]> git.proxmox.com Git - qemu.git/blame - kvm-all.c
memory: split memory listener for the two address spaces
[qemu.git] / kvm-all.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5832d1f2 5 * Red Hat, Inc. 2008
05330448
AL
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
5832d1f2 9 * Glauber Costa <gcosta@redhat.com>
05330448
AL
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16#include <sys/types.h>
17#include <sys/ioctl.h>
18#include <sys/mman.h>
984b5181 19#include <stdarg.h>
05330448
AL
20
21#include <linux/kvm.h>
22
23#include "qemu-common.h"
85199474 24#include "qemu-barrier.h"
05330448 25#include "sysemu.h"
d33a1810 26#include "hw/hw.h"
e22a25c9 27#include "gdbstub.h"
05330448 28#include "kvm.h"
8369e01c 29#include "bswap.h"
a01672d3 30#include "memory.h"
80a1ea37 31#include "exec-memory.h"
05330448 32
d2f2b8a7
SH
33/* This check must be after config-host.h is included */
34#ifdef CONFIG_EVENTFD
35#include <sys/eventfd.h>
36#endif
37
f65ed4c1
AL
38/* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
39#define PAGE_SIZE TARGET_PAGE_SIZE
40
05330448
AL
41//#define DEBUG_KVM
42
43#ifdef DEBUG_KVM
8c0d577e 44#define DPRINTF(fmt, ...) \
05330448
AL
45 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
46#else
8c0d577e 47#define DPRINTF(fmt, ...) \
05330448
AL
48 do { } while (0)
49#endif
50
34fc643f
AL
51typedef struct KVMSlot
52{
c227f099
AL
53 target_phys_addr_t start_addr;
54 ram_addr_t memory_size;
9f213ed9 55 void *ram;
34fc643f
AL
56 int slot;
57 int flags;
58} KVMSlot;
05330448 59
5832d1f2
AL
60typedef struct kvm_dirty_log KVMDirtyLog;
61
05330448
AL
62struct KVMState
63{
64 KVMSlot slots[32];
65 int fd;
66 int vmfd;
f65ed4c1 67 int coalesced_mmio;
62a2744c 68 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
1cae88b9 69 bool coalesced_flush_in_progress;
e69917e2 70 int broken_set_mem_region;
4495d6a7 71 int migration_log;
a0fb002c 72 int vcpu_events;
b0b1d690 73 int robust_singlestep;
ff44f1a3 74 int debugregs;
e22a25c9
AL
75#ifdef KVM_CAP_SET_GUEST_DEBUG
76 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
77#endif
6f725c13
GC
78 int irqchip_in_kernel;
79 int pit_in_kernel;
f1665b21 80 int xsave, xcrs;
d2f2b8a7 81 int many_ioeventfds;
84b058d7
JK
82 int irqchip_inject_ioctl;
83#ifdef KVM_CAP_IRQ_ROUTING
84 struct kvm_irq_routing *irq_routes;
85 int nr_allocated_irq_routes;
86 uint32_t *used_gsi_bitmap;
87 unsigned int max_gsi;
88#endif
05330448
AL
89};
90
6a7af8cb 91KVMState *kvm_state;
05330448 92
94a8d39a
JK
93static const KVMCapabilityInfo kvm_required_capabilites[] = {
94 KVM_CAP_INFO(USER_MEMORY),
95 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
96 KVM_CAP_LAST_INFO
97};
98
05330448
AL
99static KVMSlot *kvm_alloc_slot(KVMState *s)
100{
101 int i;
102
103 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
a426e122 104 if (s->slots[i].memory_size == 0) {
05330448 105 return &s->slots[i];
a426e122 106 }
05330448
AL
107 }
108
d3f8d37f
AL
109 fprintf(stderr, "%s: no free slot available\n", __func__);
110 abort();
111}
112
113static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
c227f099
AL
114 target_phys_addr_t start_addr,
115 target_phys_addr_t end_addr)
d3f8d37f
AL
116{
117 int i;
118
119 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
120 KVMSlot *mem = &s->slots[i];
121
122 if (start_addr == mem->start_addr &&
123 end_addr == mem->start_addr + mem->memory_size) {
124 return mem;
125 }
126 }
127
05330448
AL
128 return NULL;
129}
130
6152e2ae
AL
131/*
132 * Find overlapping slot with lowest start address
133 */
134static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
c227f099
AL
135 target_phys_addr_t start_addr,
136 target_phys_addr_t end_addr)
05330448 137{
6152e2ae 138 KVMSlot *found = NULL;
05330448
AL
139 int i;
140
141 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
142 KVMSlot *mem = &s->slots[i];
143
6152e2ae
AL
144 if (mem->memory_size == 0 ||
145 (found && found->start_addr < mem->start_addr)) {
146 continue;
147 }
148
149 if (end_addr > mem->start_addr &&
150 start_addr < mem->start_addr + mem->memory_size) {
151 found = mem;
152 }
05330448
AL
153 }
154
6152e2ae 155 return found;
05330448
AL
156}
157
9f213ed9
AK
158int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
159 target_phys_addr_t *phys_addr)
983dfc3b
HY
160{
161 int i;
162
163 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
164 KVMSlot *mem = &s->slots[i];
165
9f213ed9
AK
166 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
167 *phys_addr = mem->start_addr + (ram - mem->ram);
983dfc3b
HY
168 return 1;
169 }
170 }
171
172 return 0;
173}
174
5832d1f2
AL
175static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
176{
177 struct kvm_userspace_memory_region mem;
178
179 mem.slot = slot->slot;
180 mem.guest_phys_addr = slot->start_addr;
181 mem.memory_size = slot->memory_size;
9f213ed9 182 mem.userspace_addr = (unsigned long)slot->ram;
5832d1f2 183 mem.flags = slot->flags;
4495d6a7
JK
184 if (s->migration_log) {
185 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
186 }
5832d1f2
AL
187 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
188}
189
8d2ba1fb
JK
190static void kvm_reset_vcpu(void *opaque)
191{
192 CPUState *env = opaque;
193
caa5af0f 194 kvm_arch_reset_vcpu(env);
8d2ba1fb 195}
5832d1f2 196
6f725c13
GC
197int kvm_irqchip_in_kernel(void)
198{
199 return kvm_state->irqchip_in_kernel;
200}
201
202int kvm_pit_in_kernel(void)
203{
204 return kvm_state->pit_in_kernel;
205}
206
05330448
AL
207int kvm_init_vcpu(CPUState *env)
208{
209 KVMState *s = kvm_state;
210 long mmap_size;
211 int ret;
212
8c0d577e 213 DPRINTF("kvm_init_vcpu\n");
05330448 214
984b5181 215 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
05330448 216 if (ret < 0) {
8c0d577e 217 DPRINTF("kvm_create_vcpu failed\n");
05330448
AL
218 goto err;
219 }
220
221 env->kvm_fd = ret;
222 env->kvm_state = s;
d841b6c4 223 env->kvm_vcpu_dirty = 1;
05330448
AL
224
