]> git.proxmox.com Git - qemu.git/blame - kvm-all.c
Introduce VCPU self-signaling service
[qemu.git] / kvm-all.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5832d1f2 5 * Red Hat, Inc. 2008
05330448
AL
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
5832d1f2 9 * Glauber Costa <gcosta@redhat.com>
05330448
AL
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16#include <sys/types.h>
17#include <sys/ioctl.h>
18#include <sys/mman.h>
984b5181 19#include <stdarg.h>
05330448
AL
20
21#include <linux/kvm.h>
22
23#include "qemu-common.h"
85199474 24#include "qemu-barrier.h"
05330448 25#include "sysemu.h"
d33a1810 26#include "hw/hw.h"
e22a25c9 27#include "gdbstub.h"
05330448 28#include "kvm.h"
8369e01c 29#include "bswap.h"
05330448 30
d2f2b8a7
SH
31/* This check must be after config-host.h is included */
32#ifdef CONFIG_EVENTFD
33#include <sys/eventfd.h>
34#endif
35
f65ed4c1
AL
36/* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
37#define PAGE_SIZE TARGET_PAGE_SIZE
38
05330448
AL
39//#define DEBUG_KVM
40
41#ifdef DEBUG_KVM
8c0d577e 42#define DPRINTF(fmt, ...) \
05330448
AL
43 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
44#else
8c0d577e 45#define DPRINTF(fmt, ...) \
05330448
AL
46 do { } while (0)
47#endif
48
34fc643f
AL
49typedef struct KVMSlot
50{
c227f099
AL
51 target_phys_addr_t start_addr;
52 ram_addr_t memory_size;
53 ram_addr_t phys_offset;
34fc643f
AL
54 int slot;
55 int flags;
56} KVMSlot;
05330448 57
5832d1f2
AL
58typedef struct kvm_dirty_log KVMDirtyLog;
59
05330448
AL
60struct KVMState
61{
62 KVMSlot slots[32];
63 int fd;
64 int vmfd;
f65ed4c1 65 int coalesced_mmio;
62a2744c 66 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
e69917e2 67 int broken_set_mem_region;
4495d6a7 68 int migration_log;
a0fb002c 69 int vcpu_events;
b0b1d690 70 int robust_singlestep;
ff44f1a3 71 int debugregs;
e22a25c9
AL
72#ifdef KVM_CAP_SET_GUEST_DEBUG
73 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
74#endif
6f725c13
GC
75 int irqchip_in_kernel;
76 int pit_in_kernel;
f1665b21 77 int xsave, xcrs;
d2f2b8a7 78 int many_ioeventfds;
05330448
AL
79};
80
81static KVMState *kvm_state;
82
94a8d39a
JK
83static const KVMCapabilityInfo kvm_required_capabilites[] = {
84 KVM_CAP_INFO(USER_MEMORY),
85 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
86 KVM_CAP_LAST_INFO
87};
88
05330448
AL
89static KVMSlot *kvm_alloc_slot(KVMState *s)
90{
91 int i;
92
93 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
62d60e8c 94 /* KVM private memory slots */
a426e122 95 if (i >= 8 && i < 12) {
62d60e8c 96 continue;
a426e122
JK
97 }
98 if (s->slots[i].memory_size == 0) {
05330448 99 return &s->slots[i];
a426e122 100 }
05330448
AL
101 }
102
d3f8d37f
AL
103 fprintf(stderr, "%s: no free slot available\n", __func__);
104 abort();
105}
106
107static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
c227f099
AL
108 target_phys_addr_t start_addr,
109 target_phys_addr_t end_addr)
d3f8d37f
AL
110{
111 int i;
112
113 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
114 KVMSlot *mem = &s->slots[i];
115
116 if (start_addr == mem->start_addr &&
117 end_addr == mem->start_addr + mem->memory_size) {
118 return mem;
119 }
120 }
121
05330448
AL
122 return NULL;
123}
124
6152e2ae
AL
125/*
126 * Find overlapping slot with lowest start address
127 */
128static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
c227f099
AL
129 target_phys_addr_t start_addr,
130 target_phys_addr_t end_addr)
05330448 131{
6152e2ae 132 KVMSlot *found = NULL;
05330448
AL
133 int i;
134
135 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
136 KVMSlot *mem = &s->slots[i];
137
6152e2ae
AL
138 if (mem->memory_size == 0 ||
139 (found && found->start_addr < mem->start_addr)) {
140 continue;
141 }
142
143 if (end_addr > mem->start_addr &&
144 start_addr < mem->start_addr + mem->memory_size) {
145 found = mem;
146 }
05330448
AL
147 }
148
6152e2ae 149 return found;
05330448
AL
150}
151
983dfc3b
HY
152int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr,
153 target_phys_addr_t *phys_addr)
154{
155 int i;
156
157 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
158 KVMSlot *mem = &s->slots[i];
159
160 if (ram_addr >= mem->phys_offset &&
161 ram_addr < mem->phys_offset + mem->memory_size) {
162 *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset);
163 return 1;
164 }
165 }
166
167 return 0;
168}
169
5832d1f2
AL
170static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
171{
172 struct kvm_userspace_memory_region mem;
173
174 mem.slot = slot->slot;
175 mem.guest_phys_addr = slot->start_addr;
176 mem.memory_size = slot->memory_size;
b2e0a138 177 mem.userspace_addr = (unsigned long)qemu_safe_ram_ptr(slot->phys_offset);
5832d1f2 178 mem.flags = slot->flags;
4495d6a7
JK
179 if (s->migration_log) {
180 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
181 }
5832d1f2
