]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - lib/radix-tree.c
lib: radix-tree: native accounting of exceptional entries
[mirror_ubuntu-artful-kernel.git] / lib / radix-tree.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
cde53535 4 * Copyright (C) 2005 SGI, Christoph Lameter
7cf9c2c7 5 * Copyright (C) 2006 Nick Piggin
78c1d784 6 * Copyright (C) 2012 Konstantin Khlebnikov
6b053b8e
MW
7 * Copyright (C) 2016 Intel, Matthew Wilcox
8 * Copyright (C) 2016 Intel, Ross Zwisler
1da177e4
LT
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25#include <linux/errno.h>
26#include <linux/init.h>
27#include <linux/kernel.h>
8bc3bcc9 28#include <linux/export.h>
1da177e4
LT
29#include <linux/radix-tree.h>
30#include <linux/percpu.h>
31#include <linux/slab.h>
ce80b067 32#include <linux/kmemleak.h>
2b41226b 33#include <linux/notifier.h>
1da177e4 34#include <linux/cpu.h>
1da177e4
LT
35#include <linux/string.h>
36#include <linux/bitops.h>
7cf9c2c7 37#include <linux/rcupdate.h>
92cf2118 38#include <linux/preempt.h> /* in_interrupt() */
1da177e4
LT
39
40
c78c66d1
KS
41/* Number of nodes in fully populated tree of given height */
42static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
43
1da177e4
LT
44/*
45 * Radix tree node cache.
46 */
e18b890b 47static struct kmem_cache *radix_tree_node_cachep;
1da177e4 48
55368052
NP
49/*
50 * The radix tree is variable-height, so an insert operation not only has
51 * to build the branch to its corresponding item, it also has to build the
52 * branch to existing items if the size has to be increased (by
53 * radix_tree_extend).
54 *
55 * The worst case is a zero height tree with just a single item at index 0,
56 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
57 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
58 * Hence:
59 */
60#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
61
1da177e4
LT
62/*
63 * Per-cpu pool of preloaded nodes
64 */
65struct radix_tree_preload {
2fcd9005 66 unsigned nr;
9d2a8da0
KS
67 /* nodes->private_data points to next preallocated node */
68 struct radix_tree_node *nodes;
1da177e4 69};
8cef7d57 70static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
1da177e4 71
a4db4dce 72static inline void *node_to_entry(void *ptr)
27d20fdd 73{
30ff46cc 74 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
27d20fdd
NP
75}
76
a4db4dce 77#define RADIX_TREE_RETRY node_to_entry(NULL)
afe0e395 78
db050f29
MW
79#ifdef CONFIG_RADIX_TREE_MULTIORDER
80/* Sibling slots point directly to another slot in the same node */
81static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
82{
83 void **ptr = node;
84 return (parent->slots <= ptr) &&
85 (ptr < parent->slots + RADIX_TREE_MAP_SIZE);
86}
87#else
88static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
89{
90 return false;
91}
92#endif
93
94static inline unsigned long get_slot_offset(struct radix_tree_node *parent,
95 void **slot)
96{
97 return slot - parent->slots;
98}
99
9e85d811
MW
100static unsigned int radix_tree_descend(struct radix_tree_node *parent,
101 struct radix_tree_node **nodep, unsigned long index)
db050f29 102{
9e85d811 103 unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
db050f29
MW
104 void **entry = rcu_dereference_raw(parent->slots[offset]);
105
106#ifdef CONFIG_RADIX_TREE_MULTIORDER
b194d16c 107 if (radix_tree_is_internal_node(entry)) {
8d2c0d36
LT
108 if (is_sibling_entry(parent, entry)) {
109 void **sibentry = (void **) entry_to_node(entry);
110 offset = get_slot_offset(parent, sibentry);
111 entry = rcu_dereference_raw(*sibentry);
db050f29
MW
112 }
113 }
114#endif
115
116 *nodep = (void *)entry;
117 return offset;
118}
119
612d6c19
NP
120static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
121{
122 return root->gfp_mask & __GFP_BITS_MASK;
123}
124
643b52b9
NP
125static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
126 int offset)
127{
128 __set_bit(offset, node->tags[tag]);
129}
130
131static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
132 int offset)
133{
134 __clear_bit(offset, node->tags[tag]);
135}
136
137static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
138 int offset)
139{
140 return test_bit(offset, node->tags[tag]);
141}
142
143static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
144{
145 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
146}
147
2fcd9005 148static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
643b52b9
NP
149{
150 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
151}
152
153static inline void root_tag_clear_all(struct radix_tree_root *root)
154{
155 root->gfp_mask &= __GFP_BITS_MASK;
156}
157
158static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
159{
2fcd9005 160 return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
643b52b9
NP
161}
162
7b60e9ad
MW
163static inline unsigned root_tags_get(struct radix_tree_root *root)
164{
165 return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT;
166}
167
643b52b9
NP
168/*
169 * Returns 1 if any slot in the node has this tag set.
