 1;
6702 }
6703 return 0;
6704}
613afbf8 6705EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6706
1da177e4
LT
6707/**
6708 * yield - yield the current processor to other threads.
6709 *
72fd4a35 6710 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6711 * thread runnable and calls sys_sched_yield().
6712 */
6713void __sched yield(void)
6714{
6715 set_current_state(TASK_RUNNING);
6716 sys_sched_yield();
6717}
1da177e4
LT
6718EXPORT_SYMBOL(yield);
6719
6720/*
41a2d6cf 6721 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 6722 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
6723 */
6724void __sched io_schedule(void)
6725{
54d35f29 6726 struct rq *rq = raw_rq();
1da177e4 6727
0ff92245 6728 delayacct_blkio_start();
1da177e4 6729 atomic_inc(&rq->nr_iowait);
8f0dfc34 6730 current->in_iowait = 1;
1da177e4 6731 schedule();
8f0dfc34 6732 current->in_iowait = 0;
1da177e4 6733 atomic_dec(&rq->nr_iowait);
0ff92245 6734 delayacct_blkio_end();
1da177e4 6735}
1da177e4
LT
6736EXPORT_SYMBOL(io_schedule);
6737
6738long __sched io_schedule_timeout(long timeout)
6739{
54d35f29 6740 struct rq *rq = raw_rq();
1da177e4
LT
6741 long ret;
6742
0ff92245 6743 delayacct_blkio_start();
1da177e4 6744 atomic_inc(&rq->nr_iowait);
8f0dfc34 6745 current->in_iowait = 1;
1da177e4 6746 ret = schedule_timeout(timeout);
8f0dfc34 6747 current->in_iowait = 0;
1da177e4 6748 atomic_dec(&rq->nr_iowait);
0ff92245 6749 delayacct_blkio_end();
1da177e4
LT
6750 return ret;
6751}
6752
6753/**
6754 * sys_sched_get_priority_max - return maximum RT priority.
6755 * @policy: scheduling class.
6756 *
6757 * this syscall returns the maximum rt_priority that can be used
6758 * by a given scheduling class.
6759 */
5add95d4 6760SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6761{
6762 int ret = -EINVAL;
6763
6764 switch (policy) {
6765 case SCHED_FIFO:
6766 case SCHED_RR:
6767 ret = MAX_USER_RT_PRIO-1;
6768 break;
6769 case SCHED_NORMAL:
b0a9499c 6770 case SCHED_BATCH:
dd41f596 6771 case SCHED_IDLE:
1da177e4
LT
6772 ret = 0;
6773 break;
6774 }
6775 return ret;
6776}
6777
6778/**
6779 * sys_sched_get_priority_min - return minimum RT priority.
6780 * @policy: scheduling class.
6781 *
6782 * this syscall returns the minimum rt_priority that can be used
6783 * by a given scheduling class.
6784 */
5add95d4 6785SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6786{
6787 int ret = -EINVAL;
6788
6789 switch (policy) {
6790 case SCHED_FIFO:
6791 case SCHED_RR:
6792 ret = 1;
6793 break;
6794 case SCHED_NORMAL:
b0a9499c 6795 case SCHED_BATCH:
dd41f596 6796 case SCHED_IDLE:
1da177e4
LT
6797 ret = 0;
6798 }
6799 return ret;
6800}
6801
6802/**
6803 * sys_sched_rr_get_interval - return the default timeslice of a process.
6804 * @pid: pid of the process.
6805 * @interval: userspace pointer to the timeslice value.
6806 *
6807 * this syscall writes the default timeslice value of a given process
6808 * into the user-space timespec buffer. A value of '0' means infinity.
6809 */
17da2bd9 6810SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6811 struct timespec __user *, interval)
1da177e4 6812{
36c8b586 6813 struct task_struct *p;
a4ec24b4 6814 unsigned int time_slice;
3a5c359a 6815 int retval;
1da177e4 6816 struct timespec t;
1da177e4
LT
6817
6818 if (pid < 0)
3a5c359a 6819 return -EINVAL;
1da177e4
LT
6820
6821 retval = -ESRCH;
6822 read_lock(&tasklist_lock);
6823 p = find_process_by_pid(pid);
6824 if (!p)
6825 goto out_unlock;
6826
6827 retval = security_task_getscheduler(p);
6828 if (retval)
6829 goto out_unlock;
6830
0d721cea 6831 time_slice = p->sched_class->get_rr_interval(p);
a4ec24b4 6832
1da177e4 6833 read_unlock(&tasklist_lock);
a4ec24b4 6834 jiffies_to_timespec(time_slice, &t);
1da177e4 6835 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6836 return retval;
3a5c359a 6837
1da177e4
LT
6838out_unlock:
6839 read_unlock(&tasklist_lock);
6840 return retval;
6841}
6842
7c731e0a 6843static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6844
82a1fcb9 6845void sched_show_task(struct task_struct *p)
1da177e4 6846{
1da177e4 6847 unsigned long free = 0;
36c8b586 6848 unsigned state;
1da177e4 6849
1da177e4 6850 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6851 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6852 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6853#if BITS_PER_LONG == 32
1da177e4 6854 if (state == TASK_RUNNING)
cc4ea795 6855 printk(KERN_CONT " running ");
1da177e4 6856 else
cc4ea795 6857 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6858#else
6859 if (state == TASK_RUNNING)
cc4ea795 6860 printk(KERN_CONT " running task ");
1da177e4 6861 else
cc4ea795 6862 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6863#endif
6864#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6865 free = stack_not_used(p);
1da177e4 6866#endif
aa47b7e0
DR
6867 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6868 task_pid_nr(p), task_pid_nr(p->real_parent),
6869 (unsigned long)task_thread_info(p)->flags);
1da177e4 6870
5fb5e6de 6871 show_stack(p, NULL);
1da177e4
LT
6872}
6873
e59e2ae2 6874void show_state_filter(unsigned long state_filter)
1da177e4 6875{
36c8b586 6876 struct task_struct *g, *p;
1da177e4 6877
4bd77321
IM
6878#if BITS_PER_LONG == 32
6879 printk(KERN_INFO
6880 " task PC stack pid father\n");
1da177e4 6881#else
4bd77321
IM
6882 printk(KERN_INFO
6883 " task PC stack pid father\n");
1da177e4
LT
6884#endif
6885 read_lock(&tasklist_lock);
6886 do_each_thread(g, p) {
6887 /*
6888 * reset the NMI-timeout, listing all files on a slow
6889 * console might take alot of time:
6890 */
6891 touch_nmi_watchdog();
39bc89fd 6892 if (!state_filter || (p->state & state_filter))
82a1fcb9 6893 sched_show_task(p);
1da177e4
LT
6894 } while_each_thread(g, p);
6895
04c9167f
JF
6896 touch_all_softlockup_watchdogs();
6897
dd41f596
IM
6898#ifdef CONFIG_SCHED_DEBUG
6899 sysrq_sched_debug_show();
6900#endif
1da177e4 6901 read_unlock(&tasklist_lock);
e59e2ae2
IM
6902 /*
6903 * Only show locks if all tasks are dumped:
6904 */
6905 if (state_filter == -1)
6906 debug_show_all_locks();
1da177e4
LT
6907}
6908
1df21055
IM
6909void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6910{
dd41f596 6911 idle->sched_class = &idle_sched_class;
1df21055
IM
6912}
6913
f340c0d1
IM
6914/**
6915 * init_idle - set up an idle thread for a given CPU
6916 * @idle: task in question
6917 * @cpu: cpu the idle task belongs to
6918 *
6919 * NOTE: this function does not set the idle thread's NEED_RESCHED
6920 * flag, to make booting more robust.
6921 */
5c1e1767 6922void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6923{
70b97a7f 6924 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6925 unsigned long flags;
6926
5cbd54ef
IM
6927 spin_lock_irqsave(&rq->lock, flags);
6928
dd41f596
IM
6929 __sched_fork(idle);
6930 idle->se.exec_start = sched_clock();
6931
b29739f9 6932 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6933 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6934 __set_task_cpu(idle, cpu);
1da177e4 6935
1da177e4 6936 rq->curr = rq->idle = idle;
4866cde0
NP
6937#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6938 idle->oncpu = 1;
6939#endif
1da177e4
LT
6940 spin_unlock_irqrestore(&rq->lock, flags);
6941
6942 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6943#if defined(CONFIG_PREEMPT)
6944 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6945#else
a1261f54 6946 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6947#endif
dd41f596
IM
6948 /*
6949 * The idle tasks have their own, simple scheduling class:
6950 */
6951 idle->sched_class = &idle_sched_class;
fb52607a 6952 ftrace_graph_init_task(idle);
1da177e4
LT
6953}
6954
6955/*
6956 * In a system that switches off the HZ timer nohz_cpu_mask
6957 * indicates which cpus entered this state. This is used
6958 * in the rcu update to wait only for active cpus. For system
6959 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6960 * always be CPU_BITS_NONE.
1da177e4 6961 */
6a7b3dc3 6962cpumask_var_t nohz_cpu_mask;
1da177e4 6963
19978ca6
IM
6964/*
6965 * Increase the granularity value when there are more CPUs,
6966 * because with more CPUs the 'effective latency' as visible
6967 * to users decreases. But the relationship is not linear,
6968 * so pick a second-best guess by going with the log2 of the
6969 * number of CPUs.
6970 *
6971 * This idea comes from the SD scheduler of Con Kolivas:
6972 */
6973static inline void sched_init_granularity(void)
6974{
6975 unsigned int factor = 1 + ilog2(num_online_cpus());
6976 const unsigned long limit = 200000000;
6977
6978 sysctl_sched_min_granularity *= factor;
6979 if (sysctl_sched_min_granularity > limit)
6980 sysctl_sched_min_granularity = limit;
6981
6982 sysctl_sched_latency *= factor;
6983 if (sysctl_sched_latency > limit)
6984 sysctl_sched_latency = limit;
6985
6986 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6987
6988 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6989}
6990
1da177e4
LT
6991#ifdef CONFIG_SMP
6992/*
6993 * This is how migration works:
6994 *
70b97a7f 6995 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6996 * runqueue and wake up that CPU's migration thread.
6997 * 2) we down() the locked semaphore => thread blocks.
6998 * 3) migration thread wakes up (implicitly it forces the migrated
6999 * thread off the CPU)
7000 * 4) it gets the migration request and checks whether the migrated
7001 * task is still in the wrong runqueue.
7002 * 5) if it's in the wrong runqueue then the migration thread removes
7003 * it and puts it into the right queue.
7004 * 6) migration thread up()s the semaphore.
7005 * 7) we wake up and the migration is done.
7006 */
7007
7008/*
7009 * Change a given task's CPU affinity. Migrate the thread to a
7010 * proper CPU and schedule it away if the CPU it's executing on
7011 * is removed from the allowed bitmask.
7012 *
7013 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7014 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7015 * call is not atomic; no spinlocks may be held.
7016 */
96f874e2 7017int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7018{
70b97a7f 7019 struct migration_req req;
1da177e4 7020 unsigned long flags;
70b97a7f 7021 struct rq *rq;
48f24c4d 7022 int ret = 0;
1da177e4
LT
7023
7024 rq = task_rq_lock(p, &flags);
96f874e2 7025 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
7026 ret = -EINVAL;
7027 goto out;
7028 }
7029
9985b0ba 7030 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7031 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7032 ret = -EINVAL;
7033 goto out;
7034 }
7035
73fe6aae 7036 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7037 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7038 else {
96f874e2
RR
7039 cpumask_copy(&p->cpus_allowed, new_mask);
7040 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7041 }
7042
1da177e4 7043 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7044 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7045 goto out;
7046
1e5ce4f4 7047 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4 7048 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7049 struct task_struct *mt = rq->migration_thread;
7050
7051 get_task_struct(mt);
1da177e4
LT
7052 task_rq_unlock(rq, &flags);
7053 wake_up_process(rq->migration_thread);
693525e3 7054 put_task_struct(mt);
1da177e4
LT
7055 wait_for_completion(&req.done);
7056 tlb_migrate_finish(p->mm);
7057 return 0;
7058 }
7059out:
7060 task_rq_unlock(rq, &flags);
48f24c4d 7061
1da177e4
LT
7062 return ret;
7063}
cd8ba7cd 7064EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7065
7066/*
41a2d6cf 7067 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7068 * this because either it can't run here any more (set_cpus_allowed()
7069 * away from this CPU, or CPU going down), or because we're
7070 * attempting to rebalance this task on exec (sched_exec).
7071 *
7072 * So we race with normal scheduler movements, but that's OK, as long
7073 * as the task is no longer on this CPU.
efc30814
KK
7074 *
7075 * Returns non-zero if task was successfully migrated.
1da177e4 7076 */
efc30814 7077static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7078{
70b97a7f 7079 struct rq *rq_dest, *rq_src;
dd41f596 7080 int ret = 0, on_rq;
1da177e4 7081
e761b772 7082 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7083 return ret;
1da177e4
LT
7084
7085 rq_src = cpu_rq(src_cpu);
7086 rq_dest = cpu_rq(dest_cpu);
7087
7088 double_rq_lock(rq_src, rq_dest);
7089 /* Already moved. */
7090 if (task_cpu(p) != src_cpu)
b1e38734 7091 goto done;
1da177e4 7092 /* Affinity changed (again). */
96f874e2 7093 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7094 goto fail;
1da177e4 7095
dd41f596 7096 on_rq = p->se.on_rq;
6e82a3be 7097 if (on_rq)
2e1cb74a 7098 deactivate_task(rq_src, p, 0);
6e82a3be 7099
1da177e4 7100 set_task_cpu(p, dest_cpu);
dd41f596
IM
7101 if (on_rq) {
7102 activate_task(rq_dest, p, 0);
15afe09b 7103 check_preempt_curr(rq_dest, p, 0);
1da177e4 7104 }
b1e38734 7105done:
efc30814 7106 ret = 1;
b1e38734 7107fail:
1da177e4 7108 double_rq_unlock(rq_src, rq_dest);
efc30814 7109 return ret;
1da177e4
LT
7110}
7111
03b042bf
PM
7112#define RCU_MIGRATION_IDLE 0
7113#define RCU_MIGRATION_NEED_QS 1
7114#define RCU_MIGRATION_GOT_QS 2
7115#define RCU_MIGRATION_MUST_SYNC 3
7116
1da177e4
LT
7117/*
7118 * migration_thread - this is a highprio system thread that performs
7119 * thread migration by bumping thread off CPU then 'pushing' onto
7120 * another runqueue.
7121 */
95cdf3b7 7122static int migration_thread(void *data)
1da177e4 7123{
03b042bf 7124 int badcpu;
1da177e4 7125 int cpu = (long)data;
70b97a7f 7126 struct rq *rq;
1da177e4
LT
7127
7128 rq = cpu_rq(cpu);
7129 BUG_ON(rq->migration_thread != current);
7130
7131 set_current_state(TASK_INTERRUPTIBLE);
7132 while (!kthread_should_stop()) {
70b97a7f 7133 struct migration_req *req;
1da177e4 7134 struct list_head *head;
1da177e4 7135
1da177e4
LT
7136 spin_lock_irq(&rq->lock);
7137
7138 if (cpu_is_offline(cpu)) {
7139 spin_unlock_irq(&rq->lock);
371cbb38 7140 break;
1da177e4
LT
7141 }
7142
7143 if (rq->active_balance) {
7144 active_load_balance(rq, cpu);
7145 rq->active_balance = 0;
7146 }
7147
7148 head = &rq->migration_queue;
7149
7150 if (list_empty(head)) {
7151 spin_unlock_irq(&rq->lock);
7152 schedule();
7153 set_current_state(TASK_INTERRUPTIBLE);
7154 continue;
7155 }
70b97a7f 7156 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7157 list_del_init(head->next);
7158
03b042bf
PM
7159 if (req->task != NULL) {
7160 spin_unlock(&rq->lock);
7161 __migrate_task(req->task, cpu, req->dest_cpu);
7162 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7163 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7164 spin_unlock(&rq->lock);
7165 } else {
7166 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7167 spin_unlock(&rq->lock);
7168 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7169 }
674311d5 7170 local_irq_enable();
1da177e4
LT
7171
7172 complete(&req->done);
7173 }
7174 __set_current_state(TASK_RUNNING);
1da177e4 7175
1da177e4
LT
7176 return 0;
7177}
7178
7179#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7180
7181static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7182{
7183 int ret;
7184
7185 local_irq_disable();
7186 ret = __migrate_task(p, src_cpu, dest_cpu);
7187 local_irq_enable();
7188 return ret;
7189}
7190
054b9108 7191/*
3a4fa0a2 7192 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7193 */
48f24c4d 7194static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7195{
70b97a7f 7196 int dest_cpu;
6ca09dfc 7197 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7198
7199again:
7200 /* Look for allowed, online CPU in same node. */
7201 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7202 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7203 goto move;
7204
7205 /* Any allowed, online CPU? */
7206 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7207 if (dest_cpu < nr_cpu_ids)
7208 goto move;
7209
7210 /* No more Mr. Nice Guy. */
7211 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
7212 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7213 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 7214
e76bd8d9
RR
7215 /*
7216 * Don't tell them about moving exiting tasks or
7217 * kernel threads (both mm NULL), since they never
7218 * leave kernel.
