]> git.proxmox.com Git - qemu.git/blame - kvm-all.c
kvm: remove pre-entry exit_request check with iothread enabled
[qemu.git] / kvm-all.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5832d1f2 5 * Red Hat, Inc. 2008
05330448
AL
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
5832d1f2 9 * Glauber Costa <gcosta@redhat.com>
05330448
AL
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16#include <sys/types.h>
17#include <sys/ioctl.h>
18#include <sys/mman.h>
984b5181 19#include <stdarg.h>
05330448
AL
20
21#include <linux/kvm.h>
22
23#include "qemu-common.h"
24#include "sysemu.h"
d33a1810 25#include "hw/hw.h"
e22a25c9 26#include "gdbstub.h"
05330448
AL
27#include "kvm.h"
28
f65ed4c1
AL
29/* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30#define PAGE_SIZE TARGET_PAGE_SIZE
31
05330448
AL
32//#define DEBUG_KVM
33
34#ifdef DEBUG_KVM
35#define dprintf(fmt, ...) \
36 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
37#else
38#define dprintf(fmt, ...) \
39 do { } while (0)
40#endif
41
34fc643f
AL
42typedef struct KVMSlot
43{
c227f099
AL
44 target_phys_addr_t start_addr;
45 ram_addr_t memory_size;
46 ram_addr_t phys_offset;
34fc643f
AL
47 int slot;
48 int flags;
49} KVMSlot;
05330448 50
5832d1f2
AL
51typedef struct kvm_dirty_log KVMDirtyLog;
52
05330448
AL
53int kvm_allowed = 0;
54
55struct KVMState
56{
57 KVMSlot slots[32];
58 int fd;
59 int vmfd;
f65ed4c1 60 int coalesced_mmio;
62a2744c
SY
61#ifdef KVM_CAP_COALESCED_MMIO
62 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
63#endif
e69917e2 64 int broken_set_mem_region;
4495d6a7 65 int migration_log;
a0fb002c 66 int vcpu_events;
e22a25c9
AL
67#ifdef KVM_CAP_SET_GUEST_DEBUG
68 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
69#endif
6f725c13
GC
70 int irqchip_in_kernel;
71 int pit_in_kernel;
05330448
AL
72};
73
74static KVMState *kvm_state;
75
76static KVMSlot *kvm_alloc_slot(KVMState *s)
77{
78 int i;
79
80 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
62d60e8c
AL
81 /* KVM private memory slots */
82 if (i >= 8 && i < 12)
83 continue;
05330448
AL
84 if (s->slots[i].memory_size == 0)
85 return &s->slots[i];
86 }
87
d3f8d37f
AL
88 fprintf(stderr, "%s: no free slot available\n", __func__);
89 abort();
90}
91
92static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
c227f099
AL
93 target_phys_addr_t start_addr,
94 target_phys_addr_t end_addr)
d3f8d37f
AL
95{
96 int i;
97
98 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
99 KVMSlot *mem = &s->slots[i];
100
101 if (start_addr == mem->start_addr &&
102 end_addr == mem->start_addr + mem->memory_size) {
103 return mem;
104 }
105 }
106
05330448
AL
107 return NULL;
108}
109
6152e2ae
AL
110/*
111 * Find overlapping slot with lowest start address
112 */
113static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
c227f099
AL
114 target_phys_addr_t start_addr,
115 target_phys_addr_t end_addr)
05330448 116{
6152e2ae 117 KVMSlot *found = NULL;
05330448
AL
118 int i;
119
120 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
121 KVMSlot *mem = &s->slots[i];
122
6152e2ae
AL
123 if (mem->memory_size == 0 ||
124 (found && found->start_addr < mem->start_addr)) {
125 continue;
126 }
127
128 if (end_addr > mem->start_addr &&
129 start_addr < mem->start_addr + mem->memory_size) {
130 found = mem;
131 }
05330448
AL
132 }
133
6152e2ae 134 return found;
05330448
AL
135}
136
5832d1f2
AL
137static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
138{
139 struct kvm_userspace_memory_region mem;
140
141 mem.slot = slot->slot;
142 mem.guest_phys_addr = slot->start_addr;
143 mem.memory_size = slot->memory_size;
5579c7f3 144 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
5832d1f2 145 mem.flags = slot->flags;
4495d6a7
JK
146 if (s->migration_log) {
147 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
148 }
5832d1f2
AL
149 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
