]> git.proxmox.com Git - qemu.git/blame - kvm-all.c
arm host: Fix linker warning (m68k targets)
[qemu.git] / kvm-all.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5832d1f2 5 * Red Hat, Inc. 2008
05330448
AL
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
5832d1f2 9 * Glauber Costa <gcosta@redhat.com>
05330448
AL
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16#include <sys/types.h>
17#include <sys/ioctl.h>
18#include <sys/mman.h>
984b5181 19#include <stdarg.h>
05330448
AL
20
21#include <linux/kvm.h>
22
23#include "qemu-common.h"
85199474 24#include "qemu-barrier.h"
05330448 25#include "sysemu.h"
d33a1810 26#include "hw/hw.h"
e22a25c9 27#include "gdbstub.h"
05330448
AL
28#include "kvm.h"
29
f65ed4c1
AL
30/* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
31#define PAGE_SIZE TARGET_PAGE_SIZE
32
05330448
AL
33//#define DEBUG_KVM
34
35#ifdef DEBUG_KVM
36#define dprintf(fmt, ...) \
37 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38#else
39#define dprintf(fmt, ...) \
40 do { } while (0)
41#endif
42
34fc643f
AL
43typedef struct KVMSlot
44{
c227f099
AL
45 target_phys_addr_t start_addr;
46 ram_addr_t memory_size;
47 ram_addr_t phys_offset;
34fc643f
AL
48 int slot;
49 int flags;
50} KVMSlot;
05330448 51
5832d1f2
AL
52typedef struct kvm_dirty_log KVMDirtyLog;
53
05330448
AL
54int kvm_allowed = 0;
55
56struct KVMState
57{
58 KVMSlot slots[32];
59 int fd;
60 int vmfd;
f65ed4c1 61 int coalesced_mmio;
62a2744c
SY
62#ifdef KVM_CAP_COALESCED_MMIO
63 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
64#endif
e69917e2 65 int broken_set_mem_region;
4495d6a7 66 int migration_log;
a0fb002c 67 int vcpu_events;
e22a25c9
AL
68#ifdef KVM_CAP_SET_GUEST_DEBUG
69 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
70#endif
6f725c13
GC
71 int irqchip_in_kernel;
72 int pit_in_kernel;
05330448
AL
73};
74
75static KVMState *kvm_state;
76
77static KVMSlot *kvm_alloc_slot(KVMState *s)
78{
79 int i;
80
81 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
62d60e8c
AL
82 /* KVM private memory slots */
83 if (i >= 8 && i < 12)
84 continue;
05330448
AL
85 if (s->slots[i].memory_size == 0)
86 return &s->slots[i];
87 }
88
d3f8d37f
AL
89 fprintf(stderr, "%s: no free slot available\n", __func__);
90 abort();
91}
92
93static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
c227f099
AL
94 target_phys_addr_t start_addr,
95 target_phys_addr_t end_addr)
d3f8d37f
AL
96{
97 int i;
98
99 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
100 KVMSlot *mem = &s->slots[i];
101
102 if (start_addr == mem->start_addr &&
103 end_addr == mem->start_addr + mem->memory_size) {
104 return mem;
105 }
106 }
107
05330448
AL
108 return NULL;
109}
110
6152e2ae
AL
111/*
112 * Find overlapping slot with lowest start address
113 */
114static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
c227f099
AL
115 target_phys_addr_t start_addr,
116 target_phys_addr_t end_addr)
05330448 117{
6152e2ae 118 KVMSlot *found = NULL;
05330448
AL
119 int i;
120
121 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
122 KVMSlot *mem = &s->slots[i];
123
6152e2ae
AL
124 if (mem->memory_size == 0 ||
125 (found && found->start_addr < mem->start_addr)) {
126 continue;
127 }
128
129 if (end_addr > mem->start_addr &&
130 start_addr < mem->start_addr + mem->memory_size) {
131 found = mem;
132 }
05330448
AL
133 }
134
6152e2ae 135 return found;
05330448
AL
136}
137
5832d1f2
AL
138static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
139{
140 struct kvm_userspace_memory_region mem;
141
142 mem.slot = slot->slot;
143 mem.guest_phys_addr = slot->start_addr;
144 mem.memory_size = slot->memory_size;
5579c7f3 145 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
5832d1f2 146 mem.flags = slot->flags;
4495d6a7
JK
147 if (s->migration_log) {
148 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
149 }
5832d1f2
AL
150 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
