]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - lib/radix-tree.c
radix-tree: delete radix_tree_locate_item()
[mirror_ubuntu-artful-kernel.git] / lib / radix-tree.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
cde53535 4 * Copyright (C) 2005 SGI, Christoph Lameter
7cf9c2c7 5 * Copyright (C) 2006 Nick Piggin
78c1d784 6 * Copyright (C) 2012 Konstantin Khlebnikov
6b053b8e
MW
7 * Copyright (C) 2016 Intel, Matthew Wilcox
8 * Copyright (C) 2016 Intel, Ross Zwisler
1da177e4
LT
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25#include <linux/errno.h>
26#include <linux/init.h>
27#include <linux/kernel.h>
8bc3bcc9 28#include <linux/export.h>
1da177e4
LT
29#include <linux/radix-tree.h>
30#include <linux/percpu.h>
31#include <linux/slab.h>
ce80b067 32#include <linux/kmemleak.h>
1da177e4
LT
33#include <linux/notifier.h>
34#include <linux/cpu.h>
1da177e4
LT
35#include <linux/string.h>
36#include <linux/bitops.h>
7cf9c2c7 37#include <linux/rcupdate.h>
92cf2118 38#include <linux/preempt.h> /* in_interrupt() */
1da177e4
LT
39
40
c78c66d1
KS
41/* Number of nodes in fully populated tree of given height */
42static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
43
1da177e4
LT
44/*
45 * Radix tree node cache.
46 */
e18b890b 47static struct kmem_cache *radix_tree_node_cachep;
1da177e4 48
55368052
NP
49/*
50 * The radix tree is variable-height, so an insert operation not only has
51 * to build the branch to its corresponding item, it also has to build the
52 * branch to existing items if the size has to be increased (by
53 * radix_tree_extend).
54 *
55 * The worst case is a zero height tree with just a single item at index 0,
56 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
57 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
58 * Hence:
59 */
60#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
61
1da177e4
LT
62/*
63 * Per-cpu pool of preloaded nodes
64 */
65struct radix_tree_preload {
2fcd9005 66 unsigned nr;
9d2a8da0
KS
67 /* nodes->private_data points to next preallocated node */
68 struct radix_tree_node *nodes;
1da177e4 69};
8cef7d57 70static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
1da177e4 71
148deab2
MW
72static inline struct radix_tree_node *entry_to_node(void *ptr)
73{
74 return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
75}
76
a4db4dce 77static inline void *node_to_entry(void *ptr)
27d20fdd 78{
30ff46cc 79 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
27d20fdd
NP
80}
81
a4db4dce 82#define RADIX_TREE_RETRY node_to_entry(NULL)
afe0e395 83
db050f29
MW
84#ifdef CONFIG_RADIX_TREE_MULTIORDER
85/* Sibling slots point directly to another slot in the same node */
86static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
87{
88 void **ptr = node;
89 return (parent->slots <= ptr) &&
90 (ptr < parent->slots + RADIX_TREE_MAP_SIZE);
91}
92#else
93static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
94{
95 return false;
96}
97#endif
98
99static inline unsigned long get_slot_offset(struct radix_tree_node *parent,
100 void **slot)
101{
102 return slot - parent->slots;
103}
104
9e85d811
MW
105static unsigned int radix_tree_descend(struct radix_tree_node *parent,
106 struct radix_tree_node **nodep, unsigned long index)
db050f29 107{
9e85d811 108 unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
db050f29
MW
109 void **entry = rcu_dereference_raw(parent->slots[offset]);
110
111#ifdef CONFIG_RADIX_TREE_MULTIORDER
b194d16c 112 if (radix_tree_is_internal_node(entry)) {
8d2c0d36
LT
113 if (is_sibling_entry(parent, entry)) {
114 void **sibentry = (void **) entry_to_node(entry);
115 offset = get_slot_offset(parent, sibentry);
116 entry = rcu_dereference_raw(*sibentry);
db050f29
MW
117 }
118 }
119#endif
120
121 *nodep = (void *)entry;
122 return offset;
123}
124
612d6c19
NP
125static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
126{
127 return root->gfp_mask & __GFP_BITS_MASK;
128}
129
643b52b9
NP
130static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
131 int offset)
132{
133 __set_bit(offset, node->tags[tag]);
134}
135
136static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
137 int offset)
138{
139 __clear_bit(offset, node->tags[tag]);
140}
141
142static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
143 int offset)
144{
145 return test_bit(offset, node->tags[tag]);
146}
147
148static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
149{
150 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
151}
152
2fcd9005 153static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
643b52b9
NP
154{
155 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
156}
157
158static inline void root_tag_clear_all(struct radix_tree_root *root)
159{
160 root->gfp_mask &= __GFP_BITS_MASK;
161}
162
163static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
164{
2fcd9005 165 return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
643b52b9
NP
166}
167
7b60e9ad
MW
168static inline unsigned root_tags_get(struct radix_tree_root *root)
169{
170 return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT;
171}
172
643b52b9
NP
173/*
174 * Returns 1 if any slot in the node has this tag set.
175 * Otherwise returns 0.
176 */
177static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
178{
2fcd9005 179 unsigned idx;
643b52b9
NP
180 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
181 if (node->tags[tag][idx])
182 return 1;
183 }
184 return 0;
185}
78c1d784
KK
186
187/**
188 * radix_tree_find_next_bit - find the next set bit in a memory region
189 *
190 * @addr: The address to base the search on
191 * @size: The bitmap size in bits
192 * @offset: The bitnumber to start searching at
193 *
194 * Unrollable variant of find_next_bit() for constant size arrays.
195 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
196 * Returns next bit offset, or size if nothing found.
197 */
198static __always_inline unsigned long
bc412fca
MW
199radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
200 unsigned long offset)
78c1d784 201{
bc412fca 202 const unsigned long *addr = node->tags[tag];
78c1d784 203
bc412fca 204 if (offset < RADIX_TREE_MAP_SIZE) {
78c1d784
KK
205 unsigned long tmp;
206
207 addr += offset / BITS_PER_LONG;
208 tmp = *addr >> (offset % BITS_PER_LONG);
209 if (tmp)
210 return __ffs(tmp) + offset;
211 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
bc412fca 212 while (offset < RADIX_TREE_MAP_SIZE) {
78c1d784
KK
213 tmp = *++addr;
214 if (tmp)
215 return __ffs(tmp) + offset;
216 offset += BITS_PER_LONG;
217 }
218 }
bc412fca 219 return RADIX_TREE_MAP_SIZE;
78c1d784
KK
220}
221
218ed750
MW
222/*
223 * The maximum index which can be stored in a radix tree
224 */
225static inline unsigned long shift_maxindex(unsigned int shift)
226{
227 return (RADIX_TREE_MAP_SIZE << shift) - 1;
228}
229
230static inline unsigned long node_maxindex(struct radix_tree_node *node)
231{
232 return shift_maxindex(node->shift);
233}
234
0796c583 235#ifndef __KERNEL__
d0891265 236static void dump_node(struct radix_tree_node *node, unsigned long index)
7cf19af4 237{
0796c583 238 unsigned long i;
7cf19af4 239
218ed750
MW
240 pr_debug("radix node: %p offset %d indices %lu-%lu parent %p tags %lx %lx %lx shift %d count %d exceptional %d\n",
241 node, node->offset, index, index | node_maxindex(node),
242 node->parent,
0796c583 243 node->tags[0][0], node->tags[1][0], node->tags[2][0],
218ed750 244 node->shift, node->count, node->exceptional);
0796c583
RZ
245
246 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
d0891265
MW
247 unsigned long first = index | (i << node->shift);
248 unsigned long last = first | ((1UL << node->shift) - 1);
0796c583
RZ
249 void *entry = node->slots[i];
250 if (!entry)
251 continue;
218ed750
MW
252 if (entry == RADIX_TREE_RETRY) {
253 pr_debug("radix retry offset %ld indices %lu-%lu parent %p\n",
254 i, first, last, node);
b194d16c 255 } else if (!radix_tree_is_internal_node(entry)) {
218ed750
MW
256 pr_debug("radix entry %p offset %ld indices %lu-%lu parent %p\n",
257 entry, i, first, last, node);
258 } else if (is_sibling_entry(node, entry)) {
259 pr_debug("radix sblng %p offset %ld indices %lu-%lu parent %p val %p\n",
260 entry, i, first, last, node,
261 *(void **)entry_to_node(entry));
0796c583 262 } else {
4dd6c098 263 dump_node(entry_to_node(entry), first);
0796c583
RZ
264 }
265 }
7cf19af4
MW
266}
267
268/* For debug */
269static void radix_tree_dump(struct radix_tree_root *root)
270{
d0891265
MW
271 pr_debug("radix root: %p rnode %p tags %x\n",
272 root, root->rnode,
7cf19af4 273 root->gfp_mask >> __GFP_BITS_SHIFT);
b194d16c 274 if (!radix_tree_is_internal_node(root->rnode))
7cf19af4 275 return;
4dd6c098 276 dump_node(entry_to_node(root->rnode), 0);
7cf19af4
MW
277}
278#endif
279
1da177e4
LT
280/*
281 * This assumes that the caller has performed appropriate preallocation, and
282 * that the caller has pinned this thread of control to the current CPU.
