]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched.c
sched_rt: Fix overload bug on rt group scheduling
[mirror_ubuntu-bionic-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
0d905bca 42#include <linux/perf_counter.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
5517d86b 67#include <linux/reciprocal_div.h>
dff06c15 68#include <linux/unistd.h>
f5ff8422 69#include <linux/pagemap.h>
8f4d37ec 70#include <linux/hrtimer.h>
30914a58 71#include <linux/tick.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2
GH
79#include "sched_cpupri.h"
80
a8d154b0 81#define CREATE_TRACE_POINTS
ad8d75ff 82#include <trace/events/sched.h>
a8d154b0 83
1da177e4
LT
84/*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93/*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102/*
d7876a08 103 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 104 */
d6322faf 105#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 106
6aa645ea
IM
107#define NICE_0_LOAD SCHED_LOAD_SCALE
108#define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
1da177e4
LT
110/*
111 * These are the 'tuning knobs' of the scheduler:
112 *
a4ec24b4 113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
114 * Timeslices get refilled after they expire.
115 */
1da177e4 116#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 117
d0b27fa7
PZ
118/*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121#define RUNTIME_INF ((u64)~0ULL)
122
5517d86b 123#ifdef CONFIG_SMP
fd2ab30b
SN
124
125static void double_rq_lock(struct rq *rq1, struct rq *rq2);
126
5517d86b
ED
127/*
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
130 */
131static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
132{
133 return reciprocal_divide(load, sg->reciprocal_cpu_power);
134}
135
136/*
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
139 */
140static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
141{
142 sg->__cpu_power += val;
143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
144}
145#endif
146
e05606d3
IM
147static inline int rt_policy(int policy)
148{
3f33a7ce 149 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
150 return 1;
151 return 0;
152}
153
154static inline int task_has_rt_policy(struct task_struct *p)
155{
156 return rt_policy(p->policy);
157}
158
1da177e4 159/*
6aa645ea 160 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 161 */
6aa645ea
IM
162struct rt_prio_array {
163 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
164 struct list_head queue[MAX_RT_PRIO];
165};
166
d0b27fa7 167struct rt_bandwidth {
ea736ed5
IM
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock;
170 ktime_t rt_period;
171 u64 rt_runtime;
172 struct hrtimer rt_period_timer;
d0b27fa7
PZ
173};
174
175static struct rt_bandwidth def_rt_bandwidth;
176
177static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
178
179static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
180{
181 struct rt_bandwidth *rt_b =
182 container_of(timer, struct rt_bandwidth, rt_period_timer);
183 ktime_t now;
184 int overrun;
185 int idle = 0;
186
187 for (;;) {
188 now = hrtimer_cb_get_time(timer);
189 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
190
191 if (!overrun)
192 break;
193
194 idle = do_sched_rt_period_timer(rt_b, overrun);
195 }
196
197 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
198}
199
200static
201void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
202{
203 rt_b->rt_period = ns_to_ktime(period);
204 rt_b->rt_runtime = runtime;
205
ac086bc2
PZ
206 spin_lock_init(&rt_b->rt_runtime_lock);
207
d0b27fa7
PZ
208 hrtimer_init(&rt_b->rt_period_timer,
209 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
210 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
211}
212
c8bfff6d
KH
213static inline int rt_bandwidth_enabled(void)
214{
215 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
216}
217
218static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
219{
220 ktime_t now;
221
cac64d00 222 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
223 return;
224
225 if (hrtimer_active(&rt_b->rt_period_timer))
226 return;
227
228 spin_lock(&rt_b->rt_runtime_lock);
229 for (;;) {
7f1e2ca9
PZ
230 unsigned long delta;
231 ktime_t soft, hard;
232
d0b27fa7
PZ
233 if (hrtimer_active(&rt_b->rt_period_timer))
234 break;
235
236 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
237 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
238
239 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
240 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
241 delta = ktime_to_ns(ktime_sub(hard, soft));
242 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 243 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7
PZ
244 }
245 spin_unlock(&rt_b->rt_runtime_lock);
246}
247
248#ifdef CONFIG_RT_GROUP_SCHED
249static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
250{
251 hrtimer_cancel(&rt_b->rt_period_timer);
252}
253#endif
254
712555ee
HC
255/*
256 * sched_domains_mutex serializes calls to arch_init_sched_domains,
257 * detach_destroy_domains and partition_sched_domains.
258 */
259static DEFINE_MUTEX(sched_domains_mutex);
260
052f1dc7 261#ifdef CONFIG_GROUP_SCHED
29f59db3 262
68318b8e
SV
263#include <linux/cgroup.h>
264
29f59db3
SV
265struct cfs_rq;
266
6f505b16
PZ
267static LIST_HEAD(task_groups);
268
29f59db3 269/* task group related information */
4cf86d77 270struct task_group {
052f1dc7 271#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
272 struct cgroup_subsys_state css;
273#endif
052f1dc7 274
6c415b92
AB
275#ifdef CONFIG_USER_SCHED
276 uid_t uid;
277#endif
278
052f1dc7 279#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
280 /* schedulable entities of this group on each cpu */
281 struct sched_entity **se;
282 /* runqueue "owned" by this group on each cpu */
283 struct cfs_rq **cfs_rq;
284 unsigned long shares;
052f1dc7
PZ
285#endif
286
287#ifdef CONFIG_RT_GROUP_SCHED
288 struct sched_rt_entity **rt_se;
289 struct rt_rq **rt_rq;
290
d0b27fa7 291 struct rt_bandwidth rt_bandwidth;
052f1dc7 292#endif
6b2d7700 293
ae8393e5 294 struct rcu_head rcu;
6f505b16 295 struct list_head list;
f473aa5e
PZ
296
297 struct task_group *parent;
298 struct list_head siblings;
299 struct list_head children;
29f59db3
SV
300};
301
354d60c2 302#ifdef CONFIG_USER_SCHED
eff766a6 303
6c415b92
AB
304/* Helper function to pass uid information to create_sched_user() */
305void set_tg_uid(struct user_struct *user)
306{
307 user->tg->uid = user->uid;
308}
309
eff766a6
PZ
310/*
311 * Root task group.
312 * Every UID task group (including init_task_group aka UID-0) will
313 * be a child to this group.
314 */
315struct task_group root_task_group;
316
052f1dc7 317#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
318/* Default task group's sched entity on each cpu */
319static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
320/* Default task group's cfs_rq on each cpu */
321static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 322#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
323
324#ifdef CONFIG_RT_GROUP_SCHED
325static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
326static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 327#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 328#else /* !CONFIG_USER_SCHED */
eff766a6 329#define root_task_group init_task_group
9a7e0b18 330#endif /* CONFIG_USER_SCHED */
6f505b16 331
8ed36996 332/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
333 * a task group's cpu shares.
334 */
8ed36996 335static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 336
57310a98
PZ
337#ifdef CONFIG_SMP
338static int root_task_group_empty(void)
339{
340 return list_empty(&root_task_group.children);
341}
342#endif
343
052f1dc7 344#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
345#ifdef CONFIG_USER_SCHED
346# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 347#else /* !CONFIG_USER_SCHED */
052f1dc7 348# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 349#endif /* CONFIG_USER_SCHED */
052f1dc7 350
cb4ad1ff 351/*
2e084786
LJ
352 * A weight of 0 or 1 can cause arithmetics problems.
353 * A weight of a cfs_rq is the sum of weights of which entities
354 * are queued on this cfs_rq, so a weight of a entity should not be
355 * too large, so as the shares value of a task group.
cb4ad1ff
MX
356 * (The default weight is 1024 - so there's no practical
357 * limitation from this.)
358 */
18d95a28 359#define MIN_SHARES 2
2e084786 360#define MAX_SHARES (1UL << 18)
18d95a28 361
052f1dc7
PZ
362static int init_task_group_load = INIT_TASK_GROUP_LOAD;
363#endif
364
29f59db3 365/* Default task group.
3a252015 366 * Every task in system belong to this group at bootup.
29f59db3 367 */
434d53b0 368struct task_group init_task_group;
29f59db3
SV
369
370/* return group to which a task belongs */
4cf86d77 371static inline struct task_group *task_group(struct task_struct *p)
29f59db3 372{
4cf86d77 373 struct task_group *tg;
9b5b7751 374
052f1dc7 375#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
376 rcu_read_lock();
377 tg = __task_cred(p)->user->tg;
378 rcu_read_unlock();
052f1dc7 379#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
380 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
381 struct task_group, css);
24e377a8 382#else
41a2d6cf 383 tg = &init_task_group;
24e377a8 384#endif
9b5b7751 385 return tg;
29f59db3
SV
386}
387
388/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 389static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 390{
052f1dc7 391#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
392 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
393 p->se.parent = task_group(p)->se[cpu];
052f1dc7 394#endif
6f505b16 395
052f1dc7 396#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
397 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
398 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 399#endif
29f59db3
SV
400}
401
402#else
403
57310a98
PZ
404#ifdef CONFIG_SMP
405static int root_task_group_empty(void)
406{
407 return 1;
408}
409#endif
410
6f505b16 411static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
412static inline struct task_group *task_group(struct task_struct *p)
413{
414 return NULL;
415}
29f59db3 416
052f1dc7 417#endif /* CONFIG_GROUP_SCHED */
29f59db3 418
6aa645ea
IM
419/* CFS-related fields in a runqueue */
420struct cfs_rq {
421 struct load_weight load;
422 unsigned long nr_running;
423
6aa645ea 424 u64 exec_clock;
e9acbff6 425 u64 min_vruntime;
6aa645ea
IM
426
427 struct rb_root tasks_timeline;
428 struct rb_node *rb_leftmost;
4a55bd5e
PZ
429
430 struct list_head tasks;
431 struct list_head *balance_iterator;
432
433 /*
434 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
435 * It is set to NULL otherwise (i.e when none are currently running).
436 */
4793241b 437 struct sched_entity *curr, *next, *last;
ddc97297 438
5ac5c4d6 439 unsigned int nr_spread_over;
ddc97297 440
62160e3f 441#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
442 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
443
41a2d6cf
IM
444 /*
445 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
446 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
447 * (like users, containers etc.)
448 *
449 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
450 * list is used during load balance.
451 */
41a2d6cf
IM
452 struct list_head leaf_cfs_rq_list;
453 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
454
455#ifdef CONFIG_SMP
c09595f6 456 /*
c8cba857 457 * the part of load.weight contributed by tasks
c09595f6 458 */
c8cba857 459 unsigned long task_weight;
c09595f6 460
c8cba857
PZ
461 /*
462 * h_load = weight * f(tg)
463 *
464 * Where f(tg) is the recursive weight fraction assigned to
465 * this group.
466 */
467 unsigned long h_load;
c09595f6 468
c8cba857
PZ
469 /*
470 * this cpu's part of tg->shares
471 */
472 unsigned long shares;
f1d239f7
PZ
473
474 /*
475 * load.weight at the time we set shares
476 */
477 unsigned long rq_weight;
c09595f6 478#endif
6aa645ea
IM
479#endif
480};
1da177e4 481
6aa645ea
IM
482/* Real-Time classes' related field in a runqueue: */
483struct rt_rq {
484 struct rt_prio_array active;
63489e45 485 unsigned long rt_nr_running;
052f1dc7 486#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
487 struct {
488 int curr; /* highest queued rt task prio */
398a153b 489#ifdef CONFIG_SMP
e864c499 490 int next; /* next highest */
398a153b 491#endif
e864c499 492 } highest_prio;
6f505b16 493#endif
fa85ae24 494#ifdef CONFIG_SMP
73fe6aae 495 unsigned long rt_nr_migratory;
a1ba4d8b 496 unsigned long rt_nr_total;
a22d7fc1 497 int overloaded;
917b627d 498 struct plist_head pushable_tasks;
fa85ae24 499#endif
6f505b16 500 int rt_throttled;
fa85ae24 501 u64 rt_time;
ac086bc2 502 u64 rt_runtime;
ea736ed5 503 /* Nests inside the rq lock: */
ac086bc2 504 spinlock_t rt_runtime_lock;
6f505b16 505
052f1dc7 506#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
507 unsigned long rt_nr_boosted;
508
6f505b16
PZ
509 struct rq *rq;
510 struct list_head leaf_rt_rq_list;
511 struct task_group *tg;
512 struct sched_rt_entity *rt_se;
513#endif
6aa645ea
IM
514};
515
57d885fe
GH
516#ifdef CONFIG_SMP
517
518/*
519 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
520 * variables. Each exclusive cpuset essentially defines an island domain by
521 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
522 * exclusive cpuset is created, we also create and attach a new root-domain
523 * object.
524 *
57d885fe
GH
525 */
526struct root_domain {
527 atomic_t refcount;
c6c4927b
RR
528 cpumask_var_t span;
529 cpumask_var_t online;
637f5085 530
0eab9146 531 /*
637f5085
GH
532 * The "RT overload" flag: it gets set if a CPU has more than
533 * one runnable RT task.
534 */
c6c4927b 535 cpumask_var_t rto_mask;
0eab9146 536 atomic_t rto_count;
6e0534f2
GH
537#ifdef CONFIG_SMP
538 struct cpupri cpupri;
539#endif
7a09b1a2
VS
540#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
541 /*
542 * Preferred wake up cpu nominated by sched_mc balance that will be
543 * used when most cpus are idle in the system indicating overall very
544 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
545 */
546 unsigned int sched_mc_preferred_wakeup_cpu;
547#endif
57d885fe
GH
548};
549
dc938520
GH
550/*
551 * By default the system creates a single root-domain with all cpus as
552 * members (mimicking the global state we have today).
553 */
57d885fe
GH
554static struct root_domain def_root_domain;
555
556#endif
557
1da177e4
LT
558/*
559 * This is the main, per-CPU runqueue data structure.
560 *
561 * Locking rule: those places that want to lock multiple runqueues
562 * (such as the load balancing or the thread migration code), lock
563 * acquire operations must be ordered by ascending &runqueue.
564 */
70b97a7f 565struct rq {
d8016491
IM
566 /* runqueue lock: */
567 spinlock_t lock;
1da177e4
LT
568
569 /*
570 * nr_running and cpu_load should be in the same cacheline because
571 * remote CPUs use both these fields when doing load calculation.
572 */
573 unsigned long nr_running;
6aa645ea
IM
574 #define CPU_LOAD_IDX_MAX 5
575 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 576#ifdef CONFIG_NO_HZ
15934a37 577 unsigned long last_tick_seen;
46cb4b7c
SS
578 unsigned char in_nohz_recently;
579#endif
d8016491
IM
580 /* capture load from *all* tasks on this cpu: */
581 struct load_weight load;
6aa645ea
IM
582 unsigned long nr_load_updates;
583 u64 nr_switches;
23a185ca 584 u64 nr_migrations_in;
6aa645ea
IM
585
586 struct cfs_rq cfs;
6f505b16 587 struct rt_rq rt;
6f505b16 588
6aa645ea 589#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
590 /* list of leaf cfs_rq on this cpu: */
591 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
592#endif
593#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 594 struct list_head leaf_rt_rq_list;
1da177e4 595#endif
1da177e4
LT
596
597 /*
598 * This is part of a global counter where only the total sum
599 * over all CPUs matters. A task can increase this counter on
600 * one CPU and if it got migrated afterwards it may decrease
601 * it on another CPU. Always updated under the runqueue lock:
602 */
603 unsigned long nr_uninterruptible;
604
36c8b586 605 struct task_struct *curr, *idle;
c9819f45 606 unsigned long next_balance;
1da177e4 607 struct mm_struct *prev_mm;
6aa645ea 608
3e51f33f 609 u64 clock;
6aa645ea 610
1da177e4
LT
611 atomic_t nr_iowait;
612
613#ifdef CONFIG_SMP
0eab9146 614 struct root_domain *rd;
1da177e4
LT
615 struct sched_domain *sd;
616
a0a522ce 617 unsigned char idle_at_tick;
1da177e4
LT
618 /* For active balancing */
619 int active_balance;
620 int push_cpu;
d8016491
IM
621 /* cpu of this runqueue: */
622 int cpu;
1f11eb6a 623 int online;
1da177e4 624
a8a51d5e 625 unsigned long avg_load_per_task;
1da177e4 626
36c8b586 627 struct task_struct *migration_thread;
1da177e4
LT
628 struct list_head migration_queue;
629#endif
630
dce48a84
TG
631 /* calc_load related fields */
632 unsigned long calc_load_update;
633 long calc_load_active;
634
8f4d37ec 635#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
636#ifdef CONFIG_SMP
637 int hrtick_csd_pending;
638 struct call_single_data hrtick_csd;
639#endif
8f4d37ec
PZ
640 struct hrtimer hrtick_timer;
641#endif
642
1da177e4
LT
643#ifdef CONFIG_SCHEDSTATS
644 /* latency stats */
645 struct sched_info rq_sched_info;
9c2c4802
KC
646 unsigned long long rq_cpu_time;
647 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
648
649 /* sys_sched_yield() stats */
480b9434 650 unsigned int yld_count;
1da177e4
LT
651
652 /* schedule() stats */
480b9434
KC
653 unsigned int sched_switch;
654 unsigned int sched_count;
655 unsigned int sched_goidle;
1da177e4
LT
656
657 /* try_to_wake_up() stats */
480b9434
KC
658 unsigned int ttwu_count;
659 unsigned int ttwu_local;
b8efb561
IM
660
661 /* BKL stats */
480b9434 662 unsigned int bkl_count;
1da177e4
LT
663#endif
664};
665
f34e3b61 666static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 667
15afe09b 668static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 669{
15afe09b 670 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
671}
672
0a2966b4
CL
673static inline int cpu_of(struct rq *rq)
674{
675#ifdef CONFIG_SMP
676 return rq->cpu;
677#else
678 return 0;
679#endif
680}
681
674311d5
NP
682/*
683 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 684 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
685 *
686 * The domain tree of any CPU may only be accessed from within
687 * preempt-disabled sections.
688 */
48f24c4d
IM
689#define for_each_domain(cpu, __sd) \
690 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
691
692#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
693#define this_rq() (&__get_cpu_var(runqueues))
694#define task_rq(p) cpu_rq(task_cpu(p))
695#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
696
aa9c4c0f 697inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
698{
699 rq->clock = sched_clock_cpu(cpu_of(rq));
700}
701
bf5c91ba
IM
702/*
703 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
704 */
705#ifdef CONFIG_SCHED_DEBUG
706# define const_debug __read_mostly
707#else
708# define const_debug static const
709#endif
710
017730c1
IM
711/**
712 * runqueue_is_locked
713 *
714 * Returns true if the current cpu runqueue is locked.
715 * This interface allows printk to be called with the runqueue lock
716 * held and know whether or not it is OK to wake up the klogd.
717 */
718int runqueue_is_locked(void)
719{
720 int cpu = get_cpu();
721 struct rq *rq = cpu_rq(cpu);
722 int ret;
723
724 ret = spin_is_locked(&rq->lock);
725 put_cpu();
726 return ret;
727}
728
bf5c91ba
IM
729/*
730 * Debugging: various feature bits
731 */
f00b45c1
PZ
732
733#define SCHED_FEAT(name, enabled) \
734 __SCHED_FEAT_##name ,
735
bf5c91ba 736enum {
f00b45c1 737#include "sched_features.h"
bf5c91ba
IM
738};
739
f00b45c1
PZ
740#undef SCHED_FEAT
741
742#define SCHED_FEAT(name, enabled) \
743 (1UL << __SCHED_FEAT_##name) * enabled |
744
bf5c91ba 745const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
746#include "sched_features.h"
747 0;
748
749#undef SCHED_FEAT
750
751#ifdef CONFIG_SCHED_DEBUG
752#define SCHED_FEAT(name, enabled) \
753 #name ,
754
983ed7a6 755static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
756#include "sched_features.h"
757 NULL
758};
759
760#undef SCHED_FEAT
761
34f3a814 762static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 763{
f00b45c1
PZ
764 int i;
765
766 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
767 if (!(sysctl_sched_features & (1UL << i)))
768 seq_puts(m, "NO_");
769 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 770 }
34f3a814 771 seq_puts(m, "\n");
f00b45c1 772
34f3a814 773 return 0;
f00b45c1
PZ
774}
775
776static ssize_t
777sched_feat_write(struct file *filp, const char __user *ubuf,
778 size_t cnt, loff_t *ppos)
779{
780 char buf[64];
781 char *cmp = buf;
782 int neg = 0;
783 int i;
784
785 if (cnt > 63)
786 cnt = 63;
787
788 if (copy_from_user(&buf, ubuf, cnt))
789 return -EFAULT;
790
791 buf[cnt] = 0;
792
c24b7c52 793 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
794 neg = 1;
795 cmp += 3;
796 }
797
798 for (i = 0; sched_feat_names[i]; i++) {
799 int len = strlen(sched_feat_names[i]);
800
801 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
802 if (neg)
803 sysctl_sched_features &= ~(1UL << i);
804 else
805 sysctl_sched_features |= (1UL << i);
806 break;
807 }
808 }
809
810 if (!sched_feat_names[i])
811 return -EINVAL;
812
813 filp->f_pos += cnt;
814
815 return cnt;
816}
817
34f3a814
LZ
818static int sched_feat_open(struct inode *inode, struct file *filp)
819{
820 return single_open(filp, sched_feat_show, NULL);
821}
822
f00b45c1 823static struct file_operations sched_feat_fops = {
34f3a814
LZ
824 .open = sched_feat_open,
825 .write = sched_feat_write,
826 .read = seq_read,
827 .llseek = seq_lseek,
828 .release = single_release,
f00b45c1
PZ
829};
830
831static __init int sched_init_debug(void)
832{
f00b45c1
PZ
833 debugfs_create_file("sched_features", 0644, NULL, NULL,
834 &sched_feat_fops);
835
836 return 0;
837}
838late_initcall(sched_init_debug);
839
840#endif
841
842#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 843
b82d9fdd
PZ
844/*
845 * Number of tasks to iterate in a single balance run.
846 * Limited because this is done with IRQs disabled.
847 */
848const_debug unsigned int sysctl_sched_nr_migrate = 32;
849
2398f2c6
PZ
850/*
851 * ratelimit for updating the group shares.
55cd5340 852 * default: 0.25ms
2398f2c6 853 */
55cd5340 854unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 855
ffda12a1
PZ
856/*
857 * Inject some fuzzyness into changing the per-cpu group shares
858 * this avoids remote rq-locks at the expense of fairness.
859 * default: 4
860 */
861unsigned int sysctl_sched_shares_thresh = 4;
862
fa85ae24 863/*
9f0c1e56 864 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
865 * default: 1s
866 */
9f0c1e56 867unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 868
6892b75e
IM
869static __read_mostly int scheduler_running;
870
9f0c1e56
PZ
871/*
872 * part of the period that we allow rt tasks to run in us.
873 * default: 0.95s
874 */
875int sysctl_sched_rt_runtime = 950000;
fa85ae24 876
d0b27fa7
PZ
877static inline u64 global_rt_period(void)
878{
879 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
880}
881
882static inline u64 global_rt_runtime(void)
883{
e26873bb 884 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
885 return RUNTIME_INF;
886
887 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
888}
fa85ae24 889
1da177e4 890#ifndef prepare_arch_switch
4866cde0
NP
891# define prepare_arch_switch(next) do { } while (0)
892#endif
893#ifndef finish_arch_switch
894# define finish_arch_switch(prev) do { } while (0)
895#endif
896
051a1d1a
DA
897static inline int task_current(struct rq *rq, struct task_struct *p)
898{
899 return rq->curr == p;
900}
901
4866cde0 902#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 903static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 904{
051a1d1a 905 return task_current(rq, p);
4866cde0
NP
906}
907
70b97a7f 908static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
909{
910}
911
70b97a7f 912static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 913{
da04c035
IM
914#ifdef CONFIG_DEBUG_SPINLOCK
915 /* this is a valid case when another task releases the spinlock */
916 rq->lock.owner = current;
917#endif
8a25d5de
IM
918 /*
919 * If we are tracking spinlock dependencies then we have to
920 * fix up the runqueue lock - which gets 'carried over' from
921 * prev into current:
922 */
923 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
924
4866cde0
NP
925 spin_unlock_irq(&rq->lock);
926}
927
928#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 929static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
930{
931#ifdef CONFIG_SMP
932 return p->oncpu;
933#else
051a1d1a 934 return task_current(rq, p);
4866cde0
NP
935#endif
936}
937
70b97a7f 938static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
939{
940#ifdef CONFIG_SMP
941 /*
942 * We can optimise this out completely for !SMP, because the
943 * SMP rebalancing from interrupt is the only thing that cares
944 * here.
945 */
946 next->oncpu = 1;
947#endif
948#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
949 spin_unlock_irq(&rq->lock);
950#else
951 spin_unlock(&rq->lock);
952#endif
953}
954
70b97a7f 955static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
956{
957#ifdef CONFIG_SMP
958 /*
959 * After ->oncpu is cleared, the task can be moved to a different CPU.
960 * We must ensure this doesn't happen until the switch is completely
961 * finished.
962 */
963 smp_wmb();
964 prev->oncpu = 0;
965#endif
966#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
967 local_irq_enable();
1da177e4 968#endif
4866cde0
NP
969}
970#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 971
b29739f9
IM
972/*
973 * __task_rq_lock - lock the runqueue a given task resides on.
974 * Must be called interrupts disabled.
975 */
70b97a7f 976static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
977 __acquires(rq->lock)
978{
3a5c359a
AK
979 for (;;) {
980 struct rq *rq = task_rq(p);
981 spin_lock(&rq->lock);
982 if (likely(rq == task_rq(p)))
983 return rq;
b29739f9 984 spin_unlock(&rq->lock);
b29739f9 985 }
b29739f9
IM
986}
987
1da177e4
LT
988/*
989 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 990 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
991 * explicitly disabling preemption.
992 */
70b97a7f 993static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
994 __acquires(rq->lock)
995{
70b97a7f 996 struct rq *rq;
1da177e4 997
3a5c359a
AK
998 for (;;) {
999 local_irq_save(*flags);
1000 rq = task_rq(p);
1001 spin_lock(&rq->lock);
1002 if (likely(rq == task_rq(p)))
1003 return rq;
1da177e4 1004 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 1005 }
1da177e4
LT
1006}
1007
ad474cac
ON
1008void task_rq_unlock_wait(struct task_struct *p)
1009{
1010 struct rq *rq = task_rq(p);
1011
1012 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1013 spin_unlock_wait(&rq->lock);
1014}
1015
a9957449 1016static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1017 __releases(rq->lock)
1018{
1019 spin_unlock(&rq->lock);
1020}
1021
70b97a7f 1022static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1023 __releases(rq->lock)
1024{
1025 spin_unlock_irqrestore(&rq->lock, *flags);
1026}
1027
1da177e4 1028/*
cc2a73b5 1029 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1030 */
a9957449 1031static struct rq *this_rq_lock(void)
1da177e4
LT
1032 __acquires(rq->lock)
1033{
70b97a7f 1034 struct rq *rq;
1da177e4
LT
1035
1036 local_irq_disable();
1037 rq = this_rq();
1038 spin_lock(&rq->lock);
1039
1040 return rq;
1041}
1042
8f4d37ec
PZ
1043#ifdef CONFIG_SCHED_HRTICK
1044/*
1045 * Use HR-timers to deliver accurate preemption points.
1046 *
1047 * Its all a bit involved since we cannot program an hrt while holding the
1048 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1049 * reschedule event.
1050 *
1051 * When we get rescheduled we reprogram the hrtick_timer outside of the
1052 * rq->lock.
1053 */
8f4d37ec
PZ
1054
1055/*
1056 * Use hrtick when:
1057 * - enabled by features
1058 * - hrtimer is actually high res
1059 */
1060static inline int hrtick_enabled(struct rq *rq)
1061{
1062 if (!sched_feat(HRTICK))
1063 return 0;
ba42059f 1064 if (!cpu_active(cpu_of(rq)))
b328ca18 1065 return 0;
8f4d37ec
PZ
1066 return hrtimer_is_hres_active(&rq->hrtick_timer);
1067}
1068
8f4d37ec
PZ
1069static void hrtick_clear(struct rq *rq)
1070{
1071 if (hrtimer_active(&rq->hrtick_timer))
1072 hrtimer_cancel(&rq->hrtick_timer);
1073}
1074
8f4d37ec
PZ
1075/*
1076 * High-resolution timer tick.
1077 * Runs from hardirq context with interrupts disabled.
1078 */
1079static enum hrtimer_restart hrtick(struct hrtimer *timer)
1080{
1081 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1082
1083 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1084
1085 spin_lock(&rq->lock);
3e51f33f 1086 update_rq_clock(rq);
8f4d37ec
PZ
1087 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1088 spin_unlock(&rq->lock);
1089
1090 return HRTIMER_NORESTART;
1091}
1092
95e904c7 1093#ifdef CONFIG_SMP
31656519
PZ
1094/*
1095 * called from hardirq (IPI) context
1096 */
1097static void __hrtick_start(void *arg)
b328ca18 1098{
31656519 1099 struct rq *rq = arg;
b328ca18 1100
31656519
PZ
1101 spin_lock(&rq->lock);
1102 hrtimer_restart(&rq->hrtick_timer);
1103 rq->hrtick_csd_pending = 0;
1104 spin_unlock(&rq->lock);
b328ca18
PZ
1105}
1106
31656519
PZ
1107/*
1108 * Called to set the hrtick timer state.
1109 *
1110 * called with rq->lock held and irqs disabled
1111 */
1112static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1113{
31656519
PZ
1114 struct hrtimer *timer = &rq->hrtick_timer;
1115 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1116
cc584b21 1117 hrtimer_set_expires(timer, time);
31656519
PZ
1118
1119 if (rq == this_rq()) {
1120 hrtimer_restart(timer);
1121 } else if (!rq->hrtick_csd_pending) {
6e275637 1122 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1123 rq->hrtick_csd_pending = 1;
1124 }
b328ca18
PZ
1125}
1126
1127static int
1128hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1129{
1130 int cpu = (int)(long)hcpu;
1131
1132 switch (action) {
1133 case CPU_UP_CANCELED:
1134 case CPU_UP_CANCELED_FROZEN:
1135 case CPU_DOWN_PREPARE:
1136 case CPU_DOWN_PREPARE_FROZEN:
1137 case CPU_DEAD:
1138 case CPU_DEAD_FROZEN:
31656519 1139 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1140 return NOTIFY_OK;
1141 }
1142
1143 return NOTIFY_DONE;
1144}
1145
fa748203 1146static __init void init_hrtick(void)
b328ca18
PZ
1147{
1148 hotcpu_notifier(hotplug_hrtick, 0);
1149}
31656519
PZ
1150#else
1151/*
1152 * Called to set the hrtick timer state.
1153 *
1154 * called with rq->lock held and irqs disabled
1155 */
1156static void hrtick_start(struct rq *rq, u64 delay)
1157{
7f1e2ca9 1158 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1159 HRTIMER_MODE_REL_PINNED, 0);
31656519 1160}
b328ca18 1161
006c75f1 1162static inline void init_hrtick(void)
8f4d37ec 1163{
8f4d37ec 1164}
31656519 1165#endif /* CONFIG_SMP */
8f4d37ec 1166
31656519 1167static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1168{
31656519
PZ
1169#ifdef CONFIG_SMP
1170 rq->hrtick_csd_pending = 0;
8f4d37ec 1171
31656519
PZ
1172 rq->hrtick_csd.flags = 0;
1173 rq->hrtick_csd.func = __hrtick_start;
1174 rq->hrtick_csd.info = rq;
1175#endif
8f4d37ec 1176
31656519
PZ
1177 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1178 rq->hrtick_timer.function = hrtick;
8f4d37ec 1179}
006c75f1 1180#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1181static inline void hrtick_clear(struct rq *rq)
1182{
1183}
1184
8f4d37ec
PZ
1185static inline void init_rq_hrtick(struct rq *rq)
1186{
1187}
1188
b328ca18
PZ
1189static inline void init_hrtick(void)
1190{
1191}
006c75f1 1192#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1193
c24d20db
IM
1194/*
1195 * resched_task - mark a task 'to be rescheduled now'.
1196 *
1197 * On UP this means the setting of the need_resched flag, on SMP it
1198 * might also involve a cross-CPU call to trigger the scheduler on
1199 * the target CPU.
1200 */
1201#ifdef CONFIG_SMP
1202
1203#ifndef tsk_is_polling
1204#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1205#endif
1206
31656519 1207static void resched_task(struct task_struct *p)
c24d20db
IM
1208{
1209 int cpu;
1210
1211 assert_spin_locked(&task_rq(p)->lock);
1212
5ed0cec0 1213 if (test_tsk_need_resched(p))
c24d20db
IM
1214 return;
1215
5ed0cec0 1216 set_tsk_need_resched(p);
c24d20db
IM
1217
1218 cpu = task_cpu(p);
1219 if (cpu == smp_processor_id())
1220 return;
1221
1222 /* NEED_RESCHED must be visible before we test polling */
1223 smp_mb();
1224 if (!tsk_is_polling(p))
1225 smp_send_reschedule(cpu);
1226}
1227
1228static void resched_cpu(int cpu)
1229{
1230 struct rq *rq = cpu_rq(cpu);
1231 unsigned long flags;
1232
1233 if (!spin_trylock_irqsave(&rq->lock, flags))
1234 return;
1235 resched_task(cpu_curr(cpu));
1236 spin_unlock_irqrestore(&rq->lock, flags);
1237}
06d8308c
TG
1238
1239#ifdef CONFIG_NO_HZ
1240/*
1241 * When add_timer_on() enqueues a timer into the timer wheel of an
1242 * idle CPU then this timer might expire before the next timer event
1243 * which is scheduled to wake up that CPU. In case of a completely
1244 * idle system the next event might even be infinite time into the
1245 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1246 * leaves the inner idle loop so the newly added timer is taken into
1247 * account when the CPU goes back to idle and evaluates the timer
1248 * wheel for the next timer event.
1249 */
1250void wake_up_idle_cpu(int cpu)
1251{
1252 struct rq *rq = cpu_rq(cpu);
1253
1254 if (cpu == smp_processor_id())
1255 return;
1256
1257 /*
1258 * This is safe, as this function is called with the timer
1259 * wheel base lock of (cpu) held. When the CPU is on the way
1260 * to idle and has not yet set rq->curr to idle then it will
1261 * be serialized on the timer wheel base lock and take the new
1262 * timer into account automatically.
1263 */
1264 if (rq->curr != rq->idle)
1265 return;
1266
1267 /*
1268 * We can set TIF_RESCHED on the idle task of the other CPU
1269 * lockless. The worst case is that the other CPU runs the
1270 * idle task through an additional NOOP schedule()
1271 */
5ed0cec0 1272 set_tsk_need_resched(rq->idle);
06d8308c
TG
1273
1274 /* NEED_RESCHED must be visible before we test polling */
1275 smp_mb();
1276 if (!tsk_is_polling(rq->idle))
1277 smp_send_reschedule(cpu);
1278}
6d6bc0ad 1279#endif /* CONFIG_NO_HZ */
06d8308c 1280
6d6bc0ad 1281#else /* !CONFIG_SMP */
31656519 1282static void resched_task(struct task_struct *p)
c24d20db
IM
1283{
1284 assert_spin_locked(&task_rq(p)->lock);
31656519 1285 set_tsk_need_resched(p);
c24d20db 1286}
6d6bc0ad 1287#endif /* CONFIG_SMP */
c24d20db 1288
45bf76df
IM
1289#if BITS_PER_LONG == 32
1290# define WMULT_CONST (~0UL)
1291#else
1292# define WMULT_CONST (1UL << 32)
1293#endif
1294
1295#define WMULT_SHIFT 32
1296
194081eb
IM
1297/*
1298 * Shift right and round:
1299 */
cf2ab469 1300#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1301
a7be37ac
PZ
1302/*
1303 * delta *= weight / lw
1304 */
cb1c4fc9 1305static unsigned long
45bf76df
IM
1306calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1307 struct load_weight *lw)
1308{
1309 u64 tmp;
1310
7a232e03
LJ
1311 if (!lw->inv_weight) {
1312 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1313 lw->inv_weight = 1;
1314 else
1315 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1316 / (lw->weight+1);
1317 }
45bf76df
IM
1318
1319 tmp = (u64)delta_exec * weight;
1320 /*
1321 * Check whether we'd overflow the 64-bit multiplication:
1322 */
194081eb 1323 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1324 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1325 WMULT_SHIFT/2);
1326 else
cf2ab469 1327 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1328
ecf691da 1329 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1330}
1331
1091985b 1332static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1333{
1334 lw->weight += inc;
e89996ae 1335 lw->inv_weight = 0;
45bf76df
IM
1336}
1337
1091985b 1338static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1339{
1340 lw->weight -= dec;
e89996ae 1341 lw->inv_weight = 0;
45bf76df
IM
1342}
1343
2dd73a4f
PW
1344/*
1345 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1346 * of tasks with abnormal "nice" values across CPUs the contribution that
1347 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1348 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1349 * scaled version of the new time slice allocation that they receive on time
1350 * slice expiry etc.
1351 */
1352
cce7ade8
PZ
1353#define WEIGHT_IDLEPRIO 3
1354#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1355
1356/*
1357 * Nice levels are multiplicative, with a gentle 10% change for every
1358 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1359 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1360 * that remained on nice 0.
1361 *
1362 * The "10% effect" is relative and cumulative: from _any_ nice level,
1363 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1364 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1365 * If a task goes up by ~10% and another task goes down by ~10% then
1366 * the relative distance between them is ~25%.)
dd41f596
IM
1367 */
1368static const int prio_to_weight[40] = {
254753dc
IM
1369 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1370 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1371 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1372 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1373 /* 0 */ 1024, 820, 655, 526, 423,
1374 /* 5 */ 335, 272, 215, 172, 137,
1375 /* 10 */ 110, 87, 70, 56, 45,
1376 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1377};
1378
5714d2de
IM
1379/*
1380 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1381 *
1382 * In cases where the weight does not change often, we can use the
1383 * precalculated inverse to speed up arithmetics by turning divisions
1384 * into multiplications:
1385 */
dd41f596 1386static const u32 prio_to_wmult[40] = {
254753dc
IM
1387 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1388 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1389 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1390 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1391 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1392 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1393 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1394 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1395};
2dd73a4f 1396
dd41f596
IM
1397static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1398
1399/*
1400 * runqueue iterator, to support SMP load-balancing between different
1401 * scheduling classes, without having to expose their internal data
1402 * structures to the load-balancing proper:
1403 */
1404struct rq_iterator {
1405 void *arg;
1406 struct task_struct *(*start)(void *);
1407 struct task_struct *(*next)(void *);
1408};
1409
e1d1484f
PW
1410#ifdef CONFIG_SMP
1411static unsigned long
1412balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1413 unsigned long max_load_move, struct sched_domain *sd,
1414 enum cpu_idle_type idle, int *all_pinned,
1415 int *this_best_prio, struct rq_iterator *iterator);
1416
1417static int
1418iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1419 struct sched_domain *sd, enum cpu_idle_type idle,
1420 struct rq_iterator *iterator);
e1d1484f 1421#endif
dd41f596 1422
ef12fefa
BR
1423/* Time spent by the tasks of the cpu accounting group executing in ... */
1424enum cpuacct_stat_index {
1425 CPUACCT_STAT_USER, /* ... user mode */
1426 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1427
1428 CPUACCT_STAT_NSTATS,
1429};
1430
d842de87
SV
1431#ifdef CONFIG_CGROUP_CPUACCT
1432static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1433static void cpuacct_update_stats(struct task_struct *tsk,
1434 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1435#else
1436static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1437static inline void cpuacct_update_stats(struct task_struct *tsk,
1438 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1439#endif
1440
18d95a28
PZ
1441static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1442{
1443 update_load_add(&rq->load, load);
1444}
1445
1446static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1447{
1448 update_load_sub(&rq->load, load);
1449}
1450
7940ca36 1451#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1452typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1453
1454/*
1455 * Iterate the full tree, calling @down when first entering a node and @up when
1456 * leaving it for the final time.
1457 */
eb755805 1458static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1459{
1460 struct task_group *parent, *child;
eb755805 1461 int ret;
c09595f6
PZ
1462
1463 rcu_read_lock();
1464 parent = &root_task_group;
1465down:
eb755805
PZ
1466 ret = (*down)(parent, data);
1467 if (ret)
1468 goto out_unlock;
c09595f6
PZ
1469 list_for_each_entry_rcu(child, &parent->children, siblings) {
1470 parent = child;
1471 goto down;
1472
1473up:
1474 continue;
1475 }
eb755805
PZ
1476 ret = (*up)(parent, data);
1477 if (ret)
1478 goto out_unlock;
c09595f6
PZ
1479
1480 child = parent;
1481 parent = parent->parent;
1482 if (parent)
1483 goto up;
eb755805 1484out_unlock:
c09595f6 1485 rcu_read_unlock();
eb755805
PZ
1486
1487 return ret;
c09595f6
PZ
1488}
1489
eb755805
PZ
1490static int tg_nop(struct task_group *tg, void *data)
1491{
1492 return 0;
c09595f6 1493}
eb755805
PZ
1494#endif
1495
1496#ifdef CONFIG_SMP
1497static unsigned long source_load(int cpu, int type);
1498static unsigned long target_load(int cpu, int type);
1499static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1500
1501static unsigned long cpu_avg_load_per_task(int cpu)
1502{
1503 struct rq *rq = cpu_rq(cpu);
af6d596f 1504 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1505
4cd42620
SR
1506 if (nr_running)
1507 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1508 else
1509 rq->avg_load_per_task = 0;
eb755805
PZ
1510
1511 return rq->avg_load_per_task;
1512}
1513
1514#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1515
c09595f6
PZ
1516static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1517
1518/*
1519 * Calculate and set the cpu's group shares.