7219 */
7220 if (p->mm && printk_ratelimit()) {
7221 printk(KERN_INFO "process %d (%s) no "
7222 "longer affine to cpu%d\n",
7223 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7224 }
e76bd8d9
RR
7225 }
7226
7227move:
7228 /* It can have affinity changed while we were choosing. */
7229 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7230 goto again;
1da177e4
LT
7231}
7232
7233/*
7234 * While a dead CPU has no uninterruptible tasks queued at this point,
7235 * it might still have a nonzero ->nr_uninterruptible counter, because
7236 * for performance reasons the counter is not stricly tracking tasks to
7237 * their home CPUs. So we just add the counter to another CPU's counter,
7238 * to keep the global sum constant after CPU-down:
7239 */
70b97a7f 7240static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7241{
1e5ce4f4 7242 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
7243 unsigned long flags;
7244
7245 local_irq_save(flags);
7246 double_rq_lock(rq_src, rq_dest);
7247 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7248 rq_src->nr_uninterruptible = 0;
7249 double_rq_unlock(rq_src, rq_dest);
7250 local_irq_restore(flags);
7251}
7252
7253/* Run through task list and migrate tasks from the dead cpu. */
7254static void migrate_live_tasks(int src_cpu)
7255{
48f24c4d 7256 struct task_struct *p, *t;
1da177e4 7257
f7b4cddc 7258 read_lock(&tasklist_lock);
1da177e4 7259
48f24c4d
IM
7260 do_each_thread(t, p) {
7261 if (p == current)
1da177e4
LT
7262 continue;
7263
48f24c4d
IM
7264 if (task_cpu(p) == src_cpu)
7265 move_task_off_dead_cpu(src_cpu, p);
7266 } while_each_thread(t, p);
1da177e4 7267
f7b4cddc 7268 read_unlock(&tasklist_lock);
1da177e4
LT
7269}
7270
dd41f596
IM
7271/*
7272 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7273 * It does so by boosting its priority to highest possible.
7274 * Used by CPU offline code.
1da177e4
LT
7275 */
7276void sched_idle_next(void)
7277{
48f24c4d 7278 int this_cpu = smp_processor_id();
70b97a7f 7279 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7280 struct task_struct *p = rq->idle;
7281 unsigned long flags;
7282
7283 /* cpu has to be offline */
48f24c4d 7284 BUG_ON(cpu_online(this_cpu));
1da177e4 7285
48f24c4d
IM
7286 /*
7287 * Strictly not necessary since rest of the CPUs are stopped by now
7288 * and interrupts disabled on the current cpu.
1da177e4
LT
7289 */
7290 spin_lock_irqsave(&rq->lock, flags);
7291
dd41f596 7292 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7293
94bc9a7b
DA
7294 update_rq_clock(rq);
7295 activate_task(rq, p, 0);
1da177e4
LT
7296
7297 spin_unlock_irqrestore(&rq->lock, flags);
7298}
7299
48f24c4d
IM
7300/*
7301 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7302 * offline.
7303 */
7304void idle_task_exit(void)
7305{
7306 struct mm_struct *mm = current->active_mm;
7307
7308 BUG_ON(cpu_online(smp_processor_id()));
7309
7310 if (mm != &init_mm)
7311 switch_mm(mm, &init_mm, current);
7312 mmdrop(mm);
7313}
7314
054b9108 7315/* called under rq->lock with disabled interrupts */
36c8b586 7316static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7317{
70b97a7f 7318 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7319
7320 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7321 BUG_ON(!p->exit_state);
1da177e4
LT
7322
7323 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7324 BUG_ON(p->state == TASK_DEAD);
1da177e4 7325
48f24c4d 7326 get_task_struct(p);
1da177e4
LT
7327
7328 /*
7329 * Drop lock around migration; if someone else moves it,
41a2d6cf 7330 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7331 * fine.
7332 */
f7b4cddc 7333 spin_unlock_irq(&rq->lock);
48f24c4d 7334 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7335 spin_lock_irq(&rq->lock);
1da177e4 7336
48f24c4d 7337 put_task_struct(p);
1da177e4
LT
7338}
7339
7340/* release_task() removes task from tasklist, so we won't find dead tasks. */
7341static void migrate_dead_tasks(unsigned int dead_cpu)
7342{
70b97a7f 7343 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7344 struct task_struct *next;
48f24c4d 7345
dd41f596
IM
7346 for ( ; ; ) {
7347 if (!rq->nr_running)
7348 break;
a8e504d2 7349 update_rq_clock(rq);
b67802ea 7350 next = pick_next_task(rq);
dd41f596
IM
7351 if (!next)
7352 break;
79c53799 7353 next->sched_class->put_prev_task(rq, next);
dd41f596 7354 migrate_dead(dead_cpu, next);
e692ab53 7355
1da177e4
LT
7356 }
7357}
dce48a84
TG
7358
7359/*
7360 * remove the tasks which were accounted by rq from calc_load_tasks.
7361 */
7362static void calc_global_load_remove(struct rq *rq)
7363{
7364 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7365 rq->calc_load_active = 0;
dce48a84 7366}
1da177e4
LT
7367#endif /* CONFIG_HOTPLUG_CPU */
7368
e692ab53
NP
7369#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7370
7371static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7372 {
7373 .procname = "sched_domain",
c57baf1e 7374 .mode = 0555,
e0361851 7375 },
38605cae 7376 {0, },
e692ab53
NP
7377};
7378
7379static struct ctl_table sd_ctl_root[] = {
e0361851 7380 {
c57baf1e 7381 .ctl_name = CTL_KERN,
e0361851 7382 .procname = "kernel",
c57baf1e 7383 .mode = 0555,
e0361851
AD
7384 .child = sd_ctl_dir,
7385 },
38605cae 7386 {0, },
e692ab53
NP
7387};
7388
7389static struct ctl_table *sd_alloc_ctl_entry(int n)
7390{
7391 struct ctl_table *entry =
5cf9f062 7392 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7393
e692ab53
NP
7394 return entry;
7395}
7396
6382bc90
MM
7397static void sd_free_ctl_entry(struct ctl_table **tablep)
7398{
cd790076 7399 struct ctl_table *entry;
6382bc90 7400
cd790076
MM
7401 /*
7402 * In the intermediate directories, both the child directory and
7403 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7404 * will always be set. In the lowest directory the names are
cd790076
MM
7405 * static strings and all have proc handlers.
7406 */
7407 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7408 if (entry->child)
7409 sd_free_ctl_entry(&entry->child);
cd790076
MM
7410 if (entry->proc_handler == NULL)
7411 kfree(entry->procname);
7412 }
6382bc90
MM
7413
7414 kfree(*tablep);
7415 *tablep = NULL;
7416}
7417
e692ab53 7418static void
e0361851 7419set_table_entry(struct ctl_table *entry,
e692ab53
NP
7420 const char *procname, void *data, int maxlen,
7421 mode_t mode, proc_handler *proc_handler)
7422{
e692ab53
NP
7423 entry->procname = procname;
7424 entry->data = data;
7425 entry->maxlen = maxlen;
7426 entry->mode = mode;
7427 entry->proc_handler = proc_handler;
7428}
7429
7430static struct ctl_table *
7431sd_alloc_ctl_domain_table(struct sched_domain *sd)
7432{
a5d8c348 7433 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7434
ad1cdc1d
MM
7435 if (table == NULL)
7436 return NULL;
7437
e0361851 7438 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7439 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7440 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7441 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7442 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7443 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7444 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7445 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7446 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7447 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7448 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7449 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7450 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7451 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7452 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7453 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7454 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7455 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7456 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7457 &sd->cache_nice_tries,
7458 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7459 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7460 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7461 set_table_entry(&table[11], "name", sd->name,
7462 CORENAME_MAX_SIZE, 0444, proc_dostring);
7463 /* &table[12] is terminator */
e692ab53
NP
7464
7465 return table;
7466}
7467
9a4e7159 7468static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7469{
7470 struct ctl_table *entry, *table;
7471 struct sched_domain *sd;
7472 int domain_num = 0, i;
7473 char buf[32];
7474
7475 for_each_domain(cpu, sd)
7476 domain_num++;
7477 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7478 if (table == NULL)
7479 return NULL;
e692ab53
NP
7480
7481 i = 0;
7482 for_each_domain(cpu, sd) {
7483 snprintf(buf, 32, "domain%d", i);
e692ab53 7484 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7485 entry->mode = 0555;
e692ab53
NP
7486 entry->child = sd_alloc_ctl_domain_table(sd);
7487 entry++;
7488 i++;
7489 }
7490 return table;
7491}
7492
7493static struct ctl_table_header *sd_sysctl_header;
6382bc90 7494static void register_sched_domain_sysctl(void)
e692ab53
NP
7495{
7496 int i, cpu_num = num_online_cpus();
7497 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7498 char buf[32];
7499
7378547f
MM
7500 WARN_ON(sd_ctl_dir[0].child);
7501 sd_ctl_dir[0].child = entry;
7502
ad1cdc1d
MM
7503 if (entry == NULL)
7504 return;
7505
97b6ea7b 7506 for_each_online_cpu(i) {
e692ab53 7507 snprintf(buf, 32, "cpu%d", i);
e692ab53 7508 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7509 entry->mode = 0555;
e692ab53 7510 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7511 entry++;
e692ab53 7512 }
7378547f
MM
7513
7514 WARN_ON(sd_sysctl_header);
e692ab53
NP
7515 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7516}
6382bc90 7517
7378547f 7518/* may be called multiple times per register */
6382bc90
MM
7519static void unregister_sched_domain_sysctl(void)
7520{
7378547f
MM
7521 if (sd_sysctl_header)
7522 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7523 sd_sysctl_header = NULL;
7378547f
MM
7524 if (sd_ctl_dir[0].child)
7525 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7526}
e692ab53 7527#else
6382bc90
MM
7528static void register_sched_domain_sysctl(void)
7529{
7530}
7531static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7532{
7533}
7534#endif
7535
1f11eb6a
GH
7536static void set_rq_online(struct rq *rq)
7537{
7538 if (!rq->online) {
7539 const struct sched_class *class;
7540
c6c4927b 7541 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7542 rq->online = 1;
7543
7544 for_each_class(class) {
7545 if (class->rq_online)
7546 class->rq_online(rq);
7547 }
7548 }
7549}
7550
7551static void set_rq_offline(struct rq *rq)
7552{
7553 if (rq->online) {
7554 const struct sched_class *class;
7555
7556 for_each_class(class) {
7557 if (class->rq_offline)
7558 class->rq_offline(rq);
7559 }
7560
c6c4927b 7561 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7562 rq->online = 0;
7563 }
7564}
7565
1da177e4
LT
7566/*
7567 * migration_call - callback that gets triggered when a CPU is added.
7568 * Here we can start up the necessary migration thread for the new CPU.
7569 */
48f24c4d
IM
7570static int __cpuinit
7571migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7572{
1da177e4 7573 struct task_struct *p;
48f24c4d 7574 int cpu = (long)hcpu;
1da177e4 7575 unsigned long flags;
70b97a7f 7576 struct rq *rq;
1da177e4
LT
7577
7578 switch (action) {
5be9361c 7579
1da177e4 7580 case CPU_UP_PREPARE:
8bb78442 7581 case CPU_UP_PREPARE_FROZEN:
dd41f596 7582 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7583 if (IS_ERR(p))
7584 return NOTIFY_BAD;
1da177e4
LT
7585 kthread_bind(p, cpu);
7586 /* Must be high prio: stop_machine expects to yield to it. */
7587 rq = task_rq_lock(p, &flags);
dd41f596 7588 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7589 task_rq_unlock(rq, &flags);
371cbb38 7590 get_task_struct(p);
1da177e4 7591 cpu_rq(cpu)->migration_thread = p;
a468d389 7592 rq->calc_load_update = calc_load_update;
1da177e4 7593 break;
48f24c4d 7594
1da177e4 7595 case CPU_ONLINE:
8bb78442 7596 case CPU_ONLINE_FROZEN:
3a4fa0a2 7597 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7598 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7599
7600 /* Update our root-domain */
7601 rq = cpu_rq(cpu);
7602 spin_lock_irqsave(&rq->lock, flags);
7603 if (rq->rd) {
c6c4927b 7604 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7605
7606 set_rq_online(rq);
1f94ef59
GH
7607 }
7608 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7609 break;
48f24c4d 7610
1da177e4
LT
7611#ifdef CONFIG_HOTPLUG_CPU
7612 case CPU_UP_CANCELED:
8bb78442 7613 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7614 if (!cpu_rq(cpu)->migration_thread)
7615 break;
41a2d6cf 7616 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7617 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7618 cpumask_any(cpu_online_mask));
1da177e4 7619 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7620 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7621 cpu_rq(cpu)->migration_thread = NULL;
7622 break;
48f24c4d 7623
1da177e4 7624 case CPU_DEAD:
8bb78442 7625 case CPU_DEAD_FROZEN:
470fd646 7626 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7627 migrate_live_tasks(cpu);
7628 rq = cpu_rq(cpu);
7629 kthread_stop(rq->migration_thread);
371cbb38 7630 put_task_struct(rq->migration_thread);
1da177e4
LT
7631 rq->migration_thread = NULL;
7632 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7633 spin_lock_irq(&rq->lock);
a8e504d2 7634 update_rq_clock(rq);
2e1cb74a 7635 deactivate_task(rq, rq->idle, 0);
1da177e4 7636 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7637 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7638 rq->idle->sched_class = &idle_sched_class;
1da177e4 7639 migrate_dead_tasks(cpu);
d2da272a 7640 spin_unlock_irq(&rq->lock);
470fd646 7641 cpuset_unlock();
1da177e4
LT
7642 migrate_nr_uninterruptible(rq);
7643 BUG_ON(rq->nr_running != 0);
dce48a84 7644 calc_global_load_remove(rq);
41a2d6cf
IM
7645 /*
7646 * No need to migrate the tasks: it was best-effort if
7647 * they didn't take sched_hotcpu_mutex. Just wake up
7648 * the requestors.
7649 */
1da177e4
LT
7650 spin_lock_irq(&rq->lock);
7651 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7652 struct migration_req *req;
7653
1da177e4 7654 req = list_entry(rq->migration_queue.next,
70b97a7f 7655 struct migration_req, list);
1da177e4 7656 list_del_init(&req->list);
9a2bd244 7657 spin_unlock_irq(&rq->lock);
1da177e4 7658 complete(&req->done);
9a2bd244 7659 spin_lock_irq(&rq->lock);
1da177e4
LT
7660 }
7661 spin_unlock_irq(&rq->lock);
7662 break;
57d885fe 7663
08f503b0
GH
7664 case CPU_DYING:
7665 case CPU_DYING_FROZEN:
57d885fe
GH
7666 /* Update our root-domain */
7667 rq = cpu_rq(cpu);
7668 spin_lock_irqsave(&rq->lock, flags);
7669 if (rq->rd) {
c6c4927b 7670 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7671 set_rq_offline(rq);
57d885fe
GH
7672 }
7673 spin_unlock_irqrestore(&rq->lock, flags);
7674 break;
1da177e4
LT
7675#endif
7676 }
7677 return NOTIFY_OK;
7678}
7679
f38b0820
PM
7680/*
7681 * Register at high priority so that task migration (migrate_all_tasks)
7682 * happens before everything else. This has to be lower priority than
cdd6c482 7683 * the notifier in the perf_event subsystem, though.
