]> git.proxmox.com Git - qemu.git/blame - kvm-all.c
kvm: Remove unneeded memory slot reservation
[qemu.git] / kvm-all.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5832d1f2 5 * Red Hat, Inc. 2008
05330448
AL
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
5832d1f2 9 * Glauber Costa <gcosta@redhat.com>
05330448
AL
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16#include <sys/types.h>
17#include <sys/ioctl.h>
18#include <sys/mman.h>
984b5181 19#include <stdarg.h>
05330448
AL
20
21#include <linux/kvm.h>
22
23#include "qemu-common.h"
85199474 24#include "qemu-barrier.h"
05330448 25#include "sysemu.h"
d33a1810 26#include "hw/hw.h"
e22a25c9 27#include "gdbstub.h"
05330448 28#include "kvm.h"
8369e01c 29#include "bswap.h"
05330448 30
d2f2b8a7
SH
31/* This check must be after config-host.h is included */
32#ifdef CONFIG_EVENTFD
33#include <sys/eventfd.h>
34#endif
35
f65ed4c1
AL
36/* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
37#define PAGE_SIZE TARGET_PAGE_SIZE
38
05330448
AL
39//#define DEBUG_KVM
40
41#ifdef DEBUG_KVM
8c0d577e 42#define DPRINTF(fmt, ...) \
05330448
AL
43 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
44#else
8c0d577e 45#define DPRINTF(fmt, ...) \
05330448
AL
46 do { } while (0)
47#endif
48
34fc643f
AL
49typedef struct KVMSlot
50{
c227f099
AL
51 target_phys_addr_t start_addr;
52 ram_addr_t memory_size;
53 ram_addr_t phys_offset;
34fc643f
AL
54 int slot;
55 int flags;
56} KVMSlot;
05330448 57
5832d1f2
AL
58typedef struct kvm_dirty_log KVMDirtyLog;
59
05330448
AL
60struct KVMState
61{
62 KVMSlot slots[32];
63 int fd;
64 int vmfd;
f65ed4c1 65 int coalesced_mmio;
62a2744c 66 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
e69917e2 67 int broken_set_mem_region;
4495d6a7 68 int migration_log;
a0fb002c 69 int vcpu_events;
b0b1d690 70 int robust_singlestep;
ff44f1a3 71 int debugregs;
e22a25c9
AL
72#ifdef KVM_CAP_SET_GUEST_DEBUG
73 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
74#endif
6f725c13
GC
75 int irqchip_in_kernel;
76 int pit_in_kernel;
f1665b21 77 int xsave, xcrs;
d2f2b8a7 78 int many_ioeventfds;
05330448
AL
79};
80
81static KVMState *kvm_state;
82
94a8d39a
JK
83static const KVMCapabilityInfo kvm_required_capabilites[] = {
84 KVM_CAP_INFO(USER_MEMORY),
85 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
86 KVM_CAP_LAST_INFO
87};
88
05330448
AL
89static KVMSlot *kvm_alloc_slot(KVMState *s)
90{
91 int i;
92
93 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
a426e122 94 if (s->slots[i].memory_size == 0) {
05330448 95 return &s->slots[i];
a426e122 96 }
05330448
AL
97 }
98
d3f8d37f
AL
99 fprintf(stderr, "%s: no free slot available\n", __func__);
100 abort();
101}
102
103static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
c227f099
AL
104 target_phys_addr_t start_addr,
105 target_phys_addr_t end_addr)
d3f8d37f
AL
106{
107 int i;
108
109 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
110 KVMSlot *mem = &s->slots[i];
111
112 if (start_addr == mem->start_addr &&
113 end_addr == mem->start_addr + mem->memory_size) {
114 return mem;
115 }
116 }
117
05330448
AL
118 return NULL;
119}
120
6152e2ae
AL
121/*
122 * Find overlapping slot with lowest start address
123 */
124static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
c227f099
AL
125 target_phys_addr_t start_addr,
126 target_phys_addr_t end_addr)
05330448 127{
6152e2ae 128 KVMSlot *found = NULL;
05330448
AL
129 int i;
130
131 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
132 KVMSlot *mem = &s->slots[i];
133
6152e2ae
AL
134 if (mem->memory_size == 0 ||
135 (found && found->start_addr < mem->start_addr)) {
136 continue;
137 }
138
139 if (end_addr > mem->start_addr &&
140 start_addr < mem->start_addr + mem->memory_size) {
141 found = mem;
142 }
05330448
AL
143 }
144
6152e2ae 145 return found;
05330448
AL
146}
147
983dfc3b
HY
148int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr,
149 target_phys_addr_t *phys_addr)
150{
151 int i;
152
153 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
154 KVMSlot *mem = &s->slots[i];
155
156 if (ram_addr >= mem->phys_offset &&
157 ram_addr < mem->phys_offset + mem->memory_size) {
158 *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset);
159 return 1;
160 }
161 }
162
163 return 0;
164}
165
5832d1f2
AL
166static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
167{
168 struct kvm_userspace_memory_region mem;
169
170 mem.slot = slot->slot;
171 mem.guest_phys_addr = slot->start_addr;
172 mem.memory_size = slot->memory_size;
b2e0a138 173 mem.userspace_addr = (unsigned long)qemu_safe_ram_ptr(slot->phys_offset);
5832d1f2 174 mem.flags = slot->flags;
4495d6a7
JK
175 if (s->migration_log) {
176 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
177 }
5832d1f2
AL
178 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
