]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - lib/radix-tree.c
radix-tree: add radix_tree_join
[mirror_ubuntu-artful-kernel.git] / lib / radix-tree.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
cde53535 4 * Copyright (C) 2005 SGI, Christoph Lameter
7cf9c2c7 5 * Copyright (C) 2006 Nick Piggin
78c1d784 6 * Copyright (C) 2012 Konstantin Khlebnikov
6b053b8e
MW
7 * Copyright (C) 2016 Intel, Matthew Wilcox
8 * Copyright (C) 2016 Intel, Ross Zwisler
1da177e4
LT
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25#include <linux/errno.h>
26#include <linux/init.h>
27#include <linux/kernel.h>
8bc3bcc9 28#include <linux/export.h>
1da177e4
LT
29#include <linux/radix-tree.h>
30#include <linux/percpu.h>
31#include <linux/slab.h>
ce80b067 32#include <linux/kmemleak.h>
1da177e4
LT
33#include <linux/notifier.h>
34#include <linux/cpu.h>
1da177e4
LT
35#include <linux/string.h>
36#include <linux/bitops.h>
7cf9c2c7 37#include <linux/rcupdate.h>
92cf2118 38#include <linux/preempt.h> /* in_interrupt() */
1da177e4
LT
39
40
c78c66d1
KS
41/* Number of nodes in fully populated tree of given height */
42static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
43
1da177e4
LT
44/*
45 * Radix tree node cache.
46 */
e18b890b 47static struct kmem_cache *radix_tree_node_cachep;
1da177e4 48
55368052
NP
49/*
50 * The radix tree is variable-height, so an insert operation not only has
51 * to build the branch to its corresponding item, it also has to build the
52 * branch to existing items if the size has to be increased (by
53 * radix_tree_extend).
54 *
55 * The worst case is a zero height tree with just a single item at index 0,
56 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
57 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
58 * Hence:
59 */
60#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
61
1da177e4
LT
62/*
63 * Per-cpu pool of preloaded nodes
64 */
65struct radix_tree_preload {
2fcd9005 66 unsigned nr;
9d2a8da0
KS
67 /* nodes->private_data points to next preallocated node */
68 struct radix_tree_node *nodes;
1da177e4 69};
8cef7d57 70static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
1da177e4 71
148deab2
MW
72static inline struct radix_tree_node *entry_to_node(void *ptr)
73{
74 return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
75}
76
a4db4dce 77static inline void *node_to_entry(void *ptr)
27d20fdd 78{
30ff46cc 79 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
27d20fdd
NP
80}
81
a4db4dce 82#define RADIX_TREE_RETRY node_to_entry(NULL)
afe0e395 83
db050f29
MW
84#ifdef CONFIG_RADIX_TREE_MULTIORDER
85/* Sibling slots point directly to another slot in the same node */
86static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
87{
88 void **ptr = node;
89 return (parent->slots <= ptr) &&
90 (ptr < parent->slots + RADIX_TREE_MAP_SIZE);
91}
92#else
93static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
94{
95 return false;
96}
97#endif
98
99static inline unsigned long get_slot_offset(struct radix_tree_node *parent,
100 void **slot)
101{
102 return slot - parent->slots;
103}
104
9e85d811
MW
105static unsigned int radix_tree_descend(struct radix_tree_node *parent,
106 struct radix_tree_node **nodep, unsigned long index)
db050f29 107{
9e85d811 108 unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
db050f29
MW
109 void **entry = rcu_dereference_raw(parent->slots[offset]);
110
111#ifdef CONFIG_RADIX_TREE_MULTIORDER
b194d16c 112 if (radix_tree_is_internal_node(entry)) {
8d2c0d36
LT
113 if (is_sibling_entry(parent, entry)) {
114 void **sibentry = (void **) entry_to_node(entry);
115 offset = get_slot_offset(parent, sibentry);
116 entry = rcu_dereference_raw(*sibentry);
db050f29
MW
117 }
118 }
119#endif
120
121 *nodep = (void *)entry;
122 return offset;
123}
124
612d6c19
NP
125static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
126{
127 return root->gfp_mask & __GFP_BITS_MASK;
128}
129
643b52b9
NP
130static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
131 int offset)
132{
133 __set_bit(offset, node->tags[tag]);
134}
135
136static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
137 int offset)
138{
139 __clear_bit(offset, node->tags[tag]);
140}
141
142static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
143 int offset)
144{
145 return test_bit(offset, node->tags[tag]);
146}
147
148static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
149{
150 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
151}
152
2fcd9005 153static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
643b52b9
NP
154{
155 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
156}
157
158static inline void root_tag_clear_all(struct radix_tree_root *root)
159{
160 root->gfp_mask &= __GFP_BITS_MASK;
161}
162
163static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
164{
2fcd9005 165 return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
643b52b9
NP
166}
167
7b60e9ad
MW
168static inline unsigned root_tags_get(struct radix_tree_root *root)
169{
170 return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT;
171}
172
643b52b9
NP
173/*
174 * Returns 1 if any slot in the node has this tag set.
175 * Otherwise returns 0.
176 */
177static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
178{
2fcd9005 179 unsigned idx;
643b52b9
NP
180 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
181 if (node->tags[tag][idx])
182 return 1;
183 }
184 return 0;
185}
78c1d784
KK
186
187/**
188 * radix_tree_find_next_bit - find the next set bit in a memory region
189 *
190 * @addr: The address to base the search on
191 * @size: The bitmap size in bits
192 * @offset: The bitnumber to start searching at
193 *
194 * Unrollable variant of find_next_bit() for constant size arrays.
195 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
196 * Returns next bit offset, or size if nothing found.
197 */
198static __always_inline unsigned long
bc412fca
MW
199radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
200 unsigned long offset)
78c1d784 201{
bc412fca 202 const unsigned long *addr = node->tags[tag];
78c1d784 203
bc412fca 204 if (offset < RADIX_TREE_MAP_SIZE) {
78c1d784
KK
205 unsigned long tmp;
206
207 addr += offset / BITS_PER_LONG;
208 tmp = *addr >> (offset % BITS_PER_LONG);
209 if (tmp)
210 return __ffs(tmp) + offset;
211 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
bc412fca 212 while (offset < RADIX_TREE_MAP_SIZE) {
78c1d784
KK
213 tmp = *++addr;
214 if (tmp)
215 return __ffs(tmp) + offset;
216 offset += BITS_PER_LONG;
217 }
218 }
bc412fca 219 return RADIX_TREE_MAP_SIZE;
78c1d784
KK
220}
221
268f42de
MW
222static unsigned int iter_offset(const struct radix_tree_iter *iter)
223{
224 return (iter->index >> iter_shift(iter)) & RADIX_TREE_MAP_MASK;
225}
226
218ed750
MW
227/*
228 * The maximum index which can be stored in a radix tree
229 */
230static inline unsigned long shift_maxindex(unsigned int shift)
231{
232 return (RADIX_TREE_MAP_SIZE << shift) - 1;
233}
234
235static inline unsigned long node_maxindex(struct radix_tree_node *node)
236{
237 return shift_maxindex(node->shift);
238}
239
0796c583 240#ifndef __KERNEL__
d0891265 241static void dump_node(struct radix_tree_node *node, unsigned long index)
7cf19af4 242{
0796c583 243 unsigned long i;
7cf19af4 244
218ed750
MW
245 pr_debug("radix node: %p offset %d indices %lu-%lu parent %p tags %lx %lx %lx shift %d count %d exceptional %d\n",
246 node, node->offset, index, index | node_maxindex(node),
247 node->parent,
0796c583 248 node->tags[0][0], node->tags[1][0], node->tags[2][0],
218ed750 249 node->shift, node->count, node->exceptional);
0796c583
RZ
250
251 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
d0891265
MW
252 unsigned long first = index | (i << node->shift);
253 unsigned long last = first | ((1UL << node->shift) - 1);
0796c583
RZ
254 void *entry = node->slots[i];
255 if (!entry)
256 continue;
218ed750
MW
257 if (entry == RADIX_TREE_RETRY) {
258 pr_debug("radix retry offset %ld indices %lu-%lu parent %p\n",
259 i, first, last, node);
b194d16c 260 } else if (!radix_tree_is_internal_node(entry)) {
218ed750
MW
261 pr_debug("radix entry %p offset %ld indices %lu-%lu parent %p\n",
262 entry, i, first, last, node);
263 } else if (is_sibling_entry(node, entry)) {
264 pr_debug("radix sblng %p offset %ld indices %lu-%lu parent %p val %p\n",
265 entry, i, first, last, node,
266 *(void **)entry_to_node(entry));
0796c583 267 } else {
4dd6c098 268 dump_node(entry_to_node(entry), first);
0796c583
RZ
269 }
270 }
7cf19af4
MW
271}
272
273/* For debug */
274static void radix_tree_dump(struct radix_tree_root *root)
275{
d0891265
MW
276 pr_debug("radix root: %p rnode %p tags %x\n",
277 root, root->rnode,
7cf19af4 278 root->gfp_mask >> __GFP_BITS_SHIFT);
b194d16c 279 if (!radix_tree_is_internal_node(root->rnode))
7cf19af4 280 return;
4dd6c098 281 dump_node(entry_to_node(root->rnode), 0);
7cf19af4
MW
282}
283#endif
284
1da177e4
LT
285/*
286 * This assumes that the caller has performed appropriate preallocation, and
287 * that the caller has pinned this thread of control to the current CPU.