225 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
226 if (mmap_size < 0) {
748a680b 227 ret = mmap_size;
8c0d577e 228 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
05330448
AL
229 goto err;
230 }
231
232 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
233 env->kvm_fd, 0);
234 if (env->kvm_run == MAP_FAILED) {
235 ret = -errno;
8c0d577e 236 DPRINTF("mmap'ing vcpu state failed\n");
05330448
AL
237 goto err;
238 }
239
a426e122
JK
240 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
241 s->coalesced_mmio_ring =
242 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
243 }
62a2744c 244
05330448 245 ret = kvm_arch_init_vcpu(env);
8d2ba1fb 246 if (ret == 0) {
a08d4367 247 qemu_register_reset(kvm_reset_vcpu, env);
caa5af0f 248 kvm_arch_reset_vcpu(env);
8d2ba1fb 249 }
05330448
AL
250err:
251 return ret;
252}
253
5832d1f2
AL
254/*
255 * dirty pages logging control
256 */
25254bbc
MT
257
258static int kvm_mem_flags(KVMState *s, bool log_dirty)
259{
260 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
261}
262
263static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
5832d1f2
AL
264{
265 KVMState *s = kvm_state;
25254bbc 266 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
4495d6a7
JK
267 int old_flags;
268
4495d6a7 269 old_flags = mem->flags;
5832d1f2 270
25254bbc 271 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
5832d1f2
AL
272 mem->flags = flags;
273
4495d6a7
JK
274 /* If nothing changed effectively, no need to issue ioctl */
275 if (s->migration_log) {
276 flags |= KVM_MEM_LOG_DIRTY_PAGES;
277 }
25254bbc 278
4495d6a7 279 if (flags == old_flags) {
25254bbc 280 return 0;
4495d6a7
JK
281 }
282
5832d1f2
AL
283 return kvm_set_user_memory_region(s, mem);
284}
285
25254bbc
MT
286static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
287 ram_addr_t size, bool log_dirty)
288{
289 KVMState *s = kvm_state;
290 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
291
292 if (mem == NULL) {
293 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
294 TARGET_FMT_plx "\n", __func__, phys_addr,
295 (target_phys_addr_t)(phys_addr + size - 1));
296 return -EINVAL;
297 }
298 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
299}
300
a01672d3
AK
301static void kvm_log_start(MemoryListener *listener,
302 MemoryRegionSection *section)
5832d1f2 303{
a01672d3
AK
304 int r;
305
306 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
307 section->size, true);
308 if (r < 0) {
309 abort();
310 }
5832d1f2
AL
311}
312
a01672d3
AK
313static void kvm_log_stop(MemoryListener *listener,
314 MemoryRegionSection *section)
5832d1f2 315{
a01672d3
AK
316 int r;
317
318 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
319 section->size, false);
320 if (r < 0) {
321 abort();
322 }
5832d1f2
AL
323}
324
7b8f3b78 325static int kvm_set_migration_log(int enable)
4495d6a7
JK
326{
327 KVMState *s = kvm_state;
328 KVMSlot *mem;
329 int i, err;
330
331 s->migration_log = enable;
332
333 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
334 mem = &s->slots[i];
335
70fedd76
AW
336 if (!mem->memory_size) {
337 continue;
338 }
4495d6a7
JK
339 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
340 continue;
341 }
342 err = kvm_set_user_memory_region(s, mem);
343 if (err) {
344 return err;
345 }
346 }
347 return 0;
348}
349
8369e01c 350/* get kvm's dirty pages bitmap and update qemu's */
ffcde12f
AK
351static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
352 unsigned long *bitmap)
96c1606b 353{
8369e01c 354 unsigned int i, j;
aa90fec7
BH
355 unsigned long page_number, c;
356 target_phys_addr_t addr, addr1;
ffcde12f 357 unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
8369e01c
MT
358
359 /*
360 * bitmap-traveling is faster than memory-traveling (for addr...)
361 * especially when most of the memory is not dirty.
362 */
363 for (i = 0; i < len; i++) {
364 if (bitmap[i] != 0) {
365 c = leul_to_cpu(bitmap[i]);
366 do {
367 j = ffsl(c) - 1;
368 c &= ~(1ul << j);
369 page_number = i * HOST_LONG_BITS + j;
370 addr1 = page_number * TARGET_PAGE_SIZE;
ffcde12f 371 addr = section->offset_within_region + addr1;
fd4aa979 372 memory_region_set_dirty(section->mr, addr, TARGET_PAGE_SIZE);
8369e01c
MT
373 } while (c != 0);
374 }
375 }
376 return 0;
96c1606b
AG
377}
378
8369e01c
MT
379#define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
380
5832d1f2
AL
381/**
382 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
fd4aa979
BS
383 * This function updates qemu's dirty bitmap using
384 * memory_region_set_dirty(). This means all bits are set
385 * to dirty.
5832d1f2 386 *
d3f8d37f 387 * @start_add: start of logged region.
5832d1f2
AL
388 * @end_addr: end of logged region.
389 */
ffcde12f 390static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
5832d1f2
AL
391{
392 KVMState *s = kvm_state;
151f7749 393 unsigned long size, allocated_size = 0;
151f7749
JK
394 KVMDirtyLog d;
395 KVMSlot *mem;
396 int ret = 0;
ffcde12f
AK
397 target_phys_addr_t start_addr = section->offset_within_address_space;
398 target_phys_addr_t end_addr = start_addr + section->size;
5832d1f2 399
151f7749
JK
400 d.dirty_bitmap = NULL;
401 while (start_addr < end_addr) {
402 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
403 if (mem == NULL) {
404 break;
405 }
5832d1f2 406
51b0c606
MT
407 /* XXX bad kernel interface alert
408 * For dirty bitmap, kernel allocates array of size aligned to
409 * bits-per-long. But for case when the kernel is 64bits and
410 * the userspace is 32bits, userspace can't align to the same
411 * bits-per-long, since sizeof(long) is different between kernel
412 * and user space. This way, userspace will provide buffer which
413 * may be 4 bytes less than the kernel will use, resulting in
414 * userspace memory corruption (which is not detectable by valgrind
415 * too, in most cases).
416 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
417 * a hope that sizeof(long) wont become >8 any time soon.