283 */
284static struct radix_tree_node *
285radix_tree_node_alloc(struct radix_tree_root *root)
286{
e2848a0e 287 struct radix_tree_node *ret = NULL;
612d6c19 288 gfp_t gfp_mask = root_gfp_mask(root);
1da177e4 289
5e4c0d97 290 /*
2fcd9005
MW
291 * Preload code isn't irq safe and it doesn't make sense to use
292 * preloading during an interrupt anyway as all the allocations have
293 * to be atomic. So just do normal allocation when in interrupt.
5e4c0d97 294 */
d0164adc 295 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
1da177e4
LT
296 struct radix_tree_preload *rtp;
297
58e698af
VD
298 /*
299 * Even if the caller has preloaded, try to allocate from the
05eb6e72
VD
300 * cache first for the new node to get accounted to the memory
301 * cgroup.
58e698af
VD
302 */
303 ret = kmem_cache_alloc(radix_tree_node_cachep,
05eb6e72 304 gfp_mask | __GFP_NOWARN);
58e698af
VD
305 if (ret)
306 goto out;
307
e2848a0e
NP
308 /*
309 * Provided the caller has preloaded here, we will always
310 * succeed in getting a node here (and never reach
311 * kmem_cache_alloc)
312 */
7c8e0181 313 rtp = this_cpu_ptr(&radix_tree_preloads);
1da177e4 314 if (rtp->nr) {
9d2a8da0
KS
315 ret = rtp->nodes;
316 rtp->nodes = ret->private_data;
317 ret->private_data = NULL;
1da177e4
LT
318 rtp->nr--;
319 }
ce80b067
CM
320 /*
321 * Update the allocation stack trace as this is more useful
322 * for debugging.
323 */
324 kmemleak_update_trace(ret);
58e698af 325 goto out;
1da177e4 326 }
05eb6e72 327 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
58e698af 328out:
b194d16c 329 BUG_ON(radix_tree_is_internal_node(ret));
1da177e4
LT
330 return ret;
331}
332
7cf9c2c7
NP
333static void radix_tree_node_rcu_free(struct rcu_head *head)
334{
335 struct radix_tree_node *node =
336 container_of(head, struct radix_tree_node, rcu_head);
b6dd0865 337 int i;
643b52b9
NP
338
339 /*
340 * must only free zeroed nodes into the slab. radix_tree_shrink
341 * can leave us with a non-NULL entry in the first slot, so clear
342 * that here to make sure.
343 */
b6dd0865
DC
344 for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
345 tag_clear(node, i, 0);
346
643b52b9 347 node->slots[0] = NULL;
91d9c05a 348 INIT_LIST_HEAD(&node->private_list);
643b52b9 349
7cf9c2c7
NP
350 kmem_cache_free(radix_tree_node_cachep, node);
351}
352
1da177e4
LT
353static inline void
354radix_tree_node_free(struct radix_tree_node *node)
355{
7cf9c2c7 356 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
1da177e4
LT
357}
358
359/*
360 * Load up this CPU's radix_tree_node buffer with sufficient objects to
361 * ensure that the addition of a single element in the tree cannot fail. On
362 * success, return zero, with preemption disabled. On error, return -ENOMEM
363 * with preemption not disabled.
b34df792
DH
364 *
365 * To make use of this facility, the radix tree must be initialised without
d0164adc 366 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
1da177e4 367 */
c78c66d1 368static int __radix_tree_preload(gfp_t gfp_mask, int nr)
1da177e4
LT
369{
370 struct radix_tree_preload *rtp;
371 struct radix_tree_node *node;
372 int ret = -ENOMEM;
373
05eb6e72
VD
374 /*
375 * Nodes preloaded by one cgroup can be be used by another cgroup, so
376 * they should never be accounted to any particular memory cgroup.
377 */
378 gfp_mask &= ~__GFP_ACCOUNT;
379
1da177e4 380 preempt_disable();
7c8e0181 381 rtp = this_cpu_ptr(&radix_tree_preloads);
c78c66d1 382 while (rtp->nr < nr) {
1da177e4 383 preempt_enable();
488514d1 384 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
1da177e4
LT
385 if (node == NULL)
386 goto out;
387 preempt_disable();
7c8e0181 388 rtp = this_cpu_ptr(&radix_tree_preloads);
c78c66d1 389 if (rtp->nr < nr) {
9d2a8da0
KS
390 node->private_data = rtp->nodes;
391 rtp->nodes = node;
392 rtp->nr++;
393 } else {
1da177e4 394 kmem_cache_free(radix_tree_node_cachep, node);
9d2a8da0 395 }
1da177e4
LT
396 }
397 ret = 0;
398out:
399 return ret;
400}
5e4c0d97
JK
401
402/*
403 * Load up this CPU's radix_tree_node buffer with sufficient objects to
404 * ensure that the addition of a single element in the tree cannot fail. On
405 * success, return zero, with preemption disabled. On error, return -ENOMEM
406 * with preemption not disabled.
407 *
408 * To make use of this facility, the radix tree must be initialised without
d0164adc 409 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
5e4c0d97
JK
410 */
411int radix_tree_preload(gfp_t gfp_mask)
412{
413 /* Warn on non-sensical use... */
d0164adc 414 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
c78c66d1 415 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
5e4c0d97 416}
d7f0923d 417EXPORT_SYMBOL(radix_tree_preload);
1da177e4 418
5e4c0d97
JK
419/*
420 * The same as above function, except we don't guarantee preloading happens.
421 * We do it, if we decide it helps. On success, return zero with preemption
422 * disabled. On error, return -ENOMEM with preemption not disabled.
423 */
424int radix_tree_maybe_preload(gfp_t gfp_mask)
425{
d0164adc 426 if (gfpflags_allow_blocking(gfp_mask))
c78c66d1 427 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
5e4c0d97
JK
428 /* Preloading doesn't help anything with this gfp mask, skip it */
429 preempt_disable();
430 return 0;
431}
432EXPORT_SYMBOL(radix_tree_maybe_preload);
433
c78c66d1
KS
434/*
435 * The same as function above, but preload number of nodes required to insert
436 * (1 << order) continuous naturally-aligned elements.
437 */
438int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
439{
440 unsigned long nr_subtrees;
441 int nr_nodes, subtree_height;
442
443 /* Preloading doesn't help anything with this gfp mask, skip it */
444 if (!gfpflags_allow_blocking(gfp_mask)) {
445 preempt_disable();
446 return 0;
447 }
448
449 /*
450 * Calculate number and height of fully populated subtrees it takes to
451 * store (1 << order) elements.
452 */
453 nr_subtrees = 1 << order;
454 for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
455 subtree_height++)
456 nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
457
458 /*
459 * The worst case is zero height tree with a single item at index 0 and
460 * then inserting items starting at ULONG_MAX - (1 << order).
461 *
462 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
463 * 0-index item.
