]> git.proxmox.com Git - qemu.git/blame - kvm-all.c
Version 0.14.1
[qemu.git] / kvm-all.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5832d1f2 5 * Red Hat, Inc. 2008
05330448
AL
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
5832d1f2 9 * Glauber Costa <gcosta@redhat.com>
05330448
AL
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16#include <sys/types.h>
17#include <sys/ioctl.h>
18#include <sys/mman.h>
984b5181 19#include <stdarg.h>
05330448
AL
20
21#include <linux/kvm.h>
22
23#include "qemu-common.h"
85199474 24#include "qemu-barrier.h"
05330448 25#include "sysemu.h"
d33a1810 26#include "hw/hw.h"
e22a25c9 27#include "gdbstub.h"
05330448 28#include "kvm.h"
8369e01c 29#include "bswap.h"
05330448 30
d2f2b8a7
SH
31/* This check must be after config-host.h is included */
32#ifdef CONFIG_EVENTFD
33#include <sys/eventfd.h>
34#endif
35
f65ed4c1
AL
36/* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
37#define PAGE_SIZE TARGET_PAGE_SIZE
38
05330448
AL
39//#define DEBUG_KVM
40
41#ifdef DEBUG_KVM
8c0d577e 42#define DPRINTF(fmt, ...) \
05330448
AL
43 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
44#else
8c0d577e 45#define DPRINTF(fmt, ...) \
05330448
AL
46 do { } while (0)
47#endif
48
34fc643f
AL
49typedef struct KVMSlot
50{
c227f099
AL
51 target_phys_addr_t start_addr;
52 ram_addr_t memory_size;
53 ram_addr_t phys_offset;
34fc643f
AL
54 int slot;
55 int flags;
56} KVMSlot;
05330448 57
5832d1f2
AL
58typedef struct kvm_dirty_log KVMDirtyLog;
59
05330448
AL
60struct KVMState
61{
62 KVMSlot slots[32];
63 int fd;
64 int vmfd;
f65ed4c1 65 int coalesced_mmio;
62a2744c 66 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
e69917e2 67 int broken_set_mem_region;
4495d6a7 68 int migration_log;
a0fb002c 69 int vcpu_events;
b0b1d690 70 int robust_singlestep;
ff44f1a3 71 int debugregs;
e22a25c9
AL
72#ifdef KVM_CAP_SET_GUEST_DEBUG
73 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
74#endif
6f725c13
GC
75 int irqchip_in_kernel;
76 int pit_in_kernel;
f1665b21 77 int xsave, xcrs;
d2f2b8a7 78 int many_ioeventfds;
05330448
AL
79};
80
81static KVMState *kvm_state;
82
94a8d39a
JK
83static const KVMCapabilityInfo kvm_required_capabilites[] = {
84 KVM_CAP_INFO(USER_MEMORY),
85 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
86 KVM_CAP_LAST_INFO
87};
88
05330448
AL
89static KVMSlot *kvm_alloc_slot(KVMState *s)
90{
91 int i;
92
93 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
62d60e8c 94 /* KVM private memory slots */
a426e122 95 if (i >= 8 && i < 12) {
62d60e8c 96 continue;
a426e122
JK
97 }
98 if (s->slots[i].memory_size == 0) {
05330448 99 return &s->slots[i];
a426e122 100 }
05330448
AL
101 }
102
d3f8d37f
AL
103 fprintf(stderr, "%s: no free slot available\n", __func__);
104 abort();
105}
106
107static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
c227f099
AL
108 target_phys_addr_t start_addr,
109 target_phys_addr_t end_addr)
d3f8d37f
AL
110{
111 int i;
112
113 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
114 KVMSlot *mem = &s->slots[i];
115
116 if (start_addr == mem->start_addr &&
117 end_addr == mem->start_addr + mem->memory_size) {
118 return mem;
119 }
120 }
121
05330448
AL
122 return NULL;
123}
124
6152e2ae
AL
125/*
126 * Find overlapping slot with lowest start address
127 */
128static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
c227f099
AL
129 target_phys_addr_t start_addr,
130 target_phys_addr_t end_addr)
05330448 131{
6152e2ae 132 KVMSlot *found = NULL;
05330448
AL
133 int i;
134
135 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
136 KVMSlot *mem = &s->slots[i];
137
6152e2ae
AL
138 if (mem->memory_size == 0 ||
139 (found && found->start_addr < mem->start_addr)) {
140 continue;
141 }
142
143 if (end_addr > mem->start_addr &&
144 start_addr < mem->start_addr + mem->memory_size) {
145 found = mem;
146 }
05330448
AL
147 }
148
6152e2ae 149 return found;
05330448
AL
150}
151
983dfc3b
HY
152int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr,
153 target_phys_addr_t *phys_addr)
154{
155 int i;
156
157 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
158 KVMSlot *mem = &s->slots[i];
159
160 if (ram_addr >= mem->phys_offset &&
161 ram_addr < mem->phys_offset + mem->memory_size) {
162 *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset);
163 return 1;
164 }
165 }
166
167 return 0;
168}
169
5832d1f2
AL
170static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
171{
172 struct kvm_userspace_memory_region mem;
173
174 mem.slot = slot->slot;
175 mem.guest_phys_addr = slot->start_addr;
176 mem.memory_size = slot->memory_size;
b2e0a138 177 mem.userspace_addr = (unsigned long)qemu_safe_ram_ptr(slot->phys_offset);
5832d1f2 178 mem.flags = slot->flags;
4495d6a7
JK
179 if (s->migration_log) {
180 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
181 }
5832d1f2