AL
182 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
183}
184
8d2ba1fb
JK
185static void kvm_reset_vcpu(void *opaque)
186{
187 CPUState *env = opaque;
188
caa5af0f 189 kvm_arch_reset_vcpu(env);
8d2ba1fb 190}
5832d1f2 191
6f725c13
GC
192int kvm_irqchip_in_kernel(void)
193{
194 return kvm_state->irqchip_in_kernel;
195}
196
197int kvm_pit_in_kernel(void)
198{
199 return kvm_state->pit_in_kernel;
200}
201
202
05330448
AL
203int kvm_init_vcpu(CPUState *env)
204{
205 KVMState *s = kvm_state;
206 long mmap_size;
207 int ret;
208
8c0d577e 209 DPRINTF("kvm_init_vcpu\n");
05330448 210
984b5181 211 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
05330448 212 if (ret < 0) {
8c0d577e 213 DPRINTF("kvm_create_vcpu failed\n");
05330448
AL
214 goto err;
215 }
216
217 env->kvm_fd = ret;
218 env->kvm_state = s;
219
220 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
221 if (mmap_size < 0) {
748a680b 222 ret = mmap_size;
8c0d577e 223 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
05330448
AL
224 goto err;
225 }
226
227 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
228 env->kvm_fd, 0);
229 if (env->kvm_run == MAP_FAILED) {
230 ret = -errno;
8c0d577e 231 DPRINTF("mmap'ing vcpu state failed\n");
05330448
AL
232 goto err;
233 }
234
a426e122
JK
235 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
236 s->coalesced_mmio_ring =
237 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
238 }
62a2744c 239
05330448 240 ret = kvm_arch_init_vcpu(env);
8d2ba1fb 241 if (ret == 0) {
a08d4367 242 qemu_register_reset(kvm_reset_vcpu, env);
caa5af0f 243 kvm_arch_reset_vcpu(env);
8d2ba1fb 244 }
05330448
AL
245err:
246 return ret;
247}
248
5832d1f2
AL
249/*
250 * dirty pages logging control
251 */
c227f099
AL
252static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
253 ram_addr_t size, int flags, int mask)
5832d1f2
AL
254{
255 KVMState *s = kvm_state;
d3f8d37f 256 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
4495d6a7
JK
257 int old_flags;
258
5832d1f2 259 if (mem == NULL) {
d3f8d37f
AL
260 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
261 TARGET_FMT_plx "\n", __func__, phys_addr,
c227f099 262 (target_phys_addr_t)(phys_addr + size - 1));
5832d1f2
AL
263 return -EINVAL;
264 }
265
4495d6a7 266 old_flags = mem->flags;
5832d1f2 267
4495d6a7 268 flags = (mem->flags & ~mask) | flags;
5832d1f2
AL
269 mem->flags = flags;
270
4495d6a7
JK
271 /* If nothing changed effectively, no need to issue ioctl */
272 if (s->migration_log) {
273 flags |= KVM_MEM_LOG_DIRTY_PAGES;
274 }
275 if (flags == old_flags) {
276 return 0;
277 }
278
5832d1f2
AL
279 return kvm_set_user_memory_region(s, mem);
280}
281
c227f099 282int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
5832d1f2 283{
a426e122
JK
284 return kvm_dirty_pages_log_change(phys_addr, size, KVM_MEM_LOG_DIRTY_PAGES,
285 KVM_MEM_LOG_DIRTY_PAGES);
5832d1f2
AL
286}
287
c227f099 288int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
5832d1f2 289{
a426e122
JK
290 return kvm_dirty_pages_log_change(phys_addr, size, 0,
291 KVM_MEM_LOG_DIRTY_PAGES);
5832d1f2
AL
292}
293
7b8f3b78 294static int kvm_set_migration_log(int enable)
4495d6a7
JK
295{
296 KVMState *s = kvm_state;
297 KVMSlot *mem;
298 int i, err;
299
300 s->migration_log = enable;
301
302 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
303 mem = &s->slots[i];
304
70fedd76
AW
305 if (!mem->memory_size) {
306 continue;
307 }
4495d6a7
JK
308 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
309 continue;
310 }
311 err = kvm_set_user_memory_region(s, mem);
312 if (err) {
313 return err;
314 }
315 }
316 return 0;
317}
318
8369e01c
MT
319/* get kvm's dirty pages bitmap and update qemu's */
320static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
321 unsigned long *bitmap,
322 unsigned long offset,
323 unsigned long mem_size)
96c1606b 324{
8369e01c
MT
325 unsigned int i, j;
326 unsigned long page_number, addr, addr1, c;
327 ram_addr_t ram_addr;
328 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
329 HOST_LONG_BITS;
330
331 /*
332 * bitmap-traveling is faster than memory-traveling (for addr...)
333 * especially when most of the memory is not dirty.
334 */
335 for (i = 0; i < len; i++) {
336 if (bitmap[i] != 0) {
337 c = leul_to_cpu(bitmap[i]);
338 do {
339 j = ffsl(c) - 1;
340 c &= ~(1ul << j);
341 page_number = i * HOST_LONG_BITS + j;
342 addr1 = page_number * TARGET_PAGE_SIZE;
343 addr = offset + addr1;
344 ram_addr = cpu_get_physical_page_desc(addr);
345 cpu_physical_memory_set_dirty(ram_addr);
346 } while (c != 0);
347 }
348 }
349 return 0;
96c1606b
AG
350}
351
8369e01c
MT
352#define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
353
5832d1f2
AL
354/**
355 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
356 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
357 * This means all bits are set to dirty.