464 */
465 nr_nodes = RADIX_TREE_MAX_PATH;
466
467 /* Plus branch to fully populated subtrees. */
468 nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
469
470 /* Root node is shared. */
471 nr_nodes--;
472
473 /* Plus nodes required to build subtrees. */
474 nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
475
476 return __radix_tree_preload(gfp_mask, nr_nodes);
477}
478
1456a439
MW
479static unsigned radix_tree_load_root(struct radix_tree_root *root,
480 struct radix_tree_node **nodep, unsigned long *maxindex)
481{
482 struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
483
484 *nodep = node;
485
b194d16c 486 if (likely(radix_tree_is_internal_node(node))) {
4dd6c098 487 node = entry_to_node(node);
1456a439 488 *maxindex = node_maxindex(node);
c12e51b0 489 return node->shift + RADIX_TREE_MAP_SHIFT;
1456a439
MW
490 }
491
492 *maxindex = 0;
493 return 0;
494}
495
1da177e4
LT
496/*
497 * Extend a radix tree so it can store key @index.
498 */
e6145236 499static int radix_tree_extend(struct radix_tree_root *root,
d0891265 500 unsigned long index, unsigned int shift)
1da177e4 501{
e2bdb933 502 struct radix_tree_node *slot;
d0891265 503 unsigned int maxshift;
1da177e4
LT
504 int tag;
505
d0891265
MW
506 /* Figure out what the shift should be. */
507 maxshift = shift;
508 while (index > shift_maxindex(maxshift))
509 maxshift += RADIX_TREE_MAP_SHIFT;
1da177e4 510
d0891265
MW
511 slot = root->rnode;
512 if (!slot)
1da177e4 513 goto out;
1da177e4 514
1da177e4 515 do {
2fcd9005
MW
516 struct radix_tree_node *node = radix_tree_node_alloc(root);
517
518 if (!node)
1da177e4
LT
519 return -ENOMEM;
520
1da177e4 521 /* Propagate the aggregated tag info into the new root */
daff89f3 522 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
612d6c19 523 if (root_tag_get(root, tag))
1da177e4
LT
524 tag_set(node, tag, 0);
525 }
526
d0891265
MW
527 BUG_ON(shift > BITS_PER_LONG);
528 node->shift = shift;
0c7fa0a8 529 node->offset = 0;
1da177e4 530 node->count = 1;
e2bdb933 531 node->parent = NULL;
f7942430 532 if (radix_tree_is_internal_node(slot)) {
4dd6c098 533 entry_to_node(slot)->parent = node;
f7942430
JW
534 } else {
535 /* Moving an exceptional root->rnode to a node */
536 if (radix_tree_exceptional_entry(slot))
537 node->exceptional = 1;
538 }
e2bdb933 539 node->slots[0] = slot;
a4db4dce
MW
540 slot = node_to_entry(node);
541 rcu_assign_pointer(root->rnode, slot);
d0891265 542 shift += RADIX_TREE_MAP_SHIFT;
d0891265 543 } while (shift <= maxshift);
1da177e4 544out:
d0891265 545 return maxshift + RADIX_TREE_MAP_SHIFT;
1da177e4
LT
546}
547
f4b109c6
JW
548/**
549 * radix_tree_shrink - shrink radix tree to minimum height
550 * @root radix tree root
551 */
14b46879 552static inline void radix_tree_shrink(struct radix_tree_root *root,
4d693d08
JW
553 radix_tree_update_node_t update_node,
554 void *private)
f4b109c6 555{
f4b109c6
JW
556 for (;;) {
557 struct radix_tree_node *node = root->rnode;
558 struct radix_tree_node *child;
559
560 if (!radix_tree_is_internal_node(node))
561 break;
562 node = entry_to_node(node);
563
564 /*
565 * The candidate node has more than one child, or its child
566 * is not at the leftmost slot, or the child is a multiorder
567 * entry, we cannot shrink.
568 */
569 if (node->count != 1)
570 break;
571 child = node->slots[0];
572 if (!child)
573 break;
574 if (!radix_tree_is_internal_node(child) && node->shift)
575 break;
576
577 if (radix_tree_is_internal_node(child))
578 entry_to_node(child)->parent = NULL;
579
580 /*
581 * We don't need rcu_assign_pointer(), since we are simply
582 * moving the node from one part of the tree to another: if it
583 * was safe to dereference the old pointer to it
584 * (node->slots[0]), it will be safe to dereference the new
585 * one (root->rnode) as far as dependent read barriers go.
586 */
587 root->rnode = child;
588
589 /*
590 * We have a dilemma here. The node's slot[0] must not be
591 * NULLed in case there are concurrent lookups expecting to
592 * find the item. However if this was a bottom-level node,
593 * then it may be subject to the slot pointer being visible
594 * to callers dereferencing it. If item corresponding to
595 * slot[0] is subsequently deleted, these callers would expect
596 * their slot to become empty sooner or later.
597 *
598 * For example, lockless pagecache will look up a slot, deref
599 * the page pointer, and if the page has 0 refcount it means it
600 * was concurrently deleted from pagecache so try the deref
601 * again. Fortunately there is already a requirement for logic
602 * to retry the entire slot lookup -- the indirect pointer
603 * problem (replacing direct root node with an indirect pointer
604 * also results in a stale slot). So tag the slot as indirect
605 * to force callers to retry.
606 */
4d693d08
JW
607 node->count = 0;
608 if (!radix_tree_is_internal_node(child)) {
f4b109c6 609 node->slots[0] = RADIX_TREE_RETRY;
4d693d08
JW
610 if (update_node)
611 update_node(node, private);
612 }
f4b109c6
JW
613
614 radix_tree_node_free(node);
f4b109c6 615 }
f4b109c6
JW
616}
617
14b46879 618static void delete_node(struct radix_tree_root *root,
4d693d08
JW
619 struct radix_tree_node *node,
620 radix_tree_update_node_t update_node, void *private)
f4b109c6 621{
f4b109c6
JW
622 do {
623 struct radix_tree_node *parent;
624
625 if (node->count) {
626 if (node == entry_to_node(root->rnode))
14b46879
JW
627 radix_tree_shrink(root, update_node, private);
628 return;
f4b109c6
JW
629 }
630
631 parent = node->parent;
632 if (parent) {
633 parent->slots[node->offset] = NULL;
634 parent->count--;
635 } else {
636 root_tag_clear_all(root);
637 root->rnode = NULL;
638 }
639
640 radix_tree_node_free(node);
f4b109c6
JW
641
642 node = parent;
643 } while (node);
f4b109c6
JW
644}
645
1da177e4 646/**
139e5616 647 * __radix_tree_create - create a slot in a radix tree
1da177e4
LT
648 * @root: radix tree root
649 * @index: index key
e6145236 650 * @order: index occupies 2^order aligned slots
139e5616
JW
651 * @nodep: returns node
652 * @slotp: returns slot
1da177e4 653 *
139e5616
JW
654 * Create, if necessary, and return the node and slot for an item
655 * at position @index in the radix tree @root.
656 *
657 * Until there is more than one item in the tree, no nodes are
658 * allocated and @root->rnode is used as a direct slot instead of
659 * pointing to a node, in which case *@nodep will be NULL.
660 *
661 * Returns -ENOMEM, or 0 for success.