151}
152
8d2ba1fb
JK
153static void kvm_reset_vcpu(void *opaque)
154{
155 CPUState *env = opaque;
156
caa5af0f 157 kvm_arch_reset_vcpu(env);
8d2ba1fb
JK
158 if (kvm_arch_put_registers(env)) {
159 fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
160 abort();
161 }
162}
5832d1f2 163
6f725c13
GC
164int kvm_irqchip_in_kernel(void)
165{
166 return kvm_state->irqchip_in_kernel;
167}
168
169int kvm_pit_in_kernel(void)
170{
171 return kvm_state->pit_in_kernel;
172}
173
174
05330448
AL
175int kvm_init_vcpu(CPUState *env)
176{
177 KVMState *s = kvm_state;
178 long mmap_size;
179 int ret;
180
181 dprintf("kvm_init_vcpu\n");
182
984b5181 183 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
05330448
AL
184 if (ret < 0) {
185 dprintf("kvm_create_vcpu failed\n");
186 goto err;
187 }
188
189 env->kvm_fd = ret;
190 env->kvm_state = s;
191
192 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
193 if (mmap_size < 0) {
194 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
195 goto err;
196 }
197
198 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
199 env->kvm_fd, 0);
200 if (env->kvm_run == MAP_FAILED) {
201 ret = -errno;
202 dprintf("mmap'ing vcpu state failed\n");
203 goto err;
204 }
205
62a2744c
SY
206#ifdef KVM_CAP_COALESCED_MMIO
207 if (s->coalesced_mmio && !s->coalesced_mmio_ring)
208 s->coalesced_mmio_ring = (void *) env->kvm_run +
209 s->coalesced_mmio * PAGE_SIZE;
210#endif
211
05330448 212 ret = kvm_arch_init_vcpu(env);
8d2ba1fb 213 if (ret == 0) {
a08d4367 214 qemu_register_reset(kvm_reset_vcpu, env);
caa5af0f 215 kvm_arch_reset_vcpu(env);
8d2ba1fb
JK
216 ret = kvm_arch_put_registers(env);
217 }
05330448
AL
218err:
219 return ret;
220}
221
5832d1f2
AL
222/*
223 * dirty pages logging control
224 */
c227f099
AL
225static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
226 ram_addr_t size, int flags, int mask)
5832d1f2
AL
227{
228 KVMState *s = kvm_state;
d3f8d37f 229 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
4495d6a7
JK
230 int old_flags;
231
5832d1f2 232 if (mem == NULL) {
d3f8d37f
AL
233 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
234 TARGET_FMT_plx "\n", __func__, phys_addr,
c227f099 235 (target_phys_addr_t)(phys_addr + size - 1));
5832d1f2
AL
236 return -EINVAL;
237 }
238
4495d6a7 239 old_flags = mem->flags;
5832d1f2 240
4495d6a7 241 flags = (mem->flags & ~mask) | flags;
5832d1f2
AL
242 mem->flags = flags;
243
4495d6a7
JK
244 /* If nothing changed effectively, no need to issue ioctl */
245 if (s->migration_log) {
246 flags |= KVM_MEM_LOG_DIRTY_PAGES;
247 }
248 if (flags == old_flags) {
249 return 0;
250 }
251
5832d1f2
AL
252 return kvm_set_user_memory_region(s, mem);
253}
254
c227f099 255int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
5832d1f2 256{
d3f8d37f 257 return kvm_dirty_pages_log_change(phys_addr, size,
5832d1f2
AL
258 KVM_MEM_LOG_DIRTY_PAGES,
259 KVM_MEM_LOG_DIRTY_PAGES);
260}
261
c227f099 262int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
5832d1f2 263{
d3f8d37f 264 return kvm_dirty_pages_log_change(phys_addr, size,
5832d1f2
AL
265 0,
266 KVM_MEM_LOG_DIRTY_PAGES);
267}
268
7b8f3b78 269static int kvm_set_migration_log(int enable)
4495d6a7
JK
270{
271 KVMState *s = kvm_state;
272 KVMSlot *mem;
273 int i, err;
274
275 s->migration_log = enable;
276
277 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
278 mem = &s->slots[i];
279
280 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
281 continue;
282 }
283 err = kvm_set_user_memory_region(s, mem);
284 if (err) {
285 return err;
286 }
287 }
288 return 0;
289}
290
96c1606b
AG
291static int test_le_bit(unsigned long nr, unsigned char *addr)
292{
293 return (addr[nr >> 3] >> (nr & 7)) & 1;
294}
295
5832d1f2
AL
296/**
297 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
298 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
299 * This means all bits are set to dirty.