288 */
289static struct radix_tree_node *
290radix_tree_node_alloc(struct radix_tree_root *root)
291{
e2848a0e 292 struct radix_tree_node *ret = NULL;
612d6c19 293 gfp_t gfp_mask = root_gfp_mask(root);
1da177e4 294
5e4c0d97 295 /*
2fcd9005
MW
296 * Preload code isn't irq safe and it doesn't make sense to use
297 * preloading during an interrupt anyway as all the allocations have
298 * to be atomic. So just do normal allocation when in interrupt.
5e4c0d97 299 */
d0164adc 300 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
1da177e4
LT
301 struct radix_tree_preload *rtp;
302
58e698af
VD
303 /*
304 * Even if the caller has preloaded, try to allocate from the
05eb6e72
VD
305 * cache first for the new node to get accounted to the memory
306 * cgroup.
58e698af
VD
307 */
308 ret = kmem_cache_alloc(radix_tree_node_cachep,
05eb6e72 309 gfp_mask | __GFP_NOWARN);
58e698af
VD
310 if (ret)
311 goto out;
312
e2848a0e
NP
313 /*
314 * Provided the caller has preloaded here, we will always
315 * succeed in getting a node here (and never reach
316 * kmem_cache_alloc)
317 */
7c8e0181 318 rtp = this_cpu_ptr(&radix_tree_preloads);
1da177e4 319 if (rtp->nr) {
9d2a8da0
KS
320 ret = rtp->nodes;
321 rtp->nodes = ret->private_data;
322 ret->private_data = NULL;
1da177e4
LT
323 rtp->nr--;
324 }
ce80b067
CM
325 /*
326 * Update the allocation stack trace as this is more useful
327 * for debugging.
328 */
329 kmemleak_update_trace(ret);
58e698af 330 goto out;
1da177e4 331 }
05eb6e72 332 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
58e698af 333out:
b194d16c 334 BUG_ON(radix_tree_is_internal_node(ret));
1da177e4
LT
335 return ret;
336}
337
7cf9c2c7
NP
338static void radix_tree_node_rcu_free(struct rcu_head *head)
339{
340 struct radix_tree_node *node =
341 container_of(head, struct radix_tree_node, rcu_head);
643b52b9
NP
342
343 /*
175542f5
MW
344 * Must only free zeroed nodes into the slab. We can be left with
345 * non-NULL entries by radix_tree_free_nodes, so clear the entries
346 * and tags here.
643b52b9 347 */
175542f5
MW
348 memset(node->slots, 0, sizeof(node->slots));
349 memset(node->tags, 0, sizeof(node->tags));
91d9c05a 350 INIT_LIST_HEAD(&node->private_list);
643b52b9 351
7cf9c2c7
NP
352 kmem_cache_free(radix_tree_node_cachep, node);
353}
354
1da177e4
LT
355static inline void
356radix_tree_node_free(struct radix_tree_node *node)
357{
7cf9c2c7 358 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
1da177e4
LT
359}
360
361/*
362 * Load up this CPU's radix_tree_node buffer with sufficient objects to
363 * ensure that the addition of a single element in the tree cannot fail. On
364 * success, return zero, with preemption disabled. On error, return -ENOMEM
365 * with preemption not disabled.
b34df792
DH
366 *
367 * To make use of this facility, the radix tree must be initialised without
d0164adc 368 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
1da177e4 369 */
c78c66d1 370static int __radix_tree_preload(gfp_t gfp_mask, int nr)
1da177e4
LT
371{
372 struct radix_tree_preload *rtp;
373 struct radix_tree_node *node;
374 int ret = -ENOMEM;
375
05eb6e72
VD
376 /*
377 * Nodes preloaded by one cgroup can be be used by another cgroup, so
378 * they should never be accounted to any particular memory cgroup.
379 */
380 gfp_mask &= ~__GFP_ACCOUNT;
381
1da177e4 382 preempt_disable();
7c8e0181 383 rtp = this_cpu_ptr(&radix_tree_preloads);
c78c66d1 384 while (rtp->nr < nr) {
1da177e4 385 preempt_enable();
488514d1 386 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
1da177e4
LT
387 if (node == NULL)
388 goto out;
389 preempt_disable();
7c8e0181 390 rtp = this_cpu_ptr(&radix_tree_preloads);
c78c66d1 391 if (rtp->nr < nr) {
9d2a8da0
KS
392 node->private_data = rtp->nodes;
393 rtp->nodes = node;
394 rtp->nr++;
395 } else {
1da177e4 396 kmem_cache_free(radix_tree_node_cachep, node);
9d2a8da0 397 }
1da177e4
LT
398 }
399 ret = 0;
400out:
401 return ret;
402}
5e4c0d97
JK
403
404/*
405 * Load up this CPU's radix_tree_node buffer with sufficient objects to
406 * ensure that the addition of a single element in the tree cannot fail. On
407 * success, return zero, with preemption disabled. On error, return -ENOMEM
408 * with preemption not disabled.
409 *
410 * To make use of this facility, the radix tree must be initialised without
d0164adc 411 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
5e4c0d97
JK
412 */
413int radix_tree_preload(gfp_t gfp_mask)
414{
415 /* Warn on non-sensical use... */
d0164adc 416 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
c78c66d1 417 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
5e4c0d97 418}
d7f0923d 419EXPORT_SYMBOL(radix_tree_preload);
1da177e4 420
5e4c0d97
JK
421/*
422 * The same as above function, except we don't guarantee preloading happens.
423 * We do it, if we decide it helps. On success, return zero with preemption
424 * disabled. On error, return -ENOMEM with preemption not disabled.
425 */
426int radix_tree_maybe_preload(gfp_t gfp_mask)
427{
d0164adc 428 if (gfpflags_allow_blocking(gfp_mask))
c78c66d1 429 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
5e4c0d97
JK
430 /* Preloading doesn't help anything with this gfp mask, skip it */
431 preempt_disable();
432 return 0;
433}
434EXPORT_SYMBOL(radix_tree_maybe_preload);
435
c78c66d1
KS
436/*
437 * The same as function above, but preload number of nodes required to insert
438 * (1 << order) continuous naturally-aligned elements.
439 */
440int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
441{
442 unsigned long nr_subtrees;
443 int nr_nodes, subtree_height;
444
445 /* Preloading doesn't help anything with this gfp mask, skip it */
446 if (!gfpflags_allow_blocking(gfp_mask)) {
447 preempt_disable();
448 return 0;
449 }
450
451 /*
452 * Calculate number and height of fully populated subtrees it takes to
453 * store (1 << order) elements.
454 */
455 nr_subtrees = 1 << order;
456 for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
457 subtree_height++)
458 nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
459
460 /*
461 * The worst case is zero height tree with a single item at index 0 and
462 * then inserting items starting at ULONG_MAX - (1 << order).
463 *
464 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
465 * 0-index item.
