]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - lib/radix-tree.c
radix-tree: create node_tag_set()
[mirror_ubuntu-artful-kernel.git] / lib / radix-tree.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
cde53535 4 * Copyright (C) 2005 SGI, Christoph Lameter
7cf9c2c7 5 * Copyright (C) 2006 Nick Piggin
78c1d784 6 * Copyright (C) 2012 Konstantin Khlebnikov
6b053b8e
MW
7 * Copyright (C) 2016 Intel, Matthew Wilcox
8 * Copyright (C) 2016 Intel, Ross Zwisler
1da177e4
LT
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25#include <linux/errno.h>
26#include <linux/init.h>
27#include <linux/kernel.h>
8bc3bcc9 28#include <linux/export.h>
1da177e4
LT
29#include <linux/radix-tree.h>
30#include <linux/percpu.h>
31#include <linux/slab.h>
ce80b067 32#include <linux/kmemleak.h>
1da177e4
LT
33#include <linux/notifier.h>
34#include <linux/cpu.h>
1da177e4
LT
35#include <linux/string.h>
36#include <linux/bitops.h>
7cf9c2c7 37#include <linux/rcupdate.h>
92cf2118 38#include <linux/preempt.h> /* in_interrupt() */
1da177e4
LT
39
40
c78c66d1
KS
41/* Number of nodes in fully populated tree of given height */
42static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
43
1da177e4
LT
44/*
45 * Radix tree node cache.
46 */
e18b890b 47static struct kmem_cache *radix_tree_node_cachep;
1da177e4 48
55368052
NP
49/*
50 * The radix tree is variable-height, so an insert operation not only has
51 * to build the branch to its corresponding item, it also has to build the
52 * branch to existing items if the size has to be increased (by
53 * radix_tree_extend).
54 *
55 * The worst case is a zero height tree with just a single item at index 0,
56 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
57 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
58 * Hence:
59 */
60#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
61
1da177e4
LT
62/*
63 * Per-cpu pool of preloaded nodes
64 */
65struct radix_tree_preload {
2fcd9005 66 unsigned nr;
9d2a8da0
KS
67 /* nodes->private_data points to next preallocated node */
68 struct radix_tree_node *nodes;
1da177e4 69};
8cef7d57 70static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
1da177e4 71
a4db4dce 72static inline void *node_to_entry(void *ptr)
27d20fdd 73{
30ff46cc 74 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
27d20fdd
NP
75}
76
a4db4dce 77#define RADIX_TREE_RETRY node_to_entry(NULL)
afe0e395 78
db050f29
MW
79#ifdef CONFIG_RADIX_TREE_MULTIORDER
80/* Sibling slots point directly to another slot in the same node */
81static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
82{
83 void **ptr = node;
84 return (parent->slots <= ptr) &&
85 (ptr < parent->slots + RADIX_TREE_MAP_SIZE);
86}
87#else
88static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
89{
90 return false;
91}
92#endif
93
94static inline unsigned long get_slot_offset(struct radix_tree_node *parent,
95 void **slot)
96{
97 return slot - parent->slots;
98}
99
9e85d811
MW
100static unsigned int radix_tree_descend(struct radix_tree_node *parent,
101 struct radix_tree_node **nodep, unsigned long index)
db050f29 102{
9e85d811 103 unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
db050f29
MW
104 void **entry = rcu_dereference_raw(parent->slots[offset]);
105
106#ifdef CONFIG_RADIX_TREE_MULTIORDER
b194d16c 107 if (radix_tree_is_internal_node(entry)) {
8d2c0d36
LT
108 if (is_sibling_entry(parent, entry)) {
109 void **sibentry = (void **) entry_to_node(entry);
110 offset = get_slot_offset(parent, sibentry);
111 entry = rcu_dereference_raw(*sibentry);
db050f29
MW
112 }
113 }
114#endif
115
116 *nodep = (void *)entry;
117 return offset;
118}
119
612d6c19
NP
120static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
121{
122 return root->gfp_mask & __GFP_BITS_MASK;
123}
124
643b52b9
NP
125static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
126 int offset)
127{
128 __set_bit(offset, node->tags[tag]);
129}
130
131static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
132 int offset)
133{
134 __clear_bit(offset, node->tags[tag]);
135}
136
137static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
138 int offset)
139{
140 return test_bit(offset, node->tags[tag]);
141}
142
143static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
144{
145 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
146}
147
2fcd9005 148static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
643b52b9
NP
149{
150 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
151}
152
153static inline void root_tag_clear_all(struct radix_tree_root *root)
154{
155 root->gfp_mask &= __GFP_BITS_MASK;
156}
157
158static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
159{
2fcd9005 160 return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
643b52b9
NP
161}
162
7b60e9ad
MW
163static inline unsigned root_tags_get(struct radix_tree_root *root)
164{
165 return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT;
166}
167
643b52b9
NP
168/*
169 * Returns 1 if any slot in the node has this tag set.
170 * Otherwise returns 0.
171 */
172static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
173{
2fcd9005 174 unsigned idx;
643b52b9
NP
175 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
176 if (node->tags[tag][idx])
177 return 1;
178 }
179 return 0;
180}
78c1d784
KK
181
182/**
183 * radix_tree_find_next_bit - find the next set bit in a memory region
184 *
185 * @addr: The address to base the search on
186 * @size: The bitmap size in bits
187 * @offset: The bitnumber to start searching at
188 *
189 * Unrollable variant of find_next_bit() for constant size arrays.
190 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
191 * Returns next bit offset, or size if nothing found.
192 */
193static __always_inline unsigned long
194radix_tree_find_next_bit(const unsigned long *addr,
195 unsigned long size, unsigned long offset)
196{
197 if (!__builtin_constant_p(size))
198 return find_next_bit(addr, size, offset);
199
200 if (offset < size) {
201 unsigned long tmp;
202
203 addr += offset / BITS_PER_LONG;
204 tmp = *addr >> (offset % BITS_PER_LONG);
205 if (tmp)
206 return __ffs(tmp) + offset;
207 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
208 while (offset < size) {
209 tmp = *++addr;
210 if (tmp)
211 return __ffs(tmp) + offset;
212 offset += BITS_PER_LONG;
213 }
214 }
215 return size;
216}
217
0796c583 218#ifndef __KERNEL__
d0891265 219static void dump_node(struct radix_tree_node *node, unsigned long index)
7cf19af4 220{
0796c583 221 unsigned long i;
7cf19af4 222
f7942430 223 pr_debug("radix node: %p offset %d tags %lx %lx %lx shift %d count %d exceptional %d parent %p\n",
0c7fa0a8 224 node, node->offset,
0796c583 225 node->tags[0][0], node->tags[1][0], node->tags[2][0],
f7942430 226 node->shift, node->count, node->exceptional, node->parent);
0796c583
RZ
227
228 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
d0891265
MW
229 unsigned long first = index | (i << node->shift);
230 unsigned long last = first | ((1UL << node->shift) - 1);
0796c583
RZ
231 void *entry = node->slots[i];
232 if (!entry)
233 continue;
234 if (is_sibling_entry(node, entry)) {
235 pr_debug("radix sblng %p offset %ld val %p indices %ld-%ld\n",
236 entry, i,
4dd6c098 237 *(void **)entry_to_node(entry),
0796c583 238 first, last);
b194d16c 239 } else if (!radix_tree_is_internal_node(entry)) {
0796c583
RZ
240 pr_debug("radix entry %p offset %ld indices %ld-%ld\n",
241 entry, i, first, last);
242 } else {
4dd6c098 243 dump_node(entry_to_node(entry), first);
0796c583
RZ
244 }
245 }
7cf19af4
MW
246}
247
248/* For debug */
249static void radix_tree_dump(struct radix_tree_root *root)
250{
d0891265
MW
251 pr_debug("radix root: %p rnode %p tags %x\n",
252 root, root->rnode,
7cf19af4 253 root->gfp_mask >> __GFP_BITS_SHIFT);
b194d16c 254 if (!radix_tree_is_internal_node(root->rnode))
7cf19af4 255 return;
4dd6c098 256 dump_node(entry_to_node(root->rnode), 0);
7cf19af4
MW
257}
258#endif
259
1da177e4
LT
260/*
261 * This assumes that the caller has performed appropriate preallocation, and
262 * that the caller has pinned this thread of control to the current CPU.
