]> git.proxmox.com Git - qemu.git/blame - kvm-all.c
qapi: convert netdev_del
[qemu.git] / kvm-all.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5832d1f2 5 * Red Hat, Inc. 2008
05330448
AL
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
5832d1f2 9 * Glauber Costa <gcosta@redhat.com>
05330448
AL
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16#include <sys/types.h>
17#include <sys/ioctl.h>
18#include <sys/mman.h>
984b5181 19#include <stdarg.h>
05330448
AL
20
21#include <linux/kvm.h>
22
23#include "qemu-common.h"
85199474 24#include "qemu-barrier.h"
05330448 25#include "sysemu.h"
d33a1810 26#include "hw/hw.h"
04fa27f5 27#include "hw/msi.h"
e22a25c9 28#include "gdbstub.h"
05330448 29#include "kvm.h"
8369e01c 30#include "bswap.h"
a01672d3 31#include "memory.h"
80a1ea37 32#include "exec-memory.h"
05330448 33
d2f2b8a7
SH
34/* This check must be after config-host.h is included */
35#ifdef CONFIG_EVENTFD
36#include <sys/eventfd.h>
37#endif
38
93148aa5 39/* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
f65ed4c1
AL
40#define PAGE_SIZE TARGET_PAGE_SIZE
41
05330448
AL
42//#define DEBUG_KVM
43
44#ifdef DEBUG_KVM
8c0d577e 45#define DPRINTF(fmt, ...) \
05330448
AL
46 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
47#else
8c0d577e 48#define DPRINTF(fmt, ...) \
05330448
AL
49 do { } while (0)
50#endif
51
04fa27f5
JK
52#define KVM_MSI_HASHTAB_SIZE 256
53
34fc643f
AL
54typedef struct KVMSlot
55{
c227f099
AL
56 target_phys_addr_t start_addr;
57 ram_addr_t memory_size;
9f213ed9 58 void *ram;
34fc643f
AL
59 int slot;
60 int flags;
61} KVMSlot;
05330448 62
5832d1f2
AL
63typedef struct kvm_dirty_log KVMDirtyLog;
64
04fa27f5
JK
65typedef struct KVMMSIRoute {
66 struct kvm_irq_routing_entry kroute;
67 QTAILQ_ENTRY(KVMMSIRoute) entry;
68} KVMMSIRoute;
69
05330448
AL
70struct KVMState
71{
72 KVMSlot slots[32];
73 int fd;
74 int vmfd;
f65ed4c1 75 int coalesced_mmio;
62a2744c 76 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
1cae88b9 77 bool coalesced_flush_in_progress;
e69917e2 78 int broken_set_mem_region;
4495d6a7 79 int migration_log;
a0fb002c 80 int vcpu_events;
b0b1d690 81 int robust_singlestep;
ff44f1a3 82 int debugregs;
e22a25c9
AL
83#ifdef KVM_CAP_SET_GUEST_DEBUG
84 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
85#endif
8a7c7393 86 int pit_state2;
f1665b21 87 int xsave, xcrs;
d2f2b8a7 88 int many_ioeventfds;
92e4b519
DG
89 /* The man page (and posix) say ioctl numbers are signed int, but
90 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
91 * unsigned, and treating them as signed here can break things */
92 unsigned irqchip_inject_ioctl;
84b058d7
JK
93#ifdef KVM_CAP_IRQ_ROUTING
94 struct kvm_irq_routing *irq_routes;
95 int nr_allocated_irq_routes;
96 uint32_t *used_gsi_bitmap;
4e2e4e63 97 unsigned int gsi_count;
04fa27f5 98 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
4a3adebb 99 bool direct_msi;
84b058d7 100#endif
05330448
AL
101};
102
6a7af8cb 103KVMState *kvm_state;
3d4b2649 104bool kvm_kernel_irqchip;
05330448 105
94a8d39a
JK
106static const KVMCapabilityInfo kvm_required_capabilites[] = {
107 KVM_CAP_INFO(USER_MEMORY),
108 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
109 KVM_CAP_LAST_INFO
110};
111
05330448
AL
112static KVMSlot *kvm_alloc_slot(KVMState *s)
113{
114 int i;
115
116 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
a426e122 117 if (s->slots[i].memory_size == 0) {
05330448 118 return &s->slots[i];
a426e122 119 }
05330448
AL
120 }
121
d3f8d37f
AL
122 fprintf(stderr, "%s: no free slot available\n", __func__);
123 abort();
124}
125
126static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
c227f099
AL
127 target_phys_addr_t start_addr,
128 target_phys_addr_t end_addr)
d3f8d37f
AL
129{
130 int i;
131
132 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
133 KVMSlot *mem = &s->slots[i];
134
135 if (start_addr == mem->start_addr &&
136 end_addr == mem->start_addr + mem->memory_size) {
137 return mem;
138 }
139 }
140
05330448
AL
141 return NULL;
142}
143
6152e2ae
AL
144/*
145 * Find overlapping slot with lowest start address
146 */
147static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
c227f099
AL
148 target_phys_addr_t start_addr,
149 target_phys_addr_t end_addr)
05330448 150{
6152e2ae 151 KVMSlot *found = NULL;
05330448
AL
152 int i;
153
154 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
155 KVMSlot *mem = &s->slots[i];
156
6152e2ae
AL
157 if (mem->memory_size == 0 ||
158 (found && found->start_addr < mem->start_addr)) {
159 continue;
160 }
161
162 if (end_addr > mem->start_addr &&
163 start_addr < mem->start_addr + mem->memory_size) {
164 found = mem;
165 }
05330448
AL
166 }
167
6152e2ae 168 return found;
05330448
AL
169}
170
9f213ed9
AK
171int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
172 target_phys_addr_t *phys_addr)
983dfc3b
HY
173{
174 int i;
175
176 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
177 KVMSlot *mem = &s->slots[i];
178
9f213ed9
AK
179 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
180 *phys_addr = mem->start_addr + (ram - mem->ram);
983dfc3b
HY
181 return 1;
182 }
183 }
184
185 return 0;
186}
187
5832d1f2
AL
188static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
189{
190 struct kvm_userspace_memory_region mem;
191
192 mem.slot = slot->slot;
193 mem.guest_phys_addr = slot->start_addr;
194 mem.memory_size = slot->memory_size;
9f213ed9 195 mem.userspace_addr = (unsigned long)slot->ram;
5832d1f2 196 mem.flags = slot->flags;
4495d6a7
JK
197 if (s->migration_log) {
198 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
199 }
5832d1f2
AL
200 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
201}
202
8d2ba1fb
JK
203static void kvm_reset_vcpu(void *opaque)
204{
9349b4f9 205 CPUArchState *env = opaque;
8d2ba1fb 206
caa5af0f 207 kvm_arch_reset_vcpu(env);
8d2ba1fb 208}
5832d1f2 209
9349b4f9 210int kvm_init_vcpu(CPUArchState *env)
05330448
AL
211{
212 KVMState *s = kvm_state;
213 long mmap_size;
214 int ret;
215
8c0d577e 216 DPRINTF("kvm_init_vcpu\n");
05330448 217
984b5181 218 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
05330448 219 if (ret < 0) {
8c0d577e 220 DPRINTF("kvm_create_vcpu failed\n");
05330448
AL
221 goto err;
222 }
223
224 env->kvm_fd = ret;
225 env->kvm_state = s;
d841b6c4 226 env->kvm_vcpu_dirty = 1;
05330448
AL
227
228 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
229 if (mmap_size < 0) {
748a680b 230 ret = mmap_size;
8c0d577e 231 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
05330448
AL
232 goto err;
233 }
234
235 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
236 env->kvm_fd, 0);
237 if (env->kvm_run == MAP_FAILED) {
238 ret = -errno;
8c0d577e 239 DPRINTF("mmap'ing vcpu state failed\n");
05330448
AL
240 goto err;
241 }
242
a426e122
JK
243 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
244 s->coalesced_mmio_ring =
245 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
246 }
62a2744c 247
05330448 248 ret = kvm_arch_init_vcpu(env);
8d2ba1fb 249 if (ret == 0) {
a08d4367 250 qemu_register_reset(kvm_reset_vcpu, env);
caa5af0f 251 kvm_arch_reset_vcpu(env);
8d2ba1fb 252 }
05330448
AL
253err:
254 return ret;
255}
256
5832d1f2
AL
257/*
258 * dirty pages logging control
259 */
25254bbc
MT
260
261static int kvm_mem_flags(KVMState *s, bool log_dirty)