1520 */
1521static void
ffda12a1
PZ
1522update_group_shares_cpu(struct task_group *tg, int cpu,
1523 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1524{
c09595f6
PZ
1525 unsigned long shares;
1526 unsigned long rq_weight;
1527
c8cba857 1528 if (!tg->se[cpu])
c09595f6
PZ
1529 return;
1530
ec4e0e2f 1531 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1532
c09595f6
PZ
1533 /*
1534 * \Sum shares * rq_weight
1535 * shares = -----------------------
1536 * \Sum rq_weight
1537 *
1538 */
ec4e0e2f 1539 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1540 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1541
ffda12a1
PZ
1542 if (abs(shares - tg->se[cpu]->load.weight) >
1543 sysctl_sched_shares_thresh) {
1544 struct rq *rq = cpu_rq(cpu);
1545 unsigned long flags;
c09595f6 1546
ffda12a1 1547 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1548 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1549
ffda12a1
PZ
1550 __set_se_shares(tg->se[cpu], shares);
1551 spin_unlock_irqrestore(&rq->lock, flags);
1552 }
18d95a28 1553}
c09595f6
PZ
1554
1555/*
c8cba857
PZ
1556 * Re-compute the task group their per cpu shares over the given domain.
1557 * This needs to be done in a bottom-up fashion because the rq weight of a
1558 * parent group depends on the shares of its child groups.
c09595f6 1559 */
eb755805 1560static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1561{
ec4e0e2f 1562 unsigned long weight, rq_weight = 0;
c8cba857 1563 unsigned long shares = 0;
eb755805 1564 struct sched_domain *sd = data;
c8cba857 1565 int i;
c09595f6 1566
758b2cdc 1567 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1568 /*
1569 * If there are currently no tasks on the cpu pretend there
1570 * is one of average load so that when a new task gets to
1571 * run here it will not get delayed by group starvation.
1572 */
1573 weight = tg->cfs_rq[i]->load.weight;
1574 if (!weight)
1575 weight = NICE_0_LOAD;
1576
1577 tg->cfs_rq[i]->rq_weight = weight;
1578 rq_weight += weight;
c8cba857 1579 shares += tg->cfs_rq[i]->shares;
c09595f6 1580 }
c09595f6 1581
c8cba857
PZ
1582 if ((!shares && rq_weight) || shares > tg->shares)
1583 shares = tg->shares;
1584
1585 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1586 shares = tg->shares;
c09595f6 1587
758b2cdc 1588 for_each_cpu(i, sched_domain_span(sd))
ffda12a1 1589 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1590
1591 return 0;
c09595f6
PZ
1592}
1593
1594/*
c8cba857
PZ
1595 * Compute the cpu's hierarchical load factor for each task group.
1596 * This needs to be done in a top-down fashion because the load of a child
1597 * group is a fraction of its parents load.
c09595f6 1598 */
eb755805 1599static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1600{
c8cba857 1601 unsigned long load;
eb755805 1602 long cpu = (long)data;
c09595f6 1603
c8cba857
PZ
1604 if (!tg->parent) {
1605 load = cpu_rq(cpu)->load.weight;
1606 } else {
1607 load = tg->parent->cfs_rq[cpu]->h_load;
1608 load *= tg->cfs_rq[cpu]->shares;
1609 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1610 }
c09595f6 1611
c8cba857 1612 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1613
eb755805 1614 return 0;
c09595f6
PZ
1615}
1616
c8cba857 1617static void update_shares(struct sched_domain *sd)
4d8d595d 1618{
2398f2c6
PZ
1619 u64 now = cpu_clock(raw_smp_processor_id());
1620 s64 elapsed = now - sd->last_update;
1621
1622 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1623 sd->last_update = now;
eb755805 1624 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1625 }
4d8d595d
PZ
1626}
1627
3e5459b4
PZ
1628static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1629{
1630 spin_unlock(&rq->lock);
1631 update_shares(sd);
1632 spin_lock(&rq->lock);
1633}
1634
eb755805 1635static void update_h_load(long cpu)
c09595f6 1636{
eb755805 1637 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1638}
1639
c09595f6
PZ
1640#else
1641
c8cba857 1642static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1643{
1644}
1645
3e5459b4
PZ
1646static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1647{
1648}
1649
18d95a28
PZ
1650#endif
1651
8f45e2b5
GH
1652#ifdef CONFIG_PREEMPT
1653
70574a99 1654/*
8f45e2b5
GH
1655 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1656 * way at the expense of forcing extra atomic operations in all
1657 * invocations. This assures that the double_lock is acquired using the
1658 * same underlying policy as the spinlock_t on this architecture, which
1659 * reduces latency compared to the unfair variant below. However, it
1660 * also adds more overhead and therefore may reduce throughput.
70574a99 1661 */
8f45e2b5
GH
1662static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1663 __releases(this_rq->lock)
1664 __acquires(busiest->lock)
1665 __acquires(this_rq->lock)
1666{
1667 spin_unlock(&this_rq->lock);
1668 double_rq_lock(this_rq, busiest);
1669
1670 return 1;
1671}
1672
1673#else
1674/*
1675 * Unfair double_lock_balance: Optimizes throughput at the expense of
1676 * latency by eliminating extra atomic operations when the locks are
1677 * already in proper order on entry. This favors lower cpu-ids and will
1678 * grant the double lock to lower cpus over higher ids under contention,
1679 * regardless of entry order into the function.
1680 */
1681static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1682 __releases(this_rq->lock)
1683 __acquires(busiest->lock)
1684 __acquires(this_rq->lock)
1685{
1686 int ret = 0;
1687
70574a99
AD
1688 if (unlikely(!spin_trylock(&busiest->lock))) {
1689 if (busiest < this_rq) {
1690 spin_unlock(&this_rq->lock);
1691 spin_lock(&busiest->lock);
1692 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1693 ret = 1;
1694 } else
1695 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1696 }
1697 return ret;
1698}
1699
8f45e2b5
GH
1700#endif /* CONFIG_PREEMPT */
1701
1702/*
1703 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1704 */
1705static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1706{
1707 if (unlikely(!irqs_disabled())) {
1708 /* printk() doesn't work good under rq->lock */
1709 spin_unlock(&this_rq->lock);
1710 BUG_ON(1);
1711 }
1712
1713 return _double_lock_balance(this_rq, busiest);
1714}
1715
70574a99
AD
1716static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1717 __releases(busiest->lock)
1718{
1719 spin_unlock(&busiest->lock);
1720 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1721}
18d95a28
PZ
1722#endif
1723
30432094 1724#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1725static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1726{
30432094 1727#ifdef CONFIG_SMP
34e83e85
IM
1728 cfs_rq->shares = shares;
1729#endif
1730}
30432094 1731#endif
e7693a36 1732
dce48a84
TG
1733static void calc_load_account_active(struct rq *this_rq);
1734
dd41f596 1735#include "sched_stats.h"
dd41f596 1736#include "sched_idletask.c"
5522d5d5
IM
1737#include "sched_fair.c"
1738#include "sched_rt.c"
dd41f596
IM
1739#ifdef CONFIG_SCHED_DEBUG
1740# include "sched_debug.c"
1741#endif
1742
1743#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1744#define for_each_class(class) \
1745 for (class = sched_class_highest; class; class = class->next)
dd41f596 1746
c09595f6 1747static void inc_nr_running(struct rq *rq)
9c217245
IM
1748{
1749 rq->nr_running++;
9c217245
IM
1750}
1751
c09595f6 1752static void dec_nr_running(struct rq *rq)
9c217245
IM
1753{
1754 rq->nr_running--;
9c217245
IM
1755}
1756
45bf76df
IM
1757static void set_load_weight(struct task_struct *p)
1758{
1759 if (task_has_rt_policy(p)) {
dd41f596
IM
1760 p->se.load.weight = prio_to_weight[0] * 2;
1761 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1762 return;
1763 }
45bf76df 1764
dd41f596
IM
1765 /*
1766 * SCHED_IDLE tasks get minimal weight:
1767 */
1768 if (p->policy == SCHED_IDLE) {
1769 p->se.load.weight = WEIGHT_IDLEPRIO;
1770 p->se.load.inv_weight = WMULT_IDLEPRIO;
1771 return;
1772 }
71f8bd46 1773
dd41f596
IM
1774 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1775 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1776}
1777
2087a1ad
GH
1778static void update_avg(u64 *avg, u64 sample)
1779{
1780 s64 diff = sample - *avg;
1781 *avg += diff >> 3;
1782}
1783
8159f87e 1784static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1785{
831451ac
PZ
1786 if (wakeup)
1787 p->se.start_runtime = p->se.sum_exec_runtime;
1788
dd41f596 1789 sched_info_queued(p);
fd390f6a 1790 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1791 p->se.on_rq = 1;
71f8bd46
IM
1792}
1793
69be72c1 1794static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1795{
831451ac
PZ
1796 if (sleep) {
1797 if (p->se.last_wakeup) {
1798 update_avg(&p->se.avg_overlap,
1799 p->se.sum_exec_runtime - p->se.last_wakeup);
1800 p->se.last_wakeup = 0;
1801 } else {
1802 update_avg(&p->se.avg_wakeup,
1803 sysctl_sched_wakeup_granularity);
1804 }
2087a1ad
GH
1805 }
1806
46ac22ba 1807 sched_info_dequeued(p);
f02231e5 1808 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1809 p->se.on_rq = 0;
71f8bd46
IM
1810}
1811
14531189 1812/*
dd41f596 1813 * __normal_prio - return the priority that is based on the static prio
14531189 1814 */
14531189
IM
1815static inline int __normal_prio(struct task_struct *p)
1816{
dd41f596 1817 return p->static_prio;
14531189
IM
1818}
1819
b29739f9
IM
1820/*
1821 * Calculate the expected normal priority: i.e. priority
1822 * without taking RT-inheritance into account. Might be
1823 * boosted by interactivity modifiers. Changes upon fork,
1824 * setprio syscalls, and whenever the interactivity
1825 * estimator recalculates.
1826 */
36c8b586 1827static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1828{
1829 int prio;
1830
e05606d3 1831 if (task_has_rt_policy(p))
b29739f9
IM
1832 prio = MAX_RT_PRIO-1 - p->rt_priority;
1833 else
1834 prio = __normal_prio(p);
1835 return prio;
1836}
1837
1838/*
1839 * Calculate the current priority, i.e. the priority
1840 * taken into account by the scheduler. This value might
1841 * be boosted by RT tasks, or might be boosted by
1842 * interactivity modifiers. Will be RT if the task got
1843 * RT-boosted. If not then it returns p->normal_prio.
1844 */
36c8b586 1845static int effective_prio(struct task_struct *p)
b29739f9
IM
1846{
1847 p->normal_prio = normal_prio(p);
1848 /*
1849 * If we are RT tasks or we were boosted to RT priority,
1850 * keep the priority unchanged. Otherwise, update priority
1851 * to the normal priority:
1852 */
1853 if (!rt_prio(p->prio))
1854 return p->normal_prio;
1855 return p->prio;
1856}
1857
1da177e4 1858/*
dd41f596 1859 * activate_task - move a task to the runqueue.
1da177e4 1860 */
dd41f596 1861static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1862{
d9514f6c 1863 if (task_contributes_to_load(p))
dd41f596 1864 rq->nr_uninterruptible--;
1da177e4 1865
8159f87e 1866 enqueue_task(rq, p, wakeup);
c09595f6 1867 inc_nr_running(rq);
1da177e4
LT
1868}
1869
1da177e4
LT
1870/*
1871 * deactivate_task - remove a task from the runqueue.
1872 */
2e1cb74a 1873static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1874{
d9514f6c 1875 if (task_contributes_to_load(p))
dd41f596
IM
1876 rq->nr_uninterruptible++;
1877
69be72c1 1878 dequeue_task(rq, p, sleep);
c09595f6 1879 dec_nr_running(rq);
1da177e4
LT
1880}
1881
1da177e4
LT
1882/**
1883 * task_curr - is this task currently executing on a CPU?
1884 * @p: the task in question.
1885 */
36c8b586 1886inline int task_curr(const struct task_struct *p)
1da177e4
LT
1887{
1888 return cpu_curr(task_cpu(p)) == p;
1889}
1890
dd41f596
IM
1891static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1892{
6f505b16 1893 set_task_rq(p, cpu);
dd41f596 1894#ifdef CONFIG_SMP
ce96b5ac
DA
1895 /*
1896 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1897 * successfuly executed on another CPU. We must ensure that updates of
1898 * per-task data have been completed by this moment.
1899 */
1900 smp_wmb();
dd41f596 1901 task_thread_info(p)->cpu = cpu;
dd41f596 1902#endif
2dd73a4f
PW
1903}
1904
cb469845
SR
1905static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1906 const struct sched_class *prev_class,
1907 int oldprio, int running)
1908{
1909 if (prev_class != p->sched_class) {
1910 if (prev_class->switched_from)
1911 prev_class->switched_from(rq, p, running);
1912 p->sched_class->switched_to(rq, p, running);
1913 } else
1914 p->sched_class->prio_changed(rq, p, oldprio, running);
1915}
1916
1da177e4 1917#ifdef CONFIG_SMP
c65cc870 1918
e958b360
TG
1919/* Used instead of source_load when we know the type == 0 */
1920static unsigned long weighted_cpuload(const int cpu)
1921{
1922 return cpu_rq(cpu)->load.weight;
1923}
1924
cc367732
IM
1925/*
1926 * Is this task likely cache-hot:
1927 */
e7693a36 1928static int
cc367732
IM
1929task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1930{
1931 s64 delta;
1932
f540a608
IM
1933 /*
1934 * Buddy candidates are cache hot:
1935 */
4793241b
PZ
1936 if (sched_feat(CACHE_HOT_BUDDY) &&
1937 (&p->se == cfs_rq_of(&p->se)->next ||
1938 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1939 return 1;
1940
cc367732
IM
1941 if (p->sched_class != &fair_sched_class)
1942 return 0;
1943
6bc1665b
IM
1944 if (sysctl_sched_migration_cost == -1)
1945 return 1;
1946 if (sysctl_sched_migration_cost == 0)
1947 return 0;
1948
cc367732
IM
1949 delta = now - p->se.exec_start;
1950
1951 return delta < (s64)sysctl_sched_migration_cost;
1952}
1953
1954
dd41f596 1955void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1956{
dd41f596
IM
1957 int old_cpu = task_cpu(p);
1958 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1959 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1960 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1961 u64 clock_offset;
dd41f596
IM
1962
1963 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1964
de1d7286 1965 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1966
6cfb0d5d
IM
1967#ifdef CONFIG_SCHEDSTATS
1968 if (p->se.wait_start)
1969 p->se.wait_start -= clock_offset;
dd41f596
IM
1970 if (p->se.sleep_start)
1971 p->se.sleep_start -= clock_offset;
1972 if (p->se.block_start)
1973 p->se.block_start -= clock_offset;
6c594c21 1974#endif
cc367732 1975 if (old_cpu != new_cpu) {
6c594c21 1976 p->se.nr_migrations++;
23a185ca 1977 new_rq->nr_migrations_in++;
6c594c21 1978#ifdef CONFIG_SCHEDSTATS
cc367732
IM
1979 if (task_hot(p, old_rq->clock, NULL))
1980 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 1981#endif
e5289d4a
PZ
1982 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
1983 1, 1, NULL, 0);
6c594c21 1984 }
2830cf8c
SV
1985 p->se.vruntime -= old_cfsrq->min_vruntime -
1986 new_cfsrq->min_vruntime;
dd41f596
IM
1987
1988 __set_task_cpu(p, new_cpu);
c65cc870
IM
1989}
1990
70b97a7f 1991struct migration_req {
1da177e4 1992 struct list_head list;
1da177e4 1993
36c8b586 1994 struct task_struct *task;
1da177e4
LT
1995 int dest_cpu;
1996
1da177e4 1997 struct completion done;
70b97a7f 1998};
1da177e4
LT
1999
2000/*
2001 * The task's runqueue lock must be held.
2002 * Returns true if you have to wait for migration thread.
2003 */
36c8b586 2004static int
70b97a7f 2005migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2006{
70b97a7f 2007 struct rq *rq = task_rq(p);
1da177e4
LT
2008
2009 /*
2010 * If the task is not on a runqueue (and not running), then
2011 * it is sufficient to simply update the task's cpu field.
2012 */
dd41f596 2013 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2014 set_task_cpu(p, dest_cpu);
2015 return 0;
2016 }
2017
2018 init_completion(&req->done);
1da177e4
LT
2019 req->task = p;
2020 req->dest_cpu = dest_cpu;
2021 list_add(&req->list, &rq->migration_queue);
48f24c4d 2022
1da177e4
LT
2023 return 1;
2024}
2025
a26b89f0
MM
2026/*
2027 * wait_task_context_switch - wait for a thread to complete at least one
2028 * context switch.
2029 *
2030 * @p must not be current.
2031 */
2032void wait_task_context_switch(struct task_struct *p)
2033{
2034 unsigned long nvcsw, nivcsw, flags;
2035 int running;
2036 struct rq *rq;
2037
2038 nvcsw = p->nvcsw;
2039 nivcsw = p->nivcsw;
2040 for (;;) {
2041 /*
2042 * The runqueue is assigned before the actual context
2043 * switch. We need to take the runqueue lock.
2044 *
2045 * We could check initially without the lock but it is
2046 * very likely that we need to take the lock in every
2047 * iteration.
2048 */
2049 rq = task_rq_lock(p, &flags);
2050 running = task_running(rq, p);
2051 task_rq_unlock(rq, &flags);
2052
2053 if (likely(!running))
2054 break;
2055 /*
2056 * The switch count is incremented before the actual
2057 * context switch. We thus wait for two switches to be
2058 * sure at least one completed.
2059 */
2060 if ((p->nvcsw - nvcsw) > 1)
2061 break;
2062 if ((p->nivcsw - nivcsw) > 1)
2063 break;
2064
2065 cpu_relax();
2066 }
2067}
2068
1da177e4
LT
2069/*
2070 * wait_task_inactive - wait for a thread to unschedule.
2071 *
85ba2d86
RM
2072 * If @match_state is nonzero, it's the @p->state value just checked and
2073 * not expected to change. If it changes, i.e. @p might have woken up,
2074 * then return zero. When we succeed in waiting for @p to be off its CPU,
2075 * we return a positive number (its total switch count). If a second call
2076 * a short while later returns the same number, the caller can be sure that
2077 * @p has remained unscheduled the whole time.
2078 *
1da177e4
LT
2079 * The caller must ensure that the task *will* unschedule sometime soon,
2080 * else this function might spin for a *long* time. This function can't
2081 * be called with interrupts off, or it may introduce deadlock with
2082 * smp_call_function() if an IPI is sent by the same process we are
2083 * waiting to become inactive.
2084 */
85ba2d86 2085unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2086{
2087 unsigned long flags;
dd41f596 2088 int running, on_rq;
85ba2d86 2089 unsigned long ncsw;
70b97a7f 2090 struct rq *rq;
1da177e4 2091
3a5c359a
AK
2092 for (;;) {
2093 /*
2094 * We do the initial early heuristics without holding
2095 * any task-queue locks at all. We'll only try to get
2096 * the runqueue lock when things look like they will
2097 * work out!
2098 */
2099 rq = task_rq(p);
fa490cfd 2100
3a5c359a
AK
2101 /*
2102 * If the task is actively running on another CPU
2103 * still, just relax and busy-wait without holding
2104 * any locks.
2105 *
2106 * NOTE! Since we don't hold any locks, it's not
2107 * even sure that "rq" stays as the right runqueue!
2108 * But we don't care, since "task_running()" will
2109 * return false if the runqueue has changed and p
2110 * is actually now running somewhere else!
2111 */
85ba2d86
RM
2112 while (task_running(rq, p)) {
2113 if (match_state && unlikely(p->state != match_state))
2114 return 0;
3a5c359a 2115 cpu_relax();
85ba2d86 2116 }
fa490cfd 2117
3a5c359a
AK
2118 /*
2119 * Ok, time to look more closely! We need the rq
2120 * lock now, to be *sure*. If we're wrong, we'll
2121 * just go back and repeat.
2122 */
2123 rq = task_rq_lock(p, &flags);
0a16b607 2124 trace_sched_wait_task(rq, p);
3a5c359a
AK
2125 running = task_running(rq, p);
2126 on_rq = p->se.on_rq;
85ba2d86 2127 ncsw = 0;
f31e11d8 2128 if (!match_state || p->state == match_state)
93dcf55f 2129 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2130 task_rq_unlock(rq, &flags);
fa490cfd 2131
85ba2d86
RM
2132 /*
2133 * If it changed from the expected state, bail out now.
2134 */
2135 if (unlikely(!ncsw))
2136 break;
2137
3a5c359a
AK
2138 /*
2139 * Was it really running after all now that we
2140 * checked with the proper locks actually held?
2141 *
2142 * Oops. Go back and try again..
2143 */
2144 if (unlikely(running)) {
2145 cpu_relax();
2146 continue;
2147 }
fa490cfd 2148
3a5c359a
AK
2149 /*
2150 * It's not enough that it's not actively running,
2151 * it must be off the runqueue _entirely_, and not
2152 * preempted!
2153 *
80dd99b3 2154 * So if it was still runnable (but just not actively
3a5c359a
AK
2155 * running right now), it's preempted, and we should
2156 * yield - it could be a while.
2157 */
2158 if (unlikely(on_rq)) {
2159 schedule_timeout_uninterruptible(1);
2160 continue;
2161 }
fa490cfd 2162
3a5c359a
AK
2163 /*
2164 * Ahh, all good. It wasn't running, and it wasn't
2165 * runnable, which means that it will never become
2166 * running in the future either. We're all done!
2167 */
2168 break;
2169 }
85ba2d86
RM
2170
2171 return ncsw;
1da177e4
LT
2172}
2173
2174/***
2175 * kick_process - kick a running thread to enter/exit the kernel
2176 * @p: the to-be-kicked thread
2177 *
2178 * Cause a process which is running on another CPU to enter
2179 * kernel-mode, without any delay. (to get signals handled.)
2180 *
2181 * NOTE: this function doesnt have to take the runqueue lock,
2182 * because all it wants to ensure is that the remote task enters
2183 * the kernel. If the IPI races and the task has been migrated
2184 * to another CPU then no harm is done and the purpose has been
2185 * achieved as well.
2186 */
36c8b586 2187void kick_process(struct task_struct *p)
1da177e4
LT
2188{
2189 int cpu;
2190
2191 preempt_disable();
2192 cpu = task_cpu(p);
2193 if ((cpu != smp_processor_id()) && task_curr(p))
2194 smp_send_reschedule(cpu);
2195 preempt_enable();
2196}
b43e3521 2197EXPORT_SYMBOL_GPL(kick_process);
1da177e4
LT
2198
2199/*
2dd73a4f
PW
2200 * Return a low guess at the load of a migration-source cpu weighted
2201 * according to the scheduling class and "nice" value.
1da177e4
LT
2202 *
2203 * We want to under-estimate the load of migration sources, to
2204 * balance conservatively.
2205 */
a9957449 2206static unsigned long source_load(int cpu, int type)
1da177e4 2207{
70b97a7f 2208 struct rq *rq = cpu_rq(cpu);
dd41f596 2209 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2210
93b75217 2211 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2212 return total;
b910472d 2213
dd41f596 2214 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2215}
2216
2217/*
2dd73a4f
PW
2218 * Return a high guess at the load of a migration-target cpu weighted
2219 * according to the scheduling class and "nice" value.
1da177e4 2220 */
a9957449 2221static unsigned long target_load(int cpu, int type)
1da177e4 2222{
70b97a7f 2223 struct rq *rq = cpu_rq(cpu);
dd41f596 2224 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2225
93b75217 2226 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2227 return total;
3b0bd9bc 2228
dd41f596 2229 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2230}
2231
147cbb4b
NP
2232/*
2233 * find_idlest_group finds and returns the least busy CPU group within the
2234 * domain.
2235 */
2236static struct sched_group *
2237find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2238{
2239 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2240 unsigned long min_load = ULONG_MAX, this_load = 0;
2241 int load_idx = sd->forkexec_idx;
2242 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2243
2244 do {
2245 unsigned long load, avg_load;
2246 int local_group;
2247 int i;
2248
da5a5522 2249 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2250 if (!cpumask_intersects(sched_group_cpus(group),
2251 &p->cpus_allowed))
3a5c359a 2252 continue;
da5a5522 2253
758b2cdc
RR
2254 local_group = cpumask_test_cpu(this_cpu,
2255 sched_group_cpus(group));
147cbb4b
NP
2256
2257 /* Tally up the load of all CPUs in the group */
2258 avg_load = 0;
2259
758b2cdc 2260 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2261 /* Bias balancing toward cpus of our domain */
2262 if (local_group)
2263 load = source_load(i, load_idx);
2264 else
2265 load = target_load(i, load_idx);
2266
2267 avg_load += load;
2268 }
2269
2270 /* Adjust by relative CPU power of the group */
5517d86b
ED
2271 avg_load = sg_div_cpu_power(group,
2272 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2273
2274 if (local_group) {
2275 this_load = avg_load;
2276 this = group;
2277 } else if (avg_load < min_load) {
2278 min_load = avg_load;
2279 idlest = group;
2280 }
3a5c359a 2281 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2282
2283 if (!idlest || 100*this_load < imbalance*min_load)
2284 return NULL;
2285 return idlest;
2286}
2287
2288/*
0feaece9 2289 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2290 */
95cdf3b7 2291static int
758b2cdc 2292find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2293{
2294 unsigned long load, min_load = ULONG_MAX;
2295 int idlest = -1;
2296 int i;
2297
da5a5522 2298 /* Traverse only the allowed CPUs */
758b2cdc 2299 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2300 load = weighted_cpuload(i);
147cbb4b
NP
2301
2302 if (load < min_load || (load == min_load && i == this_cpu)) {
2303 min_load = load;
2304 idlest = i;
2305 }
2306 }
2307
2308 return idlest;
2309}
2310
476d139c
NP
2311/*
2312 * sched_balance_self: balance the current task (running on cpu) in domains
2313 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2314 * SD_BALANCE_EXEC.
2315 *
2316 * Balance, ie. select the least loaded group.
2317 *
2318 * Returns the target CPU number, or the same CPU if no balancing is needed.
2319 *
2320 * preempt must be disabled.
2321 */
2322static int sched_balance_self(int cpu, int flag)
2323{
2324 struct task_struct *t = current;
2325 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2326
c96d145e 2327 for_each_domain(cpu, tmp) {
9761eea8
IM
2328 /*
2329 * If power savings logic is enabled for a domain, stop there.
2330 */
5c45bf27
SS
2331 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2332 break;
476d139c
NP
2333 if (tmp->flags & flag)
2334 sd = tmp;
c96d145e 2335 }
476d139c 2336
039a1c41
PZ
2337 if (sd)
2338 update_shares(sd);
2339
476d139c 2340 while (sd) {
476d139c 2341 struct sched_group *group;
1a848870
SS
2342 int new_cpu, weight;
2343
2344 if (!(sd->flags & flag)) {
2345 sd = sd->child;
2346 continue;
2347 }
476d139c 2348
476d139c 2349 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2350 if (!group) {
2351 sd = sd->child;
2352 continue;
2353 }
476d139c 2354
758b2cdc 2355 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2356 if (new_cpu == -1 || new_cpu == cpu) {
2357 /* Now try balancing at a lower domain level of cpu */
2358 sd = sd->child;
2359 continue;
2360 }
476d139c 2361
1a848870 2362 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2363 cpu = new_cpu;
758b2cdc 2364 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2365 sd = NULL;
476d139c 2366 for_each_domain(cpu, tmp) {
758b2cdc 2367 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2368 break;
2369 if (tmp->flags & flag)
2370 sd = tmp;
2371 }
2372 /* while loop will break here if sd == NULL */
2373 }
2374
2375 return cpu;
2376}
2377
2378#endif /* CONFIG_SMP */
1da177e4 2379
0793a61d
TG
2380/**
2381 * task_oncpu_function_call - call a function on the cpu on which a task runs
2382 * @p: the task to evaluate
2383 * @func: the function to be called
2384 * @info: the function call argument
2385 *
2386 * Calls the function @func when the task is currently running. This might
2387 * be on the current CPU, which just calls the function directly
2388 */
2389void task_oncpu_function_call(struct task_struct *p,
2390 void (*func) (void *info), void *info)
2391{
2392 int cpu;
2393
2394 preempt_disable();
2395 cpu = task_cpu(p);
2396 if (task_curr(p))
2397 smp_call_function_single(cpu, func, info, 1);
2398 preempt_enable();
2399}
2400
1da177e4
LT
2401/***
2402 * try_to_wake_up - wake up a thread
2403 * @p: the to-be-woken-up thread
2404 * @state: the mask of task states that can be woken
2405 * @sync: do a synchronous wakeup?
2406 *
2407 * Put it on the run-queue if it's not already there. The "current"
2408 * thread is always on the run-queue (except when the actual
2409 * re-schedule is in progress), and as such you're allowed to do
2410 * the simpler "current->state = TASK_RUNNING" to mark yourself
2411 * runnable without the overhead of this.
2412 *
2413 * returns failure only if the task is already active.
2414 */
36c8b586 2415static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2416{
cc367732 2417 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2418 unsigned long flags;
2419 long old_state;
70b97a7f 2420 struct rq *rq;
1da177e4 2421
b85d0667
IM
2422 if (!sched_feat(SYNC_WAKEUPS))
2423 sync = 0;
2424
2398f2c6 2425#ifdef CONFIG_SMP
57310a98 2426 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2398f2c6
PZ
2427 struct sched_domain *sd;
2428
2429 this_cpu = raw_smp_processor_id();
2430 cpu = task_cpu(p);
2431
2432 for_each_domain(this_cpu, sd) {
758b2cdc 2433 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2434 update_shares(sd);
2435 break;
2436 }
2437 }
2438 }
2439#endif
2440
04e2f174 2441 smp_wmb();
1da177e4 2442 rq = task_rq_lock(p, &flags);
03e89e45 2443 update_rq_clock(rq);
1da177e4
LT
2444 old_state = p->state;
2445 if (!(old_state & state))
2446 goto out;
2447
dd41f596 2448 if (p->se.on_rq)
1da177e4
LT
2449 goto out_running;
2450
2451 cpu = task_cpu(p);
cc367732 2452 orig_cpu = cpu;
1da177e4
LT
2453 this_cpu = smp_processor_id();
2454
2455#ifdef CONFIG_SMP
2456 if (unlikely(task_running(rq, p)))
2457 goto out_activate;
2458
5d2f5a61
DA
2459 cpu = p->sched_class->select_task_rq(p, sync);
2460 if (cpu != orig_cpu) {
2461 set_task_cpu(p, cpu);
1da177e4
LT
2462 task_rq_unlock(rq, &flags);
2463 /* might preempt at this point */
2464 rq = task_rq_lock(p, &flags);
2465 old_state = p->state;
2466 if (!(old_state & state))
2467 goto out;
dd41f596 2468 if (p->se.on_rq)
1da177e4
LT
2469 goto out_running;
2470
2471 this_cpu = smp_processor_id();
2472 cpu = task_cpu(p);
2473 }
2474
e7693a36
GH
2475#ifdef CONFIG_SCHEDSTATS
2476 schedstat_inc(rq, ttwu_count);
2477 if (cpu == this_cpu)
2478 schedstat_inc(rq, ttwu_local);
2479 else {
2480 struct sched_domain *sd;
2481 for_each_domain(this_cpu, sd) {
758b2cdc 2482 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2483 schedstat_inc(sd, ttwu_wake_remote);
2484 break;
2485 }
2486 }
2487 }
6d6bc0ad 2488#endif /* CONFIG_SCHEDSTATS */
e7693a36 2489
1da177e4
LT
2490out_activate:
2491#endif /* CONFIG_SMP */
cc367732
IM
2492 schedstat_inc(p, se.nr_wakeups);
2493 if (sync)
2494 schedstat_inc(p, se.nr_wakeups_sync);
2495 if (orig_cpu != cpu)
2496 schedstat_inc(p, se.nr_wakeups_migrate);
2497 if (cpu == this_cpu)
2498 schedstat_inc(p, se.nr_wakeups_local);
2499 else
2500 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2501 activate_task(rq, p, 1);
1da177e4
LT
2502 success = 1;
2503
831451ac
PZ
2504 /*
2505 * Only attribute actual wakeups done by this task.
2506 */
2507 if (!in_interrupt()) {
2508 struct sched_entity *se = &current->se;
2509 u64 sample = se->sum_exec_runtime;
2510
2511 if (se->last_wakeup)
2512 sample -= se->last_wakeup;
2513 else
2514 sample -= se->start_runtime;
2515 update_avg(&se->avg_wakeup, sample);
2516
2517 se->last_wakeup = se->sum_exec_runtime;
2518 }
2519
1da177e4 2520out_running:
468a15bb 2521 trace_sched_wakeup(rq, p, success);
15afe09b 2522 check_preempt_curr(rq, p, sync);
4ae7d5ce 2523
1da177e4 2524 p->state = TASK_RUNNING;
9a897c5a
SR
2525#ifdef CONFIG_SMP
2526 if (p->sched_class->task_wake_up)
2527 p->sched_class->task_wake_up(rq, p);
2528#endif
1da177e4
LT
2529out:
2530 task_rq_unlock(rq, &flags);
2531
2532 return success;
2533}
2534
50fa610a
DH
2535/**
2536 * wake_up_process - Wake up a specific process
2537 * @p: The process to be woken up.
2538 *
2539 * Attempt to wake up the nominated process and move it to the set of runnable
2540 * processes. Returns 1 if the process was woken up, 0 if it was already
2541 * running.
2542 *
2543 * It may be assumed that this function implies a write memory barrier before
2544 * changing the task state if and only if any tasks are woken up.
2545 */
7ad5b3a5 2546int wake_up_process(struct task_struct *p)
1da177e4 2547{
d9514f6c 2548 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2549}
1da177e4
LT
2550EXPORT_SYMBOL(wake_up_process);
2551
7ad5b3a5 2552int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2553{
2554 return try_to_wake_up(p, state, 0);
2555}
2556
1da177e4
LT
2557/*
2558 * Perform scheduler related setup for a newly forked process p.
2559 * p is forked by current.
dd41f596
IM
2560 *
2561 * __sched_fork() is basic setup used by init_idle() too:
2562 */
2563static void __sched_fork(struct task_struct *p)
2564{
dd41f596
IM
2565 p->se.exec_start = 0;
2566 p->se.sum_exec_runtime = 0;
f6cf891c 2567 p->se.prev_sum_exec_runtime = 0;
6c594c21 2568 p->se.nr_migrations = 0;
4ae7d5ce
IM
2569 p->se.last_wakeup = 0;
2570 p->se.avg_overlap = 0;
831451ac
PZ
2571 p->se.start_runtime = 0;
2572 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2573
2574#ifdef CONFIG_SCHEDSTATS
2575 p->se.wait_start = 0;
dd41f596
IM
2576 p->se.sum_sleep_runtime = 0;
2577 p->se.sleep_start = 0;
dd41f596
IM
2578 p->se.block_start = 0;
2579 p->se.sleep_max = 0;
2580 p->se.block_max = 0;
2581 p->se.exec_max = 0;
eba1ed4b 2582 p->se.slice_max = 0;
dd41f596 2583 p->se.wait_max = 0;
6cfb0d5d 2584#endif
476d139c 2585
fa717060 2586 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2587 p->se.on_rq = 0;
4a55bd5e 2588 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2589
e107be36
AK
2590#ifdef CONFIG_PREEMPT_NOTIFIERS
2591 INIT_HLIST_HEAD(&p->preempt_notifiers);
2592#endif
2593
1da177e4
LT
2594 /*
2595 * We mark the process as running here, but have not actually
2596 * inserted it onto the runqueue yet. This guarantees that
2597 * nobody will actually run it, and a signal or other external
2598 * event cannot wake it up and insert it on the runqueue either.
2599 */
2600 p->state = TASK_RUNNING;
dd41f596
IM
2601}
2602
2603/*
2604 * fork()/clone()-time setup:
2605 */
2606void sched_fork(struct task_struct *p, int clone_flags)
2607{
2608 int cpu = get_cpu();
2609
2610 __sched_fork(p);
2611
2612#ifdef CONFIG_SMP
2613 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2614#endif
02e4bac2 2615 set_task_cpu(p, cpu);
b29739f9
IM
2616
2617 /*
2618 * Make sure we do not leak PI boosting priority to the child:
2619 */
2620 p->prio = current->normal_prio;
2ddbf952
HS
2621 if (!rt_prio(p->prio))
2622 p->sched_class = &fair_sched_class;
b29739f9 2623
52f17b6c 2624#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2625 if (likely(sched_info_on()))
52f17b6c 2626 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2627#endif
d6077cb8 2628#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2629 p->oncpu = 0;
2630#endif
1da177e4 2631#ifdef CONFIG_PREEMPT
4866cde0 2632 /* Want to start with kernel preemption disabled. */
a1261f54 2633 task_thread_info(p)->preempt_count = 1;
1da177e4 2634#endif
917b627d
GH
2635 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2636
476d139c 2637 put_cpu();
1da177e4
LT
2638}
2639
2640/*
2641 * wake_up_new_task - wake up a newly created task for the first time.
2642 *
2643 * This function will do some initial scheduler statistics housekeeping
2644 * that must be done for every newly created context, then puts the task
2645 * on the runqueue and wakes it.
2646 */
7ad5b3a5 2647void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2648{
2649 unsigned long flags;
dd41f596 2650 struct rq *rq;
1da177e4
LT
2651
2652 rq = task_rq_lock(p, &flags);
147cbb4b 2653 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2654 update_rq_clock(rq);
1da177e4
LT
2655
2656 p->prio = effective_prio(p);
2657
b9dca1e0 2658 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2659 activate_task(rq, p, 0);
1da177e4 2660 } else {
1da177e4 2661 /*
dd41f596
IM
2662 * Let the scheduling class do new task startup
2663 * management (if any):
1da177e4 2664 */
ee0827d8 2665 p->sched_class->task_new(rq, p);
c09595f6 2666 inc_nr_running(rq);
1da177e4 2667 }
c71dd42d 2668 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2669 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2670#ifdef CONFIG_SMP
2671 if (p->sched_class->task_wake_up)
2672 p->sched_class->task_wake_up(rq, p);
2673#endif
dd41f596 2674 task_rq_unlock(rq, &flags);
1da177e4
LT
2675}
2676
e107be36
AK
2677#ifdef CONFIG_PREEMPT_NOTIFIERS
2678
2679/**
80dd99b3 2680 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2681 * @notifier: notifier struct to register
e107be36
AK
2682 */
2683void preempt_notifier_register(struct preempt_notifier *notifier)
2684{
2685 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2686}
2687EXPORT_SYMBOL_GPL(preempt_notifier_register);
2688
2689/**
2690 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2691 * @notifier: notifier struct to unregister
e107be36
AK
2692 *
2693 * This is safe to call from within a preemption notifier.
2694 */
2695void preempt_notifier_unregister(struct preempt_notifier *notifier)
2696{
2697 hlist_del(&notifier->link);
2698}
2699EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2700
2701static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2702{
2703 struct preempt_notifier *notifier;
2704 struct hlist_node *node;
2705
2706 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2707 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2708}
2709
2710static void
2711fire_sched_out_preempt_notifiers(struct task_struct *curr,
2712 struct task_struct *next)
2713{
2714 struct preempt_notifier *notifier;
2715 struct hlist_node *node;
2716
2717 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2718 notifier->ops->sched_out(notifier, next);
2719}
2720
6d6bc0ad 2721#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2722
2723static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2724{
2725}
2726
2727static void
2728fire_sched_out_preempt_notifiers(struct task_struct *curr,
2729 struct task_struct *next)
2730{
2731}
2732
6d6bc0ad 2733#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2734
4866cde0
NP
2735/**
2736 * prepare_task_switch - prepare to switch tasks
2737 * @rq: the runqueue preparing to switch
421cee29 2738 * @prev: the current task that is being switched out
4866cde0
NP
2739 * @next: the task we are going to switch to.
2740 *
2741 * This is called with the rq lock held and interrupts off. It must
2742 * be paired with a subsequent finish_task_switch after the context
2743 * switch.
2744 *
2745 * prepare_task_switch sets up locking and calls architecture specific
2746 * hooks.
2747 */
e107be36
AK
2748static inline void
2749prepare_task_switch(struct rq *rq, struct task_struct *prev,
2750 struct task_struct *next)
4866cde0 2751{
e107be36 2752 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2753 prepare_lock_switch(rq, next);
2754 prepare_arch_switch(next);
2755}
2756
1da177e4
LT
2757/**
2758 * finish_task_switch - clean up after a task-switch
344babaa 2759 * @rq: runqueue associated with task-switch
1da177e4
LT
2760 * @prev: the thread we just switched away from.