150}
151
8d2ba1fb
JK
152static void kvm_reset_vcpu(void *opaque)
153{
154 CPUState *env = opaque;
155
caa5af0f 156 kvm_arch_reset_vcpu(env);
8d2ba1fb
JK
157 if (kvm_arch_put_registers(env)) {
158 fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
159 abort();
160 }
161}
5832d1f2 162
6f725c13
GC
163int kvm_irqchip_in_kernel(void)
164{
165 return kvm_state->irqchip_in_kernel;
166}
167
168int kvm_pit_in_kernel(void)
169{
170 return kvm_state->pit_in_kernel;
171}
172
173
05330448
AL
174int kvm_init_vcpu(CPUState *env)
175{
176 KVMState *s = kvm_state;
177 long mmap_size;
178 int ret;
179
180 dprintf("kvm_init_vcpu\n");
181
984b5181 182 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
05330448
AL
183 if (ret < 0) {
184 dprintf("kvm_create_vcpu failed\n");
185 goto err;
186 }
187
188 env->kvm_fd = ret;
189 env->kvm_state = s;
190
191 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
192 if (mmap_size < 0) {
193 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
194 goto err;
195 }
196
197 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
198 env->kvm_fd, 0);
199 if (env->kvm_run == MAP_FAILED) {
200 ret = -errno;
201 dprintf("mmap'ing vcpu state failed\n");
202 goto err;
203 }
204
62a2744c
SY
205#ifdef KVM_CAP_COALESCED_MMIO
206 if (s->coalesced_mmio && !s->coalesced_mmio_ring)
207 s->coalesced_mmio_ring = (void *) env->kvm_run +
208 s->coalesced_mmio * PAGE_SIZE;
209#endif
210
05330448 211 ret = kvm_arch_init_vcpu(env);
8d2ba1fb 212 if (ret == 0) {
a08d4367 213 qemu_register_reset(kvm_reset_vcpu, env);
caa5af0f 214 kvm_arch_reset_vcpu(env);
8d2ba1fb
JK
215 ret = kvm_arch_put_registers(env);
216 }
05330448
AL
217err:
218 return ret;
219}
220
5832d1f2
AL
221/*
222 * dirty pages logging control
223 */
c227f099
AL
224static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
225 ram_addr_t size, int flags, int mask)
5832d1f2
AL
226{
227 KVMState *s = kvm_state;
d3f8d37f 228 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
4495d6a7
JK
229 int old_flags;
230
5832d1f2 231 if (mem == NULL) {
d3f8d37f
AL
232 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
233 TARGET_FMT_plx "\n", __func__, phys_addr,
c227f099 234 (target_phys_addr_t)(phys_addr + size - 1));
5832d1f2
AL
235 return -EINVAL;
236 }
237
4495d6a7 238 old_flags = mem->flags;
5832d1f2 239
4495d6a7 240 flags = (mem->flags & ~mask) | flags;
5832d1f2
AL
241 mem->flags = flags;
242
4495d6a7
JK
243 /* If nothing changed effectively, no need to issue ioctl */
244 if (s->migration_log) {
245 flags |= KVM_MEM_LOG_DIRTY_PAGES;
246 }
247 if (flags == old_flags) {
248 return 0;
249 }
250
5832d1f2
AL
251 return kvm_set_user_memory_region(s, mem);
252}
253
c227f099 254int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
5832d1f2 255{
d3f8d37f 256 return kvm_dirty_pages_log_change(phys_addr, size,
5832d1f2
AL
257 KVM_MEM_LOG_DIRTY_PAGES,
258 KVM_MEM_LOG_DIRTY_PAGES);
259}
260
c227f099 261int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
5832d1f2 262{
d3f8d37f 263 return kvm_dirty_pages_log_change(phys_addr, size,
5832d1f2
AL
264 0,
265 KVM_MEM_LOG_DIRTY_PAGES);
266}
267
7b8f3b78 268static int kvm_set_migration_log(int enable)
4495d6a7
JK
269{
270 KVMState *s = kvm_state;
271 KVMSlot *mem;
272 int i, err;
273
274 s->migration_log = enable;
275
276 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
277 mem = &s->slots[i];
278
279 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
280 continue;
281 }
282 err = kvm_set_user_memory_region(s, mem);
283 if (err) {
284 return err;
285 }
286 }
287 return 0;
288}
289
96c1606b
AG
290static int test_le_bit(unsigned long nr, unsigned char *addr)
291{
292 return (addr[nr >> 3] >> (nr & 7)) & 1;
293}
294
5832d1f2
AL
295/**
296 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
297 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
298 * This means all bits are set to dirty.