418 */
419 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
420 /*HOST_LONG_BITS*/ 64) / 8;
151f7749 421 if (!d.dirty_bitmap) {
7267c094 422 d.dirty_bitmap = g_malloc(size);
151f7749 423 } else if (size > allocated_size) {
7267c094 424 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
151f7749
JK
425 }
426 allocated_size = size;
427 memset(d.dirty_bitmap, 0, allocated_size);
5832d1f2 428
151f7749 429 d.slot = mem->slot;
5832d1f2 430
6e489f3f 431 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
8c0d577e 432 DPRINTF("ioctl failed %d\n", errno);
151f7749
JK
433 ret = -1;
434 break;
435 }
5832d1f2 436
ffcde12f 437 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
8369e01c 438 start_addr = mem->start_addr + mem->memory_size;
5832d1f2 439 }
7267c094 440 g_free(d.dirty_bitmap);
151f7749
JK
441
442 return ret;
5832d1f2
AL
443}
444
c227f099 445int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
f65ed4c1
AL
446{
447 int ret = -ENOSYS;
f65ed4c1
AL
448 KVMState *s = kvm_state;
449
450 if (s->coalesced_mmio) {
451 struct kvm_coalesced_mmio_zone zone;
452
453 zone.addr = start;
454 zone.size = size;
455
456 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
457 }
f65ed4c1
AL
458
459 return ret;
460}
461
c227f099 462int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
f65ed4c1
AL
463{
464 int ret = -ENOSYS;
f65ed4c1
AL
465 KVMState *s = kvm_state;
466
467 if (s->coalesced_mmio) {
468 struct kvm_coalesced_mmio_zone zone;
469
470 zone.addr = start;
471 zone.size = size;
472
473 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
474 }
f65ed4c1
AL
475
476 return ret;
477}
478
ad7b8b33
AL
479int kvm_check_extension(KVMState *s, unsigned int extension)
480{
481 int ret;
482
483 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
484 if (ret < 0) {
485 ret = 0;
486 }
487
488 return ret;
489}
490
d2f2b8a7
SH
491static int kvm_check_many_ioeventfds(void)
492{
d0dcac83
SH
493 /* Userspace can use ioeventfd for io notification. This requires a host
494 * that supports eventfd(2) and an I/O thread; since eventfd does not
495 * support SIGIO it cannot interrupt the vcpu.
496 *
497 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
d2f2b8a7
SH
498 * can avoid creating too many ioeventfds.
499 */
12d4536f 500#if defined(CONFIG_EVENTFD)
d2f2b8a7
SH
501 int ioeventfds[7];
502 int i, ret = 0;
503 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
504 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
505 if (ioeventfds[i] < 0) {
506 break;
507 }
508 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
509 if (ret < 0) {
510 close(ioeventfds[i]);
511 break;
512 }
513 }
514
515 /* Decide whether many devices are supported or not */
516 ret = i == ARRAY_SIZE(ioeventfds);
517
518 while (i-- > 0) {
519 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
520 close(ioeventfds[i]);
521 }
522 return ret;
523#else
524 return 0;
525#endif
526}
527
94a8d39a
JK
528static const KVMCapabilityInfo *
529kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
530{
531 while (list->name) {
532 if (!kvm_check_extension(s, list->value)) {
533 return list;
534 }
535 list++;
536 }
537 return NULL;
538}
539
a01672d3 540static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
46dbef6a
MT
541{
542 KVMState *s = kvm_state;
46dbef6a
MT
543 KVMSlot *mem, old;
544 int err;
a01672d3
AK
545 MemoryRegion *mr = section->mr;
546 bool log_dirty = memory_region_is_logging(mr);
547 target_phys_addr_t start_addr = section->offset_within_address_space;
548 ram_addr_t size = section->size;
9f213ed9 549 void *ram = NULL;
46dbef6a 550
14542fea
GN
551 /* kvm works in page size chunks, but the function may be called
552 with sub-page size and unaligned start address. */
553 size = TARGET_PAGE_ALIGN(size);
554 start_addr = TARGET_PAGE_ALIGN(start_addr);
46dbef6a 555
a01672d3
AK
556 if (!memory_region_is_ram(mr)) {
557 return;
9f213ed9
AK
558 }
559
a01672d3
AK
560 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region;
561
46dbef6a
MT
562 while (1) {
563 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
564 if (!mem) {
565 break;
566 }
567
a01672d3 568 if (add && start_addr >= mem->start_addr &&
46dbef6a 569 (start_addr + size <= mem->start_addr + mem->memory_size) &&
9f213ed9 570 (ram - start_addr == mem->ram - mem->start_addr)) {
46dbef6a 571 /* The new slot fits into the existing one and comes with
25254bbc
MT
572 * identical parameters - update flags and done. */
573 kvm_slot_dirty_pages_log_change(mem, log_dirty);
46dbef6a
MT
574 return;
575 }
576
577 old = *mem;
578
3fbffb62
AK
579 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
580 kvm_physical_sync_dirty_bitmap(section);
581 }
582
46dbef6a
MT
583 /* unregister the overlapping slot */
584 mem->memory_size = 0;
585 err = kvm_set_user_memory_region(s, mem);
586 if (err) {
587 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
588 __func__, strerror(-err));
589 abort();
590 }
591
592 /* Workaround for older KVM versions: we can't join slots, even not by
593 * unregistering the previous ones and then registering the larger
594 * slot. We have to maintain the existing fragmentation. Sigh.
