]> git.proxmox.com Git - qemu.git/blame - kvm-all.c
qcow2: Bring synchronous read/write back to life
[qemu.git] / kvm-all.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5832d1f2 5 * Red Hat, Inc. 2008
05330448
AL
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
5832d1f2 9 * Glauber Costa <gcosta@redhat.com>
05330448
AL
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16#include <sys/types.h>
17#include <sys/ioctl.h>
18#include <sys/mman.h>
984b5181 19#include <stdarg.h>
05330448
AL
20
21#include <linux/kvm.h>
22
23#include "qemu-common.h"
24#include "sysemu.h"
d33a1810 25#include "hw/hw.h"
e22a25c9 26#include "gdbstub.h"
05330448
AL
27#include "kvm.h"
28
f65ed4c1
AL
29/* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30#define PAGE_SIZE TARGET_PAGE_SIZE
31
05330448
AL
32//#define DEBUG_KVM
33
34#ifdef DEBUG_KVM
35#define dprintf(fmt, ...) \
36 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
37#else
38#define dprintf(fmt, ...) \
39 do { } while (0)
40#endif
41
34fc643f
AL
42typedef struct KVMSlot
43{
44 target_phys_addr_t start_addr;
45 ram_addr_t memory_size;
46 ram_addr_t phys_offset;
47 int slot;
48 int flags;
49} KVMSlot;
05330448 50
5832d1f2
AL
51typedef struct kvm_dirty_log KVMDirtyLog;
52
05330448
AL
53int kvm_allowed = 0;
54
55struct KVMState
56{
57 KVMSlot slots[32];
58 int fd;
59 int vmfd;
f65ed4c1 60 int coalesced_mmio;
e69917e2 61 int broken_set_mem_region;
4495d6a7 62 int migration_log;
e22a25c9
AL
63#ifdef KVM_CAP_SET_GUEST_DEBUG
64 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
65#endif
05330448
AL
66};
67
68static KVMState *kvm_state;
69
70static KVMSlot *kvm_alloc_slot(KVMState *s)
71{
72 int i;
73
74 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
62d60e8c
AL
75 /* KVM private memory slots */
76 if (i >= 8 && i < 12)
77 continue;
05330448
AL
78 if (s->slots[i].memory_size == 0)
79 return &s->slots[i];
80 }
81
d3f8d37f
AL
82 fprintf(stderr, "%s: no free slot available\n", __func__);
83 abort();
84}
85
86static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
87 target_phys_addr_t start_addr,
88 target_phys_addr_t end_addr)
89{
90 int i;
91
92 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
93 KVMSlot *mem = &s->slots[i];
94
95 if (start_addr == mem->start_addr &&
96 end_addr == mem->start_addr + mem->memory_size) {
97 return mem;
98 }
99 }
100
05330448
AL
101 return NULL;
102}
103
6152e2ae
AL
104/*
105 * Find overlapping slot with lowest start address
106 */
107static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
108 target_phys_addr_t start_addr,
109 target_phys_addr_t end_addr)
05330448 110{
6152e2ae 111 KVMSlot *found = NULL;
05330448
AL
112 int i;
113
114 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
115 KVMSlot *mem = &s->slots[i];
116
6152e2ae
AL
117 if (mem->memory_size == 0 ||
118 (found && found->start_addr < mem->start_addr)) {
119 continue;
120 }
121
122 if (end_addr > mem->start_addr &&
123 start_addr < mem->start_addr + mem->memory_size) {
124 found = mem;
125 }
05330448
AL
126 }
127
6152e2ae 128 return found;
05330448
AL
129}
130
5832d1f2
AL
131static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
132{
133 struct kvm_userspace_memory_region mem;
134
135 mem.slot = slot->slot;
136 mem.guest_phys_addr = slot->start_addr;
137 mem.memory_size = slot->memory_size;
5579c7f3 138 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
5832d1f2 139 mem.flags = slot->flags;
4495d6a7
JK
140 if (s->migration_log) {