179}
180
8d2ba1fb
JK
181static void kvm_reset_vcpu(void *opaque)
182{
183 CPUState *env = opaque;
184
caa5af0f 185 kvm_arch_reset_vcpu(env);
8d2ba1fb 186}
5832d1f2 187
6f725c13
GC
188int kvm_irqchip_in_kernel(void)
189{
190 return kvm_state->irqchip_in_kernel;
191}
192
193int kvm_pit_in_kernel(void)
194{
195 return kvm_state->pit_in_kernel;
196}
197
05330448
AL
198int kvm_init_vcpu(CPUState *env)
199{
200 KVMState *s = kvm_state;
201 long mmap_size;
202 int ret;
203
8c0d577e 204 DPRINTF("kvm_init_vcpu\n");
05330448 205
984b5181 206 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
05330448 207 if (ret < 0) {
8c0d577e 208 DPRINTF("kvm_create_vcpu failed\n");
05330448
AL
209 goto err;
210 }
211
212 env->kvm_fd = ret;
213 env->kvm_state = s;
214
215 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
216 if (mmap_size < 0) {
748a680b 217 ret = mmap_size;
8c0d577e 218 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
05330448
AL
219 goto err;
220 }
221
222 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
223 env->kvm_fd, 0);
224 if (env->kvm_run == MAP_FAILED) {
225 ret = -errno;
8c0d577e 226 DPRINTF("mmap'ing vcpu state failed\n");
05330448
AL
227 goto err;
228 }
229
a426e122
JK
230 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
231 s->coalesced_mmio_ring =
232 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
233 }
62a2744c 234
05330448 235 ret = kvm_arch_init_vcpu(env);
8d2ba1fb 236 if (ret == 0) {
a08d4367 237 qemu_register_reset(kvm_reset_vcpu, env);
caa5af0f 238 kvm_arch_reset_vcpu(env);
8d2ba1fb 239 }
05330448
AL
240err:
241 return ret;
242}
243
5832d1f2
AL
244/*
245 * dirty pages logging control
246 */
c227f099
AL
247static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
248 ram_addr_t size, int flags, int mask)
5832d1f2
AL
249{
250 KVMState *s = kvm_state;
d3f8d37f 251 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
4495d6a7
JK
252 int old_flags;
253
5832d1f2 254 if (mem == NULL) {
d3f8d37f
AL
255 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
256 TARGET_FMT_plx "\n", __func__, phys_addr,
c227f099 257 (target_phys_addr_t)(phys_addr + size - 1));
5832d1f2
AL
258 return -EINVAL;
259 }
260
4495d6a7 261 old_flags = mem->flags;
5832d1f2 262
4495d6a7 263 flags = (mem->flags & ~mask) | flags;
5832d1f2
AL
264 mem->flags = flags;
265
4495d6a7
JK
266 /* If nothing changed effectively, no need to issue ioctl */
267 if (s->migration_log) {
268 flags |= KVM_MEM_LOG_DIRTY_PAGES;
269 }
270 if (flags == old_flags) {
271 return 0;
272 }
273
5832d1f2
AL
274 return kvm_set_user_memory_region(s, mem);
275}
276
c227f099 277int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
5832d1f2 278{
a426e122
JK
279 return kvm_dirty_pages_log_change(phys_addr, size, KVM_MEM_LOG_DIRTY_PAGES,
280 KVM_MEM_LOG_DIRTY_PAGES);
5832d1f2
AL
281}
282
c227f099 283int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
5832d1f2 284{
a426e122
JK
285 return kvm_dirty_pages_log_change(phys_addr, size, 0,
286 KVM_MEM_LOG_DIRTY_PAGES);
5832d1f2
AL
287}
288
7b8f3b78 289static int kvm_set_migration_log(int enable)
4495d6a7
JK
290{
291 KVMState *s = kvm_state;
292 KVMSlot *mem;
293 int i, err;
294
295 s->migration_log = enable;
296
297 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
298 mem = &s->slots[i];
299
70fedd76
AW
300 if (!mem->memory_size) {
301 continue;
302 }
4495d6a7
JK
303 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
304 continue;
305 }
306 err = kvm_set_user_memory_region(s, mem);
307 if (err) {
308 return err;
309 }
310 }
311 return 0;
312}
313
8369e01c
MT
314/* get kvm's dirty pages bitmap and update qemu's */
315static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
316 unsigned long *bitmap,
317 unsigned long offset,
318 unsigned long mem_size)
96c1606b 319{
8369e01c
MT
320 unsigned int i, j;
321 unsigned long page_number, addr, addr1, c;
322 ram_addr_t ram_addr;
323 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
324 HOST_LONG_BITS;
325
326 /*
327 * bitmap-traveling is faster than memory-traveling (for addr...)
328 * especially when most of the memory is not dirty.
329 */
330 for (i = 0; i < len; i++) {
331 if (bitmap[i] != 0) {
332 c = leul_to_cpu(bitmap[i]);
333 do {
334 j = ffsl(c) - 1;
335 c &= ~(1ul << j);
336 page_number = i * HOST_LONG_BITS + j;
337 addr1 = page_number * TARGET_PAGE_SIZE;
338 addr = offset + addr1;
339 ram_addr = cpu_get_physical_page_desc(addr);
340 cpu_physical_memory_set_dirty(ram_addr);
341 } while (c != 0);
342 }
343 }
344 return 0;
96c1606b
AG
345}
346
8369e01c
MT
347#define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
348
5832d1f2
AL
349/**
350 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
351 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
352 * This means all bits are set to dirty.