262{
263 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
264}
265
266static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
5832d1f2
AL
267{
268 KVMState *s = kvm_state;
25254bbc 269 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
4495d6a7
JK
270 int old_flags;
271
4495d6a7 272 old_flags = mem->flags;
5832d1f2 273
25254bbc 274 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
5832d1f2
AL
275 mem->flags = flags;
276
4495d6a7
JK
277 /* If nothing changed effectively, no need to issue ioctl */
278 if (s->migration_log) {
279 flags |= KVM_MEM_LOG_DIRTY_PAGES;
280 }
25254bbc 281
4495d6a7 282 if (flags == old_flags) {
25254bbc 283 return 0;
4495d6a7
JK
284 }
285
5832d1f2
AL
286 return kvm_set_user_memory_region(s, mem);
287}
288
25254bbc
MT
289static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
290 ram_addr_t size, bool log_dirty)
291{
292 KVMState *s = kvm_state;
293 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
294
295 if (mem == NULL) {
296 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
297 TARGET_FMT_plx "\n", __func__, phys_addr,
298 (target_phys_addr_t)(phys_addr + size - 1));
299 return -EINVAL;
300 }
301 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
302}
303
a01672d3
AK
304static void kvm_log_start(MemoryListener *listener,
305 MemoryRegionSection *section)
5832d1f2 306{
a01672d3
AK
307 int r;
308
309 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
310 section->size, true);
311 if (r < 0) {
312 abort();
313 }
5832d1f2
AL
314}
315
a01672d3
AK
316static void kvm_log_stop(MemoryListener *listener,
317 MemoryRegionSection *section)
5832d1f2 318{
a01672d3
AK
319 int r;
320
321 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
322 section->size, false);
323 if (r < 0) {
324 abort();
325 }
5832d1f2
AL
326}
327
7b8f3b78 328static int kvm_set_migration_log(int enable)
4495d6a7
JK
329{
330 KVMState *s = kvm_state;
331 KVMSlot *mem;
332 int i, err;
333
334 s->migration_log = enable;
335
336 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
337 mem = &s->slots[i];
338
70fedd76
AW
339 if (!mem->memory_size) {
340 continue;
341 }
4495d6a7
JK
342 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
343 continue;
344 }
345 err = kvm_set_user_memory_region(s, mem);
346 if (err) {
347 return err;
348 }
349 }
350 return 0;
351}
352
8369e01c 353/* get kvm's dirty pages bitmap and update qemu's */
ffcde12f
AK
354static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
355 unsigned long *bitmap)
96c1606b 356{
8369e01c 357 unsigned int i, j;
aa90fec7
BH
358 unsigned long page_number, c;
359 target_phys_addr_t addr, addr1;
ffcde12f 360 unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
3145fcb6 361 unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
8369e01c
MT
362
363 /*
364 * bitmap-traveling is faster than memory-traveling (for addr...)
365 * especially when most of the memory is not dirty.
366 */
367 for (i = 0; i < len; i++) {
368 if (bitmap[i] != 0) {
369 c = leul_to_cpu(bitmap[i]);
370 do {
371 j = ffsl(c) - 1;
372 c &= ~(1ul << j);
3145fcb6 373 page_number = (i * HOST_LONG_BITS + j) * hpratio;
8369e01c 374 addr1 = page_number * TARGET_PAGE_SIZE;
ffcde12f 375 addr = section->offset_within_region + addr1;
3145fcb6
DG
376 memory_region_set_dirty(section->mr, addr,
377 TARGET_PAGE_SIZE * hpratio);
8369e01c
MT
378 } while (c != 0);
379 }
380 }
381 return 0;
96c1606b
AG
382}
383
8369e01c
MT
384#define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
385
5832d1f2
AL
386/**
387 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
fd4aa979
BS
388 * This function updates qemu's dirty bitmap using
389 * memory_region_set_dirty(). This means all bits are set
390 * to dirty.
5832d1f2 391 *
d3f8d37f 392 * @start_add: start of logged region.
5832d1f2
AL
393 * @end_addr: end of logged region.
394 */
ffcde12f 395static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
5832d1f2
AL
396{
397 KVMState *s = kvm_state;
151f7749 398 unsigned long size, allocated_size = 0;
151f7749
JK
399 KVMDirtyLog d;
400 KVMSlot *mem;
401 int ret = 0;
ffcde12f
AK
402 target_phys_addr_t start_addr = section->offset_within_address_space;
403 target_phys_addr_t end_addr = start_addr + section->size;
5832d1f2 404
151f7749
JK
405 d.dirty_bitmap = NULL;
406 while (start_addr < end_addr) {
407 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
408 if (mem == NULL) {
409 break;
410 }
5832d1f2 411
51b0c606
MT
412 /* XXX bad kernel interface alert
413 * For dirty bitmap, kernel allocates array of size aligned to
414 * bits-per-long. But for case when the kernel is 64bits and
415 * the userspace is 32bits, userspace can't align to the same
416 * bits-per-long, since sizeof(long) is different between kernel
417 * and user space. This way, userspace will provide buffer which
418 * may be 4 bytes less than the kernel will use, resulting in
419 * userspace memory corruption (which is not detectable by valgrind
420 * too, in most cases).
421 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
422 * a hope that sizeof(long) wont become >8 any time soon.
423 */
424 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
425 /*HOST_LONG_BITS*/ 64) / 8;
151f7749 426 if (!d.dirty_bitmap) {
7267c094 427 d.dirty_bitmap = g_malloc(size);
151f7749 428 } else if (size > allocated_size) {
7267c094 429 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
151f7749
JK
430 }
431 allocated_size = size;
432 memset(d.dirty_bitmap, 0, allocated_size);
5832d1f2 433
151f7749 434 d.slot = mem->slot;
5832d1f2 435
6e489f3f 436 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
8c0d577e 437 DPRINTF("ioctl failed %d\n", errno);
151f7749
JK
438 ret = -1;
439 break;
440 }
5832d1f2 441
ffcde12f 442 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
8369e01c 443 start_addr = mem->start_addr + mem->memory_size;
5832d1f2 444 }
7267c094 445 g_free(d.dirty_bitmap);
151f7749
JK
446
447 return ret;
5832d1f2
AL
448}
449
c227f099 450int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
f65ed4c1
AL
451{
452 int ret = -ENOSYS;
f65ed4c1
AL
453 KVMState *s = kvm_state;
454
455 if (s->coalesced_mmio) {
456 struct kvm_coalesced_mmio_zone zone;
457
458 zone.addr = start;
459 zone.size = size;
7e680753 460 zone.pad = 0;
f65ed4c1
AL
461
462 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
463 }
f65ed4c1
AL
464
465 return ret;
466}
467
c227f099 468int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
f65ed4c1
AL
469{
470 int ret = -ENOSYS;
f65ed4c1
AL
471 KVMState *s = kvm_state;
472
473 if (s->coalesced_mmio) {
474 struct kvm_coalesced_mmio_zone zone;
475
476 zone.addr = start;
477 zone.size = size;
7e680753 478 zone.pad = 0;
f65ed4c1
AL
479
480 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
481 }
f65ed4c1
AL
482
483 return ret;
484}
485
ad7b8b33
AL
486int kvm_check_extension(KVMState *s, unsigned int extension)
487{
488 int ret;
489
490 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
491 if (ret < 0) {
492 ret = 0;
493 }
494
495 return ret;
496}
497
d2f2b8a7
SH
498static int kvm_check_many_ioeventfds(void)
499{
d0dcac83
SH
500 /* Userspace can use ioeventfd for io notification. This requires a host
501 * that supports eventfd(2) and an I/O thread; since eventfd does not
502 * support SIGIO it cannot interrupt the vcpu.