263 */
264static struct radix_tree_node *
265radix_tree_node_alloc(struct radix_tree_root *root)
266{
e2848a0e 267 struct radix_tree_node *ret = NULL;
612d6c19 268 gfp_t gfp_mask = root_gfp_mask(root);
1da177e4 269
5e4c0d97 270 /*
2fcd9005
MW
271 * Preload code isn't irq safe and it doesn't make sense to use
272 * preloading during an interrupt anyway as all the allocations have
273 * to be atomic. So just do normal allocation when in interrupt.
5e4c0d97 274 */
d0164adc 275 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
1da177e4
LT
276 struct radix_tree_preload *rtp;
277
58e698af
VD
278 /*
279 * Even if the caller has preloaded, try to allocate from the
05eb6e72
VD
280 * cache first for the new node to get accounted to the memory
281 * cgroup.
58e698af
VD
282 */
283 ret = kmem_cache_alloc(radix_tree_node_cachep,
05eb6e72 284 gfp_mask | __GFP_NOWARN);
58e698af
VD
285 if (ret)
286 goto out;
287
e2848a0e
NP
288 /*
289 * Provided the caller has preloaded here, we will always
290 * succeed in getting a node here (and never reach
291 * kmem_cache_alloc)
292 */
7c8e0181 293 rtp = this_cpu_ptr(&radix_tree_preloads);
1da177e4 294 if (rtp->nr) {
9d2a8da0
KS
295 ret = rtp->nodes;
296 rtp->nodes = ret->private_data;
297 ret->private_data = NULL;
1da177e4
LT
298 rtp->nr--;
299 }
ce80b067
CM
300 /*
301 * Update the allocation stack trace as this is more useful
302 * for debugging.
303 */
304 kmemleak_update_trace(ret);
58e698af 305 goto out;
1da177e4 306 }
05eb6e72 307 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
58e698af 308out:
b194d16c 309 BUG_ON(radix_tree_is_internal_node(ret));
1da177e4
LT
310 return ret;
311}
312
7cf9c2c7
NP
313static void radix_tree_node_rcu_free(struct rcu_head *head)
314{
315 struct radix_tree_node *node =
316 container_of(head, struct radix_tree_node, rcu_head);
b6dd0865 317 int i;
643b52b9
NP
318
319 /*
320 * must only free zeroed nodes into the slab. radix_tree_shrink
321 * can leave us with a non-NULL entry in the first slot, so clear
322 * that here to make sure.
323 */
b6dd0865
DC
324 for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
325 tag_clear(node, i, 0);
326
643b52b9 327 node->slots[0] = NULL;
91d9c05a 328 INIT_LIST_HEAD(&node->private_list);
643b52b9 329
7cf9c2c7
NP
330 kmem_cache_free(radix_tree_node_cachep, node);
331}
332
1da177e4
LT
333static inline void
334radix_tree_node_free(struct radix_tree_node *node)
335{
7cf9c2c7 336 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
1da177e4
LT
337}
338
339/*
340 * Load up this CPU's radix_tree_node buffer with sufficient objects to
341 * ensure that the addition of a single element in the tree cannot fail. On
342 * success, return zero, with preemption disabled. On error, return -ENOMEM
343 * with preemption not disabled.
b34df792
DH
344 *
345 * To make use of this facility, the radix tree must be initialised without
d0164adc 346 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
1da177e4 347 */
c78c66d1 348static int __radix_tree_preload(gfp_t gfp_mask, int nr)
1da177e4
LT
349{
350 struct radix_tree_preload *rtp;
351 struct radix_tree_node *node;
352 int ret = -ENOMEM;
353
05eb6e72
VD
354 /*
355 * Nodes preloaded by one cgroup can be be used by another cgroup, so
356 * they should never be accounted to any particular memory cgroup.
357 */
358 gfp_mask &= ~__GFP_ACCOUNT;
359
1da177e4 360 preempt_disable();
7c8e0181 361 rtp = this_cpu_ptr(&radix_tree_preloads);
c78c66d1 362 while (rtp->nr < nr) {
1da177e4 363 preempt_enable();
488514d1 364 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
1da177e4
LT
365 if (node == NULL)
366 goto out;
367 preempt_disable();
7c8e0181 368 rtp = this_cpu_ptr(&radix_tree_preloads);
c78c66d1 369 if (rtp->nr < nr) {
9d2a8da0
KS
370 node->private_data = rtp->nodes;
371 rtp->nodes = node;
372 rtp->nr++;
373 } else {
1da177e4 374 kmem_cache_free(radix_tree_node_cachep, node);
9d2a8da0 375 }
1da177e4
LT
376 }
377 ret = 0;
378out:
379 return ret;
380}
5e4c0d97
JK
381
382/*
383 * Load up this CPU's radix_tree_node buffer with sufficient objects to
384 * ensure that the addition of a single element in the tree cannot fail. On
385 * success, return zero, with preemption disabled. On error, return -ENOMEM
386 * with preemption not disabled.
387 *
388 * To make use of this facility, the radix tree must be initialised without
d0164adc 389 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
5e4c0d97
JK
390 */
391int radix_tree_preload(gfp_t gfp_mask)
392{
393 /* Warn on non-sensical use... */
d0164adc 394 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
c78c66d1 395 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
5e4c0d97 396}
d7f0923d 397EXPORT_SYMBOL(radix_tree_preload);
1da177e4 398
5e4c0d97
JK
399/*
400 * The same as above function, except we don't guarantee preloading happens.
401 * We do it, if we decide it helps. On success, return zero with preemption
402 * disabled. On error, return -ENOMEM with preemption not disabled.
403 */
404int radix_tree_maybe_preload(gfp_t gfp_mask)
405{
d0164adc 406 if (gfpflags_allow_blocking(gfp_mask))
c78c66d1 407 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
5e4c0d97
JK
408 /* Preloading doesn't help anything with this gfp mask, skip it */
409 preempt_disable();
410 return 0;
411}
412EXPORT_SYMBOL(radix_tree_maybe_preload);
413
c78c66d1
KS
414/*
415 * The same as function above, but preload number of nodes required to insert
416 * (1 << order) continuous naturally-aligned elements.
417 */
418int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
419{
420 unsigned long nr_subtrees;
421 int nr_nodes, subtree_height;
422
423 /* Preloading doesn't help anything with this gfp mask, skip it */
424 if (!gfpflags_allow_blocking(gfp_mask)) {
425 preempt_disable();
426 return 0;
427 }
428
429 /*
430 * Calculate number and height of fully populated subtrees it takes to
431 * store (1 << order) elements.
432 */
433 nr_subtrees = 1 << order;
434 for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
435 subtree_height++)
436 nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
437
438 /*
439 * The worst case is zero height tree with a single item at index 0 and
440 * then inserting items starting at ULONG_MAX - (1 << order).
441 *
442 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
443 * 0-index item.
444 */
445 nr_nodes = RADIX_TREE_MAX_PATH;
446
447 /* Plus branch to fully populated subtrees. */
448 nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
449
450 /* Root node is shared. */
451 nr_nodes--;
452
453 /* Plus nodes required to build subtrees. */
454 nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
455
456 return __radix_tree_preload(gfp_mask, nr_nodes);
457}
458
1da177e4 459/*
d0891265 460 * The maximum index which can be stored in a radix tree
1da177e4 461 */
c12e51b0
MW
462static inline unsigned long shift_maxindex(unsigned int shift)
463{
464 return (RADIX_TREE_MAP_SIZE << shift) - 1;
465}
466
1456a439
MW
467static inline unsigned long node_maxindex(struct radix_tree_node *node)
468{
c12e51b0 469 return shift_maxindex(node->shift);
1456a439
MW
470}
471
472static unsigned radix_tree_load_root(struct radix_tree_root *root,
473 struct radix_tree_node **nodep, unsigned long *maxindex)
474{
475 struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
476
477 *nodep = node;
478
b194d16c 479 if (likely(radix_tree_is_internal_node(node))) {
4dd6c098 480 node = entry_to_node(node);
1456a439 481 *maxindex = node_maxindex(node);
c12e51b0 482 return node->shift + RADIX_TREE_MAP_SHIFT;
1456a439
MW
483 }
484
485 *maxindex = 0;
486 return 0;
487}
488
1da177e4
LT
489/*
490 * Extend a radix tree so it can store key @index.
