]> git.proxmox.com Git - qemu.git/blame - kvm-all.c
kvm: Drop smp_cpus argument from init functions
[qemu.git] / kvm-all.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5832d1f2 5 * Red Hat, Inc. 2008
05330448
AL
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
5832d1f2 9 * Glauber Costa <gcosta@redhat.com>
05330448
AL
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16#include <sys/types.h>
17#include <sys/ioctl.h>
18#include <sys/mman.h>
984b5181 19#include <stdarg.h>
05330448
AL
20
21#include <linux/kvm.h>
22
23#include "qemu-common.h"
85199474 24#include "qemu-barrier.h"
05330448 25#include "sysemu.h"
d33a1810 26#include "hw/hw.h"
e22a25c9 27#include "gdbstub.h"
05330448 28#include "kvm.h"
8369e01c 29#include "bswap.h"
05330448 30
d2f2b8a7
SH
31/* This check must be after config-host.h is included */
32#ifdef CONFIG_EVENTFD
33#include <sys/eventfd.h>
34#endif
35
f65ed4c1
AL
36/* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
37#define PAGE_SIZE TARGET_PAGE_SIZE
38
05330448
AL
39//#define DEBUG_KVM
40
41#ifdef DEBUG_KVM
8c0d577e 42#define DPRINTF(fmt, ...) \
05330448
AL
43 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
44#else
8c0d577e 45#define DPRINTF(fmt, ...) \
05330448
AL
46 do { } while (0)
47#endif
48
34fc643f
AL
49typedef struct KVMSlot
50{
c227f099
AL
51 target_phys_addr_t start_addr;
52 ram_addr_t memory_size;
53 ram_addr_t phys_offset;
34fc643f
AL
54 int slot;
55 int flags;
56} KVMSlot;
05330448 57
5832d1f2
AL
58typedef struct kvm_dirty_log KVMDirtyLog;
59
05330448
AL
60struct KVMState
61{
62 KVMSlot slots[32];
63 int fd;
64 int vmfd;
f65ed4c1 65 int coalesced_mmio;
62a2744c
SY
66#ifdef KVM_CAP_COALESCED_MMIO
67 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
68#endif
e69917e2 69 int broken_set_mem_region;
4495d6a7 70 int migration_log;
a0fb002c 71 int vcpu_events;
b0b1d690 72 int robust_singlestep;
ff44f1a3 73 int debugregs;
e22a25c9
AL
74#ifdef KVM_CAP_SET_GUEST_DEBUG
75 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
76#endif
6f725c13
GC
77 int irqchip_in_kernel;
78 int pit_in_kernel;
f1665b21 79 int xsave, xcrs;
d2f2b8a7 80 int many_ioeventfds;
05330448
AL
81};
82
83static KVMState *kvm_state;
84
85static KVMSlot *kvm_alloc_slot(KVMState *s)
86{
87 int i;
88
89 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
62d60e8c 90 /* KVM private memory slots */
a426e122 91 if (i >= 8 && i < 12) {
62d60e8c 92 continue;
a426e122
JK
93 }
94 if (s->slots[i].memory_size == 0) {
05330448 95 return &s->slots[i];
a426e122 96 }
05330448
AL
97 }
98
d3f8d37f
AL
99 fprintf(stderr, "%s: no free slot available\n", __func__);
100 abort();
101}
102
103static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
c227f099
AL
104 target_phys_addr_t start_addr,
105 target_phys_addr_t end_addr)
d3f8d37f
AL
106{
107 int i;
108
109 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
110 KVMSlot *mem = &s->slots[i];
111
112 if (start_addr == mem->start_addr &&
113 end_addr == mem->start_addr + mem->memory_size) {
114 return mem;
115 }
116 }
117
05330448
AL
118 return NULL;
119}
120
6152e2ae
AL
121/*
122 * Find overlapping slot with lowest start address
123 */
124static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
c227f099
AL
125 target_phys_addr_t start_addr,
126 target_phys_addr_t end_addr)
05330448 127{
6152e2ae 128 KVMSlot *found = NULL;
05330448
AL
129 int i;
130
131 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
132 KVMSlot *mem = &s->slots[i];
133
6152e2ae
AL
134 if (mem->memory_size == 0 ||
135 (found && found->start_addr < mem->start_addr)) {
136 continue;
137 }
138
139 if (end_addr > mem->start_addr &&
140 start_addr < mem->start_addr + mem->memory_size) {
141 found = mem;
142 }
05330448
AL
143 }
144
6152e2ae 145 return found;
05330448
AL
146}
147
983dfc3b
HY
148int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr,
149 target_phys_addr_t *phys_addr)
150{
151 int i;
152
153 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
154 KVMSlot *mem = &s->slots[i];
155
156 if (ram_addr >= mem->phys_offset &&
157 ram_addr < mem->phys_offset + mem->memory_size) {
158 *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset);
159 return 1;
160 }
161 }
162
163 return 0;
164}
165
5832d1f2
AL
166static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
167{
168 struct kvm_userspace_memory_region mem;
169
170 mem.slot = slot->slot;
171 mem.guest_phys_addr = slot->start_addr;
172 mem.memory_size = slot->memory_size;
b2e0a138 173 mem.userspace_addr = (unsigned long)qemu_safe_ram_ptr(slot->phys_offset);
5832d1f2 174 mem.flags = slot->flags;
4495d6a7
JK
175 if (s->migration_log) {
176 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
177 }
5832d1f2
AL
178 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
179}
180
8d2ba1fb
JK