503 *
504 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
d2f2b8a7
SH
505 * can avoid creating too many ioeventfds.
506 */
12d4536f 507#if defined(CONFIG_EVENTFD)
d2f2b8a7
SH
508 int ioeventfds[7];
509 int i, ret = 0;
510 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
511 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
512 if (ioeventfds[i] < 0) {
513 break;
514 }
515 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
516 if (ret < 0) {
517 close(ioeventfds[i]);
518 break;
519 }
520 }
521
522 /* Decide whether many devices are supported or not */
523 ret = i == ARRAY_SIZE(ioeventfds);
524
525 while (i-- > 0) {
526 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
527 close(ioeventfds[i]);
528 }
529 return ret;
530#else
531 return 0;
532#endif
533}
534
94a8d39a
JK
535static const KVMCapabilityInfo *
536kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
537{
538 while (list->name) {
539 if (!kvm_check_extension(s, list->value)) {
540 return list;
541 }
542 list++;
543 }
544 return NULL;
545}
546
a01672d3 547static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
46dbef6a
MT
548{
549 KVMState *s = kvm_state;
46dbef6a
MT
550 KVMSlot *mem, old;
551 int err;
a01672d3
AK
552 MemoryRegion *mr = section->mr;
553 bool log_dirty = memory_region_is_logging(mr);
554 target_phys_addr_t start_addr = section->offset_within_address_space;
555 ram_addr_t size = section->size;
9f213ed9 556 void *ram = NULL;
8f6f962b 557 unsigned delta;
46dbef6a 558
14542fea
GN
559 /* kvm works in page size chunks, but the function may be called
560 with sub-page size and unaligned start address. */
8f6f962b
AK
561 delta = TARGET_PAGE_ALIGN(size) - size;
562 if (delta > size) {
563 return;
564 }
565 start_addr += delta;
566 size -= delta;
567 size &= TARGET_PAGE_MASK;
568 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
569 return;
570 }
46dbef6a 571
a01672d3
AK
572 if (!memory_region_is_ram(mr)) {
573 return;
9f213ed9
AK
574 }
575
8f6f962b 576 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
a01672d3 577
46dbef6a
MT
578 while (1) {
579 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
580 if (!mem) {
581 break;
582 }
583
a01672d3 584 if (add && start_addr >= mem->start_addr &&
46dbef6a 585 (start_addr + size <= mem->start_addr + mem->memory_size) &&
9f213ed9 586 (ram - start_addr == mem->ram - mem->start_addr)) {
46dbef6a 587 /* The new slot fits into the existing one and comes with
25254bbc
MT
588 * identical parameters - update flags and done. */
589 kvm_slot_dirty_pages_log_change(mem, log_dirty);
46dbef6a
MT
590 return;
591 }
592
593 old = *mem;
594
3fbffb62
AK
595 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
596 kvm_physical_sync_dirty_bitmap(section);
597 }
598
46dbef6a
MT
599 /* unregister the overlapping slot */
600 mem->memory_size = 0;
601 err = kvm_set_user_memory_region(s, mem);
602 if (err) {
603 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
604 __func__, strerror(-err));
605 abort();
606 }
607
608 /* Workaround for older KVM versions: we can't join slots, even not by
609 * unregistering the previous ones and then registering the larger
610 * slot. We have to maintain the existing fragmentation. Sigh.
611 *
612 * This workaround assumes that the new slot starts at the same
613 * address as the first existing one. If not or if some overlapping
614 * slot comes around later, we will fail (not seen in practice so far)
615 * - and actually require a recent KVM version. */
616 if (s->broken_set_mem_region &&
a01672d3 617 old.start_addr == start_addr && old.memory_size < size && add) {
46dbef6a
MT
618 mem = kvm_alloc_slot(s);
619 mem->memory_size = old.memory_size;
620 mem->start_addr = old.start_addr;
9f213ed9 621 mem->ram = old.ram;
25254bbc 622 mem->flags = kvm_mem_flags(s, log_dirty);
46dbef6a
MT
623
624 err = kvm_set_user_memory_region(s, mem);
625 if (err) {
626 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
627 strerror(-err));
628 abort();
629 }
630
631 start_addr += old.memory_size;
9f213ed9 632 ram += old.memory_size;
46dbef6a
MT
633 size -= old.memory_size;
634 continue;
635 }
636
637 /* register prefix slot */
638 if (old.start_addr < start_addr) {
639 mem = kvm_alloc_slot(s);
640 mem->memory_size = start_addr - old.start_addr;
641 mem->start_addr = old.start_addr;
9f213ed9 642 mem->ram = old.ram;
25254bbc 643 mem->flags = kvm_mem_flags(s, log_dirty);
46dbef6a
MT
644
645 err = kvm_set_user_memory_region(s, mem);
646 if (err) {
647 fprintf(stderr, "%s: error registering prefix slot: %s\n",
648 __func__, strerror(-err));
d4d6868f
AG
649#ifdef TARGET_PPC
650 fprintf(stderr, "%s: This is probably because your kernel's " \
651 "PAGE_SIZE is too big. Please try to use 4k " \
652 "PAGE_SIZE!\n", __func__);
653#endif
46dbef6a
MT
654 abort();
655 }
656 }
657
658 /* register suffix slot */
659 if (old.start_addr + old.memory_size > start_addr + size) {
660 ram_addr_t size_delta;
661
662 mem = kvm_alloc_slot(s);
663 mem->start_addr = start_addr + size;
664 size_delta = mem->start_addr - old.start_addr;
665 mem->memory_size = old.memory_size - size_delta;
9f213ed9 666 mem->ram = old.ram + size_delta;
25254bbc 667 mem->flags = kvm_mem_flags(s, log_dirty);
46dbef6a
MT
668
669 err = kvm_set_user_memory_region(s, mem);
670 if (err) {
671 fprintf(stderr, "%s: error registering suffix slot: %s\n",
672 __func__, strerror(-err));
673 abort();
674 }
675 }
676 }
677
678 /* in case the KVM bug workaround already "consumed" the new slot */
a426e122 679 if (!size) {
46dbef6a 680 return;
a426e122 681 }
a01672d3 682 if (!add) {
46dbef6a 683 return;
a426e122 684 }
46dbef6a
MT
685 mem = kvm_alloc_slot(s);
686 mem->memory_size = size;
687 mem->start_addr = start_addr;
9f213ed9 688 mem->ram = ram;
25254bbc 689 mem->flags = kvm_mem_flags(s, log_dirty);
46dbef6a
MT
690
691 err = kvm_set_user_memory_region(s, mem);
692 if (err) {
693 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
694 strerror(-err));
695 abort();
696 }
697}
698
50c1e149
AK
699static void kvm_begin(MemoryListener *listener)
700{
701}
702
703static void kvm_commit(MemoryListener *listener)
704{
705}
706
a01672d3
AK
707static void kvm_region_add(MemoryListener *listener,
708 MemoryRegionSection *section)
709{
710 kvm_set_phys_mem(section, true);
711}
712
713static void kvm_region_del(MemoryListener *listener,
714 MemoryRegionSection *section)
715{
716 kvm_set_phys_mem(section, false);
717}
718
50c1e149
AK
719static void kvm_region_nop(MemoryListener *listener,