141 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
142 }
5832d1f2
AL
143 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
144}
145
8d2ba1fb
JK
146static void kvm_reset_vcpu(void *opaque)
147{
148 CPUState *env = opaque;
149
150 if (kvm_arch_put_registers(env)) {
151 fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
152 abort();
153 }
154}
5832d1f2 155
05330448
AL
156int kvm_init_vcpu(CPUState *env)
157{
158 KVMState *s = kvm_state;
159 long mmap_size;
160 int ret;
161
162 dprintf("kvm_init_vcpu\n");
163
984b5181 164 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
05330448
AL
165 if (ret < 0) {
166 dprintf("kvm_create_vcpu failed\n");
167 goto err;
168 }
169
170 env->kvm_fd = ret;
171 env->kvm_state = s;
172
173 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
174 if (mmap_size < 0) {
175 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
176 goto err;
177 }
178
179 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
180 env->kvm_fd, 0);
181 if (env->kvm_run == MAP_FAILED) {
182 ret = -errno;
183 dprintf("mmap'ing vcpu state failed\n");
184 goto err;
185 }
186
187 ret = kvm_arch_init_vcpu(env);
8d2ba1fb 188 if (ret == 0) {
a08d4367 189 qemu_register_reset(kvm_reset_vcpu, env);
8d2ba1fb
JK
190 ret = kvm_arch_put_registers(env);
191 }
05330448
AL
192err:
193 return ret;
194}
195
5832d1f2
AL
196/*
197 * dirty pages logging control
198 */
d3f8d37f 199static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
4495d6a7 200 ram_addr_t size, int flags, int mask)
5832d1f2
AL
201{
202 KVMState *s = kvm_state;
d3f8d37f 203 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
4495d6a7
JK
204 int old_flags;
205
5832d1f2 206 if (mem == NULL) {
d3f8d37f
AL
207 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
208 TARGET_FMT_plx "\n", __func__, phys_addr,
209 phys_addr + size - 1);
5832d1f2
AL
210 return -EINVAL;
211 }
212
4495d6a7 213 old_flags = mem->flags;
5832d1f2 214
4495d6a7 215 flags = (mem->flags & ~mask) | flags;
5832d1f2
AL
216 mem->flags = flags;
217
4495d6a7
JK
218 /* If nothing changed effectively, no need to issue ioctl */
219 if (s->migration_log) {
220 flags |= KVM_MEM_LOG_DIRTY_PAGES;
221 }
222 if (flags == old_flags) {
223 return 0;
224 }
225
5832d1f2
AL
226 return kvm_set_user_memory_region(s, mem);
227}
228
d3f8d37f 229int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
5832d1f2 230{
d3f8d37f 231 return kvm_dirty_pages_log_change(phys_addr, size,
5832d1f2
AL
232 KVM_MEM_LOG_DIRTY_PAGES,
233 KVM_MEM_LOG_DIRTY_PAGES);
234}
235
d3f8d37f 236int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
5832d1f2 237{
d3f8d37f 238 return kvm_dirty_pages_log_change(phys_addr, size,
5832d1f2
AL
239 0,
240 KVM_MEM_LOG_DIRTY_PAGES);
241}
242
4495d6a7
JK
243int kvm_set_migration_log(int enable)
244{
245 KVMState *s = kvm_state;
246 KVMSlot *mem;
247 int i, err;
248
249 s->migration_log = enable;
250
251 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
252 mem = &s->slots[i];
253
254 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
255 continue;
256 }
257 err = kvm_set_user_memory_region(s, mem);
258 if (err) {
259 return err;
260 }
261 }
262 return 0;
263}
264
5832d1f2
AL
265/**
266 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
267 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
268 * This means all bits are set to dirty.
269 *
d3f8d37f 270 * @start_add: start of logged region.
5832d1f2
AL
271 * @end_addr: end of logged region.