300 *
d3f8d37f 301 * @start_add: start of logged region.
5832d1f2
AL
302 * @end_addr: end of logged region.
303 */
7b8f3b78
MT
304static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
305 target_phys_addr_t end_addr)
5832d1f2
AL
306{
307 KVMState *s = kvm_state;
151f7749 308 unsigned long size, allocated_size = 0;
c227f099
AL
309 target_phys_addr_t phys_addr;
310 ram_addr_t addr;
151f7749
JK
311 KVMDirtyLog d;
312 KVMSlot *mem;
313 int ret = 0;
5832d1f2 314
151f7749
JK
315 d.dirty_bitmap = NULL;
316 while (start_addr < end_addr) {
317 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
318 if (mem == NULL) {
319 break;
320 }
5832d1f2 321
151f7749
JK
322 size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
323 if (!d.dirty_bitmap) {
324 d.dirty_bitmap = qemu_malloc(size);
325 } else if (size > allocated_size) {
326 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
327 }
328 allocated_size = size;
329 memset(d.dirty_bitmap, 0, allocated_size);
5832d1f2 330
151f7749 331 d.slot = mem->slot;
5832d1f2 332
6e489f3f 333 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
151f7749
JK
334 dprintf("ioctl failed %d\n", errno);
335 ret = -1;
336 break;
337 }
5832d1f2 338
151f7749
JK
339 for (phys_addr = mem->start_addr, addr = mem->phys_offset;
340 phys_addr < mem->start_addr + mem->memory_size;
341 phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
96c1606b 342 unsigned char *bitmap = (unsigned char *)d.dirty_bitmap;
151f7749 343 unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
151f7749 344
96c1606b 345 if (test_le_bit(nr, bitmap)) {
151f7749
JK
346 cpu_physical_memory_set_dirty(addr);
347 }
348 }
349 start_addr = phys_addr;
5832d1f2 350 }
5832d1f2 351 qemu_free(d.dirty_bitmap);
151f7749
JK
352
353 return ret;
5832d1f2
AL
354}
355
c227f099 356int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
f65ed4c1
AL
357{
358 int ret = -ENOSYS;
359#ifdef KVM_CAP_COALESCED_MMIO
360 KVMState *s = kvm_state;
361
362 if (s->coalesced_mmio) {
363 struct kvm_coalesced_mmio_zone zone;
364
365 zone.addr = start;
366 zone.size = size;
367
368 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
369 }
370#endif
371
372 return ret;
373}
374
c227f099 375int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
f65ed4c1
AL
376{
377 int ret = -ENOSYS;
378#ifdef KVM_CAP_COALESCED_MMIO
379 KVMState *s = kvm_state;
380
381 if (s->coalesced_mmio) {
382 struct kvm_coalesced_mmio_zone zone;
383
384 zone.addr = start;
385 zone.size = size;
386
387 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
388 }
389#endif
390
391 return ret;
392}
393
ad7b8b33
AL
394int kvm_check_extension(KVMState *s, unsigned int extension)
395{
396 int ret;
397
398 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
399 if (ret < 0) {
400 ret = 0;
401 }
402
403 return ret;
404}
405
7b8f3b78
MT
406static void kvm_set_phys_mem(target_phys_addr_t start_addr,
407 ram_addr_t size,
408 ram_addr_t phys_offset)
46dbef6a
MT
409{
410 KVMState *s = kvm_state;
411 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
412 KVMSlot *mem, old;
413 int err;
414
415 if (start_addr & ~TARGET_PAGE_MASK) {
416 if (flags >= IO_MEM_UNASSIGNED) {
417 if (!kvm_lookup_overlapping_slot(s, start_addr,
418 start_addr + size)) {
419 return;
420 }
421 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
422 } else {
423 fprintf(stderr, "Only page-aligned memory slots supported\n");
424 }
425 abort();
426 }
427
428 /* KVM does not support read-only slots */
429 phys_offset &= ~IO_MEM_ROM;
430
431 while (1) {
432 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
433 if (!mem) {
434 break;
435 }
436
437 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
438 (start_addr + size <= mem->start_addr + mem->memory_size) &&
439 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
440 /* The new slot fits into the existing one and comes with
441 * identical parameters - nothing to be done. */
442 return;
443 }
444
445 old = *mem;
446
447 /* unregister the overlapping slot */
448 mem->memory_size = 0;
449 err = kvm_set_user_memory_region(s, mem);
450 if (err) {
451 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
452 __func__, strerror(-err));
453 abort();
454 }
455
456 /* Workaround for older KVM versions: we can't join slots, even not by
457 * unregistering the previous ones and then registering the larger
458 * slot. We have to maintain the existing fragmentation. Sigh.