720 MemoryRegionSection *section)
721{
722}
723
a01672d3
AK
724static void kvm_log_sync(MemoryListener *listener,
725 MemoryRegionSection *section)
7b8f3b78 726{
a01672d3
AK
727 int r;
728
ffcde12f 729 r = kvm_physical_sync_dirty_bitmap(section);
a01672d3
AK
730 if (r < 0) {
731 abort();
732 }
7b8f3b78
MT
733}
734
a01672d3 735static void kvm_log_global_start(struct MemoryListener *listener)
7b8f3b78 736{
a01672d3
AK
737 int r;
738
739 r = kvm_set_migration_log(1);
740 assert(r >= 0);
7b8f3b78
MT
741}
742
a01672d3 743static void kvm_log_global_stop(struct MemoryListener *listener)
7b8f3b78 744{
a01672d3
AK
745 int r;
746
747 r = kvm_set_migration_log(0);
748 assert(r >= 0);
7b8f3b78
MT
749}
750
80a1ea37
AK
751static void kvm_mem_ioeventfd_add(MemoryRegionSection *section,
752 bool match_data, uint64_t data, int fd)
753{
754 int r;
755
4b8f1c88 756 assert(match_data && section->size <= 8);
80a1ea37 757
4b8f1c88
MT
758 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
759 data, true, section->size);
80a1ea37
AK
760 if (r < 0) {
761 abort();
762 }
763}
764
765static void kvm_mem_ioeventfd_del(MemoryRegionSection *section,
766 bool match_data, uint64_t data, int fd)
767{
768 int r;
769
4b8f1c88
MT
770 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
771 data, false, section->size);
80a1ea37
AK
772 if (r < 0) {
773 abort();
774 }
775}
776
777static void kvm_io_ioeventfd_add(MemoryRegionSection *section,
778 bool match_data, uint64_t data, int fd)
779{
780 int r;
781
782 assert(match_data && section->size == 2);
783
784 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
785 data, true);
786 if (r < 0) {
787 abort();
788 }
789}
790
791static void kvm_io_ioeventfd_del(MemoryRegionSection *section,
792 bool match_data, uint64_t data, int fd)
793
794{
795 int r;
796
797 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
798 data, false);
799 if (r < 0) {
800 abort();
801 }
802}
803
804static void kvm_eventfd_add(MemoryListener *listener,
805 MemoryRegionSection *section,
806 bool match_data, uint64_t data, int fd)
807{
808 if (section->address_space == get_system_memory()) {
809 kvm_mem_ioeventfd_add(section, match_data, data, fd);
810 } else {
811 kvm_io_ioeventfd_add(section, match_data, data, fd);
812 }
813}
814
815static void kvm_eventfd_del(MemoryListener *listener,
816 MemoryRegionSection *section,
817 bool match_data, uint64_t data, int fd)
818{
819 if (section->address_space == get_system_memory()) {
820 kvm_mem_ioeventfd_del(section, match_data, data, fd);
821 } else {
822 kvm_io_ioeventfd_del(section, match_data, data, fd);
823 }
824}
825
a01672d3 826static MemoryListener kvm_memory_listener = {
50c1e149
AK
827 .begin = kvm_begin,
828 .commit = kvm_commit,
a01672d3
AK
829 .region_add = kvm_region_add,
830 .region_del = kvm_region_del,
50c1e149 831 .region_nop = kvm_region_nop,
e5896b12
AP
832 .log_start = kvm_log_start,
833 .log_stop = kvm_log_stop,
a01672d3
AK
834 .log_sync = kvm_log_sync,
835 .log_global_start = kvm_log_global_start,
836 .log_global_stop = kvm_log_global_stop,
80a1ea37
AK
837 .eventfd_add = kvm_eventfd_add,
838 .eventfd_del = kvm_eventfd_del,
72e22d2f 839 .priority = 10,
7b8f3b78
MT
840};
841
9349b4f9 842static void kvm_handle_interrupt(CPUArchState *env, int mask)
aa7f74d1
JK
843{
844 env->interrupt_request |= mask;
845
846 if (!qemu_cpu_is_self(env)) {
847 qemu_cpu_kick(env);
848 }
849}
850
84b058d7
JK
851int kvm_irqchip_set_irq(KVMState *s, int irq, int level)
852{
853 struct kvm_irq_level event;
854 int ret;
855
3d4b2649 856 assert(kvm_irqchip_in_kernel());
84b058d7
JK
857
858 event.level = level;
859 event.irq = irq;
860 ret = kvm_vm_ioctl(s, s->irqchip_inject_ioctl, &event);
861 if (ret < 0) {
862 perror("kvm_set_irqchip_line");
863 abort();
864 }
865
866 return (s->irqchip_inject_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
867}
868
869#ifdef KVM_CAP_IRQ_ROUTING
870static void set_gsi(KVMState *s, unsigned int gsi)
871{
84b058d7
JK
872 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
873}
874
04fa27f5
JK
875static void clear_gsi(KVMState *s, unsigned int gsi)
876{
877 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
878}
879
84b058d7
JK
880static void kvm_init_irq_routing(KVMState *s)
881{
04fa27f5 882 int gsi_count, i;
84b058d7
JK
883
884 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
885 if (gsi_count > 0) {
886 unsigned int gsi_bits, i;
887
888 /* Round up so we can search ints using ffs */
bc8c6788 889 gsi_bits = ALIGN(gsi_count, 32);
84b058d7 890 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
4e2e4e63 891 s->gsi_count = gsi_count;
84b058d7
JK
892
893 /* Mark any over-allocated bits as already in use */
894 for (i = gsi_count; i < gsi_bits; i++) {
895 set_gsi(s, i);
896 }
897 }
898
899 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
900 s->nr_allocated_irq_routes = 0;
901
4a3adebb
JK
902 if (!s->direct_msi) {
903 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
904 QTAILQ_INIT(&s->msi_hashtab[i]);
905 }
04fa27f5
JK
906 }
907
84b058d7
JK
908 kvm_arch_init_irq_routing(s);
909}
910
e7b20308
JK
911static void kvm_irqchip_commit_routes(KVMState *s)
912{
913 int ret;
914
915 s->irq_routes->flags = 0;
916 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
917 assert(ret == 0);
918}
919
84b058d7
JK
920static void kvm_add_routing_entry(KVMState *s,
921 struct kvm_irq_routing_entry *entry)
922{
923 struct kvm_irq_routing_entry *new;
924 int n, size;
925
926 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
927 n = s->nr_allocated_irq_routes * 2;
928 if (n < 64) {
929 n = 64;
930 }
931 size = sizeof(struct kvm_irq_routing);
932 size += n * sizeof(*new);
933 s->irq_routes = g_realloc(s->irq_routes, size);
934 s->nr_allocated_irq_routes = n;
935 }
936 n = s->irq_routes->nr++;
937 new = &s->irq_routes->entries[n];
938 memset(new, 0, sizeof(*new));
939 new->gsi = entry->gsi;
940 new->type = entry->type;
941 new->flags = entry->flags;
942 new->u = entry->u;
943
944 set_gsi(s, entry->gsi);
e7b20308
JK
945
946 kvm_irqchip_commit_routes(s);
84b058d7
JK
947}
948
1df186df 949void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
84b058d7
JK
950{
951 struct kvm_irq_routing_entry e;
952
4e2e4e63
JK
953 assert(pin < s->gsi_count);
954
84b058d7
JK
955 e.gsi = irq;
956 e.type = KVM_IRQ_ROUTING_IRQCHIP;
957 e.flags = 0;
958 e.u.irqchip.irqchip = irqchip;
959 e.u.irqchip.pin = pin;
960 kvm_add_routing_entry(s, &e);
961}
962