AL
182 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
183}
184
8d2ba1fb
JK
185static void kvm_reset_vcpu(void *opaque)
186{
187 CPUState *env = opaque;
188
caa5af0f 189 kvm_arch_reset_vcpu(env);
8d2ba1fb 190}
5832d1f2 191
6f725c13
GC
192int kvm_irqchip_in_kernel(void)
193{
194 return kvm_state->irqchip_in_kernel;
195}
196
197int kvm_pit_in_kernel(void)
198{
199 return kvm_state->pit_in_kernel;
200}
201
202
05330448
AL
203int kvm_init_vcpu(CPUState *env)
204{
205 KVMState *s = kvm_state;
206 long mmap_size;
207 int ret;
208
8c0d577e 209 DPRINTF("kvm_init_vcpu\n");
05330448 210
984b5181 211 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
05330448 212 if (ret < 0) {
8c0d577e 213 DPRINTF("kvm_create_vcpu failed\n");
05330448
AL
214 goto err;
215 }
216
217 env->kvm_fd = ret;
218 env->kvm_state = s;
219
220 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
221 if (mmap_size < 0) {
8c0d577e 222 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
05330448
AL
223 goto err;
224 }
225
226 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
227 env->kvm_fd, 0);
228 if (env->kvm_run == MAP_FAILED) {
229 ret = -errno;
8c0d577e 230 DPRINTF("mmap'ing vcpu state failed\n");
05330448
AL
231 goto err;
232 }
233
a426e122
JK
234 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
235 s->coalesced_mmio_ring =
236 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
237 }
62a2744c 238
05330448 239 ret = kvm_arch_init_vcpu(env);
8d2ba1fb 240 if (ret == 0) {
a08d4367 241 qemu_register_reset(kvm_reset_vcpu, env);
caa5af0f 242 kvm_arch_reset_vcpu(env);
8d2ba1fb 243 }
05330448
AL
244err:
245 return ret;
246}
247
5832d1f2
AL
248/*
249 * dirty pages logging control
250 */
c227f099
AL
251static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
252 ram_addr_t size, int flags, int mask)
5832d1f2
AL
253{
254 KVMState *s = kvm_state;
d3f8d37f 255 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
4495d6a7
JK
256 int old_flags;
257
5832d1f2 258 if (mem == NULL) {
d3f8d37f
AL
259 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
260 TARGET_FMT_plx "\n", __func__, phys_addr,
c227f099 261 (target_phys_addr_t)(phys_addr + size - 1));
5832d1f2
AL
262 return -EINVAL;
263 }
264
4495d6a7 265 old_flags = mem->flags;
5832d1f2 266
4495d6a7 267 flags = (mem->flags & ~mask) | flags;
5832d1f2
AL
268 mem->flags = flags;
269
4495d6a7
JK
270 /* If nothing changed effectively, no need to issue ioctl */
271 if (s->migration_log) {
272 flags |= KVM_MEM_LOG_DIRTY_PAGES;
273 }
274 if (flags == old_flags) {
275 return 0;
276 }
277
5832d1f2
AL
278 return kvm_set_user_memory_region(s, mem);
279}
280
c227f099 281int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
5832d1f2 282{
a426e122
JK
283 return kvm_dirty_pages_log_change(phys_addr, size, KVM_MEM_LOG_DIRTY_PAGES,
284 KVM_MEM_LOG_DIRTY_PAGES);
5832d1f2
AL
285}
286
c227f099 287int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
5832d1f2 288{
a426e122
JK
289 return kvm_dirty_pages_log_change(phys_addr, size, 0,
290 KVM_MEM_LOG_DIRTY_PAGES);
5832d1f2
AL
291}
292
7b8f3b78 293static int kvm_set_migration_log(int enable)
4495d6a7
JK
294{
295 KVMState *s = kvm_state;
296 KVMSlot *mem;
297 int i, err;
298
299 s->migration_log = enable;
300
301 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
302 mem = &s->slots[i];
303
70fedd76
AW
304 if (!mem->memory_size) {
305 continue;
306 }
4495d6a7
JK
307 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
308 continue;
309 }
310 err = kvm_set_user_memory_region(s, mem);
311 if (err) {
312 return err;
313 }
314 }
315 return 0;
316}
317
8369e01c
MT
318/* get kvm's dirty pages bitmap and update qemu's */
319static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
320 unsigned long *bitmap,
321 unsigned long offset,
322 unsigned long mem_size)
96c1606b 323{
8369e01c
MT
324 unsigned int i, j;
325 unsigned long page_number, addr, addr1, c;
326 ram_addr_t ram_addr;
327 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
328 HOST_LONG_BITS;
329
330 /*
331 * bitmap-traveling is faster than memory-traveling (for addr...)
332 * especially when most of the memory is not dirty.
333 */
334 for (i = 0; i < len; i++) {
335 if (bitmap[i] != 0) {
336 c = leul_to_cpu(bitmap[i]);
337 do {
338 j = ffsl(c) - 1;
339 c &= ~(1ul << j);
340 page_number = i * HOST_LONG_BITS + j;
341 addr1 = page_number * TARGET_PAGE_SIZE;
342 addr = offset + addr1;
343 ram_addr = cpu_get_physical_page_desc(addr);
344 cpu_physical_memory_set_dirty(ram_addr);
345 } while (c != 0);
346 }
347 }
348 return 0;
96c1606b
AG
349}
350
8369e01c
MT
351#define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
352
5832d1f2
AL
353/**
354 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
355 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
356 * This means all bits are set to dirty.