1da177e4 7684 */
26c2143b 7685static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7686 .notifier_call = migration_call,
7687 .priority = 10
7688};
7689
7babe8db 7690static int __init migration_init(void)
1da177e4
LT
7691{
7692 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7693 int err;
48f24c4d
IM
7694
7695 /* Start one for the boot CPU: */
07dccf33
AM
7696 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7697 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7698 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7699 register_cpu_notifier(&migration_notifier);
7babe8db 7700
a004cd42 7701 return 0;
1da177e4 7702}
7babe8db 7703early_initcall(migration_init);
1da177e4
LT
7704#endif
7705
7706#ifdef CONFIG_SMP
476f3534 7707
3e9830dc 7708#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7709
7c16ec58 7710static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7711 struct cpumask *groupmask)
1da177e4 7712{
4dcf6aff 7713 struct sched_group *group = sd->groups;
434d53b0 7714 char str[256];
1da177e4 7715
968ea6d8 7716 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7717 cpumask_clear(groupmask);
4dcf6aff
IM
7718
7719 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7720
7721 if (!(sd->flags & SD_LOAD_BALANCE)) {
7722 printk("does not load-balance\n");
7723 if (sd->parent)
7724 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7725 " has parent");
7726 return -1;
41c7ce9a
NP
7727 }
7728
eefd796a 7729 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7730
758b2cdc 7731 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7732 printk(KERN_ERR "ERROR: domain->span does not contain "
7733 "CPU%d\n", cpu);
7734 }
758b2cdc 7735 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7736 printk(KERN_ERR "ERROR: domain->groups does not contain"
7737 " CPU%d\n", cpu);
7738 }
1da177e4 7739
4dcf6aff 7740 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7741 do {
4dcf6aff
IM
7742 if (!group) {
7743 printk("\n");
7744 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7745 break;
7746 }
7747
18a3885f 7748 if (!group->cpu_power) {
4dcf6aff
IM
7749 printk(KERN_CONT "\n");
7750 printk(KERN_ERR "ERROR: domain->cpu_power not "
7751 "set\n");
7752 break;
7753 }
1da177e4 7754
758b2cdc 7755 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7756 printk(KERN_CONT "\n");
7757 printk(KERN_ERR "ERROR: empty group\n");
7758 break;
7759 }
1da177e4 7760
758b2cdc 7761 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7762 printk(KERN_CONT "\n");
7763 printk(KERN_ERR "ERROR: repeated CPUs\n");
7764 break;
7765 }
1da177e4 7766
758b2cdc 7767 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7768
968ea6d8 7769 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7770
7771 printk(KERN_CONT " %s", str);
18a3885f
PZ
7772 if (group->cpu_power != SCHED_LOAD_SCALE) {
7773 printk(KERN_CONT " (cpu_power = %d)",
7774 group->cpu_power);
381512cf 7775 }
1da177e4 7776
4dcf6aff
IM
7777 group = group->next;
7778 } while (group != sd->groups);
7779 printk(KERN_CONT "\n");
1da177e4 7780
758b2cdc 7781 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7782 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7783
758b2cdc
RR
7784 if (sd->parent &&
7785 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7786 printk(KERN_ERR "ERROR: parent span is not a superset "
7787 "of domain->span\n");
7788 return 0;
7789}
1da177e4 7790
4dcf6aff
IM
7791static void sched_domain_debug(struct sched_domain *sd, int cpu)
7792{
d5dd3db1 7793 cpumask_var_t groupmask;
4dcf6aff 7794 int level = 0;
1da177e4 7795
4dcf6aff
IM
7796 if (!sd) {
7797 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7798 return;
7799 }
1da177e4 7800
4dcf6aff
IM
7801 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7802
d5dd3db1 7803 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7804 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7805 return;
7806 }
7807
4dcf6aff 7808 for (;;) {
7c16ec58 7809 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7810 break;
1da177e4
LT
7811 level++;
7812 sd = sd->parent;
33859f7f 7813 if (!sd)
4dcf6aff
IM
7814 break;
7815 }
d5dd3db1 7816 free_cpumask_var(groupmask);
1da177e4 7817}
6d6bc0ad 7818#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7819# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7820#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7821
1a20ff27 7822static int sd_degenerate(struct sched_domain *sd)
245af2c7 7823{
758b2cdc 7824 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7825 return 1;
7826
7827 /* Following flags need at least 2 groups */
7828 if (sd->flags & (SD_LOAD_BALANCE |
7829 SD_BALANCE_NEWIDLE |
7830 SD_BALANCE_FORK |
89c4710e
SS
7831 SD_BALANCE_EXEC |
7832 SD_SHARE_CPUPOWER |
7833 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7834 if (sd->groups != sd->groups->next)
7835 return 0;
7836 }
7837
7838 /* Following flags don't use groups */
c88d5910 7839 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
7840 return 0;
7841
7842 return 1;
7843}
7844
48f24c4d
IM
7845static int
7846sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7847{
7848 unsigned long cflags = sd->flags, pflags = parent->flags;
7849
7850 if (sd_degenerate(parent))
7851 return 1;
7852
758b2cdc 7853 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7854 return 0;
7855
245af2c7
SS
7856 /* Flags needing groups don't count if only 1 group in parent */
7857 if (parent->groups == parent->groups->next) {
7858 pflags &= ~(SD_LOAD_BALANCE |
7859 SD_BALANCE_NEWIDLE |
7860 SD_BALANCE_FORK |
89c4710e
SS
7861 SD_BALANCE_EXEC |
7862 SD_SHARE_CPUPOWER |
7863 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7864 if (nr_node_ids == 1)
7865 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7866 }
7867 if (~cflags & pflags)
7868 return 0;
7869
7870 return 1;
7871}
7872
c6c4927b
RR
7873static void free_rootdomain(struct root_domain *rd)
7874{
68e74568
RR
7875 cpupri_cleanup(&rd->cpupri);
7876
c6c4927b
RR
7877 free_cpumask_var(rd->rto_mask);
7878 free_cpumask_var(rd->online);
7879 free_cpumask_var(rd->span);
7880 kfree(rd);
7881}
7882
57d885fe
GH
7883static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7884{
a0490fa3 7885 struct root_domain *old_rd = NULL;
57d885fe 7886 unsigned long flags;
57d885fe
GH
7887
7888 spin_lock_irqsave(&rq->lock, flags);
7889
7890 if (rq->rd) {
a0490fa3 7891 old_rd = rq->rd;
57d885fe 7892
c6c4927b 7893 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7894 set_rq_offline(rq);
57d885fe 7895
c6c4927b 7896 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7897
a0490fa3
IM
7898 /*
7899 * If we dont want to free the old_rt yet then
7900 * set old_rd to NULL to skip the freeing later
7901 * in this function:
7902 */
7903 if (!atomic_dec_and_test(&old_rd->refcount))
7904 old_rd = NULL;
57d885fe
GH
7905 }
7906
7907 atomic_inc(&rd->refcount);
7908 rq->rd = rd;
7909
c6c4927b 7910 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 7911 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 7912 set_rq_online(rq);
57d885fe
GH
7913
7914 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7915
7916 if (old_rd)
7917 free_rootdomain(old_rd);
57d885fe
GH
7918}
7919
fd5e1b5d 7920static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 7921{
36b7b6d4
PE
7922 gfp_t gfp = GFP_KERNEL;
7923
57d885fe
GH
7924 memset(rd, 0, sizeof(*rd));
7925
36b7b6d4
PE
7926 if (bootmem)
7927 gfp = GFP_NOWAIT;
c6c4927b 7928
36b7b6d4 7929 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 7930 goto out;
36b7b6d4 7931 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 7932 goto free_span;
36b7b6d4 7933 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 7934 goto free_online;
6e0534f2 7935
0fb53029 7936 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 7937 goto free_rto_mask;
c6c4927b 7938 return 0;
6e0534f2 7939
68e74568
RR
7940free_rto_mask:
7941 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7942free_online:
7943 free_cpumask_var(rd->online);
7944free_span:
7945 free_cpumask_var(rd->span);
0c910d28 7946out:
c6c4927b 7947 return -ENOMEM;
57d885fe
GH
7948}
7949
7950static void init_defrootdomain(void)
7951{
c6c4927b
RR
7952 init_rootdomain(&def_root_domain, true);
7953
57d885fe
GH
7954 atomic_set(&def_root_domain.refcount, 1);
7955}
7956
dc938520 7957static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7958{
7959 struct root_domain *rd;
7960
7961 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7962 if (!rd)
7963 return NULL;
7964
c6c4927b
RR
7965 if (init_rootdomain(rd, false) != 0) {
7966 kfree(rd);
7967 return NULL;
7968 }
57d885fe
GH
7969
7970 return rd;
7971}
7972
1da177e4 7973/*
0eab9146 7974 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7975 * hold the hotplug lock.
7976 */
0eab9146
IM
7977static void
7978cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7979{
70b97a7f 7980 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7981 struct sched_domain *tmp;
7982
7983 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7984 for (tmp = sd; tmp; ) {
245af2c7
SS
7985 struct sched_domain *parent = tmp->parent;
7986 if (!parent)
7987 break;
f29c9b1c 7988
1a848870 7989 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7990 tmp->parent = parent->parent;
1a848870
SS
7991 if (parent->parent)
7992 parent->parent->child = tmp;
f29c9b1c
LZ
7993 } else
7994 tmp = tmp->parent;
245af2c7
SS
7995 }
7996
1a848870 7997 if (sd && sd_degenerate(sd)) {
245af2c7 7998 sd = sd->parent;
1a848870
SS
7999 if (sd)
8000 sd->child = NULL;
8001 }
1da177e4
LT
8002
8003 sched_domain_debug(sd, cpu);
8004
57d885fe 8005 rq_attach_root(rq, rd);
674311d5 8006 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8007}
8008
8009/* cpus with isolated domains */
dcc30a35 8010static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8011
8012/* Setup the mask of cpus configured for isolated domains */
8013static int __init isolated_cpu_setup(char *str)
8014{
968ea6d8 8015 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8016 return 1;
8017}
8018
8927f494 8019__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8020
8021/*
6711cab4
SS
8022 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8023 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8024 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8025 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8026 *
8027 * init_sched_build_groups will build a circular linked list of the groups
8028 * covered by the given span, and will set each group's ->cpumask correctly,
8029 * and ->cpu_power to 0.
8030 */
a616058b 8031static void
96f874e2
RR
8032init_sched_build_groups(const struct cpumask *span,
8033 const struct cpumask *cpu_map,
8034 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8035 struct sched_group **sg,
96f874e2
RR
8036 struct cpumask *tmpmask),
8037 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8038{
8039 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8040 int i;
8041
96f874e2 8042 cpumask_clear(covered);
7c16ec58 8043
abcd083a 8044 for_each_cpu(i, span) {
6711cab4 8045 struct sched_group *sg;
7c16ec58 8046 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8047 int j;
8048
758b2cdc 8049 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8050 continue;
8051
758b2cdc 8052 cpumask_clear(sched_group_cpus(sg));
18a3885f 8053 sg->cpu_power = 0;
1da177e4 8054
abcd083a 8055 for_each_cpu(j, span) {
7c16ec58 8056 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8057 continue;
8058
96f874e2 8059 cpumask_set_cpu(j, covered);
758b2cdc 8060 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8061 }
8062 if (!first)
8063 first = sg;
8064 if (last)
8065 last->next = sg;
8066 last = sg;
8067 }
8068 last->next = first;
8069}
8070
9c1cfda2 8071#define SD_NODES_PER_DOMAIN 16
1da177e4 8072
9c1cfda2 8073#ifdef CONFIG_NUMA
198e2f18 8074
9c1cfda2
JH
8075/**
8076 * find_next_best_node - find the next node to include in a sched_domain
8077 * @node: node whose sched_domain we're building
8078 * @used_nodes: nodes already in the sched_domain
8079 *
41a2d6cf 8080 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8081 * finds the closest node not already in the @used_nodes map.
8082 *
8083 * Should use nodemask_t.
8084 */
c5f59f08 8085static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8086{
8087 int i, n, val, min_val, best_node = 0;
8088
8089 min_val = INT_MAX;
8090
076ac2af 8091 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8092 /* Start at @node */
076ac2af 8093 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8094
8095 if (!nr_cpus_node(n))
8096 continue;
8097
8098 /* Skip already used nodes */
c5f59f08 8099 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8100 continue;
8101
8102 /* Simple min distance search */
8103 val = node_distance(node, n);
8104
8105 if (val < min_val) {
8106 min_val = val;
8107 best_node = n;
8108 }
8109 }
8110
c5f59f08 8111 node_set(best_node, *used_nodes);
9c1cfda2
JH
8112 return best_node;
8113}
8114
8115/**
8116 * sched_domain_node_span - get a cpumask for a node's sched_domain
8117 * @node: node whose cpumask we're constructing
73486722 8118 * @span: resulting cpumask
9c1cfda2 8119 *
41a2d6cf 8120 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8121 * should be one that prevents unnecessary balancing, but also spreads tasks
8122 * out optimally.
8123 */
96f874e2 8124static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8125{
c5f59f08 8126 nodemask_t used_nodes;
48f24c4d 8127 int i;
9c1cfda2 8128
6ca09dfc 8129 cpumask_clear(span);
c5f59f08 8130 nodes_clear(used_nodes);
9c1cfda2 8131
6ca09dfc 8132 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8133 node_set(node, used_nodes);
9c1cfda2
JH
8134
8135 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8136 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8137
6ca09dfc 8138 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8139 }
9c1cfda2 8140}
6d6bc0ad 8141#endif /* CONFIG_NUMA */
9c1cfda2 8142
5c45bf27 8143int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8144
6c99e9ad
RR
8145/*
8146 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8147 *
8148 * ( See the the comments in include/linux/sched.h:struct sched_group
8149 * and struct sched_domain. )
6c99e9ad
RR
8150 */
8151struct static_sched_group {
8152 struct sched_group sg;
8153 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8154};
8155
8156struct static_sched_domain {
8157 struct sched_domain sd;
8158 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8159};
8160
49a02c51
AH
8161struct s_data {
8162#ifdef CONFIG_NUMA
8163 int sd_allnodes;
8164 cpumask_var_t domainspan;
8165 cpumask_var_t covered;
8166 cpumask_var_t notcovered;
8167#endif
8168 cpumask_var_t nodemask;
8169 cpumask_var_t this_sibling_map;
8170 cpumask_var_t this_core_map;
8171 cpumask_var_t send_covered;
8172 cpumask_var_t tmpmask;
8173 struct sched_group **sched_group_nodes;
8174 struct root_domain *rd;
8175};
8176
2109b99e
AH
8177enum s_alloc {
8178 sa_sched_groups = 0,
8179 sa_rootdomain,
8180 sa_tmpmask,
8181 sa_send_covered,
8182 sa_this_core_map,
8183 sa_this_sibling_map,
8184 sa_nodemask,
8185 sa_sched_group_nodes,
8186#ifdef CONFIG_NUMA
8187 sa_notcovered,
8188 sa_covered,
8189 sa_domainspan,
8190#endif
8191 sa_none,
8192};
8193
9c1cfda2 8194/*
48f24c4d 8195 * SMT sched-domains:
9c1cfda2 8196 */
1da177e4 8197#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
8198static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8199static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 8200
41a2d6cf 8201static int
96f874e2
RR
8202cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8203 struct sched_group **sg, struct cpumask *unused)
1da177e4 8204{
6711cab4 8205 if (sg)
6c99e9ad 8206 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
8207 return cpu;
8208}
6d6bc0ad 8209#endif /* CONFIG_SCHED_SMT */
1da177e4 8210
48f24c4d
IM
8211/*
8212 * multi-core sched-domains:
8213 */
1e9f28fa 8214#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8215static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8216static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8217#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8218
8219#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8220static int
96f874e2
RR
8221cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8222 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8223{
6711cab4 8224 int group;
7c16ec58 8225
c69fc56d 8226 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8227 group = cpumask_first(mask);
6711cab4 8228 if (sg)
6c99e9ad 8229 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8230 return group;
1e9f28fa
SS
8231}
8232#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8233static int
96f874e2
RR
8234cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8235 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8236{
6711cab4 8237 if (sg)
6c99e9ad 8238 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8239 return cpu;
8240}
8241#endif
8242
6c99e9ad
RR
8243static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8244static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8245
41a2d6cf 8246static int
96f874e2
RR
8247cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8248 struct sched_group **sg, struct cpumask *mask)
1da177e4 8249{
6711cab4 8250 int group;
48f24c4d 8251#ifdef CONFIG_SCHED_MC
6ca09dfc 8252 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8253 group = cpumask_first(mask);
1e9f28fa 8254#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8255 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8256 group = cpumask_first(mask);
1da177e4 8257#else
6711cab4 8258 group = cpu;
1da177e4 8259#endif
6711cab4 8260 if (sg)
6c99e9ad 8261 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8262 return group;
1da177e4
LT
8263}
8264
8265#ifdef CONFIG_NUMA
1da177e4 8266/*
9c1cfda2
JH
8267 * The init_sched_build_groups can't handle what we want to do with node
8268 * groups, so roll our own. Now each node has its own list of groups which
8269 * gets dynamically allocated.