2761 *
4866cde0
NP
2762 * finish_task_switch must be called after the context switch, paired
2763 * with a prepare_task_switch call before the context switch.
2764 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2765 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2766 *
2767 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2768 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2769 * with the lock held can cause deadlocks; see schedule() for
2770 * details.)
2771 */
a9957449 2772static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2773 __releases(rq->lock)
2774{
1da177e4 2775 struct mm_struct *mm = rq->prev_mm;
55a101f8 2776 long prev_state;
967fc046
GH
2777#ifdef CONFIG_SMP
2778 int post_schedule = 0;
2779
2780 if (current->sched_class->needs_post_schedule)
2781 post_schedule = current->sched_class->needs_post_schedule(rq);
2782#endif
1da177e4
LT
2783
2784 rq->prev_mm = NULL;
2785
2786 /*
2787 * A task struct has one reference for the use as "current".
c394cc9f 2788 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2789 * schedule one last time. The schedule call will never return, and
2790 * the scheduled task must drop that reference.
c394cc9f 2791 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2792 * still held, otherwise prev could be scheduled on another cpu, die
2793 * there before we look at prev->state, and then the reference would
2794 * be dropped twice.
2795 * Manfred Spraul <manfred@colorfullife.com>
2796 */
55a101f8 2797 prev_state = prev->state;
4866cde0 2798 finish_arch_switch(prev);
0793a61d 2799 perf_counter_task_sched_in(current, cpu_of(rq));
4866cde0 2800 finish_lock_switch(rq, prev);
9a897c5a 2801#ifdef CONFIG_SMP
967fc046 2802 if (post_schedule)
9a897c5a
SR
2803 current->sched_class->post_schedule(rq);
2804#endif
e8fa1362 2805
e107be36 2806 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2807 if (mm)
2808 mmdrop(mm);
c394cc9f 2809 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2810 /*
2811 * Remove function-return probe instances associated with this
2812 * task and put them back on the free list.
9761eea8 2813 */
c6fd91f0 2814 kprobe_flush_task(prev);
1da177e4 2815 put_task_struct(prev);
c6fd91f0 2816 }
1da177e4
LT
2817}
2818
2819/**
2820 * schedule_tail - first thing a freshly forked thread must call.
2821 * @prev: the thread we just switched away from.
2822 */
36c8b586 2823asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2824 __releases(rq->lock)
2825{
70b97a7f
IM
2826 struct rq *rq = this_rq();
2827
4866cde0
NP
2828 finish_task_switch(rq, prev);
2829#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2830 /* In this case, finish_task_switch does not reenable preemption */
2831 preempt_enable();
2832#endif
1da177e4 2833 if (current->set_child_tid)
b488893a 2834 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2835}
2836
2837/*
2838 * context_switch - switch to the new MM and the new
2839 * thread's register state.
2840 */
dd41f596 2841static inline void
70b97a7f 2842context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2843 struct task_struct *next)
1da177e4 2844{
dd41f596 2845 struct mm_struct *mm, *oldmm;
1da177e4 2846
e107be36 2847 prepare_task_switch(rq, prev, next);
0a16b607 2848 trace_sched_switch(rq, prev, next);
dd41f596
IM
2849 mm = next->mm;
2850 oldmm = prev->active_mm;
9226d125
ZA
2851 /*
2852 * For paravirt, this is coupled with an exit in switch_to to
2853 * combine the page table reload and the switch backend into
2854 * one hypercall.
2855 */
224101ed 2856 arch_start_context_switch(prev);
9226d125 2857
dd41f596 2858 if (unlikely(!mm)) {
1da177e4
LT
2859 next->active_mm = oldmm;
2860 atomic_inc(&oldmm->mm_count);
2861 enter_lazy_tlb(oldmm, next);
2862 } else
2863 switch_mm(oldmm, mm, next);
2864
dd41f596 2865 if (unlikely(!prev->mm)) {
1da177e4 2866 prev->active_mm = NULL;
1da177e4
LT
2867 rq->prev_mm = oldmm;
2868 }
3a5f5e48
IM
2869 /*
2870 * Since the runqueue lock will be released by the next
2871 * task (which is an invalid locking op but in the case
2872 * of the scheduler it's an obvious special-case), so we
2873 * do an early lockdep release here:
2874 */
2875#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2876 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2877#endif
1da177e4
LT
2878
2879 /* Here we just switch the register state and the stack. */
2880 switch_to(prev, next, prev);
2881
dd41f596
IM
2882 barrier();
2883 /*
2884 * this_rq must be evaluated again because prev may have moved
2885 * CPUs since it called schedule(), thus the 'rq' on its stack
2886 * frame will be invalid.
2887 */
2888 finish_task_switch(this_rq(), prev);
1da177e4
LT
2889}
2890
2891/*
2892 * nr_running, nr_uninterruptible and nr_context_switches:
2893 *
2894 * externally visible scheduler statistics: current number of runnable
2895 * threads, current number of uninterruptible-sleeping threads, total
2896 * number of context switches performed since bootup.
2897 */
2898unsigned long nr_running(void)
2899{
2900 unsigned long i, sum = 0;
2901
2902 for_each_online_cpu(i)
2903 sum += cpu_rq(i)->nr_running;
2904
2905 return sum;
2906}
2907
2908unsigned long nr_uninterruptible(void)
2909{
2910 unsigned long i, sum = 0;
2911
0a945022 2912 for_each_possible_cpu(i)
1da177e4
LT
2913 sum += cpu_rq(i)->nr_uninterruptible;
2914
2915 /*
2916 * Since we read the counters lockless, it might be slightly
2917 * inaccurate. Do not allow it to go below zero though:
2918 */
2919 if (unlikely((long)sum < 0))
2920 sum = 0;
2921
2922 return sum;
2923}
2924
2925unsigned long long nr_context_switches(void)
2926{
cc94abfc
SR
2927 int i;
2928 unsigned long long sum = 0;
1da177e4 2929
0a945022 2930 for_each_possible_cpu(i)
1da177e4
LT
2931 sum += cpu_rq(i)->nr_switches;
2932
2933 return sum;
2934}
2935
2936unsigned long nr_iowait(void)
2937{
2938 unsigned long i, sum = 0;
2939
0a945022 2940 for_each_possible_cpu(i)
1da177e4
LT
2941 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2942
2943 return sum;
2944}
2945
dce48a84
TG
2946/* Variables and functions for calc_load */
2947static atomic_long_t calc_load_tasks;
2948static unsigned long calc_load_update;
2949unsigned long avenrun[3];
2950EXPORT_SYMBOL(avenrun);
2951
2d02494f
TG
2952/**
2953 * get_avenrun - get the load average array
2954 * @loads: pointer to dest load array
2955 * @offset: offset to add
2956 * @shift: shift count to shift the result left
2957 *
2958 * These values are estimates at best, so no need for locking.
2959 */
2960void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2961{
2962 loads[0] = (avenrun[0] + offset) << shift;
2963 loads[1] = (avenrun[1] + offset) << shift;
2964 loads[2] = (avenrun[2] + offset) << shift;
2965}
2966
dce48a84
TG
2967static unsigned long
2968calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2969{
dce48a84
TG
2970 load *= exp;
2971 load += active * (FIXED_1 - exp);
2972 return load >> FSHIFT;
2973}
db1b1fef 2974
dce48a84
TG
2975/*
2976 * calc_load - update the avenrun load estimates 10 ticks after the
2977 * CPUs have updated calc_load_tasks.
2978 */
2979void calc_global_load(void)
2980{
2981 unsigned long upd = calc_load_update + 10;
2982 long active;
2983
2984 if (time_before(jiffies, upd))
2985 return;
db1b1fef 2986
dce48a84
TG
2987 active = atomic_long_read(&calc_load_tasks);
2988 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 2989
dce48a84
TG
2990 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2991 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2992 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2993
2994 calc_load_update += LOAD_FREQ;
2995}
2996
2997/*
2998 * Either called from update_cpu_load() or from a cpu going idle
2999 */
3000static void calc_load_account_active(struct rq *this_rq)
3001{
3002 long nr_active, delta;
3003
3004 nr_active = this_rq->nr_running;
3005 nr_active += (long) this_rq->nr_uninterruptible;
3006
3007 if (nr_active != this_rq->calc_load_active) {
3008 delta = nr_active - this_rq->calc_load_active;
3009 this_rq->calc_load_active = nr_active;
3010 atomic_long_add(delta, &calc_load_tasks);
3011 }
db1b1fef
JS
3012}
3013
23a185ca
PM
3014/*
3015 * Externally visible per-cpu scheduler statistics:
23a185ca
PM
3016 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3017 */
23a185ca
PM
3018u64 cpu_nr_migrations(int cpu)
3019{
3020 return cpu_rq(cpu)->nr_migrations_in;
3021}
3022
48f24c4d 3023/*
dd41f596
IM
3024 * Update rq->cpu_load[] statistics. This function is usually called every
3025 * scheduler tick (TICK_NSEC).
48f24c4d 3026 */
dd41f596 3027static void update_cpu_load(struct rq *this_rq)
48f24c4d 3028{
495eca49 3029 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3030 int i, scale;
3031
3032 this_rq->nr_load_updates++;
dd41f596
IM
3033
3034 /* Update our load: */
3035 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3036 unsigned long old_load, new_load;
3037
3038 /* scale is effectively 1 << i now, and >> i divides by scale */
3039
3040 old_load = this_rq->cpu_load[i];
3041 new_load = this_load;
a25707f3
IM
3042 /*
3043 * Round up the averaging division if load is increasing. This
3044 * prevents us from getting stuck on 9 if the load is 10, for
3045 * example.
3046 */
3047 if (new_load > old_load)
3048 new_load += scale-1;
dd41f596
IM
3049 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3050 }
dce48a84
TG
3051
3052 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3053 this_rq->calc_load_update += LOAD_FREQ;
3054 calc_load_account_active(this_rq);
3055 }
48f24c4d
IM
3056}
3057
dd41f596
IM
3058#ifdef CONFIG_SMP
3059
1da177e4
LT
3060/*
3061 * double_rq_lock - safely lock two runqueues
3062 *
3063 * Note this does not disable interrupts like task_rq_lock,
3064 * you need to do so manually before calling.
3065 */
70b97a7f 3066static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3067 __acquires(rq1->lock)
3068 __acquires(rq2->lock)
3069{
054b9108 3070 BUG_ON(!irqs_disabled());
1da177e4
LT
3071 if (rq1 == rq2) {
3072 spin_lock(&rq1->lock);
3073 __acquire(rq2->lock); /* Fake it out ;) */
3074 } else {
c96d145e 3075 if (rq1 < rq2) {
1da177e4 3076 spin_lock(&rq1->lock);
5e710e37 3077 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3078 } else {
3079 spin_lock(&rq2->lock);
5e710e37 3080 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3081 }
3082 }
6e82a3be
IM
3083 update_rq_clock(rq1);
3084 update_rq_clock(rq2);
1da177e4
LT
3085}
3086
3087/*
3088 * double_rq_unlock - safely unlock two runqueues
3089 *
3090 * Note this does not restore interrupts like task_rq_unlock,
3091 * you need to do so manually after calling.
3092 */
70b97a7f 3093static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3094 __releases(rq1->lock)
3095 __releases(rq2->lock)
3096{
3097 spin_unlock(&rq1->lock);
3098 if (rq1 != rq2)
3099 spin_unlock(&rq2->lock);
3100 else
3101 __release(rq2->lock);
3102}
3103
1da177e4
LT
3104/*
3105 * If dest_cpu is allowed for this process, migrate the task to it.
3106 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3107 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3108 * the cpu_allowed mask is restored.
3109 */
36c8b586 3110static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3111{
70b97a7f 3112 struct migration_req req;
1da177e4 3113 unsigned long flags;
70b97a7f 3114 struct rq *rq;
1da177e4
LT
3115
3116 rq = task_rq_lock(p, &flags);
96f874e2 3117 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3118 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3119 goto out;
3120
3121 /* force the process onto the specified CPU */
3122 if (migrate_task(p, dest_cpu, &req)) {
3123 /* Need to wait for migration thread (might exit: take ref). */
3124 struct task_struct *mt = rq->migration_thread;
36c8b586 3125
1da177e4
LT
3126 get_task_struct(mt);
3127 task_rq_unlock(rq, &flags);
3128 wake_up_process(mt);
3129 put_task_struct(mt);
3130 wait_for_completion(&req.done);
36c8b586 3131
1da177e4
LT
3132 return;
3133 }
3134out:
3135 task_rq_unlock(rq, &flags);
3136}
3137
3138/*
476d139c
NP
3139 * sched_exec - execve() is a valuable balancing opportunity, because at
3140 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3141 */
3142void sched_exec(void)
3143{
1da177e4 3144 int new_cpu, this_cpu = get_cpu();
476d139c 3145 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 3146 put_cpu();
476d139c
NP
3147 if (new_cpu != this_cpu)
3148 sched_migrate_task(current, new_cpu);
1da177e4
LT
3149}
3150
3151/*
3152 * pull_task - move a task from a remote runqueue to the local runqueue.
3153 * Both runqueues must be locked.
3154 */
dd41f596
IM
3155static void pull_task(struct rq *src_rq, struct task_struct *p,
3156 struct rq *this_rq, int this_cpu)
1da177e4 3157{
2e1cb74a 3158 deactivate_task(src_rq, p, 0);
1da177e4 3159 set_task_cpu(p, this_cpu);
dd41f596 3160 activate_task(this_rq, p, 0);
1da177e4
LT
3161 /*
3162 * Note that idle threads have a prio of MAX_PRIO, for this test
3163 * to be always true for them.
3164 */
15afe09b 3165 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3166}
3167
3168/*
3169 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3170 */
858119e1 3171static
70b97a7f 3172int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3173 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3174 int *all_pinned)
1da177e4 3175{
708dc512 3176 int tsk_cache_hot = 0;
1da177e4
LT
3177 /*
3178 * We do not migrate tasks that are:
3179 * 1) running (obviously), or
3180 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3181 * 3) are cache-hot on their current CPU.
3182 */
96f874e2 3183 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3184 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3185 return 0;
cc367732 3186 }
81026794
NP
3187 *all_pinned = 0;
3188
cc367732
IM
3189 if (task_running(rq, p)) {
3190 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3191 return 0;
cc367732 3192 }
1da177e4 3193
da84d961
IM
3194 /*
3195 * Aggressive migration if:
3196 * 1) task is cache cold, or
3197 * 2) too many balance attempts have failed.
3198 */
3199
708dc512
LH
3200 tsk_cache_hot = task_hot(p, rq->clock, sd);
3201 if (!tsk_cache_hot ||
3202 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3203#ifdef CONFIG_SCHEDSTATS
708dc512 3204 if (tsk_cache_hot) {
da84d961 3205 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3206 schedstat_inc(p, se.nr_forced_migrations);
3207 }
da84d961
IM
3208#endif
3209 return 1;
3210 }
3211
708dc512 3212 if (tsk_cache_hot) {
cc367732 3213 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3214 return 0;
cc367732 3215 }
1da177e4
LT
3216 return 1;
3217}
3218
e1d1484f
PW
3219static unsigned long
3220balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3221 unsigned long max_load_move, struct sched_domain *sd,
3222 enum cpu_idle_type idle, int *all_pinned,
3223 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3224{
051c6764 3225 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3226 struct task_struct *p;
3227 long rem_load_move = max_load_move;
1da177e4 3228
e1d1484f 3229 if (max_load_move == 0)
1da177e4
LT
3230 goto out;
3231
81026794
NP
3232 pinned = 1;
3233
1da177e4 3234 /*
dd41f596 3235 * Start the load-balancing iterator:
1da177e4 3236 */
dd41f596
IM
3237 p = iterator->start(iterator->arg);
3238next:
b82d9fdd 3239 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3240 goto out;
051c6764
PZ
3241
3242 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3243 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3244 p = iterator->next(iterator->arg);
3245 goto next;
1da177e4
LT
3246 }
3247
dd41f596 3248 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3249 pulled++;
dd41f596 3250 rem_load_move -= p->se.load.weight;
1da177e4 3251
7e96fa58
GH
3252#ifdef CONFIG_PREEMPT
3253 /*
3254 * NEWIDLE balancing is a source of latency, so preemptible kernels
3255 * will stop after the first task is pulled to minimize the critical
3256 * section.
3257 */
3258 if (idle == CPU_NEWLY_IDLE)
3259 goto out;
3260#endif
3261
2dd73a4f 3262 /*
b82d9fdd 3263 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3264 */
e1d1484f 3265 if (rem_load_move > 0) {
a4ac01c3
PW
3266 if (p->prio < *this_best_prio)
3267 *this_best_prio = p->prio;
dd41f596
IM
3268 p = iterator->next(iterator->arg);
3269 goto next;
1da177e4
LT
3270 }
3271out:
3272 /*
e1d1484f 3273 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3274 * so we can safely collect pull_task() stats here rather than
3275 * inside pull_task().
3276 */
3277 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3278
3279 if (all_pinned)
3280 *all_pinned = pinned;
e1d1484f
PW
3281
3282 return max_load_move - rem_load_move;
1da177e4
LT
3283}
3284
dd41f596 3285/*
43010659
PW
3286 * move_tasks tries to move up to max_load_move weighted load from busiest to
3287 * this_rq, as part of a balancing operation within domain "sd".
3288 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3289 *
3290 * Called with both runqueues locked.
3291 */
3292static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3293 unsigned long max_load_move,
dd41f596
IM
3294 struct sched_domain *sd, enum cpu_idle_type idle,
3295 int *all_pinned)
3296{
5522d5d5 3297 const struct sched_class *class = sched_class_highest;
43010659 3298 unsigned long total_load_moved = 0;
a4ac01c3 3299 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3300
3301 do {
43010659
PW
3302 total_load_moved +=
3303 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3304 max_load_move - total_load_moved,
a4ac01c3 3305 sd, idle, all_pinned, &this_best_prio);
dd41f596 3306 class = class->next;
c4acb2c0 3307
7e96fa58
GH
3308#ifdef CONFIG_PREEMPT
3309 /*
3310 * NEWIDLE balancing is a source of latency, so preemptible
3311 * kernels will stop after the first task is pulled to minimize
3312 * the critical section.
3313 */
c4acb2c0
GH
3314 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3315 break;
7e96fa58 3316#endif
43010659 3317 } while (class && max_load_move > total_load_moved);
dd41f596 3318
43010659
PW
3319 return total_load_moved > 0;
3320}
3321
e1d1484f
PW
3322static int
3323iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3324 struct sched_domain *sd, enum cpu_idle_type idle,
3325 struct rq_iterator *iterator)
3326{
3327 struct task_struct *p = iterator->start(iterator->arg);
3328 int pinned = 0;
3329
3330 while (p) {
3331 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3332 pull_task(busiest, p, this_rq, this_cpu);
3333 /*
3334 * Right now, this is only the second place pull_task()
3335 * is called, so we can safely collect pull_task()
3336 * stats here rather than inside pull_task().
3337 */
3338 schedstat_inc(sd, lb_gained[idle]);
3339
3340 return 1;
3341 }
3342 p = iterator->next(iterator->arg);
3343 }
3344
3345 return 0;
3346}
3347
43010659
PW
3348/*
3349 * move_one_task tries to move exactly one task from busiest to this_rq, as
3350 * part of active balancing operations within "domain".
3351 * Returns 1 if successful and 0 otherwise.
3352 *
3353 * Called with both runqueues locked.
3354 */
3355static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3356 struct sched_domain *sd, enum cpu_idle_type idle)
3357{
5522d5d5 3358 const struct sched_class *class;
43010659
PW
3359
3360 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3361 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3362 return 1;
3363
3364 return 0;
dd41f596 3365}
67bb6c03 3366/********** Helpers for find_busiest_group ************************/
1da177e4 3367/*
222d656d
GS
3368 * sd_lb_stats - Structure to store the statistics of a sched_domain
3369 * during load balancing.
1da177e4 3370 */
222d656d
GS
3371struct sd_lb_stats {
3372 struct sched_group *busiest; /* Busiest group in this sd */
3373 struct sched_group *this; /* Local group in this sd */
3374 unsigned long total_load; /* Total load of all groups in sd */
3375 unsigned long total_pwr; /* Total power of all groups in sd */
3376 unsigned long avg_load; /* Average load across all groups in sd */
3377
3378 /** Statistics of this group */
3379 unsigned long this_load;
3380 unsigned long this_load_per_task;
3381 unsigned long this_nr_running;
3382
3383 /* Statistics of the busiest group */
3384 unsigned long max_load;
3385 unsigned long busiest_load_per_task;
3386 unsigned long busiest_nr_running;
3387
3388 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3389#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3390 int power_savings_balance; /* Is powersave balance needed for this sd */
3391 struct sched_group *group_min; /* Least loaded group in sd */
3392 struct sched_group *group_leader; /* Group which relieves group_min */
3393 unsigned long min_load_per_task; /* load_per_task in group_min */
3394 unsigned long leader_nr_running; /* Nr running of group_leader */
3395 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3396#endif
222d656d 3397};
1da177e4 3398
d5ac537e 3399/*
381be78f
GS
3400 * sg_lb_stats - stats of a sched_group required for load_balancing
3401 */
3402struct sg_lb_stats {
3403 unsigned long avg_load; /*Avg load across the CPUs of the group */
3404 unsigned long group_load; /* Total load over the CPUs of the group */
3405 unsigned long sum_nr_running; /* Nr tasks running in the group */
3406 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3407 unsigned long group_capacity;
3408 int group_imb; /* Is there an imbalance in the group ? */
3409};
408ed066 3410
67bb6c03
GS
3411/**
3412 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3413 * @group: The group whose first cpu is to be returned.
3414 */
3415static inline unsigned int group_first_cpu(struct sched_group *group)
3416{
3417 return cpumask_first(sched_group_cpus(group));
3418}
3419
3420/**
3421 * get_sd_load_idx - Obtain the load index for a given sched domain.
3422 * @sd: The sched_domain whose load_idx is to be obtained.
3423 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3424 */
3425static inline int get_sd_load_idx(struct sched_domain *sd,
3426 enum cpu_idle_type idle)
3427{
3428 int load_idx;
3429
3430 switch (idle) {
3431 case CPU_NOT_IDLE:
7897986b 3432 load_idx = sd->busy_idx;
67bb6c03
GS
3433 break;
3434
3435 case CPU_NEWLY_IDLE:
7897986b 3436 load_idx = sd->newidle_idx;
67bb6c03
GS
3437 break;
3438 default:
7897986b 3439 load_idx = sd->idle_idx;
67bb6c03
GS
3440 break;
3441 }
1da177e4 3442
67bb6c03
GS
3443 return load_idx;
3444}
1da177e4 3445
1da177e4 3446
c071df18
GS
3447#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3448/**
3449 * init_sd_power_savings_stats - Initialize power savings statistics for
3450 * the given sched_domain, during load balancing.
3451 *
3452 * @sd: Sched domain whose power-savings statistics are to be initialized.
3453 * @sds: Variable containing the statistics for sd.
3454 * @idle: Idle status of the CPU at which we're performing load-balancing.
3455 */
3456static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3457 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3458{
3459 /*
3460 * Busy processors will not participate in power savings
3461 * balance.
3462 */
3463 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3464 sds->power_savings_balance = 0;
3465 else {
3466 sds->power_savings_balance = 1;
3467 sds->min_nr_running = ULONG_MAX;
3468 sds->leader_nr_running = 0;
3469 }
3470}
783609c6 3471
c071df18
GS
3472/**
3473 * update_sd_power_savings_stats - Update the power saving stats for a
3474 * sched_domain while performing load balancing.
3475 *
3476 * @group: sched_group belonging to the sched_domain under consideration.
3477 * @sds: Variable containing the statistics of the sched_domain
3478 * @local_group: Does group contain the CPU for which we're performing
3479 * load balancing ?
3480 * @sgs: Variable containing the statistics of the group.
3481 */
3482static inline void update_sd_power_savings_stats(struct sched_group *group,
3483 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3484{
408ed066 3485
c071df18
GS
3486 if (!sds->power_savings_balance)
3487 return;
1da177e4 3488
c071df18
GS
3489 /*
3490 * If the local group is idle or completely loaded
3491 * no need to do power savings balance at this domain
3492 */
3493 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3494 !sds->this_nr_running))
3495 sds->power_savings_balance = 0;
2dd73a4f 3496
c071df18
GS
3497 /*
3498 * If a group is already running at full capacity or idle,
3499 * don't include that group in power savings calculations
3500 */
3501 if (!sds->power_savings_balance ||
3502 sgs->sum_nr_running >= sgs->group_capacity ||
3503 !sgs->sum_nr_running)
3504 return;
5969fe06 3505
c071df18
GS
3506 /*
3507 * Calculate the group which has the least non-idle load.
3508 * This is the group from where we need to pick up the load
3509 * for saving power
3510 */
3511 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3512 (sgs->sum_nr_running == sds->min_nr_running &&
3513 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3514 sds->group_min = group;
3515 sds->min_nr_running = sgs->sum_nr_running;
3516 sds->min_load_per_task = sgs->sum_weighted_load /
3517 sgs->sum_nr_running;
3518 }
783609c6 3519
c071df18
GS
3520 /*
3521 * Calculate the group which is almost near its
3522 * capacity but still has some space to pick up some load
3523 * from other group and save more power
3524 */
3525 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3526 return;
1da177e4 3527
c071df18
GS
3528 if (sgs->sum_nr_running > sds->leader_nr_running ||
3529 (sgs->sum_nr_running == sds->leader_nr_running &&
3530 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3531 sds->group_leader = group;
3532 sds->leader_nr_running = sgs->sum_nr_running;
3533 }
3534}
408ed066 3535
c071df18 3536/**
d5ac537e 3537 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3538 * @sds: Variable containing the statistics of the sched_domain
3539 * under consideration.
3540 * @this_cpu: Cpu at which we're currently performing load-balancing.
3541 * @imbalance: Variable to store the imbalance.
3542 *
d5ac537e
RD
3543 * Description:
3544 * Check if we have potential to perform some power-savings balance.
3545 * If yes, set the busiest group to be the least loaded group in the
3546 * sched_domain, so that it's CPUs can be put to idle.
3547 *
c071df18
GS
3548 * Returns 1 if there is potential to perform power-savings balance.
3549 * Else returns 0.
3550 */
3551static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3552 int this_cpu, unsigned long *imbalance)
3553{
3554 if (!sds->power_savings_balance)
3555 return 0;
1da177e4 3556
c071df18
GS
3557 if (sds->this != sds->group_leader ||
3558 sds->group_leader == sds->group_min)
3559 return 0;
783609c6 3560
c071df18
GS
3561 *imbalance = sds->min_load_per_task;
3562 sds->busiest = sds->group_min;
1da177e4 3563
c071df18
GS
3564 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3565 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3566 group_first_cpu(sds->group_leader);
3567 }
3568
3569 return 1;
1da177e4 3570
c071df18
GS
3571}
3572#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3573static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3574 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3575{
3576 return;
3577}
408ed066 3578
c071df18
GS
3579static inline void update_sd_power_savings_stats(struct sched_group *group,
3580 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3581{
3582 return;
3583}
3584
3585static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3586 int this_cpu, unsigned long *imbalance)
3587{
3588 return 0;
3589}
3590#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3591
3592
1f8c553d
GS
3593/**
3594 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3595 * @group: sched_group whose statistics are to be updated.
3596 * @this_cpu: Cpu for which load balance is currently performed.
3597 * @idle: Idle status of this_cpu
3598 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3599 * @sd_idle: Idle status of the sched_domain containing group.
3600 * @local_group: Does group contain this_cpu.
3601 * @cpus: Set of cpus considered for load balancing.
3602 * @balance: Should we balance.
3603 * @sgs: variable to hold the statistics for this group.
3604 */
3605static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3606 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3607 int local_group, const struct cpumask *cpus,
3608 int *balance, struct sg_lb_stats *sgs)
3609{
3610 unsigned long load, max_cpu_load, min_cpu_load;
3611 int i;
3612 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3613 unsigned long sum_avg_load_per_task;
3614 unsigned long avg_load_per_task;
3615
3616 if (local_group)
3617 balance_cpu = group_first_cpu(group);
3618
3619 /* Tally up the load of all CPUs in the group */
3620 sum_avg_load_per_task = avg_load_per_task = 0;
3621 max_cpu_load = 0;
3622 min_cpu_load = ~0UL;
408ed066 3623
1f8c553d
GS
3624 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3625 struct rq *rq = cpu_rq(i);
908a7c1b 3626
1f8c553d
GS
3627 if (*sd_idle && rq->nr_running)
3628 *sd_idle = 0;
5c45bf27 3629
1f8c553d 3630 /* Bias balancing toward cpus of our domain */
1da177e4 3631 if (local_group) {
1f8c553d
GS
3632 if (idle_cpu(i) && !first_idle_cpu) {
3633 first_idle_cpu = 1;
3634 balance_cpu = i;
3635 }
3636
3637 load = target_load(i, load_idx);
3638 } else {
3639 load = source_load(i, load_idx);
3640 if (load > max_cpu_load)
3641 max_cpu_load = load;
3642 if (min_cpu_load > load)
3643 min_cpu_load = load;
1da177e4 3644 }
5c45bf27 3645
1f8c553d
GS
3646 sgs->group_load += load;
3647 sgs->sum_nr_running += rq->nr_running;
3648 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3649
1f8c553d
GS
3650 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3651 }
5c45bf27 3652
1f8c553d
GS
3653 /*
3654 * First idle cpu or the first cpu(busiest) in this sched group
3655 * is eligible for doing load balancing at this and above
3656 * domains. In the newly idle case, we will allow all the cpu's
3657 * to do the newly idle load balance.
3658 */
3659 if (idle != CPU_NEWLY_IDLE && local_group &&
3660 balance_cpu != this_cpu && balance) {
3661 *balance = 0;
3662 return;
3663 }
5c45bf27 3664
1f8c553d
GS
3665 /* Adjust by relative CPU power of the group */
3666 sgs->avg_load = sg_div_cpu_power(group,
3667 sgs->group_load * SCHED_LOAD_SCALE);
5c45bf27 3668
1f8c553d
GS
3669
3670 /*
3671 * Consider the group unbalanced when the imbalance is larger
3672 * than the average weight of two tasks.
3673 *
3674 * APZ: with cgroup the avg task weight can vary wildly and
3675 * might not be a suitable number - should we keep a
3676 * normalized nr_running number somewhere that negates
3677 * the hierarchy?
3678 */
3679 avg_load_per_task = sg_div_cpu_power(group,
3680 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3681
3682 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3683 sgs->group_imb = 1;
3684
3685 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3686
3687}
dd41f596 3688
37abe198
GS
3689/**
3690 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3691 * @sd: sched_domain whose statistics are to be updated.
3692 * @this_cpu: Cpu for which load balance is currently performed.
3693 * @idle: Idle status of this_cpu
3694 * @sd_idle: Idle status of the sched_domain containing group.
3695 * @cpus: Set of cpus considered for load balancing.
3696 * @balance: Should we balance.
3697 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3698 */
37abe198
GS
3699static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3700 enum cpu_idle_type idle, int *sd_idle,
3701 const struct cpumask *cpus, int *balance,
3702 struct sd_lb_stats *sds)
1da177e4 3703{
222d656d 3704 struct sched_group *group = sd->groups;
37abe198 3705 struct sg_lb_stats sgs;
222d656d
GS
3706 int load_idx;
3707
c071df18 3708 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3709 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3710
3711 do {
1da177e4 3712 int local_group;
1da177e4 3713
758b2cdc
RR
3714 local_group = cpumask_test_cpu(this_cpu,
3715 sched_group_cpus(group));
381be78f 3716 memset(&sgs, 0, sizeof(sgs));
1f8c553d
GS
3717 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3718 local_group, cpus, balance, &sgs);
1da177e4 3719
37abe198
GS
3720 if (local_group && balance && !(*balance))
3721 return;
783609c6 3722
37abe198
GS
3723 sds->total_load += sgs.group_load;
3724 sds->total_pwr += group->__cpu_power;
1da177e4 3725
1da177e4 3726 if (local_group) {
37abe198
GS
3727 sds->this_load = sgs.avg_load;
3728 sds->this = group;
3729 sds->this_nr_running = sgs.sum_nr_running;
3730 sds->this_load_per_task = sgs.sum_weighted_load;
3731 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3732 (sgs.sum_nr_running > sgs.group_capacity ||
3733 sgs.group_imb)) {
37abe198
GS
3734 sds->max_load = sgs.avg_load;
3735 sds->busiest = group;
3736 sds->busiest_nr_running = sgs.sum_nr_running;
3737 sds->busiest_load_per_task = sgs.sum_weighted_load;
3738 sds->group_imb = sgs.group_imb;
48f24c4d 3739 }
5c45bf27 3740
c071df18 3741 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3742 group = group->next;
3743 } while (group != sd->groups);
3744
37abe198 3745}
1da177e4 3746
2e6f44ae
GS
3747/**
3748 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3749 * amongst the groups of a sched_domain, during
3750 * load balancing.
2e6f44ae
GS
3751 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3752 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3753 * @imbalance: Variable to store the imbalance.
3754 */
3755static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3756 int this_cpu, unsigned long *imbalance)
3757{
3758 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3759 unsigned int imbn = 2;
3760
3761 if (sds->this_nr_running) {
3762 sds->this_load_per_task /= sds->this_nr_running;
3763 if (sds->busiest_load_per_task >
3764 sds->this_load_per_task)
3765 imbn = 1;
3766 } else
3767 sds->this_load_per_task =
3768 cpu_avg_load_per_task(this_cpu);
1da177e4 3769
2e6f44ae
GS
3770 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3771 sds->busiest_load_per_task * imbn) {
3772 *imbalance = sds->busiest_load_per_task;
3773 return;
3774 }
908a7c1b 3775
1da177e4 3776 /*
2e6f44ae
GS
3777 * OK, we don't have enough imbalance to justify moving tasks,
3778 * however we may be able to increase total CPU power used by
3779 * moving them.
1da177e4 3780 */
2dd73a4f 3781
2e6f44ae
GS
3782 pwr_now += sds->busiest->__cpu_power *
3783 min(sds->busiest_load_per_task, sds->max_load);
3784 pwr_now += sds->this->__cpu_power *
3785 min(sds->this_load_per_task, sds->this_load);
3786 pwr_now /= SCHED_LOAD_SCALE;
3787
3788 /* Amount of load we'd subtract */
3789 tmp = sg_div_cpu_power(sds->busiest,
3790 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3791 if (sds->max_load > tmp)
3792 pwr_move += sds->busiest->__cpu_power *
3793 min(sds->busiest_load_per_task, sds->max_load - tmp);
3794
3795 /* Amount of load we'd add */
3796 if (sds->max_load * sds->busiest->__cpu_power <
3797 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3798 tmp = sg_div_cpu_power(sds->this,
3799 sds->max_load * sds->busiest->__cpu_power);
3800 else
3801 tmp = sg_div_cpu_power(sds->this,
3802 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3803 pwr_move += sds->this->__cpu_power *
3804 min(sds->this_load_per_task, sds->this_load + tmp);
3805 pwr_move /= SCHED_LOAD_SCALE;
3806
3807 /* Move if we gain throughput */
3808 if (pwr_move > pwr_now)
3809 *imbalance = sds->busiest_load_per_task;
3810}
dbc523a3
GS
3811
3812/**
3813 * calculate_imbalance - Calculate the amount of imbalance present within the
3814 * groups of a given sched_domain during load balance.
3815 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3816 * @this_cpu: Cpu for which currently load balance is being performed.
3817 * @imbalance: The variable to store the imbalance.
3818 */
3819static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3820 unsigned long *imbalance)
3821{
3822 unsigned long max_pull;
2dd73a4f
PW
3823 /*
3824 * In the presence of smp nice balancing, certain scenarios can have
3825 * max load less than avg load(as we skip the groups at or below
3826 * its cpu_power, while calculating max_load..)
3827 */
dbc523a3 3828 if (sds->max_load < sds->avg_load) {
2dd73a4f 3829 *imbalance = 0;
dbc523a3 3830 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3831 }
0c117f1b
SS
3832
3833 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3834 max_pull = min(sds->max_load - sds->avg_load,
3835 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3836
1da177e4 3837 /* How much load to actually move to equalise the imbalance */
dbc523a3
GS
3838 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3839 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
1da177e4
LT
3840 / SCHED_LOAD_SCALE;
3841
2dd73a4f
PW
3842 /*
3843 * if *imbalance is less than the average load per runnable task
3844 * there is no gaurantee that any tasks will be moved so we'll have
3845 * a think about bumping its value to force at least one task to be
3846 * moved
3847 */
dbc523a3
GS
3848 if (*imbalance < sds->busiest_load_per_task)
3849 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3850
dbc523a3 3851}
37abe198 3852/******* find_busiest_group() helpers end here *********************/
1da177e4 3853
b7bb4c9b
GS
3854/**
3855 * find_busiest_group - Returns the busiest group within the sched_domain
3856 * if there is an imbalance. If there isn't an imbalance, and
3857 * the user has opted for power-savings, it returns a group whose
3858 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3859 * such a group exists.
3860 *
3861 * Also calculates the amount of weighted load which should be moved
3862 * to restore balance.
3863 *
3864 * @sd: The sched_domain whose busiest group is to be returned.
3865 * @this_cpu: The cpu for which load balancing is currently being performed.
3866 * @imbalance: Variable which stores amount of weighted load which should
3867 * be moved to restore balance/put a group to idle.
3868 * @idle: The idle status of this_cpu.
3869 * @sd_idle: The idleness of sd
3870 * @cpus: The set of CPUs under consideration for load-balancing.
3871 * @balance: Pointer to a variable indicating if this_cpu
3872 * is the appropriate cpu to perform load balancing at this_level.
3873 *
3874 * Returns: - the busiest group if imbalance exists.
3875 * - If no imbalance and user has opted for power-savings balance,
3876 * return the least loaded group whose CPUs can be
3877 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3878 */
3879static struct sched_group *
3880find_busiest_group(struct sched_domain *sd, int this_cpu,
3881 unsigned long *imbalance, enum cpu_idle_type idle,
3882 int *sd_idle, const struct cpumask *cpus, int *balance)
3883{
3884 struct sd_lb_stats sds;
1da177e4 3885
37abe198 3886 memset(&sds, 0, sizeof(sds));
1da177e4 3887
37abe198
GS
3888 /*
3889 * Compute the various statistics relavent for load balancing at
3890 * this level.
3891 */
3892 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3893 balance, &sds);
3894
b7bb4c9b
GS
3895 /* Cases where imbalance does not exist from POV of this_cpu */
3896 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3897 * at this level.
3898 * 2) There is no busy sibling group to pull from.
3899 * 3) This group is the busiest group.
3900 * 4) This group is more busy than the avg busieness at this
3901 * sched_domain.
3902 * 5) The imbalance is within the specified limit.
3903 * 6) Any rebalance would lead to ping-pong
3904 */
37abe198
GS
3905 if (balance && !(*balance))
3906 goto ret;
1da177e4 3907
b7bb4c9b
GS
3908 if (!sds.busiest || sds.busiest_nr_running == 0)
3909 goto out_balanced;
1da177e4 3910
b7bb4c9b 3911 if (sds.this_load >= sds.max_load)
1da177e4 3912 goto out_balanced;
1da177e4 3913
222d656d 3914 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 3915
b7bb4c9b
GS
3916 if (sds.this_load >= sds.avg_load)
3917 goto out_balanced;
3918
3919 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
3920 goto out_balanced;
3921
222d656d
GS
3922 sds.busiest_load_per_task /= sds.busiest_nr_running;
3923 if (sds.group_imb)
3924 sds.busiest_load_per_task =
3925 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 3926
1da177e4
LT
3927 /*
3928 * We're trying to get all the cpus to the average_load, so we don't
3929 * want to push ourselves above the average load, nor do we wish to
3930 * reduce the max loaded cpu below the average load, as either of these
3931 * actions would just result in more rebalancing later, and ping-pong
3932 * tasks around. Thus we look for the minimum possible imbalance.
3933 * Negative imbalances (*we* are more loaded than anyone else) will
3934 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3935 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3936 * appear as very large values with unsigned longs.
3937 */
222d656d 3938 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
3939 goto out_balanced;
3940
dbc523a3
GS
3941 /* Looks like there is an imbalance. Compute it */
3942 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 3943 return sds.busiest;
1da177e4
LT
3944
3945out_balanced:
c071df18
GS
3946 /*
3947 * There is no obvious imbalance. But check if we can do some balancing
3948 * to save power.
3949 */
3950 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3951 return sds.busiest;
783609c6 3952ret:
1da177e4
LT
3953 *imbalance = 0;
3954 return NULL;
3955}
3956
3957/*
3958 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3959 */
70b97a7f 3960static struct rq *
d15bcfdb 3961find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 3962 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 3963{
70b97a7f 3964 struct rq *busiest = NULL, *rq;
2dd73a4f 3965 unsigned long max_load = 0;
1da177e4
LT
3966 int i;
3967
758b2cdc 3968 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 3969 unsigned long wl;
0a2966b4 3970
96f874e2 3971 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
3972 continue;
3973
48f24c4d 3974 rq = cpu_rq(i);
dd41f596 3975 wl = weighted_cpuload(i);
2dd73a4f 3976
dd41f596 3977 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3978 continue;
1da177e4 3979
dd41f596
IM
3980 if (wl > max_load) {
3981 max_load = wl;
48f24c4d 3982 busiest = rq;
1da177e4
LT
3983 }
3984 }
3985
3986 return busiest;
3987}
3988
77391d71
NP
3989/*
3990 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3991 * so long as it is large enough.