491 */
e6145236 492static int radix_tree_extend(struct radix_tree_root *root,
d0891265 493 unsigned long index, unsigned int shift)
1da177e4 494{
e2bdb933 495 struct radix_tree_node *slot;
d0891265 496 unsigned int maxshift;
1da177e4
LT
497 int tag;
498
d0891265
MW
499 /* Figure out what the shift should be. */
500 maxshift = shift;
501 while (index > shift_maxindex(maxshift))
502 maxshift += RADIX_TREE_MAP_SHIFT;
1da177e4 503
d0891265
MW
504 slot = root->rnode;
505 if (!slot)
1da177e4 506 goto out;
1da177e4 507
1da177e4 508 do {
2fcd9005
MW
509 struct radix_tree_node *node = radix_tree_node_alloc(root);
510
511 if (!node)
1da177e4
LT
512 return -ENOMEM;
513
1da177e4 514 /* Propagate the aggregated tag info into the new root */
daff89f3 515 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
612d6c19 516 if (root_tag_get(root, tag))
1da177e4
LT
517 tag_set(node, tag, 0);
518 }
519
d0891265
MW
520 BUG_ON(shift > BITS_PER_LONG);
521 node->shift = shift;
0c7fa0a8 522 node->offset = 0;
1da177e4 523 node->count = 1;
e2bdb933 524 node->parent = NULL;
f7942430 525 if (radix_tree_is_internal_node(slot)) {
4dd6c098 526 entry_to_node(slot)->parent = node;
f7942430
JW
527 } else {
528 /* Moving an exceptional root->rnode to a node */
529 if (radix_tree_exceptional_entry(slot))
530 node->exceptional = 1;
531 }
e2bdb933 532 node->slots[0] = slot;
a4db4dce
MW
533 slot = node_to_entry(node);
534 rcu_assign_pointer(root->rnode, slot);
d0891265 535 shift += RADIX_TREE_MAP_SHIFT;
d0891265 536 } while (shift <= maxshift);
1da177e4 537out:
d0891265 538 return maxshift + RADIX_TREE_MAP_SHIFT;
1da177e4
LT
539}
540
f4b109c6
JW
541/**
542 * radix_tree_shrink - shrink radix tree to minimum height
543 * @root radix tree root
544 */
14b46879 545static inline void radix_tree_shrink(struct radix_tree_root *root,
4d693d08
JW
546 radix_tree_update_node_t update_node,
547 void *private)
f4b109c6 548{
f4b109c6
JW
549 for (;;) {
550 struct radix_tree_node *node = root->rnode;
551 struct radix_tree_node *child;
552
553 if (!radix_tree_is_internal_node(node))
554 break;
555 node = entry_to_node(node);
556
557 /*
558 * The candidate node has more than one child, or its child
559 * is not at the leftmost slot, or the child is a multiorder
560 * entry, we cannot shrink.
561 */
562 if (node->count != 1)
563 break;
564 child = node->slots[0];
565 if (!child)
566 break;
567 if (!radix_tree_is_internal_node(child) && node->shift)
568 break;
569
570 if (radix_tree_is_internal_node(child))
571 entry_to_node(child)->parent = NULL;
572
573 /*
574 * We don't need rcu_assign_pointer(), since we are simply
575 * moving the node from one part of the tree to another: if it
576 * was safe to dereference the old pointer to it
577 * (node->slots[0]), it will be safe to dereference the new
578 * one (root->rnode) as far as dependent read barriers go.
579 */
580 root->rnode = child;
581
582 /*
583 * We have a dilemma here. The node's slot[0] must not be
584 * NULLed in case there are concurrent lookups expecting to
585 * find the item. However if this was a bottom-level node,
586 * then it may be subject to the slot pointer being visible
587 * to callers dereferencing it. If item corresponding to
588 * slot[0] is subsequently deleted, these callers would expect
589 * their slot to become empty sooner or later.
590 *
591 * For example, lockless pagecache will look up a slot, deref
592 * the page pointer, and if the page has 0 refcount it means it
593 * was concurrently deleted from pagecache so try the deref
594 * again. Fortunately there is already a requirement for logic
595 * to retry the entire slot lookup -- the indirect pointer
596 * problem (replacing direct root node with an indirect pointer
597 * also results in a stale slot). So tag the slot as indirect
598 * to force callers to retry.
599 */
4d693d08
JW
600 node->count = 0;
601 if (!radix_tree_is_internal_node(child)) {
f4b109c6 602 node->slots[0] = RADIX_TREE_RETRY;
4d693d08
JW
603 if (update_node)
604 update_node(node, private);
605 }
f4b109c6
JW
606
607 radix_tree_node_free(node);
f4b109c6 608 }
f4b109c6
JW
609}
610
14b46879 611static void delete_node(struct radix_tree_root *root,
4d693d08
JW
612 struct radix_tree_node *node,
613 radix_tree_update_node_t update_node, void *private)
f4b109c6 614{
f4b109c6
JW
615 do {
616 struct radix_tree_node *parent;
617
618 if (node->count) {
619 if (node == entry_to_node(root->rnode))
14b46879
JW
620 radix_tree_shrink(root, update_node, private);
621 return;
f4b109c6
JW
622 }
623
624 parent = node->parent;
625 if (parent) {
626 parent->slots[node->offset] = NULL;
627 parent->count--;
628 } else {
629 root_tag_clear_all(root);
630 root->rnode = NULL;
631 }
632
633 radix_tree_node_free(node);
f4b109c6
JW
634
635 node = parent;
636 } while (node);
f4b109c6
JW
637}
638
1da177e4 639/**
139e5616 640 * __radix_tree_create - create a slot in a radix tree
1da177e4
LT
641 * @root: radix tree root
642 * @index: index key
e6145236 643 * @order: index occupies 2^order aligned slots
139e5616
JW
644 * @nodep: returns node
645 * @slotp: returns slot
1da177e4 646 *
139e5616
JW
647 * Create, if necessary, and return the node and slot for an item
648 * at position @index in the radix tree @root.
649 *
650 * Until there is more than one item in the tree, no nodes are
651 * allocated and @root->rnode is used as a direct slot instead of
652 * pointing to a node, in which case *@nodep will be NULL.
653 *
654 * Returns -ENOMEM, or 0 for success.
1da177e4 655 */
139e5616 656int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
e6145236
MW
657 unsigned order, struct radix_tree_node **nodep,
658 void ***slotp)
1da177e4 659{
89148aa4
MW
660 struct radix_tree_node *node = NULL, *child;
661 void **slot = (void **)&root->rnode;
49ea6ebc 662 unsigned long maxindex;
89148aa4 663 unsigned int shift, offset = 0;
49ea6ebc
MW
664 unsigned long max = index | ((1UL << order) - 1);
665
89148aa4 666 shift = radix_tree_load_root(root, &child, &maxindex);
1da177e4
LT
667
668 /* Make sure the tree is high enough. */
49ea6ebc 669 if (max > maxindex) {
d0891265 670 int error = radix_tree_extend(root, max, shift);
49ea6ebc 671 if (error < 0)
1da177e4 672 return error;
49ea6ebc 673 shift = error;
89148aa4 674 child = root->rnode;
d0891265 675 if (order == shift)
49ea6ebc 676 shift += RADIX_TREE_MAP_SHIFT;
1da177e4
LT
677 }
678
e6145236 679 while (shift > order) {
c12e51b0 680 shift -= RADIX_TREE_MAP_SHIFT;
89148aa4 681 if (child == NULL) {
1da177e4 682 /* Have to add a child node. */
89148aa4
MW
683 child = radix_tree_node_alloc(root);
684 if (!child)
1da177e4 685 return -ENOMEM;
89148aa4
MW
686 child->shift = shift;
687 child->offset = offset;
688 child->parent = node;
689 rcu_assign_pointer(*slot, node_to_entry(child));
690 if (node)
1da177e4 691 node->count++;
89148aa4 692 } else if (!radix_tree_is_internal_node(child))
e6145236 693 break;
1da177e4
LT
694
695 /* Go a level down */
89148aa4 696 node = entry_to_node(child);
9e85d811 697 offset = radix_tree_descend(node, &child, index);
89148aa4 698 slot = &node->slots[offset];
e6145236
MW
699 }
700
57578c2e 701#ifdef CONFIG_RADIX_TREE_MULTIORDER
e6145236 702 /* Insert pointers to the canonical entry */
3b8c00f6 703 if (order > shift) {
89148aa4 704 unsigned i, n = 1 << (order - shift);
e6145236 705 offset = offset & ~(n - 1);
89148aa4
MW
706 slot = &node->slots[offset];
707 child = node_to_entry(slot);
e6145236 708 for (i = 0; i < n; i++) {
89148aa4 709 if (slot[i])
e6145236
MW
710 return -EEXIST;
711 }
712
713 for (i = 1; i < n; i++) {
89148aa4 714 rcu_assign_pointer(slot[i], child);
e6145236
MW
715 node->count++;
716 }
612d6c19 717 }
57578c2e 718#endif
1da177e4 719
139e5616
JW
720 if (nodep)
721 *nodep = node;
722 if (slotp)
89148aa4 723 *slotp = slot;
139e5616
JW
724 return 0;
725}
726
727/**
e6145236 728 * __radix_tree_insert - insert into a radix tree
139e5616
JW
729 * @root: radix tree root
730 * @index: index key
e6145236 731 * @order: key covers the 2^order indices around index
139e5616
JW
732 * @item: item to insert
733 *
734 * Insert an item into the radix tree at position @index.