1da177e4 8270 */
62ea9ceb 8271static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8272static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8273
62ea9ceb 8274static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8275static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8276
96f874e2
RR
8277static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8278 struct sched_group **sg,
8279 struct cpumask *nodemask)
9c1cfda2 8280{
6711cab4
SS
8281 int group;
8282
6ca09dfc 8283 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8284 group = cpumask_first(nodemask);
6711cab4
SS
8285
8286 if (sg)
6c99e9ad 8287 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8288 return group;
1da177e4 8289}
6711cab4 8290
08069033
SS
8291static void init_numa_sched_groups_power(struct sched_group *group_head)
8292{
8293 struct sched_group *sg = group_head;
8294 int j;
8295
8296 if (!sg)
8297 return;
3a5c359a 8298 do {
758b2cdc 8299 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8300 struct sched_domain *sd;
08069033 8301
6c99e9ad 8302 sd = &per_cpu(phys_domains, j).sd;
13318a71 8303 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8304 /*
8305 * Only add "power" once for each
8306 * physical package.
8307 */
8308 continue;
8309 }
08069033 8310
18a3885f 8311 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
8312 }
8313 sg = sg->next;
8314 } while (sg != group_head);
08069033 8315}
0601a88d
AH
8316
8317static int build_numa_sched_groups(struct s_data *d,
8318 const struct cpumask *cpu_map, int num)
8319{
8320 struct sched_domain *sd;
8321 struct sched_group *sg, *prev;
8322 int n, j;
8323
8324 cpumask_clear(d->covered);
8325 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8326 if (cpumask_empty(d->nodemask)) {
8327 d->sched_group_nodes[num] = NULL;
8328 goto out;
8329 }
8330
8331 sched_domain_node_span(num, d->domainspan);
8332 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8333
8334 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8335 GFP_KERNEL, num);
8336 if (!sg) {
8337 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8338 num);
8339 return -ENOMEM;
8340 }
8341 d->sched_group_nodes[num] = sg;
8342
8343 for_each_cpu(j, d->nodemask) {
8344 sd = &per_cpu(node_domains, j).sd;
8345 sd->groups = sg;
8346 }
8347
18a3885f 8348 sg->cpu_power = 0;
0601a88d
AH
8349 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8350 sg->next = sg;
8351 cpumask_or(d->covered, d->covered, d->nodemask);
8352
8353 prev = sg;
8354 for (j = 0; j < nr_node_ids; j++) {
8355 n = (num + j) % nr_node_ids;
8356 cpumask_complement(d->notcovered, d->covered);
8357 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8358 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8359 if (cpumask_empty(d->tmpmask))
8360 break;
8361 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8362 if (cpumask_empty(d->tmpmask))
8363 continue;
8364 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8365 GFP_KERNEL, num);
8366 if (!sg) {
8367 printk(KERN_WARNING
8368 "Can not alloc domain group for node %d\n", j);
8369 return -ENOMEM;
8370 }
18a3885f 8371 sg->cpu_power = 0;
0601a88d
AH
8372 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8373 sg->next = prev->next;
8374 cpumask_or(d->covered, d->covered, d->tmpmask);
8375 prev->next = sg;
8376 prev = sg;
8377 }
8378out:
8379 return 0;
8380}
6d6bc0ad 8381#endif /* CONFIG_NUMA */
1da177e4 8382
a616058b 8383#ifdef CONFIG_NUMA
51888ca2 8384/* Free memory allocated for various sched_group structures */
96f874e2
RR
8385static void free_sched_groups(const struct cpumask *cpu_map,
8386 struct cpumask *nodemask)
51888ca2 8387{
a616058b 8388 int cpu, i;
51888ca2 8389
abcd083a 8390 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8391 struct sched_group **sched_group_nodes
8392 = sched_group_nodes_bycpu[cpu];
8393
51888ca2
SV
8394 if (!sched_group_nodes)
8395 continue;
8396
076ac2af 8397 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8398 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8399
6ca09dfc 8400 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8401 if (cpumask_empty(nodemask))
51888ca2
SV
8402 continue;
8403
8404 if (sg == NULL)
8405 continue;
8406 sg = sg->next;
8407next_sg:
8408 oldsg = sg;
8409 sg = sg->next;
8410 kfree(oldsg);
8411 if (oldsg != sched_group_nodes[i])
8412 goto next_sg;
8413 }
8414 kfree(sched_group_nodes);
8415 sched_group_nodes_bycpu[cpu] = NULL;
8416 }
51888ca2 8417}
6d6bc0ad 8418#else /* !CONFIG_NUMA */
96f874e2
RR
8419static void free_sched_groups(const struct cpumask *cpu_map,
8420 struct cpumask *nodemask)
a616058b
SS
8421{
8422}
6d6bc0ad 8423#endif /* CONFIG_NUMA */
51888ca2 8424
89c4710e
SS
8425/*
8426 * Initialize sched groups cpu_power.
8427 *
8428 * cpu_power indicates the capacity of sched group, which is used while
8429 * distributing the load between different sched groups in a sched domain.
8430 * Typically cpu_power for all the groups in a sched domain will be same unless
8431 * there are asymmetries in the topology. If there are asymmetries, group
8432 * having more cpu_power will pickup more load compared to the group having
8433 * less cpu_power.
89c4710e
SS
8434 */
8435static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8436{
8437 struct sched_domain *child;
8438 struct sched_group *group;
f93e65c1
PZ
8439 long power;
8440 int weight;
89c4710e
SS
8441
8442 WARN_ON(!sd || !sd->groups);
8443
13318a71 8444 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8445 return;
8446
8447 child = sd->child;
8448
18a3885f 8449 sd->groups->cpu_power = 0;
5517d86b 8450
f93e65c1
PZ
8451 if (!child) {
8452 power = SCHED_LOAD_SCALE;
8453 weight = cpumask_weight(sched_domain_span(sd));
8454 /*
8455 * SMT siblings share the power of a single core.
a52bfd73
PZ
8456 * Usually multiple threads get a better yield out of
8457 * that one core than a single thread would have,
8458 * reflect that in sd->smt_gain.
f93e65c1 8459 */
a52bfd73
PZ
8460 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8461 power *= sd->smt_gain;
f93e65c1 8462 power /= weight;
a52bfd73
PZ
8463 power >>= SCHED_LOAD_SHIFT;
8464 }
18a3885f 8465 sd->groups->cpu_power += power;
89c4710e
SS
8466 return;
8467 }
8468
89c4710e 8469 /*
f93e65c1 8470 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
8471 */
8472 group = child->groups;
8473 do {
18a3885f 8474 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
8475 group = group->next;
8476 } while (group != child->groups);
8477}
8478
7c16ec58
MT
8479/*
8480 * Initializers for schedule domains
8481 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8482 */
8483
a5d8c348
IM
8484#ifdef CONFIG_SCHED_DEBUG
8485# define SD_INIT_NAME(sd, type) sd->name = #type
8486#else
8487# define SD_INIT_NAME(sd, type) do { } while (0)
8488#endif
8489
7c16ec58 8490#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8491
7c16ec58
MT
8492#define SD_INIT_FUNC(type) \
8493static noinline void sd_init_##type(struct sched_domain *sd) \
8494{ \
8495 memset(sd, 0, sizeof(*sd)); \
8496 *sd = SD_##type##_INIT; \
1d3504fc 8497 sd->level = SD_LV_##type; \
a5d8c348 8498 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8499}
8500
8501SD_INIT_FUNC(CPU)
8502#ifdef CONFIG_NUMA
8503 SD_INIT_FUNC(ALLNODES)
8504 SD_INIT_FUNC(NODE)
8505#endif
8506#ifdef CONFIG_SCHED_SMT
8507 SD_INIT_FUNC(SIBLING)
8508#endif
8509#ifdef CONFIG_SCHED_MC
8510 SD_INIT_FUNC(MC)
8511#endif
8512
1d3504fc
HS
8513static int default_relax_domain_level = -1;
8514
8515static int __init setup_relax_domain_level(char *str)
8516{
30e0e178
LZ
8517 unsigned long val;
8518
8519 val = simple_strtoul(str, NULL, 0);
8520 if (val < SD_LV_MAX)
8521 default_relax_domain_level = val;
8522
1d3504fc
HS
8523 return 1;
8524}
8525__setup("relax_domain_level=", setup_relax_domain_level);
8526
8527static void set_domain_attribute(struct sched_domain *sd,
8528 struct sched_domain_attr *attr)
8529{
8530 int request;
8531
8532 if (!attr || attr->relax_domain_level < 0) {
8533 if (default_relax_domain_level < 0)
8534 return;
8535 else
8536 request = default_relax_domain_level;
8537 } else
8538 request = attr->relax_domain_level;
8539 if (request < sd->level) {
8540 /* turn off idle balance on this domain */
c88d5910 8541 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8542 } else {
8543 /* turn on idle balance on this domain */
c88d5910 8544 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8545 }
8546}
8547
2109b99e
AH
8548static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8549 const struct cpumask *cpu_map)
8550{
8551 switch (what) {
8552 case sa_sched_groups:
8553 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8554 d->sched_group_nodes = NULL;
8555 case sa_rootdomain:
8556 free_rootdomain(d->rd); /* fall through */
8557 case sa_tmpmask:
8558 free_cpumask_var(d->tmpmask); /* fall through */
8559 case sa_send_covered:
8560 free_cpumask_var(d->send_covered); /* fall through */
8561 case sa_this_core_map:
8562 free_cpumask_var(d->this_core_map); /* fall through */
8563 case sa_this_sibling_map:
8564 free_cpumask_var(d->this_sibling_map); /* fall through */
8565 case sa_nodemask:
8566 free_cpumask_var(d->nodemask); /* fall through */
8567 case sa_sched_group_nodes:
d1b55138 8568#ifdef CONFIG_NUMA
2109b99e
AH
8569 kfree(d->sched_group_nodes); /* fall through */
8570 case sa_notcovered:
8571 free_cpumask_var(d->notcovered); /* fall through */
8572 case sa_covered:
8573 free_cpumask_var(d->covered); /* fall through */
8574 case sa_domainspan:
8575 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 8576#endif
2109b99e
AH
8577 case sa_none:
8578 break;
8579 }
8580}
3404c8d9 8581
2109b99e
AH
8582static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8583 const struct cpumask *cpu_map)
8584{
3404c8d9 8585#ifdef CONFIG_NUMA
2109b99e
AH
8586 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8587 return sa_none;
8588 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8589 return sa_domainspan;
8590 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8591 return sa_covered;
8592 /* Allocate the per-node list of sched groups */
8593 d->sched_group_nodes = kcalloc(nr_node_ids,
8594 sizeof(struct sched_group *), GFP_KERNEL);
8595 if (!d->sched_group_nodes) {
d1b55138 8596 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 8597 return sa_notcovered;
d1b55138 8598 }
2109b99e 8599 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 8600#endif
2109b99e
AH
8601 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8602 return sa_sched_group_nodes;
8603 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8604 return sa_nodemask;
8605 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8606 return sa_this_sibling_map;
8607 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8608 return sa_this_core_map;
8609 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8610 return sa_send_covered;
8611 d->rd = alloc_rootdomain();
8612 if (!d->rd) {
57d885fe 8613 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 8614 return sa_tmpmask;
57d885fe 8615 }
2109b99e
AH
8616 return sa_rootdomain;
8617}
57d885fe 8618
7f4588f3
AH
8619static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8620 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8621{
8622 struct sched_domain *sd = NULL;
7c16ec58 8623#ifdef CONFIG_NUMA
7f4588f3 8624 struct sched_domain *parent;
1da177e4 8625
7f4588f3
AH
8626 d->sd_allnodes = 0;
8627 if (cpumask_weight(cpu_map) >
8628 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8629 sd = &per_cpu(allnodes_domains, i).sd;
8630 SD_INIT(sd, ALLNODES);
1d3504fc 8631 set_domain_attribute(sd, attr);
7f4588f3
AH
8632 cpumask_copy(sched_domain_span(sd), cpu_map);
8633 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8634 d->sd_allnodes = 1;
8635 }
8636 parent = sd;
8637
8638 sd = &per_cpu(node_domains, i).sd;
8639 SD_INIT(sd, NODE);
8640 set_domain_attribute(sd, attr);
8641 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8642 sd->parent = parent;
8643 if (parent)
8644 parent->child = sd;
8645 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 8646#endif
7f4588f3
AH
8647 return sd;
8648}
1da177e4 8649
87cce662
AH
8650static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8651 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8652 struct sched_domain *parent, int i)
8653{
8654 struct sched_domain *sd;
8655 sd = &per_cpu(phys_domains, i).sd;
8656 SD_INIT(sd, CPU);
8657 set_domain_attribute(sd, attr);
8658 cpumask_copy(sched_domain_span(sd), d->nodemask);
8659 sd->parent = parent;
8660 if (parent)
8661 parent->child = sd;
8662 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8663 return sd;
8664}
1da177e4 8665
410c4081
AH
8666static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8667 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8668 struct sched_domain *parent, int i)
8669{
8670 struct sched_domain *sd = parent;
1e9f28fa 8671#ifdef CONFIG_SCHED_MC
410c4081
AH
8672 sd = &per_cpu(core_domains, i).sd;
8673 SD_INIT(sd, MC);
8674 set_domain_attribute(sd, attr);
8675 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8676 sd->parent = parent;
8677 parent->child = sd;
8678 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 8679#endif
410c4081
AH
8680 return sd;
8681}
1e9f28fa 8682
d8173535
AH
8683static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8684 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8685 struct sched_domain *parent, int i)
8686{
8687 struct sched_domain *sd = parent;
1da177e4 8688#ifdef CONFIG_SCHED_SMT
d8173535
AH
8689 sd = &per_cpu(cpu_domains, i).sd;
8690 SD_INIT(sd, SIBLING);
8691 set_domain_attribute(sd, attr);
8692 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8693 sd->parent = parent;
8694 parent->child = sd;
8695 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 8696#endif
d8173535
AH
8697 return sd;
8698}
1da177e4 8699
0e8e85c9
AH
8700static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8701 const struct cpumask *cpu_map, int cpu)
8702{
8703 switch (l) {
1da177e4 8704#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
8705 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8706 cpumask_and(d->this_sibling_map, cpu_map,
8707 topology_thread_cpumask(cpu));
8708 if (cpu == cpumask_first(d->this_sibling_map))
8709 init_sched_build_groups(d->this_sibling_map, cpu_map,
8710 &cpu_to_cpu_group,
8711 d->send_covered, d->tmpmask);
8712 break;
1da177e4 8713#endif
1e9f28fa 8714#ifdef CONFIG_SCHED_MC
a2af04cd
AH
8715 case SD_LV_MC: /* set up multi-core groups */
8716 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8717 if (cpu == cpumask_first(d->this_core_map))
8718 init_sched_build_groups(d->this_core_map, cpu_map,
8719 &cpu_to_core_group,
8720 d->send_covered, d->tmpmask);
8721 break;
1e9f28fa 8722#endif
86548096
AH
8723 case SD_LV_CPU: /* set up physical groups */
8724 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8725 if (!cpumask_empty(d->nodemask))
8726 init_sched_build_groups(d->nodemask, cpu_map,
8727 &cpu_to_phys_group,
8728 d->send_covered, d->tmpmask);
8729 break;
1da177e4 8730#ifdef CONFIG_NUMA
de616e36
AH
8731 case SD_LV_ALLNODES:
8732 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8733 d->send_covered, d->tmpmask);
8734 break;
8735#endif
0e8e85c9
AH
8736 default:
8737 break;
7c16ec58 8738 }
0e8e85c9 8739}
9c1cfda2 8740
2109b99e
AH
8741/*
8742 * Build sched domains for a given set of cpus and attach the sched domains
8743 * to the individual cpus
8744 */
8745static int __build_sched_domains(const struct cpumask *cpu_map,
8746 struct sched_domain_attr *attr)
8747{
8748 enum s_alloc alloc_state = sa_none;
8749 struct s_data d;
294b0c96 8750 struct sched_domain *sd;
2109b99e 8751 int i;
7c16ec58 8752#ifdef CONFIG_NUMA
2109b99e 8753 d.sd_allnodes = 0;
7c16ec58 8754#endif
9c1cfda2 8755
2109b99e
AH
8756 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8757 if (alloc_state != sa_rootdomain)
8758 goto error;
8759 alloc_state = sa_sched_groups;
9c1cfda2 8760
1da177e4 8761 /*
1a20ff27 8762 * Set up domains for cpus specified by the cpu_map.