3992 */
3993#define MAX_PINNED_INTERVAL 512
3994
df7c8e84
RR
3995/* Working cpumask for load_balance and load_balance_newidle. */
3996static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3997
1da177e4
LT
3998/*
3999 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4000 * tasks if there is an imbalance.
1da177e4 4001 */
70b97a7f 4002static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4003 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4004 int *balance)
1da177e4 4005{
43010659 4006 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4007 struct sched_group *group;
1da177e4 4008 unsigned long imbalance;
70b97a7f 4009 struct rq *busiest;
fe2eea3f 4010 unsigned long flags;
df7c8e84 4011 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4012
96f874e2 4013 cpumask_setall(cpus);
7c16ec58 4014
89c4710e
SS
4015 /*
4016 * When power savings policy is enabled for the parent domain, idle
4017 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4018 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4019 * portraying it as CPU_NOT_IDLE.
89c4710e 4020 */
d15bcfdb 4021 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4022 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4023 sd_idle = 1;
1da177e4 4024
2d72376b 4025 schedstat_inc(sd, lb_count[idle]);
1da177e4 4026
0a2966b4 4027redo:
c8cba857 4028 update_shares(sd);
0a2966b4 4029 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4030 cpus, balance);
783609c6 4031
06066714 4032 if (*balance == 0)
783609c6 4033 goto out_balanced;
783609c6 4034
1da177e4
LT
4035 if (!group) {
4036 schedstat_inc(sd, lb_nobusyg[idle]);
4037 goto out_balanced;
4038 }
4039
7c16ec58 4040 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4041 if (!busiest) {
4042 schedstat_inc(sd, lb_nobusyq[idle]);
4043 goto out_balanced;
4044 }
4045
db935dbd 4046 BUG_ON(busiest == this_rq);
1da177e4
LT
4047
4048 schedstat_add(sd, lb_imbalance[idle], imbalance);
4049
43010659 4050 ld_moved = 0;
1da177e4
LT
4051 if (busiest->nr_running > 1) {
4052 /*
4053 * Attempt to move tasks. If find_busiest_group has found
4054 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4055 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4056 * correctly treated as an imbalance.
4057 */
fe2eea3f 4058 local_irq_save(flags);
e17224bf 4059 double_rq_lock(this_rq, busiest);
43010659 4060 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4061 imbalance, sd, idle, &all_pinned);
e17224bf 4062 double_rq_unlock(this_rq, busiest);
fe2eea3f 4063 local_irq_restore(flags);
81026794 4064
46cb4b7c
SS
4065 /*
4066 * some other cpu did the load balance for us.
4067 */
43010659 4068 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4069 resched_cpu(this_cpu);
4070
81026794 4071 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4072 if (unlikely(all_pinned)) {
96f874e2
RR
4073 cpumask_clear_cpu(cpu_of(busiest), cpus);
4074 if (!cpumask_empty(cpus))
0a2966b4 4075 goto redo;
81026794 4076 goto out_balanced;
0a2966b4 4077 }
1da177e4 4078 }
81026794 4079
43010659 4080 if (!ld_moved) {
1da177e4
LT
4081 schedstat_inc(sd, lb_failed[idle]);
4082 sd->nr_balance_failed++;
4083
4084 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4085
fe2eea3f 4086 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4087
4088 /* don't kick the migration_thread, if the curr
4089 * task on busiest cpu can't be moved to this_cpu
4090 */
96f874e2
RR
4091 if (!cpumask_test_cpu(this_cpu,
4092 &busiest->curr->cpus_allowed)) {
fe2eea3f 4093 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4094 all_pinned = 1;
4095 goto out_one_pinned;
4096 }
4097
1da177e4
LT
4098 if (!busiest->active_balance) {
4099 busiest->active_balance = 1;
4100 busiest->push_cpu = this_cpu;
81026794 4101 active_balance = 1;
1da177e4 4102 }
fe2eea3f 4103 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4104 if (active_balance)
1da177e4
LT
4105 wake_up_process(busiest->migration_thread);
4106
4107 /*
4108 * We've kicked active balancing, reset the failure
4109 * counter.
4110 */
39507451 4111 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4112 }
81026794 4113 } else
1da177e4
LT
4114 sd->nr_balance_failed = 0;
4115
81026794 4116 if (likely(!active_balance)) {
1da177e4
LT
4117 /* We were unbalanced, so reset the balancing interval */
4118 sd->balance_interval = sd->min_interval;
81026794
NP
4119 } else {
4120 /*
4121 * If we've begun active balancing, start to back off. This
4122 * case may not be covered by the all_pinned logic if there
4123 * is only 1 task on the busy runqueue (because we don't call
4124 * move_tasks).
4125 */
4126 if (sd->balance_interval < sd->max_interval)
4127 sd->balance_interval *= 2;
1da177e4
LT
4128 }
4129
43010659 4130 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4131 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4132 ld_moved = -1;
4133
4134 goto out;
1da177e4
LT
4135
4136out_balanced:
1da177e4
LT
4137 schedstat_inc(sd, lb_balanced[idle]);
4138
16cfb1c0 4139 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4140
4141out_one_pinned:
1da177e4 4142 /* tune up the balancing interval */
77391d71
NP
4143 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4144 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4145 sd->balance_interval *= 2;
4146
48f24c4d 4147 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4148 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4149 ld_moved = -1;
4150 else
4151 ld_moved = 0;
4152out:
c8cba857
PZ
4153 if (ld_moved)
4154 update_shares(sd);
c09595f6 4155 return ld_moved;
1da177e4
LT
4156}
4157
4158/*
4159 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4160 * tasks if there is an imbalance.
4161 *
d15bcfdb 4162 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4163 * this_rq is locked.
4164 */
48f24c4d 4165static int
df7c8e84 4166load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4167{
4168 struct sched_group *group;
70b97a7f 4169 struct rq *busiest = NULL;
1da177e4 4170 unsigned long imbalance;
43010659 4171 int ld_moved = 0;
5969fe06 4172 int sd_idle = 0;
969bb4e4 4173 int all_pinned = 0;
df7c8e84 4174 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4175
96f874e2 4176 cpumask_setall(cpus);
5969fe06 4177
89c4710e
SS
4178 /*
4179 * When power savings policy is enabled for the parent domain, idle
4180 * sibling can pick up load irrespective of busy siblings. In this case,
4181 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4182 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4183 */
4184 if (sd->flags & SD_SHARE_CPUPOWER &&
4185 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4186 sd_idle = 1;
1da177e4 4187
2d72376b 4188 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4189redo:
3e5459b4 4190 update_shares_locked(this_rq, sd);
d15bcfdb 4191 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4192 &sd_idle, cpus, NULL);
1da177e4 4193 if (!group) {
d15bcfdb 4194 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4195 goto out_balanced;
1da177e4
LT
4196 }
4197
7c16ec58 4198 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4199 if (!busiest) {
d15bcfdb 4200 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4201 goto out_balanced;
1da177e4
LT
4202 }
4203
db935dbd
NP
4204 BUG_ON(busiest == this_rq);
4205
d15bcfdb 4206 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4207
43010659 4208 ld_moved = 0;
d6d5cfaf
NP
4209 if (busiest->nr_running > 1) {
4210 /* Attempt to move tasks */
4211 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4212 /* this_rq->clock is already updated */
4213 update_rq_clock(busiest);
43010659 4214 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4215 imbalance, sd, CPU_NEWLY_IDLE,
4216 &all_pinned);
1b12bbc7 4217 double_unlock_balance(this_rq, busiest);
0a2966b4 4218
969bb4e4 4219 if (unlikely(all_pinned)) {
96f874e2
RR
4220 cpumask_clear_cpu(cpu_of(busiest), cpus);
4221 if (!cpumask_empty(cpus))
0a2966b4
CL
4222 goto redo;
4223 }
d6d5cfaf
NP
4224 }
4225
43010659 4226 if (!ld_moved) {
36dffab6 4227 int active_balance = 0;
ad273b32 4228
d15bcfdb 4229 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4230 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4231 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4232 return -1;
ad273b32
VS
4233
4234 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4235 return -1;
4236
4237 if (sd->nr_balance_failed++ < 2)
4238 return -1;
4239
4240 /*
4241 * The only task running in a non-idle cpu can be moved to this
4242 * cpu in an attempt to completely freeup the other CPU
4243 * package. The same method used to move task in load_balance()
4244 * have been extended for load_balance_newidle() to speedup
4245 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4246 *
4247 * The package power saving logic comes from
4248 * find_busiest_group(). If there are no imbalance, then
4249 * f_b_g() will return NULL. However when sched_mc={1,2} then
4250 * f_b_g() will select a group from which a running task may be
4251 * pulled to this cpu in order to make the other package idle.
4252 * If there is no opportunity to make a package idle and if
4253 * there are no imbalance, then f_b_g() will return NULL and no
4254 * action will be taken in load_balance_newidle().
4255 *
4256 * Under normal task pull operation due to imbalance, there
4257 * will be more than one task in the source run queue and
4258 * move_tasks() will succeed. ld_moved will be true and this
4259 * active balance code will not be triggered.
4260 */
4261
4262 /* Lock busiest in correct order while this_rq is held */
4263 double_lock_balance(this_rq, busiest);
4264
4265 /*
4266 * don't kick the migration_thread, if the curr
4267 * task on busiest cpu can't be moved to this_cpu
4268 */
6ca09dfc 4269 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4270 double_unlock_balance(this_rq, busiest);
4271 all_pinned = 1;
4272 return ld_moved;
4273 }
4274
4275 if (!busiest->active_balance) {
4276 busiest->active_balance = 1;
4277 busiest->push_cpu = this_cpu;
4278 active_balance = 1;
4279 }
4280
4281 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4282 /*
4283 * Should not call ttwu while holding a rq->lock
4284 */
4285 spin_unlock(&this_rq->lock);
ad273b32
VS
4286 if (active_balance)
4287 wake_up_process(busiest->migration_thread);
da8d5089 4288 spin_lock(&this_rq->lock);
ad273b32 4289
5969fe06 4290 } else
16cfb1c0 4291 sd->nr_balance_failed = 0;
1da177e4 4292
3e5459b4 4293 update_shares_locked(this_rq, sd);
43010659 4294 return ld_moved;
16cfb1c0
NP
4295
4296out_balanced:
d15bcfdb 4297 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4298 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4299 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4300 return -1;
16cfb1c0 4301 sd->nr_balance_failed = 0;
48f24c4d 4302
16cfb1c0 4303 return 0;
1da177e4
LT
4304}
4305
4306/*
4307 * idle_balance is called by schedule() if this_cpu is about to become
4308 * idle. Attempts to pull tasks from other CPUs.
4309 */
70b97a7f 4310static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4311{
4312 struct sched_domain *sd;
efbe027e 4313 int pulled_task = 0;
dd41f596 4314 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
4315
4316 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4317 unsigned long interval;
4318
4319 if (!(sd->flags & SD_LOAD_BALANCE))
4320 continue;
4321
4322 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4323 /* If we've pulled tasks over stop searching: */
7c16ec58 4324 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4325 sd);
92c4ca5c
CL
4326
4327 interval = msecs_to_jiffies(sd->balance_interval);
4328 if (time_after(next_balance, sd->last_balance + interval))
4329 next_balance = sd->last_balance + interval;
4330 if (pulled_task)
4331 break;
1da177e4 4332 }
dd41f596 4333 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4334 /*
4335 * We are going idle. next_balance may be set based on
4336 * a busy processor. So reset next_balance.
4337 */
4338 this_rq->next_balance = next_balance;
dd41f596 4339 }
1da177e4
LT
4340}
4341
4342/*
4343 * active_load_balance is run by migration threads. It pushes running tasks
4344 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4345 * running on each physical CPU where possible, and avoids physical /
4346 * logical imbalances.
4347 *
4348 * Called with busiest_rq locked.
4349 */
70b97a7f 4350static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4351{
39507451 4352 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4353 struct sched_domain *sd;
4354 struct rq *target_rq;
39507451 4355
48f24c4d 4356 /* Is there any task to move? */
39507451 4357 if (busiest_rq->nr_running <= 1)
39507451
NP
4358 return;
4359
4360 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4361
4362 /*
39507451 4363 * This condition is "impossible", if it occurs
41a2d6cf 4364 * we need to fix it. Originally reported by
39507451 4365 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4366 */
39507451 4367 BUG_ON(busiest_rq == target_rq);
1da177e4 4368
39507451
NP
4369 /* move a task from busiest_rq to target_rq */
4370 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4371 update_rq_clock(busiest_rq);
4372 update_rq_clock(target_rq);
39507451
NP
4373
4374 /* Search for an sd spanning us and the target CPU. */
c96d145e 4375 for_each_domain(target_cpu, sd) {
39507451 4376 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4377 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4378 break;
c96d145e 4379 }
39507451 4380
48f24c4d 4381 if (likely(sd)) {
2d72376b 4382 schedstat_inc(sd, alb_count);
39507451 4383
43010659
PW
4384 if (move_one_task(target_rq, target_cpu, busiest_rq,
4385 sd, CPU_IDLE))
48f24c4d
IM
4386 schedstat_inc(sd, alb_pushed);
4387 else
4388 schedstat_inc(sd, alb_failed);
4389 }
1b12bbc7 4390 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4391}
4392
46cb4b7c
SS
4393#ifdef CONFIG_NO_HZ
4394static struct {
4395 atomic_t load_balancer;
7d1e6a9b 4396 cpumask_var_t cpu_mask;
f711f609 4397 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4398} nohz ____cacheline_aligned = {
4399 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4400};
4401
eea08f32
AB
4402int get_nohz_load_balancer(void)
4403{
4404 return atomic_read(&nohz.load_balancer);
4405}
4406
f711f609
GS
4407#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4408/**
4409 * lowest_flag_domain - Return lowest sched_domain containing flag.
4410 * @cpu: The cpu whose lowest level of sched domain is to
4411 * be returned.
4412 * @flag: The flag to check for the lowest sched_domain
4413 * for the given cpu.
4414 *
4415 * Returns the lowest sched_domain of a cpu which contains the given flag.
4416 */
4417static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4418{
4419 struct sched_domain *sd;
4420
4421 for_each_domain(cpu, sd)
4422 if (sd && (sd->flags & flag))
4423 break;
4424
4425 return sd;
4426}
4427
4428/**
4429 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4430 * @cpu: The cpu whose domains we're iterating over.
4431 * @sd: variable holding the value of the power_savings_sd
4432 * for cpu.
4433 * @flag: The flag to filter the sched_domains to be iterated.
4434 *
4435 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4436 * set, starting from the lowest sched_domain to the highest.
4437 */
4438#define for_each_flag_domain(cpu, sd, flag) \
4439 for (sd = lowest_flag_domain(cpu, flag); \
4440 (sd && (sd->flags & flag)); sd = sd->parent)
4441
4442/**
4443 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4444 * @ilb_group: group to be checked for semi-idleness
4445 *
4446 * Returns: 1 if the group is semi-idle. 0 otherwise.
4447 *
4448 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4449 * and atleast one non-idle CPU. This helper function checks if the given
4450 * sched_group is semi-idle or not.
4451 */
4452static inline int is_semi_idle_group(struct sched_group *ilb_group)
4453{
4454 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4455 sched_group_cpus(ilb_group));
4456
4457 /*
4458 * A sched_group is semi-idle when it has atleast one busy cpu
4459 * and atleast one idle cpu.
4460 */
4461 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4462 return 0;
4463
4464 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4465 return 0;
4466
4467 return 1;
4468}
4469/**
4470 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4471 * @cpu: The cpu which is nominating a new idle_load_balancer.
4472 *
4473 * Returns: Returns the id of the idle load balancer if it exists,
4474 * Else, returns >= nr_cpu_ids.
4475 *
4476 * This algorithm picks the idle load balancer such that it belongs to a
4477 * semi-idle powersavings sched_domain. The idea is to try and avoid
4478 * completely idle packages/cores just for the purpose of idle load balancing
4479 * when there are other idle cpu's which are better suited for that job.
4480 */
4481static int find_new_ilb(int cpu)
4482{
4483 struct sched_domain *sd;
4484 struct sched_group *ilb_group;
4485
4486 /*
4487 * Have idle load balancer selection from semi-idle packages only
4488 * when power-aware load balancing is enabled
4489 */
4490 if (!(sched_smt_power_savings || sched_mc_power_savings))
4491 goto out_done;
4492
4493 /*
4494 * Optimize for the case when we have no idle CPUs or only one
4495 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4496 */
4497 if (cpumask_weight(nohz.cpu_mask) < 2)
4498 goto out_done;
4499
4500 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4501 ilb_group = sd->groups;
4502
4503 do {
4504 if (is_semi_idle_group(ilb_group))
4505 return cpumask_first(nohz.ilb_grp_nohz_mask);
4506
4507 ilb_group = ilb_group->next;
4508
4509 } while (ilb_group != sd->groups);
4510 }
4511
4512out_done:
4513 return cpumask_first(nohz.cpu_mask);
4514}
4515#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4516static inline int find_new_ilb(int call_cpu)
4517{
6e29ec57 4518 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4519}
4520#endif
4521
7835b98b 4522/*
46cb4b7c
SS
4523 * This routine will try to nominate the ilb (idle load balancing)
4524 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4525 * load balancing on behalf of all those cpus. If all the cpus in the system
4526 * go into this tickless mode, then there will be no ilb owner (as there is
4527 * no need for one) and all the cpus will sleep till the next wakeup event
4528 * arrives...
4529 *
4530 * For the ilb owner, tick is not stopped. And this tick will be used
4531 * for idle load balancing. ilb owner will still be part of
4532 * nohz.cpu_mask..
7835b98b 4533 *
46cb4b7c
SS
4534 * While stopping the tick, this cpu will become the ilb owner if there
4535 * is no other owner. And will be the owner till that cpu becomes busy
4536 * or if all cpus in the system stop their ticks at which point
4537 * there is no need for ilb owner.
4538 *
4539 * When the ilb owner becomes busy, it nominates another owner, during the
4540 * next busy scheduler_tick()
4541 */
4542int select_nohz_load_balancer(int stop_tick)
4543{
4544 int cpu = smp_processor_id();
4545
4546 if (stop_tick) {
46cb4b7c
SS
4547 cpu_rq(cpu)->in_nohz_recently = 1;
4548
483b4ee6
SS
4549 if (!cpu_active(cpu)) {
4550 if (atomic_read(&nohz.load_balancer) != cpu)
4551 return 0;
4552
4553 /*
4554 * If we are going offline and still the leader,
4555 * give up!
4556 */
46cb4b7c
SS
4557 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4558 BUG();
483b4ee6 4559
46cb4b7c
SS
4560 return 0;
4561 }
4562
483b4ee6
SS
4563 cpumask_set_cpu(cpu, nohz.cpu_mask);
4564
46cb4b7c 4565 /* time for ilb owner also to sleep */
7d1e6a9b 4566 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4567 if (atomic_read(&nohz.load_balancer) == cpu)
4568 atomic_set(&nohz.load_balancer, -1);
4569 return 0;
4570 }
4571
4572 if (atomic_read(&nohz.load_balancer) == -1) {
4573 /* make me the ilb owner */
4574 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4575 return 1;
e790fb0b
GS
4576 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4577 int new_ilb;
4578
4579 if (!(sched_smt_power_savings ||
4580 sched_mc_power_savings))
4581 return 1;
4582 /*
4583 * Check to see if there is a more power-efficient
4584 * ilb.
4585 */
4586 new_ilb = find_new_ilb(cpu);
4587 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4588 atomic_set(&nohz.load_balancer, -1);
4589 resched_cpu(new_ilb);
4590 return 0;
4591 }
46cb4b7c 4592 return 1;
e790fb0b 4593 }
46cb4b7c 4594 } else {
7d1e6a9b 4595 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4596 return 0;
4597
7d1e6a9b 4598 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4599
4600 if (atomic_read(&nohz.load_balancer) == cpu)
4601 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4602 BUG();
4603 }
4604 return 0;
4605}
4606#endif
4607
4608static DEFINE_SPINLOCK(balancing);
4609
4610/*
7835b98b
CL
4611 * It checks each scheduling domain to see if it is due to be balanced,
4612 * and initiates a balancing operation if so.
4613 *
4614 * Balancing parameters are set up in arch_init_sched_domains.
4615 */
a9957449 4616static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4617{
46cb4b7c
SS
4618 int balance = 1;
4619 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4620 unsigned long interval;
4621 struct sched_domain *sd;
46cb4b7c 4622 /* Earliest time when we have to do rebalance again */
c9819f45 4623 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4624 int update_next_balance = 0;
d07355f5 4625 int need_serialize;
1da177e4 4626
46cb4b7c 4627 for_each_domain(cpu, sd) {
1da177e4
LT
4628 if (!(sd->flags & SD_LOAD_BALANCE))
4629 continue;
4630
4631 interval = sd->balance_interval;
d15bcfdb 4632 if (idle != CPU_IDLE)
1da177e4
LT
4633 interval *= sd->busy_factor;
4634
4635 /* scale ms to jiffies */
4636 interval = msecs_to_jiffies(interval);
4637 if (unlikely(!interval))
4638 interval = 1;
dd41f596
IM
4639 if (interval > HZ*NR_CPUS/10)
4640 interval = HZ*NR_CPUS/10;
4641
d07355f5 4642 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4643
d07355f5 4644 if (need_serialize) {
08c183f3
CL
4645 if (!spin_trylock(&balancing))
4646 goto out;
4647 }
4648
c9819f45 4649 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4650 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4651 /*
4652 * We've pulled tasks over so either we're no
5969fe06
NP
4653 * longer idle, or one of our SMT siblings is
4654 * not idle.
4655 */
d15bcfdb 4656 idle = CPU_NOT_IDLE;
1da177e4 4657 }
1bd77f2d 4658 sd->last_balance = jiffies;
1da177e4 4659 }
d07355f5 4660 if (need_serialize)
08c183f3
CL
4661 spin_unlock(&balancing);
4662out:
f549da84 4663 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4664 next_balance = sd->last_balance + interval;
f549da84
SS
4665 update_next_balance = 1;
4666 }
783609c6
SS
4667
4668 /*
4669 * Stop the load balance at this level. There is another
4670 * CPU in our sched group which is doing load balancing more
4671 * actively.
4672 */
4673 if (!balance)
4674 break;
1da177e4 4675 }
f549da84
SS
4676
4677 /*
4678 * next_balance will be updated only when there is a need.
4679 * When the cpu is attached to null domain for ex, it will not be
4680 * updated.
4681 */
4682 if (likely(update_next_balance))
4683 rq->next_balance = next_balance;
46cb4b7c
SS
4684}
4685
4686/*
4687 * run_rebalance_domains is triggered when needed from the scheduler tick.
4688 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4689 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4690 */
4691static void run_rebalance_domains(struct softirq_action *h)
4692{
dd41f596
IM
4693 int this_cpu = smp_processor_id();
4694 struct rq *this_rq = cpu_rq(this_cpu);
4695 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4696 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4697
dd41f596 4698 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4699
4700#ifdef CONFIG_NO_HZ
4701 /*
4702 * If this cpu is the owner for idle load balancing, then do the
4703 * balancing on behalf of the other idle cpus whose ticks are
4704 * stopped.
4705 */
dd41f596
IM
4706 if (this_rq->idle_at_tick &&
4707 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4708 struct rq *rq;
4709 int balance_cpu;
4710
7d1e6a9b
RR
4711 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4712 if (balance_cpu == this_cpu)
4713 continue;
4714
46cb4b7c
SS
4715 /*
4716 * If this cpu gets work to do, stop the load balancing
4717 * work being done for other cpus. Next load
4718 * balancing owner will pick it up.
4719 */
4720 if (need_resched())
4721 break;
4722
de0cf899 4723 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4724
4725 rq = cpu_rq(balance_cpu);
dd41f596
IM
4726 if (time_after(this_rq->next_balance, rq->next_balance))
4727 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4728 }
4729 }
4730#endif
4731}
4732
8a0be9ef
FW
4733static inline int on_null_domain(int cpu)
4734{
4735 return !rcu_dereference(cpu_rq(cpu)->sd);
4736}
4737
46cb4b7c
SS
4738/*
4739 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4740 *
4741 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4742 * idle load balancing owner or decide to stop the periodic load balancing,
4743 * if the whole system is idle.
4744 */
dd41f596 4745static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4746{
46cb4b7c
SS
4747#ifdef CONFIG_NO_HZ
4748 /*
4749 * If we were in the nohz mode recently and busy at the current
4750 * scheduler tick, then check if we need to nominate new idle
4751 * load balancer.
4752 */
4753 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4754 rq->in_nohz_recently = 0;
4755
4756 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4757 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4758 atomic_set(&nohz.load_balancer, -1);
4759 }
4760
4761 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4762 int ilb = find_new_ilb(cpu);
46cb4b7c 4763
434d53b0 4764 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4765 resched_cpu(ilb);
4766 }
4767 }
4768
4769 /*
4770 * If this cpu is idle and doing idle load balancing for all the
4771 * cpus with ticks stopped, is it time for that to stop?
4772 */
4773 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4774 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4775 resched_cpu(cpu);
4776 return;
4777 }
4778
4779 /*
4780 * If this cpu is idle and the idle load balancing is done by
4781 * someone else, then no need raise the SCHED_SOFTIRQ
4782 */
4783 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4784 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4785 return;
4786#endif
8a0be9ef
FW
4787 /* Don't need to rebalance while attached to NULL domain */
4788 if (time_after_eq(jiffies, rq->next_balance) &&
4789 likely(!on_null_domain(cpu)))
46cb4b7c 4790 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4791}
dd41f596
IM
4792
4793#else /* CONFIG_SMP */
4794
1da177e4
LT
4795/*
4796 * on UP we do not need to balance between CPUs:
4797 */
70b97a7f 4798static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4799{
4800}
dd41f596 4801
1da177e4
LT
4802#endif
4803
1da177e4
LT
4804DEFINE_PER_CPU(struct kernel_stat, kstat);
4805
4806EXPORT_PER_CPU_SYMBOL(kstat);
4807
4808/*
c5f8d995 4809 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4810 * @p in case that task is currently running.
c5f8d995
HS
4811 *
4812 * Called with task_rq_lock() held on @rq.
1da177e4 4813 */
c5f8d995
HS
4814static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4815{
4816 u64 ns = 0;
4817
4818 if (task_current(rq, p)) {
4819 update_rq_clock(rq);
4820 ns = rq->clock - p->se.exec_start;
4821 if ((s64)ns < 0)
4822 ns = 0;
4823 }
4824
4825 return ns;
4826}
4827
bb34d92f 4828unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4829{
1da177e4 4830 unsigned long flags;
41b86e9c 4831 struct rq *rq;
bb34d92f 4832 u64 ns = 0;
48f24c4d 4833
41b86e9c 4834 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4835 ns = do_task_delta_exec(p, rq);
4836 task_rq_unlock(rq, &flags);
1508487e 4837
c5f8d995
HS
4838 return ns;
4839}
f06febc9 4840
c5f8d995
HS
4841/*
4842 * Return accounted runtime for the task.
4843 * In case the task is currently running, return the runtime plus current's
4844 * pending runtime that have not been accounted yet.
4845 */
4846unsigned long long task_sched_runtime(struct task_struct *p)
4847{
4848 unsigned long flags;
4849 struct rq *rq;
4850 u64 ns = 0;
4851
4852 rq = task_rq_lock(p, &flags);
4853 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4854 task_rq_unlock(rq, &flags);
4855
4856 return ns;
4857}
48f24c4d 4858
c5f8d995
HS
4859/*
4860 * Return sum_exec_runtime for the thread group.
4861 * In case the task is currently running, return the sum plus current's
4862 * pending runtime that have not been accounted yet.
4863 *
4864 * Note that the thread group might have other running tasks as well,
4865 * so the return value not includes other pending runtime that other
4866 * running tasks might have.
4867 */
4868unsigned long long thread_group_sched_runtime(struct task_struct *p)
4869{
4870 struct task_cputime totals;
4871 unsigned long flags;
4872 struct rq *rq;
4873 u64 ns;
4874
4875 rq = task_rq_lock(p, &flags);
4876 thread_group_cputime(p, &totals);
4877 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4878 task_rq_unlock(rq, &flags);
48f24c4d 4879
1da177e4
LT
4880 return ns;
4881}
4882
1da177e4
LT
4883/*
4884 * Account user cpu time to a process.
4885 * @p: the process that the cpu time gets accounted to
1da177e4 4886 * @cputime: the cpu time spent in user space since the last update
457533a7 4887 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4888 */
457533a7
MS
4889void account_user_time(struct task_struct *p, cputime_t cputime,
4890 cputime_t cputime_scaled)
1da177e4
LT
4891{
4892 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4893 cputime64_t tmp;
4894
457533a7 4895 /* Add user time to process. */
1da177e4 4896 p->utime = cputime_add(p->utime, cputime);
457533a7 4897 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4898 account_group_user_time(p, cputime);
1da177e4
LT
4899
4900 /* Add user time to cpustat. */
4901 tmp = cputime_to_cputime64(cputime);
4902 if (TASK_NICE(p) > 0)
4903 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4904 else
4905 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
4906
4907 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
4908 /* Account for user time used */
4909 acct_update_integrals(p);
1da177e4
LT
4910}
4911
94886b84
LV
4912/*
4913 * Account guest cpu time to a process.
4914 * @p: the process that the cpu time gets accounted to
4915 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4916 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4917 */
457533a7
MS
4918static void account_guest_time(struct task_struct *p, cputime_t cputime,
4919 cputime_t cputime_scaled)
94886b84
LV
4920{
4921 cputime64_t tmp;
4922 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4923
4924 tmp = cputime_to_cputime64(cputime);
4925
457533a7 4926 /* Add guest time to process. */
94886b84 4927 p->utime = cputime_add(p->utime, cputime);
457533a7 4928 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4929 account_group_user_time(p, cputime);
94886b84
LV
4930 p->gtime = cputime_add(p->gtime, cputime);
4931
457533a7 4932 /* Add guest time to cpustat. */
94886b84
LV
4933 cpustat->user = cputime64_add(cpustat->user, tmp);
4934 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4935}
4936
1da177e4
LT
4937/*
4938 * Account system cpu time to a process.
4939 * @p: the process that the cpu time gets accounted to
4940 * @hardirq_offset: the offset to subtract from hardirq_count()
4941 * @cputime: the cpu time spent in kernel space since the last update
457533a7 4942 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
4943 */
4944void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 4945 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
4946{
4947 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
4948 cputime64_t tmp;
4949
983ed7a6 4950 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 4951 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
4952 return;
4953 }
94886b84 4954
457533a7 4955 /* Add system time to process. */
1da177e4 4956 p->stime = cputime_add(p->stime, cputime);
457533a7 4957 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 4958 account_group_system_time(p, cputime);
1da177e4
LT
4959
4960 /* Add system time to cpustat. */
4961 tmp = cputime_to_cputime64(cputime);
4962 if (hardirq_count() - hardirq_offset)
4963 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4964 else if (softirq_count())
4965 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 4966 else
79741dd3
MS
4967 cpustat->system = cputime64_add(cpustat->system, tmp);
4968
ef12fefa
BR
4969 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
4970
1da177e4
LT
4971 /* Account for system time used */
4972 acct_update_integrals(p);
1da177e4
LT
4973}
4974
c66f08be 4975/*
1da177e4 4976 * Account for involuntary wait time.
1da177e4 4977 * @steal: the cpu time spent in involuntary wait
c66f08be 4978 */
79741dd3 4979void account_steal_time(cputime_t cputime)
c66f08be 4980{
79741dd3
MS
4981 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4982 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4983
4984 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
4985}
4986
1da177e4 4987/*
79741dd3
MS
4988 * Account for idle time.
4989 * @cputime: the cpu time spent in idle wait
1da177e4 4990 */
79741dd3 4991void account_idle_time(cputime_t cputime)
1da177e4
LT
4992{
4993 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 4994 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 4995 struct rq *rq = this_rq();
1da177e4 4996
79741dd3
MS
4997 if (atomic_read(&rq->nr_iowait) > 0)
4998 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4999 else
5000 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5001}
5002
79741dd3
MS
5003#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5004
5005/*
5006 * Account a single tick of cpu time.
5007 * @p: the process that the cpu time gets accounted to
5008 * @user_tick: indicates if the tick is a user or a system tick
5009 */
5010void account_process_tick(struct task_struct *p, int user_tick)
5011{
5012 cputime_t one_jiffy = jiffies_to_cputime(1);
5013 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5014 struct rq *rq = this_rq();
5015
5016 if (user_tick)
5017 account_user_time(p, one_jiffy, one_jiffy_scaled);
f5f293a4 5018 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
79741dd3
MS
5019 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5020 one_jiffy_scaled);
5021 else
5022 account_idle_time(one_jiffy);
5023}
5024
5025/*
5026 * Account multiple ticks of steal time.
5027 * @p: the process from which the cpu time has been stolen
5028 * @ticks: number of stolen ticks
5029 */
5030void account_steal_ticks(unsigned long ticks)
5031{
5032 account_steal_time(jiffies_to_cputime(ticks));
5033}
5034
5035/*
5036 * Account multiple ticks of idle time.
5037 * @ticks: number of stolen ticks
5038 */
5039void account_idle_ticks(unsigned long ticks)
5040{
5041 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5042}
5043
79741dd3
MS
5044#endif
5045
49048622
BS
5046/*
5047 * Use precise platform statistics if available:
5048 */
5049#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5050cputime_t task_utime(struct task_struct *p)
5051{
5052 return p->utime;
5053}
5054
5055cputime_t task_stime(struct task_struct *p)
5056{
5057 return p->stime;
5058}
5059#else
5060cputime_t task_utime(struct task_struct *p)
5061{
5062 clock_t utime = cputime_to_clock_t(p->utime),
5063 total = utime + cputime_to_clock_t(p->stime);
5064 u64 temp;
5065
5066 /*
5067 * Use CFS's precise accounting:
5068 */
5069 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5070
5071 if (total) {
5072 temp *= utime;
5073 do_div(temp, total);
5074 }
5075 utime = (clock_t)temp;
5076
5077 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5078 return p->prev_utime;
5079}
5080
5081cputime_t task_stime(struct task_struct *p)
5082{
5083 clock_t stime;
5084
5085 /*
5086 * Use CFS's precise accounting. (we subtract utime from
5087 * the total, to make sure the total observed by userspace
5088 * grows monotonically - apps rely on that):
5089 */
5090 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5091 cputime_to_clock_t(task_utime(p));
5092
5093 if (stime >= 0)
5094 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5095
5096 return p->prev_stime;
5097}
5098#endif
5099
5100inline cputime_t task_gtime(struct task_struct *p)
5101{
5102 return p->gtime;
5103}
5104
7835b98b
CL
5105/*
5106 * This function gets called by the timer code, with HZ frequency.
5107 * We call it with interrupts disabled.
5108 *
5109 * It also gets called by the fork code, when changing the parent's
5110 * timeslices.
5111 */
5112void scheduler_tick(void)
5113{
7835b98b
CL
5114 int cpu = smp_processor_id();
5115 struct rq *rq = cpu_rq(cpu);
dd41f596 5116 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5117
5118 sched_clock_tick();
dd41f596
IM
5119
5120 spin_lock(&rq->lock);
3e51f33f 5121 update_rq_clock(rq);
f1a438d8 5122 update_cpu_load(rq);
fa85ae24 5123 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5124 spin_unlock(&rq->lock);
7835b98b 5125
e220d2dc
PZ
5126 perf_counter_task_tick(curr, cpu);
5127
e418e1c2 5128#ifdef CONFIG_SMP
dd41f596
IM
5129 rq->idle_at_tick = idle_cpu(cpu);
5130 trigger_load_balance(rq, cpu);
e418e1c2 5131#endif
1da177e4
LT
5132}
5133
132380a0 5134notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5135{
5136 if (in_lock_functions(addr)) {
5137 addr = CALLER_ADDR2;
5138 if (in_lock_functions(addr))
5139 addr = CALLER_ADDR3;
5140 }
5141 return addr;
5142}
1da177e4 5143
7e49fcce
SR
5144#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5145 defined(CONFIG_PREEMPT_TRACER))
5146
43627582 5147void __kprobes add_preempt_count(int val)
1da177e4 5148{
6cd8a4bb 5149#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5150 /*
5151 * Underflow?
5152 */
9a11b49a
IM
5153 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5154 return;
6cd8a4bb 5155#endif
1da177e4 5156 preempt_count() += val;
6cd8a4bb 5157#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5158 /*
5159 * Spinlock count overflowing soon?
5160 */
33859f7f
MOS
5161 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5162 PREEMPT_MASK - 10);
6cd8a4bb
SR
5163#endif
5164 if (preempt_count() == val)
5165 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5166}
5167EXPORT_SYMBOL(add_preempt_count);
5168
43627582 5169void __kprobes sub_preempt_count(int val)
1da177e4 5170{
6cd8a4bb 5171#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5172 /*
5173 * Underflow?
5174 */
01e3eb82 5175 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5176 return;
1da177e4
LT
5177 /*
5178 * Is the spinlock portion underflowing?
5179 */
9a11b49a
IM
5180 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5181 !(preempt_count() & PREEMPT_MASK)))
5182 return;
6cd8a4bb 5183#endif
9a11b49a 5184
6cd8a4bb
SR
5185 if (preempt_count() == val)
5186 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5187 preempt_count() -= val;
5188}
5189EXPORT_SYMBOL(sub_preempt_count);
5190
5191#endif
5192
5193/*
dd41f596 5194 * Print scheduling while atomic bug:
1da177e4 5195 */
dd41f596 5196static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5197{
838225b4
SS
5198 struct pt_regs *regs = get_irq_regs();
5199
5200 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5201 prev->comm, prev->pid, preempt_count());
5202
dd41f596 5203 debug_show_held_locks(prev);
e21f5b15 5204 print_modules();
dd41f596
IM
5205 if (irqs_disabled())
5206 print_irqtrace_events(prev);
838225b4
SS
5207
5208 if (regs)
5209 show_regs(regs);
5210 else
5211 dump_stack();
dd41f596 5212}
1da177e4 5213
dd41f596
IM
5214/*
5215 * Various schedule()-time debugging checks and statistics:
5216 */
5217static inline void schedule_debug(struct task_struct *prev)
5218{
1da177e4 5219 /*
41a2d6cf 5220 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5221 * schedule() atomically, we ignore that path for now.
5222 * Otherwise, whine if we are scheduling when we should not be.
5223 */
3f33a7ce 5224 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5225 __schedule_bug(prev);
5226
1da177e4
LT
5227 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5228
2d72376b 5229 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5230#ifdef CONFIG_SCHEDSTATS
5231 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5232 schedstat_inc(this_rq(), bkl_count);
5233 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5234 }
5235#endif
dd41f596
IM
5236}
5237
df1c99d4
MG
5238static void put_prev_task(struct rq *rq, struct task_struct *prev)
5239{
5240 if (prev->state == TASK_RUNNING) {
5241 u64 runtime = prev->se.sum_exec_runtime;
5242
5243 runtime -= prev->se.prev_sum_exec_runtime;
5244 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5245
5246 /*
5247 * In order to avoid avg_overlap growing stale when we are
5248 * indeed overlapping and hence not getting put to sleep, grow
5249 * the avg_overlap on preemption.
5250 *
5251 * We use the average preemption runtime because that
5252 * correlates to the amount of cache footprint a task can
5253 * build up.
5254 */
5255 update_avg(&prev->se.avg_overlap, runtime);
5256 }
5257 prev->sched_class->put_prev_task(rq, prev);
5258}
5259
dd41f596
IM
5260/*
5261 * Pick up the highest-prio task:
5262 */
5263static inline struct task_struct *
b67802ea 5264pick_next_task(struct rq *rq)
dd41f596 5265{
5522d5d5 5266 const struct sched_class *class;
dd41f596 5267 struct task_struct *p;
1da177e4
LT
5268
5269 /*
dd41f596
IM
5270 * Optimization: we know that if all tasks are in
5271 * the fair class we can call that function directly:
1da177e4 5272 */
dd41f596 5273 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5274 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5275 if (likely(p))
5276 return p;
1da177e4
LT
5277 }
5278
dd41f596
IM
5279 class = sched_class_highest;
5280 for ( ; ; ) {
fb8d4724 5281 p = class->pick_next_task(rq);
dd41f596
IM
5282 if (p)
5283 return p;
5284 /*
5285 * Will never be NULL as the idle class always
5286 * returns a non-NULL p:
5287 */
5288 class = class->next;
5289 }
5290}
1da177e4 5291
dd41f596
IM
5292/*
5293 * schedule() is the main scheduler function.