358 *
d3f8d37f 359 * @start_add: start of logged region.
5832d1f2
AL
360 * @end_addr: end of logged region.
361 */
7b8f3b78 362static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
a426e122 363 target_phys_addr_t end_addr)
5832d1f2
AL
364{
365 KVMState *s = kvm_state;
151f7749 366 unsigned long size, allocated_size = 0;
151f7749
JK
367 KVMDirtyLog d;
368 KVMSlot *mem;
369 int ret = 0;
5832d1f2 370
151f7749
JK
371 d.dirty_bitmap = NULL;
372 while (start_addr < end_addr) {
373 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
374 if (mem == NULL) {
375 break;
376 }
5832d1f2 377
8369e01c 378 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8;
151f7749
JK
379 if (!d.dirty_bitmap) {
380 d.dirty_bitmap = qemu_malloc(size);
381 } else if (size > allocated_size) {
382 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
383 }
384 allocated_size = size;
385 memset(d.dirty_bitmap, 0, allocated_size);
5832d1f2 386
151f7749 387 d.slot = mem->slot;
5832d1f2 388
6e489f3f 389 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
8c0d577e 390 DPRINTF("ioctl failed %d\n", errno);
151f7749
JK
391 ret = -1;
392 break;
393 }
5832d1f2 394
8369e01c
MT
395 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
396 mem->start_addr, mem->memory_size);
397 start_addr = mem->start_addr + mem->memory_size;
5832d1f2 398 }
5832d1f2 399 qemu_free(d.dirty_bitmap);
151f7749
JK
400
401 return ret;
5832d1f2
AL
402}
403
c227f099 404int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
f65ed4c1
AL
405{
406 int ret = -ENOSYS;
f65ed4c1
AL
407 KVMState *s = kvm_state;
408
409 if (s->coalesced_mmio) {
410 struct kvm_coalesced_mmio_zone zone;
411
412 zone.addr = start;
413 zone.size = size;
414
415 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
416 }
f65ed4c1
AL
417
418 return ret;
419}
420
c227f099 421int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
f65ed4c1
AL
422{
423 int ret = -ENOSYS;
f65ed4c1
AL
424 KVMState *s = kvm_state;
425
426 if (s->coalesced_mmio) {
427 struct kvm_coalesced_mmio_zone zone;
428
429 zone.addr = start;
430 zone.size = size;
431
432 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
433 }
f65ed4c1
AL
434
435 return ret;
436}
437
ad7b8b33
AL
438int kvm_check_extension(KVMState *s, unsigned int extension)
439{
440 int ret;
441
442 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
443 if (ret < 0) {
444 ret = 0;
445 }
446
447 return ret;
448}
449
d2f2b8a7
SH
450static int kvm_check_many_ioeventfds(void)
451{
d0dcac83
SH
452 /* Userspace can use ioeventfd for io notification. This requires a host
453 * that supports eventfd(2) and an I/O thread; since eventfd does not
454 * support SIGIO it cannot interrupt the vcpu.
455 *
456 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
d2f2b8a7
SH
457 * can avoid creating too many ioeventfds.
458 */
d0dcac83 459#if defined(CONFIG_EVENTFD) && defined(CONFIG_IOTHREAD)
d2f2b8a7
SH
460 int ioeventfds[7];
461 int i, ret = 0;
462 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
463 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
464 if (ioeventfds[i] < 0) {
465 break;
466 }
467 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
468 if (ret < 0) {
469 close(ioeventfds[i]);
470 break;
471 }
472 }
473
474 /* Decide whether many devices are supported or not */
475 ret = i == ARRAY_SIZE(ioeventfds);
476
477 while (i-- > 0) {
478 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
479 close(ioeventfds[i]);
480 }
481 return ret;
482#else
483 return 0;
484#endif
485}
486
94a8d39a
JK
487static const KVMCapabilityInfo *
488kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
489{
490 while (list->name) {
491 if (!kvm_check_extension(s, list->value)) {
492 return list;
493 }
494 list++;
495 }
496 return NULL;
497}
498
a426e122
JK
499static void kvm_set_phys_mem(target_phys_addr_t start_addr, ram_addr_t size,
500 ram_addr_t phys_offset)
46dbef6a
MT
501{
502 KVMState *s = kvm_state;
503 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
504 KVMSlot *mem, old;
505 int err;
506
14542fea
GN
507 /* kvm works in page size chunks, but the function may be called
508 with sub-page size and unaligned start address. */
509 size = TARGET_PAGE_ALIGN(size);
510 start_addr = TARGET_PAGE_ALIGN(start_addr);
46dbef6a
MT
511
512 /* KVM does not support read-only slots */
513 phys_offset &= ~IO_MEM_ROM;
514
515 while (1) {
516 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
517 if (!mem) {
518 break;
519 }
520
521 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
522 (start_addr + size <= mem->start_addr + mem->memory_size) &&
523 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
524 /* The new slot fits into the existing one and comes with
525 * identical parameters - nothing to be done. */
526 return;
527 }
528
529 old = *mem;
530
531 /* unregister the overlapping slot */
532 mem->memory_size = 0;
533 err = kvm_set_user_memory_region(s, mem);
534 if (err) {
535 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
536 __func__, strerror(-err));
537 abort();
538 }
539
540 /* Workaround for older KVM versions: we can't join slots, even not by
541 * unregistering the previous ones and then registering the larger
542 * slot. We have to maintain the existing fragmentation. Sigh.