170 * Otherwise returns 0.
171 */
172static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
173{
2fcd9005 174 unsigned idx;
643b52b9
NP
175 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
176 if (node->tags[tag][idx])
177 return 1;
178 }
179 return 0;
180}
78c1d784
KK
181
182/**
183 * radix_tree_find_next_bit - find the next set bit in a memory region
184 *
185 * @addr: The address to base the search on
186 * @size: The bitmap size in bits
187 * @offset: The bitnumber to start searching at
188 *
189 * Unrollable variant of find_next_bit() for constant size arrays.
190 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
191 * Returns next bit offset, or size if nothing found.
192 */
193static __always_inline unsigned long
194radix_tree_find_next_bit(const unsigned long *addr,
195 unsigned long size, unsigned long offset)
196{
197 if (!__builtin_constant_p(size))
198 return find_next_bit(addr, size, offset);
199
200 if (offset < size) {
201 unsigned long tmp;
202
203 addr += offset / BITS_PER_LONG;
204 tmp = *addr >> (offset % BITS_PER_LONG);
205 if (tmp)
206 return __ffs(tmp) + offset;
207 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
208 while (offset < size) {
209 tmp = *++addr;
210 if (tmp)
211 return __ffs(tmp) + offset;
212 offset += BITS_PER_LONG;
213 }
214 }
215 return size;
216}
217
0796c583 218#ifndef __KERNEL__
d0891265 219static void dump_node(struct radix_tree_node *node, unsigned long index)
7cf19af4 220{
0796c583 221 unsigned long i;
7cf19af4 222
f7942430 223 pr_debug("radix node: %p offset %d tags %lx %lx %lx shift %d count %d exceptional %d parent %p\n",
0c7fa0a8 224 node, node->offset,
0796c583 225 node->tags[0][0], node->tags[1][0], node->tags[2][0],
f7942430 226 node->shift, node->count, node->exceptional, node->parent);
0796c583
RZ
227
228 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
d0891265
MW
229 unsigned long first = index | (i << node->shift);
230 unsigned long last = first | ((1UL << node->shift) - 1);
0796c583
RZ
231 void *entry = node->slots[i];
232 if (!entry)
233 continue;
234 if (is_sibling_entry(node, entry)) {
235 pr_debug("radix sblng %p offset %ld val %p indices %ld-%ld\n",
236 entry, i,
4dd6c098 237 *(void **)entry_to_node(entry),
0796c583 238 first, last);
b194d16c 239 } else if (!radix_tree_is_internal_node(entry)) {
0796c583
RZ
240 pr_debug("radix entry %p offset %ld indices %ld-%ld\n",
241 entry, i, first, last);
242 } else {
4dd6c098 243 dump_node(entry_to_node(entry), first);
0796c583
RZ
244 }
245 }
7cf19af4
MW
246}
247
248/* For debug */
249static void radix_tree_dump(struct radix_tree_root *root)
250{
d0891265
MW
251 pr_debug("radix root: %p rnode %p tags %x\n",
252 root, root->rnode,
7cf19af4 253 root->gfp_mask >> __GFP_BITS_SHIFT);
b194d16c 254 if (!radix_tree_is_internal_node(root->rnode))
7cf19af4 255 return;
4dd6c098 256 dump_node(entry_to_node(root->rnode), 0);
7cf19af4
MW
257}
258#endif
259
1da177e4
LT
260/*
261 * This assumes that the caller has performed appropriate preallocation, and
262 * that the caller has pinned this thread of control to the current CPU.