459 *
460 * This workaround assumes that the new slot starts at the same
461 * address as the first existing one. If not or if some overlapping
462 * slot comes around later, we will fail (not seen in practice so far)
463 * - and actually require a recent KVM version. */
464 if (s->broken_set_mem_region &&
465 old.start_addr == start_addr && old.memory_size < size &&
466 flags < IO_MEM_UNASSIGNED) {
467 mem = kvm_alloc_slot(s);
468 mem->memory_size = old.memory_size;
469 mem->start_addr = old.start_addr;
470 mem->phys_offset = old.phys_offset;
471 mem->flags = 0;
472
473 err = kvm_set_user_memory_region(s, mem);
474 if (err) {
475 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
476 strerror(-err));
477 abort();
478 }
479
480 start_addr += old.memory_size;
481 phys_offset += old.memory_size;
482 size -= old.memory_size;
483 continue;
484 }
485
486 /* register prefix slot */
487 if (old.start_addr < start_addr) {
488 mem = kvm_alloc_slot(s);
489 mem->memory_size = start_addr - old.start_addr;
490 mem->start_addr = old.start_addr;
491 mem->phys_offset = old.phys_offset;
492 mem->flags = 0;
493
494 err = kvm_set_user_memory_region(s, mem);
495 if (err) {
496 fprintf(stderr, "%s: error registering prefix slot: %s\n",
497 __func__, strerror(-err));
498 abort();
499 }
500 }
501
502 /* register suffix slot */
503 if (old.start_addr + old.memory_size > start_addr + size) {
504 ram_addr_t size_delta;
505
506 mem = kvm_alloc_slot(s);
507 mem->start_addr = start_addr + size;
508 size_delta = mem->start_addr - old.start_addr;
509 mem->memory_size = old.memory_size - size_delta;
510 mem->phys_offset = old.phys_offset + size_delta;
511 mem->flags = 0;
512
513 err = kvm_set_user_memory_region(s, mem);
514 if (err) {
515 fprintf(stderr, "%s: error registering suffix slot: %s\n",
516 __func__, strerror(-err));
517 abort();
518 }
519 }
520 }
521
522 /* in case the KVM bug workaround already "consumed" the new slot */
523 if (!size)
524 return;
525
526 /* KVM does not need to know about this memory */
527 if (flags >= IO_MEM_UNASSIGNED)
528 return;
529
530 mem = kvm_alloc_slot(s);
531 mem->memory_size = size;
532 mem->start_addr = start_addr;
533 mem->phys_offset = phys_offset;
534 mem->flags = 0;
535
536 err = kvm_set_user_memory_region(s, mem);
537 if (err) {
538 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
539 strerror(-err));
540 abort();
541 }
542}
543
7b8f3b78
MT
544static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
545 target_phys_addr_t start_addr,
546 ram_addr_t size,
547 ram_addr_t phys_offset)
548{
549 kvm_set_phys_mem(start_addr, size, phys_offset);
550}
551
552static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
553 target_phys_addr_t start_addr,
554 target_phys_addr_t end_addr)
555{
556 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
557}
558
559static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
560 int enable)
561{
562 return kvm_set_migration_log(enable);
563}
564
565static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
566 .set_memory = kvm_client_set_memory,
567 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
568 .migration_log = kvm_client_migration_log,
569};
570
05330448
AL
571int kvm_init(int smp_cpus)
572{
168ccc11
JK
573 static const char upgrade_note[] =
574 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
575 "(see http://sourceforge.net/projects/kvm).\n";
05330448
AL
576 KVMState *s;
577 int ret;
578 int i;
579
9f8fd694
MM
580 if (smp_cpus > 1) {
581 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
05330448 582 return -EINVAL;