181static void kvm_reset_vcpu(void *opaque)
182{
183 CPUState *env = opaque;
184
caa5af0f 185 kvm_arch_reset_vcpu(env);
8d2ba1fb 186}
5832d1f2 187
6f725c13
GC
188int kvm_irqchip_in_kernel(void)
189{
190 return kvm_state->irqchip_in_kernel;
191}
192
193int kvm_pit_in_kernel(void)
194{
195 return kvm_state->pit_in_kernel;
196}
197
198
05330448
AL
199int kvm_init_vcpu(CPUState *env)
200{
201 KVMState *s = kvm_state;
202 long mmap_size;
203 int ret;
204
8c0d577e 205 DPRINTF("kvm_init_vcpu\n");
05330448 206
984b5181 207 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
05330448 208 if (ret < 0) {
8c0d577e 209 DPRINTF("kvm_create_vcpu failed\n");
05330448
AL
210 goto err;
211 }
212
213 env->kvm_fd = ret;
214 env->kvm_state = s;
215
216 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
217 if (mmap_size < 0) {
8c0d577e 218 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
05330448
AL
219 goto err;
220 }
221
222 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
223 env->kvm_fd, 0);
224 if (env->kvm_run == MAP_FAILED) {
225 ret = -errno;
8c0d577e 226 DPRINTF("mmap'ing vcpu state failed\n");
05330448
AL
227 goto err;
228 }
229
62a2744c 230#ifdef KVM_CAP_COALESCED_MMIO
a426e122
JK
231 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
232 s->coalesced_mmio_ring =
233 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
234 }
62a2744c
SY
235#endif
236
05330448 237 ret = kvm_arch_init_vcpu(env);
8d2ba1fb 238 if (ret == 0) {
a08d4367 239 qemu_register_reset(kvm_reset_vcpu, env);
caa5af0f 240 kvm_arch_reset_vcpu(env);
8d2ba1fb 241 }
05330448
AL
242err:
243 return ret;
244}
245
5832d1f2
AL
246/*
247 * dirty pages logging control
248 */
c227f099
AL
249static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
250 ram_addr_t size, int flags, int mask)
5832d1f2
AL
251{
252 KVMState *s = kvm_state;
d3f8d37f 253 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
4495d6a7
JK
254 int old_flags;
255
5832d1f2 256 if (mem == NULL) {
d3f8d37f
AL
257 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
258 TARGET_FMT_plx "\n", __func__, phys_addr,
c227f099 259 (target_phys_addr_t)(phys_addr + size - 1));
5832d1f2
AL
260 return -EINVAL;
261 }
262
4495d6a7 263 old_flags = mem->flags;
5832d1f2 264
4495d6a7 265 flags = (mem->flags & ~mask) | flags;
5832d1f2
AL
266 mem->flags = flags;
267
4495d6a7
JK
268 /* If nothing changed effectively, no need to issue ioctl */
269 if (s->migration_log) {
270 flags |= KVM_MEM_LOG_DIRTY_PAGES;
271 }
272 if (flags == old_flags) {
273 return 0;
274 }
275
5832d1f2
AL
276 return kvm_set_user_memory_region(s, mem);
277}
278
c227f099 279int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
5832d1f2 280{
a426e122
JK
281 return kvm_dirty_pages_log_change(phys_addr, size, KVM_MEM_LOG_DIRTY_PAGES,
282 KVM_MEM_LOG_DIRTY_PAGES);
5832d1f2
AL
283}
284
c227f099 285int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
5832d1f2 286{
a426e122
JK
287 return kvm_dirty_pages_log_change(phys_addr, size, 0,
288 KVM_MEM_LOG_DIRTY_PAGES);
5832d1f2
AL
289}
290
7b8f3b78 291static int kvm_set_migration_log(int enable)
4495d6a7
JK
292{
293 KVMState *s = kvm_state;
294 KVMSlot *mem;
295 int i, err;
296
297 s->migration_log = enable;
298
299 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
300 mem = &s->slots[i];
301
70fedd76
AW
302 if (!mem->memory_size) {
303 continue;
304 }
4495d6a7
JK
305 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
306 continue;
307 }
308 err = kvm_set_user_memory_region(s, mem);
309 if (err) {
310 return err;
311 }
312 }
313 return 0;
314}
315
8369e01c
MT
316/* get kvm's dirty pages bitmap and update qemu's */
317static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
318 unsigned long *bitmap,
319 unsigned long offset,
320 unsigned long mem_size)
96c1606b 321{
8369e01c
MT
322 unsigned int i, j;
323 unsigned long page_number, addr, addr1, c;
324 ram_addr_t ram_addr;
325 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
326 HOST_LONG_BITS;
327
328 /*
329 * bitmap-traveling is faster than memory-traveling (for addr...)
330 * especially when most of the memory is not dirty.
331 */
332 for (i = 0; i < len; i++) {
333 if (bitmap[i] != 0) {
334 c = leul_to_cpu(bitmap[i]);
335 do {
336 j = ffsl(c) - 1;
337 c &= ~(1ul << j);
338 page_number = i * HOST_LONG_BITS + j;
339 addr1 = page_number * TARGET_PAGE_SIZE;
340 addr = offset + addr1;
341 ram_addr = cpu_get_physical_page_desc(addr);
342 cpu_physical_memory_set_dirty(ram_addr);
343 } while (c != 0);
344 }
345 }
346 return 0;
96c1606b
AG
347}
348
8369e01c
MT
349#define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
350
5832d1f2
AL
351/**
352 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
353 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
354 * This means all bits are set to dirty.
