]> git.proxmox.com Git - qemu.git/blame - kvm-all.c
kvm: Install specialized interrupt handler
[qemu.git] / kvm-all.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5832d1f2 5 * Red Hat, Inc. 2008
05330448
AL
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
5832d1f2 9 * Glauber Costa <gcosta@redhat.com>
05330448
AL
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16#include <sys/types.h>
17#include <sys/ioctl.h>
18#include <sys/mman.h>
984b5181 19#include <stdarg.h>
05330448
AL
20
21#include <linux/kvm.h>
22
23#include "qemu-common.h"
85199474 24#include "qemu-barrier.h"
05330448 25#include "sysemu.h"
d33a1810 26#include "hw/hw.h"
e22a25c9 27#include "gdbstub.h"
05330448 28#include "kvm.h"
8369e01c 29#include "bswap.h"
05330448 30
d2f2b8a7
SH
31/* This check must be after config-host.h is included */
32#ifdef CONFIG_EVENTFD
33#include <sys/eventfd.h>
34#endif
35
f65ed4c1
AL
36/* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
37#define PAGE_SIZE TARGET_PAGE_SIZE
38
05330448
AL
39//#define DEBUG_KVM
40
41#ifdef DEBUG_KVM
8c0d577e 42#define DPRINTF(fmt, ...) \
05330448
AL
43 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
44#else
8c0d577e 45#define DPRINTF(fmt, ...) \
05330448
AL
46 do { } while (0)
47#endif
48
34fc643f
AL
49typedef struct KVMSlot
50{
c227f099
AL
51 target_phys_addr_t start_addr;
52 ram_addr_t memory_size;
53 ram_addr_t phys_offset;
34fc643f
AL
54 int slot;
55 int flags;
56} KVMSlot;
05330448 57
5832d1f2
AL
58typedef struct kvm_dirty_log KVMDirtyLog;
59
05330448
AL
60struct KVMState
61{
62 KVMSlot slots[32];
63 int fd;
64 int vmfd;
f65ed4c1 65 int coalesced_mmio;
62a2744c 66 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
e69917e2 67 int broken_set_mem_region;
4495d6a7 68 int migration_log;
a0fb002c 69 int vcpu_events;
b0b1d690 70 int robust_singlestep;
ff44f1a3 71 int debugregs;
e22a25c9
AL
72#ifdef KVM_CAP_SET_GUEST_DEBUG
73 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
74#endif
6f725c13
GC
75 int irqchip_in_kernel;
76 int pit_in_kernel;
f1665b21 77 int xsave, xcrs;
d2f2b8a7 78 int many_ioeventfds;
05330448
AL
79};
80
6a7af8cb 81KVMState *kvm_state;
05330448 82
94a8d39a
JK
83static const KVMCapabilityInfo kvm_required_capabilites[] = {
84 KVM_CAP_INFO(USER_MEMORY),
85 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
86 KVM_CAP_LAST_INFO
87};
88
05330448
AL
89static KVMSlot *kvm_alloc_slot(KVMState *s)
90{
91 int i;
92
93 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
a426e122 94 if (s->slots[i].memory_size == 0) {
05330448 95 return &s->slots[i];
a426e122 96 }
05330448
AL
97 }
98
d3f8d37f
AL
99 fprintf(stderr, "%s: no free slot available\n", __func__);
100 abort();
101}
102
103static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
c227f099
AL
104 target_phys_addr_t start_addr,
105 target_phys_addr_t end_addr)
d3f8d37f
AL
106{
107 int i;
108
109 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
110 KVMSlot *mem = &s->slots[i];
111
112 if (start_addr == mem->start_addr &&
113 end_addr == mem->start_addr + mem->memory_size) {
114 return mem;
115 }
116 }
117
05330448
AL
118 return NULL;
119}
120
6152e2ae
AL
121/*
122 * Find overlapping slot with lowest start address
123 */
124static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
c227f099
AL
125 target_phys_addr_t start_addr,
126 target_phys_addr_t end_addr)
05330448 127{
6152e2ae 128 KVMSlot *found = NULL;
05330448
AL
129 int i;
130
131 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
132 KVMSlot *mem = &s->slots[i];
133
6152e2ae
AL
134 if (mem->memory_size == 0 ||
135 (found && found->start_addr < mem->start_addr)) {
136 continue;
137 }
138
139 if (end_addr > mem->start_addr &&
140 start_addr < mem->start_addr + mem->memory_size) {
141 found = mem;
142 }
05330448
AL
143 }
144
6152e2ae 145 return found;
05330448
AL
146}
147
983dfc3b
HY
148int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr,
149 target_phys_addr_t *phys_addr)
150{
151 int i;
152
153 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
154 KVMSlot *mem = &s->slots[i];
155
156 if (ram_addr >= mem->phys_offset &&
157 ram_addr < mem->phys_offset + mem->memory_size) {
158 *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset);
159 return 1;
160 }
161 }
162
163 return 0;
164}
165
5832d1f2
AL
166static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
167{
168 struct kvm_userspace_memory_region mem;
169
170 mem.slot = slot->slot;
171 mem.guest_phys_addr = slot->start_addr;
172 mem.memory_size = slot->memory_size;