1da177e4 8763 */
abcd083a 8764 for_each_cpu(i, cpu_map) {
49a02c51
AH
8765 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8766 cpu_map);
9761eea8 8767
7f4588f3 8768 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 8769 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 8770 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 8771 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 8772 }
9c1cfda2 8773
abcd083a 8774 for_each_cpu(i, cpu_map) {
0e8e85c9 8775 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 8776 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 8777 }
9c1cfda2 8778
1da177e4 8779 /* Set up physical groups */
86548096
AH
8780 for (i = 0; i < nr_node_ids; i++)
8781 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 8782
1da177e4
LT
8783#ifdef CONFIG_NUMA
8784 /* Set up node groups */
de616e36
AH
8785 if (d.sd_allnodes)
8786 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 8787
0601a88d
AH
8788 for (i = 0; i < nr_node_ids; i++)
8789 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 8790 goto error;
1da177e4
LT
8791#endif
8792
8793 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8794#ifdef CONFIG_SCHED_SMT
abcd083a 8795 for_each_cpu(i, cpu_map) {
294b0c96 8796 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 8797 init_sched_groups_power(i, sd);
5c45bf27 8798 }
1da177e4 8799#endif
1e9f28fa 8800#ifdef CONFIG_SCHED_MC
abcd083a 8801 for_each_cpu(i, cpu_map) {
294b0c96 8802 sd = &per_cpu(core_domains, i).sd;
89c4710e 8803 init_sched_groups_power(i, sd);
5c45bf27
SS
8804 }
8805#endif
1e9f28fa 8806
abcd083a 8807 for_each_cpu(i, cpu_map) {
294b0c96 8808 sd = &per_cpu(phys_domains, i).sd;
89c4710e 8809 init_sched_groups_power(i, sd);
1da177e4
LT
8810 }
8811
9c1cfda2 8812#ifdef CONFIG_NUMA
076ac2af 8813 for (i = 0; i < nr_node_ids; i++)
49a02c51 8814 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 8815
49a02c51 8816 if (d.sd_allnodes) {
6711cab4 8817 struct sched_group *sg;
f712c0c7 8818
96f874e2 8819 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 8820 d.tmpmask);
f712c0c7
SS
8821 init_numa_sched_groups_power(sg);
8822 }
9c1cfda2
JH
8823#endif
8824
1da177e4 8825 /* Attach the domains */
abcd083a 8826 for_each_cpu(i, cpu_map) {
1da177e4 8827#ifdef CONFIG_SCHED_SMT
6c99e9ad 8828 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8829#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8830 sd = &per_cpu(core_domains, i).sd;
1da177e4 8831#else
6c99e9ad 8832 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8833#endif
49a02c51 8834 cpu_attach_domain(sd, d.rd, i);
1da177e4 8835 }
51888ca2 8836
2109b99e
AH
8837 d.sched_group_nodes = NULL; /* don't free this we still need it */
8838 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8839 return 0;
51888ca2 8840
51888ca2 8841error:
2109b99e
AH
8842 __free_domain_allocs(&d, alloc_state, cpu_map);
8843 return -ENOMEM;
1da177e4 8844}
029190c5 8845
96f874e2 8846static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8847{
8848 return __build_sched_domains(cpu_map, NULL);
8849}
8850
96f874e2 8851static struct cpumask *doms_cur; /* current sched domains */
029190c5 8852static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8853static struct sched_domain_attr *dattr_cur;
8854 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8855
8856/*
8857 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8858 * cpumask) fails, then fallback to a single sched domain,
8859 * as determined by the single cpumask fallback_doms.
029190c5 8860 */
4212823f 8861static cpumask_var_t fallback_doms;
029190c5 8862
ee79d1bd
HC
8863/*
8864 * arch_update_cpu_topology lets virtualized architectures update the
8865 * cpu core maps. It is supposed to return 1 if the topology changed
8866 * or 0 if it stayed the same.
8867 */
8868int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8869{
ee79d1bd 8870 return 0;
22e52b07
HC
8871}
8872
1a20ff27 8873/*
41a2d6cf 8874 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8875 * For now this just excludes isolated cpus, but could be used to
8876 * exclude other special cases in the future.
1a20ff27 8877 */
96f874e2 8878static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8879{
7378547f
MM
8880 int err;
8881
22e52b07 8882 arch_update_cpu_topology();
029190c5 8883 ndoms_cur = 1;
96f874e2 8884 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8885 if (!doms_cur)
4212823f 8886 doms_cur = fallback_doms;
dcc30a35 8887 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8888 dattr_cur = NULL;
7378547f 8889 err = build_sched_domains(doms_cur);
6382bc90 8890 register_sched_domain_sysctl();
7378547f
MM
8891
8892 return err;
1a20ff27
DG
8893}
8894
96f874e2
RR
8895static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8896 struct cpumask *tmpmask)
1da177e4 8897{
7c16ec58 8898 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8899}
1da177e4 8900
1a20ff27
DG
8901/*
8902 * Detach sched domains from a group of cpus specified in cpu_map
8903 * These cpus will now be attached to the NULL domain
8904 */
96f874e2 8905static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8906{
96f874e2
RR
8907 /* Save because hotplug lock held. */
8908 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8909 int i;
8910
abcd083a 8911 for_each_cpu(i, cpu_map)
57d885fe 8912 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8913 synchronize_sched();
96f874e2 8914 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8915}
8916
1d3504fc
HS
8917/* handle null as "default" */
8918static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8919 struct sched_domain_attr *new, int idx_new)
8920{
8921 struct sched_domain_attr tmp;
8922
8923 /* fast path */
8924 if (!new && !cur)
8925 return 1;
8926
8927 tmp = SD_ATTR_INIT;
8928 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8929 new ? (new + idx_new) : &tmp,
8930 sizeof(struct sched_domain_attr));
8931}
8932
029190c5
PJ
8933/*
8934 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8935 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8936 * doms_new[] to the current sched domain partitioning, doms_cur[].
8937 * It destroys each deleted domain and builds each new domain.
8938 *
96f874e2 8939 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8940 * The masks don't intersect (don't overlap.) We should setup one
8941 * sched domain for each mask. CPUs not in any of the cpumasks will
8942 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8943 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8944 * it as it is.
8945 *
41a2d6cf
IM
8946 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8947 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8948 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8949 * ndoms_new == 1, and partition_sched_domains() will fallback to
8950 * the single partition 'fallback_doms', it also forces the domains
8951 * to be rebuilt.
029190c5 8952 *
96f874e2 8953 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8954 * ndoms_new == 0 is a special case for destroying existing domains,
8955 * and it will not create the default domain.
dfb512ec 8956 *
029190c5
PJ
8957 * Call with hotplug lock held
8958 */
96f874e2
RR
8959/* FIXME: Change to struct cpumask *doms_new[] */
8960void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8961 struct sched_domain_attr *dattr_new)
029190c5 8962{
dfb512ec 8963 int i, j, n;
d65bd5ec 8964 int new_topology;
029190c5 8965
712555ee 8966 mutex_lock(&sched_domains_mutex);
a1835615 8967
7378547f
MM
8968 /* always unregister in case we don't destroy any domains */
8969 unregister_sched_domain_sysctl();
8970
d65bd5ec
HC
8971 /* Let architecture update cpu core mappings. */
8972 new_topology = arch_update_cpu_topology();
8973
dfb512ec 8974 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8975
8976 /* Destroy deleted domains */
8977 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8978 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8979 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8980 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8981 goto match1;
8982 }
8983 /* no match - a current sched domain not in new doms_new[] */
8984 detach_destroy_domains(doms_cur + i);
8985match1:
8986 ;
8987 }
8988
e761b772
MK
8989 if (doms_new == NULL) {
8990 ndoms_cur = 0;
4212823f 8991 doms_new = fallback_doms;
dcc30a35 8992 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 8993 WARN_ON_ONCE(dattr_new);
e761b772
MK
8994 }
8995
029190c5
PJ
8996 /* Build new domains */
8997 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 8998 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 8999 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 9000 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
9001 goto match2;
9002 }
9003 /* no match - add a new doms_new */
1d3504fc
HS
9004 __build_sched_domains(doms_new + i,
9005 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
9006match2:
9007 ;
9008 }
9009
9010 /* Remember the new sched domains */
4212823f 9011 if (doms_cur != fallback_doms)
029190c5 9012 kfree(doms_cur);
1d3504fc 9013 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 9014 doms_cur = doms_new;
1d3504fc 9015 dattr_cur = dattr_new;
029190c5 9016 ndoms_cur = ndoms_new;
7378547f
MM
9017
9018 register_sched_domain_sysctl();
a1835615 9019
712555ee 9020 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
9021}
9022
5c45bf27 9023#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 9024static void arch_reinit_sched_domains(void)
5c45bf27 9025{
95402b38 9026 get_online_cpus();
dfb512ec
MK
9027
9028 /* Destroy domains first to force the rebuild */
9029 partition_sched_domains(0, NULL, NULL);
9030
e761b772 9031 rebuild_sched_domains();
95402b38 9032 put_online_cpus();
5c45bf27
SS
9033}
9034
9035static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9036{
afb8a9b7 9037 unsigned int level = 0;
5c45bf27 9038
afb8a9b7
GS
9039 if (sscanf(buf, "%u", &level) != 1)
9040 return -EINVAL;
9041
9042 /*
9043 * level is always be positive so don't check for
9044 * level < POWERSAVINGS_BALANCE_NONE which is 0
9045 * What happens on 0 or 1 byte write,
9046 * need to check for count as well?
9047 */
9048
9049 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9050 return -EINVAL;
9051
9052 if (smt)
afb8a9b7 9053 sched_smt_power_savings = level;
5c45bf27 9054 else
afb8a9b7 9055 sched_mc_power_savings = level;
5c45bf27 9056
c70f22d2 9057 arch_reinit_sched_domains();
5c45bf27 9058
c70f22d2 9059 return count;
5c45bf27
SS
9060}
9061
5c45bf27 9062#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9063static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9064 char *page)
5c45bf27
SS
9065{
9066 return sprintf(page, "%u\n", sched_mc_power_savings);
9067}
f718cd4a 9068static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9069 const char *buf, size_t count)
5c45bf27
SS
9070{
9071 return sched_power_savings_store(buf, count, 0);
9072}
f718cd4a
AK
9073static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9074 sched_mc_power_savings_show,
9075 sched_mc_power_savings_store);
5c45bf27
SS
9076#endif
9077
9078#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9079static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9080 char *page)
5c45bf27
SS
9081{
9082 return sprintf(page, "%u\n", sched_smt_power_savings);
9083}
f718cd4a 9084static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9085 const char *buf, size_t count)
5c45bf27
SS
9086{
9087 return sched_power_savings_store(buf, count, 1);
9088}
f718cd4a
AK
9089static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9090 sched_smt_power_savings_show,
6707de00
AB
9091 sched_smt_power_savings_store);
9092#endif
9093
39aac648 9094int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9095{
9096 int err = 0;
9097
9098#ifdef CONFIG_SCHED_SMT
9099 if (smt_capable())
9100 err = sysfs_create_file(&cls->kset.kobj,
9101 &attr_sched_smt_power_savings.attr);
9102#endif
9103#ifdef CONFIG_SCHED_MC
9104 if (!err && mc_capable())
9105 err = sysfs_create_file(&cls->kset.kobj,
9106 &attr_sched_mc_power_savings.attr);
9107#endif
9108 return err;
9109}
6d6bc0ad 9110#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9111
e761b772 9112#ifndef CONFIG_CPUSETS
1da177e4 9113/*
e761b772
MK
9114 * Add online and remove offline CPUs from the scheduler domains.
9115 * When cpusets are enabled they take over this function.
1da177e4
LT
9116 */
9117static int update_sched_domains(struct notifier_block *nfb,
9118 unsigned long action, void *hcpu)
e761b772
MK
9119{
9120 switch (action) {
9121 case CPU_ONLINE:
9122 case CPU_ONLINE_FROZEN:
9123 case CPU_DEAD:
9124 case CPU_DEAD_FROZEN:
dfb512ec 9125 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9126 return NOTIFY_OK;
9127
9128 default:
9129 return NOTIFY_DONE;
9130 }
9131}
9132#endif
9133
9134static int update_runtime(struct notifier_block *nfb,
9135 unsigned long action, void *hcpu)
1da177e4 9136{
7def2be1
PZ
9137 int cpu = (int)(long)hcpu;
9138
1da177e4 9139 switch (action) {
1da177e4 9140 case CPU_DOWN_PREPARE:
8bb78442 9141 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9142 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9143 return NOTIFY_OK;
9144
1da177e4 9145 case CPU_DOWN_FAILED:
8bb78442 9146 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9147 case CPU_ONLINE:
8bb78442 9148 case CPU_ONLINE_FROZEN:
7def2be1 9149 enable_runtime(cpu_rq(cpu));
e761b772
MK
9150 return NOTIFY_OK;
9151
1da177e4
LT
9152 default:
9153 return NOTIFY_DONE;
9154 }
1da177e4 9155}
1da177e4
LT
9156
9157void __init sched_init_smp(void)
9158{
dcc30a35
RR
9159 cpumask_var_t non_isolated_cpus;
9160
9161 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 9162 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 9163
434d53b0
MT
9164#if defined(CONFIG_NUMA)
9165 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9166 GFP_KERNEL);
9167 BUG_ON(sched_group_nodes_bycpu == NULL);
9168#endif
95402b38 9169 get_online_cpus();
712555ee 9170 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
9171 arch_init_sched_domains(cpu_online_mask);
9172 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9173 if (cpumask_empty(non_isolated_cpus))
9174 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9175 mutex_unlock(&sched_domains_mutex);
95402b38 9176 put_online_cpus();
e761b772
MK
9177
9178#ifndef CONFIG_CPUSETS
1da177e4
LT
9179 /* XXX: Theoretical race here - CPU may be hotplugged now */
9180 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9181#endif
9182
9183 /* RT runtime code needs to handle some hotplug events */
9184 hotcpu_notifier(update_runtime, 0);
9185
b328ca18 9186 init_hrtick();
5c1e1767
NP
9187
9188 /* Move init over to a non-isolated CPU */
dcc30a35 9189 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9190 BUG();
19978ca6 9191 sched_init_granularity();
dcc30a35 9192 free_cpumask_var(non_isolated_cpus);
4212823f 9193
0e3900e6 9194 init_sched_rt_class();
1da177e4
LT
9195}
9196#else
9197void __init sched_init_smp(void)
9198{
19978ca6 9199 sched_init_granularity();
1da177e4
LT
9200}
9201#endif /* CONFIG_SMP */
9202
cd1bb94b
AB
9203const_debug unsigned int sysctl_timer_migration = 1;
9204
1da177e4
LT
9205int in_sched_functions(unsigned long addr)
9206{
1da177e4
LT
9207 return in_lock_functions(addr) ||
9208 (addr >= (unsigned long)__sched_text_start
9209 && addr < (unsigned long)__sched_text_end);
9210}
9211
a9957449 9212static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9213{
9214 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9215 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9216#ifdef CONFIG_FAIR_GROUP_SCHED
9217 cfs_rq->rq = rq;
9218#endif
67e9fb2a 9219 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9220}
9221
fa85ae24
PZ
9222static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9223{
9224 struct rt_prio_array *array;
9225 int i;
9226
9227 array = &rt_rq->active;
9228 for (i = 0; i < MAX_RT_PRIO; i++) {
9229 INIT_LIST_HEAD(array->queue + i);
9230 __clear_bit(i, array->bitmap);
9231 }
9232 /* delimiter for bitsearch: */
9233 __set_bit(MAX_RT_PRIO, array->bitmap);
9234
052f1dc7 9235#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9236 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9237#ifdef CONFIG_SMP
e864c499 9238 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9239#endif
48d5e258 9240#endif
fa85ae24
PZ
9241#ifdef CONFIG_SMP
9242 rt_rq->rt_nr_migratory = 0;
fa85ae24 9243 rt_rq->overloaded = 0;
c20b08e3 9244 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9245#endif
9246
9247 rt_rq->rt_time = 0;
9248 rt_rq->rt_throttled = 0;
ac086bc2
PZ
9249 rt_rq->rt_runtime = 0;
9250 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9251
052f1dc7 9252#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9253 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9254 rt_rq->rq = rq;
9255#endif
fa85ae24
PZ
9256}
9257
6f505b16 9258#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9259static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9260 struct sched_entity *se, int cpu, int add,
9261 struct sched_entity *parent)
6f505b16 9262{
ec7dc8ac 9263 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9264 tg->cfs_rq[cpu] = cfs_rq;
9265 init_cfs_rq(cfs_rq, rq);
9266 cfs_rq->tg = tg;
9267 if (add)
9268 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9269
9270 tg->se[cpu] = se;
354d60c2
DG
9271 /* se could be NULL for init_task_group */
9272 if (!se)
9273 return;
9274
ec7dc8ac
DG
9275 if (!parent)
9276 se->cfs_rq = &rq->cfs;
9277 else
9278 se->cfs_rq = parent->my_q;
9279
6f505b16
PZ
9280 se->my_q = cfs_rq;
9281 se->load.weight = tg->shares;
e05510d0 9282 se->load.inv_weight = 0;
ec7dc8ac 9283 se->parent = parent;
6f505b16 9284}
052f1dc7 9285#endif
6f505b16 9286
052f1dc7 9287#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9288static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9289 struct sched_rt_entity *rt_se, int cpu, int add,
9290 struct sched_rt_entity *parent)
6f505b16 9291{
ec7dc8ac
DG
9292 struct rq *rq = cpu_rq(cpu);
9293
6f505b16
PZ
9294 tg->rt_rq[cpu] = rt_rq;
9295 init_rt_rq(rt_rq, rq);
9296 rt_rq->tg = tg;
9297 rt_rq->rt_se = rt_se;
ac086bc2 9298 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9299 if (add)
9300 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9301
9302 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9303 if (!rt_se)
9304 return;
9305
ec7dc8ac
DG
9306 if (!parent)
9307 rt_se->rt_rq = &rq->rt;
9308 else
9309 rt_se->rt_rq = parent->my_q;
9310
6f505b16 9311 rt_se->my_q = rt_rq;
ec7dc8ac 9312 rt_se->parent = parent;
6f505b16
PZ
9313 INIT_LIST_HEAD(&rt_se->run_list);
9314}
9315#endif
9316
1da177e4
LT
9317void __init sched_init(void)
9318{
dd41f596 9319 int i, j;
434d53b0
MT
9320 unsigned long alloc_size = 0, ptr;
9321
9322#ifdef CONFIG_FAIR_GROUP_SCHED
9323 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9324#endif
9325#ifdef CONFIG_RT_GROUP_SCHED
9326 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9327#endif
9328#ifdef CONFIG_USER_SCHED
9329 alloc_size *= 2;
df7c8e84
RR
9330#endif
9331#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9332 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0
MT
9333#endif
9334 /*
9335 * As sched_init() is called before page_alloc is setup,
9336 * we use alloc_bootmem().