299 *
d3f8d37f 300 * @start_add: start of logged region.
5832d1f2
AL
301 * @end_addr: end of logged region.
302 */
7b8f3b78
MT
303static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
304 target_phys_addr_t end_addr)
5832d1f2
AL
305{
306 KVMState *s = kvm_state;
151f7749 307 unsigned long size, allocated_size = 0;
c227f099
AL
308 target_phys_addr_t phys_addr;
309 ram_addr_t addr;
151f7749
JK
310 KVMDirtyLog d;
311 KVMSlot *mem;
312 int ret = 0;
5832d1f2 313
151f7749
JK
314 d.dirty_bitmap = NULL;
315 while (start_addr < end_addr) {
316 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
317 if (mem == NULL) {
318 break;
319 }
5832d1f2 320
151f7749
JK
321 size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
322 if (!d.dirty_bitmap) {
323 d.dirty_bitmap = qemu_malloc(size);
324 } else if (size > allocated_size) {
325 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
326 }
327 allocated_size = size;
328 memset(d.dirty_bitmap, 0, allocated_size);
5832d1f2 329
151f7749 330 d.slot = mem->slot;
5832d1f2 331
6e489f3f 332 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
151f7749
JK
333 dprintf("ioctl failed %d\n", errno);
334 ret = -1;
335 break;
336 }
5832d1f2 337
151f7749
JK
338 for (phys_addr = mem->start_addr, addr = mem->phys_offset;
339 phys_addr < mem->start_addr + mem->memory_size;
340 phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
96c1606b 341 unsigned char *bitmap = (unsigned char *)d.dirty_bitmap;
151f7749 342 unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
151f7749 343
96c1606b 344 if (test_le_bit(nr, bitmap)) {
151f7749
JK
345 cpu_physical_memory_set_dirty(addr);
346 }
347 }
348 start_addr = phys_addr;
5832d1f2 349 }
5832d1f2 350 qemu_free(d.dirty_bitmap);
151f7749
JK
351
352 return ret;
5832d1f2
AL
353}
354
c227f099 355int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
f65ed4c1
AL
356{
357 int ret = -ENOSYS;
358#ifdef KVM_CAP_COALESCED_MMIO
359 KVMState *s = kvm_state;
360
361 if (s->coalesced_mmio) {
362 struct kvm_coalesced_mmio_zone zone;
363
364 zone.addr = start;
365 zone.size = size;
366
367 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
368 }
369#endif
370
371 return ret;
372}
373
c227f099 374int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
f65ed4c1
AL
375{
376 int ret = -ENOSYS;
377#ifdef KVM_CAP_COALESCED_MMIO
378 KVMState *s = kvm_state;
379
380 if (s->coalesced_mmio) {
381 struct kvm_coalesced_mmio_zone zone;
382
383 zone.addr = start;
384 zone.size = size;
385
386 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
387 }
388#endif
389
390 return ret;
391}
392
ad7b8b33
AL
393int kvm_check_extension(KVMState *s, unsigned int extension)
394{
395 int ret;
396
397 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
398 if (ret < 0) {
399 ret = 0;
400 }
401
402 return ret;
403}
404
7b8f3b78
MT
405static void kvm_set_phys_mem(target_phys_addr_t start_addr,
406 ram_addr_t size,
407 ram_addr_t phys_offset)
46dbef6a
MT
408{
409 KVMState *s = kvm_state;
410 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
411 KVMSlot *mem, old;
412 int err;
413
414 if (start_addr & ~TARGET_PAGE_MASK) {
415 if (flags >= IO_MEM_UNASSIGNED) {
416 if (!kvm_lookup_overlapping_slot(s, start_addr,
417 start_addr + size)) {
418 return;
419 }
420 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
421 } else {
422 fprintf(stderr, "Only page-aligned memory slots supported\n");
423 }
424 abort();
425 }
426
427 /* KVM does not support read-only slots */
428 phys_offset &= ~IO_MEM_ROM;
429
430 while (1) {
431 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
432 if (!mem) {
433 break;
434 }
435
436 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
437 (start_addr + size <= mem->start_addr + mem->memory_size) &&
438 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
439 /* The new slot fits into the existing one and comes with
440 * identical parameters - nothing to be done. */
441 return;
442 }
443
444 old = *mem;
445
446 /* unregister the overlapping slot */
447 mem->memory_size = 0;
448 err = kvm_set_user_memory_region(s, mem);
449 if (err) {
450 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
451 __func__, strerror(-err));
452 abort();
453 }
454
455 /* Workaround for older KVM versions: we can't join slots, even not by
456 * unregistering the previous ones and then registering the larger
457 * slot. We have to maintain the existing fragmentation. Sigh.