1e2aa8be 963void kvm_irqchip_release_virq(KVMState *s, int virq)
04fa27f5
JK
964{
965 struct kvm_irq_routing_entry *e;
966 int i;
967
968 for (i = 0; i < s->irq_routes->nr; i++) {
969 e = &s->irq_routes->entries[i];
970 if (e->gsi == virq) {
971 s->irq_routes->nr--;
972 *e = s->irq_routes->entries[s->irq_routes->nr];
973 }
974 }
975 clear_gsi(s, virq);
e7b20308
JK
976
977 kvm_irqchip_commit_routes(s);
04fa27f5
JK
978}
979
980static unsigned int kvm_hash_msi(uint32_t data)
981{
982 /* This is optimized for IA32 MSI layout. However, no other arch shall
983 * repeat the mistake of not providing a direct MSI injection API. */
984 return data & 0xff;
985}
986
987static void kvm_flush_dynamic_msi_routes(KVMState *s)
988{
989 KVMMSIRoute *route, *next;
990 unsigned int hash;
991
992 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
993 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
994 kvm_irqchip_release_virq(s, route->kroute.gsi);
995 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
996 g_free(route);
997 }
998 }
999}
1000
1001static int kvm_irqchip_get_virq(KVMState *s)
1002{
1003 uint32_t *word = s->used_gsi_bitmap;
1004 int max_words = ALIGN(s->gsi_count, 32) / 32;
1005 int i, bit;
1006 bool retry = true;
1007
1008again:
1009 /* Return the lowest unused GSI in the bitmap */
1010 for (i = 0; i < max_words; i++) {
1011 bit = ffs(~word[i]);
1012 if (!bit) {
1013 continue;
1014 }
1015
1016 return bit - 1 + i * 32;
1017 }
4a3adebb 1018 if (!s->direct_msi && retry) {
04fa27f5
JK
1019 retry = false;
1020 kvm_flush_dynamic_msi_routes(s);
1021 goto again;
1022 }
1023 return -ENOSPC;
1024
1025}
1026
1027static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1028{
1029 unsigned int hash = kvm_hash_msi(msg.data);
1030 KVMMSIRoute *route;
1031
1032 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1033 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1034 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1035 route->kroute.u.msi.data == msg.data) {
1036 return route;
1037 }
1038 }
1039 return NULL;
1040}
1041
1042int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1043{
4a3adebb 1044 struct kvm_msi msi;
04fa27f5
JK
1045 KVMMSIRoute *route;
1046
4a3adebb
JK
1047 if (s->direct_msi) {
1048 msi.address_lo = (uint32_t)msg.address;
1049 msi.address_hi = msg.address >> 32;
1050 msi.data = msg.data;
1051 msi.flags = 0;
1052 memset(msi.pad, 0, sizeof(msi.pad));
1053
1054 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1055 }
1056
04fa27f5
JK
1057 route = kvm_lookup_msi_route(s, msg);
1058 if (!route) {
e7b20308 1059 int virq;
04fa27f5
JK
1060
1061 virq = kvm_irqchip_get_virq(s);
1062 if (virq < 0) {
1063 return virq;
1064 }
1065
1066 route = g_malloc(sizeof(KVMMSIRoute));
1067 route->kroute.gsi = virq;
1068 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1069 route->kroute.flags = 0;
1070 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1071 route->kroute.u.msi.address_hi = msg.address >> 32;
1072 route->kroute.u.msi.data = msg.data;
1073
1074 kvm_add_routing_entry(s, &route->kroute);
1075
1076 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1077 entry);
04fa27f5
JK
1078 }
1079
1080 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1081
1082 return kvm_irqchip_set_irq(s, route->kroute.gsi, 1);
1083}
1084
92b4e489
JK
1085int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1086{
1087 struct kvm_irq_routing_entry kroute;
1088 int virq;
1089
1090 if (!kvm_irqchip_in_kernel()) {
1091 return -ENOSYS;
1092 }
1093
1094 virq = kvm_irqchip_get_virq(s);
1095 if (virq < 0) {
1096 return virq;
1097 }
1098
1099 kroute.gsi = virq;
1100 kroute.type = KVM_IRQ_ROUTING_MSI;
1101 kroute.flags = 0;
1102 kroute.u.msi.address_lo = (uint32_t)msg.address;
1103 kroute.u.msi.address_hi = msg.address >> 32;
1104 kroute.u.msi.data = msg.data;
1105
1106 kvm_add_routing_entry(s, &kroute);
1107
1108 return virq;
1109}
1110
39853bbc
JK
1111static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1112{
1113 struct kvm_irqfd irqfd = {
1114 .fd = fd,
1115 .gsi = virq,
1116 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1117 };
1118
1119 if (!kvm_irqchip_in_kernel()) {
1120 return -ENOSYS;
1121 }
1122
1123 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1124}
1125
84b058d7
JK
1126#else /* !KVM_CAP_IRQ_ROUTING */
1127
1128static void kvm_init_irq_routing(KVMState *s)
1129{
1130}
04fa27f5
JK
1131
1132int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1133{
1134 abort();
1135}
92b4e489
JK
1136
1137int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1138{
1139 abort();
1140}
39853bbc
JK
1141
1142static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1143{
1144 abort();
1145}
84b058d7
JK
1146#endif /* !KVM_CAP_IRQ_ROUTING */
1147
39853bbc
JK
1148int kvm_irqchip_add_irqfd(KVMState *s, int fd, int virq)
1149{
1150 return kvm_irqchip_assign_irqfd(s, fd, virq, true);
1151}
1152
1153int kvm_irqchip_remove_irqfd(KVMState *s, int fd, int virq)
1154{
1155 return kvm_irqchip_assign_irqfd(s, fd, virq, false);
1156}
1157
84b058d7
JK
1158static int kvm_irqchip_create(KVMState *s)
1159{
1160 QemuOptsList *list = qemu_find_opts("machine");
1161 int ret;
1162
1163 if (QTAILQ_EMPTY(&list->head) ||
1164 !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
a24b9106 1165 "kernel_irqchip", true) ||
84b058d7
JK
1166 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1167 return 0;
1168 }
1169
1170 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1171 if (ret < 0) {
1172 fprintf(stderr, "Create kernel irqchip failed\n");
1173 return ret;
1174 }
1175
1176 s->irqchip_inject_ioctl = KVM_IRQ_LINE;
1177 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1178 s->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS;
1179 }
3d4b2649 1180 kvm_kernel_irqchip = true;
84b058d7
JK
1181
1182 kvm_init_irq_routing(s);
1183
1184 return 0;
1185}
1186
cad1e282 1187int kvm_init(void)
05330448 1188{
168ccc11
JK
1189 static const char upgrade_note[] =
1190 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1191 "(see http://sourceforge.net/projects/kvm).\n";
05330448 1192 KVMState *s;
94a8d39a 1193 const KVMCapabilityInfo *missing_cap;
05330448
AL
1194 int ret;
1195 int i;
1196
7267c094 1197 s = g_malloc0(sizeof(KVMState));
05330448 1198
3145fcb6
DG
1199 /*
1200 * On systems where the kernel can support different base page
1201 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1202 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1203 * page size for the system though.