9337 */
9338 if (alloc_size) {
36b7b6d4 9339 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9340
9341#ifdef CONFIG_FAIR_GROUP_SCHED
9342 init_task_group.se = (struct sched_entity **)ptr;
9343 ptr += nr_cpu_ids * sizeof(void **);
9344
9345 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9346 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9347
9348#ifdef CONFIG_USER_SCHED
9349 root_task_group.se = (struct sched_entity **)ptr;
9350 ptr += nr_cpu_ids * sizeof(void **);
9351
9352 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9353 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9354#endif /* CONFIG_USER_SCHED */
9355#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9356#ifdef CONFIG_RT_GROUP_SCHED
9357 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9358 ptr += nr_cpu_ids * sizeof(void **);
9359
9360 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9361 ptr += nr_cpu_ids * sizeof(void **);
9362
9363#ifdef CONFIG_USER_SCHED
9364 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9365 ptr += nr_cpu_ids * sizeof(void **);
9366
9367 root_task_group.rt_rq = (struct rt_rq **)ptr;
9368 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9369#endif /* CONFIG_USER_SCHED */
9370#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9371#ifdef CONFIG_CPUMASK_OFFSTACK
9372 for_each_possible_cpu(i) {
9373 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9374 ptr += cpumask_size();
9375 }
9376#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9377 }
dd41f596 9378
57d885fe
GH
9379#ifdef CONFIG_SMP
9380 init_defrootdomain();
9381#endif
9382
d0b27fa7
PZ
9383 init_rt_bandwidth(&def_rt_bandwidth,
9384 global_rt_period(), global_rt_runtime());
9385
9386#ifdef CONFIG_RT_GROUP_SCHED
9387 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9388 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9389#ifdef CONFIG_USER_SCHED
9390 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9391 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9392#endif /* CONFIG_USER_SCHED */
9393#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9394
052f1dc7 9395#ifdef CONFIG_GROUP_SCHED
6f505b16 9396 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9397 INIT_LIST_HEAD(&init_task_group.children);
9398
9399#ifdef CONFIG_USER_SCHED
9400 INIT_LIST_HEAD(&root_task_group.children);
9401 init_task_group.parent = &root_task_group;
9402 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9403#endif /* CONFIG_USER_SCHED */
9404#endif /* CONFIG_GROUP_SCHED */
6f505b16 9405
4a6cc4bd
JK
9406#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9407 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9408 __alignof__(unsigned long));
9409#endif
0a945022 9410 for_each_possible_cpu(i) {
70b97a7f 9411 struct rq *rq;
1da177e4
LT
9412
9413 rq = cpu_rq(i);
9414 spin_lock_init(&rq->lock);
7897986b 9415 rq->nr_running = 0;
dce48a84
TG
9416 rq->calc_load_active = 0;
9417 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9418 init_cfs_rq(&rq->cfs, rq);
6f505b16 9419 init_rt_rq(&rq->rt, rq);
dd41f596 9420#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9421 init_task_group.shares = init_task_group_load;
6f505b16 9422 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9423#ifdef CONFIG_CGROUP_SCHED
9424 /*
9425 * How much cpu bandwidth does init_task_group get?
9426 *
9427 * In case of task-groups formed thr' the cgroup filesystem, it
9428 * gets 100% of the cpu resources in the system. This overall
9429 * system cpu resource is divided among the tasks of
9430 * init_task_group and its child task-groups in a fair manner,
9431 * based on each entity's (task or task-group's) weight
9432 * (se->load.weight).
9433 *
9434 * In other words, if init_task_group has 10 tasks of weight
9435 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9436 * then A0's share of the cpu resource is:
9437 *
0d905bca 9438 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9439 *
9440 * We achieve this by letting init_task_group's tasks sit
9441 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9442 */
ec7dc8ac 9443 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9444#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9445 root_task_group.shares = NICE_0_LOAD;
9446 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9447 /*
9448 * In case of task-groups formed thr' the user id of tasks,
9449 * init_task_group represents tasks belonging to root user.
9450 * Hence it forms a sibling of all subsequent groups formed.
9451 * In this case, init_task_group gets only a fraction of overall
9452 * system cpu resource, based on the weight assigned to root
9453 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9454 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9455 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9456 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9457 */
ec7dc8ac 9458 init_tg_cfs_entry(&init_task_group,
84e9dabf 9459 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9460 &per_cpu(init_sched_entity, i), i, 1,
9461 root_task_group.se[i]);
6f505b16 9462
052f1dc7 9463#endif
354d60c2
DG
9464#endif /* CONFIG_FAIR_GROUP_SCHED */
9465
9466 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9467#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9468 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9469#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9470 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9471#elif defined CONFIG_USER_SCHED
eff766a6 9472 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9473 init_tg_rt_entry(&init_task_group,
6f505b16 9474 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9475 &per_cpu(init_sched_rt_entity, i), i, 1,
9476 root_task_group.rt_se[i]);
354d60c2 9477#endif
dd41f596 9478#endif
1da177e4 9479
dd41f596
IM
9480 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9481 rq->cpu_load[j] = 0;
1da177e4 9482#ifdef CONFIG_SMP
41c7ce9a 9483 rq->sd = NULL;
57d885fe 9484 rq->rd = NULL;
3f029d3c 9485 rq->post_schedule = 0;
1da177e4 9486 rq->active_balance = 0;
dd41f596 9487 rq->next_balance = jiffies;
1da177e4 9488 rq->push_cpu = 0;
0a2966b4 9489 rq->cpu = i;
1f11eb6a 9490 rq->online = 0;
1da177e4
LT
9491 rq->migration_thread = NULL;
9492 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9493 rq_attach_root(rq, &def_root_domain);
1da177e4 9494#endif
8f4d37ec 9495 init_rq_hrtick(rq);
1da177e4 9496 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9497 }
9498
2dd73a4f 9499 set_load_weight(&init_task);
b50f60ce 9500
e107be36
AK
9501#ifdef CONFIG_PREEMPT_NOTIFIERS
9502 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9503#endif
9504
c9819f45 9505#ifdef CONFIG_SMP
962cf36c 9506 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9507#endif
9508
b50f60ce
HC
9509#ifdef CONFIG_RT_MUTEXES
9510 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9511#endif
9512
1da177e4
LT
9513 /*
9514 * The boot idle thread does lazy MMU switching as well:
9515 */
9516 atomic_inc(&init_mm.mm_count);
9517 enter_lazy_tlb(&init_mm, current);
9518
9519 /*
9520 * Make us the idle thread. Technically, schedule() should not be
9521 * called from this thread, however somewhere below it might be,
9522 * but because we are the idle thread, we just pick up running again
9523 * when this runqueue becomes "idle".
9524 */
9525 init_idle(current, smp_processor_id());
dce48a84
TG
9526
9527 calc_load_update = jiffies + LOAD_FREQ;
9528
dd41f596
IM
9529 /*
9530 * During early bootup we pretend to be a normal task:
9531 */
9532 current->sched_class = &fair_sched_class;
6892b75e 9533
6a7b3dc3 9534 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
4bdddf8f 9535 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9536#ifdef CONFIG_SMP
7d1e6a9b 9537#ifdef CONFIG_NO_HZ
4bdddf8f
PE
9538 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9539 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9540#endif
4bdddf8f 9541 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9542#endif /* SMP */
6a7b3dc3 9543
cdd6c482 9544 perf_event_init();
0d905bca 9545
6892b75e 9546 scheduler_running = 1;
1da177e4
LT
9547}
9548
9549#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9550static inline int preempt_count_equals(int preempt_offset)
9551{
9552 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9553
9554 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9555}
9556
9557void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9558{
48f24c4d 9559#ifdef in_atomic
1da177e4
LT
9560 static unsigned long prev_jiffy; /* ratelimiting */
9561
e4aafea2
FW
9562 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9563 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9564 return;
9565 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9566 return;
9567 prev_jiffy = jiffies;
9568
9569 printk(KERN_ERR
9570 "BUG: sleeping function called from invalid context at %s:%d\n",
9571 file, line);
9572 printk(KERN_ERR
9573 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9574 in_atomic(), irqs_disabled(),
9575 current->pid, current->comm);
9576
9577 debug_show_held_locks(current);
9578 if (irqs_disabled())
9579 print_irqtrace_events(current);
9580 dump_stack();
1da177e4
LT
9581#endif
9582}
9583EXPORT_SYMBOL(__might_sleep);
9584#endif
9585
9586#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9587static void normalize_task(struct rq *rq, struct task_struct *p)
9588{
9589 int on_rq;
3e51f33f 9590
3a5e4dc1
AK
9591 update_rq_clock(rq);
9592 on_rq = p->se.on_rq;
9593 if (on_rq)
9594 deactivate_task(rq, p, 0);
9595 __setscheduler(rq, p, SCHED_NORMAL, 0);
9596 if (on_rq) {
9597 activate_task(rq, p, 0);
9598 resched_task(rq->curr);
9599 }
9600}
9601
1da177e4
LT
9602void normalize_rt_tasks(void)
9603{
a0f98a1c 9604 struct task_struct *g, *p;
1da177e4 9605 unsigned long flags;
70b97a7f 9606 struct rq *rq;
1da177e4 9607
4cf5d77a 9608 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9609 do_each_thread(g, p) {
178be793
IM
9610 /*
9611 * Only normalize user tasks:
9612 */
9613 if (!p->mm)
9614 continue;
9615
6cfb0d5d 9616 p->se.exec_start = 0;
6cfb0d5d 9617#ifdef CONFIG_SCHEDSTATS
dd41f596 9618 p->se.wait_start = 0;
dd41f596 9619 p->se.sleep_start = 0;
dd41f596 9620 p->se.block_start = 0;
6cfb0d5d 9621#endif
dd41f596
IM
9622
9623 if (!rt_task(p)) {
9624 /*
9625 * Renice negative nice level userspace
9626 * tasks back to 0:
9627 */
9628 if (TASK_NICE(p) < 0 && p->mm)
9629 set_user_nice(p, 0);
1da177e4 9630 continue;
dd41f596 9631 }
1da177e4 9632
4cf5d77a 9633 spin_lock(&p->pi_lock);
b29739f9 9634 rq = __task_rq_lock(p);
1da177e4 9635
178be793 9636 normalize_task(rq, p);
3a5e4dc1 9637
b29739f9 9638 __task_rq_unlock(rq);
4cf5d77a 9639 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9640 } while_each_thread(g, p);
9641
4cf5d77a 9642 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9643}
9644
9645#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9646
9647#ifdef CONFIG_IA64
9648/*
9649 * These functions are only useful for the IA64 MCA handling.
9650 *
9651 * They can only be called when the whole system has been
9652 * stopped - every CPU needs to be quiescent, and no scheduling
9653 * activity can take place. Using them for anything else would
9654 * be a serious bug, and as a result, they aren't even visible
9655 * under any other configuration.
9656 */
9657
9658/**
9659 * curr_task - return the current task for a given cpu.
9660 * @cpu: the processor in question.
9661 *
9662 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9663 */
36c8b586 9664struct task_struct *curr_task(int cpu)
1df5c10a
LT
9665{
9666 return cpu_curr(cpu);
9667}
9668
9669/**
9670 * set_curr_task - set the current task for a given cpu.
9671 * @cpu: the processor in question.
9672 * @p: the task pointer to set.
9673 *
9674 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9675 * are serviced on a separate stack. It allows the architecture to switch the
9676 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9677 * must be called with all CPU's synchronized, and interrupts disabled, the
9678 * and caller must save the original value of the current task (see
9679 * curr_task() above) and restore that value before reenabling interrupts and
9680 * re-starting the system.