466 */
467 nr_nodes = RADIX_TREE_MAX_PATH;
468
469 /* Plus branch to fully populated subtrees. */
470 nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
471
472 /* Root node is shared. */
473 nr_nodes--;
474
475 /* Plus nodes required to build subtrees. */
476 nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
477
478 return __radix_tree_preload(gfp_mask, nr_nodes);
479}
480
1456a439
MW
481static unsigned radix_tree_load_root(struct radix_tree_root *root,
482 struct radix_tree_node **nodep, unsigned long *maxindex)
483{
484 struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
485
486 *nodep = node;
487
b194d16c 488 if (likely(radix_tree_is_internal_node(node))) {
4dd6c098 489 node = entry_to_node(node);
1456a439 490 *maxindex = node_maxindex(node);
c12e51b0 491 return node->shift + RADIX_TREE_MAP_SHIFT;
1456a439
MW
492 }
493
494 *maxindex = 0;
495 return 0;
496}
497
1da177e4
LT
498/*
499 * Extend a radix tree so it can store key @index.
500 */
e6145236 501static int radix_tree_extend(struct radix_tree_root *root,
d0891265 502 unsigned long index, unsigned int shift)
1da177e4 503{
e2bdb933 504 struct radix_tree_node *slot;
d0891265 505 unsigned int maxshift;
1da177e4
LT
506 int tag;
507
d0891265
MW
508 /* Figure out what the shift should be. */
509 maxshift = shift;
510 while (index > shift_maxindex(maxshift))
511 maxshift += RADIX_TREE_MAP_SHIFT;
1da177e4 512
d0891265
MW
513 slot = root->rnode;
514 if (!slot)
1da177e4 515 goto out;
1da177e4 516
1da177e4 517 do {
2fcd9005
MW
518 struct radix_tree_node *node = radix_tree_node_alloc(root);
519
520 if (!node)
1da177e4
LT
521 return -ENOMEM;
522
1da177e4 523 /* Propagate the aggregated tag info into the new root */
daff89f3 524 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
612d6c19 525 if (root_tag_get(root, tag))
1da177e4
LT
526 tag_set(node, tag, 0);
527 }
528
d0891265
MW
529 BUG_ON(shift > BITS_PER_LONG);
530 node->shift = shift;
0c7fa0a8 531 node->offset = 0;
1da177e4 532 node->count = 1;
e2bdb933 533 node->parent = NULL;
f7942430 534 if (radix_tree_is_internal_node(slot)) {
4dd6c098 535 entry_to_node(slot)->parent = node;
f7942430
JW
536 } else {
537 /* Moving an exceptional root->rnode to a node */
538 if (radix_tree_exceptional_entry(slot))
539 node->exceptional = 1;
540 }
e2bdb933 541 node->slots[0] = slot;
a4db4dce
MW
542 slot = node_to_entry(node);
543 rcu_assign_pointer(root->rnode, slot);
d0891265 544 shift += RADIX_TREE_MAP_SHIFT;
d0891265 545 } while (shift <= maxshift);
1da177e4 546out:
d0891265 547 return maxshift + RADIX_TREE_MAP_SHIFT;
1da177e4
LT
548}
549
f4b109c6
JW
550/**
551 * radix_tree_shrink - shrink radix tree to minimum height
552 * @root radix tree root
553 */
14b46879 554static inline void radix_tree_shrink(struct radix_tree_root *root,
4d693d08
JW
555 radix_tree_update_node_t update_node,
556 void *private)
f4b109c6 557{
f4b109c6
JW
558 for (;;) {
559 struct radix_tree_node *node = root->rnode;
560 struct radix_tree_node *child;
561
562 if (!radix_tree_is_internal_node(node))
563 break;
564 node = entry_to_node(node);
565
566 /*
567 * The candidate node has more than one child, or its child
568 * is not at the leftmost slot, or the child is a multiorder
569 * entry, we cannot shrink.
570 */
571 if (node->count != 1)
572 break;
573 child = node->slots[0];
574 if (!child)
575 break;
576 if (!radix_tree_is_internal_node(child) && node->shift)
577 break;
578
579 if (radix_tree_is_internal_node(child))
580 entry_to_node(child)->parent = NULL;
581
582 /*
583 * We don't need rcu_assign_pointer(), since we are simply
584 * moving the node from one part of the tree to another: if it
585 * was safe to dereference the old pointer to it
586 * (node->slots[0]), it will be safe to dereference the new
587 * one (root->rnode) as far as dependent read barriers go.
588 */
589 root->rnode = child;
590
591 /*
592 * We have a dilemma here. The node's slot[0] must not be
593 * NULLed in case there are concurrent lookups expecting to
594 * find the item. However if this was a bottom-level node,
595 * then it may be subject to the slot pointer being visible
596 * to callers dereferencing it. If item corresponding to
597 * slot[0] is subsequently deleted, these callers would expect
598 * their slot to become empty sooner or later.
599 *
600 * For example, lockless pagecache will look up a slot, deref
601 * the page pointer, and if the page has 0 refcount it means it
602 * was concurrently deleted from pagecache so try the deref
603 * again. Fortunately there is already a requirement for logic
604 * to retry the entire slot lookup -- the indirect pointer
605 * problem (replacing direct root node with an indirect pointer
606 * also results in a stale slot). So tag the slot as indirect
607 * to force callers to retry.
608 */
4d693d08
JW
609 node->count = 0;
610 if (!radix_tree_is_internal_node(child)) {
f4b109c6 611 node->slots[0] = RADIX_TREE_RETRY;
4d693d08
JW
612 if (update_node)
613 update_node(node, private);
614 }
f4b109c6
JW
615
616 radix_tree_node_free(node);
f4b109c6 617 }
f4b109c6
JW
618}
619
14b46879 620static void delete_node(struct radix_tree_root *root,
4d693d08
JW
621 struct radix_tree_node *node,
622 radix_tree_update_node_t update_node, void *private)
f4b109c6 623{
f4b109c6
JW
624 do {
625 struct radix_tree_node *parent;
626
627 if (node->count) {
628 if (node == entry_to_node(root->rnode))
14b46879
JW
629 radix_tree_shrink(root, update_node, private);
630 return;
f4b109c6
JW
631 }
632
633 parent = node->parent;
634 if (parent) {
635 parent->slots[node->offset] = NULL;
636 parent->count--;
637 } else {
638 root_tag_clear_all(root);
639 root->rnode = NULL;
640 }
641
642 radix_tree_node_free(node);
f4b109c6
JW
643
644 node = parent;
645 } while (node);
f4b109c6
JW
646}
647
1da177e4 648/**
139e5616 649 * __radix_tree_create - create a slot in a radix tree
1da177e4
LT
650 * @root: radix tree root
651 * @index: index key
e6145236 652 * @order: index occupies 2^order aligned slots
139e5616
JW
653 * @nodep: returns node
654 * @slotp: returns slot
1da177e4 655 *
139e5616
JW
656 * Create, if necessary, and return the node and slot for an item
657 * at position @index in the radix tree @root.
658 *
659 * Until there is more than one item in the tree, no nodes are
660 * allocated and @root->rnode is used as a direct slot instead of
661 * pointing to a node, in which case *@nodep will be NULL.
662 *
663 * Returns -ENOMEM, or 0 for success.