5294 */
ff743345 5295asmlinkage void __sched schedule(void)
dd41f596
IM
5296{
5297 struct task_struct *prev, *next;
67ca7bde 5298 unsigned long *switch_count;
dd41f596 5299 struct rq *rq;
31656519 5300 int cpu;
dd41f596 5301
ff743345
PZ
5302need_resched:
5303 preempt_disable();
dd41f596
IM
5304 cpu = smp_processor_id();
5305 rq = cpu_rq(cpu);
5306 rcu_qsctr_inc(cpu);
5307 prev = rq->curr;
5308 switch_count = &prev->nivcsw;
5309
5310 release_kernel_lock(prev);
5311need_resched_nonpreemptible:
5312
5313 schedule_debug(prev);
1da177e4 5314
31656519 5315 if (sched_feat(HRTICK))
f333fdc9 5316 hrtick_clear(rq);
8f4d37ec 5317
8cd162ce 5318 spin_lock_irq(&rq->lock);
3e51f33f 5319 update_rq_clock(rq);
1e819950 5320 clear_tsk_need_resched(prev);
1da177e4 5321
1da177e4 5322 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5323 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5324 prev->state = TASK_RUNNING;
16882c1e 5325 else
2e1cb74a 5326 deactivate_task(rq, prev, 1);
dd41f596 5327 switch_count = &prev->nvcsw;
1da177e4
LT
5328 }
5329
9a897c5a
SR
5330#ifdef CONFIG_SMP
5331 if (prev->sched_class->pre_schedule)
5332 prev->sched_class->pre_schedule(rq, prev);
5333#endif
f65eda4f 5334
dd41f596 5335 if (unlikely(!rq->nr_running))
1da177e4 5336 idle_balance(cpu, rq);
1da177e4 5337
df1c99d4 5338 put_prev_task(rq, prev);
b67802ea 5339 next = pick_next_task(rq);
1da177e4 5340
1da177e4 5341 if (likely(prev != next)) {
673a90a1 5342 sched_info_switch(prev, next);
564c2b21 5343 perf_counter_task_sched_out(prev, next, cpu);
673a90a1 5344
1da177e4
LT
5345 rq->nr_switches++;
5346 rq->curr = next;
5347 ++*switch_count;
5348
dd41f596 5349 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5350 /*
5351 * the context switch might have flipped the stack from under
5352 * us, hence refresh the local variables.
5353 */
5354 cpu = smp_processor_id();
5355 rq = cpu_rq(cpu);
1da177e4
LT
5356 } else
5357 spin_unlock_irq(&rq->lock);
5358
8f4d37ec 5359 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5360 goto need_resched_nonpreemptible;
8f4d37ec 5361
1da177e4 5362 preempt_enable_no_resched();
ff743345 5363 if (need_resched())
1da177e4
LT
5364 goto need_resched;
5365}
1da177e4
LT
5366EXPORT_SYMBOL(schedule);
5367
0d66bf6d
PZ
5368#ifdef CONFIG_SMP
5369/*
5370 * Look out! "owner" is an entirely speculative pointer
5371 * access and not reliable.
5372 */
5373int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5374{
5375 unsigned int cpu;
5376 struct rq *rq;
5377
5378 if (!sched_feat(OWNER_SPIN))
5379 return 0;
5380
5381#ifdef CONFIG_DEBUG_PAGEALLOC
5382 /*
5383 * Need to access the cpu field knowing that
5384 * DEBUG_PAGEALLOC could have unmapped it if
5385 * the mutex owner just released it and exited.
5386 */
5387 if (probe_kernel_address(&owner->cpu, cpu))
5388 goto out;
5389#else
5390 cpu = owner->cpu;
5391#endif
5392
5393 /*
5394 * Even if the access succeeded (likely case),
5395 * the cpu field may no longer be valid.
5396 */
5397 if (cpu >= nr_cpumask_bits)
5398 goto out;
5399
5400 /*
5401 * We need to validate that we can do a
5402 * get_cpu() and that we have the percpu area.
5403 */
5404 if (!cpu_online(cpu))
5405 goto out;
5406
5407 rq = cpu_rq(cpu);
5408
5409 for (;;) {
5410 /*
5411 * Owner changed, break to re-assess state.
5412 */
5413 if (lock->owner != owner)
5414 break;
5415
5416 /*
5417 * Is that owner really running on that cpu?
5418 */
5419 if (task_thread_info(rq->curr) != owner || need_resched())
5420 return 0;
5421
5422 cpu_relax();
5423 }
5424out:
5425 return 1;
5426}
5427#endif
5428
1da177e4
LT
5429#ifdef CONFIG_PREEMPT
5430/*
2ed6e34f 5431 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5432 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5433 * occur there and call schedule directly.
5434 */
5435asmlinkage void __sched preempt_schedule(void)
5436{
5437 struct thread_info *ti = current_thread_info();
6478d880 5438
1da177e4
LT
5439 /*
5440 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5441 * we do not want to preempt the current task. Just return..
1da177e4 5442 */
beed33a8 5443 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5444 return;
5445
3a5c359a
AK
5446 do {
5447 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5448 schedule();
3a5c359a 5449 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5450
3a5c359a
AK
5451 /*
5452 * Check again in case we missed a preemption opportunity
5453 * between schedule and now.
5454 */
5455 barrier();
5ed0cec0 5456 } while (need_resched());
1da177e4 5457}
1da177e4
LT
5458EXPORT_SYMBOL(preempt_schedule);
5459
5460/*
2ed6e34f 5461 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5462 * off of irq context.
5463 * Note, that this is called and return with irqs disabled. This will
5464 * protect us against recursive calling from irq.
5465 */
5466asmlinkage void __sched preempt_schedule_irq(void)
5467{
5468 struct thread_info *ti = current_thread_info();
6478d880 5469
2ed6e34f 5470 /* Catch callers which need to be fixed */
1da177e4
LT
5471 BUG_ON(ti->preempt_count || !irqs_disabled());
5472
3a5c359a
AK
5473 do {
5474 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5475 local_irq_enable();
5476 schedule();
5477 local_irq_disable();
3a5c359a 5478 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5479
3a5c359a
AK
5480 /*
5481 * Check again in case we missed a preemption opportunity
5482 * between schedule and now.
5483 */
5484 barrier();
5ed0cec0 5485 } while (need_resched());
1da177e4
LT
5486}
5487
5488#endif /* CONFIG_PREEMPT */
5489
95cdf3b7
IM
5490int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5491 void *key)
1da177e4 5492{
48f24c4d 5493 return try_to_wake_up(curr->private, mode, sync);
1da177e4 5494}
1da177e4
LT
5495EXPORT_SYMBOL(default_wake_function);
5496
5497/*
41a2d6cf
IM
5498 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5499 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5500 * number) then we wake all the non-exclusive tasks and one exclusive task.
5501 *
5502 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5503 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5504 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5505 */
78ddb08f 5506static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
777c6c5f 5507 int nr_exclusive, int sync, void *key)
1da177e4 5508{
2e45874c 5509 wait_queue_t *curr, *next;
1da177e4 5510
2e45874c 5511 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5512 unsigned flags = curr->flags;
5513
1da177e4 5514 if (curr->func(curr, mode, sync, key) &&
48f24c4d 5515 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5516 break;
5517 }
5518}
5519
5520/**
5521 * __wake_up - wake up threads blocked on a waitqueue.
5522 * @q: the waitqueue
5523 * @mode: which threads
5524 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5525 * @key: is directly passed to the wakeup function
50fa610a
DH
5526 *
5527 * It may be assumed that this function implies a write memory barrier before
5528 * changing the task state if and only if any tasks are woken up.
1da177e4 5529 */
7ad5b3a5 5530void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5531 int nr_exclusive, void *key)
1da177e4
LT
5532{
5533 unsigned long flags;
5534
5535 spin_lock_irqsave(&q->lock, flags);
5536 __wake_up_common(q, mode, nr_exclusive, 0, key);
5537 spin_unlock_irqrestore(&q->lock, flags);
5538}
1da177e4
LT
5539EXPORT_SYMBOL(__wake_up);
5540
5541/*
5542 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5543 */
7ad5b3a5 5544void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5545{
5546 __wake_up_common(q, mode, 1, 0, NULL);
5547}
5548
4ede816a
DL
5549void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5550{
5551 __wake_up_common(q, mode, 1, 0, key);
5552}
5553
1da177e4 5554/**
4ede816a 5555 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5556 * @q: the waitqueue
5557 * @mode: which threads
5558 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5559 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5560 *
5561 * The sync wakeup differs that the waker knows that it will schedule
5562 * away soon, so while the target thread will be woken up, it will not
5563 * be migrated to another CPU - ie. the two threads are 'synchronized'
5564 * with each other. This can prevent needless bouncing between CPUs.
5565 *
5566 * On UP it can prevent extra preemption.
50fa610a
DH
5567 *
5568 * It may be assumed that this function implies a write memory barrier before
5569 * changing the task state if and only if any tasks are woken up.
1da177e4 5570 */
4ede816a
DL
5571void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5572 int nr_exclusive, void *key)
1da177e4
LT
5573{
5574 unsigned long flags;
5575 int sync = 1;
5576
5577 if (unlikely(!q))
5578 return;
5579
5580 if (unlikely(!nr_exclusive))
5581 sync = 0;
5582
5583 spin_lock_irqsave(&q->lock, flags);
4ede816a 5584 __wake_up_common(q, mode, nr_exclusive, sync, key);
1da177e4
LT
5585 spin_unlock_irqrestore(&q->lock, flags);
5586}
4ede816a
DL
5587EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5588
5589/*
5590 * __wake_up_sync - see __wake_up_sync_key()
5591 */
5592void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5593{
5594 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5595}
1da177e4
LT
5596EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5597
65eb3dc6
KD
5598/**
5599 * complete: - signals a single thread waiting on this completion
5600 * @x: holds the state of this particular completion
5601 *
5602 * This will wake up a single thread waiting on this completion. Threads will be
5603 * awakened in the same order in which they were queued.
5604 *
5605 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5606 *
5607 * It may be assumed that this function implies a write memory barrier before
5608 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5609 */
b15136e9 5610void complete(struct completion *x)
1da177e4
LT
5611{
5612 unsigned long flags;
5613
5614 spin_lock_irqsave(&x->wait.lock, flags);
5615 x->done++;
d9514f6c 5616 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5617 spin_unlock_irqrestore(&x->wait.lock, flags);
5618}
5619EXPORT_SYMBOL(complete);
5620
65eb3dc6
KD
5621/**
5622 * complete_all: - signals all threads waiting on this completion
5623 * @x: holds the state of this particular completion
5624 *
5625 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5626 *
5627 * It may be assumed that this function implies a write memory barrier before
5628 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5629 */
b15136e9 5630void complete_all(struct completion *x)
1da177e4
LT
5631{
5632 unsigned long flags;
5633
5634 spin_lock_irqsave(&x->wait.lock, flags);
5635 x->done += UINT_MAX/2;
d9514f6c 5636 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5637 spin_unlock_irqrestore(&x->wait.lock, flags);
5638}
5639EXPORT_SYMBOL(complete_all);
5640
8cbbe86d
AK
5641static inline long __sched
5642do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5643{
1da177e4
LT
5644 if (!x->done) {
5645 DECLARE_WAITQUEUE(wait, current);
5646
5647 wait.flags |= WQ_FLAG_EXCLUSIVE;
5648 __add_wait_queue_tail(&x->wait, &wait);
5649 do {
94d3d824 5650 if (signal_pending_state(state, current)) {
ea71a546
ON
5651 timeout = -ERESTARTSYS;
5652 break;
8cbbe86d
AK
5653 }
5654 __set_current_state(state);
1da177e4
LT
5655 spin_unlock_irq(&x->wait.lock);
5656 timeout = schedule_timeout(timeout);
5657 spin_lock_irq(&x->wait.lock);
ea71a546 5658 } while (!x->done && timeout);
1da177e4 5659 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5660 if (!x->done)
5661 return timeout;
1da177e4
LT
5662 }
5663 x->done--;
ea71a546 5664 return timeout ?: 1;
1da177e4 5665}
1da177e4 5666
8cbbe86d
AK
5667static long __sched
5668wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5669{
1da177e4
LT
5670 might_sleep();
5671
5672 spin_lock_irq(&x->wait.lock);
8cbbe86d 5673 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5674 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5675 return timeout;
5676}
1da177e4 5677
65eb3dc6
KD
5678/**
5679 * wait_for_completion: - waits for completion of a task
5680 * @x: holds the state of this particular completion
5681 *
5682 * This waits to be signaled for completion of a specific task. It is NOT
5683 * interruptible and there is no timeout.
5684 *
5685 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5686 * and interrupt capability. Also see complete().
5687 */
b15136e9 5688void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5689{
5690 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5691}
8cbbe86d 5692EXPORT_SYMBOL(wait_for_completion);
1da177e4 5693
65eb3dc6
KD
5694/**
5695 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5696 * @x: holds the state of this particular completion
5697 * @timeout: timeout value in jiffies
5698 *
5699 * This waits for either a completion of a specific task to be signaled or for a
5700 * specified timeout to expire. The timeout is in jiffies. It is not
5701 * interruptible.
5702 */
b15136e9 5703unsigned long __sched
8cbbe86d 5704wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5705{
8cbbe86d 5706 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5707}
8cbbe86d 5708EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5709
65eb3dc6
KD
5710/**
5711 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5712 * @x: holds the state of this particular completion
5713 *
5714 * This waits for completion of a specific task to be signaled. It is
5715 * interruptible.
5716 */
8cbbe86d 5717int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5718{
51e97990
AK
5719 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5720 if (t == -ERESTARTSYS)
5721 return t;
5722 return 0;
0fec171c 5723}
8cbbe86d 5724EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5725
65eb3dc6
KD
5726/**
5727 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5728 * @x: holds the state of this particular completion
5729 * @timeout: timeout value in jiffies
5730 *
5731 * This waits for either a completion of a specific task to be signaled or for a
5732 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5733 */
b15136e9 5734unsigned long __sched
8cbbe86d
AK
5735wait_for_completion_interruptible_timeout(struct completion *x,
5736 unsigned long timeout)
0fec171c 5737{
8cbbe86d 5738 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5739}
8cbbe86d 5740EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5741
65eb3dc6
KD
5742/**
5743 * wait_for_completion_killable: - waits for completion of a task (killable)
5744 * @x: holds the state of this particular completion
5745 *
5746 * This waits to be signaled for completion of a specific task. It can be
5747 * interrupted by a kill signal.
5748 */
009e577e
MW
5749int __sched wait_for_completion_killable(struct completion *x)
5750{
5751 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5752 if (t == -ERESTARTSYS)
5753 return t;
5754 return 0;
5755}
5756EXPORT_SYMBOL(wait_for_completion_killable);
5757
be4de352
DC
5758/**
5759 * try_wait_for_completion - try to decrement a completion without blocking
5760 * @x: completion structure
5761 *
5762 * Returns: 0 if a decrement cannot be done without blocking
5763 * 1 if a decrement succeeded.
5764 *
5765 * If a completion is being used as a counting completion,
5766 * attempt to decrement the counter without blocking. This
5767 * enables us to avoid waiting if the resource the completion
5768 * is protecting is not available.
5769 */
5770bool try_wait_for_completion(struct completion *x)
5771{
5772 int ret = 1;
5773
5774 spin_lock_irq(&x->wait.lock);
5775 if (!x->done)
5776 ret = 0;
5777 else
5778 x->done--;
5779 spin_unlock_irq(&x->wait.lock);
5780 return ret;
5781}
5782EXPORT_SYMBOL(try_wait_for_completion);
5783
5784/**
5785 * completion_done - Test to see if a completion has any waiters
5786 * @x: completion structure
5787 *
5788 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5789 * 1 if there are no waiters.
5790 *
5791 */
5792bool completion_done(struct completion *x)
5793{
5794 int ret = 1;
5795
5796 spin_lock_irq(&x->wait.lock);
5797 if (!x->done)
5798 ret = 0;
5799 spin_unlock_irq(&x->wait.lock);
5800 return ret;
5801}
5802EXPORT_SYMBOL(completion_done);
5803
8cbbe86d
AK
5804static long __sched
5805sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5806{
0fec171c
IM
5807 unsigned long flags;
5808 wait_queue_t wait;
5809
5810 init_waitqueue_entry(&wait, current);
1da177e4 5811
8cbbe86d 5812 __set_current_state(state);
1da177e4 5813
8cbbe86d
AK
5814 spin_lock_irqsave(&q->lock, flags);
5815 __add_wait_queue(q, &wait);
5816 spin_unlock(&q->lock);
5817 timeout = schedule_timeout(timeout);
5818 spin_lock_irq(&q->lock);
5819 __remove_wait_queue(q, &wait);
5820 spin_unlock_irqrestore(&q->lock, flags);
5821
5822 return timeout;
5823}
5824
5825void __sched interruptible_sleep_on(wait_queue_head_t *q)
5826{
5827 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5828}
1da177e4
LT
5829EXPORT_SYMBOL(interruptible_sleep_on);
5830
0fec171c 5831long __sched
95cdf3b7 5832interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5833{
8cbbe86d 5834 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5835}
1da177e4
LT
5836EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5837
0fec171c 5838void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5839{
8cbbe86d 5840 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5841}
1da177e4
LT
5842EXPORT_SYMBOL(sleep_on);
5843
0fec171c 5844long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5845{
8cbbe86d 5846 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5847}
1da177e4
LT
5848EXPORT_SYMBOL(sleep_on_timeout);
5849
b29739f9
IM
5850#ifdef CONFIG_RT_MUTEXES
5851
5852/*
5853 * rt_mutex_setprio - set the current priority of a task
5854 * @p: task
5855 * @prio: prio value (kernel-internal form)
5856 *
5857 * This function changes the 'effective' priority of a task. It does
5858 * not touch ->normal_prio like __setscheduler().
5859 *
5860 * Used by the rt_mutex code to implement priority inheritance logic.
5861 */
36c8b586 5862void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5863{
5864 unsigned long flags;
83b699ed 5865 int oldprio, on_rq, running;
70b97a7f 5866 struct rq *rq;
cb469845 5867 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5868
5869 BUG_ON(prio < 0 || prio > MAX_PRIO);
5870
5871 rq = task_rq_lock(p, &flags);
a8e504d2 5872 update_rq_clock(rq);
b29739f9 5873
d5f9f942 5874 oldprio = p->prio;
dd41f596 5875 on_rq = p->se.on_rq;
051a1d1a 5876 running = task_current(rq, p);
0e1f3483 5877 if (on_rq)
69be72c1 5878 dequeue_task(rq, p, 0);
0e1f3483
HS
5879 if (running)
5880 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5881
5882 if (rt_prio(prio))
5883 p->sched_class = &rt_sched_class;
5884 else
5885 p->sched_class = &fair_sched_class;
5886
b29739f9
IM
5887 p->prio = prio;
5888
0e1f3483
HS
5889 if (running)
5890 p->sched_class->set_curr_task(rq);
dd41f596 5891 if (on_rq) {
8159f87e 5892 enqueue_task(rq, p, 0);
cb469845
SR
5893
5894 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5895 }
5896 task_rq_unlock(rq, &flags);
5897}
5898
5899#endif
5900
36c8b586 5901void set_user_nice(struct task_struct *p, long nice)
1da177e4 5902{
dd41f596 5903 int old_prio, delta, on_rq;
1da177e4 5904 unsigned long flags;
70b97a7f 5905 struct rq *rq;
1da177e4
LT
5906
5907 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5908 return;
5909 /*
5910 * We have to be careful, if called from sys_setpriority(),
5911 * the task might be in the middle of scheduling on another CPU.
5912 */
5913 rq = task_rq_lock(p, &flags);
a8e504d2 5914 update_rq_clock(rq);
1da177e4
LT
5915 /*
5916 * The RT priorities are set via sched_setscheduler(), but we still
5917 * allow the 'normal' nice value to be set - but as expected
5918 * it wont have any effect on scheduling until the task is
dd41f596 5919 * SCHED_FIFO/SCHED_RR:
1da177e4 5920 */
e05606d3 5921 if (task_has_rt_policy(p)) {
1da177e4
LT
5922 p->static_prio = NICE_TO_PRIO(nice);
5923 goto out_unlock;
5924 }
dd41f596 5925 on_rq = p->se.on_rq;
c09595f6 5926 if (on_rq)
69be72c1 5927 dequeue_task(rq, p, 0);
1da177e4 5928
1da177e4 5929 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5930 set_load_weight(p);
b29739f9
IM
5931 old_prio = p->prio;
5932 p->prio = effective_prio(p);
5933 delta = p->prio - old_prio;
1da177e4 5934
dd41f596 5935 if (on_rq) {
8159f87e 5936 enqueue_task(rq, p, 0);
1da177e4 5937 /*
d5f9f942
AM
5938 * If the task increased its priority or is running and
5939 * lowered its priority, then reschedule its CPU:
1da177e4 5940 */
d5f9f942 5941 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5942 resched_task(rq->curr);
5943 }
5944out_unlock:
5945 task_rq_unlock(rq, &flags);
5946}
1da177e4
LT
5947EXPORT_SYMBOL(set_user_nice);
5948
e43379f1
MM
5949/*
5950 * can_nice - check if a task can reduce its nice value
5951 * @p: task
5952 * @nice: nice value
5953 */
36c8b586 5954int can_nice(const struct task_struct *p, const int nice)
e43379f1 5955{
024f4747
MM
5956 /* convert nice value [19,-20] to rlimit style value [1,40] */
5957 int nice_rlim = 20 - nice;
48f24c4d 5958
e43379f1
MM
5959 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5960 capable(CAP_SYS_NICE));
5961}
5962
1da177e4
LT
5963#ifdef __ARCH_WANT_SYS_NICE
5964
5965/*
5966 * sys_nice - change the priority of the current process.
5967 * @increment: priority increment
5968 *
5969 * sys_setpriority is a more generic, but much slower function that
5970 * does similar things.
5971 */
5add95d4 5972SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5973{
48f24c4d 5974 long nice, retval;
1da177e4
LT
5975
5976 /*
5977 * Setpriority might change our priority at the same moment.
5978 * We don't have to worry. Conceptually one call occurs first
5979 * and we have a single winner.
5980 */
e43379f1
MM
5981 if (increment < -40)
5982 increment = -40;
1da177e4
LT
5983 if (increment > 40)
5984 increment = 40;
5985
2b8f836f 5986 nice = TASK_NICE(current) + increment;
1da177e4
LT
5987 if (nice < -20)
5988 nice = -20;
5989 if (nice > 19)
5990 nice = 19;
5991
e43379f1
MM
5992 if (increment < 0 && !can_nice(current, nice))
5993 return -EPERM;
5994
1da177e4
LT
5995 retval = security_task_setnice(current, nice);
5996 if (retval)
5997 return retval;
5998
5999 set_user_nice(current, nice);
6000 return 0;
6001}
6002
6003#endif
6004
6005/**
6006 * task_prio - return the priority value of a given task.
6007 * @p: the task in question.
6008 *
6009 * This is the priority value as seen by users in /proc.
6010 * RT tasks are offset by -200. Normal tasks are centered
6011 * around 0, value goes from -16 to +15.
6012 */
36c8b586 6013int task_prio(const struct task_struct *p)
1da177e4
LT
6014{
6015 return p->prio - MAX_RT_PRIO;
6016}
6017
6018/**
6019 * task_nice - return the nice value of a given task.
6020 * @p: the task in question.
6021 */
36c8b586 6022int task_nice(const struct task_struct *p)
1da177e4
LT
6023{
6024 return TASK_NICE(p);
6025}
150d8bed 6026EXPORT_SYMBOL(task_nice);
1da177e4
LT
6027
6028/**
6029 * idle_cpu - is a given cpu idle currently?
6030 * @cpu: the processor in question.
6031 */
6032int idle_cpu(int cpu)
6033{
6034 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6035}
6036
1da177e4
LT
6037/**
6038 * idle_task - return the idle task for a given cpu.
6039 * @cpu: the processor in question.
6040 */
36c8b586 6041struct task_struct *idle_task(int cpu)
1da177e4
LT
6042{
6043 return cpu_rq(cpu)->idle;
6044}
6045
6046/**
6047 * find_process_by_pid - find a process with a matching PID value.
6048 * @pid: the pid in question.
6049 */
a9957449 6050static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6051{
228ebcbe 6052 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6053}
6054
6055/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6056static void
6057__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6058{
dd41f596 6059 BUG_ON(p->se.on_rq);
48f24c4d 6060
1da177e4 6061 p->policy = policy;
dd41f596
IM
6062 switch (p->policy) {
6063 case SCHED_NORMAL:
6064 case SCHED_BATCH:
6065 case SCHED_IDLE:
6066 p->sched_class = &fair_sched_class;
6067 break;
6068 case SCHED_FIFO:
6069 case SCHED_RR:
6070 p->sched_class = &rt_sched_class;
6071 break;
6072 }
6073
1da177e4 6074 p->rt_priority = prio;
b29739f9
IM
6075 p->normal_prio = normal_prio(p);
6076 /* we are holding p->pi_lock already */
6077 p->prio = rt_mutex_getprio(p);
2dd73a4f 6078 set_load_weight(p);
1da177e4
LT
6079}
6080
c69e8d9c
DH
6081/*
6082 * check the target process has a UID that matches the current process's
6083 */
6084static bool check_same_owner(struct task_struct *p)
6085{
6086 const struct cred *cred = current_cred(), *pcred;
6087 bool match;
6088
6089 rcu_read_lock();
6090 pcred = __task_cred(p);
6091 match = (cred->euid == pcred->euid ||
6092 cred->euid == pcred->uid);
6093 rcu_read_unlock();
6094 return match;
6095}
6096
961ccddd
RR
6097static int __sched_setscheduler(struct task_struct *p, int policy,
6098 struct sched_param *param, bool user)
1da177e4 6099{
83b699ed 6100 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6101 unsigned long flags;
cb469845 6102 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6103 struct rq *rq;
1da177e4 6104
66e5393a
SR
6105 /* may grab non-irq protected spin_locks */
6106 BUG_ON(in_interrupt());
1da177e4
LT
6107recheck:
6108 /* double check policy once rq lock held */
6109 if (policy < 0)
6110 policy = oldpolicy = p->policy;
6111 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
6112 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6113 policy != SCHED_IDLE)
b0a9499c 6114 return -EINVAL;
1da177e4
LT
6115 /*
6116 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6117 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6118 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6119 */
6120 if (param->sched_priority < 0 ||
95cdf3b7 6121 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6122 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6123 return -EINVAL;
e05606d3 6124 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6125 return -EINVAL;
6126
37e4ab3f
OC
6127 /*
6128 * Allow unprivileged RT tasks to decrease priority:
6129 */
961ccddd 6130 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6131 if (rt_policy(policy)) {
8dc3e909 6132 unsigned long rlim_rtprio;
8dc3e909
ON
6133
6134 if (!lock_task_sighand(p, &flags))
6135 return -ESRCH;
6136 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6137 unlock_task_sighand(p, &flags);
6138
6139 /* can't set/change the rt policy */
6140 if (policy != p->policy && !rlim_rtprio)
6141 return -EPERM;
6142
6143 /* can't increase priority */
6144 if (param->sched_priority > p->rt_priority &&
6145 param->sched_priority > rlim_rtprio)
6146 return -EPERM;
6147 }
dd41f596
IM
6148 /*
6149 * Like positive nice levels, dont allow tasks to
6150 * move out of SCHED_IDLE either:
6151 */
6152 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6153 return -EPERM;
5fe1d75f 6154
37e4ab3f 6155 /* can't change other user's priorities */
c69e8d9c 6156 if (!check_same_owner(p))
37e4ab3f
OC
6157 return -EPERM;
6158 }
1da177e4 6159
725aad24 6160 if (user) {
b68aa230 6161#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6162 /*
6163 * Do not allow realtime tasks into groups that have no runtime
6164 * assigned.
6165 */
9a7e0b18
PZ
6166 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6167 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6168 return -EPERM;
b68aa230
PZ
6169#endif
6170
725aad24
JF
6171 retval = security_task_setscheduler(p, policy, param);
6172 if (retval)
6173 return retval;
6174 }
6175
b29739f9
IM
6176 /*
6177 * make sure no PI-waiters arrive (or leave) while we are
6178 * changing the priority of the task:
6179 */
6180 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6181 /*
6182 * To be able to change p->policy safely, the apropriate
6183 * runqueue lock must be held.
6184 */
b29739f9 6185 rq = __task_rq_lock(p);
1da177e4
LT
6186 /* recheck policy now with rq lock held */
6187 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6188 policy = oldpolicy = -1;
b29739f9
IM
6189 __task_rq_unlock(rq);
6190 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6191 goto recheck;
6192 }
2daa3577 6193 update_rq_clock(rq);
dd41f596 6194 on_rq = p->se.on_rq;
051a1d1a 6195 running = task_current(rq, p);
0e1f3483 6196 if (on_rq)
2e1cb74a 6197 deactivate_task(rq, p, 0);
0e1f3483
HS
6198 if (running)
6199 p->sched_class->put_prev_task(rq, p);
f6b53205 6200
1da177e4 6201 oldprio = p->prio;
dd41f596 6202 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6203
0e1f3483
HS
6204 if (running)
6205 p->sched_class->set_curr_task(rq);
dd41f596
IM
6206 if (on_rq) {
6207 activate_task(rq, p, 0);
cb469845
SR
6208
6209 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6210 }
b29739f9
IM
6211 __task_rq_unlock(rq);
6212 spin_unlock_irqrestore(&p->pi_lock, flags);
6213
95e02ca9
TG
6214 rt_mutex_adjust_pi(p);
6215
1da177e4
LT
6216 return 0;
6217}
961ccddd
RR
6218
6219/**
6220 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6221 * @p: the task in question.
6222 * @policy: new policy.
6223 * @param: structure containing the new RT priority.
6224 *
6225 * NOTE that the task may be already dead.
6226 */
6227int sched_setscheduler(struct task_struct *p, int policy,
6228 struct sched_param *param)
6229{
6230 return __sched_setscheduler(p, policy, param, true);
6231}
1da177e4
LT
6232EXPORT_SYMBOL_GPL(sched_setscheduler);
6233
961ccddd
RR
6234/**
6235 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6236 * @p: the task in question.
6237 * @policy: new policy.
6238 * @param: structure containing the new RT priority.
6239 *
6240 * Just like sched_setscheduler, only don't bother checking if the
6241 * current context has permission. For example, this is needed in
6242 * stop_machine(): we create temporary high priority worker threads,
6243 * but our caller might not have that capability.
6244 */
6245int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6246 struct sched_param *param)
6247{
6248 return __sched_setscheduler(p, policy, param, false);
6249}
6250
95cdf3b7
IM
6251static int
6252do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6253{
1da177e4
LT
6254 struct sched_param lparam;
6255 struct task_struct *p;
36c8b586 6256 int retval;
1da177e4
LT
6257
6258 if (!param || pid < 0)
6259 return -EINVAL;
6260 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6261 return -EFAULT;
5fe1d75f
ON
6262
6263 rcu_read_lock();
6264 retval = -ESRCH;
1da177e4 6265 p = find_process_by_pid(pid);
5fe1d75f
ON
6266 if (p != NULL)
6267 retval = sched_setscheduler(p, policy, &lparam);
6268 rcu_read_unlock();
36c8b586 6269
1da177e4
LT
6270 return retval;
6271}
6272
6273/**
6274 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6275 * @pid: the pid in question.
6276 * @policy: new policy.
6277 * @param: structure containing the new RT priority.
6278 */
5add95d4
HC
6279SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6280 struct sched_param __user *, param)
1da177e4 6281{
c21761f1
JB
6282 /* negative values for policy are not valid */
6283 if (policy < 0)
6284 return -EINVAL;
6285
1da177e4
LT
6286 return do_sched_setscheduler(pid, policy, param);
6287}
6288
6289/**
6290 * sys_sched_setparam - set/change the RT priority of a thread
6291 * @pid: the pid in question.
6292 * @param: structure containing the new RT priority.
6293 */
5add95d4 6294SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6295{
6296 return do_sched_setscheduler(pid, -1, param);
6297}
6298
6299/**
6300 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6301 * @pid: the pid in question.
6302 */
5add95d4 6303SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6304{
36c8b586 6305 struct task_struct *p;
3a5c359a 6306 int retval;
1da177e4
LT
6307
6308 if (pid < 0)
3a5c359a 6309 return -EINVAL;
1da177e4
LT
6310
6311 retval = -ESRCH;
6312 read_lock(&tasklist_lock);
6313 p = find_process_by_pid(pid);
6314 if (p) {
6315 retval = security_task_getscheduler(p);
6316 if (!retval)
6317 retval = p->policy;
6318 }
6319 read_unlock(&tasklist_lock);
1da177e4
LT
6320 return retval;
6321}
6322
6323/**
6324 * sys_sched_getscheduler - get the RT priority of a thread
6325 * @pid: the pid in question.
6326 * @param: structure containing the RT priority.
6327 */
5add95d4 6328SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6329{
6330 struct sched_param lp;
36c8b586 6331 struct task_struct *p;
3a5c359a 6332 int retval;
1da177e4
LT
6333
6334 if (!param || pid < 0)
3a5c359a 6335 return -EINVAL;
1da177e4
LT
6336
6337 read_lock(&tasklist_lock);
6338 p = find_process_by_pid(pid);
6339 retval = -ESRCH;
6340 if (!p)
6341 goto out_unlock;
6342
6343 retval = security_task_getscheduler(p);
6344 if (retval)
6345 goto out_unlock;
6346
6347 lp.sched_priority = p->rt_priority;
6348 read_unlock(&tasklist_lock);
6349
6350 /*
6351 * This one might sleep, we cannot do it with a spinlock held ...
6352 */
6353 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6354
1da177e4
LT
6355 return retval;
6356
6357out_unlock:
6358 read_unlock(&tasklist_lock);
6359 return retval;
6360}
6361
96f874e2 6362long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6363{
5a16f3d3 6364 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6365 struct task_struct *p;
6366 int retval;
1da177e4 6367
95402b38 6368 get_online_cpus();
1da177e4
LT
6369 read_lock(&tasklist_lock);
6370
6371 p = find_process_by_pid(pid);
6372 if (!p) {
6373 read_unlock(&tasklist_lock);
95402b38 6374 put_online_cpus();
1da177e4
LT
6375 return -ESRCH;
6376 }
6377
6378 /*
6379 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6380 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6381 * usage count and then drop tasklist_lock.
6382 */
6383 get_task_struct(p);
6384 read_unlock(&tasklist_lock);
6385
5a16f3d3
RR
6386 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6387 retval = -ENOMEM;
6388 goto out_put_task;
6389 }
6390 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6391 retval = -ENOMEM;
6392 goto out_free_cpus_allowed;
6393 }
1da177e4 6394 retval = -EPERM;
c69e8d9c 6395 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6396 goto out_unlock;
6397
e7834f8f
DQ
6398 retval = security_task_setscheduler(p, 0, NULL);
6399 if (retval)
6400 goto out_unlock;
6401
5a16f3d3
RR
6402 cpuset_cpus_allowed(p, cpus_allowed);
6403 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6404 again:
5a16f3d3 6405 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6406
8707d8b8 6407 if (!retval) {
5a16f3d3
RR
6408 cpuset_cpus_allowed(p, cpus_allowed);
6409 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6410 /*
6411 * We must have raced with a concurrent cpuset
6412 * update. Just reset the cpus_allowed to the
6413 * cpuset's cpus_allowed
6414 */
5a16f3d3 6415 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6416 goto again;
6417 }
6418 }
1da177e4 6419out_unlock:
5a16f3d3
RR
6420 free_cpumask_var(new_mask);
6421out_free_cpus_allowed:
6422 free_cpumask_var(cpus_allowed);
6423out_put_task:
1da177e4 6424 put_task_struct(p);
95402b38 6425 put_online_cpus();
1da177e4
LT
6426 return retval;
6427}
6428
6429static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6430 struct cpumask *new_mask)
1da177e4 6431{
96f874e2
RR
6432 if (len < cpumask_size())
6433 cpumask_clear(new_mask);
6434 else if (len > cpumask_size())
6435 len = cpumask_size();
6436
1da177e4
LT
6437 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6438}
6439
6440/**
6441 * sys_sched_setaffinity - set the cpu affinity of a process
6442 * @pid: pid of the process
6443 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6444 * @user_mask_ptr: user-space pointer to the new cpu mask
6445 */
5add95d4
HC
6446SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6447 unsigned long __user *, user_mask_ptr)
1da177e4 6448{
5a16f3d3 6449 cpumask_var_t new_mask;
1da177e4
LT
6450 int retval;
6451
5a16f3d3
RR
6452 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6453 return -ENOMEM;
1da177e4 6454
5a16f3d3
RR
6455 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6456 if (retval == 0)
6457 retval = sched_setaffinity(pid, new_mask);
6458 free_cpumask_var(new_mask);
6459 return retval;
1da177e4
LT
6460}
6461
96f874e2 6462long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6463{
36c8b586 6464 struct task_struct *p;
1da177e4 6465 int retval;
1da177e4 6466
95402b38 6467 get_online_cpus();
1da177e4
LT
6468 read_lock(&tasklist_lock);
6469
6470 retval = -ESRCH;
6471 p = find_process_by_pid(pid);
6472 if (!p)
6473 goto out_unlock;
6474
e7834f8f
DQ
6475 retval = security_task_getscheduler(p);
6476 if (retval)
6477 goto out_unlock;
6478
96f874e2 6479 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6480
6481out_unlock:
6482 read_unlock(&tasklist_lock);
95402b38 6483 put_online_cpus();
1da177e4 6484
9531b62f 6485 return retval;
1da177e4
LT
6486}
6487
6488/**
6489 * sys_sched_getaffinity - get the cpu affinity of a process
6490 * @pid: pid of the process
6491 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6492 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6493 */
5add95d4
HC
6494SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6495 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6496{
6497 int ret;
f17c8607 6498 cpumask_var_t mask;
1da177e4 6499
f17c8607 6500 if (len < cpumask_size())
1da177e4
LT
6501 return -EINVAL;
6502
f17c8607
RR
6503 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6504 return -ENOMEM;
1da177e4 6505
f17c8607
RR
6506 ret = sched_getaffinity(pid, mask);
6507 if (ret == 0) {
6508 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6509 ret = -EFAULT;
6510 else
6511 ret = cpumask_size();
6512 }
6513 free_cpumask_var(mask);
1da177e4 6514
f17c8607 6515 return ret;
1da177e4
LT
6516}
6517
6518/**
6519 * sys_sched_yield - yield the current processor to other threads.
6520 *
dd41f596
IM
6521 * This function yields the current CPU to other tasks. If there are no
6522 * other threads running on this CPU then this function will return.
1da177e4 6523 */
5add95d4 6524SYSCALL_DEFINE0(sched_yield)
1da177e4 6525{
70b97a7f 6526 struct rq *rq = this_rq_lock();
1da177e4 6527
2d72376b 6528 schedstat_inc(rq, yld_count);
4530d7ab 6529 current->sched_class->yield_task(rq);
1da177e4
LT
6530
6531 /*
6532 * Since we are going to call schedule() anyway, there's
6533 * no need to preempt or enable interrupts:
6534 */
6535 __release(rq->lock);
8a25d5de 6536 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6537 _raw_spin_unlock(&rq->lock);
6538 preempt_enable_no_resched();
6539
6540 schedule();
6541
6542 return 0;
6543}
6544
e7b38404 6545static void __cond_resched(void)
1da177e4 6546{
8e0a43d8
IM
6547#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6548 __might_sleep(__FILE__, __LINE__);
6549#endif
5bbcfd90
IM
6550 /*
6551 * The BKS might be reacquired before we have dropped
6552 * PREEMPT_ACTIVE, which could trigger a second
6553 * cond_resched() call.
6554 */
1da177e4
LT
6555 do {
6556 add_preempt_count(PREEMPT_ACTIVE);
6557 schedule();
6558 sub_preempt_count(PREEMPT_ACTIVE);
6559 } while (need_resched());
6560}
6561
02b67cc3 6562int __sched _cond_resched(void)
1da177e4 6563{
9414232f
IM
6564 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6565 system_state == SYSTEM_RUNNING) {
1da177e4
LT
6566 __cond_resched();
6567 return 1;
6568 }
6569 return 0;
6570}
02b67cc3 6571EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6572
6573/*
6574 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6575 * call schedule, and on return reacquire the lock.
6576 *
41a2d6cf 6577 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6578 * operations here to prevent schedule() from being called twice (once via
6579 * spin_unlock(), once by hand).
6580 */
95cdf3b7 6581int cond_resched_lock(spinlock_t *lock)
1da177e4 6582{
95c354fe 6583 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
6584 int ret = 0;
6585
95c354fe 6586 if (spin_needbreak(lock) || resched) {
1da177e4 6587 spin_unlock(lock);
95c354fe
NP
6588 if (resched && need_resched())
6589 __cond_resched();
6590 else
6591 cpu_relax();
6df3cecb 6592 ret = 1;
1da177e4 6593 spin_lock(lock);
1da177e4 6594 }
6df3cecb 6595 return ret;
1da177e4 6596}
1da177e4
LT
6597EXPORT_SYMBOL(cond_resched_lock);
6598
6599int __sched cond_resched_softirq(void)
6600{
6601 BUG_ON(!in_softirq());
6602
9414232f 6603 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 6604 local_bh_enable();
1da177e4
LT
6605 __cond_resched();
6606 local_bh_disable();
6607 return 1;
6608 }
6609 return 0;
6610}
1da177e4
LT
6611EXPORT_SYMBOL(cond_resched_softirq);
6612
1da177e4
LT
6613/**
6614 * yield - yield the current processor to other threads.