458 *
459 * This workaround assumes that the new slot starts at the same
460 * address as the first existing one. If not or if some overlapping
461 * slot comes around later, we will fail (not seen in practice so far)
462 * - and actually require a recent KVM version. */
463 if (s->broken_set_mem_region &&
464 old.start_addr == start_addr && old.memory_size < size &&
465 flags < IO_MEM_UNASSIGNED) {
466 mem = kvm_alloc_slot(s);
467 mem->memory_size = old.memory_size;
468 mem->start_addr = old.start_addr;
469 mem->phys_offset = old.phys_offset;
470 mem->flags = 0;
471
472 err = kvm_set_user_memory_region(s, mem);
473 if (err) {
474 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
475 strerror(-err));
476 abort();
477 }
478
479 start_addr += old.memory_size;
480 phys_offset += old.memory_size;
481 size -= old.memory_size;
482 continue;
483 }
484
485 /* register prefix slot */
486 if (old.start_addr < start_addr) {
487 mem = kvm_alloc_slot(s);
488 mem->memory_size = start_addr - old.start_addr;
489 mem->start_addr = old.start_addr;
490 mem->phys_offset = old.phys_offset;
491 mem->flags = 0;
492
493 err = kvm_set_user_memory_region(s, mem);
494 if (err) {
495 fprintf(stderr, "%s: error registering prefix slot: %s\n",
496 __func__, strerror(-err));
497 abort();
498 }
499 }
500
501 /* register suffix slot */
502 if (old.start_addr + old.memory_size > start_addr + size) {
503 ram_addr_t size_delta;
504
505 mem = kvm_alloc_slot(s);
506 mem->start_addr = start_addr + size;
507 size_delta = mem->start_addr - old.start_addr;
508 mem->memory_size = old.memory_size - size_delta;
509 mem->phys_offset = old.phys_offset + size_delta;
510 mem->flags = 0;
511
512 err = kvm_set_user_memory_region(s, mem);
513 if (err) {
514 fprintf(stderr, "%s: error registering suffix slot: %s\n",
515 __func__, strerror(-err));
516 abort();
517 }
518 }
519 }
520
521 /* in case the KVM bug workaround already "consumed" the new slot */
522 if (!size)
523 return;
524
525 /* KVM does not need to know about this memory */
526 if (flags >= IO_MEM_UNASSIGNED)
527 return;
528
529 mem = kvm_alloc_slot(s);
530 mem->memory_size = size;
531 mem->start_addr = start_addr;
532 mem->phys_offset = phys_offset;
533 mem->flags = 0;
534
535 err = kvm_set_user_memory_region(s, mem);
536 if (err) {
537 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
538 strerror(-err));
539 abort();
540 }
541}
542
7b8f3b78
MT
543static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
544 target_phys_addr_t start_addr,
545 ram_addr_t size,
546 ram_addr_t phys_offset)
547{
548 kvm_set_phys_mem(start_addr, size, phys_offset);
549}
550
551static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
552 target_phys_addr_t start_addr,
553 target_phys_addr_t end_addr)
554{
555 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
556}
557
558static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
559 int enable)
560{
561 return kvm_set_migration_log(enable);
562}
563
564static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
565 .set_memory = kvm_client_set_memory,
566 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
567 .migration_log = kvm_client_migration_log,
568};
569
05330448
AL
570int kvm_init(int smp_cpus)
571{
168ccc11
JK
572 static const char upgrade_note[] =
573 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
574 "(see http://sourceforge.net/projects/kvm).\n";
05330448
AL
575 KVMState *s;
576 int ret;
577 int i;
578
9f8fd694
MM
579 if (smp_cpus > 1) {
580 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
05330448 581 return -EINVAL;