1da177e4 664 */
139e5616 665int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
e6145236
MW
666 unsigned order, struct radix_tree_node **nodep,
667 void ***slotp)
1da177e4 668{
89148aa4
MW
669 struct radix_tree_node *node = NULL, *child;
670 void **slot = (void **)&root->rnode;
49ea6ebc 671 unsigned long maxindex;
89148aa4 672 unsigned int shift, offset = 0;
49ea6ebc
MW
673 unsigned long max = index | ((1UL << order) - 1);
674
89148aa4 675 shift = radix_tree_load_root(root, &child, &maxindex);
1da177e4
LT
676
677 /* Make sure the tree is high enough. */
175542f5
MW
678 if (order > 0 && max == ((1UL << order) - 1))
679 max++;
49ea6ebc 680 if (max > maxindex) {
d0891265 681 int error = radix_tree_extend(root, max, shift);
49ea6ebc 682 if (error < 0)
1da177e4 683 return error;
49ea6ebc 684 shift = error;
89148aa4 685 child = root->rnode;
1da177e4
LT
686 }
687
e6145236 688 while (shift > order) {
c12e51b0 689 shift -= RADIX_TREE_MAP_SHIFT;
89148aa4 690 if (child == NULL) {
1da177e4 691 /* Have to add a child node. */
89148aa4
MW
692 child = radix_tree_node_alloc(root);
693 if (!child)
1da177e4 694 return -ENOMEM;
89148aa4
MW
695 child->shift = shift;
696 child->offset = offset;
175542f5
MW
697 child->count = 0;
698 child->exceptional = 0;
89148aa4
MW
699 child->parent = node;
700 rcu_assign_pointer(*slot, node_to_entry(child));
701 if (node)
1da177e4 702 node->count++;
89148aa4 703 } else if (!radix_tree_is_internal_node(child))
e6145236 704 break;
1da177e4
LT
705
706 /* Go a level down */
89148aa4 707 node = entry_to_node(child);
9e85d811 708 offset = radix_tree_descend(node, &child, index);
89148aa4 709 slot = &node->slots[offset];
e6145236
MW
710 }
711
175542f5
MW
712 if (nodep)
713 *nodep = node;
714 if (slotp)
715 *slotp = slot;
716 return 0;
717}
718
57578c2e 719#ifdef CONFIG_RADIX_TREE_MULTIORDER
175542f5
MW
720/*
721 * Free any nodes below this node. The tree is presumed to not need
722 * shrinking, and any user data in the tree is presumed to not need a
723 * destructor called on it. If we need to add a destructor, we can
724 * add that functionality later. Note that we may not clear tags or
725 * slots from the tree as an RCU walker may still have a pointer into
726 * this subtree. We could replace the entries with RADIX_TREE_RETRY,
727 * but we'll still have to clear those in rcu_free.
728 */
729static void radix_tree_free_nodes(struct radix_tree_node *node)
730{
731 unsigned offset = 0;
732 struct radix_tree_node *child = entry_to_node(node);
733
734 for (;;) {
735 void *entry = child->slots[offset];
736 if (radix_tree_is_internal_node(entry) &&
737 !is_sibling_entry(child, entry)) {
738 child = entry_to_node(entry);
739 offset = 0;
740 continue;
741 }
742 offset++;
743 while (offset == RADIX_TREE_MAP_SIZE) {
744 struct radix_tree_node *old = child;
745 offset = child->offset + 1;
746 child = child->parent;
747 radix_tree_node_free(old);
748 if (old == entry_to_node(node))
749 return;
750 }
751 }
752}
753
754static inline int insert_entries(struct radix_tree_node *node, void **slot,
755 void *item, unsigned order, bool replace)
756{
757 struct radix_tree_node *child;
758 unsigned i, n, tag, offset, tags = 0;
759
760 if (node) {
761 n = 1 << (order - node->shift);
762 offset = get_slot_offset(node, slot);
763 } else {
764 n = 1;
765 offset = 0;
766 }
767
768 if (n > 1) {
e6145236 769 offset = offset & ~(n - 1);
89148aa4 770 slot = &node->slots[offset];
175542f5
MW
771 }
772 child = node_to_entry(slot);
773
774 for (i = 0; i < n; i++) {
775 if (slot[i]) {
776 if (replace) {
777 node->count--;
778 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
779 if (tag_get(node, tag, offset + i))
780 tags |= 1 << tag;
781 } else
e6145236
MW
782 return -EEXIST;
783 }
175542f5 784 }
e6145236 785
175542f5
MW
786 for (i = 0; i < n; i++) {
787 struct radix_tree_node *old = slot[i];
788 if (i) {
89148aa4 789 rcu_assign_pointer(slot[i], child);
175542f5
MW
790 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
791 if (tags & (1 << tag))
792 tag_clear(node, tag, offset + i);
793 } else {
794 rcu_assign_pointer(slot[i], item);
795 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
796 if (tags & (1 << tag))
797 tag_set(node, tag, offset);
e6145236 798 }
175542f5
MW
799 if (radix_tree_is_internal_node(old) &&
800 !is_sibling_entry(node, old))
801 radix_tree_free_nodes(old);
802 if (radix_tree_exceptional_entry(old))
803 node->exceptional--;
612d6c19 804 }
175542f5
MW
805 if (node) {
806 node->count += n;
807 if (radix_tree_exceptional_entry(item))
808 node->exceptional += n;
809 }
810 return n;
139e5616 811}
175542f5
MW
812#else
813static inline int insert_entries(struct radix_tree_node *node, void **slot,
814 void *item, unsigned order, bool replace)
815{
816 if (*slot)
817 return -EEXIST;
818 rcu_assign_pointer(*slot, item);
819 if (node) {
820 node->count++;
821 if (radix_tree_exceptional_entry(item))
822 node->exceptional++;
823 }
824 return 1;
825}
826#endif
139e5616
JW
827
828/**
e6145236 829 * __radix_tree_insert - insert into a radix tree
139e5616
JW
830 * @root: radix tree root
831 * @index: index key
e6145236 832 * @order: key covers the 2^order indices around index
139e5616
JW
833 * @item: item to insert
834 *
835 * Insert an item into the radix tree at position @index.
836 */
e6145236
MW
837int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
838 unsigned order, void *item)
139e5616
JW
839{
840 struct radix_tree_node *node;
841 void **slot;
842 int error;
843
b194d16c 844 BUG_ON(radix_tree_is_internal_node(item));
139e5616 845
e6145236 846 error = __radix_tree_create(root, index, order, &node, &slot);
139e5616
JW
847 if (error)
848 return error;
175542f5
MW
849
850 error = insert_entries(node, slot, item, order, false);
851 if (error < 0)
852 return error;
201b6264 853
612d6c19 854 if (node) {
7b60e9ad 855 unsigned offset = get_slot_offset(node, slot);
7b60e9ad
MW
856 BUG_ON(tag_get(node, 0, offset));
857 BUG_ON(tag_get(node, 1, offset));
858 BUG_ON(tag_get(node, 2, offset));
612d6c19 859 } else {
7b60e9ad 860 BUG_ON(root_tags_get(root));
612d6c19 861 }
1da177e4 862
1da177e4
LT
863 return 0;
864}
e6145236 865EXPORT_SYMBOL(__radix_tree_insert);
1da177e4 866
139e5616
JW
867/**
868 * __radix_tree_lookup - lookup an item in a radix tree
869 * @root: radix tree root
870 * @index: index key
871 * @nodep: returns node
872 * @slotp: returns slot
873 *
874 * Lookup and return the item at position @index in the radix
875 * tree @root.
876 *
877 * Until there is more than one item in the tree, no nodes are
878 * allocated and @root->rnode is used as a direct slot instead of
879 * pointing to a node, in which case *@nodep will be NULL.
7cf9c2c7 880 */
139e5616
JW
881void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
882 struct radix_tree_node **nodep, void ***slotp)
1da177e4 883{
139e5616 884 struct radix_tree_node *node, *parent;
85829954 885 unsigned long maxindex;
139e5616 886 void **slot;
612d6c19 887
85829954
MW
888 restart:
889 parent = NULL;
890 slot = (void **)&root->rnode;
9e85d811 891 radix_tree_load_root(root, &node, &maxindex);
85829954 892 if (index > maxindex)
1da177e4
LT
893 return NULL;
894
b194d16c 895 while (radix_tree_is_internal_node(node)) {
85829954 896 unsigned offset;
1da177e4 897
85829954
MW
898 if (node == RADIX_TREE_RETRY)
899 goto restart;
4dd6c098 900 parent = entry_to_node(node);
9e85d811 901 offset = radix_tree_descend(parent, &node, index);
85829954
MW
902 slot = parent->slots + offset;
903 }
1da177e4 904
139e5616
JW
905 if (nodep)
906 *nodep = parent;
907 if (slotp)
908 *slotp = slot;
909 return node;
b72b71c6
HS
910}
911
912/**
913 * radix_tree_lookup_slot - lookup a slot in a radix tree
914 * @root: radix tree root
915 * @index: index key
916 *
917 * Returns: the slot corresponding to the position @index in the
918 * radix tree @root. This is useful for update-if-exists operations.
919 *
920 * This function can be called under rcu_read_lock iff the slot is not
921 * modified by radix_tree_replace_slot, otherwise it must be called
922 * exclusive from other writers. Any dereference of the slot must be done
923 * using radix_tree_deref_slot.