b2e0a138 173 mem.userspace_addr = (unsigned long)qemu_safe_ram_ptr(slot->phys_offset);
5832d1f2 174 mem.flags = slot->flags;
4495d6a7
JK
175 if (s->migration_log) {
176 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
177 }
5832d1f2
AL
178 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
179}
180
8d2ba1fb
JK
181static void kvm_reset_vcpu(void *opaque)
182{
183 CPUState *env = opaque;
184
caa5af0f 185 kvm_arch_reset_vcpu(env);
8d2ba1fb 186}
5832d1f2 187
6f725c13
GC
188int kvm_irqchip_in_kernel(void)
189{
190 return kvm_state->irqchip_in_kernel;
191}
192
193int kvm_pit_in_kernel(void)
194{
195 return kvm_state->pit_in_kernel;
196}
197
05330448
AL
198int kvm_init_vcpu(CPUState *env)
199{
200 KVMState *s = kvm_state;
201 long mmap_size;
202 int ret;
203
8c0d577e 204 DPRINTF("kvm_init_vcpu\n");
05330448 205
984b5181 206 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
05330448 207 if (ret < 0) {
8c0d577e 208 DPRINTF("kvm_create_vcpu failed\n");
05330448
AL
209 goto err;
210 }
211
212 env->kvm_fd = ret;
213 env->kvm_state = s;
d841b6c4 214 env->kvm_vcpu_dirty = 1;
05330448
AL
215
216 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
217 if (mmap_size < 0) {
748a680b 218 ret = mmap_size;
8c0d577e 219 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
05330448
AL
220 goto err;
221 }
222
223 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
224 env->kvm_fd, 0);
225 if (env->kvm_run == MAP_FAILED) {
226 ret = -errno;
8c0d577e 227 DPRINTF("mmap'ing vcpu state failed\n");
05330448
AL
228 goto err;
229 }
230
a426e122
JK
231 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
232 s->coalesced_mmio_ring =
233 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
234 }
62a2744c 235
05330448 236 ret = kvm_arch_init_vcpu(env);
8d2ba1fb 237 if (ret == 0) {
a08d4367 238 qemu_register_reset(kvm_reset_vcpu, env);
caa5af0f 239 kvm_arch_reset_vcpu(env);
8d2ba1fb 240 }
05330448
AL
241err:
242 return ret;
243}
244
5832d1f2
AL
245/*
246 * dirty pages logging control
247 */
c227f099
AL
248static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
249 ram_addr_t size, int flags, int mask)
5832d1f2
AL
250{
251 KVMState *s = kvm_state;
d3f8d37f 252 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
4495d6a7
JK
253 int old_flags;
254
5832d1f2 255 if (mem == NULL) {
d3f8d37f
AL
256 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
257 TARGET_FMT_plx "\n", __func__, phys_addr,
c227f099 258 (target_phys_addr_t)(phys_addr + size - 1));
5832d1f2
AL
259 return -EINVAL;
260 }
261
4495d6a7 262 old_flags = mem->flags;
5832d1f2 263
4495d6a7 264 flags = (mem->flags & ~mask) | flags;
5832d1f2
AL
265 mem->flags = flags;
266
4495d6a7
JK
267 /* If nothing changed effectively, no need to issue ioctl */
268 if (s->migration_log) {
269 flags |= KVM_MEM_LOG_DIRTY_PAGES;
270 }
271 if (flags == old_flags) {
272 return 0;
273 }
274
5832d1f2
AL
275 return kvm_set_user_memory_region(s, mem);
276}
277
e5896b12
AP
278static int kvm_log_start(CPUPhysMemoryClient *client,
279 target_phys_addr_t phys_addr, ram_addr_t size)
5832d1f2 280{
a426e122
JK
281 return kvm_dirty_pages_log_change(phys_addr, size, KVM_MEM_LOG_DIRTY_PAGES,
282 KVM_MEM_LOG_DIRTY_PAGES);
5832d1f2
AL
283}
284
e5896b12
AP
285static int kvm_log_stop(CPUPhysMemoryClient *client,
286 target_phys_addr_t phys_addr, ram_addr_t size)
5832d1f2 287{
a426e122
JK
288 return kvm_dirty_pages_log_change(phys_addr, size, 0,
289 KVM_MEM_LOG_DIRTY_PAGES);
5832d1f2
AL
290}
291
7b8f3b78 292static int kvm_set_migration_log(int enable)
4495d6a7
JK
293{
294 KVMState *s = kvm_state;
295 KVMSlot *mem;
296 int i, err;
297
298 s->migration_log = enable;
299
300 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
301 mem = &s->slots[i];
302
70fedd76
AW
303 if (!mem->memory_size) {
304 continue;
305 }
4495d6a7
JK
306 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
307 continue;
308 }
309 err = kvm_set_user_memory_region(s, mem);
310 if (err) {
311 return err;
312 }
313 }
314 return 0;
315}
316
8369e01c
MT
317/* get kvm's dirty pages bitmap and update qemu's */
318static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
319 unsigned long *bitmap,
320 unsigned long offset,
321 unsigned long mem_size)
96c1606b 322{
8369e01c
MT
323 unsigned int i, j;
324 unsigned long page_number, addr, addr1, c;
325 ram_addr_t ram_addr;
326 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
327 HOST_LONG_BITS;
328
329 /*
330 * bitmap-traveling is faster than memory-traveling (for addr...)
331 * especially when most of the memory is not dirty.