357 *
d3f8d37f 358 * @start_add: start of logged region.
5832d1f2
AL
359 * @end_addr: end of logged region.
360 */
7b8f3b78 361static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
a426e122 362 target_phys_addr_t end_addr)
5832d1f2
AL
363{
364 KVMState *s = kvm_state;
151f7749 365 unsigned long size, allocated_size = 0;
151f7749
JK
366 KVMDirtyLog d;
367 KVMSlot *mem;
368 int ret = 0;
5832d1f2 369
151f7749
JK
370 d.dirty_bitmap = NULL;
371 while (start_addr < end_addr) {
372 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
373 if (mem == NULL) {
374 break;
375 }
5832d1f2 376
8369e01c 377 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8;
151f7749
JK
378 if (!d.dirty_bitmap) {
379 d.dirty_bitmap = qemu_malloc(size);
380 } else if (size > allocated_size) {
381 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
382 }
383 allocated_size = size;
384 memset(d.dirty_bitmap, 0, allocated_size);
5832d1f2 385
151f7749 386 d.slot = mem->slot;
5832d1f2 387
6e489f3f 388 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
8c0d577e 389 DPRINTF("ioctl failed %d\n", errno);
151f7749
JK
390 ret = -1;
391 break;
392 }
5832d1f2 393
8369e01c
MT
394 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
395 mem->start_addr, mem->memory_size);
396 start_addr = mem->start_addr + mem->memory_size;
5832d1f2 397 }
5832d1f2 398 qemu_free(d.dirty_bitmap);
151f7749
JK
399
400 return ret;
5832d1f2
AL
401}
402
c227f099 403int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
f65ed4c1
AL
404{
405 int ret = -ENOSYS;
f65ed4c1
AL
406 KVMState *s = kvm_state;
407
408 if (s->coalesced_mmio) {
409 struct kvm_coalesced_mmio_zone zone;
410
411 zone.addr = start;
412 zone.size = size;
413
414 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
415 }
f65ed4c1
AL
416
417 return ret;
418}
419
c227f099 420int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
f65ed4c1
AL
421{
422 int ret = -ENOSYS;
f65ed4c1
AL
423 KVMState *s = kvm_state;
424
425 if (s->coalesced_mmio) {
426 struct kvm_coalesced_mmio_zone zone;
427
428 zone.addr = start;
429 zone.size = size;
430
431 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
432 }
f65ed4c1
AL
433
434 return ret;
435}
436
ad7b8b33
AL
437int kvm_check_extension(KVMState *s, unsigned int extension)
438{
439 int ret;
440
441 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
442 if (ret < 0) {
443 ret = 0;
444 }
445
446 return ret;
447}
448
d2f2b8a7
SH
449static int kvm_check_many_ioeventfds(void)
450{
d0dcac83
SH
451 /* Userspace can use ioeventfd for io notification. This requires a host
452 * that supports eventfd(2) and an I/O thread; since eventfd does not
453 * support SIGIO it cannot interrupt the vcpu.
454 *
455 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
d2f2b8a7
SH
456 * can avoid creating too many ioeventfds.
457 */
d0dcac83 458#if defined(CONFIG_EVENTFD) && defined(CONFIG_IOTHREAD)
d2f2b8a7
SH
459 int ioeventfds[7];
460 int i, ret = 0;
461 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
462 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
463 if (ioeventfds[i] < 0) {
464 break;
465 }
466 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
467 if (ret < 0) {
468 close(ioeventfds[i]);
469 break;
470 }
471 }
472
473 /* Decide whether many devices are supported or not */
474 ret = i == ARRAY_SIZE(ioeventfds);
475
476 while (i-- > 0) {
477 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
478 close(ioeventfds[i]);
479 }
480 return ret;
481#else
482 return 0;
483#endif
484}
485
94a8d39a
JK
486static const KVMCapabilityInfo *
487kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
488{
489 while (list->name) {
490 if (!kvm_check_extension(s, list->value)) {
491 return list;
492 }
493 list++;
494 }
495 return NULL;
496}
497
a426e122
JK
498static void kvm_set_phys_mem(target_phys_addr_t start_addr, ram_addr_t size,
499 ram_addr_t phys_offset)
46dbef6a
MT
500{
501 KVMState *s = kvm_state;
502 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
503 KVMSlot *mem, old;
504 int err;
505
14542fea
GN
506 /* kvm works in page size chunks, but the function may be called
507 with sub-page size and unaligned start address. */
508 size = TARGET_PAGE_ALIGN(size);
509 start_addr = TARGET_PAGE_ALIGN(start_addr);
46dbef6a
MT
510
511 /* KVM does not support read-only slots */
512 phys_offset &= ~IO_MEM_ROM;
513
514 while (1) {
515 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
516 if (!mem) {
517 break;
518 }
519
520 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
521 (start_addr + size <= mem->start_addr + mem->memory_size) &&
522 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
523 /* The new slot fits into the existing one and comes with
524 * identical parameters - nothing to be done. */
525 return;
526 }
527
528 old = *mem;
529
530 /* unregister the overlapping slot */
531 mem->memory_size = 0;
532 err = kvm_set_user_memory_region(s, mem);
533 if (err) {
534 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
535 __func__, strerror(-err));
536 abort();
537 }
538
539 /* Workaround for older KVM versions: we can't join slots, even not by
540 * unregistering the previous ones and then registering the larger
541 * slot. We have to maintain the existing fragmentation. Sigh.