595 *
596 * This workaround assumes that the new slot starts at the same
597 * address as the first existing one. If not or if some overlapping
598 * slot comes around later, we will fail (not seen in practice so far)
599 * - and actually require a recent KVM version. */
600 if (s->broken_set_mem_region &&
a01672d3 601 old.start_addr == start_addr && old.memory_size < size && add) {
46dbef6a
MT
602 mem = kvm_alloc_slot(s);
603 mem->memory_size = old.memory_size;
604 mem->start_addr = old.start_addr;
9f213ed9 605 mem->ram = old.ram;
25254bbc 606 mem->flags = kvm_mem_flags(s, log_dirty);
46dbef6a
MT
607
608 err = kvm_set_user_memory_region(s, mem);
609 if (err) {
610 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
611 strerror(-err));
612 abort();
613 }
614
615 start_addr += old.memory_size;
9f213ed9 616 ram += old.memory_size;
46dbef6a
MT
617 size -= old.memory_size;
618 continue;
619 }
620
621 /* register prefix slot */
622 if (old.start_addr < start_addr) {
623 mem = kvm_alloc_slot(s);
624 mem->memory_size = start_addr - old.start_addr;
625 mem->start_addr = old.start_addr;
9f213ed9 626 mem->ram = old.ram;
25254bbc 627 mem->flags = kvm_mem_flags(s, log_dirty);
46dbef6a
MT
628
629 err = kvm_set_user_memory_region(s, mem);
630 if (err) {
631 fprintf(stderr, "%s: error registering prefix slot: %s\n",
632 __func__, strerror(-err));
d4d6868f
AG
633#ifdef TARGET_PPC
634 fprintf(stderr, "%s: This is probably because your kernel's " \
635 "PAGE_SIZE is too big. Please try to use 4k " \
636 "PAGE_SIZE!\n", __func__);
637#endif
46dbef6a
MT
638 abort();
639 }
640 }
641
642 /* register suffix slot */
643 if (old.start_addr + old.memory_size > start_addr + size) {
644 ram_addr_t size_delta;
645
646 mem = kvm_alloc_slot(s);
647 mem->start_addr = start_addr + size;
648 size_delta = mem->start_addr - old.start_addr;
649 mem->memory_size = old.memory_size - size_delta;
9f213ed9 650 mem->ram = old.ram + size_delta;
25254bbc 651 mem->flags = kvm_mem_flags(s, log_dirty);
46dbef6a
MT
652
653 err = kvm_set_user_memory_region(s, mem);
654 if (err) {
655 fprintf(stderr, "%s: error registering suffix slot: %s\n",
656 __func__, strerror(-err));
657 abort();
658 }
659 }
660 }
661
662 /* in case the KVM bug workaround already "consumed" the new slot */
a426e122 663 if (!size) {
46dbef6a 664 return;
a426e122 665 }
a01672d3 666 if (!add) {
46dbef6a 667 return;
a426e122 668 }
46dbef6a
MT
669 mem = kvm_alloc_slot(s);
670 mem->memory_size = size;
671 mem->start_addr = start_addr;
9f213ed9 672 mem->ram = ram;
25254bbc 673 mem->flags = kvm_mem_flags(s, log_dirty);
46dbef6a
MT
674
675 err = kvm_set_user_memory_region(s, mem);
676 if (err) {
677 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
678 strerror(-err));
679 abort();
680 }
681}
682
a01672d3
AK
683static void kvm_region_add(MemoryListener *listener,
684 MemoryRegionSection *section)
685{
686 kvm_set_phys_mem(section, true);
687}
688
689static void kvm_region_del(MemoryListener *listener,
690 MemoryRegionSection *section)
691{
692 kvm_set_phys_mem(section, false);
693}
694
695static void kvm_log_sync(MemoryListener *listener,
696 MemoryRegionSection *section)
7b8f3b78 697{
a01672d3
AK
698 int r;
699
ffcde12f 700 r = kvm_physical_sync_dirty_bitmap(section);
a01672d3
AK
701 if (r < 0) {
702 abort();
703 }
7b8f3b78
MT
704}
705
a01672d3 706static void kvm_log_global_start(struct MemoryListener *listener)
7b8f3b78 707{
a01672d3
AK
708 int r;
709
710 r = kvm_set_migration_log(1);
711 assert(r >= 0);
7b8f3b78
MT
712}
713
a01672d3 714static void kvm_log_global_stop(struct MemoryListener *listener)
7b8f3b78 715{
a01672d3
AK
716 int r;
717
718 r = kvm_set_migration_log(0);
719 assert(r >= 0);
7b8f3b78
MT
720}
721
80a1ea37
AK
722static void kvm_mem_ioeventfd_add(MemoryRegionSection *section,
723 bool match_data, uint64_t data, int fd)
724{
725 int r;
726
727 assert(match_data && section->size == 4);
728
729 r = kvm_set_ioeventfd_mmio_long(fd, section->offset_within_address_space,
730 data, true);
731 if (r < 0) {
732 abort();
733 }
734}
735
736static void kvm_mem_ioeventfd_del(MemoryRegionSection *section,
737 bool match_data, uint64_t data, int fd)
738{
739 int r;
740
741 r = kvm_set_ioeventfd_mmio_long(fd, section->offset_within_address_space,
742 data, false);
743 if (r < 0) {
744 abort();
745 }
746}
747
748static void kvm_io_ioeventfd_add(MemoryRegionSection *section,
749 bool match_data, uint64_t data, int fd)
750{
751 int r;
752
753 assert(match_data && section->size == 2);
754
755 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
756 data, true);
757 if (r < 0) {
758 abort();
759 }
760}
761
762static void kvm_io_ioeventfd_del(MemoryRegionSection *section,
763 bool match_data, uint64_t data, int fd)
764
765{
766 int r;
767
768 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
769 data, false);
770 if (r < 0) {
771 abort();
772 }
773}
774
775static void kvm_eventfd_add(MemoryListener *listener,
776 MemoryRegionSection *section,
777 bool match_data, uint64_t data, int fd)
778{
779 if (section->address_space == get_system_memory()) {
780 kvm_mem_ioeventfd_add(section, match_data, data, fd);
781 } else {
782 kvm_io_ioeventfd_add(section, match_data, data, fd);
783 }
784}
785
786static void kvm_eventfd_del(MemoryListener *listener,
787 MemoryRegionSection *section,
788 bool match_data, uint64_t data, int fd)
789{
790 if (section->address_space == get_system_memory()) {
791 kvm_mem_ioeventfd_del(section, match_data, data, fd);
792 } else {
793 kvm_io_ioeventfd_del(section, match_data, data, fd);
794 }
795}
796
a01672d3
AK
797static MemoryListener kvm_memory_listener = {
798 .region_add = kvm_region_add,
799 .region_del = kvm_region_del,
e5896b12
AP
800 .log_start = kvm_log_start,
801 .log_stop = kvm_log_stop,
a01672d3
AK
802 .log_sync = kvm_log_sync,