332 */
333 for (i = 0; i < len; i++) {
334 if (bitmap[i] != 0) {
335 c = leul_to_cpu(bitmap[i]);
336 do {
337 j = ffsl(c) - 1;
338 c &= ~(1ul << j);
339 page_number = i * HOST_LONG_BITS + j;
340 addr1 = page_number * TARGET_PAGE_SIZE;
341 addr = offset + addr1;
342 ram_addr = cpu_get_physical_page_desc(addr);
343 cpu_physical_memory_set_dirty(ram_addr);
344 } while (c != 0);
345 }
346 }
347 return 0;
96c1606b
AG
348}
349
8369e01c
MT
350#define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
351
5832d1f2
AL
352/**
353 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
354 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
355 * This means all bits are set to dirty.
356 *
d3f8d37f 357 * @start_add: start of logged region.
5832d1f2
AL
358 * @end_addr: end of logged region.
359 */
7b8f3b78 360static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
a426e122 361 target_phys_addr_t end_addr)
5832d1f2
AL
362{
363 KVMState *s = kvm_state;
151f7749 364 unsigned long size, allocated_size = 0;
151f7749
JK
365 KVMDirtyLog d;
366 KVMSlot *mem;
367 int ret = 0;
5832d1f2 368
151f7749
JK
369 d.dirty_bitmap = NULL;
370 while (start_addr < end_addr) {
371 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
372 if (mem == NULL) {
373 break;
374 }
5832d1f2 375
8369e01c 376 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8;
151f7749
JK
377 if (!d.dirty_bitmap) {
378 d.dirty_bitmap = qemu_malloc(size);
379 } else if (size > allocated_size) {
380 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
381 }
382 allocated_size = size;
383 memset(d.dirty_bitmap, 0, allocated_size);
5832d1f2 384
151f7749 385 d.slot = mem->slot;
5832d1f2 386
6e489f3f 387 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
8c0d577e 388 DPRINTF("ioctl failed %d\n", errno);
151f7749
JK
389 ret = -1;
390 break;
391 }
5832d1f2 392
8369e01c
MT
393 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
394 mem->start_addr, mem->memory_size);
395 start_addr = mem->start_addr + mem->memory_size;
5832d1f2 396 }
5832d1f2 397 qemu_free(d.dirty_bitmap);
151f7749
JK
398
399 return ret;
5832d1f2
AL
400}
401
c227f099 402int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
f65ed4c1
AL
403{
404 int ret = -ENOSYS;
f65ed4c1
AL
405 KVMState *s = kvm_state;
406
407 if (s->coalesced_mmio) {
408 struct kvm_coalesced_mmio_zone zone;
409
410 zone.addr = start;
411 zone.size = size;
412
413 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
414 }
f65ed4c1
AL
415
416 return ret;
417}
418
c227f099 419int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
f65ed4c1
AL
420{
421 int ret = -ENOSYS;
f65ed4c1
AL
422 KVMState *s = kvm_state;
423
424 if (s->coalesced_mmio) {
425 struct kvm_coalesced_mmio_zone zone;
426
427 zone.addr = start;
428 zone.size = size;
429
430 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
431 }
f65ed4c1
AL
432
433 return ret;
434}
435
ad7b8b33
AL
436int kvm_check_extension(KVMState *s, unsigned int extension)
437{
438 int ret;
439
440 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
441 if (ret < 0) {
442 ret = 0;
443 }
444
445 return ret;
446}
447
d2f2b8a7
SH
448static int kvm_check_many_ioeventfds(void)
449{
d0dcac83
SH
450 /* Userspace can use ioeventfd for io notification. This requires a host
451 * that supports eventfd(2) and an I/O thread; since eventfd does not
452 * support SIGIO it cannot interrupt the vcpu.
453 *
454 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
d2f2b8a7
SH
455 * can avoid creating too many ioeventfds.
456 */
d0dcac83 457#if defined(CONFIG_EVENTFD) && defined(CONFIG_IOTHREAD)
d2f2b8a7
SH
458 int ioeventfds[7];
459 int i, ret = 0;
460 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
461 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
462 if (ioeventfds[i] < 0) {
463 break;
464 }
465 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
466 if (ret < 0) {
467 close(ioeventfds[i]);
468 break;
469 }
470 }
471
472 /* Decide whether many devices are supported or not */
473 ret = i == ARRAY_SIZE(ioeventfds);
474
475 while (i-- > 0) {
476 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
477 close(ioeventfds[i]);
478 }
479 return ret;
480#else
481 return 0;
482#endif
483}
484
94a8d39a
JK
485static const KVMCapabilityInfo *
486kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
487{
488 while (list->name) {
489 if (!kvm_check_extension(s, list->value)) {
490 return list;
491 }
492 list++;
493 }
494 return NULL;
495}
496
a426e122
JK
497static void kvm_set_phys_mem(target_phys_addr_t start_addr, ram_addr_t size,
498 ram_addr_t phys_offset)
46dbef6a
MT
499{
500 KVMState *s = kvm_state;
501 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
502 KVMSlot *mem, old;
503 int err;
504
14542fea
GN
505 /* kvm works in page size chunks, but the function may be called
506 with sub-page size and unaligned start address. */
507 size = TARGET_PAGE_ALIGN(size);
508 start_addr = TARGET_PAGE_ALIGN(start_addr);
46dbef6a
MT
509
510 /* KVM does not support read-only slots */
511 phys_offset &= ~IO_MEM_ROM;
512
513 while (1) {
514 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
515 if (!mem) {
516 break;
517 }
518
519 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
520 (start_addr + size <= mem->start_addr + mem->memory_size) &&
521 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
522 /* The new slot fits into the existing one and comes with
523 * identical parameters - nothing to be done. */
524 return;
525 }
526
527 old = *mem;
528
529 /* unregister the overlapping slot */
530 mem->memory_size = 0;
531 err = kvm_set_user_memory_region(s, mem);
532 if (err) {
533 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
534 __func__, strerror(-err));
535 abort();
536 }
537
538 /* Workaround for older KVM versions: we can't join slots, even not by
539 * unregistering the previous ones and then registering the larger
540 * slot. We have to maintain the existing fragmentation. Sigh.