543 *
544 * This workaround assumes that the new slot starts at the same
545 * address as the first existing one. If not or if some overlapping
546 * slot comes around later, we will fail (not seen in practice so far)
547 * - and actually require a recent KVM version. */
548 if (s->broken_set_mem_region &&
549 old.start_addr == start_addr && old.memory_size < size &&
550 flags < IO_MEM_UNASSIGNED) {
551 mem = kvm_alloc_slot(s);
552 mem->memory_size = old.memory_size;
553 mem->start_addr = old.start_addr;
554 mem->phys_offset = old.phys_offset;
555 mem->flags = 0;
556
557 err = kvm_set_user_memory_region(s, mem);
558 if (err) {
559 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
560 strerror(-err));
561 abort();
562 }
563
564 start_addr += old.memory_size;
565 phys_offset += old.memory_size;
566 size -= old.memory_size;
567 continue;
568 }
569
570 /* register prefix slot */
571 if (old.start_addr < start_addr) {
572 mem = kvm_alloc_slot(s);
573 mem->memory_size = start_addr - old.start_addr;
574 mem->start_addr = old.start_addr;
575 mem->phys_offset = old.phys_offset;
576 mem->flags = 0;
577
578 err = kvm_set_user_memory_region(s, mem);
579 if (err) {
580 fprintf(stderr, "%s: error registering prefix slot: %s\n",
581 __func__, strerror(-err));
582 abort();
583 }
584 }
585
586 /* register suffix slot */
587 if (old.start_addr + old.memory_size > start_addr + size) {
588 ram_addr_t size_delta;
589
590 mem = kvm_alloc_slot(s);
591 mem->start_addr = start_addr + size;
592 size_delta = mem->start_addr - old.start_addr;
593 mem->memory_size = old.memory_size - size_delta;
594 mem->phys_offset = old.phys_offset + size_delta;
595 mem->flags = 0;
596
597 err = kvm_set_user_memory_region(s, mem);
598 if (err) {
599 fprintf(stderr, "%s: error registering suffix slot: %s\n",
600 __func__, strerror(-err));
601 abort();
602 }
603 }
604 }
605
606 /* in case the KVM bug workaround already "consumed" the new slot */
a426e122 607 if (!size) {
46dbef6a 608 return;
a426e122 609 }
46dbef6a 610 /* KVM does not need to know about this memory */
a426e122 611 if (flags >= IO_MEM_UNASSIGNED) {
46dbef6a 612 return;
a426e122 613 }
46dbef6a
MT
614 mem = kvm_alloc_slot(s);
615 mem->memory_size = size;
616 mem->start_addr = start_addr;
617 mem->phys_offset = phys_offset;
618 mem->flags = 0;
619
620 err = kvm_set_user_memory_region(s, mem);
621 if (err) {
622 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
623 strerror(-err));
624 abort();
625 }
626}
627
7b8f3b78 628static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
a426e122
JK
629 target_phys_addr_t start_addr,
630 ram_addr_t size, ram_addr_t phys_offset)
7b8f3b78 631{
a426e122 632 kvm_set_phys_mem(start_addr, size, phys_offset);
7b8f3b78
MT
633}
634
635static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
a426e122
JK
636 target_phys_addr_t start_addr,
637 target_phys_addr_t end_addr)
7b8f3b78 638{
a426e122 639 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
7b8f3b78
MT
640}
641
642static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
a426e122 643 int enable)
7b8f3b78 644{
a426e122 645 return kvm_set_migration_log(enable);
7b8f3b78
MT
646}
647
648static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
a426e122
JK
649 .set_memory = kvm_client_set_memory,
650 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
651 .migration_log = kvm_client_migration_log,
7b8f3b78
MT
652};
653
cad1e282 654int kvm_init(void)
05330448 655{
168ccc11
JK
656 static const char upgrade_note[] =
657 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
658 "(see http://sourceforge.net/projects/kvm).\n";
05330448 659 KVMState *s;
94a8d39a 660 const KVMCapabilityInfo *missing_cap;
05330448
AL
661 int ret;
662 int i;
663
05330448 664 s = qemu_mallocz(sizeof(KVMState));
05330448 665
e22a25c9 666#ifdef KVM_CAP_SET_GUEST_DEBUG
72cf2d4f 667 QTAILQ_INIT(&s->kvm_sw_breakpoints);
e22a25c9 668#endif
a426e122 669 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
05330448 670 s->slots[i].slot = i;
a426e122 671 }
05330448 672 s->vmfd = -1;
40ff6d7e 673 s->fd = qemu_open("/dev/kvm", O_RDWR);
05330448
AL
674 if (s->fd == -1) {
675 fprintf(stderr, "Could not access KVM kernel module: %m\n");
676 ret = -errno;
677 goto err;
678 }
679
680 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
681 if (ret < KVM_API_VERSION) {