1da177e4 662 */
139e5616 663int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
e6145236
MW
664 unsigned order, struct radix_tree_node **nodep,
665 void ***slotp)
1da177e4 666{
89148aa4
MW
667 struct radix_tree_node *node = NULL, *child;
668 void **slot = (void **)&root->rnode;
49ea6ebc 669 unsigned long maxindex;
89148aa4 670 unsigned int shift, offset = 0;
49ea6ebc
MW
671 unsigned long max = index | ((1UL << order) - 1);
672
89148aa4 673 shift = radix_tree_load_root(root, &child, &maxindex);
1da177e4
LT
674
675 /* Make sure the tree is high enough. */
49ea6ebc 676 if (max > maxindex) {
d0891265 677 int error = radix_tree_extend(root, max, shift);
49ea6ebc 678 if (error < 0)
1da177e4 679 return error;
49ea6ebc 680 shift = error;
89148aa4 681 child = root->rnode;
d0891265 682 if (order == shift)
49ea6ebc 683 shift += RADIX_TREE_MAP_SHIFT;
1da177e4
LT
684 }
685
e6145236 686 while (shift > order) {
c12e51b0 687 shift -= RADIX_TREE_MAP_SHIFT;
89148aa4 688 if (child == NULL) {
1da177e4 689 /* Have to add a child node. */
89148aa4
MW
690 child = radix_tree_node_alloc(root);
691 if (!child)
1da177e4 692 return -ENOMEM;
89148aa4
MW
693 child->shift = shift;
694 child->offset = offset;
695 child->parent = node;
696 rcu_assign_pointer(*slot, node_to_entry(child));
697 if (node)
1da177e4 698 node->count++;
89148aa4 699 } else if (!radix_tree_is_internal_node(child))
e6145236 700 break;
1da177e4
LT
701
702 /* Go a level down */
89148aa4 703 node = entry_to_node(child);
9e85d811 704 offset = radix_tree_descend(node, &child, index);
89148aa4 705 slot = &node->slots[offset];
e6145236
MW
706 }
707
57578c2e 708#ifdef CONFIG_RADIX_TREE_MULTIORDER
e6145236 709 /* Insert pointers to the canonical entry */
3b8c00f6 710 if (order > shift) {
89148aa4 711 unsigned i, n = 1 << (order - shift);
e6145236 712 offset = offset & ~(n - 1);
89148aa4
MW
713 slot = &node->slots[offset];
714 child = node_to_entry(slot);
e6145236 715 for (i = 0; i < n; i++) {
89148aa4 716 if (slot[i])
e6145236
MW
717 return -EEXIST;
718 }
719
720 for (i = 1; i < n; i++) {
89148aa4 721 rcu_assign_pointer(slot[i], child);
e6145236
MW
722 node->count++;
723 }
612d6c19 724 }
57578c2e 725#endif
1da177e4 726
139e5616
JW
727 if (nodep)
728 *nodep = node;
729 if (slotp)
89148aa4 730 *slotp = slot;
139e5616
JW
731 return 0;
732}
733
734/**
e6145236 735 * __radix_tree_insert - insert into a radix tree
139e5616
JW
736 * @root: radix tree root
737 * @index: index key
e6145236 738 * @order: key covers the 2^order indices around index
139e5616
JW
739 * @item: item to insert
740 *
741 * Insert an item into the radix tree at position @index.
742 */
e6145236
MW
743int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
744 unsigned order, void *item)
139e5616
JW
745{
746 struct radix_tree_node *node;
747 void **slot;
748 int error;
749
b194d16c 750 BUG_ON(radix_tree_is_internal_node(item));
139e5616 751
e6145236 752 error = __radix_tree_create(root, index, order, &node, &slot);
139e5616
JW
753 if (error)
754 return error;
755 if (*slot != NULL)
1da177e4 756 return -EEXIST;
139e5616 757 rcu_assign_pointer(*slot, item);
201b6264 758
612d6c19 759 if (node) {
7b60e9ad 760 unsigned offset = get_slot_offset(node, slot);
612d6c19 761 node->count++;
f7942430
JW
762 if (radix_tree_exceptional_entry(item))
763 node->exceptional++;
7b60e9ad
MW
764 BUG_ON(tag_get(node, 0, offset));
765 BUG_ON(tag_get(node, 1, offset));
766 BUG_ON(tag_get(node, 2, offset));
612d6c19 767 } else {
7b60e9ad 768 BUG_ON(root_tags_get(root));
612d6c19 769 }
1da177e4 770
1da177e4
LT
771 return 0;
772}
e6145236 773EXPORT_SYMBOL(__radix_tree_insert);
1da177e4 774
139e5616
JW
775/**
776 * __radix_tree_lookup - lookup an item in a radix tree
777 * @root: radix tree root
778 * @index: index key
779 * @nodep: returns node
780 * @slotp: returns slot
781 *
782 * Lookup and return the item at position @index in the radix
783 * tree @root.
784 *
785 * Until there is more than one item in the tree, no nodes are
786 * allocated and @root->rnode is used as a direct slot instead of
787 * pointing to a node, in which case *@nodep will be NULL.
7cf9c2c7 788 */
139e5616
JW
789void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
790 struct radix_tree_node **nodep, void ***slotp)
1da177e4 791{
139e5616 792 struct radix_tree_node *node, *parent;
85829954 793 unsigned long maxindex;
139e5616 794 void **slot;
612d6c19 795
85829954
MW
796 restart:
797 parent = NULL;
798 slot = (void **)&root->rnode;
9e85d811 799 radix_tree_load_root(root, &node, &maxindex);
85829954 800 if (index > maxindex)
1da177e4
LT
801 return NULL;
802
b194d16c 803 while (radix_tree_is_internal_node(node)) {
85829954 804 unsigned offset;
1da177e4 805
85829954
MW
806 if (node == RADIX_TREE_RETRY)
807 goto restart;
4dd6c098 808 parent = entry_to_node(node);
9e85d811 809 offset = radix_tree_descend(parent, &node, index);
85829954
MW
810 slot = parent->slots + offset;
811 }
1da177e4 812
139e5616
JW
813 if (nodep)
814 *nodep = parent;
815 if (slotp)
816 *slotp = slot;
817 return node;
b72b71c6
HS
818}
819
820/**
821 * radix_tree_lookup_slot - lookup a slot in a radix tree
822 * @root: radix tree root
823 * @index: index key
824 *
825 * Returns: the slot corresponding to the position @index in the
826 * radix tree @root. This is useful for update-if-exists operations.
827 *
828 * This function can be called under rcu_read_lock iff the slot is not
829 * modified by radix_tree_replace_slot, otherwise it must be called
830 * exclusive from other writers. Any dereference of the slot must be done
831 * using radix_tree_deref_slot.
832 */
833void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
834{
139e5616
JW
835 void **slot;
836
837 if (!__radix_tree_lookup(root, index, NULL, &slot))
838 return NULL;
839 return slot;
a4331366 840}
a4331366
HR
841EXPORT_SYMBOL(radix_tree_lookup_slot);
842
843/**
844 * radix_tree_lookup - perform lookup operation on a radix tree
845 * @root: radix tree root
846 * @index: index key
847 *
848 * Lookup the item at the position @index in the radix tree @root.
7cf9c2c7
NP
849 *
850 * This function can be called under rcu_read_lock, however the caller
851 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
852 * them safely). No RCU barriers are required to access or modify the
853 * returned item, however.
a4331366
HR
854 */
855void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
856{
139e5616 857 return __radix_tree_lookup(root, index, NULL, NULL);
1da177e4
LT
858}
859EXPORT_SYMBOL(radix_tree_lookup);
860
6d75f366
JW
861static void replace_slot(struct radix_tree_root *root,
862 struct radix_tree_node *node,
863 void **slot, void *item,
864 bool warn_typeswitch)
f7942430
JW
865{
866 void *old = rcu_dereference_raw(*slot);
f4b109c6 867 int count, exceptional;
f7942430
JW
868
869 WARN_ON_ONCE(radix_tree_is_internal_node(item));
f7942430 870
f4b109c6 871 count = !!item - !!old;
f7942430
JW
872 exceptional = !!radix_tree_exceptional_entry(item) -
873 !!radix_tree_exceptional_entry(old);
874
f4b109c6 875 WARN_ON_ONCE(warn_typeswitch && (count || exceptional));
f7942430 876
f4b109c6
JW
877 if (node) {
878 node->count += count;
f7942430 879 node->exceptional += exceptional;
f4b109c6 880 }
f7942430
JW
881
882 rcu_assign_pointer(*slot, item);
883}
884
6d75f366
JW
885/**
886 * __radix_tree_replace - replace item in a slot
4d693d08
JW
887 * @root: radix tree root
888 * @node: pointer to tree node
889 * @slot: pointer to slot in @node
890 * @item: new item to store in the slot.
891 * @update_node: callback for changing leaf nodes
892 * @private: private data to pass to @update_node
6d75f366
JW
893 *
894 * For use with __radix_tree_lookup(). Caller must hold tree write locked
895 * across slot lookup and replacement.
896 */
897void __radix_tree_replace(struct radix_tree_root *root,
898 struct radix_tree_node *node,
4d693d08
JW
899 void **slot, void *item,
900 radix_tree_update_node_t update_node, void *private)
6d75f366
JW
901{
902 /*
f4b109c6
JW
903 * This function supports replacing exceptional entries and
904 * deleting entries, but that needs accounting against the
905 * node unless the slot is root->rnode.