272 */
151f7749
JK
273int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
274 target_phys_addr_t end_addr)
5832d1f2
AL
275{
276 KVMState *s = kvm_state;
151f7749
JK
277 unsigned long size, allocated_size = 0;
278 target_phys_addr_t phys_addr;
5832d1f2 279 ram_addr_t addr;
151f7749
JK
280 KVMDirtyLog d;
281 KVMSlot *mem;
282 int ret = 0;
5832d1f2 283
151f7749
JK
284 d.dirty_bitmap = NULL;
285 while (start_addr < end_addr) {
286 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
287 if (mem == NULL) {
288 break;
289 }
5832d1f2 290
151f7749
JK
291 size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
292 if (!d.dirty_bitmap) {
293 d.dirty_bitmap = qemu_malloc(size);
294 } else if (size > allocated_size) {
295 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
296 }
297 allocated_size = size;
298 memset(d.dirty_bitmap, 0, allocated_size);
5832d1f2 299
151f7749 300 d.slot = mem->slot;
5832d1f2 301
151f7749
JK
302 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
303 dprintf("ioctl failed %d\n", errno);
304 ret = -1;
305 break;
306 }
5832d1f2 307
151f7749
JK
308 for (phys_addr = mem->start_addr, addr = mem->phys_offset;
309 phys_addr < mem->start_addr + mem->memory_size;
310 phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
311 unsigned long *bitmap = (unsigned long *)d.dirty_bitmap;
312 unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
313 unsigned word = nr / (sizeof(*bitmap) * 8);
314 unsigned bit = nr % (sizeof(*bitmap) * 8);
315
316 if ((bitmap[word] >> bit) & 1) {
317 cpu_physical_memory_set_dirty(addr);
318 }
319 }
320 start_addr = phys_addr;
5832d1f2 321 }
5832d1f2 322 qemu_free(d.dirty_bitmap);
151f7749
JK
323
324 return ret;
5832d1f2
AL
325}
326
f65ed4c1
AL
327int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
328{
329 int ret = -ENOSYS;
330#ifdef KVM_CAP_COALESCED_MMIO
331 KVMState *s = kvm_state;
332
333 if (s->coalesced_mmio) {
334 struct kvm_coalesced_mmio_zone zone;
335
336 zone.addr = start;
337 zone.size = size;
338
339 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
340 }
341#endif
342
343 return ret;
344}
345
346int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
347{
348 int ret = -ENOSYS;
349#ifdef KVM_CAP_COALESCED_MMIO
350 KVMState *s = kvm_state;
351
352 if (s->coalesced_mmio) {
353 struct kvm_coalesced_mmio_zone zone;
354
355 zone.addr = start;
356 zone.size = size;
357
358 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
359 }
360#endif
361
362 return ret;
363}
364
ad7b8b33
AL
365int kvm_check_extension(KVMState *s, unsigned int extension)
366{
367 int ret;
368
369 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
370 if (ret < 0) {
371 ret = 0;
372 }
373
374 return ret;
375}
376
05330448
AL
377int kvm_init(int smp_cpus)
378{
168ccc11
JK
379 static const char upgrade_note[] =
380 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
381 "(see http://sourceforge.net/projects/kvm).\n";
05330448
AL
382 KVMState *s;
383 int ret;
384 int i;
385
9f8fd694
MM
386 if (smp_cpus > 1) {
387 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
05330448 388 return -EINVAL;
9f8fd694 389 }
05330448
AL
390
391 s = qemu_mallocz(sizeof(KVMState));
05330448 392
e22a25c9
AL
393#ifdef KVM_CAP_SET_GUEST_DEBUG
394 TAILQ_INIT(&s->kvm_sw_breakpoints);
395#endif
05330448
AL
396 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
397 s->slots[i].slot = i;
398
399 s->vmfd = -1;
400 s->fd = open("/dev/kvm", O_RDWR);
401 if (s->fd == -1) {
402 fprintf(stderr, "Could not access KVM kernel module: %m\n");
403 ret = -errno;
404 goto err;
405 }
406
407 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
408 if (ret < KVM_API_VERSION) {
409 if (ret > 0)
410 ret = -EINVAL;
411 fprintf(stderr, "kvm version too old\n");
412 goto err;
413 }
414
415 if (ret > KVM_API_VERSION) {
416 ret = -EINVAL;
417 fprintf(stderr, "kvm version not supported\n");
418 goto err;
419 }
420
421 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
422 if (s->vmfd < 0)
423 goto err;
424
425 /* initially, KVM allocated its own memory and we had to jump through
426 * hooks to make phys_ram_base point to this. Modern versions of KVM
5579c7f3 427 * just use a user allocated buffer so we can use regular pages
05330448
AL
428 * unmodified. Make sure we have a sufficiently modern version of KVM.