353 *
d3f8d37f 354 * @start_add: start of logged region.
5832d1f2
AL
355 * @end_addr: end of logged region.
356 */
7b8f3b78 357static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
a426e122 358 target_phys_addr_t end_addr)
5832d1f2
AL
359{
360 KVMState *s = kvm_state;
151f7749 361 unsigned long size, allocated_size = 0;
151f7749
JK
362 KVMDirtyLog d;
363 KVMSlot *mem;
364 int ret = 0;
5832d1f2 365
151f7749
JK
366 d.dirty_bitmap = NULL;
367 while (start_addr < end_addr) {
368 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
369 if (mem == NULL) {
370 break;
371 }
5832d1f2 372
8369e01c 373 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8;
151f7749
JK
374 if (!d.dirty_bitmap) {
375 d.dirty_bitmap = qemu_malloc(size);
376 } else if (size > allocated_size) {
377 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
378 }
379 allocated_size = size;
380 memset(d.dirty_bitmap, 0, allocated_size);
5832d1f2 381
151f7749 382 d.slot = mem->slot;
5832d1f2 383
6e489f3f 384 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
8c0d577e 385 DPRINTF("ioctl failed %d\n", errno);
151f7749
JK
386 ret = -1;
387 break;
388 }
5832d1f2 389
8369e01c
MT
390 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
391 mem->start_addr, mem->memory_size);
392 start_addr = mem->start_addr + mem->memory_size;
5832d1f2 393 }
5832d1f2 394 qemu_free(d.dirty_bitmap);
151f7749
JK
395
396 return ret;
5832d1f2
AL
397}
398
c227f099 399int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
f65ed4c1
AL
400{
401 int ret = -ENOSYS;
f65ed4c1
AL
402 KVMState *s = kvm_state;
403
404 if (s->coalesced_mmio) {
405 struct kvm_coalesced_mmio_zone zone;
406
407 zone.addr = start;
408 zone.size = size;
409
410 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
411 }
f65ed4c1
AL
412
413 return ret;
414}
415
c227f099 416int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
f65ed4c1
AL
417{
418 int ret = -ENOSYS;
f65ed4c1
AL
419 KVMState *s = kvm_state;
420
421 if (s->coalesced_mmio) {
422 struct kvm_coalesced_mmio_zone zone;
423
424 zone.addr = start;
425 zone.size = size;
426
427 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
428 }
f65ed4c1
AL
429
430 return ret;
431}
432
ad7b8b33
AL
433int kvm_check_extension(KVMState *s, unsigned int extension)
434{
435 int ret;
436
437 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
438 if (ret < 0) {
439 ret = 0;
440 }
441
442 return ret;
443}
444
d2f2b8a7
SH
445static int kvm_check_many_ioeventfds(void)
446{
d0dcac83
SH
447 /* Userspace can use ioeventfd for io notification. This requires a host
448 * that supports eventfd(2) and an I/O thread; since eventfd does not
449 * support SIGIO it cannot interrupt the vcpu.
450 *
451 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
d2f2b8a7
SH
452 * can avoid creating too many ioeventfds.
453 */
d0dcac83 454#if defined(CONFIG_EVENTFD) && defined(CONFIG_IOTHREAD)
d2f2b8a7
SH
455 int ioeventfds[7];
456 int i, ret = 0;
457 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
458 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
459 if (ioeventfds[i] < 0) {
460 break;
461 }
462 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
463 if (ret < 0) {
464 close(ioeventfds[i]);
465 break;
466 }
467 }
468
469 /* Decide whether many devices are supported or not */
470 ret = i == ARRAY_SIZE(ioeventfds);
471
472 while (i-- > 0) {
473 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
474 close(ioeventfds[i]);
475 }
476 return ret;
477#else
478 return 0;
479#endif
480}
481
94a8d39a
JK
482static const KVMCapabilityInfo *
483kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
484{
485 while (list->name) {
486 if (!kvm_check_extension(s, list->value)) {
487 return list;
488 }
489 list++;
490 }
491 return NULL;
492}
493
a426e122
JK
494static void kvm_set_phys_mem(target_phys_addr_t start_addr, ram_addr_t size,
495 ram_addr_t phys_offset)
46dbef6a
MT
496{
497 KVMState *s = kvm_state;
498 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
499 KVMSlot *mem, old;
500 int err;
501
14542fea
GN
502 /* kvm works in page size chunks, but the function may be called
503 with sub-page size and unaligned start address. */
504 size = TARGET_PAGE_ALIGN(size);
505 start_addr = TARGET_PAGE_ALIGN(start_addr);
46dbef6a
MT
506
507 /* KVM does not support read-only slots */
508 phys_offset &= ~IO_MEM_ROM;
509
510 while (1) {
511 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
512 if (!mem) {
513 break;
514 }
515
516 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
517 (start_addr + size <= mem->start_addr + mem->memory_size) &&
518 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
519 /* The new slot fits into the existing one and comes with
520 * identical parameters - nothing to be done. */
521 return;
522 }
523
524 old = *mem;
525
526 /* unregister the overlapping slot */
527 mem->memory_size = 0;
528 err = kvm_set_user_memory_region(s, mem);
529 if (err) {
530 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
531 __func__, strerror(-err));
532 abort();
533 }
534
535 /* Workaround for older KVM versions: we can't join slots, even not by
536 * unregistering the previous ones and then registering the larger
537 * slot. We have to maintain the existing fragmentation. Sigh.