542 *
543 * This workaround assumes that the new slot starts at the same
544 * address as the first existing one. If not or if some overlapping
545 * slot comes around later, we will fail (not seen in practice so far)
546 * - and actually require a recent KVM version. */
547 if (s->broken_set_mem_region &&
548 old.start_addr == start_addr && old.memory_size < size &&
549 flags < IO_MEM_UNASSIGNED) {
550 mem = kvm_alloc_slot(s);
551 mem->memory_size = old.memory_size;
552 mem->start_addr = old.start_addr;
553 mem->phys_offset = old.phys_offset;
554 mem->flags = 0;
555
556 err = kvm_set_user_memory_region(s, mem);
557 if (err) {
558 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
559 strerror(-err));
560 abort();
561 }
562
563 start_addr += old.memory_size;
564 phys_offset += old.memory_size;
565 size -= old.memory_size;
566 continue;
567 }
568
569 /* register prefix slot */
570 if (old.start_addr < start_addr) {
571 mem = kvm_alloc_slot(s);
572 mem->memory_size = start_addr - old.start_addr;
573 mem->start_addr = old.start_addr;
574 mem->phys_offset = old.phys_offset;
575 mem->flags = 0;
576
577 err = kvm_set_user_memory_region(s, mem);
578 if (err) {
579 fprintf(stderr, "%s: error registering prefix slot: %s\n",
580 __func__, strerror(-err));
581 abort();
582 }
583 }
584
585 /* register suffix slot */
586 if (old.start_addr + old.memory_size > start_addr + size) {
587 ram_addr_t size_delta;
588
589 mem = kvm_alloc_slot(s);
590 mem->start_addr = start_addr + size;
591 size_delta = mem->start_addr - old.start_addr;
592 mem->memory_size = old.memory_size - size_delta;
593 mem->phys_offset = old.phys_offset + size_delta;
594 mem->flags = 0;
595
596 err = kvm_set_user_memory_region(s, mem);
597 if (err) {
598 fprintf(stderr, "%s: error registering suffix slot: %s\n",
599 __func__, strerror(-err));
600 abort();
601 }
602 }
603 }
604
605 /* in case the KVM bug workaround already "consumed" the new slot */
a426e122 606 if (!size) {
46dbef6a 607 return;
a426e122 608 }
46dbef6a 609 /* KVM does not need to know about this memory */
a426e122 610 if (flags >= IO_MEM_UNASSIGNED) {
46dbef6a 611 return;
a426e122 612 }
46dbef6a
MT
613 mem = kvm_alloc_slot(s);
614 mem->memory_size = size;
615 mem->start_addr = start_addr;
616 mem->phys_offset = phys_offset;
617 mem->flags = 0;
618
619 err = kvm_set_user_memory_region(s, mem);
620 if (err) {
621 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
622 strerror(-err));
623 abort();
624 }
625}
626
7b8f3b78 627static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
a426e122
JK
628 target_phys_addr_t start_addr,
629 ram_addr_t size, ram_addr_t phys_offset)
7b8f3b78 630{
a426e122 631 kvm_set_phys_mem(start_addr, size, phys_offset);
7b8f3b78
MT
632}
633
634static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
a426e122
JK
635 target_phys_addr_t start_addr,
636 target_phys_addr_t end_addr)
7b8f3b78 637{
a426e122 638 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
7b8f3b78
MT
639}
640
641static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
a426e122 642 int enable)
7b8f3b78 643{
a426e122 644 return kvm_set_migration_log(enable);
7b8f3b78
MT
645}
646
647static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
a426e122
JK
648 .set_memory = kvm_client_set_memory,
649 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
650 .migration_log = kvm_client_migration_log,
7b8f3b78
MT
651};
652
cad1e282 653int kvm_init(void)
05330448 654{
168ccc11
JK
655 static const char upgrade_note[] =
656 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
657 "(see http://sourceforge.net/projects/kvm).\n";
05330448 658 KVMState *s;
94a8d39a 659 const KVMCapabilityInfo *missing_cap;
05330448
AL
660 int ret;
661 int i;
662
05330448 663 s = qemu_mallocz(sizeof(KVMState));
05330448 664
e22a25c9 665#ifdef KVM_CAP_SET_GUEST_DEBUG
72cf2d4f 666 QTAILQ_INIT(&s->kvm_sw_breakpoints);
e22a25c9 667#endif
a426e122 668 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
05330448 669 s->slots[i].slot = i;
a426e122 670 }
05330448 671 s->vmfd = -1;
40ff6d7e 672 s->fd = qemu_open("/dev/kvm", O_RDWR);
05330448
AL
673 if (s->fd == -1) {
674 fprintf(stderr, "Could not access KVM kernel module: %m\n");
675 ret = -errno;
676 goto err;
677 }
678
679 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
680 if (ret < KVM_API_VERSION) {