355 *
d3f8d37f 356 * @start_add: start of logged region.
5832d1f2
AL
357 * @end_addr: end of logged region.
358 */
7b8f3b78 359static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
a426e122 360 target_phys_addr_t end_addr)
5832d1f2
AL
361{
362 KVMState *s = kvm_state;
151f7749 363 unsigned long size, allocated_size = 0;
151f7749
JK
364 KVMDirtyLog d;
365 KVMSlot *mem;
366 int ret = 0;
5832d1f2 367
151f7749
JK
368 d.dirty_bitmap = NULL;
369 while (start_addr < end_addr) {
370 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
371 if (mem == NULL) {
372 break;
373 }
5832d1f2 374
8369e01c 375 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8;
151f7749
JK
376 if (!d.dirty_bitmap) {
377 d.dirty_bitmap = qemu_malloc(size);
378 } else if (size > allocated_size) {
379 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
380 }
381 allocated_size = size;
382 memset(d.dirty_bitmap, 0, allocated_size);
5832d1f2 383
151f7749 384 d.slot = mem->slot;
5832d1f2 385
6e489f3f 386 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
8c0d577e 387 DPRINTF("ioctl failed %d\n", errno);
151f7749
JK
388 ret = -1;
389 break;
390 }
5832d1f2 391
8369e01c
MT
392 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
393 mem->start_addr, mem->memory_size);
394 start_addr = mem->start_addr + mem->memory_size;
5832d1f2 395 }
5832d1f2 396 qemu_free(d.dirty_bitmap);
151f7749
JK
397
398 return ret;
5832d1f2
AL
399}
400
c227f099 401int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
f65ed4c1
AL
402{
403 int ret = -ENOSYS;
404#ifdef KVM_CAP_COALESCED_MMIO
405 KVMState *s = kvm_state;
406
407 if (s->coalesced_mmio) {
408 struct kvm_coalesced_mmio_zone zone;
409
410 zone.addr = start;
411 zone.size = size;
412
413 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
414 }
415#endif
416
417 return ret;
418}
419
c227f099 420int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
f65ed4c1
AL
421{
422 int ret = -ENOSYS;
423#ifdef KVM_CAP_COALESCED_MMIO
424 KVMState *s = kvm_state;
425
426 if (s->coalesced_mmio) {
427 struct kvm_coalesced_mmio_zone zone;
428
429 zone.addr = start;
430 zone.size = size;
431
432 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
433 }
434#endif
435
436 return ret;
437}
438
ad7b8b33
AL
439int kvm_check_extension(KVMState *s, unsigned int extension)
440{
441 int ret;
442
443 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
444 if (ret < 0) {
445 ret = 0;
446 }
447
448 return ret;
449}
450
d2f2b8a7
SH
451static int kvm_check_many_ioeventfds(void)
452{
453 /* Older kernels have a 6 device limit on the KVM io bus. Find out so we
454 * can avoid creating too many ioeventfds.
455 */
456#ifdef CONFIG_EVENTFD
457 int ioeventfds[7];
458 int i, ret = 0;
459 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
460 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
461 if (ioeventfds[i] < 0) {
462 break;
463 }
464 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
465 if (ret < 0) {
466 close(ioeventfds[i]);
467 break;
468 }
469 }
470
471 /* Decide whether many devices are supported or not */
472 ret = i == ARRAY_SIZE(ioeventfds);
473
474 while (i-- > 0) {
475 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
476 close(ioeventfds[i]);
477 }
478 return ret;
479#else
480 return 0;
481#endif
482}
483
a426e122
JK
484static void kvm_set_phys_mem(target_phys_addr_t start_addr, ram_addr_t size,
485 ram_addr_t phys_offset)
46dbef6a
MT
486{
487 KVMState *s = kvm_state;
488 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
489 KVMSlot *mem, old;
490 int err;
491
14542fea
GN
492 /* kvm works in page size chunks, but the function may be called
493 with sub-page size and unaligned start address. */
494 size = TARGET_PAGE_ALIGN(size);
495 start_addr = TARGET_PAGE_ALIGN(start_addr);
46dbef6a
MT
496
497 /* KVM does not support read-only slots */
498 phys_offset &= ~IO_MEM_ROM;
499
500 while (1) {
501 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
502 if (!mem) {
503 break;
504 }
505
506 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
507 (start_addr + size <= mem->start_addr + mem->memory_size) &&
508 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
509 /* The new slot fits into the existing one and comes with
510 * identical parameters - nothing to be done. */
511 return;
512 }
513
514 old = *mem;
515
516 /* unregister the overlapping slot */
517 mem->memory_size = 0;
518 err = kvm_set_user_memory_region(s, mem);
519 if (err) {
520 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
521 __func__, strerror(-err));
522 abort();
523 }
524
525 /* Workaround for older KVM versions: we can't join slots, even not by
526 * unregistering the previous ones and then registering the larger
527 * slot. We have to maintain the existing fragmentation. Sigh.