538 *
539 * This workaround assumes that the new slot starts at the same
540 * address as the first existing one. If not or if some overlapping
541 * slot comes around later, we will fail (not seen in practice so far)
542 * - and actually require a recent KVM version. */
543 if (s->broken_set_mem_region &&
544 old.start_addr == start_addr && old.memory_size < size &&
545 flags < IO_MEM_UNASSIGNED) {
546 mem = kvm_alloc_slot(s);
547 mem->memory_size = old.memory_size;
548 mem->start_addr = old.start_addr;
549 mem->phys_offset = old.phys_offset;
550 mem->flags = 0;
551
552 err = kvm_set_user_memory_region(s, mem);
553 if (err) {
554 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
555 strerror(-err));
556 abort();
557 }
558
559 start_addr += old.memory_size;
560 phys_offset += old.memory_size;
561 size -= old.memory_size;
562 continue;
563 }
564
565 /* register prefix slot */
566 if (old.start_addr < start_addr) {
567 mem = kvm_alloc_slot(s);
568 mem->memory_size = start_addr - old.start_addr;
569 mem->start_addr = old.start_addr;
570 mem->phys_offset = old.phys_offset;
571 mem->flags = 0;
572
573 err = kvm_set_user_memory_region(s, mem);
574 if (err) {
575 fprintf(stderr, "%s: error registering prefix slot: %s\n",
576 __func__, strerror(-err));
577 abort();
578 }
579 }
580
581 /* register suffix slot */
582 if (old.start_addr + old.memory_size > start_addr + size) {
583 ram_addr_t size_delta;
584
585 mem = kvm_alloc_slot(s);
586 mem->start_addr = start_addr + size;
587 size_delta = mem->start_addr - old.start_addr;
588 mem->memory_size = old.memory_size - size_delta;
589 mem->phys_offset = old.phys_offset + size_delta;
590 mem->flags = 0;
591
592 err = kvm_set_user_memory_region(s, mem);
593 if (err) {
594 fprintf(stderr, "%s: error registering suffix slot: %s\n",
595 __func__, strerror(-err));
596 abort();
597 }
598 }
599 }
600
601 /* in case the KVM bug workaround already "consumed" the new slot */
a426e122 602 if (!size) {
46dbef6a 603 return;
a426e122 604 }
46dbef6a 605 /* KVM does not need to know about this memory */
a426e122 606 if (flags >= IO_MEM_UNASSIGNED) {
46dbef6a 607 return;
a426e122 608 }
46dbef6a
MT
609 mem = kvm_alloc_slot(s);
610 mem->memory_size = size;
611 mem->start_addr = start_addr;
612 mem->phys_offset = phys_offset;
613 mem->flags = 0;
614
615 err = kvm_set_user_memory_region(s, mem);
616 if (err) {
617 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
618 strerror(-err));
619 abort();
620 }
621}
622
7b8f3b78 623static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
a426e122
JK
624 target_phys_addr_t start_addr,
625 ram_addr_t size, ram_addr_t phys_offset)
7b8f3b78 626{
a426e122 627 kvm_set_phys_mem(start_addr, size, phys_offset);
7b8f3b78
MT
628}
629
630static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
a426e122
JK
631 target_phys_addr_t start_addr,
632 target_phys_addr_t end_addr)
7b8f3b78 633{
a426e122 634 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
7b8f3b78
MT
635}
636
637static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
a426e122 638 int enable)
7b8f3b78 639{
a426e122 640 return kvm_set_migration_log(enable);
7b8f3b78
MT
641}
642
643static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
a426e122
JK
644 .set_memory = kvm_client_set_memory,
645 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
646 .migration_log = kvm_client_migration_log,
7b8f3b78
MT
647};
648
cad1e282 649int kvm_init(void)
05330448 650{
168ccc11
JK
651 static const char upgrade_note[] =
652 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
653 "(see http://sourceforge.net/projects/kvm).\n";
05330448 654 KVMState *s;
94a8d39a 655 const KVMCapabilityInfo *missing_cap;
05330448
AL
656 int ret;
657 int i;
658
05330448 659 s = qemu_mallocz(sizeof(KVMState));
05330448 660
e22a25c9 661#ifdef KVM_CAP_SET_GUEST_DEBUG
72cf2d4f 662 QTAILQ_INIT(&s->kvm_sw_breakpoints);
e22a25c9 663#endif
a426e122 664 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
05330448 665 s->slots[i].slot = i;
a426e122 666 }
05330448 667 s->vmfd = -1;
40ff6d7e 668 s->fd = qemu_open("/dev/kvm", O_RDWR);
05330448
AL
669 if (s->fd == -1) {
670 fprintf(stderr, "Could not access KVM kernel module: %m\n");
671 ret = -errno;
672 goto err;
673 }
674
675 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
676 if (ret < KVM_API_VERSION) {