924 */
925void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
926{
139e5616
JW
927 void **slot;
928
929 if (!__radix_tree_lookup(root, index, NULL, &slot))
930 return NULL;
931 return slot;
a4331366 932}
a4331366
HR
933EXPORT_SYMBOL(radix_tree_lookup_slot);
934
935/**
936 * radix_tree_lookup - perform lookup operation on a radix tree
937 * @root: radix tree root
938 * @index: index key
939 *
940 * Lookup the item at the position @index in the radix tree @root.
7cf9c2c7
NP
941 *
942 * This function can be called under rcu_read_lock, however the caller
943 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
944 * them safely). No RCU barriers are required to access or modify the
945 * returned item, however.
a4331366
HR
946 */
947void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
948{
139e5616 949 return __radix_tree_lookup(root, index, NULL, NULL);
1da177e4
LT
950}
951EXPORT_SYMBOL(radix_tree_lookup);
952
6d75f366
JW
953static void replace_slot(struct radix_tree_root *root,
954 struct radix_tree_node *node,
955 void **slot, void *item,
956 bool warn_typeswitch)
f7942430
JW
957{
958 void *old = rcu_dereference_raw(*slot);
f4b109c6 959 int count, exceptional;
f7942430
JW
960
961 WARN_ON_ONCE(radix_tree_is_internal_node(item));
f7942430 962
f4b109c6 963 count = !!item - !!old;
f7942430
JW
964 exceptional = !!radix_tree_exceptional_entry(item) -
965 !!radix_tree_exceptional_entry(old);
966
f4b109c6 967 WARN_ON_ONCE(warn_typeswitch && (count || exceptional));
f7942430 968
f4b109c6
JW
969 if (node) {
970 node->count += count;
f7942430 971 node->exceptional += exceptional;
f4b109c6 972 }
f7942430
JW
973
974 rcu_assign_pointer(*slot, item);
975}
976
6d75f366
JW
977/**
978 * __radix_tree_replace - replace item in a slot
4d693d08
JW
979 * @root: radix tree root
980 * @node: pointer to tree node
981 * @slot: pointer to slot in @node
982 * @item: new item to store in the slot.
983 * @update_node: callback for changing leaf nodes
984 * @private: private data to pass to @update_node
6d75f366
JW
985 *
986 * For use with __radix_tree_lookup(). Caller must hold tree write locked
987 * across slot lookup and replacement.
988 */
989void __radix_tree_replace(struct radix_tree_root *root,
990 struct radix_tree_node *node,
4d693d08
JW
991 void **slot, void *item,
992 radix_tree_update_node_t update_node, void *private)
6d75f366
JW
993{
994 /*
f4b109c6
JW
995 * This function supports replacing exceptional entries and
996 * deleting entries, but that needs accounting against the
997 * node unless the slot is root->rnode.
6d75f366
JW
998 */
999 replace_slot(root, node, slot, item,
1000 !node && slot != (void **)&root->rnode);
f4b109c6 1001
4d693d08
JW
1002 if (!node)
1003 return;
1004
1005 if (update_node)
1006 update_node(node, private);
1007
1008 delete_node(root, node, update_node, private);
6d75f366
JW
1009}
1010
1011/**
1012 * radix_tree_replace_slot - replace item in a slot
1013 * @root: radix tree root
1014 * @slot: pointer to slot
1015 * @item: new item to store in the slot.
1016 *
1017 * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
1018 * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked
1019 * across slot lookup and replacement.
1020 *
1021 * NOTE: This cannot be used to switch between non-entries (empty slots),
1022 * regular entries, and exceptional entries, as that requires accounting
f4b109c6
JW
1023 * inside the radix tree node. When switching from one type of entry or
1024 * deleting, use __radix_tree_lookup() and __radix_tree_replace().
6d75f366
JW
1025 */
1026void radix_tree_replace_slot(struct radix_tree_root *root,
1027 void **slot, void *item)
1028{
1029 replace_slot(root, NULL, slot, item, true);
1030}
1031
175542f5
MW
1032#ifdef CONFIG_RADIX_TREE_MULTIORDER
1033/**
1034 * radix_tree_join - replace multiple entries with one multiorder entry
1035 * @root: radix tree root
1036 * @index: an index inside the new entry
1037 * @order: order of the new entry
1038 * @item: new entry
1039 *
1040 * Call this function to replace several entries with one larger entry.
1041 * The existing entries are presumed to not need freeing as a result of
1042 * this call.
1043 *
1044 * The replacement entry will have all the tags set on it that were set
1045 * on any of the entries it is replacing.
1046 */
1047int radix_tree_join(struct radix_tree_root *root, unsigned long index,
1048 unsigned order, void *item)
1049{
1050 struct radix_tree_node *node;
1051 void **slot;
1052 int error;
1053
1054 BUG_ON(radix_tree_is_internal_node(item));
1055
1056 error = __radix_tree_create(root, index, order, &node, &slot);
1057 if (!error)
1058 error = insert_entries(node, slot, item, order, true);
1059 if (error > 0)
1060 error = 0;
1061
1062 return error;
1063}
1064#endif
1065
1da177e4
LT
1066/**
1067 * radix_tree_tag_set - set a tag on a radix tree node
1068 * @root: radix tree root
1069 * @index: index key
2fcd9005 1070 * @tag: tag index
1da177e4 1071 *
daff89f3
JC
1072 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
1073 * corresponding to @index in the radix tree. From
1da177e4
LT
1074 * the root all the way down to the leaf node.
1075 *
2fcd9005 1076 * Returns the address of the tagged item. Setting a tag on a not-present
1da177e4
LT
1077 * item is a bug.
1078 */
1079void *radix_tree_tag_set(struct radix_tree_root *root,
daff89f3 1080 unsigned long index, unsigned int tag)
1da177e4 1081{
fb969909
RZ
1082 struct radix_tree_node *node, *parent;
1083 unsigned long maxindex;
1da177e4 1084
9e85d811 1085 radix_tree_load_root(root, &node, &maxindex);
fb969909 1086 BUG_ON(index > maxindex);
1da177e4 1087
b194d16c 1088 while (radix_tree_is_internal_node(node)) {
fb969909 1089 unsigned offset;
1da177e4 1090
4dd6c098 1091 parent = entry_to_node(node);
9e85d811 1092 offset = radix_tree_descend(parent, &node, index);
fb969909
RZ
1093 BUG_ON(!node);
1094
1095 if (!tag_get(parent, tag, offset))
1096 tag_set(parent, tag, offset);
1da177e4
LT
1097 }
1098
612d6c19 1099 /* set the root's tag bit */
fb969909 1100 if (!root_tag_get(root, tag))
612d6c19
NP
1101 root_tag_set(root, tag);
1102
fb969909 1103 return node;
1da177e4
LT
1104}
1105EXPORT_SYMBOL(radix_tree_tag_set);
1106
d604c324
MW
1107static void node_tag_clear(struct radix_tree_root *root,
1108 struct radix_tree_node *node,
1109 unsigned int tag, unsigned int offset)
1110{
1111 while (node) {
1112 if (!tag_get(node, tag, offset))
1113 return;
1114 tag_clear(node, tag, offset);
1115 if (any_tag_set(node, tag))
1116 return;
1117
1118 offset = node->offset;
1119 node = node->parent;
1120 }
1121
1122 /* clear the root's tag bit */
1123 if (root_tag_get(root, tag))
1124 root_tag_clear(root, tag);
1125}
1126
9498d2bb
MW
1127static void node_tag_set(struct radix_tree_root *root,
1128 struct radix_tree_node *node,
1129 unsigned int tag, unsigned int offset)
1130{
1131 while (node) {
1132 if (tag_get(node, tag, offset))
1133 return;
1134 tag_set(node, tag, offset);
1135 offset = node->offset;
1136 node = node->parent;
1137 }
1138
1139 if (!root_tag_get(root, tag))
1140 root_tag_set(root, tag);
1141}
1142
268f42de
MW
1143/**
1144 * radix_tree_iter_tag_set - set a tag on the current iterator entry
1145 * @root: radix tree root
1146 * @iter: iterator state
1147 * @tag: tag to set
1148 */
1149void radix_tree_iter_tag_set(struct radix_tree_root *root,
1150 const struct radix_tree_iter *iter, unsigned int tag)
1151{
1152 node_tag_set(root, iter->node, tag, iter_offset(iter));
1153}
1154
1da177e4
LT
1155/**
1156 * radix_tree_tag_clear - clear a tag on a radix tree node
1157 * @root: radix tree root
1158 * @index: index key
2fcd9005 1159 * @tag: tag index
1da177e4 1160 *
daff89f3 1161 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
2fcd9005
MW
1162 * corresponding to @index in the radix tree. If this causes
1163 * the leaf node to have no tags set then clear the tag in the
1da177e4
LT
1164 * next-to-leaf node, etc.