541 *
542 * This workaround assumes that the new slot starts at the same
543 * address as the first existing one. If not or if some overlapping
544 * slot comes around later, we will fail (not seen in practice so far)
545 * - and actually require a recent KVM version. */
546 if (s->broken_set_mem_region &&
547 old.start_addr == start_addr && old.memory_size < size &&
548 flags < IO_MEM_UNASSIGNED) {
549 mem = kvm_alloc_slot(s);
550 mem->memory_size = old.memory_size;
551 mem->start_addr = old.start_addr;
552 mem->phys_offset = old.phys_offset;
553 mem->flags = 0;
554
555 err = kvm_set_user_memory_region(s, mem);
556 if (err) {
557 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
558 strerror(-err));
559 abort();
560 }
561
562 start_addr += old.memory_size;
563 phys_offset += old.memory_size;
564 size -= old.memory_size;
565 continue;
566 }
567
568 /* register prefix slot */
569 if (old.start_addr < start_addr) {
570 mem = kvm_alloc_slot(s);
571 mem->memory_size = start_addr - old.start_addr;
572 mem->start_addr = old.start_addr;
573 mem->phys_offset = old.phys_offset;
574 mem->flags = 0;
575
576 err = kvm_set_user_memory_region(s, mem);
577 if (err) {
578 fprintf(stderr, "%s: error registering prefix slot: %s\n",
579 __func__, strerror(-err));
580 abort();
581 }
582 }
583
584 /* register suffix slot */
585 if (old.start_addr + old.memory_size > start_addr + size) {
586 ram_addr_t size_delta;
587
588 mem = kvm_alloc_slot(s);
589 mem->start_addr = start_addr + size;
590 size_delta = mem->start_addr - old.start_addr;
591 mem->memory_size = old.memory_size - size_delta;
592 mem->phys_offset = old.phys_offset + size_delta;
593 mem->flags = 0;
594
595 err = kvm_set_user_memory_region(s, mem);
596 if (err) {
597 fprintf(stderr, "%s: error registering suffix slot: %s\n",
598 __func__, strerror(-err));
599 abort();
600 }
601 }
602 }
603
604 /* in case the KVM bug workaround already "consumed" the new slot */
a426e122 605 if (!size) {
46dbef6a 606 return;
a426e122 607 }
46dbef6a 608 /* KVM does not need to know about this memory */
a426e122 609 if (flags >= IO_MEM_UNASSIGNED) {
46dbef6a 610 return;
a426e122 611 }
46dbef6a
MT
612 mem = kvm_alloc_slot(s);
613 mem->memory_size = size;
614 mem->start_addr = start_addr;
615 mem->phys_offset = phys_offset;
616 mem->flags = 0;
617
618 err = kvm_set_user_memory_region(s, mem);
619 if (err) {
620 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
621 strerror(-err));
622 abort();
623 }
624}
625
7b8f3b78 626static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
a426e122
JK
627 target_phys_addr_t start_addr,
628 ram_addr_t size, ram_addr_t phys_offset)
7b8f3b78 629{
a426e122 630 kvm_set_phys_mem(start_addr, size, phys_offset);
7b8f3b78
MT
631}
632
633static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
a426e122
JK
634 target_phys_addr_t start_addr,
635 target_phys_addr_t end_addr)
7b8f3b78 636{
a426e122 637 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
7b8f3b78
MT
638}
639
640static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
a426e122 641 int enable)
7b8f3b78 642{
a426e122 643 return kvm_set_migration_log(enable);
7b8f3b78
MT
644}
645
646static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
a426e122
JK
647 .set_memory = kvm_client_set_memory,
648 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
649 .migration_log = kvm_client_migration_log,
e5896b12
AP
650 .log_start = kvm_log_start,
651 .log_stop = kvm_log_stop,
7b8f3b78
MT
652};
653
aa7f74d1
JK
654static void kvm_handle_interrupt(CPUState *env, int mask)
655{
656 env->interrupt_request |= mask;
657
658 if (!qemu_cpu_is_self(env)) {
659 qemu_cpu_kick(env);
660 }
661}
662
cad1e282 663int kvm_init(void)
05330448 664{
168ccc11
JK
665 static const char upgrade_note[] =
666 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
667 "(see http://sourceforge.net/projects/kvm).\n";
05330448 668 KVMState *s;
94a8d39a 669 const KVMCapabilityInfo *missing_cap;
05330448
AL
670 int ret;
671 int i;
672
05330448 673 s = qemu_mallocz(sizeof(KVMState));
05330448 674
e22a25c9 675#ifdef KVM_CAP_SET_GUEST_DEBUG
72cf2d4f 676 QTAILQ_INIT(&s->kvm_sw_breakpoints);
e22a25c9 677#endif
a426e122 678 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
05330448 679 s->slots[i].slot = i;
a426e122 680 }
05330448 681 s->vmfd = -1;
40ff6d7e 682 s->fd = qemu_open("/dev/kvm", O_RDWR);
05330448
AL
683 if (s->fd == -1) {
684 fprintf(stderr, "Could not access KVM kernel module: %m\n");
685 ret = -errno;
686 goto err;