a426e122 677 if (ret > 0) {
05330448 678 ret = -EINVAL;
a426e122 679 }
05330448
AL
680 fprintf(stderr, "kvm version too old\n");
681 goto err;
682 }
683
684 if (ret > KVM_API_VERSION) {
685 ret = -EINVAL;
686 fprintf(stderr, "kvm version not supported\n");
687 goto err;
688 }
689
690 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
0104dcac
AG
691 if (s->vmfd < 0) {
692#ifdef TARGET_S390X
693 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
694 "your host kernel command line\n");
695#endif
05330448 696 goto err;
0104dcac 697 }
05330448 698
94a8d39a
JK
699 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
700 if (!missing_cap) {
701 missing_cap =
702 kvm_check_extension_list(s, kvm_arch_required_capabilities);
05330448 703 }
94a8d39a 704 if (missing_cap) {
ad7b8b33 705 ret = -EINVAL;
94a8d39a
JK
706 fprintf(stderr, "kvm does not support %s\n%s",
707 missing_cap->name, upgrade_note);
d85dc283
AL
708 goto err;
709 }
710
ad7b8b33 711 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
f65ed4c1 712
e69917e2
JK
713 s->broken_set_mem_region = 1;
714#ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
14a09518 715 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
e69917e2
JK
716 if (ret > 0) {
717 s->broken_set_mem_region = 0;
718 }
719#endif
720
a0fb002c
JK
721 s->vcpu_events = 0;
722#ifdef KVM_CAP_VCPU_EVENTS
723 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
724#endif
725
b0b1d690
JK
726 s->robust_singlestep = 0;
727#ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
728 s->robust_singlestep =
729 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
730#endif
731
ff44f1a3
JK
732 s->debugregs = 0;
733#ifdef KVM_CAP_DEBUGREGS
734 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
735#endif
736
f1665b21
SY
737 s->xsave = 0;
738#ifdef KVM_CAP_XSAVE
739 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
740#endif
741
742 s->xcrs = 0;
743#ifdef KVM_CAP_XCRS
744 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
745#endif
746
cad1e282 747 ret = kvm_arch_init(s);
a426e122 748 if (ret < 0) {
05330448 749 goto err;
a426e122 750 }
05330448
AL
751
752 kvm_state = s;
7b8f3b78 753 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
05330448 754
d2f2b8a7
SH
755 s->many_ioeventfds = kvm_check_many_ioeventfds();
756
05330448
AL
757 return 0;
758
759err:
760 if (s) {
a426e122 761 if (s->vmfd != -1) {
05330448 762 close(s->vmfd);
a426e122
JK
763 }
764 if (s->fd != -1) {
05330448 765 close(s->fd);
a426e122 766 }
05330448
AL
767 }
768 qemu_free(s);
769
770 return ret;
771}
772
b30e93e9
JK
773static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
774 uint32_t count)
05330448
AL
775{
776 int i;
777 uint8_t *ptr = data;
778
779 for (i = 0; i < count; i++) {
780 if (direction == KVM_EXIT_IO_IN) {
781 switch (size) {
782 case 1:
afcea8cb 783 stb_p(ptr, cpu_inb(port));
05330448
AL
784 break;
785 case 2:
afcea8cb 786 stw_p(ptr, cpu_inw(port));
05330448
AL
787 break;
788 case 4:
afcea8cb 789 stl_p(ptr, cpu_inl(port));
05330448
AL
790 break;
791 }
792 } else {
793 switch (size) {
794 case 1:
afcea8cb 795 cpu_outb(port, ldub_p(ptr));
05330448
AL
796 break;
797 case 2:
afcea8cb 798 cpu_outw(port, lduw_p(ptr));
05330448
AL
799 break;
800 case 4:
afcea8cb 801 cpu_outl(port, ldl_p(ptr));
05330448
AL
802 break;
803 }
804 }
805
806 ptr += size;
807 }
05330448
AL
808}
809
7c80eef8 810#ifdef KVM_CAP_INTERNAL_ERROR_DATA
73aaec4a 811static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
7c80eef8 812{
bb44e0d1 813 fprintf(stderr, "KVM internal error.");
7c80eef8
MT
814 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
815 int i;
816
bb44e0d1 817 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
7c80eef8
MT
818 for (i = 0; i < run->internal.ndata; ++i) {
819 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
820 i, (uint64_t)run->internal.data[i]);
821 }
bb44e0d1
JK
822 } else {
823 fprintf(stderr, "\n");
7c80eef8 824 }
7c80eef8
MT
825 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
826 fprintf(stderr, "emulation failure\n");
a426e122 827 if (!kvm_arch_stop_on_emulation_error(env)) {
f5c848ee 828 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
73aaec4a 829 return 0;
a426e122 830 }
7c80eef8
MT
831 }
832 /* FIXME: Should trigger a qmp message to let management know
833 * something went wrong.