1165 *
1166 * Returns the address of the tagged item on success, else NULL. ie:
1167 * has the same return value and semantics as radix_tree_lookup().
1168 */
1169void *radix_tree_tag_clear(struct radix_tree_root *root,
daff89f3 1170 unsigned long index, unsigned int tag)
1da177e4 1171{
00f47b58
RZ
1172 struct radix_tree_node *node, *parent;
1173 unsigned long maxindex;
e2bdb933 1174 int uninitialized_var(offset);
1da177e4 1175
9e85d811 1176 radix_tree_load_root(root, &node, &maxindex);
00f47b58
RZ
1177 if (index > maxindex)
1178 return NULL;
1da177e4 1179
00f47b58 1180 parent = NULL;
1da177e4 1181
b194d16c 1182 while (radix_tree_is_internal_node(node)) {
4dd6c098 1183 parent = entry_to_node(node);
9e85d811 1184 offset = radix_tree_descend(parent, &node, index);
1da177e4
LT
1185 }
1186
d604c324
MW
1187 if (node)
1188 node_tag_clear(root, parent, tag, offset);
1da177e4 1189
00f47b58 1190 return node;
1da177e4
LT
1191}
1192EXPORT_SYMBOL(radix_tree_tag_clear);
1193
1da177e4 1194/**
32605a18
MT
1195 * radix_tree_tag_get - get a tag on a radix tree node
1196 * @root: radix tree root
1197 * @index: index key
2fcd9005 1198 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
1da177e4 1199 *
32605a18 1200 * Return values:
1da177e4 1201 *
612d6c19
NP
1202 * 0: tag not present or not set
1203 * 1: tag set
ce82653d
DH
1204 *
1205 * Note that the return value of this function may not be relied on, even if
1206 * the RCU lock is held, unless tag modification and node deletion are excluded
1207 * from concurrency.
1da177e4
LT
1208 */
1209int radix_tree_tag_get(struct radix_tree_root *root,
daff89f3 1210 unsigned long index, unsigned int tag)
1da177e4 1211{
4589ba6d
RZ
1212 struct radix_tree_node *node, *parent;
1213 unsigned long maxindex;
1da177e4 1214
612d6c19
NP
1215 if (!root_tag_get(root, tag))
1216 return 0;
1217
9e85d811 1218 radix_tree_load_root(root, &node, &maxindex);
4589ba6d
RZ
1219 if (index > maxindex)
1220 return 0;
7cf9c2c7
NP
1221 if (node == NULL)
1222 return 0;
1223
b194d16c 1224 while (radix_tree_is_internal_node(node)) {
9e85d811 1225 unsigned offset;
1da177e4 1226
4dd6c098 1227 parent = entry_to_node(node);
9e85d811 1228 offset = radix_tree_descend(parent, &node, index);
1da177e4 1229
4589ba6d 1230 if (!node)
1da177e4 1231 return 0;
4589ba6d 1232 if (!tag_get(parent, tag, offset))
3fa36acb 1233 return 0;
4589ba6d
RZ
1234 if (node == RADIX_TREE_RETRY)
1235 break;
1da177e4 1236 }
4589ba6d
RZ
1237
1238 return 1;
1da177e4
LT
1239}
1240EXPORT_SYMBOL(radix_tree_tag_get);
1da177e4 1241
21ef5339
RZ
1242static inline void __set_iter_shift(struct radix_tree_iter *iter,
1243 unsigned int shift)
1244{
1245#ifdef CONFIG_RADIX_TREE_MULTIORDER
1246 iter->shift = shift;
1247#endif
1248}
1249
148deab2
MW
1250/* Construct iter->tags bit-mask from node->tags[tag] array */
1251static void set_iter_tags(struct radix_tree_iter *iter,
1252 struct radix_tree_node *node, unsigned offset,
1253 unsigned tag)
1254{
1255 unsigned tag_long = offset / BITS_PER_LONG;
1256 unsigned tag_bit = offset % BITS_PER_LONG;
1257
1258 iter->tags = node->tags[tag][tag_long] >> tag_bit;
1259
1260 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1261 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1262 /* Pick tags from next element */
1263 if (tag_bit)
1264 iter->tags |= node->tags[tag][tag_long + 1] <<
1265 (BITS_PER_LONG - tag_bit);
1266 /* Clip chunk size, here only BITS_PER_LONG tags */
1267 iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1268 }
1269}
1270
1271#ifdef CONFIG_RADIX_TREE_MULTIORDER
1272static void **skip_siblings(struct radix_tree_node **nodep,
1273 void **slot, struct radix_tree_iter *iter)
1274{
1275 void *sib = node_to_entry(slot - 1);
1276
1277 while (iter->index < iter->next_index) {
1278 *nodep = rcu_dereference_raw(*slot);
1279 if (*nodep && *nodep != sib)
1280 return slot;
1281 slot++;
1282 iter->index = __radix_tree_iter_add(iter, 1);
1283 iter->tags >>= 1;
1284 }
1285
1286 *nodep = NULL;
1287 return NULL;
1288}
1289
1290void ** __radix_tree_next_slot(void **slot, struct radix_tree_iter *iter,
1291 unsigned flags)
1292{
1293 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1294 struct radix_tree_node *node = rcu_dereference_raw(*slot);
1295
1296 slot = skip_siblings(&node, slot, iter);
1297
1298 while (radix_tree_is_internal_node(node)) {
1299 unsigned offset;
1300 unsigned long next_index;
1301
1302 if (node == RADIX_TREE_RETRY)
1303 return slot;
1304 node = entry_to_node(node);
268f42de 1305 iter->node = node;
148deab2
MW
1306 iter->shift = node->shift;
1307
1308 if (flags & RADIX_TREE_ITER_TAGGED) {
1309 offset = radix_tree_find_next_bit(node, tag, 0);
1310 if (offset == RADIX_TREE_MAP_SIZE)
1311 return NULL;
1312 slot = &node->slots[offset];
1313 iter->index = __radix_tree_iter_add(iter, offset);
1314 set_iter_tags(iter, node, offset, tag);
1315 node = rcu_dereference_raw(*slot);
1316 } else {
1317 offset = 0;
1318 slot = &node->slots[0];
1319 for (;;) {
1320 node = rcu_dereference_raw(*slot);
1321 if (node)
1322 break;
1323 slot++;
1324 offset++;
1325 if (offset == RADIX_TREE_MAP_SIZE)
1326 return NULL;
1327 }
1328 iter->index = __radix_tree_iter_add(iter, offset);
1329 }
1330 if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0))
1331 goto none;
1332 next_index = (iter->index | shift_maxindex(iter->shift)) + 1;
1333 if (next_index < iter->next_index)
1334 iter->next_index = next_index;
1335 }
1336
1337 return slot;
1338 none:
1339 iter->next_index = 0;
1340 return NULL;
1341}
1342EXPORT_SYMBOL(__radix_tree_next_slot);
1343#else
1344static void **skip_siblings(struct radix_tree_node **nodep,
1345 void **slot, struct radix_tree_iter *iter)
1346{
1347 return slot;
1348}
1349#endif
1350
1351void **radix_tree_iter_resume(void **slot, struct radix_tree_iter *iter)
1352{
1353 struct radix_tree_node *node;
1354
1355 slot++;
1356 iter->index = __radix_tree_iter_add(iter, 1);
1357 node = rcu_dereference_raw(*slot);
1358 skip_siblings(&node, slot, iter);
1359 iter->next_index = iter->index;
1360 iter->tags = 0;
1361 return NULL;
1362}
1363EXPORT_SYMBOL(radix_tree_iter_resume);
1364
78c1d784
KK
1365/**
1366 * radix_tree_next_chunk - find next chunk of slots for iteration
1367 *
1368 * @root: radix tree root
1369 * @iter: iterator state
1370 * @flags: RADIX_TREE_ITER_* flags and tag index
1371 * Returns: pointer to chunk first slot, or NULL if iteration is over
1372 */
1373void **radix_tree_next_chunk(struct radix_tree_root *root,
1374 struct radix_tree_iter *iter, unsigned flags)
1375{
9e85d811 1376 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
8c1244de 1377 struct radix_tree_node *node, *child;
21ef5339 1378 unsigned long index, offset, maxindex;
78c1d784
KK
1379
1380 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1381 return NULL;
1382
1383 /*
1384 * Catch next_index overflow after ~0UL. iter->index never overflows
1385 * during iterating; it can be zero only at the beginning.