429 */
ad7b8b33
AL
430 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
431 ret = -EINVAL;
168ccc11
JK
432 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
433 upgrade_note);
05330448
AL
434 goto err;
435 }
436
d85dc283
AL
437 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
438 * destroyed properly. Since we rely on this capability, refuse to work
439 * with any kernel without this capability. */
ad7b8b33
AL
440 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
441 ret = -EINVAL;
d85dc283
AL
442
443 fprintf(stderr,
168ccc11
JK
444 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
445 upgrade_note);
d85dc283
AL
446 goto err;
447 }
448
f65ed4c1 449#ifdef KVM_CAP_COALESCED_MMIO
ad7b8b33
AL
450 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
451#else
452 s->coalesced_mmio = 0;
f65ed4c1
AL
453#endif
454
e69917e2
JK
455 s->broken_set_mem_region = 1;
456#ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
457 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
458 if (ret > 0) {
459 s->broken_set_mem_region = 0;
460 }
461#endif
462
05330448
AL
463 ret = kvm_arch_init(s, smp_cpus);
464 if (ret < 0)
465 goto err;
466
467 kvm_state = s;
468
469 return 0;
470
471err:
472 if (s) {
473 if (s->vmfd != -1)
474 close(s->vmfd);
475 if (s->fd != -1)
476 close(s->fd);
477 }
478 qemu_free(s);
479
480 return ret;
481}
482
483static int kvm_handle_io(CPUState *env, uint16_t port, void *data,
484 int direction, int size, uint32_t count)
485{
486 int i;
487 uint8_t *ptr = data;
488
489 for (i = 0; i < count; i++) {
490 if (direction == KVM_EXIT_IO_IN) {
491 switch (size) {
492 case 1:
493 stb_p(ptr, cpu_inb(env, port));
494 break;
495 case 2:
496 stw_p(ptr, cpu_inw(env, port));
497 break;
498 case 4:
499 stl_p(ptr, cpu_inl(env, port));
500 break;
501 }
502 } else {
503 switch (size) {
504 case 1:
505 cpu_outb(env, port, ldub_p(ptr));
506 break;
507 case 2:
508 cpu_outw(env, port, lduw_p(ptr));
509 break;
510 case 4:
511 cpu_outl(env, port, ldl_p(ptr));
512 break;
513 }
514 }
515
516 ptr += size;
517 }
518
519 return 1;
520}
521
f65ed4c1
AL
522static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
523{
524#ifdef KVM_CAP_COALESCED_MMIO
525 KVMState *s = kvm_state;
526 if (s->coalesced_mmio) {
527 struct kvm_coalesced_mmio_ring *ring;
528
529 ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
530 while (ring->first != ring->last) {
531 struct kvm_coalesced_mmio *ent;
532
533 ent = &ring->coalesced_mmio[ring->first];
534
535 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
536 /* FIXME smp_wmb() */
537 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
538 }
539 }
540#endif
541}
542
05330448
AL
543int kvm_cpu_exec(CPUState *env)
544{
545 struct kvm_run *run = env->kvm_run;
546 int ret;
547
548 dprintf("kvm_cpu_exec()\n");
549
550 do {
be214e6c 551 if (env->exit_request) {
05330448
AL
552 dprintf("interrupt exit requested\n");
553 ret = 0;
554 break;
555 }
556
8c14c173 557 kvm_arch_pre_run(env, run);
05330448
AL
558 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
559 kvm_arch_post_run(env, run);
560
561 if (ret == -EINTR || ret == -EAGAIN) {
562 dprintf("io window exit\n");
563 ret = 0;
564 break;
565 }
566
567 if (ret < 0) {
568 dprintf("kvm run failed %s\n", strerror(-ret));
569 abort();
570 }
571
f65ed4c1
AL
572 kvm_run_coalesced_mmio(env, run);