9681 *
9682 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9683 */
36c8b586 9684void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9685{
9686 cpu_curr(cpu) = p;
9687}
9688
9689#endif
29f59db3 9690
bccbe08a
PZ
9691#ifdef CONFIG_FAIR_GROUP_SCHED
9692static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9693{
9694 int i;
9695
9696 for_each_possible_cpu(i) {
9697 if (tg->cfs_rq)
9698 kfree(tg->cfs_rq[i]);
9699 if (tg->se)
9700 kfree(tg->se[i]);
6f505b16
PZ
9701 }
9702
9703 kfree(tg->cfs_rq);
9704 kfree(tg->se);
6f505b16
PZ
9705}
9706
ec7dc8ac
DG
9707static
9708int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9709{
29f59db3 9710 struct cfs_rq *cfs_rq;
eab17229 9711 struct sched_entity *se;
9b5b7751 9712 struct rq *rq;
29f59db3
SV
9713 int i;
9714
434d53b0 9715 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9716 if (!tg->cfs_rq)
9717 goto err;
434d53b0 9718 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9719 if (!tg->se)
9720 goto err;
052f1dc7
PZ
9721
9722 tg->shares = NICE_0_LOAD;
29f59db3
SV
9723
9724 for_each_possible_cpu(i) {
9b5b7751 9725 rq = cpu_rq(i);
29f59db3 9726
eab17229
LZ
9727 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9728 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9729 if (!cfs_rq)
9730 goto err;
9731
eab17229
LZ
9732 se = kzalloc_node(sizeof(struct sched_entity),
9733 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9734 if (!se)
9735 goto err;
9736
eab17229 9737 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9738 }
9739
9740 return 1;
9741
9742 err:
9743 return 0;
9744}
9745
9746static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9747{
9748 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9749 &cpu_rq(cpu)->leaf_cfs_rq_list);
9750}
9751
9752static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9753{
9754 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9755}
6d6bc0ad 9756#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9757static inline void free_fair_sched_group(struct task_group *tg)
9758{
9759}
9760
ec7dc8ac
DG
9761static inline
9762int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9763{
9764 return 1;
9765}
9766
9767static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9768{
9769}
9770
9771static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9772{
9773}
6d6bc0ad 9774#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9775
9776#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9777static void free_rt_sched_group(struct task_group *tg)
9778{
9779 int i;
9780
d0b27fa7
PZ
9781 destroy_rt_bandwidth(&tg->rt_bandwidth);
9782
bccbe08a
PZ
9783 for_each_possible_cpu(i) {
9784 if (tg->rt_rq)
9785 kfree(tg->rt_rq[i]);
9786 if (tg->rt_se)
9787 kfree(tg->rt_se[i]);
9788 }
9789
9790 kfree(tg->rt_rq);
9791 kfree(tg->rt_se);
9792}
9793
ec7dc8ac
DG
9794static
9795int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9796{
9797 struct rt_rq *rt_rq;
eab17229 9798 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9799 struct rq *rq;
9800 int i;
9801
434d53b0 9802 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9803 if (!tg->rt_rq)
9804 goto err;
434d53b0 9805 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9806 if (!tg->rt_se)
9807 goto err;
9808
d0b27fa7
PZ
9809 init_rt_bandwidth(&tg->rt_bandwidth,
9810 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9811
9812 for_each_possible_cpu(i) {
9813 rq = cpu_rq(i);
9814
eab17229
LZ
9815 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9816 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9817 if (!rt_rq)
9818 goto err;
29f59db3 9819
eab17229
LZ
9820 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9821 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9822 if (!rt_se)
9823 goto err;
29f59db3 9824
eab17229 9825 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9826 }
9827
bccbe08a
PZ
9828 return 1;
9829
9830 err:
9831 return 0;
9832}
9833
9834static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9835{
9836 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9837 &cpu_rq(cpu)->leaf_rt_rq_list);
9838}
9839
9840static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9841{
9842 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9843}
6d6bc0ad 9844#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9845static inline void free_rt_sched_group(struct task_group *tg)
9846{
9847}
9848
ec7dc8ac
DG
9849static inline
9850int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9851{
9852 return 1;
9853}
9854
9855static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9856{
9857}
9858
9859static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9860{
9861}
6d6bc0ad 9862#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9863
d0b27fa7 9864#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9865static void free_sched_group(struct task_group *tg)
9866{
9867 free_fair_sched_group(tg);
9868 free_rt_sched_group(tg);
9869 kfree(tg);
9870}
9871
9872/* allocate runqueue etc for a new task group */
ec7dc8ac 9873struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9874{
9875 struct task_group *tg;
9876 unsigned long flags;
9877 int i;
9878
9879 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9880 if (!tg)
9881 return ERR_PTR(-ENOMEM);
9882
ec7dc8ac 9883 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9884 goto err;
9885
ec7dc8ac 9886 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9887 goto err;
9888
8ed36996 9889 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9890 for_each_possible_cpu(i) {
bccbe08a
PZ
9891 register_fair_sched_group(tg, i);
9892 register_rt_sched_group(tg, i);
9b5b7751 9893 }
6f505b16 9894 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9895
9896 WARN_ON(!parent); /* root should already exist */
9897
9898 tg->parent = parent;
f473aa5e 9899 INIT_LIST_HEAD(&tg->children);
09f2724a 9900 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9901 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9902
9b5b7751 9903 return tg;
29f59db3
SV
9904
9905err:
6f505b16 9906 free_sched_group(tg);
29f59db3
SV
9907 return ERR_PTR(-ENOMEM);
9908}
9909
9b5b7751 9910/* rcu callback to free various structures associated with a task group */
6f505b16 9911static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9912{
29f59db3 9913 /* now it should be safe to free those cfs_rqs */
6f505b16 9914 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9915}
9916
9b5b7751 9917/* Destroy runqueue etc associated with a task group */
4cf86d77 9918void sched_destroy_group(struct task_group *tg)
29f59db3 9919{
8ed36996 9920 unsigned long flags;
9b5b7751 9921 int i;
29f59db3 9922
8ed36996 9923 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9924 for_each_possible_cpu(i) {
bccbe08a
PZ
9925 unregister_fair_sched_group(tg, i);
9926 unregister_rt_sched_group(tg, i);
9b5b7751 9927 }
6f505b16 9928 list_del_rcu(&tg->list);
f473aa5e 9929 list_del_rcu(&tg->siblings);
8ed36996 9930 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9931
9b5b7751 9932 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9933 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9934}
9935
9b5b7751 9936/* change task's runqueue when it moves between groups.
3a252015
IM
9937 * The caller of this function should have put the task in its new group
9938 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9939 * reflect its new group.
9b5b7751
SV
9940 */
9941void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9942{
9943 int on_rq, running;
9944 unsigned long flags;
9945 struct rq *rq;
9946
9947 rq = task_rq_lock(tsk, &flags);
9948
29f59db3
SV
9949 update_rq_clock(rq);
9950
051a1d1a 9951 running = task_current(rq, tsk);
29f59db3
SV
9952 on_rq = tsk->se.on_rq;
9953
0e1f3483 9954 if (on_rq)
29f59db3 9955 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9956 if (unlikely(running))
9957 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9958
6f505b16 9959 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9960
810b3817
PZ
9961#ifdef CONFIG_FAIR_GROUP_SCHED
9962 if (tsk->sched_class->moved_group)
9963 tsk->sched_class->moved_group(tsk);
9964#endif
9965
0e1f3483
HS
9966 if (unlikely(running))
9967 tsk->sched_class->set_curr_task(rq);
9968 if (on_rq)
7074badb 9969 enqueue_task(rq, tsk, 0);
29f59db3 9970
29f59db3
SV
9971 task_rq_unlock(rq, &flags);
9972}
6d6bc0ad 9973#endif /* CONFIG_GROUP_SCHED */
29f59db3 9974
052f1dc7 9975#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9976static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9977{
9978 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9979 int on_rq;
9980
29f59db3 9981 on_rq = se->on_rq;
62fb1851 9982 if (on_rq)
29f59db3
SV
9983 dequeue_entity(cfs_rq, se, 0);
9984
9985 se->load.weight = shares;
e05510d0 9986 se->load.inv_weight = 0;
29f59db3 9987
62fb1851 9988 if (on_rq)
29f59db3 9989 enqueue_entity(cfs_rq, se, 0);
c09595f6 9990}
62fb1851 9991
c09595f6
PZ
9992static void set_se_shares(struct sched_entity *se, unsigned long shares)
9993{
9994 struct cfs_rq *cfs_rq = se->cfs_rq;
9995 struct rq *rq = cfs_rq->rq;
9996 unsigned long flags;
9997
9998 spin_lock_irqsave(&rq->lock, flags);
9999 __set_se_shares(se, shares);
10000 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
10001}
10002
8ed36996
PZ
10003static DEFINE_MUTEX(shares_mutex);
10004
4cf86d77 10005int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
10006{
10007 int i;
8ed36996 10008 unsigned long flags;
c61935fd 10009
ec7dc8ac
DG
10010 /*
10011 * We can't change the weight of the root cgroup.
10012 */
10013 if (!tg->se[0])
10014 return -EINVAL;
10015
18d95a28
PZ
10016 if (shares < MIN_SHARES)
10017 shares = MIN_SHARES;
cb4ad1ff
MX
10018 else if (shares > MAX_SHARES)
10019 shares = MAX_SHARES;
62fb1851 10020
8ed36996 10021 mutex_lock(&shares_mutex);
9b5b7751 10022 if (tg->shares == shares)
5cb350ba 10023 goto done;
29f59db3 10024
8ed36996 10025 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10026 for_each_possible_cpu(i)
10027 unregister_fair_sched_group(tg, i);
f473aa5e 10028 list_del_rcu(&tg->siblings);
8ed36996 10029 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
10030
10031 /* wait for any ongoing reference to this group to finish */
10032 synchronize_sched();
10033
10034 /*
10035 * Now we are free to modify the group's share on each cpu
10036 * w/o tripping rebalance_share or load_balance_fair.
10037 */
9b5b7751 10038 tg->shares = shares;
c09595f6
PZ
10039 for_each_possible_cpu(i) {
10040 /*
10041 * force a rebalance
10042 */
10043 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 10044 set_se_shares(tg->se[i], shares);
c09595f6 10045 }
29f59db3 10046
6b2d7700
SV
10047 /*
10048 * Enable load balance activity on this group, by inserting it back on
10049 * each cpu's rq->leaf_cfs_rq_list.
10050 */
8ed36996 10051 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10052 for_each_possible_cpu(i)
10053 register_fair_sched_group(tg, i);
f473aa5e 10054 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10055 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10056done:
8ed36996 10057 mutex_unlock(&shares_mutex);
9b5b7751 10058 return 0;
29f59db3
SV
10059}
10060
5cb350ba
DG
10061unsigned long sched_group_shares(struct task_group *tg)
10062{
10063 return tg->shares;
10064}
052f1dc7 10065#endif
5cb350ba 10066
052f1dc7 10067#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10068/*
9f0c1e56 10069 * Ensure that the real time constraints are schedulable.
6f505b16 10070 */
9f0c1e56
PZ
10071static DEFINE_MUTEX(rt_constraints_mutex);
10072
10073static unsigned long to_ratio(u64 period, u64 runtime)
10074{
10075 if (runtime == RUNTIME_INF)
9a7e0b18 10076 return 1ULL << 20;
9f0c1e56 10077
9a7e0b18 10078 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10079}
10080
9a7e0b18
PZ
10081/* Must be called with tasklist_lock held */
10082static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10083{
9a7e0b18 10084 struct task_struct *g, *p;
b40b2e8e 10085
9a7e0b18
PZ
10086 do_each_thread(g, p) {
10087 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10088 return 1;
10089 } while_each_thread(g, p);
b40b2e8e 10090
9a7e0b18
PZ
10091 return 0;
10092}
b40b2e8e 10093
9a7e0b18
PZ
10094struct rt_schedulable_data {
10095 struct task_group *tg;
10096 u64 rt_period;
10097 u64 rt_runtime;
10098};
b40b2e8e 10099
9a7e0b18
PZ
10100static int tg_schedulable(struct task_group *tg, void *data)
10101{
10102 struct rt_schedulable_data *d = data;
10103 struct task_group *child;
10104 unsigned long total, sum = 0;
10105 u64 period, runtime;
b40b2e8e 10106
9a7e0b18
PZ
10107 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10108 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10109
9a7e0b18
PZ
10110 if (tg == d->tg) {
10111 period = d->rt_period;
10112 runtime = d->rt_runtime;
b40b2e8e 10113 }
b40b2e8e 10114
98a4826b
PZ
10115#ifdef CONFIG_USER_SCHED
10116 if (tg == &root_task_group) {
10117 period = global_rt_period();
10118 runtime = global_rt_runtime();
10119 }
10120#endif
10121
4653f803
PZ
10122 /*
10123 * Cannot have more runtime than the period.
10124 */
10125 if (runtime > period && runtime != RUNTIME_INF)
10126 return -EINVAL;
6f505b16 10127
4653f803
PZ
10128 /*
10129 * Ensure we don't starve existing RT tasks.
10130 */
9a7e0b18
PZ
10131 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10132 return -EBUSY;
6f505b16 10133
9a7e0b18 10134 total = to_ratio(period, runtime);
6f505b16 10135
4653f803
PZ
10136 /*
10137 * Nobody can have more than the global setting allows.
10138 */
10139 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10140 return -EINVAL;
6f505b16 10141
4653f803
PZ
10142 /*
10143 * The sum of our children's runtime should not exceed our own.
10144 */
9a7e0b18
PZ
10145 list_for_each_entry_rcu(child, &tg->children, siblings) {
10146 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10147 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10148
9a7e0b18
PZ
10149 if (child == d->tg) {
10150 period = d->rt_period;
10151 runtime = d->rt_runtime;
10152 }
6f505b16 10153
9a7e0b18 10154 sum += to_ratio(period, runtime);
9f0c1e56 10155 }
6f505b16 10156
9a7e0b18
PZ
10157 if (sum > total)
10158 return -EINVAL;
10159
10160 return 0;
6f505b16
PZ
10161}
10162
9a7e0b18 10163static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10164{
9a7e0b18
PZ
10165 struct rt_schedulable_data data = {
10166 .tg = tg,
10167 .rt_period = period,
10168 .rt_runtime = runtime,
10169 };
10170
10171 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10172}
10173
d0b27fa7
PZ
10174static int tg_set_bandwidth(struct task_group *tg,
10175 u64 rt_period, u64 rt_runtime)
6f505b16 10176{
ac086bc2 10177 int i, err = 0;
9f0c1e56 10178
9f0c1e56 10179 mutex_lock(&rt_constraints_mutex);
521f1a24 10180 read_lock(&tasklist_lock);
9a7e0b18
PZ
10181 err = __rt_schedulable(tg, rt_period, rt_runtime);
10182 if (err)
9f0c1e56 10183 goto unlock;
ac086bc2
PZ
10184
10185 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10186 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10187 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10188
10189 for_each_possible_cpu(i) {
10190 struct rt_rq *rt_rq = tg->rt_rq[i];
10191
10192 spin_lock(&rt_rq->rt_runtime_lock);
10193 rt_rq->rt_runtime = rt_runtime;
10194 spin_unlock(&rt_rq->rt_runtime_lock);
10195 }
10196 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10197 unlock:
521f1a24 10198 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10199 mutex_unlock(&rt_constraints_mutex);
10200
10201 return err;
6f505b16
PZ
10202}
10203
d0b27fa7
PZ
10204int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10205{
10206 u64 rt_runtime, rt_period;
10207
10208 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10209 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10210 if (rt_runtime_us < 0)
10211 rt_runtime = RUNTIME_INF;
10212
10213 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10214}
10215
9f0c1e56
PZ
10216long sched_group_rt_runtime(struct task_group *tg)
10217{
10218 u64 rt_runtime_us;
10219
d0b27fa7 10220 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10221 return -1;
10222
d0b27fa7 10223 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10224 do_div(rt_runtime_us, NSEC_PER_USEC);
10225 return rt_runtime_us;
10226}
d0b27fa7
PZ
10227
10228int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10229{
10230 u64 rt_runtime, rt_period;
10231
10232 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10233 rt_runtime = tg->rt_bandwidth.rt_runtime;
10234
619b0488
R
10235 if (rt_period == 0)
10236 return -EINVAL;
10237
d0b27fa7
PZ
10238 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10239}
10240
10241long sched_group_rt_period(struct task_group *tg)
10242{
10243 u64 rt_period_us;
10244
10245 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10246 do_div(rt_period_us, NSEC_PER_USEC);
10247 return rt_period_us;
10248}
10249
10250static int sched_rt_global_constraints(void)
10251{
4653f803 10252 u64 runtime, period;
d0b27fa7
PZ
10253 int ret = 0;
10254
ec5d4989
HS
10255 if (sysctl_sched_rt_period <= 0)
10256 return -EINVAL;
10257
4653f803
PZ
10258 runtime = global_rt_runtime();
10259 period = global_rt_period();
10260
10261 /*
10262 * Sanity check on the sysctl variables.
10263 */
10264 if (runtime > period && runtime != RUNTIME_INF)
10265 return -EINVAL;
10b612f4 10266
d0b27fa7 10267 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10268 read_lock(&tasklist_lock);
4653f803 10269 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10270 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10271 mutex_unlock(&rt_constraints_mutex);
10272
10273 return ret;
10274}
54e99124
DG
10275
10276int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10277{
10278 /* Don't accept realtime tasks when there is no way for them to run */
10279 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10280 return 0;
10281
10282 return 1;
10283}
10284
6d6bc0ad 10285#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10286static int sched_rt_global_constraints(void)
10287{
ac086bc2
PZ
10288 unsigned long flags;
10289 int i;
10290
ec5d4989
HS
10291 if (sysctl_sched_rt_period <= 0)
10292 return -EINVAL;
10293
60aa605d
PZ
10294 /*
10295 * There's always some RT tasks in the root group
10296 * -- migration, kstopmachine etc..