9f8fd694 583 }
05330448
AL
584
585 s = qemu_mallocz(sizeof(KVMState));
05330448 586
e22a25c9 587#ifdef KVM_CAP_SET_GUEST_DEBUG
72cf2d4f 588 QTAILQ_INIT(&s->kvm_sw_breakpoints);
e22a25c9 589#endif
05330448
AL
590 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
591 s->slots[i].slot = i;
592
593 s->vmfd = -1;
40ff6d7e 594 s->fd = qemu_open("/dev/kvm", O_RDWR);
05330448
AL
595 if (s->fd == -1) {
596 fprintf(stderr, "Could not access KVM kernel module: %m\n");
597 ret = -errno;
598 goto err;
599 }
600
601 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
602 if (ret < KVM_API_VERSION) {
603 if (ret > 0)
604 ret = -EINVAL;
605 fprintf(stderr, "kvm version too old\n");
606 goto err;
607 }
608
609 if (ret > KVM_API_VERSION) {
610 ret = -EINVAL;
611 fprintf(stderr, "kvm version not supported\n");
612 goto err;
613 }
614
615 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
616 if (s->vmfd < 0)
617 goto err;
618
619 /* initially, KVM allocated its own memory and we had to jump through
620 * hooks to make phys_ram_base point to this. Modern versions of KVM
5579c7f3 621 * just use a user allocated buffer so we can use regular pages
05330448
AL
622 * unmodified. Make sure we have a sufficiently modern version of KVM.
623 */
ad7b8b33
AL
624 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
625 ret = -EINVAL;
168ccc11
JK
626 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
627 upgrade_note);
05330448
AL
628 goto err;
629 }
630
d85dc283
AL
631 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
632 * destroyed properly. Since we rely on this capability, refuse to work
633 * with any kernel without this capability. */
ad7b8b33
AL
634 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
635 ret = -EINVAL;
d85dc283
AL
636
637 fprintf(stderr,
168ccc11
JK
638 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
639 upgrade_note);
d85dc283
AL
640 goto err;
641 }
642
62a2744c 643 s->coalesced_mmio = 0;
f65ed4c1 644#ifdef KVM_CAP_COALESCED_MMIO
ad7b8b33 645 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
62a2744c 646 s->coalesced_mmio_ring = NULL;
f65ed4c1
AL
647#endif
648
e69917e2
JK
649 s->broken_set_mem_region = 1;
650#ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
651 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
652 if (ret > 0) {
653 s->broken_set_mem_region = 0;
654 }
655#endif
656
a0fb002c
JK
657 s->vcpu_events = 0;
658#ifdef KVM_CAP_VCPU_EVENTS
659 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
660#endif
661
05330448
AL
662 ret = kvm_arch_init(s, smp_cpus);
663 if (ret < 0)
664 goto err;
665
666 kvm_state = s;
7b8f3b78 667 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
05330448
AL
668
669 return 0;
670
671err:
672 if (s) {
673 if (s->vmfd != -1)
674 close(s->vmfd);
675 if (s->fd != -1)
676 close(s->fd);
677 }
678 qemu_free(s);
679
680 return ret;
681}
682
afcea8cb
BS
683static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
684 uint32_t count)
05330448
AL
685{
686 int i;
687 uint8_t *ptr = data;
688
689 for (i = 0; i < count; i++) {
690 if (direction == KVM_EXIT_IO_IN) {
691 switch (size) {
692 case 1:
afcea8cb 693 stb_p(ptr, cpu_inb(port));
05330448
AL
694 break;
695 case 2:
afcea8cb 696 stw_p(ptr, cpu_inw(port));
05330448
AL
697 break;
698 case 4:
afcea8cb 699 stl_p(ptr, cpu_inl(port));
05330448
AL
700 break;
701 }
702 } else {
703 switch (size) {
704 case 1:
afcea8cb 705 cpu_outb(port, ldub_p(ptr));
05330448
AL
706 break;
707 case 2:
afcea8cb 708 cpu_outw(port, lduw_p(ptr));
05330448
AL
709 break;
710 case 4:
afcea8cb 711 cpu_outl(port, ldl_p(ptr));