a426e122 681 if (ret > 0) {
05330448 682 ret = -EINVAL;
a426e122 683 }
05330448
AL
684 fprintf(stderr, "kvm version too old\n");
685 goto err;
686 }
687
688 if (ret > KVM_API_VERSION) {
689 ret = -EINVAL;
690 fprintf(stderr, "kvm version not supported\n");
691 goto err;
692 }
693
694 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
0104dcac
AG
695 if (s->vmfd < 0) {
696#ifdef TARGET_S390X
697 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
698 "your host kernel command line\n");
699#endif
05330448 700 goto err;
0104dcac 701 }
05330448 702
94a8d39a
JK
703 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
704 if (!missing_cap) {
705 missing_cap =
706 kvm_check_extension_list(s, kvm_arch_required_capabilities);
05330448 707 }
94a8d39a 708 if (missing_cap) {
ad7b8b33 709 ret = -EINVAL;
94a8d39a
JK
710 fprintf(stderr, "kvm does not support %s\n%s",
711 missing_cap->name, upgrade_note);
d85dc283
AL
712 goto err;
713 }
714
ad7b8b33 715 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
f65ed4c1 716
e69917e2
JK
717 s->broken_set_mem_region = 1;
718#ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
14a09518 719 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
e69917e2
JK
720 if (ret > 0) {
721 s->broken_set_mem_region = 0;
722 }
723#endif
724
a0fb002c
JK
725 s->vcpu_events = 0;
726#ifdef KVM_CAP_VCPU_EVENTS
727 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
728#endif
729
b0b1d690
JK
730 s->robust_singlestep = 0;
731#ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
732 s->robust_singlestep =
733 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
734#endif
735
ff44f1a3
JK
736 s->debugregs = 0;
737#ifdef KVM_CAP_DEBUGREGS
738 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
739#endif
740
f1665b21
SY
741 s->xsave = 0;
742#ifdef KVM_CAP_XSAVE
743 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
744#endif
745
746 s->xcrs = 0;
747#ifdef KVM_CAP_XCRS
748 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
749#endif
750
cad1e282 751 ret = kvm_arch_init(s);
a426e122 752 if (ret < 0) {
05330448 753 goto err;
a426e122 754 }
05330448
AL
755
756 kvm_state = s;
7b8f3b78 757 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
05330448 758
d2f2b8a7
SH
759 s->many_ioeventfds = kvm_check_many_ioeventfds();
760
05330448
AL
761 return 0;
762
763err:
764 if (s) {
a426e122 765 if (s->vmfd != -1) {
05330448 766 close(s->vmfd);
a426e122
JK
767 }
768 if (s->fd != -1) {
05330448 769 close(s->fd);
a426e122 770 }
05330448
AL
771 }
772 qemu_free(s);
773
774 return ret;
775}
776
afcea8cb
BS
777static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
778 uint32_t count)
05330448
AL
779{
780 int i;
781 uint8_t *ptr = data;
782
783 for (i = 0; i < count; i++) {
784 if (direction == KVM_EXIT_IO_IN) {
785 switch (size) {
786 case 1:
afcea8cb 787 stb_p(ptr, cpu_inb(port));
05330448
AL
788 break;
789 case 2:
afcea8cb 790 stw_p(ptr, cpu_inw(port));
05330448
AL
791 break;
792 case 4:
afcea8cb 793 stl_p(ptr, cpu_inl(port));
05330448
AL
794 break;
795 }
796 } else {
797 switch (size) {
798 case 1:
afcea8cb 799 cpu_outb(port, ldub_p(ptr));
05330448
AL
800 break;
801 case 2:
afcea8cb 802 cpu_outw(port, lduw_p(ptr));
05330448
AL
803 break;
804 case 4:
afcea8cb 805 cpu_outl(port, ldl_p(ptr));
05330448
AL
806 break;
807 }
808 }
809
810 ptr += size;
811 }
812
813 return 1;
814}
815
7c80eef8 816#ifdef KVM_CAP_INTERNAL_ERROR_DATA
73aaec4a 817static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
7c80eef8 818{
bb44e0d1 819 fprintf(stderr, "KVM internal error.");
7c80eef8
MT
820 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
821 int i;
822
bb44e0d1 823 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
7c80eef8
MT
824 for (i = 0; i < run->internal.ndata; ++i) {
825 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
826 i, (uint64_t)run->internal.data[i]);
827 }
bb44e0d1
JK
828 } else {
829 fprintf(stderr, "\n");
7c80eef8 830 }
7c80eef8
MT
831 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
832 fprintf(stderr, "emulation failure\n");
a426e122 833 if (!kvm_arch_stop_on_emulation_error(env)) {
f5c848ee 834 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
73aaec4a 835 return 0;
a426e122 836 }
7c80eef8
MT
837 }
838 /* FIXME: Should trigger a qmp message to let management know
839 * something went wrong.