1204 */
1205 assert(TARGET_PAGE_SIZE <= getpagesize());
1206
e22a25c9 1207#ifdef KVM_CAP_SET_GUEST_DEBUG
72cf2d4f 1208 QTAILQ_INIT(&s->kvm_sw_breakpoints);
e22a25c9 1209#endif
a426e122 1210 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
05330448 1211 s->slots[i].slot = i;
a426e122 1212 }
05330448 1213 s->vmfd = -1;
40ff6d7e 1214 s->fd = qemu_open("/dev/kvm", O_RDWR);
05330448
AL
1215 if (s->fd == -1) {
1216 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1217 ret = -errno;
1218 goto err;
1219 }
1220
1221 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1222 if (ret < KVM_API_VERSION) {
a426e122 1223 if (ret > 0) {
05330448 1224 ret = -EINVAL;
a426e122 1225 }
05330448
AL
1226 fprintf(stderr, "kvm version too old\n");
1227 goto err;
1228 }
1229
1230 if (ret > KVM_API_VERSION) {
1231 ret = -EINVAL;
1232 fprintf(stderr, "kvm version not supported\n");
1233 goto err;
1234 }
1235
1236 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
0104dcac
AG
1237 if (s->vmfd < 0) {
1238#ifdef TARGET_S390X
1239 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1240 "your host kernel command line\n");
1241#endif
db9eae1c 1242 ret = s->vmfd;
05330448 1243 goto err;
0104dcac 1244 }
05330448 1245
94a8d39a
JK
1246 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1247 if (!missing_cap) {
1248 missing_cap =
1249 kvm_check_extension_list(s, kvm_arch_required_capabilities);
05330448 1250 }
94a8d39a 1251 if (missing_cap) {
ad7b8b33 1252 ret = -EINVAL;
94a8d39a
JK
1253 fprintf(stderr, "kvm does not support %s\n%s",
1254 missing_cap->name, upgrade_note);
d85dc283
AL
1255 goto err;
1256 }
1257
ad7b8b33 1258 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
f65ed4c1 1259
e69917e2 1260 s->broken_set_mem_region = 1;
14a09518 1261 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
e69917e2
JK
1262 if (ret > 0) {
1263 s->broken_set_mem_region = 0;
1264 }
e69917e2 1265
a0fb002c
JK
1266#ifdef KVM_CAP_VCPU_EVENTS
1267 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1268#endif
1269
b0b1d690
JK
1270 s->robust_singlestep =
1271 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
b0b1d690 1272
ff44f1a3
JK
1273#ifdef KVM_CAP_DEBUGREGS
1274 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1275#endif
1276
f1665b21
SY
1277#ifdef KVM_CAP_XSAVE
1278 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1279#endif
1280
f1665b21
SY
1281#ifdef KVM_CAP_XCRS
1282 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1283#endif
1284
8a7c7393
JK
1285#ifdef KVM_CAP_PIT_STATE2
1286 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1287#endif
1288
4a3adebb
JK
1289 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1290
cad1e282 1291 ret = kvm_arch_init(s);
a426e122 1292 if (ret < 0) {
05330448 1293 goto err;
a426e122 1294 }
05330448 1295
84b058d7
JK
1296 ret = kvm_irqchip_create(s);
1297 if (ret < 0) {
1298 goto err;
1299 }
1300
05330448 1301 kvm_state = s;
7376e582 1302 memory_listener_register(&kvm_memory_listener, NULL);
05330448 1303
d2f2b8a7
SH
1304 s->many_ioeventfds = kvm_check_many_ioeventfds();
1305
aa7f74d1
JK
1306 cpu_interrupt_handler = kvm_handle_interrupt;
1307
05330448
AL
1308 return 0;
1309
1310err:
1311 if (s) {
db9eae1c 1312 if (s->vmfd >= 0) {
05330448 1313 close(s->vmfd);
a426e122
JK
1314 }
1315 if (s->fd != -1) {
05330448 1316 close(s->fd);
a426e122 1317 }
05330448 1318 }
7267c094 1319 g_free(s);
05330448
AL
1320
1321 return ret;
1322}
1323
b30e93e9
JK
1324static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1325 uint32_t count)
05330448
AL
1326{
1327 int i;
1328 uint8_t *ptr = data;
1329
1330 for (i = 0; i < count; i++) {
1331 if (direction == KVM_EXIT_IO_IN) {
1332 switch (size) {
1333 case 1:
afcea8cb 1334 stb_p(ptr, cpu_inb(port));
05330448
AL
1335 break;
1336 case 2:
afcea8cb 1337 stw_p(ptr, cpu_inw(port));
05330448
AL
1338 break;
1339 case 4:
afcea8cb 1340 stl_p(ptr, cpu_inl(port));
05330448
AL
1341 break;
1342 }
1343 } else {
1344 switch (size) {
1345 case 1:
afcea8cb 1346 cpu_outb(port, ldub_p(ptr));
05330448
AL
1347 break;
1348 case 2:
afcea8cb 1349 cpu_outw(port, lduw_p(ptr));
05330448
AL
1350 break;
1351 case 4:
afcea8cb 1352 cpu_outl(port, ldl_p(ptr));
05330448
AL
1353 break;
1354 }
1355 }
1356
1357 ptr += size;
1358 }
05330448
AL
1359}
1360
9349b4f9 1361static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
7c80eef8 1362{
bb44e0d1 1363 fprintf(stderr, "KVM internal error.");
7c80eef8
MT
1364 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1365 int i;
1366
bb44e0d1 1367 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
7c80eef8
MT
1368 for (i = 0; i < run->internal.ndata; ++i) {
1369 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1370 i, (uint64_t)run->internal.data[i]);
1371 }
bb44e0d1
JK
1372 } else {
1373 fprintf(stderr, "\n");
7c80eef8 1374 }
7c80eef8
MT
1375 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1376 fprintf(stderr, "emulation failure\n");
a426e122 1377 if (!kvm_arch_stop_on_emulation_error(env)) {
f5c848ee 1378 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
d73cd8f4 1379 return EXCP_INTERRUPT;
a426e122 1380 }
7c80eef8
MT
1381 }
1382 /* FIXME: Should trigger a qmp message to let management know
1383 * something went wrong.
1384 */
73aaec4a 1385 return -1;
7c80eef8 1386}
7c80eef8 1387
62a2744c 1388void kvm_flush_coalesced_mmio_buffer(void)
f65ed4c1 1389{
f65ed4c1 1390 KVMState *s = kvm_state;
1cae88b9
AK
1391
1392 if (s->coalesced_flush_in_progress) {
1393 return;
1394 }
1395
1396 s->coalesced_flush_in_progress = true;
1397
62a2744c
SY
1398 if (s->coalesced_mmio_ring) {
1399 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
f65ed4c1
AL
1400 while (ring->first != ring->last) {
1401 struct kvm_coalesced_mmio *ent;
1402
1403 ent = &ring->coalesced_mmio[ring->first];
1404
1405 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
85199474 1406 smp_wmb();
f65ed4c1
AL
1407 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1408 }
1409 }
1cae88b9
AK
1410
1411 s->coalesced_flush_in_progress = false;
f65ed4c1
AL
1412}
1413
2705d56a 1414static void do_kvm_cpu_synchronize_state(void *_env)
4c0960c0 1415{
9349b4f9 1416 CPUArchState *env = _env;
2705d56a 1417
9ded2744 1418 if (!env->kvm_vcpu_dirty) {
4c0960c0 1419 kvm_arch_get_registers(env);
9ded2744 1420 env->kvm_vcpu_dirty = 1;
4c0960c0
AK
1421 }
1422}
1423
9349b4f9 1424void kvm_cpu_synchronize_state(CPUArchState *env)
2705d56a 1425{
a426e122 1426 if (!env->kvm_vcpu_dirty) {
2705d56a 1427 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
a426e122 1428 }
2705d56a
JK
1429}
1430
9349b4f9 1431void kvm_cpu_synchronize_post_reset(CPUArchState *env)
ea375f9a
JK
1432{
1433 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
1434 env->kvm_vcpu_dirty = 0;
1435}
1436
9349b4f9 1437void kvm_cpu_synchronize_post_init(CPUArchState *env)
ea375f9a
JK
1438{
1439 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
1440 env->kvm_vcpu_dirty = 0;
1441}
1442
9349b4f9 1443int kvm_cpu_exec(CPUArchState *env)
05330448
AL
1444{
1445 struct kvm_run *run = env->kvm_run;
7cbb533f 1446 int ret, run_ret;
05330448 1447
8c0d577e 1448 DPRINTF("kvm_cpu_exec()\n");
05330448 1449
99036865 1450 if (kvm_arch_process_async_events(env)) {
9ccfac9e 1451 env->exit_request = 0;
6792a57b 1452 return EXCP_HLT;
9ccfac9e 1453 }
0af691d7 1454
9ccfac9e 1455 do {
9ded2744 1456 if (env->kvm_vcpu_dirty) {
ea375f9a 1457 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
9ded2744 1458 env->kvm_vcpu_dirty = 0;
4c0960c0
AK
1459 }
1460
8c14c173 1461 kvm_arch_pre_run(env, run);
9ccfac9e
JK
1462 if (env->exit_request) {
1463 DPRINTF("interrupt exit requested\n");
1464 /*
1465 * KVM requires us to reenter the kernel after IO exits to complete
1466 * instruction emulation. This self-signal will ensure that we
1467 * leave ASAP again.