6615 *
72fd4a35 6616 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6617 * thread runnable and calls sys_sched_yield().
6618 */
6619void __sched yield(void)
6620{
6621 set_current_state(TASK_RUNNING);
6622 sys_sched_yield();
6623}
1da177e4
LT
6624EXPORT_SYMBOL(yield);
6625
6626/*
41a2d6cf 6627 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
6628 * that process accounting knows that this is a task in IO wait state.
6629 *
6630 * But don't do that if it is a deliberate, throttling IO wait (this task
6631 * has set its backing_dev_info: the queue against which it should throttle)
6632 */
6633void __sched io_schedule(void)
6634{
70b97a7f 6635 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 6636
0ff92245 6637 delayacct_blkio_start();
1da177e4
LT
6638 atomic_inc(&rq->nr_iowait);
6639 schedule();
6640 atomic_dec(&rq->nr_iowait);
0ff92245 6641 delayacct_blkio_end();
1da177e4 6642}
1da177e4
LT
6643EXPORT_SYMBOL(io_schedule);
6644
6645long __sched io_schedule_timeout(long timeout)
6646{
70b97a7f 6647 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
6648 long ret;
6649
0ff92245 6650 delayacct_blkio_start();
1da177e4
LT
6651 atomic_inc(&rq->nr_iowait);
6652 ret = schedule_timeout(timeout);
6653 atomic_dec(&rq->nr_iowait);
0ff92245 6654 delayacct_blkio_end();
1da177e4
LT
6655 return ret;
6656}
6657
6658/**
6659 * sys_sched_get_priority_max - return maximum RT priority.
6660 * @policy: scheduling class.
6661 *
6662 * this syscall returns the maximum rt_priority that can be used
6663 * by a given scheduling class.
6664 */
5add95d4 6665SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6666{
6667 int ret = -EINVAL;
6668
6669 switch (policy) {
6670 case SCHED_FIFO:
6671 case SCHED_RR:
6672 ret = MAX_USER_RT_PRIO-1;
6673 break;
6674 case SCHED_NORMAL:
b0a9499c 6675 case SCHED_BATCH:
dd41f596 6676 case SCHED_IDLE:
1da177e4
LT
6677 ret = 0;
6678 break;
6679 }
6680 return ret;
6681}
6682
6683/**
6684 * sys_sched_get_priority_min - return minimum RT priority.
6685 * @policy: scheduling class.
6686 *
6687 * this syscall returns the minimum rt_priority that can be used
6688 * by a given scheduling class.
6689 */
5add95d4 6690SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6691{
6692 int ret = -EINVAL;
6693
6694 switch (policy) {
6695 case SCHED_FIFO:
6696 case SCHED_RR:
6697 ret = 1;
6698 break;
6699 case SCHED_NORMAL:
b0a9499c 6700 case SCHED_BATCH:
dd41f596 6701 case SCHED_IDLE:
1da177e4
LT
6702 ret = 0;
6703 }
6704 return ret;
6705}
6706
6707/**
6708 * sys_sched_rr_get_interval - return the default timeslice of a process.
6709 * @pid: pid of the process.
6710 * @interval: userspace pointer to the timeslice value.
6711 *
6712 * this syscall writes the default timeslice value of a given process
6713 * into the user-space timespec buffer. A value of '0' means infinity.
6714 */
17da2bd9 6715SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6716 struct timespec __user *, interval)
1da177e4 6717{
36c8b586 6718 struct task_struct *p;
a4ec24b4 6719 unsigned int time_slice;
3a5c359a 6720 int retval;
1da177e4 6721 struct timespec t;
1da177e4
LT
6722
6723 if (pid < 0)
3a5c359a 6724 return -EINVAL;
1da177e4
LT
6725
6726 retval = -ESRCH;
6727 read_lock(&tasklist_lock);
6728 p = find_process_by_pid(pid);
6729 if (!p)
6730 goto out_unlock;
6731
6732 retval = security_task_getscheduler(p);
6733 if (retval)
6734 goto out_unlock;
6735
77034937
IM
6736 /*
6737 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6738 * tasks that are on an otherwise idle runqueue:
6739 */
6740 time_slice = 0;
6741 if (p->policy == SCHED_RR) {
a4ec24b4 6742 time_slice = DEF_TIMESLICE;
1868f958 6743 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
6744 struct sched_entity *se = &p->se;
6745 unsigned long flags;
6746 struct rq *rq;
6747
6748 rq = task_rq_lock(p, &flags);
77034937
IM
6749 if (rq->cfs.load.weight)
6750 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
6751 task_rq_unlock(rq, &flags);
6752 }
1da177e4 6753 read_unlock(&tasklist_lock);
a4ec24b4 6754 jiffies_to_timespec(time_slice, &t);
1da177e4 6755 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6756 return retval;
3a5c359a 6757
1da177e4
LT
6758out_unlock:
6759 read_unlock(&tasklist_lock);
6760 return retval;
6761}
6762
7c731e0a 6763static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6764
82a1fcb9 6765void sched_show_task(struct task_struct *p)
1da177e4 6766{
1da177e4 6767 unsigned long free = 0;
36c8b586 6768 unsigned state;
1da177e4 6769
1da177e4 6770 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6771 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6772 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6773#if BITS_PER_LONG == 32
1da177e4 6774 if (state == TASK_RUNNING)
cc4ea795 6775 printk(KERN_CONT " running ");
1da177e4 6776 else
cc4ea795 6777 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6778#else
6779 if (state == TASK_RUNNING)
cc4ea795 6780 printk(KERN_CONT " running task ");
1da177e4 6781 else
cc4ea795 6782 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6783#endif
6784#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6785 free = stack_not_used(p);
1da177e4 6786#endif
aa47b7e0
DR
6787 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6788 task_pid_nr(p), task_pid_nr(p->real_parent),
6789 (unsigned long)task_thread_info(p)->flags);
1da177e4 6790
5fb5e6de 6791 show_stack(p, NULL);
1da177e4
LT
6792}
6793
e59e2ae2 6794void show_state_filter(unsigned long state_filter)
1da177e4 6795{
36c8b586 6796 struct task_struct *g, *p;
1da177e4 6797
4bd77321
IM
6798#if BITS_PER_LONG == 32
6799 printk(KERN_INFO
6800 " task PC stack pid father\n");
1da177e4 6801#else
4bd77321
IM
6802 printk(KERN_INFO
6803 " task PC stack pid father\n");
1da177e4
LT
6804#endif
6805 read_lock(&tasklist_lock);
6806 do_each_thread(g, p) {
6807 /*
6808 * reset the NMI-timeout, listing all files on a slow
6809 * console might take alot of time:
6810 */
6811 touch_nmi_watchdog();
39bc89fd 6812 if (!state_filter || (p->state & state_filter))
82a1fcb9 6813 sched_show_task(p);
1da177e4
LT
6814 } while_each_thread(g, p);
6815
04c9167f
JF
6816 touch_all_softlockup_watchdogs();
6817
dd41f596
IM
6818#ifdef CONFIG_SCHED_DEBUG
6819 sysrq_sched_debug_show();
6820#endif
1da177e4 6821 read_unlock(&tasklist_lock);
e59e2ae2
IM
6822 /*
6823 * Only show locks if all tasks are dumped:
6824 */
6825 if (state_filter == -1)
6826 debug_show_all_locks();
1da177e4
LT
6827}
6828
1df21055
IM
6829void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6830{
dd41f596 6831 idle->sched_class = &idle_sched_class;
1df21055
IM
6832}
6833
f340c0d1
IM
6834/**
6835 * init_idle - set up an idle thread for a given CPU
6836 * @idle: task in question
6837 * @cpu: cpu the idle task belongs to
6838 *
6839 * NOTE: this function does not set the idle thread's NEED_RESCHED
6840 * flag, to make booting more robust.
6841 */
5c1e1767 6842void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6843{
70b97a7f 6844 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6845 unsigned long flags;
6846
5cbd54ef
IM
6847 spin_lock_irqsave(&rq->lock, flags);
6848
dd41f596
IM
6849 __sched_fork(idle);
6850 idle->se.exec_start = sched_clock();
6851
b29739f9 6852 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6853 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6854 __set_task_cpu(idle, cpu);
1da177e4 6855
1da177e4 6856 rq->curr = rq->idle = idle;
4866cde0
NP
6857#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6858 idle->oncpu = 1;
6859#endif
1da177e4
LT
6860 spin_unlock_irqrestore(&rq->lock, flags);
6861
6862 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6863#if defined(CONFIG_PREEMPT)
6864 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6865#else
a1261f54 6866 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6867#endif
dd41f596
IM
6868 /*
6869 * The idle tasks have their own, simple scheduling class:
6870 */
6871 idle->sched_class = &idle_sched_class;
fb52607a 6872 ftrace_graph_init_task(idle);
1da177e4
LT
6873}
6874
6875/*
6876 * In a system that switches off the HZ timer nohz_cpu_mask
6877 * indicates which cpus entered this state. This is used
6878 * in the rcu update to wait only for active cpus. For system
6879 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6880 * always be CPU_BITS_NONE.
1da177e4 6881 */
6a7b3dc3 6882cpumask_var_t nohz_cpu_mask;
1da177e4 6883
19978ca6
IM
6884/*
6885 * Increase the granularity value when there are more CPUs,
6886 * because with more CPUs the 'effective latency' as visible
6887 * to users decreases. But the relationship is not linear,
6888 * so pick a second-best guess by going with the log2 of the
6889 * number of CPUs.
6890 *
6891 * This idea comes from the SD scheduler of Con Kolivas:
6892 */
6893static inline void sched_init_granularity(void)
6894{
6895 unsigned int factor = 1 + ilog2(num_online_cpus());
6896 const unsigned long limit = 200000000;
6897
6898 sysctl_sched_min_granularity *= factor;
6899 if (sysctl_sched_min_granularity > limit)
6900 sysctl_sched_min_granularity = limit;
6901
6902 sysctl_sched_latency *= factor;
6903 if (sysctl_sched_latency > limit)
6904 sysctl_sched_latency = limit;
6905
6906 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6907
6908 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6909}
6910
1da177e4
LT
6911#ifdef CONFIG_SMP
6912/*
6913 * This is how migration works:
6914 *
70b97a7f 6915 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6916 * runqueue and wake up that CPU's migration thread.
6917 * 2) we down() the locked semaphore => thread blocks.
6918 * 3) migration thread wakes up (implicitly it forces the migrated
6919 * thread off the CPU)
6920 * 4) it gets the migration request and checks whether the migrated
6921 * task is still in the wrong runqueue.
6922 * 5) if it's in the wrong runqueue then the migration thread removes
6923 * it and puts it into the right queue.
6924 * 6) migration thread up()s the semaphore.
6925 * 7) we wake up and the migration is done.
6926 */
6927
6928/*
6929 * Change a given task's CPU affinity. Migrate the thread to a
6930 * proper CPU and schedule it away if the CPU it's executing on
6931 * is removed from the allowed bitmask.
6932 *
6933 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6934 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6935 * call is not atomic; no spinlocks may be held.
6936 */
96f874e2 6937int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 6938{
70b97a7f 6939 struct migration_req req;
1da177e4 6940 unsigned long flags;
70b97a7f 6941 struct rq *rq;
48f24c4d 6942 int ret = 0;
1da177e4
LT
6943
6944 rq = task_rq_lock(p, &flags);
96f874e2 6945 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
6946 ret = -EINVAL;
6947 goto out;
6948 }
6949
9985b0ba 6950 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 6951 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
6952 ret = -EINVAL;
6953 goto out;
6954 }
6955
73fe6aae 6956 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6957 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6958 else {
96f874e2
RR
6959 cpumask_copy(&p->cpus_allowed, new_mask);
6960 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
6961 }
6962
1da177e4 6963 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6964 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6965 goto out;
6966
1e5ce4f4 6967 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
6968 /* Need help from migration thread: drop lock and wait. */
6969 task_rq_unlock(rq, &flags);
6970 wake_up_process(rq->migration_thread);
6971 wait_for_completion(&req.done);
6972 tlb_migrate_finish(p->mm);
6973 return 0;
6974 }
6975out:
6976 task_rq_unlock(rq, &flags);
48f24c4d 6977
1da177e4
LT
6978 return ret;
6979}
cd8ba7cd 6980EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6981
6982/*
41a2d6cf 6983 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6984 * this because either it can't run here any more (set_cpus_allowed()
6985 * away from this CPU, or CPU going down), or because we're
6986 * attempting to rebalance this task on exec (sched_exec).
6987 *
6988 * So we race with normal scheduler movements, but that's OK, as long
6989 * as the task is no longer on this CPU.
efc30814
KK
6990 *
6991 * Returns non-zero if task was successfully migrated.
1da177e4 6992 */
efc30814 6993static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6994{
70b97a7f 6995 struct rq *rq_dest, *rq_src;
dd41f596 6996 int ret = 0, on_rq;
1da177e4 6997
e761b772 6998 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6999 return ret;
1da177e4
LT
7000
7001 rq_src = cpu_rq(src_cpu);
7002 rq_dest = cpu_rq(dest_cpu);
7003
7004 double_rq_lock(rq_src, rq_dest);
7005 /* Already moved. */
7006 if (task_cpu(p) != src_cpu)
b1e38734 7007 goto done;
1da177e4 7008 /* Affinity changed (again). */
96f874e2 7009 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7010 goto fail;
1da177e4 7011
dd41f596 7012 on_rq = p->se.on_rq;
6e82a3be 7013 if (on_rq)
2e1cb74a 7014 deactivate_task(rq_src, p, 0);
6e82a3be 7015
1da177e4 7016 set_task_cpu(p, dest_cpu);
dd41f596
IM
7017 if (on_rq) {
7018 activate_task(rq_dest, p, 0);
15afe09b 7019 check_preempt_curr(rq_dest, p, 0);
1da177e4 7020 }
b1e38734 7021done:
efc30814 7022 ret = 1;
b1e38734 7023fail:
1da177e4 7024 double_rq_unlock(rq_src, rq_dest);
efc30814 7025 return ret;
1da177e4
LT
7026}
7027
7028/*
7029 * migration_thread - this is a highprio system thread that performs
7030 * thread migration by bumping thread off CPU then 'pushing' onto
7031 * another runqueue.
7032 */
95cdf3b7 7033static int migration_thread(void *data)
1da177e4 7034{
1da177e4 7035 int cpu = (long)data;
70b97a7f 7036 struct rq *rq;
1da177e4
LT
7037
7038 rq = cpu_rq(cpu);
7039 BUG_ON(rq->migration_thread != current);
7040
7041 set_current_state(TASK_INTERRUPTIBLE);
7042 while (!kthread_should_stop()) {
70b97a7f 7043 struct migration_req *req;
1da177e4 7044 struct list_head *head;
1da177e4 7045
1da177e4
LT
7046 spin_lock_irq(&rq->lock);
7047
7048 if (cpu_is_offline(cpu)) {
7049 spin_unlock_irq(&rq->lock);
371cbb38 7050 break;
1da177e4
LT
7051 }
7052
7053 if (rq->active_balance) {
7054 active_load_balance(rq, cpu);
7055 rq->active_balance = 0;
7056 }
7057
7058 head = &rq->migration_queue;
7059
7060 if (list_empty(head)) {
7061 spin_unlock_irq(&rq->lock);
7062 schedule();
7063 set_current_state(TASK_INTERRUPTIBLE);
7064 continue;
7065 }
70b97a7f 7066 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7067 list_del_init(head->next);
7068
674311d5
NP
7069 spin_unlock(&rq->lock);
7070 __migrate_task(req->task, cpu, req->dest_cpu);
7071 local_irq_enable();
1da177e4
LT
7072
7073 complete(&req->done);
7074 }
7075 __set_current_state(TASK_RUNNING);
1da177e4 7076
1da177e4
LT
7077 return 0;
7078}
7079
7080#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7081
7082static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7083{
7084 int ret;
7085
7086 local_irq_disable();
7087 ret = __migrate_task(p, src_cpu, dest_cpu);
7088 local_irq_enable();
7089 return ret;
7090}
7091
054b9108 7092/*
3a4fa0a2 7093 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7094 */
48f24c4d 7095static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7096{
70b97a7f 7097 int dest_cpu;
6ca09dfc 7098 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7099
7100again:
7101 /* Look for allowed, online CPU in same node. */
7102 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7103 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7104 goto move;
7105
7106 /* Any allowed, online CPU? */
7107 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7108 if (dest_cpu < nr_cpu_ids)
7109 goto move;
7110
7111 /* No more Mr. Nice Guy. */
7112 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
7113 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7114 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 7115
e76bd8d9
RR
7116 /*
7117 * Don't tell them about moving exiting tasks or
7118 * kernel threads (both mm NULL), since they never
7119 * leave kernel.
7120 */
7121 if (p->mm && printk_ratelimit()) {
7122 printk(KERN_INFO "process %d (%s) no "
7123 "longer affine to cpu%d\n",
7124 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7125 }
e76bd8d9
RR
7126 }
7127
7128move:
7129 /* It can have affinity changed while we were choosing. */
7130 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7131 goto again;
1da177e4
LT
7132}
7133
7134/*
7135 * While a dead CPU has no uninterruptible tasks queued at this point,
7136 * it might still have a nonzero ->nr_uninterruptible counter, because
7137 * for performance reasons the counter is not stricly tracking tasks to
7138 * their home CPUs. So we just add the counter to another CPU's counter,
7139 * to keep the global sum constant after CPU-down:
7140 */
70b97a7f 7141static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7142{
1e5ce4f4 7143 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
7144 unsigned long flags;
7145
7146 local_irq_save(flags);
7147 double_rq_lock(rq_src, rq_dest);
7148 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7149 rq_src->nr_uninterruptible = 0;
7150 double_rq_unlock(rq_src, rq_dest);
7151 local_irq_restore(flags);
7152}
7153
7154/* Run through task list and migrate tasks from the dead cpu. */
7155static void migrate_live_tasks(int src_cpu)
7156{
48f24c4d 7157 struct task_struct *p, *t;
1da177e4 7158
f7b4cddc 7159 read_lock(&tasklist_lock);
1da177e4 7160
48f24c4d
IM
7161 do_each_thread(t, p) {
7162 if (p == current)
1da177e4
LT
7163 continue;
7164
48f24c4d
IM
7165 if (task_cpu(p) == src_cpu)
7166 move_task_off_dead_cpu(src_cpu, p);
7167 } while_each_thread(t, p);
1da177e4 7168
f7b4cddc 7169 read_unlock(&tasklist_lock);
1da177e4
LT
7170}
7171
dd41f596
IM
7172/*
7173 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7174 * It does so by boosting its priority to highest possible.
7175 * Used by CPU offline code.
1da177e4
LT
7176 */
7177void sched_idle_next(void)
7178{
48f24c4d 7179 int this_cpu = smp_processor_id();
70b97a7f 7180 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7181 struct task_struct *p = rq->idle;
7182 unsigned long flags;
7183
7184 /* cpu has to be offline */
48f24c4d 7185 BUG_ON(cpu_online(this_cpu));
1da177e4 7186
48f24c4d
IM
7187 /*
7188 * Strictly not necessary since rest of the CPUs are stopped by now
7189 * and interrupts disabled on the current cpu.
1da177e4
LT
7190 */
7191 spin_lock_irqsave(&rq->lock, flags);
7192
dd41f596 7193 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7194
94bc9a7b
DA
7195 update_rq_clock(rq);
7196 activate_task(rq, p, 0);
1da177e4
LT
7197
7198 spin_unlock_irqrestore(&rq->lock, flags);
7199}
7200
48f24c4d
IM
7201/*
7202 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7203 * offline.
7204 */
7205void idle_task_exit(void)
7206{
7207 struct mm_struct *mm = current->active_mm;
7208
7209 BUG_ON(cpu_online(smp_processor_id()));
7210
7211 if (mm != &init_mm)
7212 switch_mm(mm, &init_mm, current);
7213 mmdrop(mm);
7214}
7215
054b9108 7216/* called under rq->lock with disabled interrupts */
36c8b586 7217static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7218{
70b97a7f 7219 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7220
7221 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7222 BUG_ON(!p->exit_state);
1da177e4
LT
7223
7224 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7225 BUG_ON(p->state == TASK_DEAD);
1da177e4 7226
48f24c4d 7227 get_task_struct(p);
1da177e4
LT
7228
7229 /*
7230 * Drop lock around migration; if someone else moves it,
41a2d6cf 7231 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7232 * fine.
7233 */
f7b4cddc 7234 spin_unlock_irq(&rq->lock);
48f24c4d 7235 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7236 spin_lock_irq(&rq->lock);
1da177e4 7237
48f24c4d 7238 put_task_struct(p);
1da177e4
LT
7239}
7240
7241/* release_task() removes task from tasklist, so we won't find dead tasks. */
7242static void migrate_dead_tasks(unsigned int dead_cpu)
7243{
70b97a7f 7244 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7245 struct task_struct *next;
48f24c4d 7246
dd41f596
IM
7247 for ( ; ; ) {
7248 if (!rq->nr_running)
7249 break;
a8e504d2 7250 update_rq_clock(rq);
b67802ea 7251 next = pick_next_task(rq);
dd41f596
IM
7252 if (!next)
7253 break;
79c53799 7254 next->sched_class->put_prev_task(rq, next);
dd41f596 7255 migrate_dead(dead_cpu, next);
e692ab53 7256
1da177e4
LT
7257 }
7258}
dce48a84
TG
7259
7260/*
7261 * remove the tasks which were accounted by rq from calc_load_tasks.
7262 */
7263static void calc_global_load_remove(struct rq *rq)
7264{
7265 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7266}
1da177e4
LT
7267#endif /* CONFIG_HOTPLUG_CPU */
7268
e692ab53
NP
7269#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7270
7271static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7272 {
7273 .procname = "sched_domain",
c57baf1e 7274 .mode = 0555,
e0361851 7275 },
38605cae 7276 {0, },
e692ab53
NP
7277};
7278
7279static struct ctl_table sd_ctl_root[] = {
e0361851 7280 {
c57baf1e 7281 .ctl_name = CTL_KERN,
e0361851 7282 .procname = "kernel",
c57baf1e 7283 .mode = 0555,
e0361851
AD
7284 .child = sd_ctl_dir,
7285 },
38605cae 7286 {0, },
e692ab53
NP
7287};
7288
7289static struct ctl_table *sd_alloc_ctl_entry(int n)
7290{
7291 struct ctl_table *entry =
5cf9f062 7292 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7293
e692ab53
NP
7294 return entry;
7295}
7296
6382bc90
MM
7297static void sd_free_ctl_entry(struct ctl_table **tablep)
7298{
cd790076 7299 struct ctl_table *entry;
6382bc90 7300
cd790076
MM
7301 /*
7302 * In the intermediate directories, both the child directory and
7303 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7304 * will always be set. In the lowest directory the names are
cd790076
MM
7305 * static strings and all have proc handlers.
7306 */
7307 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7308 if (entry->child)
7309 sd_free_ctl_entry(&entry->child);
cd790076
MM
7310 if (entry->proc_handler == NULL)
7311 kfree(entry->procname);
7312 }
6382bc90
MM
7313
7314 kfree(*tablep);
7315 *tablep = NULL;
7316}
7317
e692ab53 7318static void
e0361851 7319set_table_entry(struct ctl_table *entry,
e692ab53
NP
7320 const char *procname, void *data, int maxlen,
7321 mode_t mode, proc_handler *proc_handler)
7322{
e692ab53
NP
7323 entry->procname = procname;
7324 entry->data = data;
7325 entry->maxlen = maxlen;
7326 entry->mode = mode;
7327 entry->proc_handler = proc_handler;
7328}
7329
7330static struct ctl_table *
7331sd_alloc_ctl_domain_table(struct sched_domain *sd)
7332{
a5d8c348 7333 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7334
ad1cdc1d
MM
7335 if (table == NULL)
7336 return NULL;
7337
e0361851 7338 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7339 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7340 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7341 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7342 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7343 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7344 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7345 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7346 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7347 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7348 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7349 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7350 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7351 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7352 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7353 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7354 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7355 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7356 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7357 &sd->cache_nice_tries,
7358 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7359 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7360 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7361 set_table_entry(&table[11], "name", sd->name,
7362 CORENAME_MAX_SIZE, 0444, proc_dostring);
7363 /* &table[12] is terminator */
e692ab53
NP
7364
7365 return table;
7366}
7367
9a4e7159 7368static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7369{
7370 struct ctl_table *entry, *table;
7371 struct sched_domain *sd;
7372 int domain_num = 0, i;
7373 char buf[32];
7374
7375 for_each_domain(cpu, sd)
7376 domain_num++;
7377 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7378 if (table == NULL)
7379 return NULL;
e692ab53
NP
7380
7381 i = 0;
7382 for_each_domain(cpu, sd) {
7383 snprintf(buf, 32, "domain%d", i);
e692ab53 7384 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7385 entry->mode = 0555;
e692ab53
NP
7386 entry->child = sd_alloc_ctl_domain_table(sd);
7387 entry++;
7388 i++;
7389 }
7390 return table;
7391}
7392
7393static struct ctl_table_header *sd_sysctl_header;
6382bc90 7394static void register_sched_domain_sysctl(void)
e692ab53
NP
7395{
7396 int i, cpu_num = num_online_cpus();
7397 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7398 char buf[32];
7399
7378547f
MM
7400 WARN_ON(sd_ctl_dir[0].child);
7401 sd_ctl_dir[0].child = entry;
7402
ad1cdc1d
MM
7403 if (entry == NULL)
7404 return;
7405
97b6ea7b 7406 for_each_online_cpu(i) {
e692ab53 7407 snprintf(buf, 32, "cpu%d", i);
e692ab53 7408 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7409 entry->mode = 0555;
e692ab53 7410 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7411 entry++;
e692ab53 7412 }
7378547f
MM
7413
7414 WARN_ON(sd_sysctl_header);
e692ab53
NP
7415 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7416}
6382bc90 7417
7378547f 7418/* may be called multiple times per register */
6382bc90
MM
7419static void unregister_sched_domain_sysctl(void)
7420{
7378547f
MM
7421 if (sd_sysctl_header)
7422 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7423 sd_sysctl_header = NULL;
7378547f
MM
7424 if (sd_ctl_dir[0].child)
7425 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7426}
e692ab53 7427#else
6382bc90
MM
7428static void register_sched_domain_sysctl(void)
7429{
7430}
7431static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7432{
7433}
7434#endif
7435
1f11eb6a
GH
7436static void set_rq_online(struct rq *rq)
7437{
7438 if (!rq->online) {
7439 const struct sched_class *class;
7440
c6c4927b 7441 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7442 rq->online = 1;
7443
7444 for_each_class(class) {
7445 if (class->rq_online)
7446 class->rq_online(rq);
7447 }
7448 }
7449}
7450
7451static void set_rq_offline(struct rq *rq)
7452{
7453 if (rq->online) {
7454 const struct sched_class *class;
7455
7456 for_each_class(class) {
7457 if (class->rq_offline)
7458 class->rq_offline(rq);
7459 }
7460
c6c4927b 7461 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7462 rq->online = 0;
7463 }
7464}
7465
1da177e4
LT
7466/*
7467 * migration_call - callback that gets triggered when a CPU is added.
7468 * Here we can start up the necessary migration thread for the new CPU.
7469 */
48f24c4d
IM
7470static int __cpuinit
7471migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7472{
1da177e4 7473 struct task_struct *p;
48f24c4d 7474 int cpu = (long)hcpu;
1da177e4 7475 unsigned long flags;
70b97a7f 7476 struct rq *rq;
1da177e4
LT
7477
7478 switch (action) {
5be9361c 7479
1da177e4 7480 case CPU_UP_PREPARE:
8bb78442 7481 case CPU_UP_PREPARE_FROZEN:
dd41f596 7482 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7483 if (IS_ERR(p))
7484 return NOTIFY_BAD;
1da177e4
LT
7485 kthread_bind(p, cpu);
7486 /* Must be high prio: stop_machine expects to yield to it. */
7487 rq = task_rq_lock(p, &flags);
dd41f596 7488 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7489 task_rq_unlock(rq, &flags);
371cbb38 7490 get_task_struct(p);
1da177e4
LT
7491 cpu_rq(cpu)->migration_thread = p;
7492 break;
48f24c4d 7493
1da177e4 7494 case CPU_ONLINE:
8bb78442 7495 case CPU_ONLINE_FROZEN:
3a4fa0a2 7496 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7497 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7498
7499 /* Update our root-domain */
7500 rq = cpu_rq(cpu);
7501 spin_lock_irqsave(&rq->lock, flags);
dce48a84
TG
7502 rq->calc_load_update = calc_load_update;
7503 rq->calc_load_active = 0;
1f94ef59 7504 if (rq->rd) {
c6c4927b 7505 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7506
7507 set_rq_online(rq);
1f94ef59
GH
7508 }
7509 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7510 break;
48f24c4d 7511
1da177e4
LT
7512#ifdef CONFIG_HOTPLUG_CPU
7513 case CPU_UP_CANCELED:
8bb78442 7514 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7515 if (!cpu_rq(cpu)->migration_thread)
7516 break;
41a2d6cf 7517 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7518 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7519 cpumask_any(cpu_online_mask));
1da177e4 7520 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7521 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7522 cpu_rq(cpu)->migration_thread = NULL;
7523 break;
48f24c4d 7524
1da177e4 7525 case CPU_DEAD:
8bb78442 7526 case CPU_DEAD_FROZEN:
470fd646 7527 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7528 migrate_live_tasks(cpu);
7529 rq = cpu_rq(cpu);
7530 kthread_stop(rq->migration_thread);
371cbb38 7531 put_task_struct(rq->migration_thread);
1da177e4
LT
7532 rq->migration_thread = NULL;
7533 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7534 spin_lock_irq(&rq->lock);
a8e504d2 7535 update_rq_clock(rq);
2e1cb74a 7536 deactivate_task(rq, rq->idle, 0);
1da177e4 7537 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7538 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7539 rq->idle->sched_class = &idle_sched_class;
1da177e4 7540 migrate_dead_tasks(cpu);
d2da272a 7541 spin_unlock_irq(&rq->lock);
470fd646 7542 cpuset_unlock();
1da177e4
LT
7543 migrate_nr_uninterruptible(rq);
7544 BUG_ON(rq->nr_running != 0);
dce48a84 7545 calc_global_load_remove(rq);
41a2d6cf
IM
7546 /*
7547 * No need to migrate the tasks: it was best-effort if
7548 * they didn't take sched_hotcpu_mutex. Just wake up
7549 * the requestors.
7550 */
1da177e4
LT
7551 spin_lock_irq(&rq->lock);
7552 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7553 struct migration_req *req;
7554
1da177e4 7555 req = list_entry(rq->migration_queue.next,
70b97a7f 7556 struct migration_req, list);
1da177e4 7557 list_del_init(&req->list);
9a2bd244 7558 spin_unlock_irq(&rq->lock);
1da177e4 7559 complete(&req->done);
9a2bd244 7560 spin_lock_irq(&rq->lock);
1da177e4
LT
7561 }
7562 spin_unlock_irq(&rq->lock);
7563 break;
57d885fe 7564
08f503b0
GH
7565 case CPU_DYING:
7566 case CPU_DYING_FROZEN:
57d885fe
GH
7567 /* Update our root-domain */
7568 rq = cpu_rq(cpu);
7569 spin_lock_irqsave(&rq->lock, flags);
7570 if (rq->rd) {
c6c4927b 7571 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7572 set_rq_offline(rq);
57d885fe
GH
7573 }
7574 spin_unlock_irqrestore(&rq->lock, flags);
7575 break;
1da177e4
LT
7576#endif
7577 }
7578 return NOTIFY_OK;
7579}
7580
f38b0820
PM
7581/*
7582 * Register at high priority so that task migration (migrate_all_tasks)
7583 * happens before everything else. This has to be lower priority than
7584 * the notifier in the perf_counter subsystem, though.
1da177e4 7585 */
26c2143b 7586static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7587 .notifier_call = migration_call,
7588 .priority = 10
7589};
7590
7babe8db 7591static int __init migration_init(void)
1da177e4
LT
7592{
7593 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7594 int err;
48f24c4d
IM
7595
7596 /* Start one for the boot CPU: */
07dccf33
AM
7597 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7598 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7599 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7600 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
7601
7602 return err;
1da177e4 7603}
7babe8db 7604early_initcall(migration_init);
1da177e4
LT
7605#endif
7606
7607#ifdef CONFIG_SMP
476f3534 7608
3e9830dc 7609#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7610
7c16ec58 7611static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7612 struct cpumask *groupmask)
1da177e4 7613{
4dcf6aff 7614 struct sched_group *group = sd->groups;
434d53b0 7615 char str[256];
1da177e4 7616
968ea6d8 7617 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7618 cpumask_clear(groupmask);
4dcf6aff
IM
7619
7620 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7621
7622 if (!(sd->flags & SD_LOAD_BALANCE)) {
7623 printk("does not load-balance\n");
7624 if (sd->parent)
7625 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7626 " has parent");
7627 return -1;
41c7ce9a
NP
7628 }
7629
eefd796a 7630 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7631
758b2cdc 7632 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7633 printk(KERN_ERR "ERROR: domain->span does not contain "
7634 "CPU%d\n", cpu);
7635 }
758b2cdc 7636 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7637 printk(KERN_ERR "ERROR: domain->groups does not contain"
7638 " CPU%d\n", cpu);
7639 }
1da177e4 7640
4dcf6aff 7641 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7642 do {
4dcf6aff
IM
7643 if (!group) {
7644 printk("\n");
7645 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7646 break;
7647 }
7648
4dcf6aff
IM
7649 if (!group->__cpu_power) {
7650 printk(KERN_CONT "\n");
7651 printk(KERN_ERR "ERROR: domain->cpu_power not "
7652 "set\n");
7653 break;
7654 }
1da177e4 7655
758b2cdc 7656 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7657 printk(KERN_CONT "\n");
7658 printk(KERN_ERR "ERROR: empty group\n");
7659 break;
7660 }
1da177e4 7661
758b2cdc 7662 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7663 printk(KERN_CONT "\n");
7664 printk(KERN_ERR "ERROR: repeated CPUs\n");
7665 break;
7666 }
1da177e4 7667
758b2cdc 7668 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7669
968ea6d8 7670 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7671
7672 printk(KERN_CONT " %s", str);
7673 if (group->__cpu_power != SCHED_LOAD_SCALE) {
7674 printk(KERN_CONT " (__cpu_power = %d)",
7675 group->__cpu_power);
7676 }
1da177e4 7677
4dcf6aff
IM
7678 group = group->next;
7679 } while (group != sd->groups);
7680 printk(KERN_CONT "\n");
1da177e4 7681
758b2cdc 7682 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7683 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7684
758b2cdc
RR
7685 if (sd->parent &&
7686 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7687 printk(KERN_ERR "ERROR: parent span is not a superset "
7688 "of domain->span\n");
7689 return 0;
7690}
1da177e4 7691
4dcf6aff
IM
7692static void sched_domain_debug(struct sched_domain *sd, int cpu)
7693{
d5dd3db1 7694 cpumask_var_t groupmask;
4dcf6aff 7695 int level = 0;
1da177e4 7696
4dcf6aff
IM
7697 if (!sd) {
7698 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7699 return;
7700 }
1da177e4 7701
4dcf6aff
IM
7702 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7703
d5dd3db1 7704 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7705 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7706 return;
7707 }
7708
4dcf6aff 7709 for (;;) {
7c16ec58 7710 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7711 break;
1da177e4
LT
7712 level++;
7713 sd = sd->parent;
33859f7f 7714 if (!sd)
4dcf6aff
IM
7715 break;
7716 }
d5dd3db1 7717 free_cpumask_var(groupmask);
1da177e4 7718}
6d6bc0ad 7719#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7720# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7721#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7722
1a20ff27 7723static int sd_degenerate(struct sched_domain *sd)
245af2c7 7724{
758b2cdc 7725 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7726 return 1;
7727
7728 /* Following flags need at least 2 groups */
7729 if (sd->flags & (SD_LOAD_BALANCE |
7730 SD_BALANCE_NEWIDLE |
7731 SD_BALANCE_FORK |
89c4710e
SS
7732 SD_BALANCE_EXEC |
7733 SD_SHARE_CPUPOWER |
7734 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7735 if (sd->groups != sd->groups->next)
7736 return 0;
7737 }
7738
7739 /* Following flags don't use groups */
7740 if (sd->flags & (SD_WAKE_IDLE |
7741 SD_WAKE_AFFINE |
7742 SD_WAKE_BALANCE))
7743 return 0;
7744
7745 return 1;
7746}
7747
48f24c4d
IM
7748static int
7749sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7750{
7751 unsigned long cflags = sd->flags, pflags = parent->flags;
7752
7753 if (sd_degenerate(parent))
7754 return 1;
7755
758b2cdc 7756 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7757 return 0;
7758
7759 /* Does parent contain flags not in child? */
7760 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7761 if (cflags & SD_WAKE_AFFINE)
7762 pflags &= ~SD_WAKE_BALANCE;
7763 /* Flags needing groups don't count if only 1 group in parent */
7764 if (parent->groups == parent->groups->next) {
7765 pflags &= ~(SD_LOAD_BALANCE |
7766 SD_BALANCE_NEWIDLE |
7767 SD_BALANCE_FORK |
89c4710e
SS
7768 SD_BALANCE_EXEC |
7769 SD_SHARE_CPUPOWER |
7770 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7771 if (nr_node_ids == 1)
7772 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7773 }
7774 if (~cflags & pflags)
7775 return 0;
7776
7777 return 1;
7778}
7779
c6c4927b
RR
7780static void free_rootdomain(struct root_domain *rd)
7781{
68e74568
RR
7782 cpupri_cleanup(&rd->cpupri);
7783
c6c4927b
RR
7784 free_cpumask_var(rd->rto_mask);
7785 free_cpumask_var(rd->online);
7786 free_cpumask_var(rd->span);
7787 kfree(rd);
7788}
7789
57d885fe
GH
7790static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7791{
a0490fa3 7792 struct root_domain *old_rd = NULL;
57d885fe 7793 unsigned long flags;
57d885fe
GH
7794
7795 spin_lock_irqsave(&rq->lock, flags);
7796
7797 if (rq->rd) {
a0490fa3 7798 old_rd = rq->rd;
57d885fe 7799
c6c4927b 7800 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7801 set_rq_offline(rq);
57d885fe 7802
c6c4927b 7803 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7804
a0490fa3
IM
7805 /*
7806 * If we dont want to free the old_rt yet then
7807 * set old_rd to NULL to skip the freeing later
7808 * in this function:
7809 */
7810 if (!atomic_dec_and_test(&old_rd->refcount))
7811 old_rd = NULL;
57d885fe
GH
7812 }
7813
7814 atomic_inc(&rd->refcount);
7815 rq->rd = rd;
7816
c6c4927b
RR
7817 cpumask_set_cpu(rq->cpu, rd->span);
7818 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 7819 set_rq_online(rq);
57d885fe
GH
7820
7821 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7822
7823 if (old_rd)
7824 free_rootdomain(old_rd);
57d885fe
GH
7825}
7826
fd5e1b5d 7827static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 7828{
36b7b6d4
PE
7829 gfp_t gfp = GFP_KERNEL;
7830
57d885fe
GH
7831 memset(rd, 0, sizeof(*rd));
7832
36b7b6d4
PE
7833 if (bootmem)
7834 gfp = GFP_NOWAIT;
c6c4927b 7835
36b7b6d4 7836 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 7837 goto out;
36b7b6d4 7838 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 7839 goto free_span;
36b7b6d4 7840 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 7841 goto free_online;
6e0534f2 7842
0fb53029 7843 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 7844 goto free_rto_mask;
c6c4927b 7845 return 0;
6e0534f2 7846
68e74568
RR
7847free_rto_mask:
7848 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7849free_online:
7850 free_cpumask_var(rd->online);
7851free_span:
7852 free_cpumask_var(rd->span);
0c910d28 7853out:
c6c4927b 7854 return -ENOMEM;
57d885fe
GH
7855}
7856
7857static void init_defrootdomain(void)
7858{
c6c4927b
RR
7859 init_rootdomain(&def_root_domain, true);
7860
57d885fe
GH
7861 atomic_set(&def_root_domain.refcount, 1);
7862}
7863
dc938520 7864static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7865{
7866 struct root_domain *rd;
7867
7868 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7869 if (!rd)
7870 return NULL;
7871
c6c4927b
RR
7872 if (init_rootdomain(rd, false) != 0) {
7873 kfree(rd);
7874 return NULL;
7875 }
57d885fe
GH
7876
7877 return rd;
7878}
7879
1da177e4 7880/*
0eab9146 7881 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7882 * hold the hotplug lock.