803 .log_global_start = kvm_log_global_start,
804 .log_global_stop = kvm_log_global_stop,
80a1ea37
AK
805 .eventfd_add = kvm_eventfd_add,
806 .eventfd_del = kvm_eventfd_del,
72e22d2f 807 .priority = 10,
7b8f3b78
MT
808};
809
aa7f74d1
JK
810static void kvm_handle_interrupt(CPUState *env, int mask)
811{
812 env->interrupt_request |= mask;
813
814 if (!qemu_cpu_is_self(env)) {
815 qemu_cpu_kick(env);
816 }
817}
818
84b058d7
JK
819int kvm_irqchip_set_irq(KVMState *s, int irq, int level)
820{
821 struct kvm_irq_level event;
822 int ret;
823
824 assert(s->irqchip_in_kernel);
825
826 event.level = level;
827 event.irq = irq;
828 ret = kvm_vm_ioctl(s, s->irqchip_inject_ioctl, &event);
829 if (ret < 0) {
830 perror("kvm_set_irqchip_line");
831 abort();
832 }
833
834 return (s->irqchip_inject_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
835}
836
837#ifdef KVM_CAP_IRQ_ROUTING
838static void set_gsi(KVMState *s, unsigned int gsi)
839{
840 assert(gsi < s->max_gsi);
841
842 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
843}
844
845static void kvm_init_irq_routing(KVMState *s)
846{
847 int gsi_count;
848
849 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
850 if (gsi_count > 0) {
851 unsigned int gsi_bits, i;
852
853 /* Round up so we can search ints using ffs */
854 gsi_bits = (gsi_count + 31) / 32;
855 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
856 s->max_gsi = gsi_bits;
857
858 /* Mark any over-allocated bits as already in use */
859 for (i = gsi_count; i < gsi_bits; i++) {
860 set_gsi(s, i);
861 }
862 }
863
864 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
865 s->nr_allocated_irq_routes = 0;
866
867 kvm_arch_init_irq_routing(s);
868}
869
870static void kvm_add_routing_entry(KVMState *s,
871 struct kvm_irq_routing_entry *entry)
872{
873 struct kvm_irq_routing_entry *new;
874 int n, size;
875
876 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
877 n = s->nr_allocated_irq_routes * 2;
878 if (n < 64) {
879 n = 64;
880 }
881 size = sizeof(struct kvm_irq_routing);
882 size += n * sizeof(*new);
883 s->irq_routes = g_realloc(s->irq_routes, size);
884 s->nr_allocated_irq_routes = n;
885 }
886 n = s->irq_routes->nr++;
887 new = &s->irq_routes->entries[n];
888 memset(new, 0, sizeof(*new));
889 new->gsi = entry->gsi;
890 new->type = entry->type;
891 new->flags = entry->flags;
892 new->u = entry->u;
893
894 set_gsi(s, entry->gsi);
895}
896
897void kvm_irqchip_add_route(KVMState *s, int irq, int irqchip, int pin)
898{
899 struct kvm_irq_routing_entry e;
900
901 e.gsi = irq;
902 e.type = KVM_IRQ_ROUTING_IRQCHIP;
903 e.flags = 0;
904 e.u.irqchip.irqchip = irqchip;
905 e.u.irqchip.pin = pin;
906 kvm_add_routing_entry(s, &e);
907}
908
909int kvm_irqchip_commit_routes(KVMState *s)
910{
911 s->irq_routes->flags = 0;
912 return kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
913}
914
915#else /* !KVM_CAP_IRQ_ROUTING */
916
917static void kvm_init_irq_routing(KVMState *s)
918{
919}
920#endif /* !KVM_CAP_IRQ_ROUTING */
921
922static int kvm_irqchip_create(KVMState *s)
923{
924 QemuOptsList *list = qemu_find_opts("machine");
925 int ret;
926
927 if (QTAILQ_EMPTY(&list->head) ||
928 !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
929 "kernel_irqchip", false) ||
930 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
931 return 0;
932 }
933
934 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
935 if (ret < 0) {
936 fprintf(stderr, "Create kernel irqchip failed\n");
937 return ret;
938 }
939
940 s->irqchip_inject_ioctl = KVM_IRQ_LINE;
941 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
942 s->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS;
943 }
944 s->irqchip_in_kernel = 1;
945
946 kvm_init_irq_routing(s);
947
948 return 0;
949}
950
cad1e282 951int kvm_init(void)
05330448 952{
168ccc11
JK
953 static const char upgrade_note[] =
954 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
955 "(see http://sourceforge.net/projects/kvm).\n";
05330448 956 KVMState *s;
94a8d39a 957 const KVMCapabilityInfo *missing_cap;
05330448
AL
958 int ret;
959 int i;
960
7267c094 961 s = g_malloc0(sizeof(KVMState));
05330448 962
e22a25c9 963#ifdef KVM_CAP_SET_GUEST_DEBUG
72cf2d4f 964 QTAILQ_INIT(&s->kvm_sw_breakpoints);
e22a25c9 965#endif
a426e122 966 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
05330448 967 s->slots[i].slot = i;
a426e122 968 }
05330448 969 s->vmfd = -1;
40ff6d7e 970 s->fd = qemu_open("/dev/kvm", O_RDWR);
05330448
AL
971 if (s->fd == -1) {
972 fprintf(stderr, "Could not access KVM kernel module: %m\n");
973 ret = -errno;
974 goto err;
975 }
976
977 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
978 if (ret < KVM_API_VERSION) {
a426e122 979 if (ret > 0) {
05330448 980 ret = -EINVAL;
a426e122 981 }
05330448
AL
982 fprintf(stderr, "kvm version too old\n");
983 goto err;
984 }
985
986 if (ret > KVM_API_VERSION) {
987 ret = -EINVAL;
988 fprintf(stderr, "kvm version not supported\n");
989 goto err;
990 }
991
992 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
0104dcac
AG
993 if (s->vmfd < 0) {
994#ifdef TARGET_S390X
995 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
996 "your host kernel command line\n");
997#endif
db9eae1c 998 ret = s->vmfd;
05330448 999 goto err;
0104dcac 1000 }
05330448 1001
94a8d39a
JK
1002 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1003 if (!missing_cap) {
1004 missing_cap =
1005 kvm_check_extension_list(s, kvm_arch_required_capabilities);
05330448 1006 }
94a8d39a 1007 if (missing_cap) {
ad7b8b33 1008 ret = -EINVAL;
94a8d39a
JK
1009 fprintf(stderr, "kvm does not support %s\n%s",
1010 missing_cap->name, upgrade_note);
d85dc283
AL
1011 goto err;
1012 }
1013
ad7b8b33 1014 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
f65ed4c1 1015
e69917e2 1016 s->broken_set_mem_region = 1;