573
05330448
AL
574 ret = 0; /* exit loop */
575 switch (run->exit_reason) {
576 case KVM_EXIT_IO:
577 dprintf("handle_io\n");
578 ret = kvm_handle_io(env, run->io.port,
579 (uint8_t *)run + run->io.data_offset,
580 run->io.direction,
581 run->io.size,
582 run->io.count);
583 break;
584 case KVM_EXIT_MMIO:
585 dprintf("handle_mmio\n");
586 cpu_physical_memory_rw(run->mmio.phys_addr,
587 run->mmio.data,
588 run->mmio.len,
589 run->mmio.is_write);
590 ret = 1;
591 break;
592 case KVM_EXIT_IRQ_WINDOW_OPEN:
593 dprintf("irq_window_open\n");
594 break;
595 case KVM_EXIT_SHUTDOWN:
596 dprintf("shutdown\n");
597 qemu_system_reset_request();
598 ret = 1;
599 break;
600 case KVM_EXIT_UNKNOWN:
601 dprintf("kvm_exit_unknown\n");
602 break;
603 case KVM_EXIT_FAIL_ENTRY:
604 dprintf("kvm_exit_fail_entry\n");
605 break;
606 case KVM_EXIT_EXCEPTION:
607 dprintf("kvm_exit_exception\n");
608 break;
609 case KVM_EXIT_DEBUG:
610 dprintf("kvm_exit_debug\n");
e22a25c9
AL
611#ifdef KVM_CAP_SET_GUEST_DEBUG
612 if (kvm_arch_debug(&run->debug.arch)) {
613 gdb_set_stop_cpu(env);
614 vm_stop(EXCP_DEBUG);
615 env->exception_index = EXCP_DEBUG;
616 return 0;
617 }
618 /* re-enter, this exception was guest-internal */
619 ret = 1;
620#endif /* KVM_CAP_SET_GUEST_DEBUG */
05330448
AL
621 break;
622 default:
623 dprintf("kvm_arch_handle_exit\n");
624 ret = kvm_arch_handle_exit(env, run);
625 break;
626 }
627 } while (ret > 0);
628
be214e6c
AJ
629 if (env->exit_request) {
630 env->exit_request = 0;
becfc390
AL
631 env->exception_index = EXCP_INTERRUPT;
632 }
633
05330448
AL
634 return ret;
635}
636
637void kvm_set_phys_mem(target_phys_addr_t start_addr,
638 ram_addr_t size,
639 ram_addr_t phys_offset)
640{
641 KVMState *s = kvm_state;
642 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
6152e2ae
AL
643 KVMSlot *mem, old;
644 int err;
05330448 645
d3f8d37f 646 if (start_addr & ~TARGET_PAGE_MASK) {
e6f4afe0
JK
647 if (flags >= IO_MEM_UNASSIGNED) {
648 if (!kvm_lookup_overlapping_slot(s, start_addr,
649 start_addr + size)) {
650 return;
651 }
652 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
653 } else {
654 fprintf(stderr, "Only page-aligned memory slots supported\n");
655 }
d3f8d37f
AL
656 abort();
657 }
658
05330448
AL
659 /* KVM does not support read-only slots */
660 phys_offset &= ~IO_MEM_ROM;
661
6152e2ae
AL
662 while (1) {
663 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
664 if (!mem) {
665 break;
666 }
62d60e8c 667
6152e2ae
AL
668 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
669 (start_addr + size <= mem->start_addr + mem->memory_size) &&
670 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
671 /* The new slot fits into the existing one and comes with
672 * identical parameters - nothing to be done. */
05330448 673 return;
6152e2ae
AL
674 }
675
676 old = *mem;
677
678 /* unregister the overlapping slot */
679 mem->memory_size = 0;
680 err = kvm_set_user_memory_region(s, mem);
681 if (err) {
682 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
683 __func__, strerror(-err));
62d60e8c
AL
684 abort();
685 }
6152e2ae
AL
686
687 /* Workaround for older KVM versions: we can't join slots, even not by
688 * unregistering the previous ones and then registering the larger
689 * slot. We have to maintain the existing fragmentation. Sigh.