687 }
688
689 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
690 if (ret < KVM_API_VERSION) {
a426e122 691 if (ret > 0) {
05330448 692 ret = -EINVAL;
a426e122 693 }
05330448
AL
694 fprintf(stderr, "kvm version too old\n");
695 goto err;
696 }
697
698 if (ret > KVM_API_VERSION) {
699 ret = -EINVAL;
700 fprintf(stderr, "kvm version not supported\n");
701 goto err;
702 }
703
704 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
0104dcac
AG
705 if (s->vmfd < 0) {
706#ifdef TARGET_S390X
707 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
708 "your host kernel command line\n");
709#endif
05330448 710 goto err;
0104dcac 711 }
05330448 712
94a8d39a
JK
713 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
714 if (!missing_cap) {
715 missing_cap =
716 kvm_check_extension_list(s, kvm_arch_required_capabilities);
05330448 717 }
94a8d39a 718 if (missing_cap) {
ad7b8b33 719 ret = -EINVAL;
94a8d39a
JK
720 fprintf(stderr, "kvm does not support %s\n%s",
721 missing_cap->name, upgrade_note);
d85dc283
AL
722 goto err;
723 }
724
ad7b8b33 725 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
f65ed4c1 726
e69917e2
JK
727 s->broken_set_mem_region = 1;
728#ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
14a09518 729 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
e69917e2
JK
730 if (ret > 0) {
731 s->broken_set_mem_region = 0;
732 }
733#endif
734
a0fb002c
JK
735 s->vcpu_events = 0;
736#ifdef KVM_CAP_VCPU_EVENTS
737 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
738#endif
739
b0b1d690
JK
740 s->robust_singlestep = 0;
741#ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
742 s->robust_singlestep =
743 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
744#endif
745
ff44f1a3
JK
746 s->debugregs = 0;
747#ifdef KVM_CAP_DEBUGREGS
748 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
749#endif
750
f1665b21
SY
751 s->xsave = 0;
752#ifdef KVM_CAP_XSAVE
753 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
754#endif
755
756 s->xcrs = 0;
757#ifdef KVM_CAP_XCRS
758 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
759#endif
760
cad1e282 761 ret = kvm_arch_init(s);
a426e122 762 if (ret < 0) {
05330448 763 goto err;
a426e122 764 }
05330448
AL
765
766 kvm_state = s;
7b8f3b78 767 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
05330448 768
d2f2b8a7
SH
769 s->many_ioeventfds = kvm_check_many_ioeventfds();
770
aa7f74d1
JK
771 cpu_interrupt_handler = kvm_handle_interrupt;
772
05330448
AL
773 return 0;
774
775err:
776 if (s) {
a426e122 777 if (s->vmfd != -1) {
05330448 778 close(s->vmfd);
a426e122
JK
779 }
780 if (s->fd != -1) {
05330448 781 close(s->fd);
a426e122 782 }
05330448
AL
783 }
784 qemu_free(s);
785
786 return ret;
787}
788
b30e93e9
JK
789static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
790 uint32_t count)
05330448
AL
791{
792 int i;
793 uint8_t *ptr = data;
794
795 for (i = 0; i < count; i++) {
796 if (direction == KVM_EXIT_IO_IN) {
797 switch (size) {
798 case 1:
afcea8cb 799 stb_p(ptr, cpu_inb(port));
05330448
AL
800 break;
801 case 2:
afcea8cb 802 stw_p(ptr, cpu_inw(port));
05330448
AL
803 break;
804 case 4:
afcea8cb 805 stl_p(ptr, cpu_inl(port));
05330448
AL
806 break;
807 }
808 } else {
809 switch (size) {
810 case 1:
afcea8cb 811 cpu_outb(port, ldub_p(ptr));
05330448
AL
812 break;
813 case 2:
afcea8cb 814 cpu_outw(port, lduw_p(ptr));
05330448
AL
815 break;
816 case 4:
afcea8cb 817 cpu_outl(port, ldl_p(ptr));
05330448
AL
818 break;
819 }
820 }
821
822 ptr += size;
823 }
05330448
AL
824}
825
7c80eef8 826#ifdef KVM_CAP_INTERNAL_ERROR_DATA
73aaec4a 827static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
7c80eef8 828{
bb44e0d1 829 fprintf(stderr, "KVM internal error.");
7c80eef8
MT
830 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
831 int i;
832
bb44e0d1 833 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
7c80eef8
MT
834 for (i = 0; i < run->internal.ndata; ++i) {
835 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
836 i, (uint64_t)run->internal.data[i]);
837 }
bb44e0d1
JK
838 } else {
839 fprintf(stderr, "\n");
7c80eef8 840 }
7c80eef8
MT
841 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
842 fprintf(stderr, "emulation failure\n");
a426e122 843 if (!kvm_arch_stop_on_emulation_error(env)) {
f5c848ee 844 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
d73cd8f4 845 return EXCP_INTERRUPT;
a426e122 846 }
7c80eef8
MT
847 }
848 /* FIXME: Should trigger a qmp message to let management know
849 * something went wrong.