735 */
e6145236
MW
736int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
737 unsigned order, void *item)
139e5616
JW
738{
739 struct radix_tree_node *node;
740 void **slot;
741 int error;
742
b194d16c 743 BUG_ON(radix_tree_is_internal_node(item));
139e5616 744
e6145236 745 error = __radix_tree_create(root, index, order, &node, &slot);
139e5616
JW
746 if (error)
747 return error;
748 if (*slot != NULL)
1da177e4 749 return -EEXIST;
139e5616 750 rcu_assign_pointer(*slot, item);
201b6264 751
612d6c19 752 if (node) {
7b60e9ad 753 unsigned offset = get_slot_offset(node, slot);
612d6c19 754 node->count++;
f7942430
JW
755 if (radix_tree_exceptional_entry(item))
756 node->exceptional++;
7b60e9ad
MW
757 BUG_ON(tag_get(node, 0, offset));
758 BUG_ON(tag_get(node, 1, offset));
759 BUG_ON(tag_get(node, 2, offset));
612d6c19 760 } else {
7b60e9ad 761 BUG_ON(root_tags_get(root));
612d6c19 762 }
1da177e4 763
1da177e4
LT
764 return 0;
765}
e6145236 766EXPORT_SYMBOL(__radix_tree_insert);
1da177e4 767
139e5616
JW
768/**
769 * __radix_tree_lookup - lookup an item in a radix tree
770 * @root: radix tree root
771 * @index: index key
772 * @nodep: returns node
773 * @slotp: returns slot
774 *
775 * Lookup and return the item at position @index in the radix
776 * tree @root.
777 *
778 * Until there is more than one item in the tree, no nodes are
779 * allocated and @root->rnode is used as a direct slot instead of
780 * pointing to a node, in which case *@nodep will be NULL.
7cf9c2c7 781 */
139e5616
JW
782void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
783 struct radix_tree_node **nodep, void ***slotp)
1da177e4 784{
139e5616 785 struct radix_tree_node *node, *parent;
85829954 786 unsigned long maxindex;
139e5616 787 void **slot;
612d6c19 788
85829954
MW
789 restart:
790 parent = NULL;
791 slot = (void **)&root->rnode;
9e85d811 792 radix_tree_load_root(root, &node, &maxindex);
85829954 793 if (index > maxindex)
1da177e4
LT
794 return NULL;
795
b194d16c 796 while (radix_tree_is_internal_node(node)) {
85829954 797 unsigned offset;
1da177e4 798
85829954
MW
799 if (node == RADIX_TREE_RETRY)
800 goto restart;
4dd6c098 801 parent = entry_to_node(node);
9e85d811 802 offset = radix_tree_descend(parent, &node, index);
85829954
MW
803 slot = parent->slots + offset;
804 }
1da177e4 805
139e5616
JW
806 if (nodep)
807 *nodep = parent;
808 if (slotp)
809 *slotp = slot;
810 return node;
b72b71c6
HS
811}
812
813/**
814 * radix_tree_lookup_slot - lookup a slot in a radix tree
815 * @root: radix tree root
816 * @index: index key
817 *
818 * Returns: the slot corresponding to the position @index in the
819 * radix tree @root. This is useful for update-if-exists operations.
820 *
821 * This function can be called under rcu_read_lock iff the slot is not
822 * modified by radix_tree_replace_slot, otherwise it must be called
823 * exclusive from other writers. Any dereference of the slot must be done
824 * using radix_tree_deref_slot.
825 */
826void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
827{
139e5616
JW
828 void **slot;
829
830 if (!__radix_tree_lookup(root, index, NULL, &slot))
831 return NULL;
832 return slot;
a4331366 833}
a4331366
HR
834EXPORT_SYMBOL(radix_tree_lookup_slot);
835
836/**
837 * radix_tree_lookup - perform lookup operation on a radix tree
838 * @root: radix tree root
839 * @index: index key
840 *
841 * Lookup the item at the position @index in the radix tree @root.
7cf9c2c7
NP
842 *
843 * This function can be called under rcu_read_lock, however the caller
844 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
845 * them safely). No RCU barriers are required to access or modify the
846 * returned item, however.
a4331366
HR
847 */
848void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
849{
139e5616 850 return __radix_tree_lookup(root, index, NULL, NULL);
1da177e4
LT
851}
852EXPORT_SYMBOL(radix_tree_lookup);
853
6d75f366
JW
854static void replace_slot(struct radix_tree_root *root,
855 struct radix_tree_node *node,
856 void **slot, void *item,
857 bool warn_typeswitch)
f7942430
JW
858{
859 void *old = rcu_dereference_raw(*slot);
f4b109c6 860 int count, exceptional;
f7942430
JW
861
862 WARN_ON_ONCE(radix_tree_is_internal_node(item));
f7942430 863
f4b109c6 864 count = !!item - !!old;
f7942430
JW
865 exceptional = !!radix_tree_exceptional_entry(item) -
866 !!radix_tree_exceptional_entry(old);
867
f4b109c6 868 WARN_ON_ONCE(warn_typeswitch && (count || exceptional));
f7942430 869
f4b109c6
JW
870 if (node) {
871 node->count += count;
f7942430 872 node->exceptional += exceptional;
f4b109c6 873 }
f7942430
JW
874
875 rcu_assign_pointer(*slot, item);
876}
877
6d75f366
JW
878/**
879 * __radix_tree_replace - replace item in a slot
4d693d08
JW
880 * @root: radix tree root
881 * @node: pointer to tree node
882 * @slot: pointer to slot in @node
883 * @item: new item to store in the slot.
884 * @update_node: callback for changing leaf nodes
885 * @private: private data to pass to @update_node
6d75f366
JW
886 *
887 * For use with __radix_tree_lookup(). Caller must hold tree write locked
888 * across slot lookup and replacement.
889 */
890void __radix_tree_replace(struct radix_tree_root *root,
891 struct radix_tree_node *node,
4d693d08
JW
892 void **slot, void *item,
893 radix_tree_update_node_t update_node, void *private)
6d75f366
JW
894{
895 /*
f4b109c6
JW
896 * This function supports replacing exceptional entries and
897 * deleting entries, but that needs accounting against the
898 * node unless the slot is root->rnode.
6d75f366
JW
899 */
900 replace_slot(root, node, slot, item,
901 !node && slot != (void **)&root->rnode);
f4b109c6 902
4d693d08
JW
903 if (!node)
904 return;
905
906 if (update_node)
907 update_node(node, private);
908
909 delete_node(root, node, update_node, private);
6d75f366
JW
910}
911
912/**
913 * radix_tree_replace_slot - replace item in a slot
914 * @root: radix tree root
915 * @slot: pointer to slot
916 * @item: new item to store in the slot.