7883 */
0eab9146
IM
7884static void
7885cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7886{
70b97a7f 7887 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7888 struct sched_domain *tmp;
7889
7890 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7891 for (tmp = sd; tmp; ) {
245af2c7
SS
7892 struct sched_domain *parent = tmp->parent;
7893 if (!parent)
7894 break;
f29c9b1c 7895
1a848870 7896 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7897 tmp->parent = parent->parent;
1a848870
SS
7898 if (parent->parent)
7899 parent->parent->child = tmp;
f29c9b1c
LZ
7900 } else
7901 tmp = tmp->parent;
245af2c7
SS
7902 }
7903
1a848870 7904 if (sd && sd_degenerate(sd)) {
245af2c7 7905 sd = sd->parent;
1a848870
SS
7906 if (sd)
7907 sd->child = NULL;
7908 }
1da177e4
LT
7909
7910 sched_domain_debug(sd, cpu);
7911
57d885fe 7912 rq_attach_root(rq, rd);
674311d5 7913 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7914}
7915
7916/* cpus with isolated domains */
dcc30a35 7917static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7918
7919/* Setup the mask of cpus configured for isolated domains */
7920static int __init isolated_cpu_setup(char *str)
7921{
968ea6d8 7922 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7923 return 1;
7924}
7925
8927f494 7926__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
7927
7928/*
6711cab4
SS
7929 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7930 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
7931 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7932 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
7933 *
7934 * init_sched_build_groups will build a circular linked list of the groups
7935 * covered by the given span, and will set each group's ->cpumask correctly,
7936 * and ->cpu_power to 0.
7937 */
a616058b 7938static void
96f874e2
RR
7939init_sched_build_groups(const struct cpumask *span,
7940 const struct cpumask *cpu_map,
7941 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 7942 struct sched_group **sg,
96f874e2
RR
7943 struct cpumask *tmpmask),
7944 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
7945{
7946 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
7947 int i;
7948
96f874e2 7949 cpumask_clear(covered);
7c16ec58 7950
abcd083a 7951 for_each_cpu(i, span) {
6711cab4 7952 struct sched_group *sg;
7c16ec58 7953 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
7954 int j;
7955
758b2cdc 7956 if (cpumask_test_cpu(i, covered))
1da177e4
LT
7957 continue;
7958
758b2cdc 7959 cpumask_clear(sched_group_cpus(sg));
5517d86b 7960 sg->__cpu_power = 0;
1da177e4 7961
abcd083a 7962 for_each_cpu(j, span) {
7c16ec58 7963 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
7964 continue;
7965
96f874e2 7966 cpumask_set_cpu(j, covered);
758b2cdc 7967 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
7968 }
7969 if (!first)
7970 first = sg;
7971 if (last)
7972 last->next = sg;
7973 last = sg;
7974 }
7975 last->next = first;
7976}
7977
9c1cfda2 7978#define SD_NODES_PER_DOMAIN 16
1da177e4 7979
9c1cfda2 7980#ifdef CONFIG_NUMA
198e2f18 7981
9c1cfda2
JH
7982/**
7983 * find_next_best_node - find the next node to include in a sched_domain
7984 * @node: node whose sched_domain we're building
7985 * @used_nodes: nodes already in the sched_domain
7986 *
41a2d6cf 7987 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7988 * finds the closest node not already in the @used_nodes map.
7989 *
7990 * Should use nodemask_t.
7991 */
c5f59f08 7992static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7993{
7994 int i, n, val, min_val, best_node = 0;
7995
7996 min_val = INT_MAX;
7997
076ac2af 7998 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7999 /* Start at @node */
076ac2af 8000 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8001
8002 if (!nr_cpus_node(n))
8003 continue;
8004
8005 /* Skip already used nodes */
c5f59f08 8006 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8007 continue;
8008
8009 /* Simple min distance search */
8010 val = node_distance(node, n);
8011
8012 if (val < min_val) {
8013 min_val = val;
8014 best_node = n;
8015 }
8016 }
8017
c5f59f08 8018 node_set(best_node, *used_nodes);
9c1cfda2
JH
8019 return best_node;
8020}
8021
8022/**
8023 * sched_domain_node_span - get a cpumask for a node's sched_domain
8024 * @node: node whose cpumask we're constructing
73486722 8025 * @span: resulting cpumask
9c1cfda2 8026 *
41a2d6cf 8027 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8028 * should be one that prevents unnecessary balancing, but also spreads tasks
8029 * out optimally.
8030 */
96f874e2 8031static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8032{
c5f59f08 8033 nodemask_t used_nodes;
48f24c4d 8034 int i;
9c1cfda2 8035
6ca09dfc 8036 cpumask_clear(span);
c5f59f08 8037 nodes_clear(used_nodes);
9c1cfda2 8038
6ca09dfc 8039 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8040 node_set(node, used_nodes);
9c1cfda2
JH
8041
8042 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8043 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8044
6ca09dfc 8045 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8046 }
9c1cfda2 8047}
6d6bc0ad 8048#endif /* CONFIG_NUMA */
9c1cfda2 8049
5c45bf27 8050int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8051
6c99e9ad
RR
8052/*
8053 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8054 *
8055 * ( See the the comments in include/linux/sched.h:struct sched_group
8056 * and struct sched_domain. )
6c99e9ad
RR
8057 */
8058struct static_sched_group {
8059 struct sched_group sg;
8060 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8061};
8062
8063struct static_sched_domain {
8064 struct sched_domain sd;
8065 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8066};
8067
9c1cfda2 8068/*
48f24c4d 8069 * SMT sched-domains:
9c1cfda2 8070 */
1da177e4 8071#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
8072static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8073static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 8074
41a2d6cf 8075static int
96f874e2
RR
8076cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8077 struct sched_group **sg, struct cpumask *unused)
1da177e4 8078{
6711cab4 8079 if (sg)
6c99e9ad 8080 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
8081 return cpu;
8082}
6d6bc0ad 8083#endif /* CONFIG_SCHED_SMT */
1da177e4 8084
48f24c4d
IM
8085/*
8086 * multi-core sched-domains:
8087 */
1e9f28fa 8088#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8089static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8090static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8091#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8092
8093#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8094static int
96f874e2
RR
8095cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8096 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8097{
6711cab4 8098 int group;
7c16ec58 8099
c69fc56d 8100 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8101 group = cpumask_first(mask);
6711cab4 8102 if (sg)
6c99e9ad 8103 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8104 return group;
1e9f28fa
SS
8105}
8106#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8107static int
96f874e2
RR
8108cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8109 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8110{
6711cab4 8111 if (sg)
6c99e9ad 8112 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8113 return cpu;
8114}
8115#endif
8116
6c99e9ad
RR
8117static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8118static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8119
41a2d6cf 8120static int
96f874e2
RR
8121cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8122 struct sched_group **sg, struct cpumask *mask)
1da177e4 8123{
6711cab4 8124 int group;
48f24c4d 8125#ifdef CONFIG_SCHED_MC
6ca09dfc 8126 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8127 group = cpumask_first(mask);
1e9f28fa 8128#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8129 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8130 group = cpumask_first(mask);
1da177e4 8131#else
6711cab4 8132 group = cpu;
1da177e4 8133#endif
6711cab4 8134 if (sg)
6c99e9ad 8135 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8136 return group;
1da177e4
LT
8137}
8138
8139#ifdef CONFIG_NUMA
1da177e4 8140/*
9c1cfda2
JH
8141 * The init_sched_build_groups can't handle what we want to do with node
8142 * groups, so roll our own. Now each node has its own list of groups which
8143 * gets dynamically allocated.
1da177e4 8144 */
62ea9ceb 8145static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8146static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8147
62ea9ceb 8148static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8149static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8150
96f874e2
RR
8151static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8152 struct sched_group **sg,
8153 struct cpumask *nodemask)
9c1cfda2 8154{
6711cab4
SS
8155 int group;
8156
6ca09dfc 8157 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8158 group = cpumask_first(nodemask);
6711cab4
SS
8159
8160 if (sg)
6c99e9ad 8161 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8162 return group;
1da177e4 8163}
6711cab4 8164
08069033
SS
8165static void init_numa_sched_groups_power(struct sched_group *group_head)
8166{
8167 struct sched_group *sg = group_head;
8168 int j;
8169
8170 if (!sg)
8171 return;
3a5c359a 8172 do {
758b2cdc 8173 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8174 struct sched_domain *sd;
08069033 8175
6c99e9ad 8176 sd = &per_cpu(phys_domains, j).sd;
13318a71 8177 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8178 /*
8179 * Only add "power" once for each
8180 * physical package.
8181 */
8182 continue;
8183 }
08069033 8184
3a5c359a
AK
8185 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
8186 }
8187 sg = sg->next;
8188 } while (sg != group_head);
08069033 8189}
6d6bc0ad 8190#endif /* CONFIG_NUMA */
1da177e4 8191
a616058b 8192#ifdef CONFIG_NUMA
51888ca2 8193/* Free memory allocated for various sched_group structures */
96f874e2
RR
8194static void free_sched_groups(const struct cpumask *cpu_map,
8195 struct cpumask *nodemask)
51888ca2 8196{
a616058b 8197 int cpu, i;
51888ca2 8198
abcd083a 8199 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8200 struct sched_group **sched_group_nodes
8201 = sched_group_nodes_bycpu[cpu];
8202
51888ca2
SV
8203 if (!sched_group_nodes)
8204 continue;
8205
076ac2af 8206 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8207 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8208
6ca09dfc 8209 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8210 if (cpumask_empty(nodemask))
51888ca2
SV
8211 continue;
8212
8213 if (sg == NULL)
8214 continue;
8215 sg = sg->next;
8216next_sg:
8217 oldsg = sg;
8218 sg = sg->next;
8219 kfree(oldsg);
8220 if (oldsg != sched_group_nodes[i])
8221 goto next_sg;
8222 }
8223 kfree(sched_group_nodes);
8224 sched_group_nodes_bycpu[cpu] = NULL;
8225 }
51888ca2 8226}
6d6bc0ad 8227#else /* !CONFIG_NUMA */
96f874e2
RR
8228static void free_sched_groups(const struct cpumask *cpu_map,
8229 struct cpumask *nodemask)
a616058b
SS
8230{
8231}
6d6bc0ad 8232#endif /* CONFIG_NUMA */
51888ca2 8233
89c4710e
SS
8234/*
8235 * Initialize sched groups cpu_power.
8236 *
8237 * cpu_power indicates the capacity of sched group, which is used while
8238 * distributing the load between different sched groups in a sched domain.
8239 * Typically cpu_power for all the groups in a sched domain will be same unless
8240 * there are asymmetries in the topology. If there are asymmetries, group
8241 * having more cpu_power will pickup more load compared to the group having
8242 * less cpu_power.
8243 *
8244 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
8245 * the maximum number of tasks a group can handle in the presence of other idle
8246 * or lightly loaded groups in the same sched domain.
8247 */
8248static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8249{
8250 struct sched_domain *child;
8251 struct sched_group *group;
8252
8253 WARN_ON(!sd || !sd->groups);
8254
13318a71 8255 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8256 return;
8257
8258 child = sd->child;
8259
5517d86b
ED
8260 sd->groups->__cpu_power = 0;
8261
89c4710e
SS
8262 /*
8263 * For perf policy, if the groups in child domain share resources
8264 * (for example cores sharing some portions of the cache hierarchy
8265 * or SMT), then set this domain groups cpu_power such that each group
8266 * can handle only one task, when there are other idle groups in the
8267 * same sched domain.
8268 */
8269 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
8270 (child->flags &
8271 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 8272 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
8273 return;
8274 }
8275
89c4710e
SS
8276 /*
8277 * add cpu_power of each child group to this groups cpu_power
8278 */
8279 group = child->groups;
8280 do {
5517d86b 8281 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
8282 group = group->next;
8283 } while (group != child->groups);
8284}
8285
7c16ec58
MT
8286/*
8287 * Initializers for schedule domains
8288 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8289 */
8290
a5d8c348
IM
8291#ifdef CONFIG_SCHED_DEBUG
8292# define SD_INIT_NAME(sd, type) sd->name = #type
8293#else
8294# define SD_INIT_NAME(sd, type) do { } while (0)
8295#endif
8296
7c16ec58 8297#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8298
7c16ec58
MT
8299#define SD_INIT_FUNC(type) \
8300static noinline void sd_init_##type(struct sched_domain *sd) \
8301{ \
8302 memset(sd, 0, sizeof(*sd)); \
8303 *sd = SD_##type##_INIT; \
1d3504fc 8304 sd->level = SD_LV_##type; \
a5d8c348 8305 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8306}
8307
8308SD_INIT_FUNC(CPU)
8309#ifdef CONFIG_NUMA
8310 SD_INIT_FUNC(ALLNODES)
8311 SD_INIT_FUNC(NODE)
8312#endif
8313#ifdef CONFIG_SCHED_SMT
8314 SD_INIT_FUNC(SIBLING)
8315#endif
8316#ifdef CONFIG_SCHED_MC
8317 SD_INIT_FUNC(MC)
8318#endif
8319
1d3504fc
HS
8320static int default_relax_domain_level = -1;
8321
8322static int __init setup_relax_domain_level(char *str)
8323{
30e0e178
LZ
8324 unsigned long val;
8325
8326 val = simple_strtoul(str, NULL, 0);
8327 if (val < SD_LV_MAX)
8328 default_relax_domain_level = val;
8329
1d3504fc
HS
8330 return 1;
8331}
8332__setup("relax_domain_level=", setup_relax_domain_level);
8333
8334static void set_domain_attribute(struct sched_domain *sd,
8335 struct sched_domain_attr *attr)
8336{
8337 int request;
8338
8339 if (!attr || attr->relax_domain_level < 0) {
8340 if (default_relax_domain_level < 0)
8341 return;
8342 else
8343 request = default_relax_domain_level;
8344 } else
8345 request = attr->relax_domain_level;
8346 if (request < sd->level) {
8347 /* turn off idle balance on this domain */
8348 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8349 } else {
8350 /* turn on idle balance on this domain */
8351 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8352 }
8353}
8354
1da177e4 8355/*
1a20ff27
DG
8356 * Build sched domains for a given set of cpus and attach the sched domains
8357 * to the individual cpus
1da177e4 8358 */
96f874e2 8359static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 8360 struct sched_domain_attr *attr)
1da177e4 8361{
3404c8d9 8362 int i, err = -ENOMEM;
57d885fe 8363 struct root_domain *rd;
3404c8d9
RR
8364 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8365 tmpmask;
d1b55138 8366#ifdef CONFIG_NUMA
3404c8d9 8367 cpumask_var_t domainspan, covered, notcovered;
d1b55138 8368 struct sched_group **sched_group_nodes = NULL;
6711cab4 8369 int sd_allnodes = 0;
d1b55138 8370
3404c8d9
RR
8371 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8372 goto out;
8373 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8374 goto free_domainspan;
8375 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8376 goto free_covered;
8377#endif
8378
8379 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8380 goto free_notcovered;
8381 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8382 goto free_nodemask;
8383 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8384 goto free_this_sibling_map;
8385 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8386 goto free_this_core_map;
8387 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8388 goto free_send_covered;
8389
8390#ifdef CONFIG_NUMA
d1b55138
JH
8391 /*
8392 * Allocate the per-node list of sched groups
8393 */
076ac2af 8394 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 8395 GFP_KERNEL);
d1b55138
JH
8396 if (!sched_group_nodes) {
8397 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 8398 goto free_tmpmask;
d1b55138 8399 }
d1b55138 8400#endif
1da177e4 8401
dc938520 8402 rd = alloc_rootdomain();
57d885fe
GH
8403 if (!rd) {
8404 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 8405 goto free_sched_groups;
57d885fe
GH
8406 }
8407
7c16ec58 8408#ifdef CONFIG_NUMA
96f874e2 8409 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
8410#endif
8411
1da177e4 8412 /*
1a20ff27 8413 * Set up domains for cpus specified by the cpu_map.
1da177e4 8414 */
abcd083a 8415 for_each_cpu(i, cpu_map) {
1da177e4 8416 struct sched_domain *sd = NULL, *p;
1da177e4 8417
6ca09dfc 8418 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
1da177e4
LT
8419
8420#ifdef CONFIG_NUMA
96f874e2
RR
8421 if (cpumask_weight(cpu_map) >
8422 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
62ea9ceb 8423 sd = &per_cpu(allnodes_domains, i).sd;
7c16ec58 8424 SD_INIT(sd, ALLNODES);
1d3504fc 8425 set_domain_attribute(sd, attr);
758b2cdc 8426 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 8427 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 8428 p = sd;
6711cab4 8429 sd_allnodes = 1;
9c1cfda2
JH
8430 } else
8431 p = NULL;
8432
62ea9ceb 8433 sd = &per_cpu(node_domains, i).sd;
7c16ec58 8434 SD_INIT(sd, NODE);
1d3504fc 8435 set_domain_attribute(sd, attr);
758b2cdc 8436 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 8437 sd->parent = p;
1a848870
SS
8438 if (p)
8439 p->child = sd;
758b2cdc
RR
8440 cpumask_and(sched_domain_span(sd),
8441 sched_domain_span(sd), cpu_map);
1da177e4
LT
8442#endif
8443
8444 p = sd;
6c99e9ad 8445 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 8446 SD_INIT(sd, CPU);
1d3504fc 8447 set_domain_attribute(sd, attr);
758b2cdc 8448 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 8449 sd->parent = p;
1a848870
SS
8450 if (p)
8451 p->child = sd;
7c16ec58 8452 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 8453
1e9f28fa
SS
8454#ifdef CONFIG_SCHED_MC
8455 p = sd;
6c99e9ad 8456 sd = &per_cpu(core_domains, i).sd;
7c16ec58 8457 SD_INIT(sd, MC);
1d3504fc 8458 set_domain_attribute(sd, attr);
6ca09dfc
MT
8459 cpumask_and(sched_domain_span(sd), cpu_map,
8460 cpu_coregroup_mask(i));
1e9f28fa 8461 sd->parent = p;
1a848870 8462 p->child = sd;
7c16ec58 8463 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
8464#endif
8465
1da177e4
LT
8466#ifdef CONFIG_SCHED_SMT
8467 p = sd;
6c99e9ad 8468 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 8469 SD_INIT(sd, SIBLING);
1d3504fc 8470 set_domain_attribute(sd, attr);
758b2cdc 8471 cpumask_and(sched_domain_span(sd),
c69fc56d 8472 topology_thread_cpumask(i), cpu_map);
1da177e4 8473 sd->parent = p;
1a848870 8474 p->child = sd;
7c16ec58 8475 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
8476#endif
8477 }
8478
8479#ifdef CONFIG_SCHED_SMT
8480 /* Set up CPU (sibling) groups */
abcd083a 8481 for_each_cpu(i, cpu_map) {
96f874e2 8482 cpumask_and(this_sibling_map,
c69fc56d 8483 topology_thread_cpumask(i), cpu_map);
96f874e2 8484 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
8485 continue;
8486
dd41f596 8487 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
8488 &cpu_to_cpu_group,
8489 send_covered, tmpmask);
1da177e4
LT
8490 }
8491#endif
8492
1e9f28fa
SS
8493#ifdef CONFIG_SCHED_MC
8494 /* Set up multi-core groups */
abcd083a 8495 for_each_cpu(i, cpu_map) {
6ca09dfc 8496 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
96f874e2 8497 if (i != cpumask_first(this_core_map))
1e9f28fa 8498 continue;
7c16ec58 8499
dd41f596 8500 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
8501 &cpu_to_core_group,
8502 send_covered, tmpmask);
1e9f28fa
SS
8503 }
8504#endif
8505
1da177e4 8506 /* Set up physical groups */
076ac2af 8507 for (i = 0; i < nr_node_ids; i++) {
6ca09dfc 8508 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8509 if (cpumask_empty(nodemask))
1da177e4
LT
8510 continue;
8511
7c16ec58
MT
8512 init_sched_build_groups(nodemask, cpu_map,
8513 &cpu_to_phys_group,
8514 send_covered, tmpmask);
1da177e4
LT
8515 }
8516
8517#ifdef CONFIG_NUMA
8518 /* Set up node groups */
7c16ec58 8519 if (sd_allnodes) {
7c16ec58
MT
8520 init_sched_build_groups(cpu_map, cpu_map,
8521 &cpu_to_allnodes_group,
8522 send_covered, tmpmask);
8523 }
9c1cfda2 8524
076ac2af 8525 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
8526 /* Set up node groups */
8527 struct sched_group *sg, *prev;
9c1cfda2
JH
8528 int j;
8529
96f874e2 8530 cpumask_clear(covered);
6ca09dfc 8531 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8532 if (cpumask_empty(nodemask)) {
d1b55138 8533 sched_group_nodes[i] = NULL;
9c1cfda2 8534 continue;
d1b55138 8535 }
9c1cfda2 8536
4bdbaad3 8537 sched_domain_node_span(i, domainspan);
96f874e2 8538 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 8539
6c99e9ad
RR
8540 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8541 GFP_KERNEL, i);
51888ca2
SV
8542 if (!sg) {
8543 printk(KERN_WARNING "Can not alloc domain group for "
8544 "node %d\n", i);
8545 goto error;
8546 }
9c1cfda2 8547 sched_group_nodes[i] = sg;
abcd083a 8548 for_each_cpu(j, nodemask) {
9c1cfda2 8549 struct sched_domain *sd;
9761eea8 8550
62ea9ceb 8551 sd = &per_cpu(node_domains, j).sd;
9c1cfda2 8552 sd->groups = sg;
9c1cfda2 8553 }
5517d86b 8554 sg->__cpu_power = 0;
758b2cdc 8555 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 8556 sg->next = sg;
96f874e2 8557 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
8558 prev = sg;
8559
076ac2af 8560 for (j = 0; j < nr_node_ids; j++) {
076ac2af 8561 int n = (i + j) % nr_node_ids;
9c1cfda2 8562
96f874e2
RR
8563 cpumask_complement(notcovered, covered);
8564 cpumask_and(tmpmask, notcovered, cpu_map);
8565 cpumask_and(tmpmask, tmpmask, domainspan);
8566 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8567 break;
8568
6ca09dfc 8569 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
96f874e2 8570 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8571 continue;
8572
6c99e9ad
RR
8573 sg = kmalloc_node(sizeof(struct sched_group) +
8574 cpumask_size(),
15f0b676 8575 GFP_KERNEL, i);
9c1cfda2
JH
8576 if (!sg) {
8577 printk(KERN_WARNING
8578 "Can not alloc domain group for node %d\n", j);
51888ca2 8579 goto error;
9c1cfda2 8580 }
5517d86b 8581 sg->__cpu_power = 0;
758b2cdc 8582 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 8583 sg->next = prev->next;
96f874e2 8584 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
8585 prev->next = sg;
8586 prev = sg;
8587 }
9c1cfda2 8588 }
1da177e4
LT
8589#endif
8590
8591 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8592#ifdef CONFIG_SCHED_SMT
abcd083a 8593 for_each_cpu(i, cpu_map) {
6c99e9ad 8594 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 8595
89c4710e 8596 init_sched_groups_power(i, sd);
5c45bf27 8597 }
1da177e4 8598#endif
1e9f28fa 8599#ifdef CONFIG_SCHED_MC
abcd083a 8600 for_each_cpu(i, cpu_map) {
6c99e9ad 8601 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 8602
89c4710e 8603 init_sched_groups_power(i, sd);
5c45bf27
SS
8604 }
8605#endif
1e9f28fa 8606
abcd083a 8607 for_each_cpu(i, cpu_map) {
6c99e9ad 8608 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 8609
89c4710e 8610 init_sched_groups_power(i, sd);
1da177e4
LT
8611 }
8612
9c1cfda2 8613#ifdef CONFIG_NUMA
076ac2af 8614 for (i = 0; i < nr_node_ids; i++)
08069033 8615 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 8616
6711cab4
SS
8617 if (sd_allnodes) {
8618 struct sched_group *sg;
f712c0c7 8619
96f874e2 8620 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 8621 tmpmask);
f712c0c7
SS
8622 init_numa_sched_groups_power(sg);
8623 }
9c1cfda2
JH
8624#endif
8625
1da177e4 8626 /* Attach the domains */
abcd083a 8627 for_each_cpu(i, cpu_map) {
1da177e4
LT
8628 struct sched_domain *sd;
8629#ifdef CONFIG_SCHED_SMT
6c99e9ad 8630 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8631#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8632 sd = &per_cpu(core_domains, i).sd;
1da177e4 8633#else
6c99e9ad 8634 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8635#endif
57d885fe 8636 cpu_attach_domain(sd, rd, i);
1da177e4 8637 }
51888ca2 8638
3404c8d9
RR
8639 err = 0;
8640
8641free_tmpmask:
8642 free_cpumask_var(tmpmask);
8643free_send_covered:
8644 free_cpumask_var(send_covered);
8645free_this_core_map:
8646 free_cpumask_var(this_core_map);
8647free_this_sibling_map:
8648 free_cpumask_var(this_sibling_map);
8649free_nodemask:
8650 free_cpumask_var(nodemask);
8651free_notcovered:
8652#ifdef CONFIG_NUMA
8653 free_cpumask_var(notcovered);
8654free_covered:
8655 free_cpumask_var(covered);
8656free_domainspan:
8657 free_cpumask_var(domainspan);
8658out:
8659#endif
8660 return err;
8661
8662free_sched_groups:
8663#ifdef CONFIG_NUMA
8664 kfree(sched_group_nodes);
8665#endif
8666 goto free_tmpmask;
51888ca2 8667
a616058b 8668#ifdef CONFIG_NUMA
51888ca2 8669error:
7c16ec58 8670 free_sched_groups(cpu_map, tmpmask);
c6c4927b 8671 free_rootdomain(rd);
3404c8d9 8672 goto free_tmpmask;
a616058b 8673#endif
1da177e4 8674}
029190c5 8675
96f874e2 8676static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8677{
8678 return __build_sched_domains(cpu_map, NULL);
8679}
8680
96f874e2 8681static struct cpumask *doms_cur; /* current sched domains */
029190c5 8682static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8683static struct sched_domain_attr *dattr_cur;
8684 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8685
8686/*
8687 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8688 * cpumask) fails, then fallback to a single sched domain,
8689 * as determined by the single cpumask fallback_doms.
029190c5 8690 */
4212823f 8691static cpumask_var_t fallback_doms;
029190c5 8692
ee79d1bd
HC
8693/*
8694 * arch_update_cpu_topology lets virtualized architectures update the
8695 * cpu core maps. It is supposed to return 1 if the topology changed
8696 * or 0 if it stayed the same.
8697 */
8698int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8699{
ee79d1bd 8700 return 0;
22e52b07
HC
8701}
8702
1a20ff27 8703/*
41a2d6cf 8704 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8705 * For now this just excludes isolated cpus, but could be used to
8706 * exclude other special cases in the future.
1a20ff27 8707 */
96f874e2 8708static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8709{
7378547f
MM
8710 int err;
8711
22e52b07 8712 arch_update_cpu_topology();
029190c5 8713 ndoms_cur = 1;
96f874e2 8714 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8715 if (!doms_cur)
4212823f 8716 doms_cur = fallback_doms;
dcc30a35 8717 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8718 dattr_cur = NULL;
7378547f 8719 err = build_sched_domains(doms_cur);
6382bc90 8720 register_sched_domain_sysctl();
7378547f
MM
8721
8722 return err;
1a20ff27
DG
8723}
8724
96f874e2
RR
8725static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8726 struct cpumask *tmpmask)
1da177e4 8727{
7c16ec58 8728 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8729}
1da177e4 8730
1a20ff27
DG
8731/*
8732 * Detach sched domains from a group of cpus specified in cpu_map
8733 * These cpus will now be attached to the NULL domain
8734 */
96f874e2 8735static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8736{
96f874e2
RR
8737 /* Save because hotplug lock held. */
8738 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8739 int i;
8740
abcd083a 8741 for_each_cpu(i, cpu_map)
57d885fe 8742 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8743 synchronize_sched();
96f874e2 8744 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8745}
8746
1d3504fc
HS
8747/* handle null as "default" */
8748static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8749 struct sched_domain_attr *new, int idx_new)
8750{
8751 struct sched_domain_attr tmp;
8752
8753 /* fast path */
8754 if (!new && !cur)
8755 return 1;
8756
8757 tmp = SD_ATTR_INIT;
8758 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8759 new ? (new + idx_new) : &tmp,
8760 sizeof(struct sched_domain_attr));
8761}
8762
029190c5
PJ
8763/*
8764 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8765 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8766 * doms_new[] to the current sched domain partitioning, doms_cur[].
8767 * It destroys each deleted domain and builds each new domain.
8768 *
96f874e2 8769 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8770 * The masks don't intersect (don't overlap.) We should setup one
8771 * sched domain for each mask. CPUs not in any of the cpumasks will
8772 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8773 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8774 * it as it is.
8775 *
41a2d6cf
IM
8776 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8777 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8778 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8779 * ndoms_new == 1, and partition_sched_domains() will fallback to
8780 * the single partition 'fallback_doms', it also forces the domains
8781 * to be rebuilt.
029190c5 8782 *
96f874e2 8783 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8784 * ndoms_new == 0 is a special case for destroying existing domains,
8785 * and it will not create the default domain.
dfb512ec 8786 *
029190c5
PJ
8787 * Call with hotplug lock held
8788 */
96f874e2
RR
8789/* FIXME: Change to struct cpumask *doms_new[] */
8790void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8791 struct sched_domain_attr *dattr_new)
029190c5 8792{
dfb512ec 8793 int i, j, n;
d65bd5ec 8794 int new_topology;
029190c5 8795
712555ee 8796 mutex_lock(&sched_domains_mutex);
a1835615 8797
7378547f
MM
8798 /* always unregister in case we don't destroy any domains */
8799 unregister_sched_domain_sysctl();
8800
d65bd5ec
HC
8801 /* Let architecture update cpu core mappings. */
8802 new_topology = arch_update_cpu_topology();
8803
dfb512ec 8804 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8805
8806 /* Destroy deleted domains */
8807 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8808 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8809 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8810 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8811 goto match1;
8812 }
8813 /* no match - a current sched domain not in new doms_new[] */
8814 detach_destroy_domains(doms_cur + i);
8815match1:
8816 ;
8817 }
8818
e761b772
MK
8819 if (doms_new == NULL) {
8820 ndoms_cur = 0;
4212823f 8821 doms_new = fallback_doms;
dcc30a35 8822 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 8823 WARN_ON_ONCE(dattr_new);
e761b772
MK
8824 }
8825
029190c5
PJ
8826 /* Build new domains */
8827 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 8828 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 8829 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 8830 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
8831 goto match2;
8832 }
8833 /* no match - add a new doms_new */
1d3504fc
HS
8834 __build_sched_domains(doms_new + i,
8835 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
8836match2:
8837 ;
8838 }
8839
8840 /* Remember the new sched domains */
4212823f 8841 if (doms_cur != fallback_doms)
029190c5 8842 kfree(doms_cur);
1d3504fc 8843 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 8844 doms_cur = doms_new;
1d3504fc 8845 dattr_cur = dattr_new;
029190c5 8846 ndoms_cur = ndoms_new;
7378547f
MM
8847
8848 register_sched_domain_sysctl();
a1835615 8849
712555ee 8850 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
8851}
8852
5c45bf27 8853#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 8854static void arch_reinit_sched_domains(void)
5c45bf27 8855{
95402b38 8856 get_online_cpus();
dfb512ec
MK
8857
8858 /* Destroy domains first to force the rebuild */
8859 partition_sched_domains(0, NULL, NULL);
8860
e761b772 8861 rebuild_sched_domains();
95402b38 8862 put_online_cpus();
5c45bf27
SS
8863}
8864
8865static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8866{
afb8a9b7 8867 unsigned int level = 0;
5c45bf27 8868
afb8a9b7
GS
8869 if (sscanf(buf, "%u", &level) != 1)
8870 return -EINVAL;
8871
8872 /*
8873 * level is always be positive so don't check for
8874 * level < POWERSAVINGS_BALANCE_NONE which is 0
8875 * What happens on 0 or 1 byte write,
8876 * need to check for count as well?
8877 */
8878
8879 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8880 return -EINVAL;
8881
8882 if (smt)
afb8a9b7 8883 sched_smt_power_savings = level;
5c45bf27 8884 else
afb8a9b7 8885 sched_mc_power_savings = level;
5c45bf27 8886
c70f22d2 8887 arch_reinit_sched_domains();
5c45bf27 8888
c70f22d2 8889 return count;
5c45bf27
SS
8890}
8891
5c45bf27 8892#ifdef CONFIG_SCHED_MC
f718cd4a
AK
8893static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8894 char *page)
5c45bf27
SS
8895{
8896 return sprintf(page, "%u\n", sched_mc_power_savings);
8897}
f718cd4a 8898static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 8899 const char *buf, size_t count)
5c45bf27
SS
8900{
8901 return sched_power_savings_store(buf, count, 0);
8902}
f718cd4a
AK
8903static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8904 sched_mc_power_savings_show,
8905 sched_mc_power_savings_store);
5c45bf27
SS
8906#endif
8907
8908#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
8909static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8910 char *page)
5c45bf27
SS
8911{
8912 return sprintf(page, "%u\n", sched_smt_power_savings);
8913}
f718cd4a 8914static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 8915 const char *buf, size_t count)
5c45bf27
SS
8916{
8917 return sched_power_savings_store(buf, count, 1);
8918}
f718cd4a
AK
8919static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8920 sched_smt_power_savings_show,
6707de00
AB
8921 sched_smt_power_savings_store);
8922#endif
8923
39aac648 8924int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
8925{
8926 int err = 0;
8927
8928#ifdef CONFIG_SCHED_SMT
8929 if (smt_capable())
8930 err = sysfs_create_file(&cls->kset.kobj,
8931 &attr_sched_smt_power_savings.attr);
8932#endif
8933#ifdef CONFIG_SCHED_MC
8934 if (!err && mc_capable())
8935 err = sysfs_create_file(&cls->kset.kobj,
8936 &attr_sched_mc_power_savings.attr);
8937#endif
8938 return err;
8939}
6d6bc0ad 8940#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 8941
e761b772 8942#ifndef CONFIG_CPUSETS
1da177e4 8943/*
e761b772
MK
8944 * Add online and remove offline CPUs from the scheduler domains.
8945 * When cpusets are enabled they take over this function.
1da177e4
LT
8946 */
8947static int update_sched_domains(struct notifier_block *nfb,
8948 unsigned long action, void *hcpu)
e761b772
MK
8949{
8950 switch (action) {
8951 case CPU_ONLINE:
8952 case CPU_ONLINE_FROZEN:
8953 case CPU_DEAD:
8954 case CPU_DEAD_FROZEN:
dfb512ec 8955 partition_sched_domains(1, NULL, NULL);
e761b772
MK
8956 return NOTIFY_OK;
8957
8958 default:
8959 return NOTIFY_DONE;
8960 }
8961}
8962#endif
8963
8964static int update_runtime(struct notifier_block *nfb,
8965 unsigned long action, void *hcpu)
1da177e4 8966{
7def2be1
PZ
8967 int cpu = (int)(long)hcpu;
8968
1da177e4 8969 switch (action) {
1da177e4 8970 case CPU_DOWN_PREPARE:
8bb78442 8971 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8972 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8973 return NOTIFY_OK;
8974
1da177e4 8975 case CPU_DOWN_FAILED:
8bb78442 8976 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8977 case CPU_ONLINE:
8bb78442 8978 case CPU_ONLINE_FROZEN:
7def2be1 8979 enable_runtime(cpu_rq(cpu));
e761b772
MK
8980 return NOTIFY_OK;
8981
1da177e4
LT
8982 default:
8983 return NOTIFY_DONE;
8984 }
1da177e4 8985}
1da177e4
LT
8986
8987void __init sched_init_smp(void)
8988{
dcc30a35
RR
8989 cpumask_var_t non_isolated_cpus;
8990
8991 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 8992
434d53b0
MT
8993#if defined(CONFIG_NUMA)
8994 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8995 GFP_KERNEL);
8996 BUG_ON(sched_group_nodes_bycpu == NULL);
8997#endif
95402b38 8998 get_online_cpus();
712555ee 8999 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
9000 arch_init_sched_domains(cpu_online_mask);
9001 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9002 if (cpumask_empty(non_isolated_cpus))
9003 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9004 mutex_unlock(&sched_domains_mutex);
95402b38 9005 put_online_cpus();
e761b772
MK
9006
9007#ifndef CONFIG_CPUSETS
1da177e4
LT
9008 /* XXX: Theoretical race here - CPU may be hotplugged now */
9009 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9010#endif
9011
9012 /* RT runtime code needs to handle some hotplug events */
9013 hotcpu_notifier(update_runtime, 0);
9014
b328ca18 9015 init_hrtick();
5c1e1767
NP
9016
9017 /* Move init over to a non-isolated CPU */
dcc30a35 9018 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9019 BUG();
19978ca6 9020 sched_init_granularity();
dcc30a35 9021 free_cpumask_var(non_isolated_cpus);
4212823f
RR
9022
9023 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 9024 init_sched_rt_class();
1da177e4
LT
9025}
9026#else
9027void __init sched_init_smp(void)
9028{
19978ca6 9029 sched_init_granularity();
1da177e4
LT
9030}
9031#endif /* CONFIG_SMP */
9032
cd1bb94b
AB
9033const_debug unsigned int sysctl_timer_migration = 1;
9034
1da177e4
LT
9035int in_sched_functions(unsigned long addr)
9036{
1da177e4
LT
9037 return in_lock_functions(addr) ||
9038 (addr >= (unsigned long)__sched_text_start
9039 && addr < (unsigned long)__sched_text_end);
9040}
9041
a9957449 9042static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9043{
9044 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9045 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9046#ifdef CONFIG_FAIR_GROUP_SCHED
9047 cfs_rq->rq = rq;
9048#endif
67e9fb2a 9049 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9050}
9051
fa85ae24
PZ
9052static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9053{
9054 struct rt_prio_array *array;
9055 int i;
9056
9057 array = &rt_rq->active;
9058 for (i = 0; i < MAX_RT_PRIO; i++) {
9059 INIT_LIST_HEAD(array->queue + i);
9060 __clear_bit(i, array->bitmap);
9061 }
9062 /* delimiter for bitsearch: */
9063 __set_bit(MAX_RT_PRIO, array->bitmap);
9064
052f1dc7 9065#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9066 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9067#ifdef CONFIG_SMP
e864c499 9068 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9069#endif
48d5e258 9070#endif
fa85ae24
PZ
9071#ifdef CONFIG_SMP
9072 rt_rq->rt_nr_migratory = 0;
fa85ae24 9073 rt_rq->overloaded = 0;
917b627d 9074 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
fa85ae24
PZ
9075#endif
9076
9077 rt_rq->rt_time = 0;
9078 rt_rq->rt_throttled = 0;
ac086bc2
PZ
9079 rt_rq->rt_runtime = 0;
9080 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9081
052f1dc7 9082#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9083 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9084 rt_rq->rq = rq;
9085#endif
fa85ae24
PZ
9086}
9087
6f505b16 9088#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9089static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9090 struct sched_entity *se, int cpu, int add,
9091 struct sched_entity *parent)
6f505b16 9092{
ec7dc8ac 9093 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9094 tg->cfs_rq[cpu] = cfs_rq;
9095 init_cfs_rq(cfs_rq, rq);
9096 cfs_rq->tg = tg;
9097 if (add)
9098 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9099
9100 tg->se[cpu] = se;
354d60c2
DG
9101 /* se could be NULL for init_task_group */
9102 if (!se)
9103 return;
9104
ec7dc8ac
DG
9105 if (!parent)
9106 se->cfs_rq = &rq->cfs;
9107 else
9108 se->cfs_rq = parent->my_q;
9109
6f505b16
PZ
9110 se->my_q = cfs_rq;
9111 se->load.weight = tg->shares;
e05510d0 9112 se->load.inv_weight = 0;
ec7dc8ac 9113 se->parent = parent;
6f505b16 9114}
052f1dc7 9115#endif
6f505b16 9116
052f1dc7 9117#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9118static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9119 struct sched_rt_entity *rt_se, int cpu, int add,
9120 struct sched_rt_entity *parent)
6f505b16 9121{
ec7dc8ac
DG
9122 struct rq *rq = cpu_rq(cpu);
9123
6f505b16
PZ
9124 tg->rt_rq[cpu] = rt_rq;
9125 init_rt_rq(rt_rq, rq);
9126 rt_rq->tg = tg;
9127 rt_rq->rt_se = rt_se;
ac086bc2 9128 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9129 if (add)
9130 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9131
9132 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9133 if (!rt_se)
9134 return;
9135
ec7dc8ac
DG
9136 if (!parent)
9137 rt_se->rt_rq = &rq->rt;
9138 else
9139 rt_se->rt_rq = parent->my_q;
9140
6f505b16 9141 rt_se->my_q = rt_rq;
ec7dc8ac 9142 rt_se->parent = parent;
6f505b16
PZ
9143 INIT_LIST_HEAD(&rt_se->run_list);
9144}
9145#endif
9146
1da177e4
LT
9147void __init sched_init(void)
9148{
dd41f596 9149 int i, j;
434d53b0
MT
9150 unsigned long alloc_size = 0, ptr;
9151
9152#ifdef CONFIG_FAIR_GROUP_SCHED
9153 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9154#endif
9155#ifdef CONFIG_RT_GROUP_SCHED
9156 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9157#endif
9158#ifdef CONFIG_USER_SCHED
9159 alloc_size *= 2;
df7c8e84
RR
9160#endif
9161#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9162 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0
MT
9163#endif
9164 /*
9165 * As sched_init() is called before page_alloc is setup,
9166 * we use alloc_bootmem().