850 */
73aaec4a 851 return -1;
7c80eef8
MT
852}
853#endif
854
62a2744c 855void kvm_flush_coalesced_mmio_buffer(void)
f65ed4c1 856{
f65ed4c1 857 KVMState *s = kvm_state;
62a2744c
SY
858 if (s->coalesced_mmio_ring) {
859 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
f65ed4c1
AL
860 while (ring->first != ring->last) {
861 struct kvm_coalesced_mmio *ent;
862
863 ent = &ring->coalesced_mmio[ring->first];
864
865 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
85199474 866 smp_wmb();
f65ed4c1
AL
867 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
868 }
869 }
f65ed4c1
AL
870}
871
2705d56a 872static void do_kvm_cpu_synchronize_state(void *_env)
4c0960c0 873{
2705d56a
JK
874 CPUState *env = _env;
875
9ded2744 876 if (!env->kvm_vcpu_dirty) {
4c0960c0 877 kvm_arch_get_registers(env);
9ded2744 878 env->kvm_vcpu_dirty = 1;
4c0960c0
AK
879 }
880}
881
2705d56a
JK
882void kvm_cpu_synchronize_state(CPUState *env)
883{
a426e122 884 if (!env->kvm_vcpu_dirty) {
2705d56a 885 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
a426e122 886 }
2705d56a
JK
887}
888
ea375f9a
JK
889void kvm_cpu_synchronize_post_reset(CPUState *env)
890{
891 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
892 env->kvm_vcpu_dirty = 0;
893}
894
895void kvm_cpu_synchronize_post_init(CPUState *env)
896{
897 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
898 env->kvm_vcpu_dirty = 0;
899}
900
05330448
AL
901int kvm_cpu_exec(CPUState *env)
902{
903 struct kvm_run *run = env->kvm_run;
7cbb533f 904 int ret, run_ret;
05330448 905
8c0d577e 906 DPRINTF("kvm_cpu_exec()\n");
05330448 907
99036865 908 if (kvm_arch_process_async_events(env)) {
9ccfac9e 909 env->exit_request = 0;
6792a57b 910 return EXCP_HLT;
9ccfac9e 911 }
0af691d7 912
6792a57b
JK
913 cpu_single_env = env;
914
9ccfac9e 915 do {
9ded2744 916 if (env->kvm_vcpu_dirty) {
ea375f9a 917 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
9ded2744 918 env->kvm_vcpu_dirty = 0;
4c0960c0
AK
919 }
920
8c14c173 921 kvm_arch_pre_run(env, run);
9ccfac9e
JK
922 if (env->exit_request) {
923 DPRINTF("interrupt exit requested\n");
924 /*
925 * KVM requires us to reenter the kernel after IO exits to complete
926 * instruction emulation. This self-signal will ensure that we
927 * leave ASAP again.
928 */
929 qemu_cpu_kick_self();
930 }
273faf1b 931 cpu_single_env = NULL;
d549db5a 932 qemu_mutex_unlock_iothread();
9ccfac9e 933
7cbb533f 934 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
9ccfac9e 935
d549db5a 936 qemu_mutex_lock_iothread();
273faf1b 937 cpu_single_env = env;
05330448
AL
938 kvm_arch_post_run(env, run);
939
b0c883b5
JK
940 kvm_flush_coalesced_mmio_buffer();
941
7cbb533f 942 if (run_ret < 0) {
dc77d341
JK
943 if (run_ret == -EINTR || run_ret == -EAGAIN) {
944 DPRINTF("io window exit\n");
d73cd8f4 945 ret = EXCP_INTERRUPT;
dc77d341
JK
946 break;
947 }
7cbb533f 948 DPRINTF("kvm run failed %s\n", strerror(-run_ret));
05330448
AL
949 abort();
950 }
951
05330448
AL
952 switch (run->exit_reason) {
953 case KVM_EXIT_IO:
8c0d577e 954 DPRINTF("handle_io\n");
b30e93e9
JK
955 kvm_handle_io(run->io.port,
956 (uint8_t *)run + run->io.data_offset,
957 run->io.direction,
958 run->io.size,
959 run->io.count);
d73cd8f4 960 ret = 0;
05330448
AL
961 break;
962 case KVM_EXIT_MMIO:
8c0d577e 963 DPRINTF("handle_mmio\n");
05330448
AL
964 cpu_physical_memory_rw(run->mmio.phys_addr,
965 run->mmio.data,
966 run->mmio.len,
967 run->mmio.is_write);
d73cd8f4 968 ret = 0;
05330448
AL
969 break;
970 case KVM_EXIT_IRQ_WINDOW_OPEN:
8c0d577e 971 DPRINTF("irq_window_open\n");
d73cd8f4 972 ret = EXCP_INTERRUPT;
05330448
AL
973 break;
974 case KVM_EXIT_SHUTDOWN:
8c0d577e 975 DPRINTF("shutdown\n");
05330448 976 qemu_system_reset_request();
d73cd8f4 977 ret = EXCP_INTERRUPT;
05330448
AL
978 break;
979 case KVM_EXIT_UNKNOWN:
bb44e0d1
JK
980 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
981 (uint64_t)run->hw.hardware_exit_reason);
73aaec4a 982 ret = -1;
05330448 983 break;
7c80eef8
MT
984#ifdef KVM_CAP_INTERNAL_ERROR_DATA
985 case KVM_EXIT_INTERNAL_ERROR:
73aaec4a 986 ret = kvm_handle_internal_error(env, run);
7c80eef8
MT
987 break;
988#endif
05330448 989 default:
8c0d577e 990 DPRINTF("kvm_arch_handle_exit\n");
05330448
AL
991 ret = kvm_arch_handle_exit(env, run);
992 break;
993 }
d73cd8f4 994 } while (ret == 0);
05330448 995
73aaec4a 996 if (ret < 0) {
f5c848ee 997 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
e07bbac5 998 vm_stop(VMSTOP_PANIC);
becfc390
AL
999 }
1000
6792a57b
JK
1001 env->exit_request = 0;
1002 cpu_single_env = NULL;
05330448
AL
1003 return ret;
1004}
1005
984b5181 1006int kvm_ioctl(KVMState *s, int type, ...)