917 *
918 * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
919 * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked
920 * across slot lookup and replacement.
921 *
922 * NOTE: This cannot be used to switch between non-entries (empty slots),
923 * regular entries, and exceptional entries, as that requires accounting
f4b109c6
JW
924 * inside the radix tree node. When switching from one type of entry or
925 * deleting, use __radix_tree_lookup() and __radix_tree_replace().
6d75f366
JW
926 */
927void radix_tree_replace_slot(struct radix_tree_root *root,
928 void **slot, void *item)
929{
930 replace_slot(root, NULL, slot, item, true);
931}
932
1da177e4
LT
933/**
934 * radix_tree_tag_set - set a tag on a radix tree node
935 * @root: radix tree root
936 * @index: index key
2fcd9005 937 * @tag: tag index
1da177e4 938 *
daff89f3
JC
939 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
940 * corresponding to @index in the radix tree. From
1da177e4
LT
941 * the root all the way down to the leaf node.
942 *
2fcd9005 943 * Returns the address of the tagged item. Setting a tag on a not-present
1da177e4
LT
944 * item is a bug.
945 */
946void *radix_tree_tag_set(struct radix_tree_root *root,
daff89f3 947 unsigned long index, unsigned int tag)
1da177e4 948{
fb969909
RZ
949 struct radix_tree_node *node, *parent;
950 unsigned long maxindex;
1da177e4 951
9e85d811 952 radix_tree_load_root(root, &node, &maxindex);
fb969909 953 BUG_ON(index > maxindex);
1da177e4 954
b194d16c 955 while (radix_tree_is_internal_node(node)) {
fb969909 956 unsigned offset;
1da177e4 957
4dd6c098 958 parent = entry_to_node(node);
9e85d811 959 offset = radix_tree_descend(parent, &node, index);
fb969909
RZ
960 BUG_ON(!node);
961
962 if (!tag_get(parent, tag, offset))
963 tag_set(parent, tag, offset);
1da177e4
LT
964 }
965
612d6c19 966 /* set the root's tag bit */
fb969909 967 if (!root_tag_get(root, tag))
612d6c19
NP
968 root_tag_set(root, tag);
969
fb969909 970 return node;
1da177e4
LT
971}
972EXPORT_SYMBOL(radix_tree_tag_set);
973
d604c324
MW
974static void node_tag_clear(struct radix_tree_root *root,
975 struct radix_tree_node *node,
976 unsigned int tag, unsigned int offset)
977{
978 while (node) {
979 if (!tag_get(node, tag, offset))
980 return;
981 tag_clear(node, tag, offset);
982 if (any_tag_set(node, tag))
983 return;
984
985 offset = node->offset;
986 node = node->parent;
987 }
988
989 /* clear the root's tag bit */
990 if (root_tag_get(root, tag))
991 root_tag_clear(root, tag);
992}
993
9498d2bb
MW
994static void node_tag_set(struct radix_tree_root *root,
995 struct radix_tree_node *node,
996 unsigned int tag, unsigned int offset)
997{
998 while (node) {
999 if (tag_get(node, tag, offset))
1000 return;
1001 tag_set(node, tag, offset);
1002 offset = node->offset;
1003 node = node->parent;
1004 }
1005
1006 if (!root_tag_get(root, tag))
1007 root_tag_set(root, tag);
1008}
1009
1da177e4
LT
1010/**
1011 * radix_tree_tag_clear - clear a tag on a radix tree node
1012 * @root: radix tree root
1013 * @index: index key
2fcd9005 1014 * @tag: tag index
1da177e4 1015 *
daff89f3 1016 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
2fcd9005
MW
1017 * corresponding to @index in the radix tree. If this causes
1018 * the leaf node to have no tags set then clear the tag in the
1da177e4
LT
1019 * next-to-leaf node, etc.
1020 *
1021 * Returns the address of the tagged item on success, else NULL. ie:
1022 * has the same return value and semantics as radix_tree_lookup().
1023 */
1024void *radix_tree_tag_clear(struct radix_tree_root *root,
daff89f3 1025 unsigned long index, unsigned int tag)
1da177e4 1026{
00f47b58
RZ
1027 struct radix_tree_node *node, *parent;
1028 unsigned long maxindex;
e2bdb933 1029 int uninitialized_var(offset);
1da177e4 1030
9e85d811 1031 radix_tree_load_root(root, &node, &maxindex);
00f47b58
RZ
1032 if (index > maxindex)
1033 return NULL;
1da177e4 1034
00f47b58 1035 parent = NULL;
1da177e4 1036
b194d16c 1037 while (radix_tree_is_internal_node(node)) {
4dd6c098 1038 parent = entry_to_node(node);
9e85d811 1039 offset = radix_tree_descend(parent, &node, index);
1da177e4
LT
1040 }
1041
d604c324
MW
1042 if (node)
1043 node_tag_clear(root, parent, tag, offset);
1da177e4 1044
00f47b58 1045 return node;
1da177e4
LT
1046}
1047EXPORT_SYMBOL(radix_tree_tag_clear);
1048
1da177e4 1049/**
32605a18
MT
1050 * radix_tree_tag_get - get a tag on a radix tree node
1051 * @root: radix tree root
1052 * @index: index key
2fcd9005 1053 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
1da177e4 1054 *
32605a18 1055 * Return values:
1da177e4 1056 *
612d6c19
NP
1057 * 0: tag not present or not set
1058 * 1: tag set
ce82653d
DH
1059 *
1060 * Note that the return value of this function may not be relied on, even if
1061 * the RCU lock is held, unless tag modification and node deletion are excluded
1062 * from concurrency.
1da177e4
LT
1063 */
1064int radix_tree_tag_get(struct radix_tree_root *root,
daff89f3 1065 unsigned long index, unsigned int tag)
1da177e4 1066{
4589ba6d
RZ
1067 struct radix_tree_node *node, *parent;
1068 unsigned long maxindex;
1da177e4 1069
612d6c19
NP
1070 if (!root_tag_get(root, tag))
1071 return 0;
1072
9e85d811 1073 radix_tree_load_root(root, &node, &maxindex);
4589ba6d
RZ
1074 if (index > maxindex)
1075 return 0;
7cf9c2c7
NP
1076 if (node == NULL)
1077 return 0;
1078
b194d16c 1079 while (radix_tree_is_internal_node(node)) {
9e85d811 1080 unsigned offset;
1da177e4 1081
4dd6c098 1082 parent = entry_to_node(node);
9e85d811 1083 offset = radix_tree_descend(parent, &node, index);
1da177e4 1084
4589ba6d 1085 if (!node)
1da177e4 1086 return 0;
4589ba6d 1087 if (!tag_get(parent, tag, offset))
3fa36acb 1088 return 0;
4589ba6d
RZ
1089 if (node == RADIX_TREE_RETRY)
1090 break;
1da177e4 1091 }
4589ba6d
RZ
1092
1093 return 1;
1da177e4
LT
1094}
1095EXPORT_SYMBOL(radix_tree_tag_get);
1da177e4 1096
21ef5339
RZ
1097static inline void __set_iter_shift(struct radix_tree_iter *iter,
1098 unsigned int shift)
1099{
1100#ifdef CONFIG_RADIX_TREE_MULTIORDER
1101 iter->shift = shift;
1102#endif
1103}
1104
78c1d784
KK
1105/**
1106 * radix_tree_next_chunk - find next chunk of slots for iteration
1107 *
1108 * @root: radix tree root
1109 * @iter: iterator state
1110 * @flags: RADIX_TREE_ITER_* flags and tag index
1111 * Returns: pointer to chunk first slot, or NULL if iteration is over
1112 */
1113void **radix_tree_next_chunk(struct radix_tree_root *root,
1114 struct radix_tree_iter *iter, unsigned flags)
1115{
9e85d811 1116 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
8c1244de 1117 struct radix_tree_node *node, *child;
21ef5339 1118 unsigned long index, offset, maxindex;
78c1d784
KK
1119
1120 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1121 return NULL;
1122
1123 /*
1124 * Catch next_index overflow after ~0UL. iter->index never overflows
1125 * during iterating; it can be zero only at the beginning.