a426e122 682 if (ret > 0) {
05330448 683 ret = -EINVAL;
a426e122 684 }
05330448
AL
685 fprintf(stderr, "kvm version too old\n");
686 goto err;
687 }
688
689 if (ret > KVM_API_VERSION) {
690 ret = -EINVAL;
691 fprintf(stderr, "kvm version not supported\n");
692 goto err;
693 }
694
695 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
0104dcac
AG
696 if (s->vmfd < 0) {
697#ifdef TARGET_S390X
698 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
699 "your host kernel command line\n");
700#endif
05330448 701 goto err;
0104dcac 702 }
05330448 703
94a8d39a
JK
704 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
705 if (!missing_cap) {
706 missing_cap =
707 kvm_check_extension_list(s, kvm_arch_required_capabilities);
05330448 708 }
94a8d39a 709 if (missing_cap) {
ad7b8b33 710 ret = -EINVAL;
94a8d39a
JK
711 fprintf(stderr, "kvm does not support %s\n%s",
712 missing_cap->name, upgrade_note);
d85dc283
AL
713 goto err;
714 }
715
ad7b8b33 716 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
f65ed4c1 717
e69917e2
JK
718 s->broken_set_mem_region = 1;
719#ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
14a09518 720 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
e69917e2
JK
721 if (ret > 0) {
722 s->broken_set_mem_region = 0;
723 }
724#endif
725
a0fb002c
JK
726 s->vcpu_events = 0;
727#ifdef KVM_CAP_VCPU_EVENTS
728 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
729#endif
730
b0b1d690
JK
731 s->robust_singlestep = 0;
732#ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
733 s->robust_singlestep =
734 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
735#endif
736
ff44f1a3
JK
737 s->debugregs = 0;
738#ifdef KVM_CAP_DEBUGREGS
739 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
740#endif
741
f1665b21
SY
742 s->xsave = 0;
743#ifdef KVM_CAP_XSAVE
744 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
745#endif
746
747 s->xcrs = 0;
748#ifdef KVM_CAP_XCRS
749 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
750#endif
751
cad1e282 752 ret = kvm_arch_init(s);
a426e122 753 if (ret < 0) {
05330448 754 goto err;
a426e122 755 }
05330448
AL
756
757 kvm_state = s;
7b8f3b78 758 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
05330448 759
d2f2b8a7
SH
760 s->many_ioeventfds = kvm_check_many_ioeventfds();
761
05330448
AL
762 return 0;
763
764err:
765 if (s) {
a426e122 766 if (s->vmfd != -1) {
05330448 767 close(s->vmfd);
a426e122
JK
768 }
769 if (s->fd != -1) {
05330448 770 close(s->fd);
a426e122 771 }
05330448
AL
772 }
773 qemu_free(s);
774
775 return ret;
776}
777
afcea8cb
BS
778static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
779 uint32_t count)
05330448
AL
780{
781 int i;
782 uint8_t *ptr = data;
783
784 for (i = 0; i < count; i++) {
785 if (direction == KVM_EXIT_IO_IN) {
786 switch (size) {
787 case 1:
afcea8cb 788 stb_p(ptr, cpu_inb(port));
05330448
AL
789 break;
790 case 2:
afcea8cb 791 stw_p(ptr, cpu_inw(port));
05330448
AL
792 break;
793 case 4:
afcea8cb 794 stl_p(ptr, cpu_inl(port));
05330448
AL
795 break;
796 }
797 } else {
798 switch (size) {
799 case 1:
afcea8cb 800 cpu_outb(port, ldub_p(ptr));
05330448
AL
801 break;
802 case 2:
afcea8cb 803 cpu_outw(port, lduw_p(ptr));
05330448
AL
804 break;
805 case 4:
afcea8cb 806 cpu_outl(port, ldl_p(ptr));
05330448
AL
807 break;
808 }
809 }
810
811 ptr += size;
812 }
813
814 return 1;
815}
816
7c80eef8 817#ifdef KVM_CAP_INTERNAL_ERROR_DATA
73aaec4a 818static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
7c80eef8 819{
bb44e0d1 820 fprintf(stderr, "KVM internal error.");
7c80eef8
MT
821 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
822 int i;
823
bb44e0d1 824 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
7c80eef8
MT
825 for (i = 0; i < run->internal.ndata; ++i) {
826 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
827 i, (uint64_t)run->internal.data[i]);
828 }
bb44e0d1
JK
829 } else {
830 fprintf(stderr, "\n");
7c80eef8 831 }
7c80eef8
MT
832 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
833 fprintf(stderr, "emulation failure\n");
a426e122 834 if (!kvm_arch_stop_on_emulation_error(env)) {
f5c848ee 835 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
73aaec4a 836 return 0;
a426e122 837 }
7c80eef8
MT
838 }
839 /* FIXME: Should trigger a qmp message to let management know
840 * something went wrong.