1468 */
1469 qemu_cpu_kick_self();
1470 }
d549db5a 1471 qemu_mutex_unlock_iothread();
9ccfac9e 1472
7cbb533f 1473 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
9ccfac9e 1474
d549db5a 1475 qemu_mutex_lock_iothread();
05330448
AL
1476 kvm_arch_post_run(env, run);
1477
b0c883b5
JK
1478 kvm_flush_coalesced_mmio_buffer();
1479
7cbb533f 1480 if (run_ret < 0) {
dc77d341
JK
1481 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1482 DPRINTF("io window exit\n");
d73cd8f4 1483 ret = EXCP_INTERRUPT;
dc77d341
JK
1484 break;
1485 }
7b011fbc
ME
1486 fprintf(stderr, "error: kvm run failed %s\n",
1487 strerror(-run_ret));
05330448
AL
1488 abort();
1489 }
1490
05330448
AL
1491 switch (run->exit_reason) {
1492 case KVM_EXIT_IO:
8c0d577e 1493 DPRINTF("handle_io\n");
b30e93e9
JK
1494 kvm_handle_io(run->io.port,
1495 (uint8_t *)run + run->io.data_offset,
1496 run->io.direction,
1497 run->io.size,
1498 run->io.count);
d73cd8f4 1499 ret = 0;
05330448
AL
1500 break;
1501 case KVM_EXIT_MMIO:
8c0d577e 1502 DPRINTF("handle_mmio\n");
05330448
AL
1503 cpu_physical_memory_rw(run->mmio.phys_addr,
1504 run->mmio.data,
1505 run->mmio.len,
1506 run->mmio.is_write);
d73cd8f4 1507 ret = 0;
05330448
AL
1508 break;
1509 case KVM_EXIT_IRQ_WINDOW_OPEN:
8c0d577e 1510 DPRINTF("irq_window_open\n");
d73cd8f4 1511 ret = EXCP_INTERRUPT;
05330448
AL
1512 break;
1513 case KVM_EXIT_SHUTDOWN:
8c0d577e 1514 DPRINTF("shutdown\n");
05330448 1515 qemu_system_reset_request();
d73cd8f4 1516 ret = EXCP_INTERRUPT;
05330448
AL
1517 break;
1518 case KVM_EXIT_UNKNOWN:
bb44e0d1
JK
1519 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1520 (uint64_t)run->hw.hardware_exit_reason);
73aaec4a 1521 ret = -1;
05330448 1522 break;
7c80eef8 1523 case KVM_EXIT_INTERNAL_ERROR:
73aaec4a 1524 ret = kvm_handle_internal_error(env, run);
7c80eef8 1525 break;
05330448 1526 default:
8c0d577e 1527 DPRINTF("kvm_arch_handle_exit\n");
05330448
AL
1528 ret = kvm_arch_handle_exit(env, run);
1529 break;
1530 }
d73cd8f4 1531 } while (ret == 0);
05330448 1532
73aaec4a 1533 if (ret < 0) {
f5c848ee 1534 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
0461d5a6 1535 vm_stop(RUN_STATE_INTERNAL_ERROR);
becfc390
AL
1536 }
1537
6792a57b 1538 env->exit_request = 0;
05330448
AL
1539 return ret;
1540}
1541
984b5181 1542int kvm_ioctl(KVMState *s, int type, ...)
05330448
AL
1543{
1544 int ret;
984b5181
AL
1545 void *arg;
1546 va_list ap;
05330448 1547
984b5181
AL
1548 va_start(ap, type);
1549 arg = va_arg(ap, void *);
1550 va_end(ap);
1551
1552 ret = ioctl(s->fd, type, arg);
a426e122 1553 if (ret == -1) {
05330448 1554 ret = -errno;
a426e122 1555 }
05330448
AL
1556 return ret;
1557}
1558
984b5181 1559int kvm_vm_ioctl(KVMState *s, int type, ...)
05330448
AL
1560{
1561 int ret;
984b5181
AL
1562 void *arg;
1563 va_list ap;
1564
1565 va_start(ap, type);
1566 arg = va_arg(ap, void *);
1567 va_end(ap);
05330448 1568
984b5181 1569 ret = ioctl(s->vmfd, type, arg);
a426e122 1570 if (ret == -1) {
05330448 1571 ret = -errno;
a426e122 1572 }
05330448
AL
1573 return ret;
1574}
1575
9349b4f9 1576int kvm_vcpu_ioctl(CPUArchState *env, int type, ...)
05330448
AL
1577{
1578 int ret;
984b5181
AL
1579 void *arg;
1580 va_list ap;
1581
1582 va_start(ap, type);
1583 arg = va_arg(ap, void *);
1584 va_end(ap);
05330448 1585
984b5181 1586 ret = ioctl(env->kvm_fd, type, arg);
a426e122 1587 if (ret == -1) {
05330448 1588 ret = -errno;
a426e122 1589 }
05330448
AL
1590 return ret;
1591}
bd322087
AL
1592
1593int kvm_has_sync_mmu(void)
1594{
94a8d39a 1595 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
bd322087 1596}
e22a25c9 1597
a0fb002c
JK
1598int kvm_has_vcpu_events(void)
1599{
1600 return kvm_state->vcpu_events;
1601}
1602
b0b1d690
JK
1603int kvm_has_robust_singlestep(void)
1604{
1605 return kvm_state->robust_singlestep;
1606}
1607
ff44f1a3
JK
1608int kvm_has_debugregs(void)
1609{
1610 return kvm_state->debugregs;
1611}
1612
f1665b21
SY
1613int kvm_has_xsave(void)
1614{
1615 return kvm_state->xsave;
1616}
1617
1618int kvm_has_xcrs(void)
1619{
1620 return kvm_state->xcrs;
1621}
1622
8a7c7393
JK
1623int kvm_has_pit_state2(void)
1624{
1625 return kvm_state->pit_state2;
1626}
1627
d2f2b8a7
SH
1628int kvm_has_many_ioeventfds(void)
1629{
1630 if (!kvm_enabled()) {
1631 return 0;
1632 }
1633 return kvm_state->many_ioeventfds;
1634}
1635
84b058d7
JK
1636int kvm_has_gsi_routing(void)
1637{
a9c5eb0d 1638#ifdef KVM_CAP_IRQ_ROUTING
84b058d7 1639 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
a9c5eb0d
AG
1640#else
1641 return false;
1642#endif
84b058d7
JK
1643}
1644
9b5b76d4
JK
1645int kvm_allows_irq0_override(void)
1646{
3d4b2649 1647 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
9b5b76d4
JK
1648}
1649
6f0437e8
JK
1650void kvm_setup_guest_memory(void *start, size_t size)
1651{
1652 if (!kvm_has_sync_mmu()) {
e78815a5 1653 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
6f0437e8
JK
1654
1655 if (ret) {
e78815a5
AF
1656 perror("qemu_madvise");
1657 fprintf(stderr,
1658 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
6f0437e8
JK
1659 exit(1);
1660 }
6f0437e8
JK
1661 }
1662}
1663
e22a25c9 1664#ifdef KVM_CAP_SET_GUEST_DEBUG
9349b4f9 1665struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUArchState *env,
e22a25c9
AL
1666 target_ulong pc)
1667{
1668 struct kvm_sw_breakpoint *bp;
1669
72cf2d4f 1670 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
a426e122 1671 if (bp->pc == pc) {
e22a25c9 1672 return bp;
a426e122 1673 }
e22a25c9
AL
1674 }
1675 return NULL;
1676}
1677
9349b4f9 1678int kvm_sw_breakpoints_active(CPUArchState *env)
e22a25c9 1679{
72cf2d4f 1680 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
e22a25c9
AL
1681}
1682
452e4751
GC
1683struct kvm_set_guest_debug_data {
1684 struct kvm_guest_debug dbg;
9349b4f9 1685 CPUArchState *env;
452e4751
GC
1686 int err;
1687};
1688
1689static void kvm_invoke_set_guest_debug(void *data)
1690{
1691 struct kvm_set_guest_debug_data *dbg_data = data;
9349b4f9 1692 CPUArchState *env = dbg_data->env;
b3807725 1693
b3807725 1694 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
452e4751
GC
1695}
1696
9349b4f9 1697int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
e22a25c9 1698{
452e4751 1699 struct kvm_set_guest_debug_data data;
e22a25c9 1700
b0b1d690 1701 data.dbg.control = reinject_trap;