690 *
691 * This workaround assumes that the new slot starts at the same
692 * address as the first existing one. If not or if some overlapping
693 * slot comes around later, we will fail (not seen in practice so far)
694 * - and actually require a recent KVM version. */
e69917e2
JK
695 if (s->broken_set_mem_region &&
696 old.start_addr == start_addr && old.memory_size < size &&
6152e2ae
AL
697 flags < IO_MEM_UNASSIGNED) {
698 mem = kvm_alloc_slot(s);
699 mem->memory_size = old.memory_size;
700 mem->start_addr = old.start_addr;
701 mem->phys_offset = old.phys_offset;
702 mem->flags = 0;
703
704 err = kvm_set_user_memory_region(s, mem);
705 if (err) {
706 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
707 strerror(-err));
708 abort();
709 }
710
711 start_addr += old.memory_size;
712 phys_offset += old.memory_size;
713 size -= old.memory_size;
714 continue;
715 }
716
717 /* register prefix slot */
718 if (old.start_addr < start_addr) {
719 mem = kvm_alloc_slot(s);
720 mem->memory_size = start_addr - old.start_addr;
721 mem->start_addr = old.start_addr;
722 mem->phys_offset = old.phys_offset;
723 mem->flags = 0;
724
725 err = kvm_set_user_memory_region(s, mem);
726 if (err) {
727 fprintf(stderr, "%s: error registering prefix slot: %s\n",
728 __func__, strerror(-err));
729 abort();
730 }
731 }
732
733 /* register suffix slot */
734 if (old.start_addr + old.memory_size > start_addr + size) {
735 ram_addr_t size_delta;
736
737 mem = kvm_alloc_slot(s);
738 mem->start_addr = start_addr + size;
739 size_delta = mem->start_addr - old.start_addr;
740 mem->memory_size = old.memory_size - size_delta;
741 mem->phys_offset = old.phys_offset + size_delta;
742 mem->flags = 0;
743
744 err = kvm_set_user_memory_region(s, mem);
745 if (err) {
746 fprintf(stderr, "%s: error registering suffix slot: %s\n",
747 __func__, strerror(-err));
748 abort();
749 }
750 }
05330448 751 }
6152e2ae
AL
752
753 /* in case the KVM bug workaround already "consumed" the new slot */
754 if (!size)
755 return;
756
05330448
AL
757 /* KVM does not need to know about this memory */
758 if (flags >= IO_MEM_UNASSIGNED)
759 return;
760
761 mem = kvm_alloc_slot(s);
762 mem->memory_size = size;
34fc643f
AL
763 mem->start_addr = start_addr;
764 mem->phys_offset = phys_offset;
05330448
AL
765 mem->flags = 0;
766
6152e2ae
AL
767 err = kvm_set_user_memory_region(s, mem);
768 if (err) {
769 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
770 strerror(-err));
771 abort();
772 }
05330448
AL
773}
774
984b5181 775int kvm_ioctl(KVMState *s, int type, ...)
05330448
AL
776{
777 int ret;
984b5181
AL
778 void *arg;
779 va_list ap;
05330448 780
984b5181
AL
781 va_start(ap, type);
782 arg = va_arg(ap, void *);
783 va_end(ap);
784
785 ret = ioctl(s->fd, type, arg);
05330448
AL
786 if (ret == -1)
787 ret = -errno;
788
789 return ret;
790}
791
984b5181 792int kvm_vm_ioctl(KVMState *s, int type, ...)
05330448
AL
793{
794 int ret;
984b5181
AL
795 void *arg;
796 va_list ap;
797
798 va_start(ap, type);
799 arg = va_arg(ap, void *);
800 va_end(ap);
05330448 801
984b5181 802 ret = ioctl(s->vmfd, type, arg);
05330448
AL
803 if (ret == -1)
804 ret = -errno;
805
806 return ret;
807}
808
984b5181 809int kvm_vcpu_ioctl(CPUState *env, int type, ...)