840 */
73aaec4a 841 return -1;
7c80eef8
MT
842}
843#endif
844
62a2744c 845void kvm_flush_coalesced_mmio_buffer(void)
f65ed4c1 846{
f65ed4c1 847 KVMState *s = kvm_state;
62a2744c
SY
848 if (s->coalesced_mmio_ring) {
849 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
f65ed4c1
AL
850 while (ring->first != ring->last) {
851 struct kvm_coalesced_mmio *ent;
852
853 ent = &ring->coalesced_mmio[ring->first];
854
855 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
85199474 856 smp_wmb();
f65ed4c1
AL
857 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
858 }
859 }
f65ed4c1
AL
860}
861
2705d56a 862static void do_kvm_cpu_synchronize_state(void *_env)
4c0960c0 863{
2705d56a
JK
864 CPUState *env = _env;
865
9ded2744 866 if (!env->kvm_vcpu_dirty) {
4c0960c0 867 kvm_arch_get_registers(env);
9ded2744 868 env->kvm_vcpu_dirty = 1;
4c0960c0
AK
869 }
870}
871
2705d56a
JK
872void kvm_cpu_synchronize_state(CPUState *env)
873{
a426e122 874 if (!env->kvm_vcpu_dirty) {
2705d56a 875 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
a426e122 876 }
2705d56a
JK
877}
878
ea375f9a
JK
879void kvm_cpu_synchronize_post_reset(CPUState *env)
880{
881 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
882 env->kvm_vcpu_dirty = 0;
883}
884
885void kvm_cpu_synchronize_post_init(CPUState *env)
886{
887 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
888 env->kvm_vcpu_dirty = 0;
889}
890
05330448
AL
891int kvm_cpu_exec(CPUState *env)
892{
893 struct kvm_run *run = env->kvm_run;
894 int ret;
895
8c0d577e 896 DPRINTF("kvm_cpu_exec()\n");
05330448
AL
897
898 do {
6312b928 899#ifndef CONFIG_IOTHREAD
be214e6c 900 if (env->exit_request) {
8c0d577e 901 DPRINTF("interrupt exit requested\n");
05330448
AL
902 ret = 0;
903 break;
904 }
6312b928 905#endif
05330448 906
0af691d7
MT
907 if (kvm_arch_process_irqchip_events(env)) {
908 ret = 0;
909 break;
910 }
911
9ded2744 912 if (env->kvm_vcpu_dirty) {
ea375f9a 913 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
9ded2744 914 env->kvm_vcpu_dirty = 0;
4c0960c0
AK
915 }
916
8c14c173 917 kvm_arch_pre_run(env, run);
273faf1b 918 cpu_single_env = NULL;
d549db5a 919 qemu_mutex_unlock_iothread();
05330448 920 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
d549db5a 921 qemu_mutex_lock_iothread();
273faf1b 922 cpu_single_env = env;
05330448
AL
923 kvm_arch_post_run(env, run);
924
b0c883b5
JK
925 kvm_flush_coalesced_mmio_buffer();
926
05330448 927 if (ret == -EINTR || ret == -EAGAIN) {
cc84de95 928 cpu_exit(env);
8c0d577e 929 DPRINTF("io window exit\n");
05330448
AL
930 ret = 0;
931 break;
932 }
933
934 if (ret < 0) {
8c0d577e 935 DPRINTF("kvm run failed %s\n", strerror(-ret));
05330448
AL
936 abort();
937 }
938
939 ret = 0; /* exit loop */
940 switch (run->exit_reason) {
941 case KVM_EXIT_IO:
8c0d577e 942 DPRINTF("handle_io\n");
afcea8cb 943 ret = kvm_handle_io(run->io.port,
05330448
AL
944 (uint8_t *)run + run->io.data_offset,
945 run->io.direction,
946 run->io.size,
947 run->io.count);
948 break;
949 case KVM_EXIT_MMIO:
8c0d577e 950 DPRINTF("handle_mmio\n");
05330448
AL
951 cpu_physical_memory_rw(run->mmio.phys_addr,
952 run->mmio.data,
953 run->mmio.len,
954 run->mmio.is_write);
955 ret = 1;
956 break;
957 case KVM_EXIT_IRQ_WINDOW_OPEN:
8c0d577e 958 DPRINTF("irq_window_open\n");
05330448
AL
959 break;
960 case KVM_EXIT_SHUTDOWN:
8c0d577e 961 DPRINTF("shutdown\n");
05330448
AL
962 qemu_system_reset_request();
963 ret = 1;
964 break;
965 case KVM_EXIT_UNKNOWN:
bb44e0d1
JK
966 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
967 (uint64_t)run->hw.hardware_exit_reason);
73aaec4a 968 ret = -1;
05330448 969 break;
7c80eef8
MT
970#ifdef KVM_CAP_INTERNAL_ERROR_DATA
971 case KVM_EXIT_INTERNAL_ERROR:
73aaec4a 972 ret = kvm_handle_internal_error(env, run);
7c80eef8
MT
973 break;
974#endif
05330448 975 case KVM_EXIT_DEBUG:
8c0d577e 976 DPRINTF("kvm_exit_debug\n");
e22a25c9
AL
977#ifdef KVM_CAP_SET_GUEST_DEBUG
978 if (kvm_arch_debug(&run->debug.arch)) {
e22a25c9
AL
979 env->exception_index = EXCP_DEBUG;
980 return 0;
981 }
982 /* re-enter, this exception was guest-internal */
983 ret = 1;
984#endif /* KVM_CAP_SET_GUEST_DEBUG */
05330448
AL
985 break;
986 default:
8c0d577e 987 DPRINTF("kvm_arch_handle_exit\n");
05330448
AL
988 ret = kvm_arch_handle_exit(env, run);
989 break;
990 }
991 } while (ret > 0);
992
73aaec4a 993 if (ret < 0) {
f5c848ee 994 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
73aaec4a
JK
995 vm_stop(0);
996 env->exit_request = 1;
997 }
be214e6c
AJ
998 if (env->exit_request) {
999 env->exit_request = 0;
becfc390
AL
1000 env->exception_index = EXCP_INTERRUPT;
1001 }
1002
05330448
AL
1003 return ret;
1004}
1005
984b5181 1006int kvm_ioctl(KVMState *s, int type, ...)