05330448
AL
1007{
1008 int ret;
984b5181
AL
1009 void *arg;
1010 va_list ap;
05330448 1011
984b5181
AL
1012 va_start(ap, type);
1013 arg = va_arg(ap, void *);
1014 va_end(ap);
1015
1016 ret = ioctl(s->fd, type, arg);
a426e122 1017 if (ret == -1) {
05330448 1018 ret = -errno;
a426e122 1019 }
05330448
AL
1020 return ret;
1021}
1022
984b5181 1023int kvm_vm_ioctl(KVMState *s, int type, ...)
05330448
AL
1024{
1025 int ret;
984b5181
AL
1026 void *arg;
1027 va_list ap;
1028
1029 va_start(ap, type);
1030 arg = va_arg(ap, void *);
1031 va_end(ap);
05330448 1032
984b5181 1033 ret = ioctl(s->vmfd, type, arg);
a426e122 1034 if (ret == -1) {
05330448 1035 ret = -errno;
a426e122 1036 }
05330448
AL
1037 return ret;
1038}
1039
984b5181 1040int kvm_vcpu_ioctl(CPUState *env, int type, ...)
05330448
AL
1041{
1042 int ret;
984b5181
AL
1043 void *arg;
1044 va_list ap;
1045
1046 va_start(ap, type);
1047 arg = va_arg(ap, void *);
1048 va_end(ap);
05330448 1049
984b5181 1050 ret = ioctl(env->kvm_fd, type, arg);
a426e122 1051 if (ret == -1) {
05330448 1052 ret = -errno;
a426e122 1053 }
05330448
AL
1054 return ret;
1055}
bd322087
AL
1056
1057int kvm_has_sync_mmu(void)
1058{
94a8d39a 1059 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
bd322087 1060}
e22a25c9 1061
a0fb002c
JK
1062int kvm_has_vcpu_events(void)
1063{
1064 return kvm_state->vcpu_events;
1065}
1066
b0b1d690
JK
1067int kvm_has_robust_singlestep(void)
1068{
1069 return kvm_state->robust_singlestep;
1070}
1071
ff44f1a3
JK
1072int kvm_has_debugregs(void)
1073{
1074 return kvm_state->debugregs;
1075}
1076
f1665b21
SY
1077int kvm_has_xsave(void)
1078{
1079 return kvm_state->xsave;
1080}
1081
1082int kvm_has_xcrs(void)
1083{
1084 return kvm_state->xcrs;
1085}
1086
d2f2b8a7
SH
1087int kvm_has_many_ioeventfds(void)
1088{
1089 if (!kvm_enabled()) {
1090 return 0;
1091 }
1092 return kvm_state->many_ioeventfds;
1093}
1094
6f0437e8
JK
1095void kvm_setup_guest_memory(void *start, size_t size)
1096{
1097 if (!kvm_has_sync_mmu()) {
e78815a5 1098 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
6f0437e8
JK
1099
1100 if (ret) {
e78815a5
AF
1101 perror("qemu_madvise");
1102 fprintf(stderr,
1103 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
6f0437e8
JK
1104 exit(1);
1105 }
6f0437e8
JK
1106 }
1107}
1108
e22a25c9
AL
1109#ifdef KVM_CAP_SET_GUEST_DEBUG
1110struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1111 target_ulong pc)
1112{
1113 struct kvm_sw_breakpoint *bp;
1114
72cf2d4f 1115 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
a426e122 1116 if (bp->pc == pc) {
e22a25c9 1117 return bp;
a426e122 1118 }
e22a25c9
AL
1119 }
1120 return NULL;
1121}
1122
1123int kvm_sw_breakpoints_active(CPUState *env)
1124{
72cf2d4f 1125 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
e22a25c9
AL
1126}
1127
452e4751
GC
1128struct kvm_set_guest_debug_data {
1129 struct kvm_guest_debug dbg;
1130 CPUState *env;
1131 int err;
1132};
1133
1134static void kvm_invoke_set_guest_debug(void *data)
1135{
1136 struct kvm_set_guest_debug_data *dbg_data = data;
b3807725
JK
1137 CPUState *env = dbg_data->env;
1138
b3807725 1139 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
452e4751
GC
1140}
1141
e22a25c9
AL
1142int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1143{
452e4751 1144 struct kvm_set_guest_debug_data data;
e22a25c9 1145
b0b1d690 1146 data.dbg.control = reinject_trap;
e22a25c9 1147
b0b1d690
JK
1148 if (env->singlestep_enabled) {
1149 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1150 }
452e4751 1151 kvm_arch_update_guest_debug(env, &data.dbg);
452e4751 1152 data.env = env;
e22a25c9 1153
be41cbe0 1154 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
452e4751 1155 return data.err;
e22a25c9
AL
1156}
1157
1158int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1159 target_ulong len, int type)
1160{
1161 struct kvm_sw_breakpoint *bp;
1162 CPUState *env;
1163 int err;
1164
1165 if (type == GDB_BREAKPOINT_SW) {
1166 bp = kvm_find_sw_breakpoint(current_env, addr);
1167 if (bp) {
1168 bp->use_count++;
1169 return 0;
1170 }
1171
1172 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
a426e122 1173 if (!bp) {
e22a25c9 1174 return -ENOMEM;
a426e122 1175 }
e22a25c9
AL
1176
1177 bp->pc = addr;
1178 bp->use_count = 1;
1179 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1180 if (err) {
1181 free(bp);
1182 return err;
1183 }
1184
72cf2d4f 1185 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
e22a25c9
AL
1186 bp, entry);
1187 } else {
1188 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
a426e122 1189 if (err) {
e22a25c9 1190 return err;
a426e122 1191 }
e22a25c9
AL
1192 }
1193
1194 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1195 err = kvm_update_guest_debug(env, 0);