10297 */
10298 if (sysctl_sched_rt_runtime == 0)
10299 return -EBUSY;
10300
ac086bc2
PZ
10301 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10302 for_each_possible_cpu(i) {
10303 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10304
10305 spin_lock(&rt_rq->rt_runtime_lock);
10306 rt_rq->rt_runtime = global_rt_runtime();
10307 spin_unlock(&rt_rq->rt_runtime_lock);
10308 }
10309 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10310
d0b27fa7
PZ
10311 return 0;
10312}
6d6bc0ad 10313#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10314
10315int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 10316 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
10317 loff_t *ppos)
10318{
10319 int ret;
10320 int old_period, old_runtime;
10321 static DEFINE_MUTEX(mutex);
10322
10323 mutex_lock(&mutex);
10324 old_period = sysctl_sched_rt_period;
10325 old_runtime = sysctl_sched_rt_runtime;
10326
8d65af78 10327 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
10328
10329 if (!ret && write) {
10330 ret = sched_rt_global_constraints();
10331 if (ret) {
10332 sysctl_sched_rt_period = old_period;
10333 sysctl_sched_rt_runtime = old_runtime;
10334 } else {
10335 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10336 def_rt_bandwidth.rt_period =
10337 ns_to_ktime(global_rt_period());
10338 }
10339 }
10340 mutex_unlock(&mutex);
10341
10342 return ret;
10343}
68318b8e 10344
052f1dc7 10345#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10346
10347/* return corresponding task_group object of a cgroup */
2b01dfe3 10348static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10349{
2b01dfe3
PM
10350 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10351 struct task_group, css);
68318b8e
SV
10352}
10353
10354static struct cgroup_subsys_state *
2b01dfe3 10355cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10356{
ec7dc8ac 10357 struct task_group *tg, *parent;
68318b8e 10358
2b01dfe3 10359 if (!cgrp->parent) {
68318b8e 10360 /* This is early initialization for the top cgroup */
68318b8e
SV
10361 return &init_task_group.css;
10362 }
10363
ec7dc8ac
DG
10364 parent = cgroup_tg(cgrp->parent);
10365 tg = sched_create_group(parent);
68318b8e
SV
10366 if (IS_ERR(tg))
10367 return ERR_PTR(-ENOMEM);
10368
68318b8e
SV
10369 return &tg->css;
10370}
10371
41a2d6cf
IM
10372static void
10373cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10374{
2b01dfe3 10375 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10376
10377 sched_destroy_group(tg);
10378}
10379
41a2d6cf 10380static int
be367d09 10381cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 10382{
b68aa230 10383#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10384 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10385 return -EINVAL;
10386#else
68318b8e
SV
10387 /* We don't support RT-tasks being in separate groups */
10388 if (tsk->sched_class != &fair_sched_class)
10389 return -EINVAL;
b68aa230 10390#endif
be367d09
BB
10391 return 0;
10392}
68318b8e 10393
be367d09
BB
10394static int
10395cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10396 struct task_struct *tsk, bool threadgroup)
10397{
10398 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10399 if (retval)
10400 return retval;
10401 if (threadgroup) {
10402 struct task_struct *c;
10403 rcu_read_lock();
10404 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10405 retval = cpu_cgroup_can_attach_task(cgrp, c);
10406 if (retval) {
10407 rcu_read_unlock();
10408 return retval;
10409 }
10410 }
10411 rcu_read_unlock();
10412 }
68318b8e
SV
10413 return 0;
10414}
10415
10416static void
2b01dfe3 10417cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
10418 struct cgroup *old_cont, struct task_struct *tsk,
10419 bool threadgroup)
68318b8e
SV
10420{
10421 sched_move_task(tsk);
be367d09
BB
10422 if (threadgroup) {
10423 struct task_struct *c;
10424 rcu_read_lock();
10425 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10426 sched_move_task(c);
10427 }
10428 rcu_read_unlock();
10429 }
68318b8e
SV
10430}
10431
052f1dc7 10432#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10433static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10434 u64 shareval)
68318b8e 10435{
2b01dfe3 10436 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10437}
10438
f4c753b7 10439static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10440{
2b01dfe3 10441 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10442
10443 return (u64) tg->shares;
10444}
6d6bc0ad 10445#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10446
052f1dc7 10447#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10448static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10449 s64 val)
6f505b16 10450{
06ecb27c 10451 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10452}
10453
06ecb27c 10454static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10455{
06ecb27c 10456 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10457}
d0b27fa7
PZ
10458
10459static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10460 u64 rt_period_us)
10461{
10462 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10463}
10464
10465static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10466{
10467 return sched_group_rt_period(cgroup_tg(cgrp));
10468}
6d6bc0ad 10469#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10470
fe5c7cc2 10471static struct cftype cpu_files[] = {
052f1dc7 10472#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10473 {
10474 .name = "shares",
f4c753b7
PM
10475 .read_u64 = cpu_shares_read_u64,
10476 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10477 },
052f1dc7
PZ
10478#endif
10479#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10480 {
9f0c1e56 10481 .name = "rt_runtime_us",
06ecb27c
PM
10482 .read_s64 = cpu_rt_runtime_read,
10483 .write_s64 = cpu_rt_runtime_write,
6f505b16 10484 },
d0b27fa7
PZ
10485 {
10486 .name = "rt_period_us",
f4c753b7
PM
10487 .read_u64 = cpu_rt_period_read_uint,
10488 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10489 },
052f1dc7 10490#endif
68318b8e
SV
10491};
10492
10493static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10494{
fe5c7cc2 10495 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10496}
10497
10498struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10499 .name = "cpu",
10500 .create = cpu_cgroup_create,
10501 .destroy = cpu_cgroup_destroy,
10502 .can_attach = cpu_cgroup_can_attach,
10503 .attach = cpu_cgroup_attach,
10504 .populate = cpu_cgroup_populate,
10505 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10506 .early_init = 1,
10507};
10508
052f1dc7 10509#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10510
10511#ifdef CONFIG_CGROUP_CPUACCT
10512
10513/*
10514 * CPU accounting code for task groups.
10515 *
10516 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10517 * (balbir@in.ibm.com).
10518 */
10519
934352f2 10520/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10521struct cpuacct {
10522 struct cgroup_subsys_state css;
10523 /* cpuusage holds pointer to a u64-type object on every cpu */
10524 u64 *cpuusage;
ef12fefa 10525 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10526 struct cpuacct *parent;
d842de87
SV
10527};
10528
10529struct cgroup_subsys cpuacct_subsys;
10530
10531/* return cpu accounting group corresponding to this container */
32cd756a 10532static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10533{
32cd756a 10534 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10535 struct cpuacct, css);
10536}
10537
10538/* return cpu accounting group to which this task belongs */
10539static inline struct cpuacct *task_ca(struct task_struct *tsk)
10540{
10541 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10542 struct cpuacct, css);
10543}
10544
10545/* create a new cpu accounting group */
10546static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10547 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10548{
10549 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10550 int i;
d842de87
SV
10551
10552 if (!ca)
ef12fefa 10553 goto out;
d842de87
SV
10554
10555 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10556 if (!ca->cpuusage)
10557 goto out_free_ca;
10558
10559 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10560 if (percpu_counter_init(&ca->cpustat[i], 0))
10561 goto out_free_counters;
d842de87 10562
934352f2
BR
10563 if (cgrp->parent)
10564 ca->parent = cgroup_ca(cgrp->parent);
10565
d842de87 10566 return &ca->css;
ef12fefa
BR
10567
10568out_free_counters:
10569 while (--i >= 0)
10570 percpu_counter_destroy(&ca->cpustat[i]);
10571 free_percpu(ca->cpuusage);
10572out_free_ca:
10573 kfree(ca);
10574out:
10575 return ERR_PTR(-ENOMEM);
d842de87
SV
10576}
10577
10578/* destroy an existing cpu accounting group */
41a2d6cf 10579static void
32cd756a 10580cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10581{
32cd756a 10582 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10583 int i;
d842de87 10584
ef12fefa
BR
10585 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10586 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10587 free_percpu(ca->cpuusage);
10588 kfree(ca);
10589}
10590
720f5498
KC
10591static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10592{
b36128c8 10593 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10594 u64 data;
10595
10596#ifndef CONFIG_64BIT
10597 /*
10598 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10599 */
10600 spin_lock_irq(&cpu_rq(cpu)->lock);
10601 data = *cpuusage;
10602 spin_unlock_irq(&cpu_rq(cpu)->lock);
10603#else
10604 data = *cpuusage;
10605#endif
10606
10607 return data;
10608}
10609
10610static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10611{
b36128c8 10612 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10613
10614#ifndef CONFIG_64BIT
10615 /*
10616 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10617 */
10618 spin_lock_irq(&cpu_rq(cpu)->lock);
10619 *cpuusage = val;
10620 spin_unlock_irq(&cpu_rq(cpu)->lock);
10621#else
10622 *cpuusage = val;
10623#endif
10624}
10625
d842de87 10626/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10627static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10628{
32cd756a 10629 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10630 u64 totalcpuusage = 0;
10631 int i;
10632
720f5498
KC
10633 for_each_present_cpu(i)
10634 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10635
10636 return totalcpuusage;
10637}
10638
0297b803
DG
10639static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10640 u64 reset)
10641{
10642 struct cpuacct *ca = cgroup_ca(cgrp);
10643 int err = 0;
10644 int i;
10645
10646 if (reset) {
10647 err = -EINVAL;
10648 goto out;
10649 }
10650
720f5498
KC
10651 for_each_present_cpu(i)
10652 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10653
0297b803
DG
10654out:
10655 return err;
10656}
10657
e9515c3c
KC
10658static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10659 struct seq_file *m)
10660{
10661 struct cpuacct *ca = cgroup_ca(cgroup);
10662 u64 percpu;
10663 int i;
10664
10665 for_each_present_cpu(i) {
10666 percpu = cpuacct_cpuusage_read(ca, i);
10667 seq_printf(m, "%llu ", (unsigned long long) percpu);
10668 }
10669 seq_printf(m, "\n");
10670 return 0;
10671}
10672
ef12fefa
BR
10673static const char *cpuacct_stat_desc[] = {
10674 [CPUACCT_STAT_USER] = "user",
10675 [CPUACCT_STAT_SYSTEM] = "system",
10676};
10677
10678static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10679 struct cgroup_map_cb *cb)
10680{
10681 struct cpuacct *ca = cgroup_ca(cgrp);
10682 int i;
10683
10684 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10685 s64 val = percpu_counter_read(&ca->cpustat[i]);
10686 val = cputime64_to_clock_t(val);
10687 cb->fill(cb, cpuacct_stat_desc[i], val);
10688 }
10689 return 0;
10690}
10691
d842de87
SV
10692static struct cftype files[] = {
10693 {
10694 .name = "usage",
f4c753b7
PM
10695 .read_u64 = cpuusage_read,
10696 .write_u64 = cpuusage_write,
d842de87 10697 },
e9515c3c
KC
10698 {
10699 .name = "usage_percpu",
10700 .read_seq_string = cpuacct_percpu_seq_read,
10701 },
ef12fefa
BR
10702 {
10703 .name = "stat",
10704 .read_map = cpuacct_stats_show,
10705 },
d842de87
SV
10706};
10707
32cd756a 10708static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10709{
32cd756a 10710 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10711}
10712
10713/*
10714 * charge this task's execution time to its accounting group.
10715 *
10716 * called with rq->lock held.
10717 */
10718static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10719{
10720 struct cpuacct *ca;
934352f2 10721 int cpu;
d842de87 10722
c40c6f85 10723 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10724 return;
10725
934352f2 10726 cpu = task_cpu(tsk);
a18b83b7
BR
10727
10728 rcu_read_lock();
10729
d842de87 10730 ca = task_ca(tsk);
d842de87 10731
934352f2 10732 for (; ca; ca = ca->parent) {
b36128c8 10733 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10734 *cpuusage += cputime;
10735 }
a18b83b7
BR
10736
10737 rcu_read_unlock();
d842de87
SV
10738}
10739
ef12fefa
BR
10740/*
10741 * Charge the system/user time to the task's accounting group.
10742 */
10743static void cpuacct_update_stats(struct task_struct *tsk,
10744 enum cpuacct_stat_index idx, cputime_t val)
10745{
10746 struct cpuacct *ca;
10747
10748 if (unlikely(!cpuacct_subsys.active))
10749 return;
10750
10751 rcu_read_lock();
10752 ca = task_ca(tsk);
10753
10754 do {
10755 percpu_counter_add(&ca->cpustat[idx], val);
10756 ca = ca->parent;
10757 } while (ca);
10758 rcu_read_unlock();
10759}
10760
d842de87
SV
10761struct cgroup_subsys cpuacct_subsys = {
10762 .name = "cpuacct",
10763 .create = cpuacct_create,
10764 .destroy = cpuacct_destroy,
10765 .populate = cpuacct_populate,
10766 .subsys_id = cpuacct_subsys_id,
10767};
10768#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
10769
10770#ifndef CONFIG_SMP
10771
10772int rcu_expedited_torture_stats(char *page)
10773{
10774 return 0;
10775}
10776EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10777
10778void synchronize_sched_expedited(void)
10779{
10780}
10781EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10782
10783#else /* #ifndef CONFIG_SMP */
10784
10785static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10786static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10787
10788#define RCU_EXPEDITED_STATE_POST -2
10789#define RCU_EXPEDITED_STATE_IDLE -1
10790
10791static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10792
10793int rcu_expedited_torture_stats(char *page)
10794{
10795 int cnt = 0;
10796 int cpu;
10797
10798 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10799 for_each_online_cpu(cpu) {
10800 cnt += sprintf(&page[cnt], " %d:%d",
10801 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10802 }
10803 cnt += sprintf(&page[cnt], "\n");
10804 return cnt;
10805}
10806EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10807
10808static long synchronize_sched_expedited_count;
10809
10810/*
10811 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10812 * approach to force grace period to end quickly. This consumes
10813 * significant time on all CPUs, and is thus not recommended for
10814 * any sort of common-case code.
10815 *
10816 * Note that it is illegal to call this function while holding any
10817 * lock that is acquired by a CPU-hotplug notifier. Failing to
10818 * observe this restriction will result in deadlock.
10819 */
10820void synchronize_sched_expedited(void)
10821{
10822 int cpu;
10823 unsigned long flags;
10824 bool need_full_sync = 0;
10825 struct rq *rq;
10826 struct migration_req *req;
10827 long snap;
10828 int trycount = 0;
10829
10830 smp_mb(); /* ensure prior mod happens before capturing snap. */
10831 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10832 get_online_cpus();
10833 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10834 put_online_cpus();
10835 if (trycount++ < 10)
10836 udelay(trycount * num_online_cpus());
10837 else {
10838 synchronize_sched();
10839 return;
10840 }
10841 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10842 smp_mb(); /* ensure test happens before caller kfree */
10843 return;
10844 }
10845 get_online_cpus();
10846 }
10847 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10848 for_each_online_cpu(cpu) {
10849 rq = cpu_rq(cpu);
10850 req = &per_cpu(rcu_migration_req, cpu);
10851 init_completion(&req->done);
10852 req->task = NULL;
10853 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10854 spin_lock_irqsave(&rq->lock, flags);
10855 list_add(&req->list, &rq->migration_queue);
10856 spin_unlock_irqrestore(&rq->lock, flags);
10857 wake_up_process(rq->migration_thread);
10858 }
10859 for_each_online_cpu(cpu) {
10860 rcu_expedited_state = cpu;
10861 req = &per_cpu(rcu_migration_req, cpu);
10862 rq = cpu_rq(cpu);
10863 wait_for_completion(&req->done);
10864 spin_lock_irqsave(&rq->lock, flags);
10865 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10866 need_full_sync = 1;
10867 req->dest_cpu = RCU_MIGRATION_IDLE;
10868 spin_unlock_irqrestore(&rq->lock, flags);
10869 }
10870 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10871 mutex_unlock(&rcu_sched_expedited_mutex);
10872 put_online_cpus();
10873 if (need_full_sync)
10874 synchronize_sched();
10875}
10876EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10877
10878#endif /* #else #ifndef CONFIG_SMP */