1386 * And we cannot overflow iter->next_index in a single step,
1387 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
fffaee36
KK
1388 *
1389 * This condition also used by radix_tree_next_slot() to stop
91b9677c 1390 * contiguous iterating, and forbid switching to the next chunk.
78c1d784
KK
1391 */
1392 index = iter->next_index;
1393 if (!index && iter->index)
1394 return NULL;
1395
21ef5339 1396 restart:
9e85d811 1397 radix_tree_load_root(root, &child, &maxindex);
21ef5339
RZ
1398 if (index > maxindex)
1399 return NULL;
8c1244de
MW
1400 if (!child)
1401 return NULL;
21ef5339 1402
8c1244de 1403 if (!radix_tree_is_internal_node(child)) {
78c1d784 1404 /* Single-slot tree */
21ef5339
RZ
1405 iter->index = index;
1406 iter->next_index = maxindex + 1;
78c1d784 1407 iter->tags = 1;
268f42de 1408 iter->node = NULL;
8c1244de 1409 __set_iter_shift(iter, 0);
78c1d784 1410 return (void **)&root->rnode;
8c1244de 1411 }
21ef5339 1412
8c1244de
MW
1413 do {
1414 node = entry_to_node(child);
9e85d811 1415 offset = radix_tree_descend(node, &child, index);
21ef5339 1416
78c1d784 1417 if ((flags & RADIX_TREE_ITER_TAGGED) ?
8c1244de 1418 !tag_get(node, tag, offset) : !child) {
78c1d784
KK
1419 /* Hole detected */
1420 if (flags & RADIX_TREE_ITER_CONTIG)
1421 return NULL;
1422
1423 if (flags & RADIX_TREE_ITER_TAGGED)
bc412fca 1424 offset = radix_tree_find_next_bit(node, tag,
78c1d784
KK
1425 offset + 1);
1426 else
1427 while (++offset < RADIX_TREE_MAP_SIZE) {
21ef5339
RZ
1428 void *slot = node->slots[offset];
1429 if (is_sibling_entry(node, slot))
1430 continue;
1431 if (slot)
78c1d784
KK
1432 break;
1433 }
8c1244de 1434 index &= ~node_maxindex(node);
9e85d811 1435 index += offset << node->shift;
78c1d784
KK
1436 /* Overflow after ~0UL */
1437 if (!index)
1438 return NULL;
1439 if (offset == RADIX_TREE_MAP_SIZE)
1440 goto restart;
8c1244de 1441 child = rcu_dereference_raw(node->slots[offset]);
78c1d784
KK
1442 }
1443
8c1244de 1444 if ((child == NULL) || (child == RADIX_TREE_RETRY))
78c1d784 1445 goto restart;
8c1244de 1446 } while (radix_tree_is_internal_node(child));
78c1d784
KK
1447
1448 /* Update the iterator state */
8c1244de
MW
1449 iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
1450 iter->next_index = (index | node_maxindex(node)) + 1;
268f42de 1451 iter->node = node;
9e85d811 1452 __set_iter_shift(iter, node->shift);
78c1d784 1453
148deab2
MW
1454 if (flags & RADIX_TREE_ITER_TAGGED)
1455 set_iter_tags(iter, node, offset, tag);
78c1d784
KK
1456
1457 return node->slots + offset;
1458}
1459EXPORT_SYMBOL(radix_tree_next_chunk);
1460
1da177e4
LT
1461/**
1462 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1463 * @root: radix tree root
1464 * @results: where the results of the lookup are placed
1465 * @first_index: start the lookup from this key
1466 * @max_items: place up to this many items at *results
1467 *
1468 * Performs an index-ascending scan of the tree for present items. Places
1469 * them at *@results and returns the number of items which were placed at
1470 * *@results.
1471 *
1472 * The implementation is naive.
7cf9c2c7
NP
1473 *
1474 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1475 * rcu_read_lock. In this case, rather than the returned results being
2fcd9005
MW
1476 * an atomic snapshot of the tree at a single point in time, the
1477 * semantics of an RCU protected gang lookup are as though multiple
1478 * radix_tree_lookups have been issued in individual locks, and results
1479 * stored in 'results'.
1da177e4
LT
1480 */
1481unsigned int
1482radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1483 unsigned long first_index, unsigned int max_items)
1484{
cebbd29e
KK
1485 struct radix_tree_iter iter;
1486 void **slot;
1487 unsigned int ret = 0;
7cf9c2c7 1488
cebbd29e 1489 if (unlikely(!max_items))
7cf9c2c7 1490 return 0;
1da177e4 1491
cebbd29e 1492 radix_tree_for_each_slot(slot, root, &iter, first_index) {
46437f9a 1493 results[ret] = rcu_dereference_raw(*slot);
cebbd29e
KK
1494 if (!results[ret])
1495 continue;
b194d16c 1496 if (radix_tree_is_internal_node(results[ret])) {
46437f9a
MW
1497 slot = radix_tree_iter_retry(&iter);
1498 continue;
1499 }
cebbd29e 1500 if (++ret == max_items)
1da177e4 1501 break;
1da177e4 1502 }
7cf9c2c7 1503
1da177e4
LT
1504 return ret;
1505}
1506EXPORT_SYMBOL(radix_tree_gang_lookup);
1507
47feff2c
NP
1508/**
1509 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1510 * @root: radix tree root
1511 * @results: where the results of the lookup are placed
6328650b 1512 * @indices: where their indices should be placed (but usually NULL)
47feff2c
NP
1513 * @first_index: start the lookup from this key
1514 * @max_items: place up to this many items at *results
1515 *
1516 * Performs an index-ascending scan of the tree for present items. Places
1517 * their slots at *@results and returns the number of items which were
1518 * placed at *@results.
1519 *
1520 * The implementation is naive.
1521 *
1522 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1523 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1524 * protection, radix_tree_deref_slot may fail requiring a retry.
1525 */
1526unsigned int
6328650b
HD
1527radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1528 void ***results, unsigned long *indices,
47feff2c
NP
1529 unsigned long first_index, unsigned int max_items)
1530{
cebbd29e
KK
1531 struct radix_tree_iter iter;
1532 void **slot;
1533 unsigned int ret = 0;
47feff2c 1534
cebbd29e 1535 if (unlikely(!max_items))
47feff2c
NP
1536 return 0;
1537
cebbd29e
KK
1538 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1539 results[ret] = slot;
6328650b 1540 if (indices)
cebbd29e
KK
1541 indices[ret] = iter.index;
1542 if (++ret == max_items)
47feff2c 1543 break;
47feff2c
NP
1544 }
1545
1546 return ret;
1547}
1548EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1549
1da177e4
LT
1550/**
1551 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1552 * based on a tag
1553 * @root: radix tree root
1554 * @results: where the results of the lookup are placed
1555 * @first_index: start the lookup from this key
1556 * @max_items: place up to this many items at *results
daff89f3 1557 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1da177e4
LT
1558 *
1559 * Performs an index-ascending scan of the tree for present items which
1560 * have the tag indexed by @tag set. Places the items at *@results and
1561 * returns the number of items which were placed at *@results.