834 */
73aaec4a 835 return -1;
7c80eef8
MT
836}
837#endif
838
62a2744c 839void kvm_flush_coalesced_mmio_buffer(void)
f65ed4c1 840{
f65ed4c1 841 KVMState *s = kvm_state;
62a2744c
SY
842 if (s->coalesced_mmio_ring) {
843 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
f65ed4c1
AL
844 while (ring->first != ring->last) {
845 struct kvm_coalesced_mmio *ent;
846
847 ent = &ring->coalesced_mmio[ring->first];
848
849 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
85199474 850 smp_wmb();
f65ed4c1
AL
851 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
852 }
853 }
f65ed4c1
AL
854}
855
2705d56a 856static void do_kvm_cpu_synchronize_state(void *_env)
4c0960c0 857{
2705d56a
JK
858 CPUState *env = _env;
859
9ded2744 860 if (!env->kvm_vcpu_dirty) {
4c0960c0 861 kvm_arch_get_registers(env);
9ded2744 862 env->kvm_vcpu_dirty = 1;
4c0960c0
AK
863 }
864}
865
2705d56a
JK
866void kvm_cpu_synchronize_state(CPUState *env)
867{
a426e122 868 if (!env->kvm_vcpu_dirty) {
2705d56a 869 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
a426e122 870 }
2705d56a
JK
871}
872
ea375f9a
JK
873void kvm_cpu_synchronize_post_reset(CPUState *env)
874{
875 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
876 env->kvm_vcpu_dirty = 0;
877}
878
879void kvm_cpu_synchronize_post_init(CPUState *env)
880{
881 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
882 env->kvm_vcpu_dirty = 0;
883}
884
05330448
AL
885int kvm_cpu_exec(CPUState *env)
886{
887 struct kvm_run *run = env->kvm_run;
888 int ret;
889
8c0d577e 890 DPRINTF("kvm_cpu_exec()\n");
05330448 891
9ccfac9e
JK
892 if (kvm_arch_process_irqchip_events(env)) {
893 env->exit_request = 0;
6792a57b 894 return EXCP_HLT;
9ccfac9e 895 }
0af691d7 896
6792a57b
JK
897 cpu_single_env = env;
898
9ccfac9e 899 do {
9ded2744 900 if (env->kvm_vcpu_dirty) {
ea375f9a 901 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
9ded2744 902 env->kvm_vcpu_dirty = 0;
4c0960c0
AK
903 }
904
8c14c173 905 kvm_arch_pre_run(env, run);
9ccfac9e
JK
906 if (env->exit_request) {
907 DPRINTF("interrupt exit requested\n");
908 /*
909 * KVM requires us to reenter the kernel after IO exits to complete
910 * instruction emulation. This self-signal will ensure that we
911 * leave ASAP again.
912 */
913 qemu_cpu_kick_self();
914 }
273faf1b 915 cpu_single_env = NULL;
d549db5a 916 qemu_mutex_unlock_iothread();
9ccfac9e 917
05330448 918 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
9ccfac9e 919
d549db5a 920 qemu_mutex_lock_iothread();
273faf1b 921 cpu_single_env = env;
05330448
AL
922 kvm_arch_post_run(env, run);
923
b0c883b5
JK
924 kvm_flush_coalesced_mmio_buffer();
925
05330448 926 if (ret == -EINTR || ret == -EAGAIN) {
8c0d577e 927 DPRINTF("io window exit\n");
05330448
AL
928 ret = 0;
929 break;
930 }
931
932 if (ret < 0) {
8c0d577e 933 DPRINTF("kvm run failed %s\n", strerror(-ret));
05330448
AL
934 abort();
935 }
936
937 ret = 0; /* exit loop */
938 switch (run->exit_reason) {
939 case KVM_EXIT_IO:
8c0d577e 940 DPRINTF("handle_io\n");
b30e93e9
JK
941 kvm_handle_io(run->io.port,
942 (uint8_t *)run + run->io.data_offset,
943 run->io.direction,
944 run->io.size,
945 run->io.count);
946 ret = 1;
05330448
AL
947 break;
948 case KVM_EXIT_MMIO:
8c0d577e 949 DPRINTF("handle_mmio\n");
05330448
AL
950 cpu_physical_memory_rw(run->mmio.phys_addr,
951 run->mmio.data,
952 run->mmio.len,
953 run->mmio.is_write);
954 ret = 1;
955 break;
956 case KVM_EXIT_IRQ_WINDOW_OPEN:
8c0d577e 957 DPRINTF("irq_window_open\n");
05330448
AL
958 break;
959 case KVM_EXIT_SHUTDOWN:
8c0d577e 960 DPRINTF("shutdown\n");
05330448 961 qemu_system_reset_request();
05330448
AL
962 break;
963 case KVM_EXIT_UNKNOWN:
bb44e0d1
JK
964 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
965 (uint64_t)run->hw.hardware_exit_reason);
73aaec4a 966 ret = -1;
05330448 967 break;
7c80eef8
MT
968#ifdef KVM_CAP_INTERNAL_ERROR_DATA
969 case KVM_EXIT_INTERNAL_ERROR:
73aaec4a 970 ret = kvm_handle_internal_error(env, run);
7c80eef8
MT
971 break;
972#endif
05330448 973 case KVM_EXIT_DEBUG:
8c0d577e 974 DPRINTF("kvm_exit_debug\n");
e22a25c9
AL
975#ifdef KVM_CAP_SET_GUEST_DEBUG
976 if (kvm_arch_debug(&run->debug.arch)) {
6792a57b
JK
977 ret = EXCP_DEBUG;
978 goto out;
e22a25c9
AL
979 }
980 /* re-enter, this exception was guest-internal */
981 ret = 1;
982#endif /* KVM_CAP_SET_GUEST_DEBUG */
05330448
AL
983 break;
984 default:
8c0d577e 985 DPRINTF("kvm_arch_handle_exit\n");
05330448
AL
986 ret = kvm_arch_handle_exit(env, run);
987 break;
988 }
989 } while (ret > 0);
990
73aaec4a 991 if (ret < 0) {
f5c848ee 992 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
e07bbac5 993 vm_stop(VMSTOP_PANIC);
becfc390 994 }
6792a57b 995 ret = EXCP_INTERRUPT;
becfc390 996
6792a57b
JK
997out:
998 env->exit_request = 0;
999 cpu_single_env = NULL;
05330448
AL
1000 return ret;
1001}
1002
984b5181 1003int kvm_ioctl(KVMState *s, int type, ...)