14a09518 1017 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
e69917e2
JK
1018 if (ret > 0) {
1019 s->broken_set_mem_region = 0;
1020 }
e69917e2 1021
a0fb002c
JK
1022#ifdef KVM_CAP_VCPU_EVENTS
1023 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1024#endif
1025
b0b1d690
JK
1026 s->robust_singlestep =
1027 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
b0b1d690 1028
ff44f1a3
JK
1029#ifdef KVM_CAP_DEBUGREGS
1030 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1031#endif
1032
f1665b21
SY
1033#ifdef KVM_CAP_XSAVE
1034 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1035#endif
1036
f1665b21
SY
1037#ifdef KVM_CAP_XCRS
1038 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1039#endif
1040
cad1e282 1041 ret = kvm_arch_init(s);
a426e122 1042 if (ret < 0) {
05330448 1043 goto err;
a426e122 1044 }
05330448 1045
84b058d7
JK
1046 ret = kvm_irqchip_create(s);
1047 if (ret < 0) {
1048 goto err;
1049 }
1050
05330448 1051 kvm_state = s;
7376e582 1052 memory_listener_register(&kvm_memory_listener, NULL);
05330448 1053
d2f2b8a7
SH
1054 s->many_ioeventfds = kvm_check_many_ioeventfds();
1055
aa7f74d1
JK
1056 cpu_interrupt_handler = kvm_handle_interrupt;
1057
05330448
AL
1058 return 0;
1059
1060err:
1061 if (s) {
db9eae1c 1062 if (s->vmfd >= 0) {
05330448 1063 close(s->vmfd);
a426e122
JK
1064 }
1065 if (s->fd != -1) {
05330448 1066 close(s->fd);
a426e122 1067 }
05330448 1068 }
7267c094 1069 g_free(s);
05330448
AL
1070
1071 return ret;
1072}
1073
b30e93e9
JK
1074static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1075 uint32_t count)
05330448
AL
1076{
1077 int i;
1078 uint8_t *ptr = data;
1079
1080 for (i = 0; i < count; i++) {
1081 if (direction == KVM_EXIT_IO_IN) {
1082 switch (size) {
1083 case 1:
afcea8cb 1084 stb_p(ptr, cpu_inb(port));
05330448
AL
1085 break;
1086 case 2:
afcea8cb 1087 stw_p(ptr, cpu_inw(port));
05330448
AL
1088 break;
1089 case 4:
afcea8cb 1090 stl_p(ptr, cpu_inl(port));
05330448
AL
1091 break;
1092 }
1093 } else {
1094 switch (size) {
1095 case 1:
afcea8cb 1096 cpu_outb(port, ldub_p(ptr));
05330448
AL
1097 break;
1098 case 2:
afcea8cb 1099 cpu_outw(port, lduw_p(ptr));
05330448
AL
1100 break;
1101 case 4:
afcea8cb 1102 cpu_outl(port, ldl_p(ptr));
05330448
AL
1103 break;
1104 }
1105 }
1106
1107 ptr += size;
1108 }
05330448
AL
1109}
1110
73aaec4a 1111static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
7c80eef8 1112{
bb44e0d1 1113 fprintf(stderr, "KVM internal error.");
7c80eef8
MT
1114 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1115 int i;
1116
bb44e0d1 1117 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
7c80eef8
MT
1118 for (i = 0; i < run->internal.ndata; ++i) {
1119 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1120 i, (uint64_t)run->internal.data[i]);
1121 }
bb44e0d1
JK
1122 } else {
1123 fprintf(stderr, "\n");
7c80eef8 1124 }
7c80eef8
MT
1125 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1126 fprintf(stderr, "emulation failure\n");
a426e122 1127 if (!kvm_arch_stop_on_emulation_error(env)) {
f5c848ee 1128 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
d73cd8f4 1129 return EXCP_INTERRUPT;
a426e122 1130 }
7c80eef8
MT
1131 }
1132 /* FIXME: Should trigger a qmp message to let management know
1133 * something went wrong.
1134 */
73aaec4a 1135 return -1;
7c80eef8 1136}
7c80eef8 1137
62a2744c 1138void kvm_flush_coalesced_mmio_buffer(void)
f65ed4c1 1139{
f65ed4c1 1140 KVMState *s = kvm_state;
1cae88b9
AK
1141
1142 if (s->coalesced_flush_in_progress) {
1143 return;
1144 }
1145
1146 s->coalesced_flush_in_progress = true;
1147
62a2744c
SY
1148 if (s->coalesced_mmio_ring) {
1149 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
f65ed4c1
AL
1150 while (ring->first != ring->last) {
1151 struct kvm_coalesced_mmio *ent;
1152
1153 ent = &ring->coalesced_mmio[ring->first];
1154
1155 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
85199474 1156 smp_wmb();
f65ed4c1
AL
1157 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1158 }
1159 }
1cae88b9
AK
1160
1161 s->coalesced_flush_in_progress = false;
f65ed4c1
AL
1162}
1163
2705d56a 1164static void do_kvm_cpu_synchronize_state(void *_env)
4c0960c0 1165{
2705d56a
JK
1166 CPUState *env = _env;
1167
9ded2744 1168 if (!env->kvm_vcpu_dirty) {
4c0960c0 1169 kvm_arch_get_registers(env);
9ded2744 1170 env->kvm_vcpu_dirty = 1;
4c0960c0
AK
1171 }
1172}
1173
2705d56a
JK
1174void kvm_cpu_synchronize_state(CPUState *env)
1175{
a426e122 1176 if (!env->kvm_vcpu_dirty) {
2705d56a 1177 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
a426e122 1178 }
2705d56a
JK
1179}
1180
ea375f9a
JK
1181void kvm_cpu_synchronize_post_reset(CPUState *env)
1182{
1183 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
1184 env->kvm_vcpu_dirty = 0;
1185}
1186
1187void kvm_cpu_synchronize_post_init(CPUState *env)
1188{
1189 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
1190 env->kvm_vcpu_dirty = 0;
1191}
1192
05330448
AL
1193int kvm_cpu_exec(CPUState *env)
1194{
1195 struct kvm_run *run = env->kvm_run;
7cbb533f 1196 int ret, run_ret;
05330448 1197
8c0d577e 1198 DPRINTF("kvm_cpu_exec()\n");
05330448 1199
99036865 1200 if (kvm_arch_process_async_events(env)) {
9ccfac9e 1201 env->exit_request = 0;
6792a57b 1202 return EXCP_HLT;
9ccfac9e 1203 }
0af691d7 1204
6792a57b
JK
1205 cpu_single_env = env;
1206
9ccfac9e 1207 do {
9ded2744 1208 if (env->kvm_vcpu_dirty) {
ea375f9a 1209 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
9ded2744 1210 env->kvm_vcpu_dirty = 0;
4c0960c0
AK
1211 }
1212
8c14c173 1213 kvm_arch_pre_run(env, run);
9ccfac9e
JK
1214 if (env->exit_request) {
1215 DPRINTF("interrupt exit requested\n");
1216 /*
1217 * KVM requires us to reenter the kernel after IO exits to complete
1218 * instruction emulation. This self-signal will ensure that we
1219 * leave ASAP again.