6d75f366
JW
906 */
907 replace_slot(root, node, slot, item,
908 !node && slot != (void **)&root->rnode);
f4b109c6 909
4d693d08
JW
910 if (!node)
911 return;
912
913 if (update_node)
914 update_node(node, private);
915
916 delete_node(root, node, update_node, private);
6d75f366
JW
917}
918
919/**
920 * radix_tree_replace_slot - replace item in a slot
921 * @root: radix tree root
922 * @slot: pointer to slot
923 * @item: new item to store in the slot.
924 *
925 * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
926 * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked
927 * across slot lookup and replacement.
928 *
929 * NOTE: This cannot be used to switch between non-entries (empty slots),
930 * regular entries, and exceptional entries, as that requires accounting
f4b109c6
JW
931 * inside the radix tree node. When switching from one type of entry or
932 * deleting, use __radix_tree_lookup() and __radix_tree_replace().
6d75f366
JW
933 */
934void radix_tree_replace_slot(struct radix_tree_root *root,
935 void **slot, void *item)
936{
937 replace_slot(root, NULL, slot, item, true);
938}
939
1da177e4
LT
940/**
941 * radix_tree_tag_set - set a tag on a radix tree node
942 * @root: radix tree root
943 * @index: index key
2fcd9005 944 * @tag: tag index
1da177e4 945 *
daff89f3
JC
946 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
947 * corresponding to @index in the radix tree. From
1da177e4
LT
948 * the root all the way down to the leaf node.
949 *
2fcd9005 950 * Returns the address of the tagged item. Setting a tag on a not-present
1da177e4
LT
951 * item is a bug.
952 */
953void *radix_tree_tag_set(struct radix_tree_root *root,
daff89f3 954 unsigned long index, unsigned int tag)
1da177e4 955{
fb969909
RZ
956 struct radix_tree_node *node, *parent;
957 unsigned long maxindex;
1da177e4 958
9e85d811 959 radix_tree_load_root(root, &node, &maxindex);
fb969909 960 BUG_ON(index > maxindex);
1da177e4 961
b194d16c 962 while (radix_tree_is_internal_node(node)) {
fb969909 963 unsigned offset;
1da177e4 964
4dd6c098 965 parent = entry_to_node(node);
9e85d811 966 offset = radix_tree_descend(parent, &node, index);
fb969909
RZ
967 BUG_ON(!node);
968
969 if (!tag_get(parent, tag, offset))
970 tag_set(parent, tag, offset);
1da177e4
LT
971 }
972
612d6c19 973 /* set the root's tag bit */
fb969909 974 if (!root_tag_get(root, tag))
612d6c19
NP
975 root_tag_set(root, tag);
976
fb969909 977 return node;
1da177e4
LT
978}
979EXPORT_SYMBOL(radix_tree_tag_set);
980
d604c324
MW
981static void node_tag_clear(struct radix_tree_root *root,
982 struct radix_tree_node *node,
983 unsigned int tag, unsigned int offset)
984{
985 while (node) {
986 if (!tag_get(node, tag, offset))
987 return;
988 tag_clear(node, tag, offset);
989 if (any_tag_set(node, tag))
990 return;
991
992 offset = node->offset;
993 node = node->parent;
994 }
995
996 /* clear the root's tag bit */
997 if (root_tag_get(root, tag))
998 root_tag_clear(root, tag);
999}
1000
9498d2bb
MW
1001static void node_tag_set(struct radix_tree_root *root,
1002 struct radix_tree_node *node,
1003 unsigned int tag, unsigned int offset)
1004{
1005 while (node) {
1006 if (tag_get(node, tag, offset))
1007 return;
1008 tag_set(node, tag, offset);
1009 offset = node->offset;
1010 node = node->parent;
1011 }
1012
1013 if (!root_tag_get(root, tag))
1014 root_tag_set(root, tag);
1015}
1016
1da177e4
LT
1017/**
1018 * radix_tree_tag_clear - clear a tag on a radix tree node
1019 * @root: radix tree root
1020 * @index: index key
2fcd9005 1021 * @tag: tag index
1da177e4 1022 *
daff89f3 1023 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
2fcd9005
MW
1024 * corresponding to @index in the radix tree. If this causes
1025 * the leaf node to have no tags set then clear the tag in the
1da177e4
LT
1026 * next-to-leaf node, etc.
1027 *
1028 * Returns the address of the tagged item on success, else NULL. ie:
1029 * has the same return value and semantics as radix_tree_lookup().
1030 */
1031void *radix_tree_tag_clear(struct radix_tree_root *root,
daff89f3 1032 unsigned long index, unsigned int tag)
1da177e4 1033{
00f47b58
RZ
1034 struct radix_tree_node *node, *parent;
1035 unsigned long maxindex;
e2bdb933 1036 int uninitialized_var(offset);
1da177e4 1037
9e85d811 1038 radix_tree_load_root(root, &node, &maxindex);
00f47b58
RZ
1039 if (index > maxindex)
1040 return NULL;
1da177e4 1041
00f47b58 1042 parent = NULL;
1da177e4 1043
b194d16c 1044 while (radix_tree_is_internal_node(node)) {
4dd6c098 1045 parent = entry_to_node(node);
9e85d811 1046 offset = radix_tree_descend(parent, &node, index);
1da177e4
LT
1047 }
1048
d604c324
MW
1049 if (node)
1050 node_tag_clear(root, parent, tag, offset);
1da177e4 1051
00f47b58 1052 return node;
1da177e4
LT
1053}
1054EXPORT_SYMBOL(radix_tree_tag_clear);
1055
1da177e4 1056/**
32605a18
MT
1057 * radix_tree_tag_get - get a tag on a radix tree node
1058 * @root: radix tree root
1059 * @index: index key
2fcd9005 1060 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
1da177e4 1061 *
32605a18 1062 * Return values:
1da177e4 1063 *
612d6c19
NP
1064 * 0: tag not present or not set
1065 * 1: tag set
ce82653d
DH
1066 *
1067 * Note that the return value of this function may not be relied on, even if
1068 * the RCU lock is held, unless tag modification and node deletion are excluded
1069 * from concurrency.