1562 */
1563unsigned int
1564radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
daff89f3
JC
1565 unsigned long first_index, unsigned int max_items,
1566 unsigned int tag)
1da177e4 1567{
cebbd29e
KK
1568 struct radix_tree_iter iter;
1569 void **slot;
1570 unsigned int ret = 0;
612d6c19 1571
cebbd29e 1572 if (unlikely(!max_items))
7cf9c2c7
NP
1573 return 0;
1574
cebbd29e 1575 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
46437f9a 1576 results[ret] = rcu_dereference_raw(*slot);
cebbd29e
KK
1577 if (!results[ret])
1578 continue;
b194d16c 1579 if (radix_tree_is_internal_node(results[ret])) {
46437f9a
MW
1580 slot = radix_tree_iter_retry(&iter);
1581 continue;
1582 }
cebbd29e 1583 if (++ret == max_items)
1da177e4 1584 break;
1da177e4 1585 }
7cf9c2c7 1586
1da177e4
LT
1587 return ret;
1588}
1589EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1590
47feff2c
NP
1591/**
1592 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1593 * radix tree based on a tag
1594 * @root: radix tree root
1595 * @results: where the results of the lookup are placed
1596 * @first_index: start the lookup from this key
1597 * @max_items: place up to this many items at *results
1598 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1599 *
1600 * Performs an index-ascending scan of the tree for present items which
1601 * have the tag indexed by @tag set. Places the slots at *@results and
1602 * returns the number of slots which were placed at *@results.
1603 */
1604unsigned int
1605radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1606 unsigned long first_index, unsigned int max_items,
1607 unsigned int tag)
1608{
cebbd29e
KK
1609 struct radix_tree_iter iter;
1610 void **slot;
1611 unsigned int ret = 0;
47feff2c 1612
cebbd29e 1613 if (unlikely(!max_items))
47feff2c
NP
1614 return 0;
1615
cebbd29e
KK
1616 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1617 results[ret] = slot;
1618 if (++ret == max_items)
47feff2c 1619 break;
47feff2c
NP
1620 }
1621
1622 return ret;
1623}
1624EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1625
139e5616
JW
1626/**
1627 * __radix_tree_delete_node - try to free node after clearing a slot
1628 * @root: radix tree root
139e5616
JW
1629 * @node: node containing @index
1630 *
1631 * After clearing the slot at @index in @node from radix tree
1632 * rooted at @root, call this function to attempt freeing the
1633 * node and shrinking the tree.
139e5616 1634 */
14b46879 1635void __radix_tree_delete_node(struct radix_tree_root *root,
139e5616
JW
1636 struct radix_tree_node *node)
1637{
14b46879 1638 delete_node(root, node, NULL, NULL);
139e5616
JW
1639}
1640
57578c2e
MW
1641static inline void delete_sibling_entries(struct radix_tree_node *node,
1642 void *ptr, unsigned offset)
1643{
1644#ifdef CONFIG_RADIX_TREE_MULTIORDER
1645 int i;
1646 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1647 if (node->slots[offset + i] != ptr)
1648 break;
1649 node->slots[offset + i] = NULL;
1650 node->count--;
1651 }
1652#endif
1653}
1654
1da177e4 1655/**
53c59f26 1656 * radix_tree_delete_item - delete an item from a radix tree
1da177e4
LT
1657 * @root: radix tree root
1658 * @index: index key
53c59f26 1659 * @item: expected item
1da177e4 1660 *
53c59f26 1661 * Remove @item at @index from the radix tree rooted at @root.
1da177e4 1662 *
53c59f26
JW
1663 * Returns the address of the deleted item, or NULL if it was not present
1664 * or the entry at the given @index was not @item.
1da177e4 1665 */
53c59f26
JW
1666void *radix_tree_delete_item(struct radix_tree_root *root,
1667 unsigned long index, void *item)
1da177e4 1668{
139e5616 1669 struct radix_tree_node *node;
57578c2e 1670 unsigned int offset;
139e5616
JW
1671 void **slot;
1672 void *entry;
d5274261 1673 int tag;
1da177e4 1674
139e5616
JW
1675 entry = __radix_tree_lookup(root, index, &node, &slot);
1676 if (!entry)
1677 return NULL;
1da177e4 1678
139e5616
JW
1679 if (item && entry != item)
1680 return NULL;
1681
1682 if (!node) {
612d6c19
NP
1683 root_tag_clear_all(root);
1684 root->rnode = NULL;
139e5616 1685 return entry;
612d6c19 1686 }
1da177e4 1687
29e0967c 1688 offset = get_slot_offset(node, slot);
53c59f26 1689
d604c324
MW
1690 /* Clear all tags associated with the item to be deleted. */
1691 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1692 node_tag_clear(root, node, tag, offset);
1da177e4 1693
a4db4dce 1694 delete_sibling_entries(node, node_to_entry(slot), offset);
4d693d08 1695 __radix_tree_replace(root, node, slot, NULL, NULL, NULL);
612d6c19 1696
139e5616 1697 return entry;
1da177e4 1698}
53c59f26
JW
1699EXPORT_SYMBOL(radix_tree_delete_item);
1700
1701/**
1702 * radix_tree_delete - delete an item from a radix tree
1703 * @root: radix tree root
1704 * @index: index key
1705 *
1706 * Remove the item at @index from the radix tree rooted at @root.
1707 *
1708 * Returns the address of the deleted item, or NULL if it was not present.
1709 */
1710void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1711{
1712 return radix_tree_delete_item(root, index, NULL);
1713}
1da177e4
LT
1714EXPORT_SYMBOL(radix_tree_delete);
1715
d3798ae8
JW
1716void radix_tree_clear_tags(struct radix_tree_root *root,
1717 struct radix_tree_node *node,
1718 void **slot)
d604c324 1719{
d604c324
MW
1720 if (node) {
1721 unsigned int tag, offset = get_slot_offset(node, slot);
1722 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1723 node_tag_clear(root, node, tag, offset);
1724 } else {
1725 /* Clear root node tags */
1726 root->gfp_mask &= __GFP_BITS_MASK;
1727 }
d604c324
MW
1728}
1729
1da177e4
LT
1730/**
1731 * radix_tree_tagged - test whether any items in the tree are tagged
1732 * @root: radix tree root
1733 * @tag: tag to test
1734 */
daff89f3 1735int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1da177e4 1736{
612d6c19 1737 return root_tag_get(root, tag);
1da177e4
LT
1738}
1739EXPORT_SYMBOL(radix_tree_tagged);
1740
1741static void
449dd698 1742radix_tree_node_ctor(void *arg)
1da177e4 1743{
449dd698
JW
1744 struct radix_tree_node *node = arg;
1745
1746 memset(node, 0, sizeof(*node));
1747 INIT_LIST_HEAD(&node->private_list);
1da177e4
LT
1748}
1749
c78c66d1
KS
1750static __init unsigned long __maxindex(unsigned int height)
1751{
1752 unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1753 int shift = RADIX_TREE_INDEX_BITS - width;
1754
1755 if (shift < 0)
1756 return ~0UL;
1757 if (shift >= BITS_PER_LONG)
1758 return 0UL;
1759 return ~0UL >> shift;
1760}
1761
1762static __init void radix_tree_init_maxnodes(void)
1763{
1764 unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
1765 unsigned int i, j;
1766
1767 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1768 height_to_maxindex[i] = __maxindex(i);
1769 for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
1770 for (j = i; j > 0; j--)
1771 height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
1772 }
1773}
1774
d544abd5 1775static int radix_tree_cpu_dead(unsigned int cpu)
1da177e4 1776{
2fcd9005
MW
1777 struct radix_tree_preload *rtp;
1778 struct radix_tree_node *node;
1779
1780 /* Free per-cpu pool of preloaded nodes */
d544abd5
SAS
1781 rtp = &per_cpu(radix_tree_preloads, cpu);
1782 while (rtp->nr) {
1783 node = rtp->nodes;
1784 rtp->nodes = node->private_data;
1785 kmem_cache_free(radix_tree_node_cachep, node);
1786 rtp->nr--;
2fcd9005 1787 }
d544abd5 1788 return 0;
1da177e4 1789}
1da177e4
LT
1790
1791void __init radix_tree_init(void)
1792{
d544abd5 1793 int ret;
1da177e4
LT
1794 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1795 sizeof(struct radix_tree_node), 0,
488514d1
CL
1796 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1797 radix_tree_node_ctor);
c78c66d1 1798 radix_tree_init_maxnodes();
d544abd5
SAS
1799 ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
1800 NULL, radix_tree_cpu_dead);
1801 WARN_ON(ret < 0);
1da177e4 1802}