1126 * And we cannot overflow iter->next_index in a single step,
1127 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
fffaee36
KK
1128 *
1129 * This condition also used by radix_tree_next_slot() to stop
91b9677c 1130 * contiguous iterating, and forbid switching to the next chunk.
78c1d784
KK
1131 */
1132 index = iter->next_index;
1133 if (!index && iter->index)
1134 return NULL;
1135
21ef5339 1136 restart:
9e85d811 1137 radix_tree_load_root(root, &child, &maxindex);
21ef5339
RZ
1138 if (index > maxindex)
1139 return NULL;
8c1244de
MW
1140 if (!child)
1141 return NULL;
21ef5339 1142
8c1244de 1143 if (!radix_tree_is_internal_node(child)) {
78c1d784 1144 /* Single-slot tree */
21ef5339
RZ
1145 iter->index = index;
1146 iter->next_index = maxindex + 1;
78c1d784 1147 iter->tags = 1;
8c1244de 1148 __set_iter_shift(iter, 0);
78c1d784 1149 return (void **)&root->rnode;
8c1244de 1150 }
21ef5339 1151
8c1244de
MW
1152 do {
1153 node = entry_to_node(child);
9e85d811 1154 offset = radix_tree_descend(node, &child, index);
21ef5339 1155
78c1d784 1156 if ((flags & RADIX_TREE_ITER_TAGGED) ?
8c1244de 1157 !tag_get(node, tag, offset) : !child) {
78c1d784
KK
1158 /* Hole detected */
1159 if (flags & RADIX_TREE_ITER_CONTIG)
1160 return NULL;
1161
1162 if (flags & RADIX_TREE_ITER_TAGGED)
1163 offset = radix_tree_find_next_bit(
1164 node->tags[tag],
1165 RADIX_TREE_MAP_SIZE,
1166 offset + 1);
1167 else
1168 while (++offset < RADIX_TREE_MAP_SIZE) {
21ef5339
RZ
1169 void *slot = node->slots[offset];
1170 if (is_sibling_entry(node, slot))
1171 continue;
1172 if (slot)
78c1d784
KK
1173 break;
1174 }
8c1244de 1175 index &= ~node_maxindex(node);
9e85d811 1176 index += offset << node->shift;
78c1d784
KK
1177 /* Overflow after ~0UL */
1178 if (!index)
1179 return NULL;
1180 if (offset == RADIX_TREE_MAP_SIZE)
1181 goto restart;
8c1244de 1182 child = rcu_dereference_raw(node->slots[offset]);
78c1d784
KK
1183 }
1184
8c1244de 1185 if ((child == NULL) || (child == RADIX_TREE_RETRY))
78c1d784 1186 goto restart;
8c1244de 1187 } while (radix_tree_is_internal_node(child));
78c1d784
KK
1188
1189 /* Update the iterator state */
8c1244de
MW
1190 iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
1191 iter->next_index = (index | node_maxindex(node)) + 1;
9e85d811 1192 __set_iter_shift(iter, node->shift);
78c1d784
KK
1193
1194 /* Construct iter->tags bit-mask from node->tags[tag] array */
1195 if (flags & RADIX_TREE_ITER_TAGGED) {
1196 unsigned tag_long, tag_bit;
1197
1198 tag_long = offset / BITS_PER_LONG;
1199 tag_bit = offset % BITS_PER_LONG;
1200 iter->tags = node->tags[tag][tag_long] >> tag_bit;
1201 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1202 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1203 /* Pick tags from next element */
1204 if (tag_bit)
1205 iter->tags |= node->tags[tag][tag_long + 1] <<
1206 (BITS_PER_LONG - tag_bit);
1207 /* Clip chunk size, here only BITS_PER_LONG tags */
1208 iter->next_index = index + BITS_PER_LONG;
1209 }
1210 }
1211
1212 return node->slots + offset;
1213}
1214EXPORT_SYMBOL(radix_tree_next_chunk);
1215
ebf8aa44
JK
1216/**
1217 * radix_tree_range_tag_if_tagged - for each item in given range set given
1218 * tag if item has another tag set
1219 * @root: radix tree root
1220 * @first_indexp: pointer to a starting index of a range to scan
1221 * @last_index: last index of a range to scan
1222 * @nr_to_tag: maximum number items to tag
1223 * @iftag: tag index to test
1224 * @settag: tag index to set if tested tag is set
1225 *
1226 * This function scans range of radix tree from first_index to last_index
1227 * (inclusive). For each item in the range if iftag is set, the function sets
1228 * also settag. The function stops either after tagging nr_to_tag items or
1229 * after reaching last_index.
1230 *
144dcfc0
DC
1231 * The tags must be set from the leaf level only and propagated back up the
1232 * path to the root. We must do this so that we resolve the full path before
1233 * setting any tags on intermediate nodes. If we set tags as we descend, then
1234 * we can get to the leaf node and find that the index that has the iftag
1235 * set is outside the range we are scanning. This reults in dangling tags and
1236 * can lead to problems with later tag operations (e.g. livelocks on lookups).
1237 *
2fcd9005 1238 * The function returns the number of leaves where the tag was set and sets
ebf8aa44 1239 * *first_indexp to the first unscanned index.
d5ed3a4a
JK
1240 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
1241 * be prepared to handle that.
ebf8aa44
JK
1242 */
1243unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
1244 unsigned long *first_indexp, unsigned long last_index,
1245 unsigned long nr_to_tag,
1246 unsigned int iftag, unsigned int settag)
1247{
9498d2bb 1248 struct radix_tree_node *node, *child;
070c5ac2 1249 unsigned long maxindex;
144dcfc0
DC
1250 unsigned long tagged = 0;
1251 unsigned long index = *first_indexp;
ebf8aa44 1252
9e85d811 1253 radix_tree_load_root(root, &child, &maxindex);
070c5ac2 1254 last_index = min(last_index, maxindex);
ebf8aa44
JK
1255 if (index > last_index)
1256 return 0;
1257 if (!nr_to_tag)
1258 return 0;
1259 if (!root_tag_get(root, iftag)) {
1260 *first_indexp = last_index + 1;
1261 return 0;
1262 }
a8e4da25 1263 if (!radix_tree_is_internal_node(child)) {
ebf8aa44
JK
1264 *first_indexp = last_index + 1;
1265 root_tag_set(root, settag);
1266 return 1;
1267 }
1268
a8e4da25 1269 node = entry_to_node(child);
ebf8aa44
JK
1270
1271 for (;;) {
9e85d811 1272 unsigned offset = radix_tree_descend(node, &child, index);
a8e4da25 1273 if (!child)
ebf8aa44 1274 goto next;
070c5ac2 1275 if (!tag_get(node, iftag, offset))
ebf8aa44 1276 goto next;
070c5ac2 1277 /* Sibling slots never have tags set on them */
a8e4da25
MW
1278 if (radix_tree_is_internal_node(child)) {
1279 node = entry_to_node(child);
070c5ac2 1280 continue;
144dcfc0
DC
1281 }
1282
070c5ac2 1283 tagged++;
9498d2bb 1284 node_tag_set(root, node, settag, offset);
070c5ac2 1285 next:
9e85d811
MW
1286 /* Go to next entry in node */
1287 index = ((index >> node->shift) + 1) << node->shift;
d5ed3a4a
JK
1288 /* Overflow can happen when last_index is ~0UL... */
1289 if (index > last_index || !index)
ebf8aa44 1290 break;
9e85d811 1291 offset = (index >> node->shift) & RADIX_TREE_MAP_MASK;
070c5ac2 1292 while (offset == 0) {
ebf8aa44
JK
1293 /*
1294 * We've fully scanned this node. Go up. Because
1295 * last_index is guaranteed to be in the tree, what
1296 * we do below cannot wander astray.