1da177e4
LT
1070 */
1071int radix_tree_tag_get(struct radix_tree_root *root,
daff89f3 1072 unsigned long index, unsigned int tag)
1da177e4 1073{
4589ba6d
RZ
1074 struct radix_tree_node *node, *parent;
1075 unsigned long maxindex;
1da177e4 1076
612d6c19
NP
1077 if (!root_tag_get(root, tag))
1078 return 0;
1079
9e85d811 1080 radix_tree_load_root(root, &node, &maxindex);
4589ba6d
RZ
1081 if (index > maxindex)
1082 return 0;
7cf9c2c7
NP
1083 if (node == NULL)
1084 return 0;
1085
b194d16c 1086 while (radix_tree_is_internal_node(node)) {
9e85d811 1087 unsigned offset;
1da177e4 1088
4dd6c098 1089 parent = entry_to_node(node);
9e85d811 1090 offset = radix_tree_descend(parent, &node, index);
1da177e4 1091
4589ba6d 1092 if (!node)
1da177e4 1093 return 0;
4589ba6d 1094 if (!tag_get(parent, tag, offset))
3fa36acb 1095 return 0;
4589ba6d
RZ
1096 if (node == RADIX_TREE_RETRY)
1097 break;
1da177e4 1098 }
4589ba6d
RZ
1099
1100 return 1;
1da177e4
LT
1101}
1102EXPORT_SYMBOL(radix_tree_tag_get);
1da177e4 1103
21ef5339
RZ
1104static inline void __set_iter_shift(struct radix_tree_iter *iter,
1105 unsigned int shift)
1106{
1107#ifdef CONFIG_RADIX_TREE_MULTIORDER
1108 iter->shift = shift;
1109#endif
1110}
1111
148deab2
MW
1112/* Construct iter->tags bit-mask from node->tags[tag] array */
1113static void set_iter_tags(struct radix_tree_iter *iter,
1114 struct radix_tree_node *node, unsigned offset,
1115 unsigned tag)
1116{
1117 unsigned tag_long = offset / BITS_PER_LONG;
1118 unsigned tag_bit = offset % BITS_PER_LONG;
1119
1120 iter->tags = node->tags[tag][tag_long] >> tag_bit;
1121
1122 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1123 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1124 /* Pick tags from next element */
1125 if (tag_bit)
1126 iter->tags |= node->tags[tag][tag_long + 1] <<
1127 (BITS_PER_LONG - tag_bit);
1128 /* Clip chunk size, here only BITS_PER_LONG tags */
1129 iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1130 }
1131}
1132
1133#ifdef CONFIG_RADIX_TREE_MULTIORDER
1134static void **skip_siblings(struct radix_tree_node **nodep,
1135 void **slot, struct radix_tree_iter *iter)
1136{
1137 void *sib = node_to_entry(slot - 1);
1138
1139 while (iter->index < iter->next_index) {
1140 *nodep = rcu_dereference_raw(*slot);
1141 if (*nodep && *nodep != sib)
1142 return slot;
1143 slot++;
1144 iter->index = __radix_tree_iter_add(iter, 1);
1145 iter->tags >>= 1;
1146 }
1147
1148 *nodep = NULL;
1149 return NULL;
1150}
1151
1152void ** __radix_tree_next_slot(void **slot, struct radix_tree_iter *iter,
1153 unsigned flags)
1154{
1155 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1156 struct radix_tree_node *node = rcu_dereference_raw(*slot);
1157
1158 slot = skip_siblings(&node, slot, iter);
1159
1160 while (radix_tree_is_internal_node(node)) {
1161 unsigned offset;
1162 unsigned long next_index;
1163
1164 if (node == RADIX_TREE_RETRY)
1165 return slot;
1166 node = entry_to_node(node);
1167 iter->shift = node->shift;
1168
1169 if (flags & RADIX_TREE_ITER_TAGGED) {
1170 offset = radix_tree_find_next_bit(node, tag, 0);
1171 if (offset == RADIX_TREE_MAP_SIZE)
1172 return NULL;
1173 slot = &node->slots[offset];
1174 iter->index = __radix_tree_iter_add(iter, offset);
1175 set_iter_tags(iter, node, offset, tag);
1176 node = rcu_dereference_raw(*slot);
1177 } else {
1178 offset = 0;
1179 slot = &node->slots[0];
1180 for (;;) {
1181 node = rcu_dereference_raw(*slot);
1182 if (node)
1183 break;
1184 slot++;
1185 offset++;
1186 if (offset == RADIX_TREE_MAP_SIZE)
1187 return NULL;
1188 }
1189 iter->index = __radix_tree_iter_add(iter, offset);
1190 }
1191 if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0))
1192 goto none;
1193 next_index = (iter->index | shift_maxindex(iter->shift)) + 1;
1194 if (next_index < iter->next_index)
1195 iter->next_index = next_index;
1196 }
1197
1198 return slot;
1199 none:
1200 iter->next_index = 0;
1201 return NULL;
1202}
1203EXPORT_SYMBOL(__radix_tree_next_slot);
1204#else
1205static void **skip_siblings(struct radix_tree_node **nodep,
1206 void **slot, struct radix_tree_iter *iter)
1207{
1208 return slot;
1209}
1210#endif
1211
1212void **radix_tree_iter_resume(void **slot, struct radix_tree_iter *iter)
1213{
1214 struct radix_tree_node *node;
1215
1216 slot++;
1217 iter->index = __radix_tree_iter_add(iter, 1);
1218 node = rcu_dereference_raw(*slot);
1219 skip_siblings(&node, slot, iter);
1220 iter->next_index = iter->index;
1221 iter->tags = 0;
1222 return NULL;
1223}
1224EXPORT_SYMBOL(radix_tree_iter_resume);
1225
78c1d784
KK
1226/**
1227 * radix_tree_next_chunk - find next chunk of slots for iteration
1228 *
1229 * @root: radix tree root
1230 * @iter: iterator state
1231 * @flags: RADIX_TREE_ITER_* flags and tag index
1232 * Returns: pointer to chunk first slot, or NULL if iteration is over
1233 */
1234void **radix_tree_next_chunk(struct radix_tree_root *root,
1235 struct radix_tree_iter *iter, unsigned flags)
1236{
9e85d811 1237 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
8c1244de 1238 struct radix_tree_node *node, *child;
21ef5339 1239 unsigned long index, offset, maxindex;
78c1d784
KK
1240
1241 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1242 return NULL;
1243
1244 /*
1245 * Catch next_index overflow after ~0UL. iter->index never overflows
1246 * during iterating; it can be zero only at the beginning.
1247 * And we cannot overflow iter->next_index in a single step,
1248 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
fffaee36
KK
1249 *
1250 * This condition also used by radix_tree_next_slot() to stop
91b9677c 1251 * contiguous iterating, and forbid switching to the next chunk.
78c1d784
KK
1252 */
1253 index = iter->next_index;
1254 if (!index && iter->index)
1255 return NULL;
1256
21ef5339 1257 restart:
9e85d811 1258 radix_tree_load_root(root, &child, &maxindex);
21ef5339
RZ
1259 if (index > maxindex)
1260 return NULL;
8c1244de
MW
1261 if (!child)
1262 return NULL;
21ef5339 1263
8c1244de 1264 if (!radix_tree_is_internal_node(child)) {
78c1d784 1265 /* Single-slot tree */
21ef5339
RZ
1266 iter->index = index;
1267 iter->next_index = maxindex + 1;
78c1d784 1268 iter->tags = 1;
8c1244de 1269 __set_iter_shift(iter, 0);
78c1d784 1270 return (void **)&root->rnode;
8c1244de 1271 }
21ef5339 1272
8c1244de
MW
1273 do {
1274 node = entry_to_node(child);
9e85d811 1275 offset = radix_tree_descend(node, &child, index);
21ef5339 1276
78c1d784 1277 if ((flags & RADIX_TREE_ITER_TAGGED) ?
8c1244de 1278 !tag_get(node, tag, offset) : !child) {
78c1d784
KK
1279 /* Hole detected */
1280 if (flags & RADIX_TREE_ITER_CONTIG)
1281 return NULL;
1282
1283 if (flags & RADIX_TREE_ITER_TAGGED)
bc412fca 1284 offset = radix_tree_find_next_bit(node, tag,
78c1d784
KK
1285 offset + 1);
1286 else
1287 while (++offset < RADIX_TREE_MAP_SIZE) {
21ef5339
RZ
1288 void *slot = node->slots[offset];
1289 if (is_sibling_entry(node, slot))
1290 continue;
1291 if (slot)
78c1d784
KK
1292 break;
1293 }
8c1244de 1294 index &= ~node_maxindex(node);
9e85d811 1295 index += offset << node->shift;
78c1d784
KK
1296 /* Overflow after ~0UL */
1297 if (!index)
1298 return NULL;
1299 if (offset == RADIX_TREE_MAP_SIZE)
1300 goto restart;
8c1244de 1301 child = rcu_dereference_raw(node->slots[offset]);
78c1d784
KK
1302 }
1303
8c1244de 1304 if ((child == NULL) || (child == RADIX_TREE_RETRY))
78c1d784 1305 goto restart;
8c1244de 1306 } while (radix_tree_is_internal_node(child));
78c1d784
KK
1307
1308 /* Update the iterator state */
8c1244de
MW
1309 iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
1310 iter->next_index = (index | node_maxindex(node)) + 1;
9e85d811 1311 __set_iter_shift(iter, node->shift);
78c1d784 1312
148deab2
MW
1313 if (flags & RADIX_TREE_ITER_TAGGED)
1314 set_iter_tags(iter, node, offset, tag);
78c1d784
KK
1315
1316 return node->slots + offset;
1317}
1318EXPORT_SYMBOL(radix_tree_next_chunk);
1319
ebf8aa44
JK
1320/**
1321 * radix_tree_range_tag_if_tagged - for each item in given range set given
1322 * tag if item has another tag set
1323 * @root: radix tree root
1324 * @first_indexp: pointer to a starting index of a range to scan
1325 * @last_index: last index of a range to scan
1326 * @nr_to_tag: maximum number items to tag
1327 * @iftag: tag index to test
1328 * @settag: tag index to set if tested tag is set
1329 *
1330 * This function scans range of radix tree from first_index to last_index
1331 * (inclusive). For each item in the range if iftag is set, the function sets
1332 * also settag. The function stops either after tagging nr_to_tag items or
1333 * after reaching last_index.