841 */
73aaec4a 842 return -1;
7c80eef8
MT
843}
844#endif
845
62a2744c 846void kvm_flush_coalesced_mmio_buffer(void)
f65ed4c1 847{
f65ed4c1 848 KVMState *s = kvm_state;
62a2744c
SY
849 if (s->coalesced_mmio_ring) {
850 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
f65ed4c1
AL
851 while (ring->first != ring->last) {
852 struct kvm_coalesced_mmio *ent;
853
854 ent = &ring->coalesced_mmio[ring->first];
855
856 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
85199474 857 smp_wmb();
f65ed4c1
AL
858 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
859 }
860 }
f65ed4c1
AL
861}
862
2705d56a 863static void do_kvm_cpu_synchronize_state(void *_env)
4c0960c0 864{
2705d56a
JK
865 CPUState *env = _env;
866
9ded2744 867 if (!env->kvm_vcpu_dirty) {
4c0960c0 868 kvm_arch_get_registers(env);
9ded2744 869 env->kvm_vcpu_dirty = 1;
4c0960c0
AK
870 }
871}
872
2705d56a
JK
873void kvm_cpu_synchronize_state(CPUState *env)
874{
a426e122 875 if (!env->kvm_vcpu_dirty) {
2705d56a 876 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
a426e122 877 }
2705d56a
JK
878}
879
ea375f9a
JK
880void kvm_cpu_synchronize_post_reset(CPUState *env)
881{
882 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
883 env->kvm_vcpu_dirty = 0;
884}
885
886void kvm_cpu_synchronize_post_init(CPUState *env)
887{
888 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
889 env->kvm_vcpu_dirty = 0;
890}
891
05330448
AL
892int kvm_cpu_exec(CPUState *env)
893{
894 struct kvm_run *run = env->kvm_run;
895 int ret;
896
8c0d577e 897 DPRINTF("kvm_cpu_exec()\n");
05330448
AL
898
899 do {
6312b928 900#ifndef CONFIG_IOTHREAD
be214e6c 901 if (env->exit_request) {
8c0d577e 902 DPRINTF("interrupt exit requested\n");
05330448
AL
903 ret = 0;
904 break;
905 }
6312b928 906#endif
05330448 907
0af691d7
MT
908 if (kvm_arch_process_irqchip_events(env)) {
909 ret = 0;
910 break;
911 }
912
9ded2744 913 if (env->kvm_vcpu_dirty) {
ea375f9a 914 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
9ded2744 915 env->kvm_vcpu_dirty = 0;
4c0960c0
AK
916 }
917
8c14c173 918 kvm_arch_pre_run(env, run);
273faf1b 919 cpu_single_env = NULL;
d549db5a 920 qemu_mutex_unlock_iothread();
05330448 921 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
d549db5a 922 qemu_mutex_lock_iothread();
273faf1b 923 cpu_single_env = env;
05330448
AL
924 kvm_arch_post_run(env, run);
925
b0c883b5
JK
926 kvm_flush_coalesced_mmio_buffer();
927
05330448 928 if (ret == -EINTR || ret == -EAGAIN) {
cc84de95 929 cpu_exit(env);
8c0d577e 930 DPRINTF("io window exit\n");
05330448
AL
931 ret = 0;
932 break;
933 }
934
935 if (ret < 0) {
8c0d577e 936 DPRINTF("kvm run failed %s\n", strerror(-ret));
05330448
AL
937 abort();
938 }
939
940 ret = 0; /* exit loop */
941 switch (run->exit_reason) {
942 case KVM_EXIT_IO:
8c0d577e 943 DPRINTF("handle_io\n");
afcea8cb 944 ret = kvm_handle_io(run->io.port,
05330448
AL
945 (uint8_t *)run + run->io.data_offset,
946 run->io.direction,
947 run->io.size,
948 run->io.count);
949 break;
950 case KVM_EXIT_MMIO:
8c0d577e 951 DPRINTF("handle_mmio\n");
05330448
AL
952 cpu_physical_memory_rw(run->mmio.phys_addr,
953 run->mmio.data,
954 run->mmio.len,
955 run->mmio.is_write);
956 ret = 1;
957 break;
958 case KVM_EXIT_IRQ_WINDOW_OPEN:
8c0d577e 959 DPRINTF("irq_window_open\n");
05330448
AL
960 break;
961 case KVM_EXIT_SHUTDOWN:
8c0d577e 962 DPRINTF("shutdown\n");
05330448
AL
963 qemu_system_reset_request();
964 ret = 1;
965 break;
966 case KVM_EXIT_UNKNOWN:
bb44e0d1
JK
967 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
968 (uint64_t)run->hw.hardware_exit_reason);
73aaec4a 969 ret = -1;
05330448 970 break;
7c80eef8
MT
971#ifdef KVM_CAP_INTERNAL_ERROR_DATA
972 case KVM_EXIT_INTERNAL_ERROR:
73aaec4a 973 ret = kvm_handle_internal_error(env, run);
7c80eef8
MT
974 break;
975#endif
05330448 976 case KVM_EXIT_DEBUG:
8c0d577e 977 DPRINTF("kvm_exit_debug\n");
e22a25c9
AL
978#ifdef KVM_CAP_SET_GUEST_DEBUG
979 if (kvm_arch_debug(&run->debug.arch)) {
e22a25c9
AL
980 env->exception_index = EXCP_DEBUG;
981 return 0;
982 }
983 /* re-enter, this exception was guest-internal */
984 ret = 1;
985#endif /* KVM_CAP_SET_GUEST_DEBUG */
05330448
AL
986 break;
987 default:
8c0d577e 988 DPRINTF("kvm_arch_handle_exit\n");
05330448
AL
989 ret = kvm_arch_handle_exit(env, run);
990 break;
991 }
992 } while (ret > 0);
993
73aaec4a 994 if (ret < 0) {
f5c848ee 995 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
73aaec4a
JK
996 vm_stop(0);
997 env->exit_request = 1;
998 }
be214e6c
AJ
999 if (env->exit_request) {
1000 env->exit_request = 0;
becfc390
AL
1001 env->exception_index = EXCP_INTERRUPT;
1002 }
1003
05330448
AL
1004 return ret;
1005}
1006
984b5181 1007int kvm_ioctl(KVMState *s, int type, ...)