528 *
529 * This workaround assumes that the new slot starts at the same
530 * address as the first existing one. If not or if some overlapping
531 * slot comes around later, we will fail (not seen in practice so far)
532 * - and actually require a recent KVM version. */
533 if (s->broken_set_mem_region &&
534 old.start_addr == start_addr && old.memory_size < size &&
535 flags < IO_MEM_UNASSIGNED) {
536 mem = kvm_alloc_slot(s);
537 mem->memory_size = old.memory_size;
538 mem->start_addr = old.start_addr;
539 mem->phys_offset = old.phys_offset;
540 mem->flags = 0;
541
542 err = kvm_set_user_memory_region(s, mem);
543 if (err) {
544 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
545 strerror(-err));
546 abort();
547 }
548
549 start_addr += old.memory_size;
550 phys_offset += old.memory_size;
551 size -= old.memory_size;
552 continue;
553 }
554
555 /* register prefix slot */
556 if (old.start_addr < start_addr) {
557 mem = kvm_alloc_slot(s);
558 mem->memory_size = start_addr - old.start_addr;
559 mem->start_addr = old.start_addr;
560 mem->phys_offset = old.phys_offset;
561 mem->flags = 0;
562
563 err = kvm_set_user_memory_region(s, mem);
564 if (err) {
565 fprintf(stderr, "%s: error registering prefix slot: %s\n",
566 __func__, strerror(-err));
567 abort();
568 }
569 }
570
571 /* register suffix slot */
572 if (old.start_addr + old.memory_size > start_addr + size) {
573 ram_addr_t size_delta;
574
575 mem = kvm_alloc_slot(s);
576 mem->start_addr = start_addr + size;
577 size_delta = mem->start_addr - old.start_addr;
578 mem->memory_size = old.memory_size - size_delta;
579 mem->phys_offset = old.phys_offset + size_delta;
580 mem->flags = 0;
581
582 err = kvm_set_user_memory_region(s, mem);
583 if (err) {
584 fprintf(stderr, "%s: error registering suffix slot: %s\n",
585 __func__, strerror(-err));
586 abort();
587 }
588 }
589 }
590
591 /* in case the KVM bug workaround already "consumed" the new slot */
a426e122 592 if (!size) {
46dbef6a 593 return;
a426e122 594 }
46dbef6a 595 /* KVM does not need to know about this memory */
a426e122 596 if (flags >= IO_MEM_UNASSIGNED) {
46dbef6a 597 return;
a426e122 598 }
46dbef6a
MT
599 mem = kvm_alloc_slot(s);
600 mem->memory_size = size;
601 mem->start_addr = start_addr;
602 mem->phys_offset = phys_offset;
603 mem->flags = 0;
604
605 err = kvm_set_user_memory_region(s, mem);
606 if (err) {
607 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
608 strerror(-err));
609 abort();
610 }
611}
612
7b8f3b78 613static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
a426e122
JK
614 target_phys_addr_t start_addr,
615 ram_addr_t size, ram_addr_t phys_offset)
7b8f3b78 616{
a426e122 617 kvm_set_phys_mem(start_addr, size, phys_offset);
7b8f3b78
MT
618}
619
620static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
a426e122
JK
621 target_phys_addr_t start_addr,
622 target_phys_addr_t end_addr)
7b8f3b78 623{
a426e122 624 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
7b8f3b78
MT
625}
626
627static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
a426e122 628 int enable)
7b8f3b78 629{
a426e122 630 return kvm_set_migration_log(enable);
7b8f3b78
MT
631}
632
633static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
a426e122
JK
634 .set_memory = kvm_client_set_memory,
635 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
636 .migration_log = kvm_client_migration_log,
7b8f3b78
MT
637};
638
cad1e282 639int kvm_init(void)
05330448 640{
168ccc11
JK
641 static const char upgrade_note[] =
642 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
643 "(see http://sourceforge.net/projects/kvm).\n";
05330448
AL
644 KVMState *s;
645 int ret;
646 int i;
647
05330448 648 s = qemu_mallocz(sizeof(KVMState));
05330448 649
e22a25c9 650#ifdef KVM_CAP_SET_GUEST_DEBUG
72cf2d4f 651 QTAILQ_INIT(&s->kvm_sw_breakpoints);
e22a25c9 652#endif
a426e122 653 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
05330448 654 s->slots[i].slot = i;
a426e122 655 }
05330448 656 s->vmfd = -1;
40ff6d7e 657 s->fd = qemu_open("/dev/kvm", O_RDWR);
05330448
AL
658 if (s->fd == -1) {
659 fprintf(stderr, "Could not access KVM kernel module: %m\n");
660 ret = -errno;
661 goto err;
662 }
663
664 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
665 if (ret < KVM_API_VERSION) {
a426e122 666 if (ret > 0) {
05330448 667 ret = -EINVAL;
a426e122 668 }
05330448
AL
669 fprintf(stderr, "kvm version too old\n");
670 goto err;
671 }
672
673 if (ret > KVM_API_VERSION) {
674 ret = -EINVAL;
675 fprintf(stderr, "kvm version not supported\n");
676 goto err;
677 }
678
679 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
0104dcac
AG
680 if (s->vmfd < 0) {
681#ifdef TARGET_S390X
682 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
683 "your host kernel command line\n");
684#endif
05330448 685 goto err;
0104dcac 686 }
05330448
AL
687
688 /* initially, KVM allocated its own memory and we had to jump through
689 * hooks to make phys_ram_base point to this. Modern versions of KVM
5579c7f3 690 * just use a user allocated buffer so we can use regular pages
05330448
AL
691 * unmodified. Make sure we have a sufficiently modern version of KVM.