1334 *
144dcfc0
DC
1335 * The tags must be set from the leaf level only and propagated back up the
1336 * path to the root. We must do this so that we resolve the full path before
1337 * setting any tags on intermediate nodes. If we set tags as we descend, then
1338 * we can get to the leaf node and find that the index that has the iftag
1339 * set is outside the range we are scanning. This reults in dangling tags and
1340 * can lead to problems with later tag operations (e.g. livelocks on lookups).
1341 *
2fcd9005 1342 * The function returns the number of leaves where the tag was set and sets
ebf8aa44 1343 * *first_indexp to the first unscanned index.
d5ed3a4a
JK
1344 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
1345 * be prepared to handle that.
ebf8aa44
JK
1346 */
1347unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
1348 unsigned long *first_indexp, unsigned long last_index,
1349 unsigned long nr_to_tag,
1350 unsigned int iftag, unsigned int settag)
1351{
9498d2bb 1352 struct radix_tree_node *node, *child;
070c5ac2 1353 unsigned long maxindex;
144dcfc0
DC
1354 unsigned long tagged = 0;
1355 unsigned long index = *first_indexp;
ebf8aa44 1356
9e85d811 1357 radix_tree_load_root(root, &child, &maxindex);
070c5ac2 1358 last_index = min(last_index, maxindex);
ebf8aa44
JK
1359 if (index > last_index)
1360 return 0;
1361 if (!nr_to_tag)
1362 return 0;
1363 if (!root_tag_get(root, iftag)) {
1364 *first_indexp = last_index + 1;
1365 return 0;
1366 }
a8e4da25 1367 if (!radix_tree_is_internal_node(child)) {
ebf8aa44
JK
1368 *first_indexp = last_index + 1;
1369 root_tag_set(root, settag);
1370 return 1;
1371 }
1372
a8e4da25 1373 node = entry_to_node(child);
ebf8aa44
JK
1374
1375 for (;;) {
9e85d811 1376 unsigned offset = radix_tree_descend(node, &child, index);
a8e4da25 1377 if (!child)
ebf8aa44 1378 goto next;
070c5ac2 1379 if (!tag_get(node, iftag, offset))
ebf8aa44 1380 goto next;
070c5ac2 1381 /* Sibling slots never have tags set on them */
a8e4da25
MW
1382 if (radix_tree_is_internal_node(child)) {
1383 node = entry_to_node(child);
070c5ac2 1384 continue;
144dcfc0
DC
1385 }
1386
070c5ac2 1387 tagged++;
9498d2bb 1388 node_tag_set(root, node, settag, offset);
070c5ac2 1389 next:
9e85d811
MW
1390 /* Go to next entry in node */
1391 index = ((index >> node->shift) + 1) << node->shift;
d5ed3a4a
JK
1392 /* Overflow can happen when last_index is ~0UL... */
1393 if (index > last_index || !index)
ebf8aa44 1394 break;
9e85d811 1395 offset = (index >> node->shift) & RADIX_TREE_MAP_MASK;
070c5ac2 1396 while (offset == 0) {
ebf8aa44
JK
1397 /*
1398 * We've fully scanned this node. Go up. Because
1399 * last_index is guaranteed to be in the tree, what
1400 * we do below cannot wander astray.
1401 */
070c5ac2 1402 node = node->parent;
9e85d811 1403 offset = (index >> node->shift) & RADIX_TREE_MAP_MASK;
ebf8aa44 1404 }
070c5ac2
MW
1405 if (is_sibling_entry(node, node->slots[offset]))
1406 goto next;
1407 if (tagged >= nr_to_tag)
1408 break;
ebf8aa44 1409 }
9498d2bb 1410
ebf8aa44
JK
1411 *first_indexp = index;
1412
1413 return tagged;
1414}
1415EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
1416
1da177e4
LT
1417/**
1418 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1419 * @root: radix tree root
1420 * @results: where the results of the lookup are placed
1421 * @first_index: start the lookup from this key
1422 * @max_items: place up to this many items at *results
1423 *
1424 * Performs an index-ascending scan of the tree for present items. Places
1425 * them at *@results and returns the number of items which were placed at
1426 * *@results.
1427 *
1428 * The implementation is naive.
7cf9c2c7
NP
1429 *
1430 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1431 * rcu_read_lock. In this case, rather than the returned results being
2fcd9005
MW
1432 * an atomic snapshot of the tree at a single point in time, the
1433 * semantics of an RCU protected gang lookup are as though multiple
1434 * radix_tree_lookups have been issued in individual locks, and results
1435 * stored in 'results'.
1da177e4
LT
1436 */
1437unsigned int
1438radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1439 unsigned long first_index, unsigned int max_items)
1440{
cebbd29e
KK
1441 struct radix_tree_iter iter;
1442 void **slot;
1443 unsigned int ret = 0;
7cf9c2c7 1444
cebbd29e 1445 if (unlikely(!max_items))
7cf9c2c7 1446 return 0;
1da177e4 1447
cebbd29e 1448 radix_tree_for_each_slot(slot, root, &iter, first_index) {
46437f9a 1449 results[ret] = rcu_dereference_raw(*slot);
cebbd29e
KK
1450 if (!results[ret])
1451 continue;
b194d16c 1452 if (radix_tree_is_internal_node(results[ret])) {
46437f9a
MW
1453 slot = radix_tree_iter_retry(&iter);
1454 continue;
1455 }
cebbd29e 1456 if (++ret == max_items)
1da177e4 1457 break;
1da177e4 1458 }
7cf9c2c7 1459
1da177e4
LT
1460 return ret;
1461}
1462EXPORT_SYMBOL(radix_tree_gang_lookup);
1463
47feff2c
NP
1464/**
1465 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1466 * @root: radix tree root
1467 * @results: where the results of the lookup are placed
6328650b 1468 * @indices: where their indices should be placed (but usually NULL)
47feff2c
NP
1469 * @first_index: start the lookup from this key
1470 * @max_items: place up to this many items at *results
1471 *
1472 * Performs an index-ascending scan of the tree for present items. Places
1473 * their slots at *@results and returns the number of items which were
1474 * placed at *@results.
1475 *
1476 * The implementation is naive.
1477 *
1478 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1479 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1480 * protection, radix_tree_deref_slot may fail requiring a retry.
1481 */
1482unsigned int
6328650b
HD
1483radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1484 void ***results, unsigned long *indices,
47feff2c
NP
1485 unsigned long first_index, unsigned int max_items)
1486{
cebbd29e
KK
1487 struct radix_tree_iter iter;
1488 void **slot;
1489 unsigned int ret = 0;
47feff2c 1490
cebbd29e 1491 if (unlikely(!max_items))
47feff2c
NP
1492 return 0;
1493
cebbd29e
KK
1494 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1495 results[ret] = slot;
6328650b 1496 if (indices)
cebbd29e
KK
1497 indices[ret] = iter.index;
1498 if (++ret == max_items)
47feff2c 1499 break;
47feff2c
NP
1500 }
1501
1502 return ret;
1503}
1504EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1505
1da177e4
LT
1506/**
1507 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1508 * based on a tag
1509 * @root: radix tree root
1510 * @results: where the results of the lookup are placed
1511 * @first_index: start the lookup from this key
1512 * @max_items: place up to this many items at *results
daff89f3 1513 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1da177e4
LT
1514 *
1515 * Performs an index-ascending scan of the tree for present items which
1516 * have the tag indexed by @tag set. Places the items at *@results and
1517 * returns the number of items which were placed at *@results.