05330448
AL
1008{
1009 int ret;
984b5181
AL
1010 void *arg;
1011 va_list ap;
05330448 1012
984b5181
AL
1013 va_start(ap, type);
1014 arg = va_arg(ap, void *);
1015 va_end(ap);
1016
1017 ret = ioctl(s->fd, type, arg);
a426e122 1018 if (ret == -1) {
05330448 1019 ret = -errno;
a426e122 1020 }
05330448
AL
1021 return ret;
1022}
1023
984b5181 1024int kvm_vm_ioctl(KVMState *s, int type, ...)
05330448
AL
1025{
1026 int ret;
984b5181
AL
1027 void *arg;
1028 va_list ap;
1029
1030 va_start(ap, type);
1031 arg = va_arg(ap, void *);
1032 va_end(ap);
05330448 1033
984b5181 1034 ret = ioctl(s->vmfd, type, arg);
a426e122 1035 if (ret == -1) {
05330448 1036 ret = -errno;
a426e122 1037 }
05330448
AL
1038 return ret;
1039}
1040
984b5181 1041int kvm_vcpu_ioctl(CPUState *env, int type, ...)
05330448
AL
1042{
1043 int ret;
984b5181
AL
1044 void *arg;
1045 va_list ap;
1046
1047 va_start(ap, type);
1048 arg = va_arg(ap, void *);
1049 va_end(ap);
05330448 1050
984b5181 1051 ret = ioctl(env->kvm_fd, type, arg);
a426e122 1052 if (ret == -1) {
05330448 1053 ret = -errno;
a426e122 1054 }
05330448
AL
1055 return ret;
1056}
bd322087
AL
1057
1058int kvm_has_sync_mmu(void)
1059{
94a8d39a 1060 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
bd322087 1061}
e22a25c9 1062
a0fb002c
JK
1063int kvm_has_vcpu_events(void)
1064{
1065 return kvm_state->vcpu_events;
1066}
1067
b0b1d690
JK
1068int kvm_has_robust_singlestep(void)
1069{
1070 return kvm_state->robust_singlestep;
1071}
1072
ff44f1a3
JK
1073int kvm_has_debugregs(void)
1074{
1075 return kvm_state->debugregs;
1076}
1077
f1665b21
SY
1078int kvm_has_xsave(void)
1079{
1080 return kvm_state->xsave;
1081}
1082
1083int kvm_has_xcrs(void)
1084{
1085 return kvm_state->xcrs;
1086}
1087
d2f2b8a7
SH
1088int kvm_has_many_ioeventfds(void)
1089{
1090 if (!kvm_enabled()) {
1091 return 0;
1092 }
1093 return kvm_state->many_ioeventfds;
1094}
1095
6f0437e8
JK
1096void kvm_setup_guest_memory(void *start, size_t size)
1097{
1098 if (!kvm_has_sync_mmu()) {
e78815a5 1099 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
6f0437e8
JK
1100
1101 if (ret) {
e78815a5
AF
1102 perror("qemu_madvise");
1103 fprintf(stderr,
1104 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
6f0437e8
JK
1105 exit(1);
1106 }
6f0437e8
JK
1107 }
1108}
1109
e22a25c9
AL
1110#ifdef KVM_CAP_SET_GUEST_DEBUG
1111struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1112 target_ulong pc)
1113{
1114 struct kvm_sw_breakpoint *bp;
1115
72cf2d4f 1116 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
a426e122 1117 if (bp->pc == pc) {
e22a25c9 1118 return bp;
a426e122 1119 }
e22a25c9
AL
1120 }
1121 return NULL;
1122}
1123
1124int kvm_sw_breakpoints_active(CPUState *env)
1125{
72cf2d4f 1126 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
e22a25c9
AL
1127}
1128
452e4751
GC
1129struct kvm_set_guest_debug_data {
1130 struct kvm_guest_debug dbg;
1131 CPUState *env;
1132 int err;
1133};
1134
1135static void kvm_invoke_set_guest_debug(void *data)
1136{
1137 struct kvm_set_guest_debug_data *dbg_data = data;
b3807725
JK
1138 CPUState *env = dbg_data->env;
1139
b3807725 1140 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
452e4751
GC
1141}
1142
e22a25c9
AL
1143int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1144{
452e4751 1145 struct kvm_set_guest_debug_data data;
e22a25c9 1146
b0b1d690 1147 data.dbg.control = reinject_trap;
e22a25c9 1148
b0b1d690
JK
1149 if (env->singlestep_enabled) {
1150 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1151 }
452e4751 1152 kvm_arch_update_guest_debug(env, &data.dbg);
452e4751 1153 data.env = env;
e22a25c9 1154
be41cbe0 1155 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
452e4751 1156 return data.err;
e22a25c9
AL
1157}
1158
1159int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1160 target_ulong len, int type)
1161{
1162 struct kvm_sw_breakpoint *bp;
1163 CPUState *env;
1164 int err;
1165
1166 if (type == GDB_BREAKPOINT_SW) {
1167 bp = kvm_find_sw_breakpoint(current_env, addr);
1168 if (bp) {
1169 bp->use_count++;
1170 return 0;
1171 }
1172
1173 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
a426e122 1174 if (!bp) {
e22a25c9 1175 return -ENOMEM;
a426e122 1176 }
e22a25c9
AL
1177
1178 bp->pc = addr;
1179 bp->use_count = 1;
1180 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1181 if (err) {
1182 free(bp);
1183 return err;
1184 }
1185
72cf2d4f 1186 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
e22a25c9
AL
1187 bp, entry);
1188 } else {
1189 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
a426e122 1190 if (err) {
e22a25c9 1191 return err;
a426e122 1192 }
e22a25c9
AL
1193 }
1194
1195 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1196 err = kvm_update_guest_debug(env, 0);