e22a25c9 1702
b0b1d690
JK
1703 if (env->singlestep_enabled) {
1704 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1705 }
452e4751 1706 kvm_arch_update_guest_debug(env, &data.dbg);
452e4751 1707 data.env = env;
e22a25c9 1708
be41cbe0 1709 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
452e4751 1710 return data.err;
e22a25c9
AL
1711}
1712
9349b4f9 1713int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
e22a25c9
AL
1714 target_ulong len, int type)
1715{
1716 struct kvm_sw_breakpoint *bp;
9349b4f9 1717 CPUArchState *env;
e22a25c9
AL
1718 int err;
1719
1720 if (type == GDB_BREAKPOINT_SW) {
1721 bp = kvm_find_sw_breakpoint(current_env, addr);
1722 if (bp) {
1723 bp->use_count++;
1724 return 0;
1725 }
1726
7267c094 1727 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
a426e122 1728 if (!bp) {
e22a25c9 1729 return -ENOMEM;
a426e122 1730 }
e22a25c9
AL
1731
1732 bp->pc = addr;
1733 bp->use_count = 1;
1734 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1735 if (err) {
7267c094 1736 g_free(bp);
e22a25c9
AL
1737 return err;
1738 }
1739
72cf2d4f 1740 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
e22a25c9
AL
1741 bp, entry);
1742 } else {
1743 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
a426e122 1744 if (err) {
e22a25c9 1745 return err;
a426e122 1746 }
e22a25c9
AL
1747 }
1748
1749 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1750 err = kvm_update_guest_debug(env, 0);
a426e122 1751 if (err) {
e22a25c9 1752 return err;
a426e122 1753 }
e22a25c9
AL
1754 }
1755 return 0;
1756}
1757
9349b4f9 1758int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
e22a25c9
AL
1759 target_ulong len, int type)
1760{
1761 struct kvm_sw_breakpoint *bp;
9349b4f9 1762 CPUArchState *env;
e22a25c9
AL
1763 int err;
1764
1765 if (type == GDB_BREAKPOINT_SW) {
1766 bp = kvm_find_sw_breakpoint(current_env, addr);
a426e122 1767 if (!bp) {
e22a25c9 1768 return -ENOENT;
a426e122 1769 }
e22a25c9
AL
1770
1771 if (bp->use_count > 1) {
1772 bp->use_count--;
1773 return 0;
1774 }
1775
1776 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
a426e122 1777 if (err) {
e22a25c9 1778 return err;
a426e122 1779 }
e22a25c9 1780
72cf2d4f 1781 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
7267c094 1782 g_free(bp);
e22a25c9
AL
1783 } else {
1784 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
a426e122 1785 if (err) {
e22a25c9 1786 return err;
a426e122 1787 }
e22a25c9
AL
1788 }
1789
1790 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1791 err = kvm_update_guest_debug(env, 0);
a426e122 1792 if (err) {
e22a25c9 1793 return err;
a426e122 1794 }
e22a25c9
AL
1795 }
1796 return 0;
1797}
1798
9349b4f9 1799void kvm_remove_all_breakpoints(CPUArchState *current_env)
e22a25c9
AL
1800{
1801 struct kvm_sw_breakpoint *bp, *next;
1802 KVMState *s = current_env->kvm_state;
9349b4f9 1803 CPUArchState *env;
e22a25c9 1804
72cf2d4f 1805 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
e22a25c9
AL
1806 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1807 /* Try harder to find a CPU that currently sees the breakpoint. */
1808 for (env = first_cpu; env != NULL; env = env->next_cpu) {
a426e122 1809 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
e22a25c9 1810 break;
a426e122 1811 }
e22a25c9
AL
1812 }
1813 }
1814 }
1815 kvm_arch_remove_all_hw_breakpoints();
1816
a426e122 1817 for (env = first_cpu; env != NULL; env = env->next_cpu) {
e22a25c9 1818 kvm_update_guest_debug(env, 0);
a426e122 1819 }
e22a25c9
AL
1820}
1821
1822#else /* !KVM_CAP_SET_GUEST_DEBUG */
1823
9349b4f9 1824int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
e22a25c9
AL
1825{
1826 return -EINVAL;
1827}
1828
9349b4f9 1829int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
e22a25c9
AL
1830 target_ulong len, int type)
1831{
1832 return -EINVAL;
1833}
1834
9349b4f9 1835int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
e22a25c9
AL
1836 target_ulong len, int type)
1837{
1838 return -EINVAL;
1839}
1840
9349b4f9 1841void kvm_remove_all_breakpoints(CPUArchState *current_env)
e22a25c9
AL
1842{
1843}
1844#endif /* !KVM_CAP_SET_GUEST_DEBUG */
cc84de95 1845
9349b4f9 1846int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
cc84de95
MT
1847{
1848 struct kvm_signal_mask *sigmask;
1849 int r;
1850
a426e122 1851 if (!sigset) {
cc84de95 1852 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
a426e122 1853 }
cc84de95 1854
7267c094 1855 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
cc84de95
MT
1856
1857 sigmask->len = 8;
1858 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1859 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
7267c094 1860 g_free(sigmask);
cc84de95
MT
1861
1862 return r;
1863}
ca821806 1864
4b8f1c88
MT
1865int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, bool assign,
1866 uint32_t size)
44f1a3d8 1867{
44f1a3d8
CM
1868 int ret;
1869 struct kvm_ioeventfd iofd;
1870
1871 iofd.datamatch = val;
1872 iofd.addr = addr;
4b8f1c88 1873 iofd.len = size;
44f1a3d8
CM
1874 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1875 iofd.fd = fd;
1876
1877 if (!kvm_enabled()) {
1878 return -ENOSYS;
1879 }
1880
1881 if (!assign) {
1882 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1883 }
1884
1885 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1886
1887 if (ret < 0) {
1888 return -errno;
1889 }
1890
1891 return 0;
44f1a3d8
CM
1892}
1893
ca821806
MT
1894int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1895{
1896 struct kvm_ioeventfd kick = {
1897 .datamatch = val,
1898 .addr = addr,
1899 .len = 2,
1900 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1901 .fd = fd,
1902 };
1903 int r;
a426e122 1904 if (!kvm_enabled()) {
ca821806 1905 return -ENOSYS;
a426e122
JK
1906 }
1907 if (!assign) {
ca821806 1908 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
a426e122 1909 }
ca821806 1910 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
a426e122 1911 if (r < 0) {
ca821806 1912 return r;
a426e122 1913 }
ca821806 1914 return 0;
98c8573e 1915}
a1b87fe0 1916
9349b4f9 1917int kvm_on_sigbus_vcpu(CPUArchState *env, int code, void *addr)
a1b87fe0
JK
1918{
1919 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1920}
1921
1922int kvm_on_sigbus(int code, void *addr)
1923{
1924 return kvm_arch_on_sigbus(code, addr);
1925}