05330448
AL
810{
811 int ret;
984b5181
AL
812 void *arg;
813 va_list ap;
814
815 va_start(ap, type);
816 arg = va_arg(ap, void *);
817 va_end(ap);
05330448 818
984b5181 819 ret = ioctl(env->kvm_fd, type, arg);
05330448
AL
820 if (ret == -1)
821 ret = -errno;
822
823 return ret;
824}
bd322087
AL
825
826int kvm_has_sync_mmu(void)
827{
a9c11522 828#ifdef KVM_CAP_SYNC_MMU
bd322087
AL
829 KVMState *s = kvm_state;
830
ad7b8b33
AL
831 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
832#else
bd322087 833 return 0;
ad7b8b33 834#endif
bd322087 835}
e22a25c9 836
6f0437e8
JK
837void kvm_setup_guest_memory(void *start, size_t size)
838{
839 if (!kvm_has_sync_mmu()) {
840#ifdef MADV_DONTFORK
841 int ret = madvise(start, size, MADV_DONTFORK);
842
843 if (ret) {
844 perror("madvice");
845 exit(1);
846 }
847#else
848 fprintf(stderr,
849 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
850 exit(1);
851#endif
852 }
853}
854
e22a25c9
AL
855#ifdef KVM_CAP_SET_GUEST_DEBUG
856struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
857 target_ulong pc)
858{
859 struct kvm_sw_breakpoint *bp;
860
861 TAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
862 if (bp->pc == pc)
863 return bp;
864 }
865 return NULL;
866}
867
868int kvm_sw_breakpoints_active(CPUState *env)
869{
870 return !TAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
871}
872
873int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
874{
875 struct kvm_guest_debug dbg;
876
877 dbg.control = 0;
878 if (env->singlestep_enabled)
879 dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
880
881 kvm_arch_update_guest_debug(env, &dbg);
882 dbg.control |= reinject_trap;
883
884 return kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg);
885}
886
887int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
888 target_ulong len, int type)
889{
890 struct kvm_sw_breakpoint *bp;
891 CPUState *env;
892 int err;
893
894 if (type == GDB_BREAKPOINT_SW) {
895 bp = kvm_find_sw_breakpoint(current_env, addr);
896 if (bp) {
897 bp->use_count++;
898 return 0;
899 }
900
901 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
902 if (!bp)
903 return -ENOMEM;
904
905 bp->pc = addr;
906 bp->use_count = 1;
907 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
908 if (err) {
909 free(bp);
910 return err;
911 }
912
913 TAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
914 bp, entry);
915 } else {
916 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
917 if (err)
918 return err;
919 }
920
921 for (env = first_cpu; env != NULL; env = env->next_cpu) {
922 err = kvm_update_guest_debug(env, 0);
923 if (err)
924 return err;
925 }
926 return 0;
927}
928
929int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
930 target_ulong len, int type)
931{
932 struct kvm_sw_breakpoint *bp;
933 CPUState *env;
934 int err;
935
936 if (type == GDB_BREAKPOINT_SW) {
937 bp = kvm_find_sw_breakpoint(current_env, addr);
938 if (!bp)
939 return -ENOENT;
940
941 if (bp->use_count > 1) {
942 bp->use_count--;
943 return 0;
944 }
945
946 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
947 if (err)
948 return err;
949
950 TAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
951 qemu_free(bp);
952 } else {
953 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
954 if (err)
955 return err;
956 }
957
958 for (env = first_cpu; env != NULL; env = env->next_cpu) {
959 err = kvm_update_guest_debug(env, 0);
960 if (err)
961 return err;
962 }
963 return 0;
964}
965
966void kvm_remove_all_breakpoints(CPUState *current_env)
967{
968 struct kvm_sw_breakpoint *bp, *next;
969 KVMState *s = current_env->kvm_state;
970 CPUState *env;
971
972 TAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
973 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
974 /* Try harder to find a CPU that currently sees the breakpoint. */
975 for (env = first_cpu; env != NULL; env = env->next_cpu) {
976 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
977 break;
978 }
979 }
980 }
981 kvm_arch_remove_all_hw_breakpoints();
982
983 for (env = first_cpu; env != NULL; env = env->next_cpu)
984 kvm_update_guest_debug(env, 0);
985}
986
987#else /* !KVM_CAP_SET_GUEST_DEBUG */
988
989int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
990{
991 return -EINVAL;
992}
993
994int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
995 target_ulong len, int type)
996{
997 return -EINVAL;
998}
999
1000int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1001 target_ulong len, int type)
1002{
1003 return -EINVAL;
1004}
1005
1006void kvm_remove_all_breakpoints(CPUState *current_env)
1007{
1008}
1009#endif /* !KVM_CAP_SET_GUEST_DEBUG */