9f8fd694 582 }
05330448
AL
583
584 s = qemu_mallocz(sizeof(KVMState));
05330448 585
e22a25c9 586#ifdef KVM_CAP_SET_GUEST_DEBUG
72cf2d4f 587 QTAILQ_INIT(&s->kvm_sw_breakpoints);
e22a25c9 588#endif
05330448
AL
589 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
590 s->slots[i].slot = i;
591
592 s->vmfd = -1;
40ff6d7e 593 s->fd = qemu_open("/dev/kvm", O_RDWR);
05330448
AL
594 if (s->fd == -1) {
595 fprintf(stderr, "Could not access KVM kernel module: %m\n");
596 ret = -errno;
597 goto err;
598 }
599
600 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
601 if (ret < KVM_API_VERSION) {
602 if (ret > 0)
603 ret = -EINVAL;
604 fprintf(stderr, "kvm version too old\n");
605 goto err;
606 }
607
608 if (ret > KVM_API_VERSION) {
609 ret = -EINVAL;
610 fprintf(stderr, "kvm version not supported\n");
611 goto err;
612 }
613
614 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
615 if (s->vmfd < 0)
616 goto err;
617
618 /* initially, KVM allocated its own memory and we had to jump through
619 * hooks to make phys_ram_base point to this. Modern versions of KVM
5579c7f3 620 * just use a user allocated buffer so we can use regular pages
05330448
AL
621 * unmodified. Make sure we have a sufficiently modern version of KVM.
622 */
ad7b8b33
AL
623 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
624 ret = -EINVAL;
168ccc11
JK
625 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
626 upgrade_note);
05330448
AL
627 goto err;
628 }
629
d85dc283
AL
630 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
631 * destroyed properly. Since we rely on this capability, refuse to work
632 * with any kernel without this capability. */
ad7b8b33
AL
633 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
634 ret = -EINVAL;
d85dc283
AL
635
636 fprintf(stderr,
168ccc11
JK
637 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
638 upgrade_note);
d85dc283
AL
639 goto err;
640 }
641
62a2744c 642 s->coalesced_mmio = 0;
f65ed4c1 643#ifdef KVM_CAP_COALESCED_MMIO
ad7b8b33 644 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
62a2744c 645 s->coalesced_mmio_ring = NULL;
f65ed4c1
AL
646#endif
647
e69917e2
JK
648 s->broken_set_mem_region = 1;
649#ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
650 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
651 if (ret > 0) {
652 s->broken_set_mem_region = 0;
653 }
654#endif
655
a0fb002c
JK
656 s->vcpu_events = 0;
657#ifdef KVM_CAP_VCPU_EVENTS
658 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
659#endif
660
05330448
AL
661 ret = kvm_arch_init(s, smp_cpus);
662 if (ret < 0)
663 goto err;
664
665 kvm_state = s;
7b8f3b78 666 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
05330448
AL
667
668 return 0;
669
670err:
671 if (s) {
672 if (s->vmfd != -1)
673 close(s->vmfd);
674 if (s->fd != -1)
675 close(s->fd);
676 }
677 qemu_free(s);
678
679 return ret;
680}
681
afcea8cb
BS
682static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
683 uint32_t count)
05330448
AL
684{
685 int i;
686 uint8_t *ptr = data;
687
688 for (i = 0; i < count; i++) {
689 if (direction == KVM_EXIT_IO_IN) {
690 switch (size) {
691 case 1:
afcea8cb 692 stb_p(ptr, cpu_inb(port));
05330448
AL
693 break;
694 case 2:
afcea8cb 695 stw_p(ptr, cpu_inw(port));
05330448
AL
696 break;
697 case 4:
afcea8cb 698 stl_p(ptr, cpu_inl(port));
05330448
AL
699 break;
700 }
701 } else {
702 switch (size) {
703 case 1:
afcea8cb 704 cpu_outb(port, ldub_p(ptr));
05330448
AL
705 break;
706 case 2:
afcea8cb 707 cpu_outw(port, lduw_p(ptr));
05330448
AL
708 break;
709 case 4:
afcea8cb 710 cpu_outl(port, ldl_p(ptr));