05330448
AL
1007{
1008 int ret;
984b5181
AL
1009 void *arg;
1010 va_list ap;
05330448 1011
984b5181
AL
1012 va_start(ap, type);
1013 arg = va_arg(ap, void *);
1014 va_end(ap);
1015
1016 ret = ioctl(s->fd, type, arg);
a426e122 1017 if (ret == -1) {
05330448 1018 ret = -errno;
a426e122 1019 }
05330448
AL
1020 return ret;
1021}
1022
984b5181 1023int kvm_vm_ioctl(KVMState *s, int type, ...)
05330448
AL
1024{
1025 int ret;
984b5181
AL
1026 void *arg;
1027 va_list ap;
1028
1029 va_start(ap, type);
1030 arg = va_arg(ap, void *);
1031 va_end(ap);
05330448 1032
984b5181 1033 ret = ioctl(s->vmfd, type, arg);
a426e122 1034 if (ret == -1) {
05330448 1035 ret = -errno;
a426e122 1036 }
05330448
AL
1037 return ret;
1038}
1039
984b5181 1040int kvm_vcpu_ioctl(CPUState *env, int type, ...)
05330448
AL
1041{
1042 int ret;
984b5181
AL
1043 void *arg;
1044 va_list ap;
1045
1046 va_start(ap, type);
1047 arg = va_arg(ap, void *);
1048 va_end(ap);
05330448 1049
984b5181 1050 ret = ioctl(env->kvm_fd, type, arg);
a426e122 1051 if (ret == -1) {
05330448 1052 ret = -errno;
a426e122 1053 }
05330448
AL
1054 return ret;
1055}
bd322087
AL
1056
1057int kvm_has_sync_mmu(void)
1058{
94a8d39a 1059 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
bd322087 1060}
e22a25c9 1061
a0fb002c
JK
1062int kvm_has_vcpu_events(void)
1063{
1064 return kvm_state->vcpu_events;
1065}
1066
b0b1d690
JK
1067int kvm_has_robust_singlestep(void)
1068{
1069 return kvm_state->robust_singlestep;
1070}
1071
ff44f1a3
JK
1072int kvm_has_debugregs(void)
1073{
1074 return kvm_state->debugregs;
1075}
1076
f1665b21
SY
1077int kvm_has_xsave(void)
1078{
1079 return kvm_state->xsave;
1080}
1081
1082int kvm_has_xcrs(void)
1083{
1084 return kvm_state->xcrs;
1085}
1086
d2f2b8a7
SH
1087int kvm_has_many_ioeventfds(void)
1088{
1089 if (!kvm_enabled()) {
1090 return 0;
1091 }
1092 return kvm_state->many_ioeventfds;
1093}
1094
6f0437e8
JK
1095void kvm_setup_guest_memory(void *start, size_t size)
1096{
1097 if (!kvm_has_sync_mmu()) {
e78815a5 1098 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
6f0437e8
JK
1099
1100 if (ret) {
e78815a5
AF
1101 perror("qemu_madvise");
1102 fprintf(stderr,
1103 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
6f0437e8
JK
1104 exit(1);
1105 }
6f0437e8
JK
1106 }
1107}
1108
e22a25c9
AL
1109#ifdef KVM_CAP_SET_GUEST_DEBUG
1110struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1111 target_ulong pc)
1112{
1113 struct kvm_sw_breakpoint *bp;
1114
72cf2d4f 1115 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
a426e122 1116 if (bp->pc == pc) {
e22a25c9 1117 return bp;
a426e122 1118 }
e22a25c9
AL
1119 }
1120 return NULL;
1121}
1122
1123int kvm_sw_breakpoints_active(CPUState *env)
1124{
72cf2d4f 1125 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
e22a25c9
AL
1126}
1127
452e4751
GC
1128struct kvm_set_guest_debug_data {
1129 struct kvm_guest_debug dbg;
1130 CPUState *env;
1131 int err;
1132};
1133
1134static void kvm_invoke_set_guest_debug(void *data)
1135{
1136 struct kvm_set_guest_debug_data *dbg_data = data;
b3807725
JK
1137 CPUState *env = dbg_data->env;
1138
b3807725 1139 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
452e4751
GC
1140}
1141
e22a25c9
AL
1142int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1143{
452e4751 1144 struct kvm_set_guest_debug_data data;
e22a25c9 1145
b0b1d690 1146 data.dbg.control = reinject_trap;
e22a25c9 1147
b0b1d690
JK
1148 if (env->singlestep_enabled) {
1149 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1150 }
452e4751 1151 kvm_arch_update_guest_debug(env, &data.dbg);
452e4751 1152 data.env = env;
e22a25c9 1153
be41cbe0 1154 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
452e4751 1155 return data.err;
e22a25c9
AL
1156}
1157
1158int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1159 target_ulong len, int type)
1160{
1161 struct kvm_sw_breakpoint *bp;
1162 CPUState *env;
1163 int err;
1164
1165 if (type == GDB_BREAKPOINT_SW) {
1166 bp = kvm_find_sw_breakpoint(current_env, addr);
1167 if (bp) {
1168 bp->use_count++;
1169 return 0;
1170 }
1171
1172 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
a426e122 1173 if (!bp) {
e22a25c9 1174 return -ENOMEM;
a426e122 1175 }
e22a25c9
AL
1176
1177 bp->pc = addr;
1178 bp->use_count = 1;
1179 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1180 if (err) {
1181 free(bp);
1182 return err;
1183 }
1184
72cf2d4f 1185 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
e22a25c9
AL
1186 bp, entry);
1187 } else {
1188 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
a426e122 1189 if (err) {