692 */
ad7b8b33
AL
693 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
694 ret = -EINVAL;
168ccc11
JK
695 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
696 upgrade_note);
05330448
AL
697 goto err;
698 }
699
d85dc283
AL
700 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
701 * destroyed properly. Since we rely on this capability, refuse to work
702 * with any kernel without this capability. */
ad7b8b33
AL
703 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
704 ret = -EINVAL;
d85dc283
AL
705
706 fprintf(stderr,
168ccc11
JK
707 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
708 upgrade_note);
d85dc283
AL
709 goto err;
710 }
711
62a2744c 712 s->coalesced_mmio = 0;
f65ed4c1 713#ifdef KVM_CAP_COALESCED_MMIO
ad7b8b33 714 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
62a2744c 715 s->coalesced_mmio_ring = NULL;
f65ed4c1
AL
716#endif
717
e69917e2
JK
718 s->broken_set_mem_region = 1;
719#ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
14a09518 720 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
e69917e2
JK
721 if (ret > 0) {
722 s->broken_set_mem_region = 0;
723 }
724#endif
725
a0fb002c
JK
726 s->vcpu_events = 0;
727#ifdef KVM_CAP_VCPU_EVENTS
728 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
729#endif
730
b0b1d690
JK
731 s->robust_singlestep = 0;
732#ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
733 s->robust_singlestep =
734 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
735#endif
736
ff44f1a3
JK
737 s->debugregs = 0;
738#ifdef KVM_CAP_DEBUGREGS
739 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
740#endif
741
f1665b21
SY
742 s->xsave = 0;
743#ifdef KVM_CAP_XSAVE
744 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
745#endif
746
747 s->xcrs = 0;
748#ifdef KVM_CAP_XCRS
749 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
750#endif
751
cad1e282 752 ret = kvm_arch_init(s);
a426e122 753 if (ret < 0) {
05330448 754 goto err;
a426e122 755 }
05330448
AL
756
757 kvm_state = s;
7b8f3b78 758 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
05330448 759
d2f2b8a7
SH
760 s->many_ioeventfds = kvm_check_many_ioeventfds();
761
05330448
AL
762 return 0;
763
764err:
765 if (s) {
a426e122 766 if (s->vmfd != -1) {
05330448 767 close(s->vmfd);
a426e122
JK
768 }
769 if (s->fd != -1) {
05330448 770 close(s->fd);
a426e122 771 }
05330448
AL
772 }
773 qemu_free(s);
774
775 return ret;
776}
777
afcea8cb
BS
778static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
779 uint32_t count)
05330448
AL
780{
781 int i;
782 uint8_t *ptr = data;
783
784 for (i = 0; i < count; i++) {
785 if (direction == KVM_EXIT_IO_IN) {
786 switch (size) {
787 case 1:
afcea8cb 788 stb_p(ptr, cpu_inb(port));
05330448
AL
789 break;
790 case 2:
afcea8cb 791 stw_p(ptr, cpu_inw(port));
05330448
AL
792 break;
793 case 4:
afcea8cb 794 stl_p(ptr, cpu_inl(port));
05330448
AL
795 break;
796 }
797 } else {
798 switch (size) {
799 case 1:
afcea8cb 800 cpu_outb(port, ldub_p(ptr));
05330448
AL
801 break;
802 case 2:
afcea8cb 803 cpu_outw(port, lduw_p(ptr));
05330448
AL
804 break;
805 case 4:
afcea8cb 806 cpu_outl(port, ldl_p(ptr));
05330448
AL
807 break;
808 }
809 }
810
811 ptr += size;
812 }
813
814 return 1;
815}
816
7c80eef8 817#ifdef KVM_CAP_INTERNAL_ERROR_DATA
73aaec4a 818static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
7c80eef8 819{
bb44e0d1 820 fprintf(stderr, "KVM internal error.");
7c80eef8
MT
821 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
822 int i;
823
bb44e0d1 824 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
7c80eef8
MT
825 for (i = 0; i < run->internal.ndata; ++i) {
826 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
827 i, (uint64_t)run->internal.data[i]);
828 }
bb44e0d1
JK
829 } else {
830 fprintf(stderr, "\n");
7c80eef8 831 }
7c80eef8
MT
832 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
833 fprintf(stderr, "emulation failure\n");
a426e122 834 if (!kvm_arch_stop_on_emulation_error(env)) {
f5c848ee 835 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
73aaec4a 836 return 0;
a426e122 837 }
7c80eef8
MT
838 }
839 /* FIXME: Should trigger a qmp message to let management know
840 * something went wrong.