05330448
AL
711 break;
712 }
713 }
714
715 ptr += size;
716 }
717
718 return 1;
719}
720
62a2744c 721void kvm_flush_coalesced_mmio_buffer(void)
f65ed4c1
AL
722{
723#ifdef KVM_CAP_COALESCED_MMIO
724 KVMState *s = kvm_state;
62a2744c
SY
725 if (s->coalesced_mmio_ring) {
726 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
f65ed4c1
AL
727 while (ring->first != ring->last) {
728 struct kvm_coalesced_mmio *ent;
729
730 ent = &ring->coalesced_mmio[ring->first];
731
732 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
733 /* FIXME smp_wmb() */
734 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
735 }
736 }
737#endif
738}
739
4c0960c0
AK
740void kvm_cpu_synchronize_state(CPUState *env)
741{
9ded2744 742 if (!env->kvm_vcpu_dirty) {
4c0960c0 743 kvm_arch_get_registers(env);
9ded2744 744 env->kvm_vcpu_dirty = 1;
4c0960c0
AK
745 }
746}
747
05330448
AL
748int kvm_cpu_exec(CPUState *env)
749{
750 struct kvm_run *run = env->kvm_run;
751 int ret;
752
753 dprintf("kvm_cpu_exec()\n");
754
755 do {
6312b928 756#ifndef CONFIG_IOTHREAD
be214e6c 757 if (env->exit_request) {
05330448
AL
758 dprintf("interrupt exit requested\n");
759 ret = 0;
760 break;
761 }
6312b928 762#endif
05330448 763
9ded2744 764 if (env->kvm_vcpu_dirty) {
4c0960c0 765 kvm_arch_put_registers(env);
9ded2744 766 env->kvm_vcpu_dirty = 0;
4c0960c0
AK
767 }
768
8c14c173 769 kvm_arch_pre_run(env, run);
d549db5a 770 qemu_mutex_unlock_iothread();
05330448 771 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
d549db5a 772 qemu_mutex_lock_iothread();
05330448
AL
773 kvm_arch_post_run(env, run);
774
775 if (ret == -EINTR || ret == -EAGAIN) {
cc84de95 776 cpu_exit(env);
05330448
AL
777 dprintf("io window exit\n");
778 ret = 0;
779 break;
780 }
781
782 if (ret < 0) {
783 dprintf("kvm run failed %s\n", strerror(-ret));
784 abort();
785 }
786
62a2744c 787 kvm_flush_coalesced_mmio_buffer();
f65ed4c1 788
05330448
AL
789 ret = 0; /* exit loop */
790 switch (run->exit_reason) {
791 case KVM_EXIT_IO:
792 dprintf("handle_io\n");
afcea8cb 793 ret = kvm_handle_io(run->io.port,
05330448
AL
794 (uint8_t *)run + run->io.data_offset,
795 run->io.direction,
796 run->io.size,
797 run->io.count);
798 break;
799 case KVM_EXIT_MMIO:
800 dprintf("handle_mmio\n");
801 cpu_physical_memory_rw(run->mmio.phys_addr,
802 run->mmio.data,
803 run->mmio.len,
804 run->mmio.is_write);
805 ret = 1;
806 break;
807 case KVM_EXIT_IRQ_WINDOW_OPEN:
808 dprintf("irq_window_open\n");
809 break;
810 case KVM_EXIT_SHUTDOWN:
811 dprintf("shutdown\n");
812 qemu_system_reset_request();
813 ret = 1;
814 break;
815 case KVM_EXIT_UNKNOWN:
816 dprintf("kvm_exit_unknown\n");
817 break;
818 case KVM_EXIT_FAIL_ENTRY:
819 dprintf("kvm_exit_fail_entry\n");
820 break;
821 case KVM_EXIT_EXCEPTION:
822 dprintf("kvm_exit_exception\n");
823 break;
824 case KVM_EXIT_DEBUG:
825 dprintf("kvm_exit_debug\n");
e22a25c9
AL
826#ifdef KVM_CAP_SET_GUEST_DEBUG
827 if (kvm_arch_debug(&run->debug.arch)) {
828 gdb_set_stop_cpu(env);
829 vm_stop(EXCP_DEBUG);
830 env->exception_index = EXCP_DEBUG;
831 return 0;
832 }
833 /* re-enter, this exception was guest-internal */
834 ret = 1;
835#endif /* KVM_CAP_SET_GUEST_DEBUG */
05330448
AL
836 break;
837 default:
838 dprintf("kvm_arch_handle_exit\n");
839 ret = kvm_arch_handle_exit(env, run);
840 break;
841 }
842 } while (ret > 0);
843
be214e6c
AJ
844 if (env->exit_request) {
845 env->exit_request = 0;
becfc390
AL
846 env->exception_index = EXCP_INTERRUPT;
847 }
848
05330448
AL
849 return ret;
850}
851
984b5181 852int kvm_ioctl(KVMState *s, int type, ...)