9167 */
9168 if (alloc_size) {
36b7b6d4 9169 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9170
9171#ifdef CONFIG_FAIR_GROUP_SCHED
9172 init_task_group.se = (struct sched_entity **)ptr;
9173 ptr += nr_cpu_ids * sizeof(void **);
9174
9175 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9176 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9177
9178#ifdef CONFIG_USER_SCHED
9179 root_task_group.se = (struct sched_entity **)ptr;
9180 ptr += nr_cpu_ids * sizeof(void **);
9181
9182 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9183 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9184#endif /* CONFIG_USER_SCHED */
9185#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9186#ifdef CONFIG_RT_GROUP_SCHED
9187 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9188 ptr += nr_cpu_ids * sizeof(void **);
9189
9190 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9191 ptr += nr_cpu_ids * sizeof(void **);
9192
9193#ifdef CONFIG_USER_SCHED
9194 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9195 ptr += nr_cpu_ids * sizeof(void **);
9196
9197 root_task_group.rt_rq = (struct rt_rq **)ptr;
9198 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9199#endif /* CONFIG_USER_SCHED */
9200#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9201#ifdef CONFIG_CPUMASK_OFFSTACK
9202 for_each_possible_cpu(i) {
9203 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9204 ptr += cpumask_size();
9205 }
9206#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9207 }
dd41f596 9208
57d885fe
GH
9209#ifdef CONFIG_SMP
9210 init_defrootdomain();
9211#endif
9212
d0b27fa7
PZ
9213 init_rt_bandwidth(&def_rt_bandwidth,
9214 global_rt_period(), global_rt_runtime());
9215
9216#ifdef CONFIG_RT_GROUP_SCHED
9217 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9218 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9219#ifdef CONFIG_USER_SCHED
9220 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9221 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9222#endif /* CONFIG_USER_SCHED */
9223#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9224
052f1dc7 9225#ifdef CONFIG_GROUP_SCHED
6f505b16 9226 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9227 INIT_LIST_HEAD(&init_task_group.children);
9228
9229#ifdef CONFIG_USER_SCHED
9230 INIT_LIST_HEAD(&root_task_group.children);
9231 init_task_group.parent = &root_task_group;
9232 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9233#endif /* CONFIG_USER_SCHED */
9234#endif /* CONFIG_GROUP_SCHED */
6f505b16 9235
0a945022 9236 for_each_possible_cpu(i) {
70b97a7f 9237 struct rq *rq;
1da177e4
LT
9238
9239 rq = cpu_rq(i);
9240 spin_lock_init(&rq->lock);
7897986b 9241 rq->nr_running = 0;
dce48a84
TG
9242 rq->calc_load_active = 0;
9243 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9244 init_cfs_rq(&rq->cfs, rq);
6f505b16 9245 init_rt_rq(&rq->rt, rq);
dd41f596 9246#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9247 init_task_group.shares = init_task_group_load;
6f505b16 9248 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9249#ifdef CONFIG_CGROUP_SCHED
9250 /*
9251 * How much cpu bandwidth does init_task_group get?
9252 *
9253 * In case of task-groups formed thr' the cgroup filesystem, it
9254 * gets 100% of the cpu resources in the system. This overall
9255 * system cpu resource is divided among the tasks of
9256 * init_task_group and its child task-groups in a fair manner,
9257 * based on each entity's (task or task-group's) weight
9258 * (se->load.weight).
9259 *
9260 * In other words, if init_task_group has 10 tasks of weight
9261 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9262 * then A0's share of the cpu resource is:
9263 *
0d905bca 9264 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9265 *
9266 * We achieve this by letting init_task_group's tasks sit
9267 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9268 */
ec7dc8ac 9269 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9270#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9271 root_task_group.shares = NICE_0_LOAD;
9272 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9273 /*
9274 * In case of task-groups formed thr' the user id of tasks,
9275 * init_task_group represents tasks belonging to root user.
9276 * Hence it forms a sibling of all subsequent groups formed.
9277 * In this case, init_task_group gets only a fraction of overall
9278 * system cpu resource, based on the weight assigned to root
9279 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9280 * by letting tasks of init_task_group sit in a separate cfs_rq
9281 * (init_cfs_rq) and having one entity represent this group of
9282 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9283 */
ec7dc8ac 9284 init_tg_cfs_entry(&init_task_group,
6f505b16 9285 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
9286 &per_cpu(init_sched_entity, i), i, 1,
9287 root_task_group.se[i]);
6f505b16 9288
052f1dc7 9289#endif
354d60c2
DG
9290#endif /* CONFIG_FAIR_GROUP_SCHED */
9291
9292 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9293#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9294 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9295#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9296 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9297#elif defined CONFIG_USER_SCHED
eff766a6 9298 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9299 init_tg_rt_entry(&init_task_group,
6f505b16 9300 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9301 &per_cpu(init_sched_rt_entity, i), i, 1,
9302 root_task_group.rt_se[i]);
354d60c2 9303#endif
dd41f596 9304#endif
1da177e4 9305
dd41f596
IM
9306 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9307 rq->cpu_load[j] = 0;
1da177e4 9308#ifdef CONFIG_SMP
41c7ce9a 9309 rq->sd = NULL;
57d885fe 9310 rq->rd = NULL;
1da177e4 9311 rq->active_balance = 0;
dd41f596 9312 rq->next_balance = jiffies;
1da177e4 9313 rq->push_cpu = 0;
0a2966b4 9314 rq->cpu = i;
1f11eb6a 9315 rq->online = 0;
1da177e4
LT
9316 rq->migration_thread = NULL;
9317 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9318 rq_attach_root(rq, &def_root_domain);
1da177e4 9319#endif
8f4d37ec 9320 init_rq_hrtick(rq);
1da177e4 9321 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9322 }
9323
2dd73a4f 9324 set_load_weight(&init_task);
b50f60ce 9325
e107be36
AK
9326#ifdef CONFIG_PREEMPT_NOTIFIERS
9327 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9328#endif
9329
c9819f45 9330#ifdef CONFIG_SMP
962cf36c 9331 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9332#endif
9333
b50f60ce
HC
9334#ifdef CONFIG_RT_MUTEXES
9335 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9336#endif
9337
1da177e4
LT
9338 /*
9339 * The boot idle thread does lazy MMU switching as well:
9340 */
9341 atomic_inc(&init_mm.mm_count);
9342 enter_lazy_tlb(&init_mm, current);
9343
9344 /*
9345 * Make us the idle thread. Technically, schedule() should not be
9346 * called from this thread, however somewhere below it might be,
9347 * but because we are the idle thread, we just pick up running again
9348 * when this runqueue becomes "idle".
9349 */
9350 init_idle(current, smp_processor_id());
dce48a84
TG
9351
9352 calc_load_update = jiffies + LOAD_FREQ;
9353
dd41f596
IM
9354 /*
9355 * During early bootup we pretend to be a normal task:
9356 */
9357 current->sched_class = &fair_sched_class;
6892b75e 9358
6a7b3dc3 9359 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
4bdddf8f 9360 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9361#ifdef CONFIG_SMP
7d1e6a9b 9362#ifdef CONFIG_NO_HZ
4bdddf8f
PE
9363 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9364 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9365#endif
4bdddf8f 9366 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9367#endif /* SMP */
6a7b3dc3 9368
0d905bca
IM
9369 perf_counter_init();
9370
6892b75e 9371 scheduler_running = 1;
1da177e4
LT
9372}
9373
9374#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9375void __might_sleep(char *file, int line)
9376{
48f24c4d 9377#ifdef in_atomic
1da177e4
LT
9378 static unsigned long prev_jiffy; /* ratelimiting */
9379
aef745fc
IM
9380 if ((!in_atomic() && !irqs_disabled()) ||
9381 system_state != SYSTEM_RUNNING || oops_in_progress)
9382 return;
9383 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9384 return;
9385 prev_jiffy = jiffies;
9386
9387 printk(KERN_ERR
9388 "BUG: sleeping function called from invalid context at %s:%d\n",
9389 file, line);
9390 printk(KERN_ERR
9391 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9392 in_atomic(), irqs_disabled(),
9393 current->pid, current->comm);
9394
9395 debug_show_held_locks(current);
9396 if (irqs_disabled())
9397 print_irqtrace_events(current);
9398 dump_stack();
1da177e4
LT
9399#endif
9400}
9401EXPORT_SYMBOL(__might_sleep);
9402#endif
9403
9404#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9405static void normalize_task(struct rq *rq, struct task_struct *p)
9406{
9407 int on_rq;
3e51f33f 9408
3a5e4dc1
AK
9409 update_rq_clock(rq);
9410 on_rq = p->se.on_rq;
9411 if (on_rq)
9412 deactivate_task(rq, p, 0);
9413 __setscheduler(rq, p, SCHED_NORMAL, 0);
9414 if (on_rq) {
9415 activate_task(rq, p, 0);
9416 resched_task(rq->curr);
9417 }
9418}
9419
1da177e4
LT
9420void normalize_rt_tasks(void)
9421{
a0f98a1c 9422 struct task_struct *g, *p;
1da177e4 9423 unsigned long flags;
70b97a7f 9424 struct rq *rq;
1da177e4 9425
4cf5d77a 9426 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9427 do_each_thread(g, p) {
178be793
IM
9428 /*
9429 * Only normalize user tasks:
9430 */
9431 if (!p->mm)
9432 continue;
9433
6cfb0d5d 9434 p->se.exec_start = 0;
6cfb0d5d 9435#ifdef CONFIG_SCHEDSTATS
dd41f596 9436 p->se.wait_start = 0;
dd41f596 9437 p->se.sleep_start = 0;
dd41f596 9438 p->se.block_start = 0;
6cfb0d5d 9439#endif
dd41f596
IM
9440
9441 if (!rt_task(p)) {
9442 /*
9443 * Renice negative nice level userspace
9444 * tasks back to 0:
9445 */
9446 if (TASK_NICE(p) < 0 && p->mm)
9447 set_user_nice(p, 0);
1da177e4 9448 continue;
dd41f596 9449 }
1da177e4 9450
4cf5d77a 9451 spin_lock(&p->pi_lock);
b29739f9 9452 rq = __task_rq_lock(p);
1da177e4 9453
178be793 9454 normalize_task(rq, p);
3a5e4dc1 9455
b29739f9 9456 __task_rq_unlock(rq);
4cf5d77a 9457 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9458 } while_each_thread(g, p);
9459
4cf5d77a 9460 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9461}
9462
9463#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9464
9465#ifdef CONFIG_IA64
9466/*
9467 * These functions are only useful for the IA64 MCA handling.
9468 *
9469 * They can only be called when the whole system has been
9470 * stopped - every CPU needs to be quiescent, and no scheduling
9471 * activity can take place. Using them for anything else would
9472 * be a serious bug, and as a result, they aren't even visible
9473 * under any other configuration.
9474 */
9475
9476/**
9477 * curr_task - return the current task for a given cpu.
9478 * @cpu: the processor in question.
9479 *
9480 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9481 */
36c8b586 9482struct task_struct *curr_task(int cpu)
1df5c10a
LT
9483{
9484 return cpu_curr(cpu);
9485}
9486
9487/**
9488 * set_curr_task - set the current task for a given cpu.
9489 * @cpu: the processor in question.
9490 * @p: the task pointer to set.
9491 *
9492 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9493 * are serviced on a separate stack. It allows the architecture to switch the
9494 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9495 * must be called with all CPU's synchronized, and interrupts disabled, the
9496 * and caller must save the original value of the current task (see
9497 * curr_task() above) and restore that value before reenabling interrupts and
9498 * re-starting the system.
9499 *
9500 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9501 */
36c8b586 9502void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9503{
9504 cpu_curr(cpu) = p;
9505}
9506
9507#endif
29f59db3 9508
bccbe08a
PZ
9509#ifdef CONFIG_FAIR_GROUP_SCHED
9510static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9511{
9512 int i;
9513
9514 for_each_possible_cpu(i) {
9515 if (tg->cfs_rq)
9516 kfree(tg->cfs_rq[i]);
9517 if (tg->se)
9518 kfree(tg->se[i]);
6f505b16
PZ
9519 }
9520
9521 kfree(tg->cfs_rq);
9522 kfree(tg->se);
6f505b16
PZ
9523}
9524
ec7dc8ac
DG
9525static
9526int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9527{
29f59db3 9528 struct cfs_rq *cfs_rq;
eab17229 9529 struct sched_entity *se;
9b5b7751 9530 struct rq *rq;
29f59db3
SV
9531 int i;
9532
434d53b0 9533 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9534 if (!tg->cfs_rq)
9535 goto err;
434d53b0 9536 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9537 if (!tg->se)
9538 goto err;
052f1dc7
PZ
9539
9540 tg->shares = NICE_0_LOAD;
29f59db3
SV
9541
9542 for_each_possible_cpu(i) {
9b5b7751 9543 rq = cpu_rq(i);
29f59db3 9544
eab17229
LZ
9545 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9546 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9547 if (!cfs_rq)
9548 goto err;
9549
eab17229
LZ
9550 se = kzalloc_node(sizeof(struct sched_entity),
9551 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9552 if (!se)
9553 goto err;
9554
eab17229 9555 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9556 }
9557
9558 return 1;
9559
9560 err:
9561 return 0;
9562}
9563
9564static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9565{
9566 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9567 &cpu_rq(cpu)->leaf_cfs_rq_list);
9568}
9569
9570static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9571{
9572 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9573}
6d6bc0ad 9574#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9575static inline void free_fair_sched_group(struct task_group *tg)
9576{
9577}
9578
ec7dc8ac
DG
9579static inline
9580int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9581{
9582 return 1;
9583}
9584
9585static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9586{
9587}
9588
9589static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9590{
9591}
6d6bc0ad 9592#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9593
9594#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9595static void free_rt_sched_group(struct task_group *tg)
9596{
9597 int i;
9598
d0b27fa7
PZ
9599 destroy_rt_bandwidth(&tg->rt_bandwidth);
9600
bccbe08a
PZ
9601 for_each_possible_cpu(i) {
9602 if (tg->rt_rq)
9603 kfree(tg->rt_rq[i]);
9604 if (tg->rt_se)
9605 kfree(tg->rt_se[i]);
9606 }
9607
9608 kfree(tg->rt_rq);
9609 kfree(tg->rt_se);
9610}
9611
ec7dc8ac
DG
9612static
9613int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9614{
9615 struct rt_rq *rt_rq;
eab17229 9616 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9617 struct rq *rq;
9618 int i;
9619
434d53b0 9620 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9621 if (!tg->rt_rq)
9622 goto err;
434d53b0 9623 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9624 if (!tg->rt_se)
9625 goto err;
9626
d0b27fa7
PZ
9627 init_rt_bandwidth(&tg->rt_bandwidth,
9628 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9629
9630 for_each_possible_cpu(i) {
9631 rq = cpu_rq(i);
9632
eab17229
LZ
9633 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9634 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9635 if (!rt_rq)
9636 goto err;
29f59db3 9637
eab17229
LZ
9638 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9639 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9640 if (!rt_se)
9641 goto err;
29f59db3 9642
eab17229 9643 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9644 }
9645
bccbe08a
PZ
9646 return 1;
9647
9648 err:
9649 return 0;
9650}
9651
9652static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9653{
9654 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9655 &cpu_rq(cpu)->leaf_rt_rq_list);
9656}
9657
9658static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9659{
9660 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9661}
6d6bc0ad 9662#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9663static inline void free_rt_sched_group(struct task_group *tg)
9664{
9665}
9666
ec7dc8ac
DG
9667static inline
9668int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9669{
9670 return 1;
9671}
9672
9673static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9674{
9675}
9676
9677static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9678{
9679}
6d6bc0ad 9680#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9681
d0b27fa7 9682#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9683static void free_sched_group(struct task_group *tg)
9684{
9685 free_fair_sched_group(tg);
9686 free_rt_sched_group(tg);
9687 kfree(tg);
9688}
9689
9690/* allocate runqueue etc for a new task group */
ec7dc8ac 9691struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9692{
9693 struct task_group *tg;
9694 unsigned long flags;
9695 int i;
9696
9697 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9698 if (!tg)
9699 return ERR_PTR(-ENOMEM);
9700
ec7dc8ac 9701 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9702 goto err;
9703
ec7dc8ac 9704 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9705 goto err;
9706
8ed36996 9707 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9708 for_each_possible_cpu(i) {
bccbe08a
PZ
9709 register_fair_sched_group(tg, i);
9710 register_rt_sched_group(tg, i);
9b5b7751 9711 }
6f505b16 9712 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9713
9714 WARN_ON(!parent); /* root should already exist */
9715
9716 tg->parent = parent;
f473aa5e 9717 INIT_LIST_HEAD(&tg->children);
09f2724a 9718 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9719 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9720
9b5b7751 9721 return tg;
29f59db3
SV
9722
9723err:
6f505b16 9724 free_sched_group(tg);
29f59db3
SV
9725 return ERR_PTR(-ENOMEM);
9726}
9727
9b5b7751 9728/* rcu callback to free various structures associated with a task group */
6f505b16 9729static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9730{
29f59db3 9731 /* now it should be safe to free those cfs_rqs */
6f505b16 9732 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9733}
9734
9b5b7751 9735/* Destroy runqueue etc associated with a task group */
4cf86d77 9736void sched_destroy_group(struct task_group *tg)
29f59db3 9737{
8ed36996 9738 unsigned long flags;
9b5b7751 9739 int i;
29f59db3 9740
8ed36996 9741 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9742 for_each_possible_cpu(i) {
bccbe08a
PZ
9743 unregister_fair_sched_group(tg, i);
9744 unregister_rt_sched_group(tg, i);
9b5b7751 9745 }
6f505b16 9746 list_del_rcu(&tg->list);
f473aa5e 9747 list_del_rcu(&tg->siblings);
8ed36996 9748 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9749
9b5b7751 9750 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9751 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9752}
9753
9b5b7751 9754/* change task's runqueue when it moves between groups.
3a252015
IM
9755 * The caller of this function should have put the task in its new group
9756 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9757 * reflect its new group.
9b5b7751
SV
9758 */
9759void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9760{
9761 int on_rq, running;
9762 unsigned long flags;
9763 struct rq *rq;
9764
9765 rq = task_rq_lock(tsk, &flags);
9766
29f59db3
SV
9767 update_rq_clock(rq);
9768
051a1d1a 9769 running = task_current(rq, tsk);
29f59db3
SV
9770 on_rq = tsk->se.on_rq;
9771
0e1f3483 9772 if (on_rq)
29f59db3 9773 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9774 if (unlikely(running))
9775 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9776
6f505b16 9777 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9778
810b3817
PZ
9779#ifdef CONFIG_FAIR_GROUP_SCHED
9780 if (tsk->sched_class->moved_group)
9781 tsk->sched_class->moved_group(tsk);
9782#endif
9783
0e1f3483
HS
9784 if (unlikely(running))
9785 tsk->sched_class->set_curr_task(rq);
9786 if (on_rq)
7074badb 9787 enqueue_task(rq, tsk, 0);
29f59db3 9788
29f59db3
SV
9789 task_rq_unlock(rq, &flags);
9790}
6d6bc0ad 9791#endif /* CONFIG_GROUP_SCHED */
29f59db3 9792
052f1dc7 9793#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9794static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9795{
9796 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9797 int on_rq;
9798
29f59db3 9799 on_rq = se->on_rq;
62fb1851 9800 if (on_rq)
29f59db3
SV
9801 dequeue_entity(cfs_rq, se, 0);
9802
9803 se->load.weight = shares;
e05510d0 9804 se->load.inv_weight = 0;
29f59db3 9805
62fb1851 9806 if (on_rq)
29f59db3 9807 enqueue_entity(cfs_rq, se, 0);
c09595f6 9808}
62fb1851 9809
c09595f6
PZ
9810static void set_se_shares(struct sched_entity *se, unsigned long shares)
9811{
9812 struct cfs_rq *cfs_rq = se->cfs_rq;
9813 struct rq *rq = cfs_rq->rq;
9814 unsigned long flags;
9815
9816 spin_lock_irqsave(&rq->lock, flags);
9817 __set_se_shares(se, shares);
9818 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
9819}
9820
8ed36996
PZ
9821static DEFINE_MUTEX(shares_mutex);
9822
4cf86d77 9823int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
9824{
9825 int i;
8ed36996 9826 unsigned long flags;
c61935fd 9827
ec7dc8ac
DG
9828 /*
9829 * We can't change the weight of the root cgroup.
9830 */
9831 if (!tg->se[0])
9832 return -EINVAL;
9833
18d95a28
PZ
9834 if (shares < MIN_SHARES)
9835 shares = MIN_SHARES;
cb4ad1ff
MX
9836 else if (shares > MAX_SHARES)
9837 shares = MAX_SHARES;
62fb1851 9838
8ed36996 9839 mutex_lock(&shares_mutex);
9b5b7751 9840 if (tg->shares == shares)
5cb350ba 9841 goto done;
29f59db3 9842
8ed36996 9843 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9844 for_each_possible_cpu(i)
9845 unregister_fair_sched_group(tg, i);
f473aa5e 9846 list_del_rcu(&tg->siblings);
8ed36996 9847 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
9848
9849 /* wait for any ongoing reference to this group to finish */
9850 synchronize_sched();
9851
9852 /*
9853 * Now we are free to modify the group's share on each cpu
9854 * w/o tripping rebalance_share or load_balance_fair.
9855 */
9b5b7751 9856 tg->shares = shares;
c09595f6
PZ
9857 for_each_possible_cpu(i) {
9858 /*
9859 * force a rebalance
9860 */
9861 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 9862 set_se_shares(tg->se[i], shares);
c09595f6 9863 }
29f59db3 9864
6b2d7700
SV
9865 /*
9866 * Enable load balance activity on this group, by inserting it back on
9867 * each cpu's rq->leaf_cfs_rq_list.
9868 */
8ed36996 9869 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9870 for_each_possible_cpu(i)
9871 register_fair_sched_group(tg, i);
f473aa5e 9872 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 9873 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 9874done:
8ed36996 9875 mutex_unlock(&shares_mutex);
9b5b7751 9876 return 0;
29f59db3
SV
9877}
9878
5cb350ba
DG
9879unsigned long sched_group_shares(struct task_group *tg)
9880{
9881 return tg->shares;
9882}
052f1dc7 9883#endif
5cb350ba 9884
052f1dc7 9885#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9886/*
9f0c1e56 9887 * Ensure that the real time constraints are schedulable.
6f505b16 9888 */
9f0c1e56
PZ
9889static DEFINE_MUTEX(rt_constraints_mutex);
9890
9891static unsigned long to_ratio(u64 period, u64 runtime)
9892{
9893 if (runtime == RUNTIME_INF)
9a7e0b18 9894 return 1ULL << 20;
9f0c1e56 9895
9a7e0b18 9896 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
9897}
9898
9a7e0b18
PZ
9899/* Must be called with tasklist_lock held */
9900static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 9901{
9a7e0b18 9902 struct task_struct *g, *p;
b40b2e8e 9903
9a7e0b18
PZ
9904 do_each_thread(g, p) {
9905 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9906 return 1;
9907 } while_each_thread(g, p);
b40b2e8e 9908
9a7e0b18
PZ
9909 return 0;
9910}
b40b2e8e 9911
9a7e0b18
PZ
9912struct rt_schedulable_data {
9913 struct task_group *tg;
9914 u64 rt_period;
9915 u64 rt_runtime;
9916};
b40b2e8e 9917
9a7e0b18
PZ
9918static int tg_schedulable(struct task_group *tg, void *data)
9919{
9920 struct rt_schedulable_data *d = data;
9921 struct task_group *child;
9922 unsigned long total, sum = 0;
9923 u64 period, runtime;
b40b2e8e 9924
9a7e0b18
PZ
9925 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9926 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 9927
9a7e0b18
PZ
9928 if (tg == d->tg) {
9929 period = d->rt_period;
9930 runtime = d->rt_runtime;
b40b2e8e 9931 }
b40b2e8e 9932
98a4826b
PZ
9933#ifdef CONFIG_USER_SCHED
9934 if (tg == &root_task_group) {
9935 period = global_rt_period();
9936 runtime = global_rt_runtime();
9937 }
9938#endif
9939
4653f803
PZ
9940 /*
9941 * Cannot have more runtime than the period.
9942 */
9943 if (runtime > period && runtime != RUNTIME_INF)
9944 return -EINVAL;
6f505b16 9945
4653f803
PZ
9946 /*
9947 * Ensure we don't starve existing RT tasks.
9948 */
9a7e0b18
PZ
9949 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9950 return -EBUSY;
6f505b16 9951
9a7e0b18 9952 total = to_ratio(period, runtime);
6f505b16 9953
4653f803
PZ
9954 /*
9955 * Nobody can have more than the global setting allows.
9956 */
9957 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9958 return -EINVAL;
6f505b16 9959
4653f803
PZ
9960 /*
9961 * The sum of our children's runtime should not exceed our own.
9962 */
9a7e0b18
PZ
9963 list_for_each_entry_rcu(child, &tg->children, siblings) {
9964 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9965 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 9966
9a7e0b18
PZ
9967 if (child == d->tg) {
9968 period = d->rt_period;
9969 runtime = d->rt_runtime;
9970 }
6f505b16 9971
9a7e0b18 9972 sum += to_ratio(period, runtime);
9f0c1e56 9973 }
6f505b16 9974
9a7e0b18
PZ
9975 if (sum > total)
9976 return -EINVAL;
9977
9978 return 0;
6f505b16
PZ
9979}
9980
9a7e0b18 9981static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 9982{
9a7e0b18
PZ
9983 struct rt_schedulable_data data = {
9984 .tg = tg,
9985 .rt_period = period,
9986 .rt_runtime = runtime,
9987 };
9988
9989 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
9990}
9991
d0b27fa7
PZ
9992static int tg_set_bandwidth(struct task_group *tg,
9993 u64 rt_period, u64 rt_runtime)
6f505b16 9994{
ac086bc2 9995 int i, err = 0;
9f0c1e56 9996
9f0c1e56 9997 mutex_lock(&rt_constraints_mutex);
521f1a24 9998 read_lock(&tasklist_lock);
9a7e0b18
PZ
9999 err = __rt_schedulable(tg, rt_period, rt_runtime);
10000 if (err)
9f0c1e56 10001 goto unlock;
ac086bc2
PZ
10002
10003 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10004 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10005 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10006
10007 for_each_possible_cpu(i) {
10008 struct rt_rq *rt_rq = tg->rt_rq[i];
10009
10010 spin_lock(&rt_rq->rt_runtime_lock);
10011 rt_rq->rt_runtime = rt_runtime;
10012 spin_unlock(&rt_rq->rt_runtime_lock);
10013 }
10014 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10015 unlock:
521f1a24 10016 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10017 mutex_unlock(&rt_constraints_mutex);
10018
10019 return err;
6f505b16
PZ
10020}
10021
d0b27fa7
PZ
10022int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10023{
10024 u64 rt_runtime, rt_period;
10025
10026 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10027 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10028 if (rt_runtime_us < 0)
10029 rt_runtime = RUNTIME_INF;
10030
10031 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10032}
10033
9f0c1e56
PZ
10034long sched_group_rt_runtime(struct task_group *tg)
10035{
10036 u64 rt_runtime_us;
10037
d0b27fa7 10038 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10039 return -1;
10040
d0b27fa7 10041 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10042 do_div(rt_runtime_us, NSEC_PER_USEC);
10043 return rt_runtime_us;
10044}
d0b27fa7
PZ
10045
10046int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10047{
10048 u64 rt_runtime, rt_period;
10049
10050 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10051 rt_runtime = tg->rt_bandwidth.rt_runtime;
10052
619b0488
R
10053 if (rt_period == 0)
10054 return -EINVAL;
10055
d0b27fa7
PZ
10056 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10057}
10058
10059long sched_group_rt_period(struct task_group *tg)
10060{
10061 u64 rt_period_us;
10062
10063 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10064 do_div(rt_period_us, NSEC_PER_USEC);
10065 return rt_period_us;
10066}
10067
10068static int sched_rt_global_constraints(void)
10069{
4653f803 10070 u64 runtime, period;
d0b27fa7
PZ
10071 int ret = 0;
10072
ec5d4989
HS
10073 if (sysctl_sched_rt_period <= 0)
10074 return -EINVAL;
10075
4653f803
PZ
10076 runtime = global_rt_runtime();
10077 period = global_rt_period();
10078
10079 /*
10080 * Sanity check on the sysctl variables.
10081 */
10082 if (runtime > period && runtime != RUNTIME_INF)
10083 return -EINVAL;
10b612f4 10084
d0b27fa7 10085 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10086 read_lock(&tasklist_lock);
4653f803 10087 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10088 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10089 mutex_unlock(&rt_constraints_mutex);
10090
10091 return ret;
10092}
54e99124
DG
10093
10094int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10095{
10096 /* Don't accept realtime tasks when there is no way for them to run */
10097 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10098 return 0;
10099
10100 return 1;
10101}
10102
6d6bc0ad 10103#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10104static int sched_rt_global_constraints(void)
10105{
ac086bc2
PZ
10106 unsigned long flags;
10107 int i;
10108
ec5d4989
HS
10109 if (sysctl_sched_rt_period <= 0)
10110 return -EINVAL;
10111
60aa605d
PZ
10112 /*
10113 * There's always some RT tasks in the root group
10114 * -- migration, kstopmachine etc..
10115 */
10116 if (sysctl_sched_rt_runtime == 0)
10117 return -EBUSY;
10118
ac086bc2
PZ
10119 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10120 for_each_possible_cpu(i) {
10121 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10122
10123 spin_lock(&rt_rq->rt_runtime_lock);
10124 rt_rq->rt_runtime = global_rt_runtime();
10125 spin_unlock(&rt_rq->rt_runtime_lock);
10126 }
10127 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10128
d0b27fa7
PZ
10129 return 0;
10130}
6d6bc0ad 10131#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10132
10133int sched_rt_handler(struct ctl_table *table, int write,
10134 struct file *filp, void __user *buffer, size_t *lenp,
10135 loff_t *ppos)
10136{
10137 int ret;
10138 int old_period, old_runtime;
10139 static DEFINE_MUTEX(mutex);
10140
10141 mutex_lock(&mutex);
10142 old_period = sysctl_sched_rt_period;
10143 old_runtime = sysctl_sched_rt_runtime;
10144
10145 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10146
10147 if (!ret && write) {
10148 ret = sched_rt_global_constraints();
10149 if (ret) {
10150 sysctl_sched_rt_period = old_period;
10151 sysctl_sched_rt_runtime = old_runtime;
10152 } else {
10153 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10154 def_rt_bandwidth.rt_period =
10155 ns_to_ktime(global_rt_period());
10156 }
10157 }
10158 mutex_unlock(&mutex);
10159
10160 return ret;
10161}
68318b8e 10162
052f1dc7 10163#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10164
10165/* return corresponding task_group object of a cgroup */
2b01dfe3 10166static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10167{
2b01dfe3
PM
10168 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10169 struct task_group, css);
68318b8e
SV
10170}
10171
10172static struct cgroup_subsys_state *
2b01dfe3 10173cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10174{
ec7dc8ac 10175 struct task_group *tg, *parent;
68318b8e 10176
2b01dfe3 10177 if (!cgrp->parent) {
68318b8e 10178 /* This is early initialization for the top cgroup */
68318b8e
SV
10179 return &init_task_group.css;
10180 }
10181
ec7dc8ac
DG
10182 parent = cgroup_tg(cgrp->parent);
10183 tg = sched_create_group(parent);
68318b8e
SV
10184 if (IS_ERR(tg))
10185 return ERR_PTR(-ENOMEM);
10186
68318b8e
SV
10187 return &tg->css;
10188}
10189
41a2d6cf
IM
10190static void
10191cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10192{
2b01dfe3 10193 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10194
10195 sched_destroy_group(tg);
10196}
10197
41a2d6cf
IM
10198static int
10199cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10200 struct task_struct *tsk)
68318b8e 10201{
b68aa230 10202#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10203 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10204 return -EINVAL;
10205#else
68318b8e
SV
10206 /* We don't support RT-tasks being in separate groups */
10207 if (tsk->sched_class != &fair_sched_class)
10208 return -EINVAL;
b68aa230 10209#endif
68318b8e
SV
10210
10211 return 0;
10212}
10213
10214static void
2b01dfe3 10215cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
10216 struct cgroup *old_cont, struct task_struct *tsk)
10217{
10218 sched_move_task(tsk);
10219}
10220
052f1dc7 10221#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10222static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10223 u64 shareval)
68318b8e 10224{
2b01dfe3 10225 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10226}
10227
f4c753b7 10228static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10229{
2b01dfe3 10230 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10231
10232 return (u64) tg->shares;
10233}
6d6bc0ad 10234#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10235
052f1dc7 10236#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10237static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10238 s64 val)
6f505b16 10239{
06ecb27c 10240 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10241}
10242
06ecb27c 10243static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10244{
06ecb27c 10245 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10246}
d0b27fa7
PZ
10247
10248static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10249 u64 rt_period_us)
10250{
10251 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10252}
10253
10254static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10255{
10256 return sched_group_rt_period(cgroup_tg(cgrp));
10257}
6d6bc0ad 10258#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10259
fe5c7cc2 10260static struct cftype cpu_files[] = {
052f1dc7 10261#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10262 {
10263 .name = "shares",
f4c753b7
PM
10264 .read_u64 = cpu_shares_read_u64,
10265 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10266 },
052f1dc7
PZ
10267#endif
10268#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10269 {
9f0c1e56 10270 .name = "rt_runtime_us",
06ecb27c
PM
10271 .read_s64 = cpu_rt_runtime_read,
10272 .write_s64 = cpu_rt_runtime_write,
6f505b16 10273 },
d0b27fa7
PZ
10274 {
10275 .name = "rt_period_us",
f4c753b7
PM
10276 .read_u64 = cpu_rt_period_read_uint,
10277 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10278 },
052f1dc7 10279#endif
68318b8e
SV
10280};
10281
10282static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10283{
fe5c7cc2 10284 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10285}
10286
10287struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10288 .name = "cpu",
10289 .create = cpu_cgroup_create,
10290 .destroy = cpu_cgroup_destroy,
10291 .can_attach = cpu_cgroup_can_attach,
10292 .attach = cpu_cgroup_attach,
10293 .populate = cpu_cgroup_populate,
10294 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10295 .early_init = 1,
10296};
10297
052f1dc7 10298#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10299
10300#ifdef CONFIG_CGROUP_CPUACCT
10301
10302/*
10303 * CPU accounting code for task groups.
10304 *
10305 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10306 * (balbir@in.ibm.com).
10307 */
10308
934352f2 10309/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10310struct cpuacct {
10311 struct cgroup_subsys_state css;
10312 /* cpuusage holds pointer to a u64-type object on every cpu */
10313 u64 *cpuusage;
ef12fefa 10314 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10315 struct cpuacct *parent;
d842de87
SV
10316};
10317
10318struct cgroup_subsys cpuacct_subsys;
10319
10320/* return cpu accounting group corresponding to this container */
32cd756a 10321static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10322{
32cd756a 10323 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10324 struct cpuacct, css);
10325}
10326
10327/* return cpu accounting group to which this task belongs */
10328static inline struct cpuacct *task_ca(struct task_struct *tsk)
10329{
10330 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10331 struct cpuacct, css);
10332}
10333
10334/* create a new cpu accounting group */
10335static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10336 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10337{
10338 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10339 int i;
d842de87
SV
10340
10341 if (!ca)
ef12fefa 10342 goto out;
d842de87
SV
10343
10344 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10345 if (!ca->cpuusage)
10346 goto out_free_ca;
10347
10348 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10349 if (percpu_counter_init(&ca->cpustat[i], 0))
10350 goto out_free_counters;
d842de87 10351
934352f2
BR
10352 if (cgrp->parent)
10353 ca->parent = cgroup_ca(cgrp->parent);
10354
d842de87 10355 return &ca->css;
ef12fefa
BR
10356
10357out_free_counters:
10358 while (--i >= 0)
10359 percpu_counter_destroy(&ca->cpustat[i]);
10360 free_percpu(ca->cpuusage);
10361out_free_ca:
10362 kfree(ca);
10363out:
10364 return ERR_PTR(-ENOMEM);
d842de87
SV
10365}
10366
10367/* destroy an existing cpu accounting group */
41a2d6cf 10368static void
32cd756a 10369cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10370{
32cd756a 10371 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10372 int i;
d842de87 10373
ef12fefa
BR
10374 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10375 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10376 free_percpu(ca->cpuusage);
10377 kfree(ca);
10378}
10379
720f5498
KC
10380static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10381{
b36128c8 10382 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10383 u64 data;
10384
10385#ifndef CONFIG_64BIT
10386 /*
10387 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10388 */
10389 spin_lock_irq(&cpu_rq(cpu)->lock);
10390 data = *cpuusage;
10391 spin_unlock_irq(&cpu_rq(cpu)->lock);
10392#else
10393 data = *cpuusage;
10394#endif
10395
10396 return data;
10397}
10398
10399static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10400{
b36128c8 10401 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10402
10403#ifndef CONFIG_64BIT
10404 /*
10405 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10406 */
10407 spin_lock_irq(&cpu_rq(cpu)->lock);
10408 *cpuusage = val;
10409 spin_unlock_irq(&cpu_rq(cpu)->lock);
10410#else
10411 *cpuusage = val;
10412#endif
10413}
10414
d842de87 10415/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10416static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10417{
32cd756a 10418 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10419 u64 totalcpuusage = 0;
10420 int i;
10421
720f5498
KC
10422 for_each_present_cpu(i)
10423 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10424
10425 return totalcpuusage;
10426}
10427
0297b803
DG
10428static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10429 u64 reset)
10430{
10431 struct cpuacct *ca = cgroup_ca(cgrp);
10432 int err = 0;
10433 int i;
10434
10435 if (reset) {
10436 err = -EINVAL;
10437 goto out;
10438 }
10439
720f5498
KC
10440 for_each_present_cpu(i)
10441 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10442
0297b803
DG
10443out:
10444 return err;
10445}
10446
e9515c3c
KC
10447static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10448 struct seq_file *m)
10449{
10450 struct cpuacct *ca = cgroup_ca(cgroup);
10451 u64 percpu;
10452 int i;
10453
10454 for_each_present_cpu(i) {
10455 percpu = cpuacct_cpuusage_read(ca, i);
10456 seq_printf(m, "%llu ", (unsigned long long) percpu);
10457 }
10458 seq_printf(m, "\n");
10459 return 0;
10460}
10461
ef12fefa
BR
10462static const char *cpuacct_stat_desc[] = {
10463 [CPUACCT_STAT_USER] = "user",
10464 [CPUACCT_STAT_SYSTEM] = "system",
10465};
10466
10467static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10468 struct cgroup_map_cb *cb)
10469{
10470 struct cpuacct *ca = cgroup_ca(cgrp);
10471 int i;
10472
10473 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10474 s64 val = percpu_counter_read(&ca->cpustat[i]);
10475 val = cputime64_to_clock_t(val);
10476 cb->fill(cb, cpuacct_stat_desc[i], val);
10477 }
10478 return 0;
10479}
10480
d842de87
SV
10481static struct cftype files[] = {
10482 {
10483 .name = "usage",
f4c753b7
PM
10484 .read_u64 = cpuusage_read,
10485 .write_u64 = cpuusage_write,
d842de87 10486 },
e9515c3c
KC
10487 {
10488 .name = "usage_percpu",
10489 .read_seq_string = cpuacct_percpu_seq_read,
10490 },
ef12fefa
BR
10491 {
10492 .name = "stat",
10493 .read_map = cpuacct_stats_show,
10494 },
d842de87
SV
10495};
10496
32cd756a 10497static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10498{
32cd756a 10499 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10500}
10501
10502/*
10503 * charge this task's execution time to its accounting group.
10504 *
10505 * called with rq->lock held.
10506 */
10507static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10508{
10509 struct cpuacct *ca;
934352f2 10510 int cpu;
d842de87 10511
c40c6f85 10512 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10513 return;
10514
934352f2 10515 cpu = task_cpu(tsk);
a18b83b7
BR
10516
10517 rcu_read_lock();
10518
d842de87 10519 ca = task_ca(tsk);
d842de87 10520
934352f2 10521 for (; ca; ca = ca->parent) {
b36128c8 10522 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10523 *cpuusage += cputime;
10524 }
a18b83b7
BR
10525
10526 rcu_read_unlock();
d842de87
SV
10527}
10528
ef12fefa
BR
10529/*
10530 * Charge the system/user time to the task's accounting group.
10531 */
10532static void cpuacct_update_stats(struct task_struct *tsk,
10533 enum cpuacct_stat_index idx, cputime_t val)
10534{
10535 struct cpuacct *ca;
10536
10537 if (unlikely(!cpuacct_subsys.active))
10538 return;
10539
10540 rcu_read_lock();
10541 ca = task_ca(tsk);
10542
10543 do {
10544 percpu_counter_add(&ca->cpustat[idx], val);
10545 ca = ca->parent;
10546 } while (ca);
10547 rcu_read_unlock();
10548}
10549
d842de87
SV
10550struct cgroup_subsys cpuacct_subsys = {
10551 .name = "cpuacct",
10552 .create = cpuacct_create,
10553 .destroy = cpuacct_destroy,
10554 .populate = cpuacct_populate,
10555 .subsys_id = cpuacct_subsys_id,
10556};
10557#endif /* CONFIG_CGROUP_CPUACCT */