05330448
AL
1004{
1005 int ret;
984b5181
AL
1006 void *arg;
1007 va_list ap;
05330448 1008
984b5181
AL
1009 va_start(ap, type);
1010 arg = va_arg(ap, void *);
1011 va_end(ap);
1012
1013 ret = ioctl(s->fd, type, arg);
a426e122 1014 if (ret == -1) {
05330448 1015 ret = -errno;
a426e122 1016 }
05330448
AL
1017 return ret;
1018}
1019
984b5181 1020int kvm_vm_ioctl(KVMState *s, int type, ...)
05330448
AL
1021{
1022 int ret;
984b5181
AL
1023 void *arg;
1024 va_list ap;
1025
1026 va_start(ap, type);
1027 arg = va_arg(ap, void *);
1028 va_end(ap);
05330448 1029
984b5181 1030 ret = ioctl(s->vmfd, type, arg);
a426e122 1031 if (ret == -1) {
05330448 1032 ret = -errno;
a426e122 1033 }
05330448
AL
1034 return ret;
1035}
1036
984b5181 1037int kvm_vcpu_ioctl(CPUState *env, int type, ...)
05330448
AL
1038{
1039 int ret;
984b5181
AL
1040 void *arg;
1041 va_list ap;
1042
1043 va_start(ap, type);
1044 arg = va_arg(ap, void *);
1045 va_end(ap);
05330448 1046
984b5181 1047 ret = ioctl(env->kvm_fd, type, arg);
a426e122 1048 if (ret == -1) {
05330448 1049 ret = -errno;
a426e122 1050 }
05330448
AL
1051 return ret;
1052}
bd322087
AL
1053
1054int kvm_has_sync_mmu(void)
1055{
94a8d39a 1056 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
bd322087 1057}
e22a25c9 1058
a0fb002c
JK
1059int kvm_has_vcpu_events(void)
1060{
1061 return kvm_state->vcpu_events;
1062}
1063
b0b1d690
JK
1064int kvm_has_robust_singlestep(void)
1065{
1066 return kvm_state->robust_singlestep;
1067}
1068
ff44f1a3
JK
1069int kvm_has_debugregs(void)
1070{
1071 return kvm_state->debugregs;
1072}
1073
f1665b21
SY
1074int kvm_has_xsave(void)
1075{
1076 return kvm_state->xsave;
1077}
1078
1079int kvm_has_xcrs(void)
1080{
1081 return kvm_state->xcrs;
1082}
1083
d2f2b8a7
SH
1084int kvm_has_many_ioeventfds(void)
1085{
1086 if (!kvm_enabled()) {
1087 return 0;
1088 }
1089 return kvm_state->many_ioeventfds;
1090}
1091
6f0437e8
JK
1092void kvm_setup_guest_memory(void *start, size_t size)
1093{
1094 if (!kvm_has_sync_mmu()) {
e78815a5 1095 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
6f0437e8
JK
1096
1097 if (ret) {
e78815a5
AF
1098 perror("qemu_madvise");
1099 fprintf(stderr,
1100 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
6f0437e8
JK
1101 exit(1);
1102 }
6f0437e8
JK
1103 }
1104}
1105
e22a25c9
AL
1106#ifdef KVM_CAP_SET_GUEST_DEBUG
1107struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1108 target_ulong pc)
1109{
1110 struct kvm_sw_breakpoint *bp;
1111
72cf2d4f 1112 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
a426e122 1113 if (bp->pc == pc) {
e22a25c9 1114 return bp;
a426e122 1115 }
e22a25c9
AL
1116 }
1117 return NULL;
1118}
1119
1120int kvm_sw_breakpoints_active(CPUState *env)
1121{
72cf2d4f 1122 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
e22a25c9
AL
1123}
1124
452e4751
GC
1125struct kvm_set_guest_debug_data {
1126 struct kvm_guest_debug dbg;
1127 CPUState *env;
1128 int err;
1129};
1130
1131static void kvm_invoke_set_guest_debug(void *data)
1132{
1133 struct kvm_set_guest_debug_data *dbg_data = data;
b3807725
JK
1134 CPUState *env = dbg_data->env;
1135
b3807725 1136 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
452e4751
GC
1137}
1138
e22a25c9
AL
1139int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1140{
452e4751 1141 struct kvm_set_guest_debug_data data;
e22a25c9 1142
b0b1d690 1143 data.dbg.control = reinject_trap;
e22a25c9 1144
b0b1d690
JK
1145 if (env->singlestep_enabled) {
1146 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1147 }
452e4751 1148 kvm_arch_update_guest_debug(env, &data.dbg);
452e4751 1149 data.env = env;
e22a25c9 1150
be41cbe0 1151 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
452e4751 1152 return data.err;
e22a25c9
AL
1153}
1154
1155int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1156 target_ulong len, int type)
1157{
1158 struct kvm_sw_breakpoint *bp;
1159 CPUState *env;
1160 int err;
1161
1162 if (type == GDB_BREAKPOINT_SW) {
1163 bp = kvm_find_sw_breakpoint(current_env, addr);
1164 if (bp) {
1165 bp->use_count++;
1166 return 0;
1167 }
1168
1169 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
a426e122 1170 if (!bp) {
e22a25c9 1171 return -ENOMEM;
a426e122 1172 }
e22a25c9
AL
1173
1174 bp->pc = addr;
1175 bp->use_count = 1;
1176 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1177 if (err) {
1178 free(bp);
1179 return err;
1180 }
1181
72cf2d4f 1182 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
e22a25c9
AL
1183 bp, entry);
1184 } else {
1185 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
a426e122 1186 if (err) {
e22a25c9 1187 return err;
a426e122 1188 }
e22a25c9
AL
1189 }
1190
1191 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1192 err = kvm_update_guest_debug(env, 0);