05330448
AL
853{
854 int ret;
984b5181
AL
855 void *arg;
856 va_list ap;
05330448 857
984b5181
AL
858 va_start(ap, type);
859 arg = va_arg(ap, void *);
860 va_end(ap);
861
862 ret = ioctl(s->fd, type, arg);
05330448
AL
863 if (ret == -1)
864 ret = -errno;
865
866 return ret;
867}
868
984b5181 869int kvm_vm_ioctl(KVMState *s, int type, ...)
05330448
AL
870{
871 int ret;
984b5181
AL
872 void *arg;
873 va_list ap;
874
875 va_start(ap, type);
876 arg = va_arg(ap, void *);
877 va_end(ap);
05330448 878
984b5181 879 ret = ioctl(s->vmfd, type, arg);
05330448
AL
880 if (ret == -1)
881 ret = -errno;
882
883 return ret;
884}
885
984b5181 886int kvm_vcpu_ioctl(CPUState *env, int type, ...)
05330448
AL
887{
888 int ret;
984b5181
AL
889 void *arg;
890 va_list ap;
891
892 va_start(ap, type);
893 arg = va_arg(ap, void *);
894 va_end(ap);
05330448 895
984b5181 896 ret = ioctl(env->kvm_fd, type, arg);
05330448
AL
897 if (ret == -1)
898 ret = -errno;
899
900 return ret;
901}
bd322087
AL
902
903int kvm_has_sync_mmu(void)
904{
a9c11522 905#ifdef KVM_CAP_SYNC_MMU
bd322087
AL
906 KVMState *s = kvm_state;
907
ad7b8b33
AL
908 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
909#else
bd322087 910 return 0;
ad7b8b33 911#endif
bd322087 912}
e22a25c9 913
a0fb002c
JK
914int kvm_has_vcpu_events(void)
915{
916 return kvm_state->vcpu_events;
917}
918
6f0437e8
JK
919void kvm_setup_guest_memory(void *start, size_t size)
920{
921 if (!kvm_has_sync_mmu()) {
922#ifdef MADV_DONTFORK
923 int ret = madvise(start, size, MADV_DONTFORK);
924
925 if (ret) {
926 perror("madvice");
927 exit(1);
928 }
929#else
930 fprintf(stderr,
931 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
932 exit(1);
933#endif
934 }
935}
936
e22a25c9 937#ifdef KVM_CAP_SET_GUEST_DEBUG
fc5d642f
LC
938static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
939{
828566bc 940#ifdef CONFIG_IOTHREAD
a2eebe88
AS
941 if (env != cpu_single_env) {
942 abort();
fc5d642f 943 }
828566bc 944#endif
a2eebe88 945 func(data);
fc5d642f
LC
946}
947
e22a25c9
AL
948struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
949 target_ulong pc)
950{
951 struct kvm_sw_breakpoint *bp;
952
72cf2d4f 953 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
e22a25c9
AL
954 if (bp->pc == pc)
955 return bp;
956 }
957 return NULL;
958}
959
960int kvm_sw_breakpoints_active(CPUState *env)
961{
72cf2d4f 962 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
e22a25c9
AL
963}
964
452e4751
GC
965struct kvm_set_guest_debug_data {
966 struct kvm_guest_debug dbg;
967 CPUState *env;
968 int err;
969};
970
971static void kvm_invoke_set_guest_debug(void *data)
972{
973 struct kvm_set_guest_debug_data *dbg_data = data;
b3807725
JK
974 CPUState *env = dbg_data->env;
975
9ded2744 976 if (env->kvm_vcpu_dirty) {
b3807725 977 kvm_arch_put_registers(env);
9ded2744 978 env->kvm_vcpu_dirty = 0;
b3807725
JK
979 }
980 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
452e4751
GC
981}
982
e22a25c9
AL
983int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
984{
452e4751 985 struct kvm_set_guest_debug_data data;
e22a25c9 986
452e4751 987 data.dbg.control = 0;
e22a25c9 988 if (env->singlestep_enabled)
452e4751 989 data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
e22a25c9 990
452e4751
GC
991 kvm_arch_update_guest_debug(env, &data.dbg);
992 data.dbg.control |= reinject_trap;
993 data.env = env;
e22a25c9 994
452e4751
GC
995 on_vcpu(env, kvm_invoke_set_guest_debug, &data);
996 return data.err;
e22a25c9
AL
997}
998