a426e122 1197 if (err) {
e22a25c9 1198 return err;
a426e122 1199 }
e22a25c9
AL
1200 }
1201 return 0;
1202}
1203
1204int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1205 target_ulong len, int type)
1206{
1207 struct kvm_sw_breakpoint *bp;
1208 CPUState *env;
1209 int err;
1210
1211 if (type == GDB_BREAKPOINT_SW) {
1212 bp = kvm_find_sw_breakpoint(current_env, addr);
a426e122 1213 if (!bp) {
e22a25c9 1214 return -ENOENT;
a426e122 1215 }
e22a25c9
AL
1216
1217 if (bp->use_count > 1) {
1218 bp->use_count--;
1219 return 0;
1220 }
1221
1222 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
a426e122 1223 if (err) {
e22a25c9 1224 return err;
a426e122 1225 }
e22a25c9 1226
72cf2d4f 1227 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
e22a25c9
AL
1228 qemu_free(bp);
1229 } else {
1230 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
a426e122 1231 if (err) {
e22a25c9 1232 return err;
a426e122 1233 }
e22a25c9
AL
1234 }
1235
1236 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1237 err = kvm_update_guest_debug(env, 0);
a426e122 1238 if (err) {
e22a25c9 1239 return err;
a426e122 1240 }
e22a25c9
AL
1241 }
1242 return 0;
1243}
1244
1245void kvm_remove_all_breakpoints(CPUState *current_env)
1246{
1247 struct kvm_sw_breakpoint *bp, *next;
1248 KVMState *s = current_env->kvm_state;
1249 CPUState *env;
1250
72cf2d4f 1251 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
e22a25c9
AL
1252 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1253 /* Try harder to find a CPU that currently sees the breakpoint. */
1254 for (env = first_cpu; env != NULL; env = env->next_cpu) {
a426e122 1255 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
e22a25c9 1256 break;
a426e122 1257 }
e22a25c9
AL
1258 }
1259 }
1260 }
1261 kvm_arch_remove_all_hw_breakpoints();
1262
a426e122 1263 for (env = first_cpu; env != NULL; env = env->next_cpu) {
e22a25c9 1264 kvm_update_guest_debug(env, 0);
a426e122 1265 }
e22a25c9
AL
1266}
1267
1268#else /* !KVM_CAP_SET_GUEST_DEBUG */
1269
1270int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1271{
1272 return -EINVAL;
1273}
1274
1275int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1276 target_ulong len, int type)
1277{
1278 return -EINVAL;
1279}
1280
1281int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1282 target_ulong len, int type)
1283{
1284 return -EINVAL;
1285}
1286
1287void kvm_remove_all_breakpoints(CPUState *current_env)
1288{
1289}
1290#endif /* !KVM_CAP_SET_GUEST_DEBUG */
cc84de95
MT
1291
1292int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1293{
1294 struct kvm_signal_mask *sigmask;
1295 int r;
1296
a426e122 1297 if (!sigset) {
cc84de95 1298 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
a426e122 1299 }
cc84de95
MT
1300
1301 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1302
1303 sigmask->len = 8;
1304 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1305 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1306 free(sigmask);
1307
1308 return r;
1309}
ca821806 1310
44f1a3d8
CM
1311int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1312{
1313#ifdef KVM_IOEVENTFD
1314 int ret;
1315 struct kvm_ioeventfd iofd;
1316
1317 iofd.datamatch = val;
1318 iofd.addr = addr;
1319 iofd.len = 4;
1320 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1321 iofd.fd = fd;
1322
1323 if (!kvm_enabled()) {
1324 return -ENOSYS;
1325 }
1326
1327 if (!assign) {
1328 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1329 }
1330
1331 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1332
1333 if (ret < 0) {
1334 return -errno;
1335 }
1336
1337 return 0;
1338#else
1339 return -ENOSYS;
1340#endif
1341}
1342
ca821806
MT
1343int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1344{
98c8573e 1345#ifdef KVM_IOEVENTFD
ca821806
MT
1346 struct kvm_ioeventfd kick = {
1347 .datamatch = val,
1348 .addr = addr,
1349 .len = 2,
1350 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1351 .fd = fd,
1352 };
1353 int r;
a426e122 1354 if (!kvm_enabled()) {
ca821806 1355 return -ENOSYS;
a426e122
JK
1356 }
1357 if (!assign) {
ca821806 1358 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
a426e122 1359 }
ca821806 1360 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
a426e122 1361 if (r < 0) {
ca821806 1362 return r;
a426e122 1363 }
ca821806 1364 return 0;
98c8573e
PB
1365#else
1366 return -ENOSYS;
ca821806 1367#endif
98c8573e 1368}
a1b87fe0
JK
1369
1370int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1371{
1372 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1373}
1374
1375int kvm_on_sigbus(int code, void *addr)
1376{
1377 return kvm_arch_on_sigbus(code, addr);
1378}