a426e122 1193 if (err) {
e22a25c9 1194 return err;
a426e122 1195 }
e22a25c9
AL
1196 }
1197 return 0;
1198}
1199
1200int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1201 target_ulong len, int type)
1202{
1203 struct kvm_sw_breakpoint *bp;
1204 CPUState *env;
1205 int err;
1206
1207 if (type == GDB_BREAKPOINT_SW) {
1208 bp = kvm_find_sw_breakpoint(current_env, addr);
a426e122 1209 if (!bp) {
e22a25c9 1210 return -ENOENT;
a426e122 1211 }
e22a25c9
AL
1212
1213 if (bp->use_count > 1) {
1214 bp->use_count--;
1215 return 0;
1216 }
1217
1218 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
a426e122 1219 if (err) {
e22a25c9 1220 return err;
a426e122 1221 }
e22a25c9 1222
72cf2d4f 1223 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
e22a25c9
AL
1224 qemu_free(bp);
1225 } else {
1226 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
a426e122 1227 if (err) {
e22a25c9 1228 return err;
a426e122 1229 }
e22a25c9
AL
1230 }
1231
1232 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1233 err = kvm_update_guest_debug(env, 0);
a426e122 1234 if (err) {
e22a25c9 1235 return err;
a426e122 1236 }
e22a25c9
AL
1237 }
1238 return 0;
1239}
1240
1241void kvm_remove_all_breakpoints(CPUState *current_env)
1242{
1243 struct kvm_sw_breakpoint *bp, *next;
1244 KVMState *s = current_env->kvm_state;
1245 CPUState *env;
1246
72cf2d4f 1247 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
e22a25c9
AL
1248 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1249 /* Try harder to find a CPU that currently sees the breakpoint. */
1250 for (env = first_cpu; env != NULL; env = env->next_cpu) {
a426e122 1251 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
e22a25c9 1252 break;
a426e122 1253 }
e22a25c9
AL
1254 }
1255 }
1256 }
1257 kvm_arch_remove_all_hw_breakpoints();
1258
a426e122 1259 for (env = first_cpu; env != NULL; env = env->next_cpu) {
e22a25c9 1260 kvm_update_guest_debug(env, 0);
a426e122 1261 }
e22a25c9
AL
1262}
1263
1264#else /* !KVM_CAP_SET_GUEST_DEBUG */
1265
1266int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1267{
1268 return -EINVAL;
1269}
1270
1271int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1272 target_ulong len, int type)
1273{
1274 return -EINVAL;
1275}
1276
1277int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1278 target_ulong len, int type)
1279{
1280 return -EINVAL;
1281}
1282
1283void kvm_remove_all_breakpoints(CPUState *current_env)
1284{
1285}
1286#endif /* !KVM_CAP_SET_GUEST_DEBUG */
cc84de95
MT
1287
1288int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1289{
1290 struct kvm_signal_mask *sigmask;
1291 int r;
1292
a426e122 1293 if (!sigset) {
cc84de95 1294 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
a426e122 1295 }
cc84de95
MT
1296
1297 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1298
1299 sigmask->len = 8;
1300 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1301 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1302 free(sigmask);
1303
1304 return r;
1305}
ca821806 1306
44f1a3d8
CM
1307int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1308{
1309#ifdef KVM_IOEVENTFD
1310 int ret;
1311 struct kvm_ioeventfd iofd;
1312
1313 iofd.datamatch = val;
1314 iofd.addr = addr;
1315 iofd.len = 4;
1316 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1317 iofd.fd = fd;
1318
1319 if (!kvm_enabled()) {
1320 return -ENOSYS;
1321 }
1322
1323 if (!assign) {
1324 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1325 }
1326
1327 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1328
1329 if (ret < 0) {
1330 return -errno;
1331 }
1332
1333 return 0;
1334#else
1335 return -ENOSYS;
1336#endif
1337}
1338
ca821806
MT
1339int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1340{
98c8573e 1341#ifdef KVM_IOEVENTFD
ca821806
MT
1342 struct kvm_ioeventfd kick = {
1343 .datamatch = val,
1344 .addr = addr,
1345 .len = 2,
1346 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1347 .fd = fd,
1348 };
1349 int r;
a426e122 1350 if (!kvm_enabled()) {
ca821806 1351 return -ENOSYS;
a426e122
JK
1352 }
1353 if (!assign) {
ca821806 1354 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
a426e122 1355 }
ca821806 1356 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
a426e122 1357 if (r < 0) {
ca821806 1358 return r;
a426e122 1359 }
ca821806 1360 return 0;
98c8573e
PB
1361#else
1362 return -ENOSYS;
ca821806 1363#endif
98c8573e 1364}
a1b87fe0
JK
1365
1366int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1367{
1368 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1369}
1370
1371int kvm_on_sigbus(int code, void *addr)
1372{
1373 return kvm_arch_on_sigbus(code, addr);
1374}