999int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1000 target_ulong len, int type)
1001{
1002 struct kvm_sw_breakpoint *bp;
1003 CPUState *env;
1004 int err;
1005
1006 if (type == GDB_BREAKPOINT_SW) {
1007 bp = kvm_find_sw_breakpoint(current_env, addr);
1008 if (bp) {
1009 bp->use_count++;
1010 return 0;
1011 }
1012
1013 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1014 if (!bp)
1015 return -ENOMEM;
1016
1017 bp->pc = addr;
1018 bp->use_count = 1;
1019 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1020 if (err) {
1021 free(bp);
1022 return err;
1023 }
1024
72cf2d4f 1025 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
e22a25c9
AL
1026 bp, entry);
1027 } else {
1028 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1029 if (err)
1030 return err;
1031 }
1032
1033 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1034 err = kvm_update_guest_debug(env, 0);
1035 if (err)
1036 return err;
1037 }
1038 return 0;
1039}
1040
1041int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1042 target_ulong len, int type)
1043{
1044 struct kvm_sw_breakpoint *bp;
1045 CPUState *env;
1046 int err;
1047
1048 if (type == GDB_BREAKPOINT_SW) {
1049 bp = kvm_find_sw_breakpoint(current_env, addr);
1050 if (!bp)
1051 return -ENOENT;
1052
1053 if (bp->use_count > 1) {
1054 bp->use_count--;
1055 return 0;
1056 }
1057
1058 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1059 if (err)
1060 return err;
1061
72cf2d4f 1062 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
e22a25c9
AL
1063 qemu_free(bp);
1064 } else {
1065 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1066 if (err)
1067 return err;
1068 }
1069
1070 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1071 err = kvm_update_guest_debug(env, 0);
1072 if (err)
1073 return err;
1074 }
1075 return 0;
1076}
1077
1078void kvm_remove_all_breakpoints(CPUState *current_env)
1079{
1080 struct kvm_sw_breakpoint *bp, *next;
1081 KVMState *s = current_env->kvm_state;
1082 CPUState *env;
1083
72cf2d4f 1084 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
e22a25c9
AL
1085 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1086 /* Try harder to find a CPU that currently sees the breakpoint. */
1087 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1088 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1089 break;
1090 }
1091 }
1092 }
1093 kvm_arch_remove_all_hw_breakpoints();
1094
1095 for (env = first_cpu; env != NULL; env = env->next_cpu)
1096 kvm_update_guest_debug(env, 0);
1097}
1098
1099#else /* !KVM_CAP_SET_GUEST_DEBUG */
1100
1101int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1102{
1103 return -EINVAL;
1104}
1105
1106int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1107 target_ulong len, int type)
1108{
1109 return -EINVAL;
1110}
1111
1112int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1113 target_ulong len, int type)
1114{
1115 return -EINVAL;
1116}
1117
1118void kvm_remove_all_breakpoints(CPUState *current_env)
1119{
1120}
1121#endif /* !KVM_CAP_SET_GUEST_DEBUG */
cc84de95
MT
1122
1123int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1124{
1125 struct kvm_signal_mask *sigmask;
1126 int r;
1127
1128 if (!sigset)
1129 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1130
1131 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1132
1133 sigmask->len = 8;
1134 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1135 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1136 free(sigmask);
1137
1138 return r;
1139}