05330448
AL
712 break;
713 }
714 }
715
716 ptr += size;
717 }
718
719 return 1;
720}
721
62a2744c 722void kvm_flush_coalesced_mmio_buffer(void)
f65ed4c1
AL
723{
724#ifdef KVM_CAP_COALESCED_MMIO
725 KVMState *s = kvm_state;
62a2744c
SY
726 if (s->coalesced_mmio_ring) {
727 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
f65ed4c1
AL
728 while (ring->first != ring->last) {
729 struct kvm_coalesced_mmio *ent;
730
731 ent = &ring->coalesced_mmio[ring->first];
732
733 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
85199474 734 smp_wmb();
f65ed4c1
AL
735 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
736 }
737 }
738#endif
739}
740
4c0960c0
AK
741void kvm_cpu_synchronize_state(CPUState *env)
742{
9ded2744 743 if (!env->kvm_vcpu_dirty) {
4c0960c0 744 kvm_arch_get_registers(env);
9ded2744 745 env->kvm_vcpu_dirty = 1;
4c0960c0
AK
746 }
747}
748
05330448
AL
749int kvm_cpu_exec(CPUState *env)
750{
751 struct kvm_run *run = env->kvm_run;
752 int ret;
753
754 dprintf("kvm_cpu_exec()\n");
755
756 do {
6312b928 757#ifndef CONFIG_IOTHREAD
be214e6c 758 if (env->exit_request) {
05330448
AL
759 dprintf("interrupt exit requested\n");
760 ret = 0;
761 break;
762 }
6312b928 763#endif
05330448 764
9ded2744 765 if (env->kvm_vcpu_dirty) {
4c0960c0 766 kvm_arch_put_registers(env);
9ded2744 767 env->kvm_vcpu_dirty = 0;
4c0960c0
AK
768 }
769
8c14c173 770 kvm_arch_pre_run(env, run);
d549db5a 771 qemu_mutex_unlock_iothread();
05330448 772 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
d549db5a 773 qemu_mutex_lock_iothread();
05330448
AL
774 kvm_arch_post_run(env, run);
775
776 if (ret == -EINTR || ret == -EAGAIN) {
cc84de95 777 cpu_exit(env);
05330448
AL
778 dprintf("io window exit\n");
779 ret = 0;
780 break;
781 }
782
783 if (ret < 0) {
784 dprintf("kvm run failed %s\n", strerror(-ret));
785 abort();
786 }
787
62a2744c 788 kvm_flush_coalesced_mmio_buffer();
f65ed4c1 789
05330448
AL
790 ret = 0; /* exit loop */
791 switch (run->exit_reason) {
792 case KVM_EXIT_IO:
793 dprintf("handle_io\n");
afcea8cb 794 ret = kvm_handle_io(run->io.port,
05330448
AL
795 (uint8_t *)run + run->io.data_offset,
796 run->io.direction,
797 run->io.size,
798 run->io.count);
799 break;
800 case KVM_EXIT_MMIO:
801 dprintf("handle_mmio\n");
802 cpu_physical_memory_rw(run->mmio.phys_addr,
803 run->mmio.data,
804 run->mmio.len,
805 run->mmio.is_write);
806 ret = 1;
807 break;
808 case KVM_EXIT_IRQ_WINDOW_OPEN:
809 dprintf("irq_window_open\n");
810 break;
811 case KVM_EXIT_SHUTDOWN:
812 dprintf("shutdown\n");
813 qemu_system_reset_request();
814 ret = 1;
815 break;
816 case KVM_EXIT_UNKNOWN:
817 dprintf("kvm_exit_unknown\n");
818 break;
819 case KVM_EXIT_FAIL_ENTRY:
820 dprintf("kvm_exit_fail_entry\n");
821 break;
822 case KVM_EXIT_EXCEPTION:
823 dprintf("kvm_exit_exception\n");
824 break;
825 case KVM_EXIT_DEBUG:
826 dprintf("kvm_exit_debug\n");
e22a25c9
AL
827#ifdef KVM_CAP_SET_GUEST_DEBUG
828 if (kvm_arch_debug(&run->debug.arch)) {
829 gdb_set_stop_cpu(env);
830 vm_stop(EXCP_DEBUG);
831 env->exception_index = EXCP_DEBUG;
832 return 0;
833 }
834 /* re-enter, this exception was guest-internal */
835 ret = 1;
836#endif /* KVM_CAP_SET_GUEST_DEBUG */
05330448
AL
837 break;
838 default:
839 dprintf("kvm_arch_handle_exit\n");
840 ret = kvm_arch_handle_exit(env, run);
841 break;
842 }
843 } while (ret > 0);
844
be214e6c
AJ
845 if (env->exit_request) {
846 env->exit_request = 0;
becfc390
AL
847 env->exception_index = EXCP_INTERRUPT;
848 }
849
05330448
AL
850 return ret;
851}
852
984b5181 853int kvm_ioctl(KVMState *s, int type, ...)