1518 */
1519unsigned int
1520radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
daff89f3
JC
1521 unsigned long first_index, unsigned int max_items,
1522 unsigned int tag)
1da177e4 1523{
cebbd29e
KK
1524 struct radix_tree_iter iter;
1525 void **slot;
1526 unsigned int ret = 0;
612d6c19 1527
cebbd29e 1528 if (unlikely(!max_items))
7cf9c2c7
NP
1529 return 0;
1530
cebbd29e 1531 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
46437f9a 1532 results[ret] = rcu_dereference_raw(*slot);
cebbd29e
KK
1533 if (!results[ret])
1534 continue;
b194d16c 1535 if (radix_tree_is_internal_node(results[ret])) {
46437f9a
MW
1536 slot = radix_tree_iter_retry(&iter);
1537 continue;
1538 }
cebbd29e 1539 if (++ret == max_items)
1da177e4 1540 break;
1da177e4 1541 }
7cf9c2c7 1542
1da177e4
LT
1543 return ret;
1544}
1545EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1546
47feff2c
NP
1547/**
1548 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1549 * radix tree based on a tag
1550 * @root: radix tree root
1551 * @results: where the results of the lookup are placed
1552 * @first_index: start the lookup from this key
1553 * @max_items: place up to this many items at *results
1554 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1555 *
1556 * Performs an index-ascending scan of the tree for present items which
1557 * have the tag indexed by @tag set. Places the slots at *@results and
1558 * returns the number of slots which were placed at *@results.
1559 */
1560unsigned int
1561radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1562 unsigned long first_index, unsigned int max_items,
1563 unsigned int tag)
1564{
cebbd29e
KK
1565 struct radix_tree_iter iter;
1566 void **slot;
1567 unsigned int ret = 0;
47feff2c 1568
cebbd29e 1569 if (unlikely(!max_items))
47feff2c
NP
1570 return 0;
1571
cebbd29e
KK
1572 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1573 results[ret] = slot;
1574 if (++ret == max_items)
47feff2c 1575 break;
47feff2c
NP
1576 }
1577
1578 return ret;
1579}
1580EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1581
139e5616
JW
1582/**
1583 * __radix_tree_delete_node - try to free node after clearing a slot
1584 * @root: radix tree root
139e5616
JW
1585 * @node: node containing @index
1586 *
1587 * After clearing the slot at @index in @node from radix tree
1588 * rooted at @root, call this function to attempt freeing the
1589 * node and shrinking the tree.
139e5616 1590 */
14b46879 1591void __radix_tree_delete_node(struct radix_tree_root *root,
139e5616
JW
1592 struct radix_tree_node *node)
1593{
14b46879 1594 delete_node(root, node, NULL, NULL);
139e5616
JW
1595}
1596
57578c2e
MW
1597static inline void delete_sibling_entries(struct radix_tree_node *node,
1598 void *ptr, unsigned offset)
1599{
1600#ifdef CONFIG_RADIX_TREE_MULTIORDER
1601 int i;
1602 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1603 if (node->slots[offset + i] != ptr)
1604 break;
1605 node->slots[offset + i] = NULL;
1606 node->count--;
1607 }
1608#endif
1609}
1610
1da177e4 1611/**
53c59f26 1612 * radix_tree_delete_item - delete an item from a radix tree
1da177e4
LT
1613 * @root: radix tree root
1614 * @index: index key
53c59f26 1615 * @item: expected item
1da177e4 1616 *
53c59f26 1617 * Remove @item at @index from the radix tree rooted at @root.
1da177e4 1618 *
53c59f26
JW
1619 * Returns the address of the deleted item, or NULL if it was not present
1620 * or the entry at the given @index was not @item.
1da177e4 1621 */
53c59f26
JW
1622void *radix_tree_delete_item(struct radix_tree_root *root,
1623 unsigned long index, void *item)
1da177e4 1624{
139e5616 1625 struct radix_tree_node *node;
57578c2e 1626 unsigned int offset;
139e5616
JW
1627 void **slot;
1628 void *entry;
d5274261 1629 int tag;
1da177e4 1630
139e5616
JW
1631 entry = __radix_tree_lookup(root, index, &node, &slot);
1632 if (!entry)
1633 return NULL;
1da177e4 1634
139e5616
JW
1635 if (item && entry != item)
1636 return NULL;
1637
1638 if (!node) {
612d6c19
NP
1639 root_tag_clear_all(root);
1640 root->rnode = NULL;
139e5616 1641 return entry;
612d6c19 1642 }
1da177e4 1643
29e0967c 1644 offset = get_slot_offset(node, slot);
53c59f26 1645
d604c324
MW
1646 /* Clear all tags associated with the item to be deleted. */
1647 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1648 node_tag_clear(root, node, tag, offset);
1da177e4 1649
a4db4dce 1650 delete_sibling_entries(node, node_to_entry(slot), offset);
4d693d08 1651 __radix_tree_replace(root, node, slot, NULL, NULL, NULL);
612d6c19 1652
139e5616 1653 return entry;
1da177e4 1654}
53c59f26
JW
1655EXPORT_SYMBOL(radix_tree_delete_item);
1656
1657/**
1658 * radix_tree_delete - delete an item from a radix tree
1659 * @root: radix tree root
1660 * @index: index key
1661 *
1662 * Remove the item at @index from the radix tree rooted at @root.
1663 *
1664 * Returns the address of the deleted item, or NULL if it was not present.
1665 */
1666void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1667{
1668 return radix_tree_delete_item(root, index, NULL);
1669}
1da177e4
LT
1670EXPORT_SYMBOL(radix_tree_delete);
1671
d3798ae8
JW
1672void radix_tree_clear_tags(struct radix_tree_root *root,
1673 struct radix_tree_node *node,
1674 void **slot)
d604c324 1675{
d604c324
MW
1676 if (node) {
1677 unsigned int tag, offset = get_slot_offset(node, slot);
1678 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1679 node_tag_clear(root, node, tag, offset);
1680 } else {
1681 /* Clear root node tags */
1682 root->gfp_mask &= __GFP_BITS_MASK;
1683 }
d604c324
MW
1684}
1685
1da177e4
LT
1686/**
1687 * radix_tree_tagged - test whether any items in the tree are tagged
1688 * @root: radix tree root
1689 * @tag: tag to test
1690 */
daff89f3 1691int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1da177e4 1692{
612d6c19 1693 return root_tag_get(root, tag);
1da177e4
LT
1694}
1695EXPORT_SYMBOL(radix_tree_tagged);
1696
1697static void
449dd698 1698radix_tree_node_ctor(void *arg)
1da177e4 1699{
449dd698
JW
1700 struct radix_tree_node *node = arg;
1701
1702 memset(node, 0, sizeof(*node));
1703 INIT_LIST_HEAD(&node->private_list);
1da177e4
LT
1704}
1705
c78c66d1
KS
1706static __init unsigned long __maxindex(unsigned int height)
1707{
1708 unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1709 int shift = RADIX_TREE_INDEX_BITS - width;
1710
1711 if (shift < 0)
1712 return ~0UL;
1713 if (shift >= BITS_PER_LONG)
1714 return 0UL;
1715 return ~0UL >> shift;
1716}
1717
1718static __init void radix_tree_init_maxnodes(void)
1719{
1720 unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
1721 unsigned int i, j;
1722
1723 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1724 height_to_maxindex[i] = __maxindex(i);
1725 for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
1726 for (j = i; j > 0; j--)
1727 height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
1728 }
1729}
1730
d544abd5 1731static int radix_tree_cpu_dead(unsigned int cpu)
1da177e4 1732{
2fcd9005
MW
1733 struct radix_tree_preload *rtp;
1734 struct radix_tree_node *node;
1735
1736 /* Free per-cpu pool of preloaded nodes */
d544abd5
SAS
1737 rtp = &per_cpu(radix_tree_preloads, cpu);
1738 while (rtp->nr) {
1739 node = rtp->nodes;
1740 rtp->nodes = node->private_data;
1741 kmem_cache_free(radix_tree_node_cachep, node);
1742 rtp->nr--;
2fcd9005 1743 }
d544abd5 1744 return 0;
1da177e4 1745}
1da177e4
LT
1746
1747void __init radix_tree_init(void)
1748{
d544abd5 1749 int ret;
1da177e4
LT
1750 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1751 sizeof(struct radix_tree_node), 0,
488514d1
CL
1752 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1753 radix_tree_node_ctor);
c78c66d1 1754 radix_tree_init_maxnodes();
d544abd5
SAS
1755 ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
1756 NULL, radix_tree_cpu_dead);
1757 WARN_ON(ret < 0);
1da177e4 1758}