1297 */
070c5ac2 1298 node = node->parent;
9e85d811 1299 offset = (index >> node->shift) & RADIX_TREE_MAP_MASK;
ebf8aa44 1300 }
070c5ac2
MW
1301 if (is_sibling_entry(node, node->slots[offset]))
1302 goto next;
1303 if (tagged >= nr_to_tag)
1304 break;
ebf8aa44 1305 }
9498d2bb 1306
ebf8aa44
JK
1307 *first_indexp = index;
1308
1309 return tagged;
1310}
1311EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
1312
1da177e4
LT
1313/**
1314 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1315 * @root: radix tree root
1316 * @results: where the results of the lookup are placed
1317 * @first_index: start the lookup from this key
1318 * @max_items: place up to this many items at *results
1319 *
1320 * Performs an index-ascending scan of the tree for present items. Places
1321 * them at *@results and returns the number of items which were placed at
1322 * *@results.
1323 *
1324 * The implementation is naive.
7cf9c2c7
NP
1325 *
1326 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1327 * rcu_read_lock. In this case, rather than the returned results being
2fcd9005
MW
1328 * an atomic snapshot of the tree at a single point in time, the
1329 * semantics of an RCU protected gang lookup are as though multiple
1330 * radix_tree_lookups have been issued in individual locks, and results
1331 * stored in 'results'.
1da177e4
LT
1332 */
1333unsigned int
1334radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1335 unsigned long first_index, unsigned int max_items)
1336{
cebbd29e
KK
1337 struct radix_tree_iter iter;
1338 void **slot;
1339 unsigned int ret = 0;
7cf9c2c7 1340
cebbd29e 1341 if (unlikely(!max_items))
7cf9c2c7 1342 return 0;
1da177e4 1343
cebbd29e 1344 radix_tree_for_each_slot(slot, root, &iter, first_index) {
46437f9a 1345 results[ret] = rcu_dereference_raw(*slot);
cebbd29e
KK
1346 if (!results[ret])
1347 continue;
b194d16c 1348 if (radix_tree_is_internal_node(results[ret])) {
46437f9a
MW
1349 slot = radix_tree_iter_retry(&iter);
1350 continue;
1351 }
cebbd29e 1352 if (++ret == max_items)
1da177e4 1353 break;
1da177e4 1354 }
7cf9c2c7 1355
1da177e4
LT
1356 return ret;
1357}
1358EXPORT_SYMBOL(radix_tree_gang_lookup);
1359
47feff2c
NP
1360/**
1361 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1362 * @root: radix tree root
1363 * @results: where the results of the lookup are placed
6328650b 1364 * @indices: where their indices should be placed (but usually NULL)
47feff2c
NP
1365 * @first_index: start the lookup from this key
1366 * @max_items: place up to this many items at *results
1367 *
1368 * Performs an index-ascending scan of the tree for present items. Places
1369 * their slots at *@results and returns the number of items which were
1370 * placed at *@results.
1371 *
1372 * The implementation is naive.
1373 *
1374 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1375 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1376 * protection, radix_tree_deref_slot may fail requiring a retry.
1377 */
1378unsigned int
6328650b
HD
1379radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1380 void ***results, unsigned long *indices,
47feff2c
NP
1381 unsigned long first_index, unsigned int max_items)
1382{
cebbd29e
KK
1383 struct radix_tree_iter iter;
1384 void **slot;
1385 unsigned int ret = 0;
47feff2c 1386
cebbd29e 1387 if (unlikely(!max_items))
47feff2c
NP
1388 return 0;
1389
cebbd29e
KK
1390 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1391 results[ret] = slot;
6328650b 1392 if (indices)
cebbd29e
KK
1393 indices[ret] = iter.index;
1394 if (++ret == max_items)
47feff2c 1395 break;
47feff2c
NP
1396 }
1397
1398 return ret;
1399}
1400EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1401
1da177e4
LT
1402/**
1403 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1404 * based on a tag
1405 * @root: radix tree root
1406 * @results: where the results of the lookup are placed
1407 * @first_index: start the lookup from this key
1408 * @max_items: place up to this many items at *results
daff89f3 1409 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1da177e4
LT
1410 *
1411 * Performs an index-ascending scan of the tree for present items which
1412 * have the tag indexed by @tag set. Places the items at *@results and
1413 * returns the number of items which were placed at *@results.
1414 */
1415unsigned int
1416radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
daff89f3
JC
1417 unsigned long first_index, unsigned int max_items,
1418 unsigned int tag)
1da177e4 1419{
cebbd29e
KK
1420 struct radix_tree_iter iter;
1421 void **slot;
1422 unsigned int ret = 0;
612d6c19 1423
cebbd29e 1424 if (unlikely(!max_items))
7cf9c2c7
NP
1425 return 0;
1426
cebbd29e 1427 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
46437f9a 1428 results[ret] = rcu_dereference_raw(*slot);
cebbd29e
KK
1429 if (!results[ret])
1430 continue;
b194d16c 1431 if (radix_tree_is_internal_node(results[ret])) {
46437f9a
MW
1432 slot = radix_tree_iter_retry(&iter);
1433 continue;
1434 }
cebbd29e 1435 if (++ret == max_items)
1da177e4 1436 break;
1da177e4 1437 }
7cf9c2c7 1438
1da177e4
LT
1439 return ret;
1440}
1441EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1442
47feff2c
NP
1443/**
1444 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1445 * radix tree based on a tag
1446 * @root: radix tree root
1447 * @results: where the results of the lookup are placed
1448 * @first_index: start the lookup from this key
1449 * @max_items: place up to this many items at *results
1450 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1451 *
1452 * Performs an index-ascending scan of the tree for present items which
1453 * have the tag indexed by @tag set. Places the slots at *@results and
1454 * returns the number of slots which were placed at *@results.
1455 */
1456unsigned int
1457radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1458 unsigned long first_index, unsigned int max_items,
1459 unsigned int tag)
1460{
cebbd29e
KK
1461 struct radix_tree_iter iter;
1462 void **slot;
1463 unsigned int ret = 0;
47feff2c 1464
cebbd29e 1465 if (unlikely(!max_items))
47feff2c
NP
1466 return 0;
1467
cebbd29e
KK
1468 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1469 results[ret] = slot;
1470 if (++ret == max_items)
47feff2c 1471 break;
47feff2c
NP
1472 }
1473
1474 return ret;
1475}
1476EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1477
e504f3fd
HD
1478#if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1479#include <linux/sched.h> /* for cond_resched() */
1480
0a2efc6c
MW
1481struct locate_info {
1482 unsigned long found_index;
1483 bool stop;
1484};
1485
e504f3fd
HD
1486/*
1487 * This linear search is at present only useful to shmem_unuse_inode().
1488 */
1489static unsigned long __locate(struct radix_tree_node *slot, void *item,
0a2efc6c 1490 unsigned long index, struct locate_info *info)
e504f3fd 1491{
e504f3fd
HD
1492 unsigned long i;
1493
0a2efc6c 1494 do {
9e85d811 1495 unsigned int shift = slot->shift;
e504f3fd 1496
0a2efc6c
MW
1497 for (i = (index >> shift) & RADIX_TREE_MAP_MASK;
1498 i < RADIX_TREE_MAP_SIZE;
1499 i++, index += (1UL << shift)) {
1500 struct radix_tree_node *node =
1501 rcu_dereference_raw(slot->slots[i]);
1502 if (node == RADIX_TREE_RETRY)
1503 goto out;
b194d16c 1504 if (!radix_tree_is_internal_node(node)) {
0a2efc6c
MW
1505 if (node == item) {
1506 info->found_index = index;
1507 info->stop = true;
1508 goto out;
1509 }
1510 continue;
e6145236 1511 }
4dd6c098 1512 node = entry_to_node(node);
0a2efc6c
MW
1513 if (is_sibling_entry(slot, node))
1514 continue;
1515 slot = node;
1516 break;
e6145236 1517 }
9e85d811 1518 } while (i < RADIX_TREE_MAP_SIZE);
e504f3fd 1519
e504f3fd 1520out:
0a2efc6c
MW
1521 if ((index == 0) && (i == RADIX_TREE_MAP_SIZE))
1522 info->stop = true;
e504f3fd
HD
1523 return index;
1524}
1525
1526/**
1527 * radix_tree_locate_item - search through radix tree for item
1528 * @root: radix tree root
1529 * @item: item to be found
1530 *
1531 * Returns index where item was found, or -1 if not found.