05330448
AL
854{
855 int ret;
984b5181
AL
856 void *arg;
857 va_list ap;
05330448 858
984b5181
AL
859 va_start(ap, type);
860 arg = va_arg(ap, void *);
861 va_end(ap);
862
863 ret = ioctl(s->fd, type, arg);
05330448
AL
864 if (ret == -1)
865 ret = -errno;
866
867 return ret;
868}
869
984b5181 870int kvm_vm_ioctl(KVMState *s, int type, ...)
05330448
AL
871{
872 int ret;
984b5181
AL
873 void *arg;
874 va_list ap;
875
876 va_start(ap, type);
877 arg = va_arg(ap, void *);
878 va_end(ap);
05330448 879
984b5181 880 ret = ioctl(s->vmfd, type, arg);
05330448
AL
881 if (ret == -1)
882 ret = -errno;
883
884 return ret;
885}
886
984b5181 887int kvm_vcpu_ioctl(CPUState *env, int type, ...)
05330448
AL
888{
889 int ret;
984b5181
AL
890 void *arg;
891 va_list ap;
892
893 va_start(ap, type);
894 arg = va_arg(ap, void *);
895 va_end(ap);
05330448 896
984b5181 897 ret = ioctl(env->kvm_fd, type, arg);
05330448
AL
898 if (ret == -1)
899 ret = -errno;
900
901 return ret;
902}
bd322087
AL
903
904int kvm_has_sync_mmu(void)
905{
a9c11522 906#ifdef KVM_CAP_SYNC_MMU
bd322087
AL
907 KVMState *s = kvm_state;
908
ad7b8b33
AL
909 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
910#else
bd322087 911 return 0;
ad7b8b33 912#endif
bd322087 913}
e22a25c9 914
a0fb002c
JK
915int kvm_has_vcpu_events(void)
916{
917 return kvm_state->vcpu_events;
918}
919
6f0437e8
JK
920void kvm_setup_guest_memory(void *start, size_t size)
921{
922 if (!kvm_has_sync_mmu()) {
923#ifdef MADV_DONTFORK
924 int ret = madvise(start, size, MADV_DONTFORK);
925
926 if (ret) {
927 perror("madvice");
928 exit(1);
929 }
930#else
931 fprintf(stderr,
932 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
933 exit(1);
934#endif
935 }
936}
937
e22a25c9 938#ifdef KVM_CAP_SET_GUEST_DEBUG
fc5d642f
LC
939static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
940{
828566bc 941#ifdef CONFIG_IOTHREAD
a2eebe88
AS
942 if (env != cpu_single_env) {
943 abort();
fc5d642f 944 }
828566bc 945#endif
a2eebe88 946 func(data);
fc5d642f
LC
947}
948
e22a25c9
AL
949struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
950 target_ulong pc)
951{
952 struct kvm_sw_breakpoint *bp;
953
72cf2d4f 954 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
e22a25c9
AL
955 if (bp->pc == pc)
956 return bp;
957 }
958 return NULL;
959}
960
961int kvm_sw_breakpoints_active(CPUState *env)
962{
72cf2d4f 963 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
e22a25c9
AL
964}
965
452e4751
GC
966struct kvm_set_guest_debug_data {
967 struct kvm_guest_debug dbg;
968 CPUState *env;
969 int err;
970};
971
972static void kvm_invoke_set_guest_debug(void *data)
973{
974 struct kvm_set_guest_debug_data *dbg_data = data;
b3807725
JK
975 CPUState *env = dbg_data->env;
976
9ded2744 977 if (env->kvm_vcpu_dirty) {
b3807725 978 kvm_arch_put_registers(env);
9ded2744 979 env->kvm_vcpu_dirty = 0;
b3807725
JK
980 }
981 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
452e4751
GC
982}
983
e22a25c9
AL
984int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
985{
452e4751 986 struct kvm_set_guest_debug_data data;
e22a25c9 987
452e4751 988 data.dbg.control = 0;
e22a25c9 989 if (env->singlestep_enabled)
452e4751 990 data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
e22a25c9 991
452e4751
GC
992 kvm_arch_update_guest_debug(env, &data.dbg);
993 data.dbg.control |= reinject_trap;
994 data.env = env;
e22a25c9 995
452e4751
GC
996 on_vcpu(env, kvm_invoke_set_guest_debug, &data);
997 return data.err;
e22a25c9
AL
998}
999