1220 */
1221 qemu_cpu_kick_self();
1222 }
273faf1b 1223 cpu_single_env = NULL;
d549db5a 1224 qemu_mutex_unlock_iothread();
9ccfac9e 1225
7cbb533f 1226 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
9ccfac9e 1227
d549db5a 1228 qemu_mutex_lock_iothread();
273faf1b 1229 cpu_single_env = env;
05330448
AL
1230 kvm_arch_post_run(env, run);
1231
b0c883b5
JK
1232 kvm_flush_coalesced_mmio_buffer();
1233
7cbb533f 1234 if (run_ret < 0) {
dc77d341
JK
1235 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1236 DPRINTF("io window exit\n");
d73cd8f4 1237 ret = EXCP_INTERRUPT;
dc77d341
JK
1238 break;
1239 }
7b011fbc
ME
1240 fprintf(stderr, "error: kvm run failed %s\n",
1241 strerror(-run_ret));
05330448
AL
1242 abort();
1243 }
1244
05330448
AL
1245 switch (run->exit_reason) {
1246 case KVM_EXIT_IO:
8c0d577e 1247 DPRINTF("handle_io\n");
b30e93e9
JK
1248 kvm_handle_io(run->io.port,
1249 (uint8_t *)run + run->io.data_offset,
1250 run->io.direction,
1251 run->io.size,
1252 run->io.count);
d73cd8f4 1253 ret = 0;
05330448
AL
1254 break;
1255 case KVM_EXIT_MMIO:
8c0d577e 1256 DPRINTF("handle_mmio\n");
05330448
AL
1257 cpu_physical_memory_rw(run->mmio.phys_addr,
1258 run->mmio.data,
1259 run->mmio.len,
1260 run->mmio.is_write);
d73cd8f4 1261 ret = 0;
05330448
AL
1262 break;
1263 case KVM_EXIT_IRQ_WINDOW_OPEN:
8c0d577e 1264 DPRINTF("irq_window_open\n");
d73cd8f4 1265 ret = EXCP_INTERRUPT;
05330448
AL
1266 break;
1267 case KVM_EXIT_SHUTDOWN:
8c0d577e 1268 DPRINTF("shutdown\n");
05330448 1269 qemu_system_reset_request();
d73cd8f4 1270 ret = EXCP_INTERRUPT;
05330448
AL
1271 break;
1272 case KVM_EXIT_UNKNOWN:
bb44e0d1
JK
1273 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1274 (uint64_t)run->hw.hardware_exit_reason);
73aaec4a 1275 ret = -1;
05330448 1276 break;
7c80eef8 1277 case KVM_EXIT_INTERNAL_ERROR:
73aaec4a 1278 ret = kvm_handle_internal_error(env, run);
7c80eef8 1279 break;
05330448 1280 default:
8c0d577e 1281 DPRINTF("kvm_arch_handle_exit\n");
05330448
AL
1282 ret = kvm_arch_handle_exit(env, run);
1283 break;
1284 }
d73cd8f4 1285 } while (ret == 0);
05330448 1286
73aaec4a 1287 if (ret < 0) {
f5c848ee 1288 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
0461d5a6 1289 vm_stop(RUN_STATE_INTERNAL_ERROR);
becfc390
AL
1290 }
1291
6792a57b
JK
1292 env->exit_request = 0;
1293 cpu_single_env = NULL;
05330448
AL
1294 return ret;
1295}
1296
984b5181 1297int kvm_ioctl(KVMState *s, int type, ...)
05330448
AL
1298{
1299 int ret;
984b5181
AL
1300 void *arg;
1301 va_list ap;
05330448 1302
984b5181
AL
1303 va_start(ap, type);
1304 arg = va_arg(ap, void *);
1305 va_end(ap);
1306
1307 ret = ioctl(s->fd, type, arg);
a426e122 1308 if (ret == -1) {
05330448 1309 ret = -errno;
a426e122 1310 }
05330448
AL
1311 return ret;
1312}
1313
984b5181 1314int kvm_vm_ioctl(KVMState *s, int type, ...)
05330448
AL
1315{
1316 int ret;
984b5181
AL
1317 void *arg;
1318 va_list ap;
1319
1320 va_start(ap, type);
1321 arg = va_arg(ap, void *);
1322 va_end(ap);
05330448 1323
984b5181 1324 ret = ioctl(s->vmfd, type, arg);
a426e122 1325 if (ret == -1) {
05330448 1326 ret = -errno;
a426e122 1327 }
05330448
AL
1328 return ret;
1329}
1330
984b5181 1331int kvm_vcpu_ioctl(CPUState *env, int type, ...)
05330448
AL
1332{
1333 int ret;
984b5181
AL
1334 void *arg;
1335 va_list ap;
1336
1337 va_start(ap, type);
1338 arg = va_arg(ap, void *);
1339 va_end(ap);
05330448 1340
984b5181 1341 ret = ioctl(env->kvm_fd, type, arg);
a426e122 1342 if (ret == -1) {
05330448 1343 ret = -errno;
a426e122 1344 }
05330448
AL
1345 return ret;
1346}
bd322087
AL
1347
1348int kvm_has_sync_mmu(void)
1349{
94a8d39a 1350 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
bd322087 1351}
e22a25c9 1352
a0fb002c
JK
1353int kvm_has_vcpu_events(void)
1354{
1355 return kvm_state->vcpu_events;
1356}
1357
b0b1d690
JK
1358int kvm_has_robust_singlestep(void)
1359{
1360 return kvm_state->robust_singlestep;
1361}
1362
ff44f1a3
JK
1363int kvm_has_debugregs(void)
1364{
1365 return kvm_state->debugregs;
1366}
1367
f1665b21
SY
1368int kvm_has_xsave(void)
1369{
1370 return kvm_state->xsave;
1371}
1372
1373int kvm_has_xcrs(void)
1374{
1375 return kvm_state->xcrs;
1376}
1377
d2f2b8a7
SH
1378int kvm_has_many_ioeventfds(void)
1379{
1380 if (!kvm_enabled()) {
1381 return 0;
1382 }
1383 return kvm_state->many_ioeventfds;
1384}
1385
84b058d7
JK
1386int kvm_has_gsi_routing(void)
1387{
a9c5eb0d 1388#ifdef KVM_CAP_IRQ_ROUTING
84b058d7 1389 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
a9c5eb0d
AG
1390#else
1391 return false;
1392#endif
84b058d7
JK
1393}
1394
9b5b76d4
JK
1395int kvm_allows_irq0_override(void)
1396{
1397 return !kvm_enabled() || !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
1398}
1399
6f0437e8
JK
1400void kvm_setup_guest_memory(void *start, size_t size)
1401{
1402 if (!kvm_has_sync_mmu()) {
e78815a5 1403 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
6f0437e8
JK
1404
1405 if (ret) {
e78815a5
AF
1406 perror("qemu_madvise");
1407 fprintf(stderr,
1408 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
6f0437e8
JK
1409 exit(1);
1410 }
6f0437e8
JK
1411 }
1412}
1413
e22a25c9
AL
1414#ifdef KVM_CAP_SET_GUEST_DEBUG
1415struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1416 target_ulong pc)
1417{
1418 struct kvm_sw_breakpoint *bp;
1419
72cf2d4f 1420 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
a426e122 1421 if (bp->pc == pc) {
e22a25c9 1422 return bp;
a426e122 1423 }
e22a25c9
AL
1424 }
1425 return NULL;
1426}
1427
1428int kvm_sw_breakpoints_active(CPUState *env)
1429{
72cf2d4f 1430 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
e22a25c9
AL
1431}
1432
452e4751
GC
1433struct kvm_set_guest_debug_data {
1434 struct kvm_guest_debug dbg;
1435 CPUState *env;
1436 int err;
1437};
1438
1439static void kvm_invoke_set_guest_debug(void *data)
1440{
1441 struct kvm_set_guest_debug_data *dbg_data = data;
b3807725
JK
1442 CPUState *env = dbg_data->env;
1443
b3807725 1444 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
452e4751
GC
1445}
1446
e22a25c9
AL
1447int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1448{