841 */
73aaec4a 842 return -1;
7c80eef8
MT
843}
844#endif
845
62a2744c 846void kvm_flush_coalesced_mmio_buffer(void)
f65ed4c1
AL
847{
848#ifdef KVM_CAP_COALESCED_MMIO
849 KVMState *s = kvm_state;
62a2744c
SY
850 if (s->coalesced_mmio_ring) {
851 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
f65ed4c1
AL
852 while (ring->first != ring->last) {
853 struct kvm_coalesced_mmio *ent;
854
855 ent = &ring->coalesced_mmio[ring->first];
856
857 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
85199474 858 smp_wmb();
f65ed4c1
AL
859 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
860 }
861 }
862#endif
863}
864
2705d56a 865static void do_kvm_cpu_synchronize_state(void *_env)
4c0960c0 866{
2705d56a
JK
867 CPUState *env = _env;
868
9ded2744 869 if (!env->kvm_vcpu_dirty) {
4c0960c0 870 kvm_arch_get_registers(env);
9ded2744 871 env->kvm_vcpu_dirty = 1;
4c0960c0
AK
872 }
873}
874
2705d56a
JK
875void kvm_cpu_synchronize_state(CPUState *env)
876{
a426e122 877 if (!env->kvm_vcpu_dirty) {
2705d56a 878 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
a426e122 879 }
2705d56a
JK
880}
881
ea375f9a
JK
882void kvm_cpu_synchronize_post_reset(CPUState *env)
883{
884 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
885 env->kvm_vcpu_dirty = 0;
886}
887
888void kvm_cpu_synchronize_post_init(CPUState *env)
889{
890 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
891 env->kvm_vcpu_dirty = 0;
892}
893
05330448
AL
894int kvm_cpu_exec(CPUState *env)
895{
896 struct kvm_run *run = env->kvm_run;
897 int ret;
898
8c0d577e 899 DPRINTF("kvm_cpu_exec()\n");
05330448
AL
900
901 do {
6312b928 902#ifndef CONFIG_IOTHREAD
be214e6c 903 if (env->exit_request) {
8c0d577e 904 DPRINTF("interrupt exit requested\n");
05330448
AL
905 ret = 0;
906 break;
907 }
6312b928 908#endif
05330448 909
0af691d7
MT
910 if (kvm_arch_process_irqchip_events(env)) {
911 ret = 0;
912 break;
913 }
914
9ded2744 915 if (env->kvm_vcpu_dirty) {
ea375f9a 916 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
9ded2744 917 env->kvm_vcpu_dirty = 0;
4c0960c0
AK
918 }
919
8c14c173 920 kvm_arch_pre_run(env, run);
273faf1b 921 cpu_single_env = NULL;
d549db5a 922 qemu_mutex_unlock_iothread();
05330448 923 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
d549db5a 924 qemu_mutex_lock_iothread();
273faf1b 925 cpu_single_env = env;
05330448
AL
926 kvm_arch_post_run(env, run);
927
928 if (ret == -EINTR || ret == -EAGAIN) {
cc84de95 929 cpu_exit(env);
8c0d577e 930 DPRINTF("io window exit\n");
05330448
AL
931 ret = 0;
932 break;
933 }
934
935 if (ret < 0) {
8c0d577e 936 DPRINTF("kvm run failed %s\n", strerror(-ret));
05330448
AL
937 abort();
938 }
939
62a2744c 940 kvm_flush_coalesced_mmio_buffer();
f65ed4c1 941
05330448
AL
942 ret = 0; /* exit loop */
943 switch (run->exit_reason) {
944 case KVM_EXIT_IO:
8c0d577e 945 DPRINTF("handle_io\n");
afcea8cb 946 ret = kvm_handle_io(run->io.port,
05330448
AL
947 (uint8_t *)run + run->io.data_offset,
948 run->io.direction,
949 run->io.size,
950 run->io.count);
951 break;
952 case KVM_EXIT_MMIO:
8c0d577e 953 DPRINTF("handle_mmio\n");
05330448
AL
954 cpu_physical_memory_rw(run->mmio.phys_addr,
955 run->mmio.data,
956 run->mmio.len,
957 run->mmio.is_write);
958 ret = 1;
959 break;
960 case KVM_EXIT_IRQ_WINDOW_OPEN:
8c0d577e 961 DPRINTF("irq_window_open\n");
05330448
AL
962 break;
963 case KVM_EXIT_SHUTDOWN:
8c0d577e 964 DPRINTF("shutdown\n");
05330448
AL
965 qemu_system_reset_request();
966 ret = 1;
967 break;
968 case KVM_EXIT_UNKNOWN:
bb44e0d1
JK
969 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
970 (uint64_t)run->hw.hardware_exit_reason);
73aaec4a 971 ret = -1;
05330448 972 break;
7c80eef8
MT
973#ifdef KVM_CAP_INTERNAL_ERROR_DATA
974 case KVM_EXIT_INTERNAL_ERROR:
73aaec4a 975 ret = kvm_handle_internal_error(env, run);
7c80eef8
MT
976 break;
977#endif
05330448 978 case KVM_EXIT_DEBUG:
8c0d577e 979 DPRINTF("kvm_exit_debug\n");
e22a25c9
AL
980#ifdef KVM_CAP_SET_GUEST_DEBUG
981 if (kvm_arch_debug(&run->debug.arch)) {
e22a25c9
AL
982 env->exception_index = EXCP_DEBUG;
983 return 0;
984 }
985 /* re-enter, this exception was guest-internal */
986 ret = 1;
987#endif /* KVM_CAP_SET_GUEST_DEBUG */
05330448
AL
988 break;
989 default:
8c0d577e 990 DPRINTF("kvm_arch_handle_exit\n");
05330448
AL
991 ret = kvm_arch_handle_exit(env, run);
992 break;
993 }
994 } while (ret > 0);
995
73aaec4a 996 if (ret < 0) {
f5c848ee 997 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
73aaec4a
JK
998 vm_stop(0);
999 env->exit_request = 1;
1000 }
be214e6c
AJ
1001 if (env->exit_request) {
1002 env->exit_request = 0;
becfc390
AL
1003 env->exception_index = EXCP_INTERRUPT;
1004 }
1005
05330448
AL
1006 return ret;
1007}
1008
984b5181 1009int kvm_ioctl(KVMState *s, int type, ...)