1000int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1001 target_ulong len, int type)
1002{
1003 struct kvm_sw_breakpoint *bp;
1004 CPUState *env;
1005 int err;
1006
1007 if (type == GDB_BREAKPOINT_SW) {
1008 bp = kvm_find_sw_breakpoint(current_env, addr);
1009 if (bp) {
1010 bp->use_count++;
1011 return 0;
1012 }
1013
1014 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1015 if (!bp)
1016 return -ENOMEM;
1017
1018 bp->pc = addr;
1019 bp->use_count = 1;
1020 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1021 if (err) {
1022 free(bp);
1023 return err;
1024 }
1025
72cf2d4f 1026 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
e22a25c9
AL
1027 bp, entry);
1028 } else {
1029 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1030 if (err)
1031 return err;
1032 }
1033
1034 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1035 err = kvm_update_guest_debug(env, 0);
1036 if (err)
1037 return err;
1038 }
1039 return 0;
1040}
1041
1042int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1043 target_ulong len, int type)
1044{
1045 struct kvm_sw_breakpoint *bp;
1046 CPUState *env;
1047 int err;
1048
1049 if (type == GDB_BREAKPOINT_SW) {
1050 bp = kvm_find_sw_breakpoint(current_env, addr);
1051 if (!bp)
1052 return -ENOENT;
1053
1054 if (bp->use_count > 1) {
1055 bp->use_count--;
1056 return 0;
1057 }
1058
1059 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1060 if (err)
1061 return err;
1062
72cf2d4f 1063 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
e22a25c9
AL
1064 qemu_free(bp);
1065 } else {
1066 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1067 if (err)
1068 return err;
1069 }
1070
1071 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1072 err = kvm_update_guest_debug(env, 0);
1073 if (err)
1074 return err;
1075 }
1076 return 0;
1077}
1078
1079void kvm_remove_all_breakpoints(CPUState *current_env)
1080{
1081 struct kvm_sw_breakpoint *bp, *next;
1082 KVMState *s = current_env->kvm_state;
1083 CPUState *env;
1084
72cf2d4f 1085 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
e22a25c9
AL
1086 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1087 /* Try harder to find a CPU that currently sees the breakpoint. */
1088 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1089 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1090 break;
1091 }
1092 }
1093 }
1094 kvm_arch_remove_all_hw_breakpoints();
1095
1096 for (env = first_cpu; env != NULL; env = env->next_cpu)
1097 kvm_update_guest_debug(env, 0);
1098}
1099
1100#else /* !KVM_CAP_SET_GUEST_DEBUG */
1101
1102int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1103{
1104 return -EINVAL;
1105}
1106
1107int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1108 target_ulong len, int type)
1109{
1110 return -EINVAL;
1111}
1112
1113int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1114 target_ulong len, int type)
1115{
1116 return -EINVAL;
1117}
1118
1119void kvm_remove_all_breakpoints(CPUState *current_env)
1120{
1121}
1122#endif /* !KVM_CAP_SET_GUEST_DEBUG */
cc84de95
MT
1123
1124int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1125{
1126 struct kvm_signal_mask *sigmask;
1127 int r;
1128
1129 if (!sigset)
1130 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1131
1132 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1133
1134 sigmask->len = 8;
1135 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1136 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1137 free(sigmask);
1138
1139 return r;
1140}