1532 * Caller must hold no lock (since this time-consuming function needs
1533 * to be preemptible), and must check afterwards if item is still there.
1534 */
1535unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1536{
1537 struct radix_tree_node *node;
1538 unsigned long max_index;
1539 unsigned long cur_index = 0;
0a2efc6c
MW
1540 struct locate_info info = {
1541 .found_index = -1,
1542 .stop = false,
1543 };
e504f3fd
HD
1544
1545 do {
1546 rcu_read_lock();
1547 node = rcu_dereference_raw(root->rnode);
b194d16c 1548 if (!radix_tree_is_internal_node(node)) {
e504f3fd
HD
1549 rcu_read_unlock();
1550 if (node == item)
0a2efc6c 1551 info.found_index = 0;
e504f3fd
HD
1552 break;
1553 }
1554
4dd6c098 1555 node = entry_to_node(node);
0a2efc6c
MW
1556
1557 max_index = node_maxindex(node);
5f30fc94
HD
1558 if (cur_index > max_index) {
1559 rcu_read_unlock();
e504f3fd 1560 break;
5f30fc94 1561 }
e504f3fd 1562
0a2efc6c 1563 cur_index = __locate(node, item, cur_index, &info);
e504f3fd
HD
1564 rcu_read_unlock();
1565 cond_resched();
0a2efc6c 1566 } while (!info.stop && cur_index <= max_index);
e504f3fd 1567
0a2efc6c 1568 return info.found_index;
e504f3fd
HD
1569}
1570#else
1571unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1572{
1573 return -1;
1574}
1575#endif /* CONFIG_SHMEM && CONFIG_SWAP */
47feff2c 1576
139e5616
JW
1577/**
1578 * __radix_tree_delete_node - try to free node after clearing a slot
1579 * @root: radix tree root
139e5616
JW
1580 * @node: node containing @index
1581 *
1582 * After clearing the slot at @index in @node from radix tree
1583 * rooted at @root, call this function to attempt freeing the
1584 * node and shrinking the tree.
139e5616 1585 */
14b46879 1586void __radix_tree_delete_node(struct radix_tree_root *root,
139e5616
JW
1587 struct radix_tree_node *node)
1588{
14b46879 1589 delete_node(root, node, NULL, NULL);
139e5616
JW
1590}
1591
57578c2e
MW
1592static inline void delete_sibling_entries(struct radix_tree_node *node,
1593 void *ptr, unsigned offset)
1594{
1595#ifdef CONFIG_RADIX_TREE_MULTIORDER
1596 int i;
1597 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1598 if (node->slots[offset + i] != ptr)
1599 break;
1600 node->slots[offset + i] = NULL;
1601 node->count--;
1602 }
1603#endif
1604}
1605
1da177e4 1606/**
53c59f26 1607 * radix_tree_delete_item - delete an item from a radix tree
1da177e4
LT
1608 * @root: radix tree root
1609 * @index: index key
53c59f26 1610 * @item: expected item
1da177e4 1611 *
53c59f26 1612 * Remove @item at @index from the radix tree rooted at @root.
1da177e4 1613 *
53c59f26
JW
1614 * Returns the address of the deleted item, or NULL if it was not present
1615 * or the entry at the given @index was not @item.
1da177e4 1616 */
53c59f26
JW
1617void *radix_tree_delete_item(struct radix_tree_root *root,
1618 unsigned long index, void *item)
1da177e4 1619{
139e5616 1620 struct radix_tree_node *node;
57578c2e 1621 unsigned int offset;
139e5616
JW
1622 void **slot;
1623 void *entry;
d5274261 1624 int tag;
1da177e4 1625
139e5616
JW
1626 entry = __radix_tree_lookup(root, index, &node, &slot);
1627 if (!entry)
1628 return NULL;
1da177e4 1629
139e5616
JW
1630 if (item && entry != item)
1631 return NULL;
1632
1633 if (!node) {
612d6c19
NP
1634 root_tag_clear_all(root);
1635 root->rnode = NULL;
139e5616 1636 return entry;
612d6c19 1637 }
1da177e4 1638
29e0967c 1639 offset = get_slot_offset(node, slot);
53c59f26 1640
d604c324
MW
1641 /* Clear all tags associated with the item to be deleted. */
1642 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1643 node_tag_clear(root, node, tag, offset);
1da177e4 1644
a4db4dce 1645 delete_sibling_entries(node, node_to_entry(slot), offset);
4d693d08 1646 __radix_tree_replace(root, node, slot, NULL, NULL, NULL);
612d6c19 1647
139e5616 1648 return entry;
1da177e4 1649}
53c59f26
JW
1650EXPORT_SYMBOL(radix_tree_delete_item);
1651
1652/**
1653 * radix_tree_delete - delete an item from a radix tree
1654 * @root: radix tree root
1655 * @index: index key
1656 *
1657 * Remove the item at @index from the radix tree rooted at @root.
1658 *
1659 * Returns the address of the deleted item, or NULL if it was not present.
1660 */
1661void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1662{
1663 return radix_tree_delete_item(root, index, NULL);
1664}
1da177e4
LT
1665EXPORT_SYMBOL(radix_tree_delete);
1666
d3798ae8
JW
1667void radix_tree_clear_tags(struct radix_tree_root *root,
1668 struct radix_tree_node *node,
1669 void **slot)
d604c324 1670{
d604c324
MW
1671 if (node) {
1672 unsigned int tag, offset = get_slot_offset(node, slot);
1673 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1674 node_tag_clear(root, node, tag, offset);
1675 } else {
1676 /* Clear root node tags */
1677 root->gfp_mask &= __GFP_BITS_MASK;
1678 }
d604c324
MW
1679}
1680
1da177e4
LT
1681/**
1682 * radix_tree_tagged - test whether any items in the tree are tagged
1683 * @root: radix tree root
1684 * @tag: tag to test
1685 */
daff89f3 1686int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1da177e4 1687{
612d6c19 1688 return root_tag_get(root, tag);
1da177e4
LT
1689}
1690EXPORT_SYMBOL(radix_tree_tagged);
1691
1692static void
449dd698 1693radix_tree_node_ctor(void *arg)
1da177e4 1694{
449dd698
JW
1695 struct radix_tree_node *node = arg;
1696
1697 memset(node, 0, sizeof(*node));
1698 INIT_LIST_HEAD(&node->private_list);
1da177e4
LT
1699}
1700
c78c66d1
KS
1701static __init unsigned long __maxindex(unsigned int height)
1702{
1703 unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1704 int shift = RADIX_TREE_INDEX_BITS - width;
1705
1706 if (shift < 0)
1707 return ~0UL;
1708 if (shift >= BITS_PER_LONG)
1709 return 0UL;
1710 return ~0UL >> shift;
1711}
1712
1713static __init void radix_tree_init_maxnodes(void)
1714{
1715 unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
1716 unsigned int i, j;
1717
1718 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1719 height_to_maxindex[i] = __maxindex(i);
1720 for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
1721 for (j = i; j > 0; j--)
1722 height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
1723 }
1724}
1725
d544abd5 1726static int radix_tree_cpu_dead(unsigned int cpu)
1da177e4 1727{
2fcd9005
MW
1728 struct radix_tree_preload *rtp;
1729 struct radix_tree_node *node;
1730
1731 /* Free per-cpu pool of preloaded nodes */
d544abd5
SAS
1732 rtp = &per_cpu(radix_tree_preloads, cpu);
1733 while (rtp->nr) {
1734 node = rtp->nodes;
1735 rtp->nodes = node->private_data;
1736 kmem_cache_free(radix_tree_node_cachep, node);
1737 rtp->nr--;
2fcd9005 1738 }
d544abd5 1739 return 0;
1da177e4 1740}
1da177e4
LT
1741
1742void __init radix_tree_init(void)
1743{
d544abd5 1744 int ret;
1da177e4
LT
1745 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1746 sizeof(struct radix_tree_node), 0,
488514d1
CL
1747 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1748 radix_tree_node_ctor);
c78c66d1 1749 radix_tree_init_maxnodes();
d544abd5
SAS
1750 ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
1751 NULL, radix_tree_cpu_dead);
1752 WARN_ON(ret < 0);
1da177e4 1753}