e22a25c9 1190 return err;
a426e122 1191 }
e22a25c9
AL
1192 }
1193
1194 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1195 err = kvm_update_guest_debug(env, 0);
a426e122 1196 if (err) {
e22a25c9 1197 return err;
a426e122 1198 }
e22a25c9
AL
1199 }
1200 return 0;
1201}
1202
1203int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1204 target_ulong len, int type)
1205{
1206 struct kvm_sw_breakpoint *bp;
1207 CPUState *env;
1208 int err;
1209
1210 if (type == GDB_BREAKPOINT_SW) {
1211 bp = kvm_find_sw_breakpoint(current_env, addr);
a426e122 1212 if (!bp) {
e22a25c9 1213 return -ENOENT;
a426e122 1214 }
e22a25c9
AL
1215
1216 if (bp->use_count > 1) {
1217 bp->use_count--;
1218 return 0;
1219 }
1220
1221 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
a426e122 1222 if (err) {
e22a25c9 1223 return err;
a426e122 1224 }
e22a25c9 1225
72cf2d4f 1226 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
e22a25c9
AL
1227 qemu_free(bp);
1228 } else {
1229 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
a426e122 1230 if (err) {
e22a25c9 1231 return err;
a426e122 1232 }
e22a25c9
AL
1233 }
1234
1235 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1236 err = kvm_update_guest_debug(env, 0);
a426e122 1237 if (err) {
e22a25c9 1238 return err;
a426e122 1239 }
e22a25c9
AL
1240 }
1241 return 0;
1242}
1243
1244void kvm_remove_all_breakpoints(CPUState *current_env)
1245{
1246 struct kvm_sw_breakpoint *bp, *next;
1247 KVMState *s = current_env->kvm_state;
1248 CPUState *env;
1249
72cf2d4f 1250 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
e22a25c9
AL
1251 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1252 /* Try harder to find a CPU that currently sees the breakpoint. */
1253 for (env = first_cpu; env != NULL; env = env->next_cpu) {
a426e122 1254 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
e22a25c9 1255 break;
a426e122 1256 }
e22a25c9
AL
1257 }
1258 }
1259 }
1260 kvm_arch_remove_all_hw_breakpoints();
1261
a426e122 1262 for (env = first_cpu; env != NULL; env = env->next_cpu) {
e22a25c9 1263 kvm_update_guest_debug(env, 0);
a426e122 1264 }
e22a25c9
AL
1265}
1266
1267#else /* !KVM_CAP_SET_GUEST_DEBUG */
1268
1269int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1270{
1271 return -EINVAL;
1272}
1273
1274int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1275 target_ulong len, int type)
1276{
1277 return -EINVAL;
1278}
1279
1280int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1281 target_ulong len, int type)
1282{
1283 return -EINVAL;
1284}
1285
1286void kvm_remove_all_breakpoints(CPUState *current_env)
1287{
1288}
1289#endif /* !KVM_CAP_SET_GUEST_DEBUG */
cc84de95
MT
1290
1291int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1292{
1293 struct kvm_signal_mask *sigmask;
1294 int r;
1295
a426e122 1296 if (!sigset) {
cc84de95 1297 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
a426e122 1298 }
cc84de95
MT
1299
1300 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1301
1302 sigmask->len = 8;
1303 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1304 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1305 free(sigmask);
1306
1307 return r;
1308}
ca821806 1309
44f1a3d8
CM
1310int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1311{
1312#ifdef KVM_IOEVENTFD
1313 int ret;
1314 struct kvm_ioeventfd iofd;
1315
1316 iofd.datamatch = val;
1317 iofd.addr = addr;
1318 iofd.len = 4;
1319 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1320 iofd.fd = fd;
1321
1322 if (!kvm_enabled()) {
1323 return -ENOSYS;
1324 }
1325
1326 if (!assign) {
1327 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1328 }
1329
1330 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1331
1332 if (ret < 0) {
1333 return -errno;
1334 }
1335
1336 return 0;
1337#else
1338 return -ENOSYS;
1339#endif
1340}
1341
ca821806
MT
1342int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1343{
98c8573e 1344#ifdef KVM_IOEVENTFD
ca821806
MT
1345 struct kvm_ioeventfd kick = {
1346 .datamatch = val,
1347 .addr = addr,
1348 .len = 2,
1349 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1350 .fd = fd,
1351 };
1352 int r;
a426e122 1353 if (!kvm_enabled()) {
ca821806 1354 return -ENOSYS;
a426e122
JK
1355 }
1356 if (!assign) {
ca821806 1357 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
a426e122 1358 }
ca821806 1359 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
a426e122 1360 if (r < 0) {
ca821806 1361 return r;
a426e122 1362 }
ca821806 1363 return 0;
98c8573e
PB
1364#else
1365 return -ENOSYS;
ca821806 1366#endif
98c8573e 1367}