05330448
AL
1010{
1011 int ret;
984b5181
AL
1012 void *arg;
1013 va_list ap;
05330448 1014
984b5181
AL
1015 va_start(ap, type);
1016 arg = va_arg(ap, void *);
1017 va_end(ap);
1018
1019 ret = ioctl(s->fd, type, arg);
a426e122 1020 if (ret == -1) {
05330448 1021 ret = -errno;
a426e122 1022 }
05330448
AL
1023 return ret;
1024}
1025
984b5181 1026int kvm_vm_ioctl(KVMState *s, int type, ...)
05330448
AL
1027{
1028 int ret;
984b5181
AL
1029 void *arg;
1030 va_list ap;
1031
1032 va_start(ap, type);
1033 arg = va_arg(ap, void *);
1034 va_end(ap);
05330448 1035
984b5181 1036 ret = ioctl(s->vmfd, type, arg);
a426e122 1037 if (ret == -1) {
05330448 1038 ret = -errno;
a426e122 1039 }
05330448
AL
1040 return ret;
1041}
1042
984b5181 1043int kvm_vcpu_ioctl(CPUState *env, int type, ...)
05330448
AL
1044{
1045 int ret;
984b5181
AL
1046 void *arg;
1047 va_list ap;
1048
1049 va_start(ap, type);
1050 arg = va_arg(ap, void *);
1051 va_end(ap);
05330448 1052
984b5181 1053 ret = ioctl(env->kvm_fd, type, arg);
a426e122 1054 if (ret == -1) {
05330448 1055 ret = -errno;
a426e122 1056 }
05330448
AL
1057 return ret;
1058}
bd322087
AL
1059
1060int kvm_has_sync_mmu(void)
1061{
a9c11522 1062#ifdef KVM_CAP_SYNC_MMU
bd322087
AL
1063 KVMState *s = kvm_state;
1064
ad7b8b33
AL
1065 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
1066#else
bd322087 1067 return 0;
ad7b8b33 1068#endif
bd322087 1069}
e22a25c9 1070
a0fb002c
JK
1071int kvm_has_vcpu_events(void)
1072{
1073 return kvm_state->vcpu_events;
1074}
1075
b0b1d690
JK
1076int kvm_has_robust_singlestep(void)
1077{
1078 return kvm_state->robust_singlestep;
1079}
1080
ff44f1a3
JK
1081int kvm_has_debugregs(void)
1082{
1083 return kvm_state->debugregs;
1084}
1085
f1665b21
SY
1086int kvm_has_xsave(void)
1087{
1088 return kvm_state->xsave;
1089}
1090
1091int kvm_has_xcrs(void)
1092{
1093 return kvm_state->xcrs;
1094}
1095
d2f2b8a7
SH
1096int kvm_has_many_ioeventfds(void)
1097{
1098 if (!kvm_enabled()) {
1099 return 0;
1100 }
1101 return kvm_state->many_ioeventfds;
1102}
1103
6f0437e8
JK
1104void kvm_setup_guest_memory(void *start, size_t size)
1105{
1106 if (!kvm_has_sync_mmu()) {
e78815a5 1107 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
6f0437e8
JK
1108
1109 if (ret) {
e78815a5
AF
1110 perror("qemu_madvise");
1111 fprintf(stderr,
1112 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
6f0437e8
JK
1113 exit(1);
1114 }
6f0437e8
JK
1115 }
1116}
1117
e22a25c9
AL
1118#ifdef KVM_CAP_SET_GUEST_DEBUG
1119struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1120 target_ulong pc)
1121{
1122 struct kvm_sw_breakpoint *bp;
1123
72cf2d4f 1124 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
a426e122 1125 if (bp->pc == pc) {
e22a25c9 1126 return bp;
a426e122 1127 }
e22a25c9
AL
1128 }
1129 return NULL;
1130}
1131
1132int kvm_sw_breakpoints_active(CPUState *env)
1133{
72cf2d4f 1134 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
e22a25c9
AL
1135}
1136
452e4751
GC
1137struct kvm_set_guest_debug_data {
1138 struct kvm_guest_debug dbg;
1139 CPUState *env;
1140 int err;
1141};
1142
1143static void kvm_invoke_set_guest_debug(void *data)
1144{
1145 struct kvm_set_guest_debug_data *dbg_data = data;
b3807725
JK
1146 CPUState *env = dbg_data->env;
1147
b3807725 1148 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
452e4751
GC
1149}
1150
e22a25c9
AL
1151int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1152{
452e4751 1153 struct kvm_set_guest_debug_data data;
e22a25c9 1154
b0b1d690 1155 data.dbg.control = reinject_trap;
e22a25c9 1156
b0b1d690
JK
1157 if (env->singlestep_enabled) {
1158 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1159 }
452e4751 1160 kvm_arch_update_guest_debug(env, &data.dbg);
452e4751 1161 data.env = env;
e22a25c9 1162
be41cbe0 1163 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
452e4751 1164 return data.err;
e22a25c9
AL
1165}
1166
1167int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1168 target_ulong len, int type)
1169{
1170 struct kvm_sw_breakpoint *bp;
1171 CPUState *env;
1172 int err;
1173
1174 if (type == GDB_BREAKPOINT_SW) {
1175 bp = kvm_find_sw_breakpoint(current_env, addr);
1176 if (bp) {
1177 bp->use_count++;
1178 return 0;
1179 }
1180
1181 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
a426e122 1182 if (!bp) {
e22a25c9 1183 return -ENOMEM;
a426e122 1184 }
e22a25c9
AL
1185
1186 bp->pc = addr;
1187 bp->use_count = 1;
1188 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1189 if (err) {
1190 free(bp);
1191 return err;
1192 }
1193
72cf2d4f 1194 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
e22a25c9
AL
1195 bp, entry);
1196 } else {