452e4751 1449 struct kvm_set_guest_debug_data data;
e22a25c9 1450
b0b1d690 1451 data.dbg.control = reinject_trap;
e22a25c9 1452
b0b1d690
JK
1453 if (env->singlestep_enabled) {
1454 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1455 }
452e4751 1456 kvm_arch_update_guest_debug(env, &data.dbg);
452e4751 1457 data.env = env;
e22a25c9 1458
be41cbe0 1459 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
452e4751 1460 return data.err;
e22a25c9
AL
1461}
1462
1463int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1464 target_ulong len, int type)
1465{
1466 struct kvm_sw_breakpoint *bp;
1467 CPUState *env;
1468 int err;
1469
1470 if (type == GDB_BREAKPOINT_SW) {
1471 bp = kvm_find_sw_breakpoint(current_env, addr);
1472 if (bp) {
1473 bp->use_count++;
1474 return 0;
1475 }
1476
7267c094 1477 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
a426e122 1478 if (!bp) {
e22a25c9 1479 return -ENOMEM;
a426e122 1480 }
e22a25c9
AL
1481
1482 bp->pc = addr;
1483 bp->use_count = 1;
1484 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1485 if (err) {
7267c094 1486 g_free(bp);
e22a25c9
AL
1487 return err;
1488 }
1489
72cf2d4f 1490 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
e22a25c9
AL
1491 bp, entry);
1492 } else {
1493 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
a426e122 1494 if (err) {
e22a25c9 1495 return err;
a426e122 1496 }
e22a25c9
AL
1497 }
1498
1499 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1500 err = kvm_update_guest_debug(env, 0);
a426e122 1501 if (err) {
e22a25c9 1502 return err;
a426e122 1503 }
e22a25c9
AL
1504 }
1505 return 0;
1506}
1507
1508int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1509 target_ulong len, int type)
1510{
1511 struct kvm_sw_breakpoint *bp;
1512 CPUState *env;
1513 int err;
1514
1515 if (type == GDB_BREAKPOINT_SW) {
1516 bp = kvm_find_sw_breakpoint(current_env, addr);
a426e122 1517 if (!bp) {
e22a25c9 1518 return -ENOENT;
a426e122 1519 }
e22a25c9
AL
1520
1521 if (bp->use_count > 1) {
1522 bp->use_count--;
1523 return 0;
1524 }
1525
1526 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
a426e122 1527 if (err) {
e22a25c9 1528 return err;
a426e122 1529 }
e22a25c9 1530
72cf2d4f 1531 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
7267c094 1532 g_free(bp);
e22a25c9
AL
1533 } else {
1534 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
a426e122 1535 if (err) {
e22a25c9 1536 return err;
a426e122 1537 }
e22a25c9
AL
1538 }
1539
1540 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1541 err = kvm_update_guest_debug(env, 0);
a426e122 1542 if (err) {
e22a25c9 1543 return err;
a426e122 1544 }
e22a25c9
AL
1545 }
1546 return 0;
1547}
1548
1549void kvm_remove_all_breakpoints(CPUState *current_env)
1550{
1551 struct kvm_sw_breakpoint *bp, *next;
1552 KVMState *s = current_env->kvm_state;
1553 CPUState *env;
1554
72cf2d4f 1555 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
e22a25c9
AL
1556 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1557 /* Try harder to find a CPU that currently sees the breakpoint. */
1558 for (env = first_cpu; env != NULL; env = env->next_cpu) {
a426e122 1559 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
e22a25c9 1560 break;
a426e122 1561 }
e22a25c9
AL
1562 }
1563 }
1564 }
1565 kvm_arch_remove_all_hw_breakpoints();
1566
a426e122 1567 for (env = first_cpu; env != NULL; env = env->next_cpu) {
e22a25c9 1568 kvm_update_guest_debug(env, 0);
a426e122 1569 }
e22a25c9
AL
1570}
1571
1572#else /* !KVM_CAP_SET_GUEST_DEBUG */
1573
1574int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1575{
1576 return -EINVAL;
1577}
1578
1579int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1580 target_ulong len, int type)
1581{
1582 return -EINVAL;
1583}
1584
1585int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1586 target_ulong len, int type)
1587{
1588 return -EINVAL;
1589}
1590
1591void kvm_remove_all_breakpoints(CPUState *current_env)
1592{
1593}
1594#endif /* !KVM_CAP_SET_GUEST_DEBUG */
cc84de95
MT
1595
1596int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1597{
1598 struct kvm_signal_mask *sigmask;
1599 int r;
1600
a426e122 1601 if (!sigset) {
cc84de95 1602 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
a426e122 1603 }
cc84de95 1604
7267c094 1605 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
cc84de95
MT
1606
1607 sigmask->len = 8;
1608 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1609 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
7267c094 1610 g_free(sigmask);
cc84de95
MT
1611
1612 return r;
1613}
ca821806 1614
44f1a3d8
CM
1615int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1616{
44f1a3d8
CM
1617 int ret;
1618 struct kvm_ioeventfd iofd;
1619
1620 iofd.datamatch = val;
1621 iofd.addr = addr;
1622 iofd.len = 4;
1623 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1624 iofd.fd = fd;
1625
1626 if (!kvm_enabled()) {
1627 return -ENOSYS;
1628 }
1629
1630 if (!assign) {
1631 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1632 }
1633
1634 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1635
1636 if (ret < 0) {
1637 return -errno;
1638 }
1639
1640 return 0;
44f1a3d8
CM
1641}
1642
ca821806
MT
1643int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1644{
1645 struct kvm_ioeventfd kick = {
1646 .datamatch = val,
1647 .addr = addr,
1648 .len = 2,
1649 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1650 .fd = fd,
1651 };
1652 int r;
a426e122 1653 if (!kvm_enabled()) {
ca821806 1654 return -ENOSYS;
a426e122
JK
1655 }
1656 if (!assign) {
ca821806 1657 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
a426e122 1658 }
ca821806 1659 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
a426e122 1660 if (r < 0) {
ca821806 1661 return r;
a426e122 1662 }
ca821806 1663 return 0;
98c8573e 1664}
a1b87fe0
JK
1665
1666int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1667{
1668 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1669}
1670
1671int kvm_on_sigbus(int code, void *addr)
1672{
1673 return kvm_arch_on_sigbus(code, addr);
1674}