a426e122 1196 if (err) {
e22a25c9 1197 return err;
a426e122 1198 }
e22a25c9
AL
1199 }
1200 return 0;
1201}
1202
1203int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1204 target_ulong len, int type)
1205{
1206 struct kvm_sw_breakpoint *bp;
1207 CPUState *env;
1208 int err;
1209
1210 if (type == GDB_BREAKPOINT_SW) {
1211 bp = kvm_find_sw_breakpoint(current_env, addr);
a426e122 1212 if (!bp) {
e22a25c9 1213 return -ENOENT;
a426e122 1214 }
e22a25c9
AL
1215
1216 if (bp->use_count > 1) {
1217 bp->use_count--;
1218 return 0;
1219 }
1220
1221 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
a426e122 1222 if (err) {
e22a25c9 1223 return err;
a426e122 1224 }
e22a25c9 1225
72cf2d4f 1226 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
e22a25c9
AL
1227 qemu_free(bp);
1228 } else {
1229 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
a426e122 1230 if (err) {
e22a25c9 1231 return err;
a426e122 1232 }
e22a25c9
AL
1233 }
1234
1235 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1236 err = kvm_update_guest_debug(env, 0);
a426e122 1237 if (err) {
e22a25c9 1238 return err;
a426e122 1239 }
e22a25c9
AL
1240 }
1241 return 0;
1242}
1243
1244void kvm_remove_all_breakpoints(CPUState *current_env)
1245{
1246 struct kvm_sw_breakpoint *bp, *next;
1247 KVMState *s = current_env->kvm_state;
1248 CPUState *env;
1249
72cf2d4f 1250 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
e22a25c9
AL
1251 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1252 /* Try harder to find a CPU that currently sees the breakpoint. */
1253 for (env = first_cpu; env != NULL; env = env->next_cpu) {
a426e122 1254 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
e22a25c9 1255 break;
a426e122 1256 }
e22a25c9
AL
1257 }
1258 }
1259 }
1260 kvm_arch_remove_all_hw_breakpoints();
1261
a426e122 1262 for (env = first_cpu; env != NULL; env = env->next_cpu) {
e22a25c9 1263 kvm_update_guest_debug(env, 0);
a426e122 1264 }
e22a25c9
AL
1265}
1266
1267#else /* !KVM_CAP_SET_GUEST_DEBUG */
1268
1269int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1270{
1271 return -EINVAL;
1272}
1273
1274int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1275 target_ulong len, int type)
1276{
1277 return -EINVAL;
1278}
1279
1280int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1281 target_ulong len, int type)
1282{
1283 return -EINVAL;
1284}
1285
1286void kvm_remove_all_breakpoints(CPUState *current_env)
1287{
1288}
1289#endif /* !KVM_CAP_SET_GUEST_DEBUG */
cc84de95
MT
1290
1291int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1292{
1293 struct kvm_signal_mask *sigmask;
1294 int r;
1295
a426e122 1296 if (!sigset) {
cc84de95 1297 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
a426e122 1298 }
cc84de95
MT
1299
1300 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1301
1302 sigmask->len = 8;
1303 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1304 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1305 free(sigmask);
1306
1307 return r;
1308}
ca821806 1309
44f1a3d8
CM
1310int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1311{
1312#ifdef KVM_IOEVENTFD
1313 int ret;
1314 struct kvm_ioeventfd iofd;
1315
1316 iofd.datamatch = val;
1317 iofd.addr = addr;
1318 iofd.len = 4;
1319 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1320 iofd.fd = fd;
1321
1322 if (!kvm_enabled()) {
1323 return -ENOSYS;
1324 }
1325
1326 if (!assign) {
1327 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1328 }
1329
1330 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1331
1332 if (ret < 0) {
1333 return -errno;
1334 }
1335
1336 return 0;
1337#else
1338 return -ENOSYS;
1339#endif
1340}
1341
ca821806
MT
1342int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1343{
98c8573e 1344#ifdef KVM_IOEVENTFD
ca821806
MT
1345 struct kvm_ioeventfd kick = {
1346 .datamatch = val,
1347 .addr = addr,
1348 .len = 2,
1349 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1350 .fd = fd,
1351 };
1352 int r;
a426e122 1353 if (!kvm_enabled()) {
ca821806 1354 return -ENOSYS;
a426e122
JK
1355 }
1356 if (!assign) {
ca821806 1357 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
a426e122 1358 }
ca821806 1359 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
a426e122 1360 if (r < 0) {
ca821806 1361 return r;
a426e122 1362 }
ca821806 1363 return 0;
98c8573e
PB
1364#else
1365 return -ENOSYS;
ca821806 1366#endif
98c8573e 1367}
a1b87fe0
JK
1368
1369int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1370{
1371 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1372}
1373
1374int kvm_on_sigbus(int code, void *addr)
1375{
1376 return kvm_arch_on_sigbus(code, addr);
1377}