1197 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
a426e122 1198 if (err) {
e22a25c9 1199 return err;
a426e122 1200 }
e22a25c9
AL
1201 }
1202
1203 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1204 err = kvm_update_guest_debug(env, 0);
a426e122 1205 if (err) {
e22a25c9 1206 return err;
a426e122 1207 }
e22a25c9
AL
1208 }
1209 return 0;
1210}
1211
1212int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1213 target_ulong len, int type)
1214{
1215 struct kvm_sw_breakpoint *bp;
1216 CPUState *env;
1217 int err;
1218
1219 if (type == GDB_BREAKPOINT_SW) {
1220 bp = kvm_find_sw_breakpoint(current_env, addr);
a426e122 1221 if (!bp) {
e22a25c9 1222 return -ENOENT;
a426e122 1223 }
e22a25c9
AL
1224
1225 if (bp->use_count > 1) {
1226 bp->use_count--;
1227 return 0;
1228 }
1229
1230 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
a426e122 1231 if (err) {
e22a25c9 1232 return err;
a426e122 1233 }
e22a25c9 1234
72cf2d4f 1235 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
e22a25c9
AL
1236 qemu_free(bp);
1237 } else {
1238 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
a426e122 1239 if (err) {
e22a25c9 1240 return err;
a426e122 1241 }
e22a25c9
AL
1242 }
1243
1244 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1245 err = kvm_update_guest_debug(env, 0);
a426e122 1246 if (err) {
e22a25c9 1247 return err;
a426e122 1248 }
e22a25c9
AL
1249 }
1250 return 0;
1251}
1252
1253void kvm_remove_all_breakpoints(CPUState *current_env)
1254{
1255 struct kvm_sw_breakpoint *bp, *next;
1256 KVMState *s = current_env->kvm_state;
1257 CPUState *env;
1258
72cf2d4f 1259 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
e22a25c9
AL
1260 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1261 /* Try harder to find a CPU that currently sees the breakpoint. */
1262 for (env = first_cpu; env != NULL; env = env->next_cpu) {
a426e122 1263 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
e22a25c9 1264 break;
a426e122 1265 }
e22a25c9
AL
1266 }
1267 }
1268 }
1269 kvm_arch_remove_all_hw_breakpoints();
1270
a426e122 1271 for (env = first_cpu; env != NULL; env = env->next_cpu) {
e22a25c9 1272 kvm_update_guest_debug(env, 0);
a426e122 1273 }
e22a25c9
AL
1274}
1275
1276#else /* !KVM_CAP_SET_GUEST_DEBUG */
1277
1278int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1279{
1280 return -EINVAL;
1281}
1282
1283int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1284 target_ulong len, int type)
1285{
1286 return -EINVAL;
1287}
1288
1289int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1290 target_ulong len, int type)
1291{
1292 return -EINVAL;
1293}
1294
1295void kvm_remove_all_breakpoints(CPUState *current_env)
1296{
1297}
1298#endif /* !KVM_CAP_SET_GUEST_DEBUG */
cc84de95
MT
1299
1300int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1301{
1302 struct kvm_signal_mask *sigmask;
1303 int r;
1304
a426e122 1305 if (!sigset) {
cc84de95 1306 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
a426e122 1307 }
cc84de95
MT
1308
1309 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1310
1311 sigmask->len = 8;
1312 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1313 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1314 free(sigmask);
1315
1316 return r;
1317}
ca821806 1318
44f1a3d8
CM
1319int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1320{
1321#ifdef KVM_IOEVENTFD
1322 int ret;
1323 struct kvm_ioeventfd iofd;
1324
1325 iofd.datamatch = val;
1326 iofd.addr = addr;
1327 iofd.len = 4;
1328 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1329 iofd.fd = fd;
1330
1331 if (!kvm_enabled()) {
1332 return -ENOSYS;
1333 }
1334
1335 if (!assign) {
1336 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1337 }
1338
1339 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1340
1341 if (ret < 0) {
1342 return -errno;
1343 }
1344
1345 return 0;
1346#else
1347 return -ENOSYS;
1348#endif
1349}
1350
ca821806
MT
1351int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1352{
98c8573e 1353#ifdef KVM_IOEVENTFD
ca821806
MT
1354 struct kvm_ioeventfd kick = {
1355 .datamatch = val,
1356 .addr = addr,
1357 .len = 2,
1358 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1359 .fd = fd,
1360 };
1361 int r;
a426e122 1362 if (!kvm_enabled()) {
ca821806 1363 return -ENOSYS;
a426e122
JK
1364 }
1365 if (!assign) {
ca821806 1366 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
a426e122 1367 }
ca821806 1368 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
a426e122 1369 if (r < 0) {
ca821806 1370 return r;
a426e122 1371 }
ca821806 1372 return 0;
98c8573e
PB
1373#else
1374 return -ENOSYS;
ca821806 1375#endif
98c8573e 1376}