263 */
264static struct radix_tree_node *
265radix_tree_node_alloc(struct radix_tree_root *root)
266{
e2848a0e 267 struct radix_tree_node *ret = NULL;
612d6c19 268 gfp_t gfp_mask = root_gfp_mask(root);
1da177e4 269
5e4c0d97 270 /*
2fcd9005
MW
271 * Preload code isn't irq safe and it doesn't make sense to use
272 * preloading during an interrupt anyway as all the allocations have
273 * to be atomic. So just do normal allocation when in interrupt.
5e4c0d97 274 */
d0164adc 275 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
1da177e4
LT
276 struct radix_tree_preload *rtp;
277
58e698af
VD
278 /*
279 * Even if the caller has preloaded, try to allocate from the
05eb6e72
VD
280 * cache first for the new node to get accounted to the memory
281 * cgroup.
58e698af
VD
282 */
283 ret = kmem_cache_alloc(radix_tree_node_cachep,
05eb6e72 284 gfp_mask | __GFP_NOWARN);
58e698af
VD
285 if (ret)
286 goto out;
287
e2848a0e
NP
288 /*
289 * Provided the caller has preloaded here, we will always
290 * succeed in getting a node here (and never reach
291 * kmem_cache_alloc)
292 */
7c8e0181 293 rtp = this_cpu_ptr(&radix_tree_preloads);
1da177e4 294 if (rtp->nr) {
9d2a8da0
KS
295 ret = rtp->nodes;
296 rtp->nodes = ret->private_data;
297 ret->private_data = NULL;
1da177e4
LT
298 rtp->nr--;
299 }
ce80b067
CM
300 /*
301 * Update the allocation stack trace as this is more useful
302 * for debugging.
303 */
304 kmemleak_update_trace(ret);
58e698af 305 goto out;
1da177e4 306 }
05eb6e72 307 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
58e698af 308out:
b194d16c 309 BUG_ON(radix_tree_is_internal_node(ret));
1da177e4
LT
310 return ret;
311}
312
7cf9c2c7
NP
313static void radix_tree_node_rcu_free(struct rcu_head *head)
314{
315 struct radix_tree_node *node =
316 container_of(head, struct radix_tree_node, rcu_head);
b6dd0865 317 int i;
643b52b9
NP
318
319 /*
320 * must only free zeroed nodes into the slab. radix_tree_shrink
321 * can leave us with a non-NULL entry in the first slot, so clear
322 * that here to make sure.
323 */
b6dd0865
DC
324 for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
325 tag_clear(node, i, 0);
326
643b52b9
NP
327 node->slots[0] = NULL;
328 node->count = 0;
329
7cf9c2c7
NP
330 kmem_cache_free(radix_tree_node_cachep, node);
331}
332
1da177e4
LT
333static inline void
334radix_tree_node_free(struct radix_tree_node *node)
335{
7cf9c2c7 336 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
1da177e4
LT
337}
338
339/*
340 * Load up this CPU's radix_tree_node buffer with sufficient objects to
341 * ensure that the addition of a single element in the tree cannot fail. On
342 * success, return zero, with preemption disabled. On error, return -ENOMEM
343 * with preemption not disabled.
b34df792
DH
344 *
345 * To make use of this facility, the radix tree must be initialised without
d0164adc 346 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
1da177e4 347 */
c78c66d1 348static int __radix_tree_preload(gfp_t gfp_mask, int nr)
1da177e4
LT
349{
350 struct radix_tree_preload *rtp;
351 struct radix_tree_node *node;
352 int ret = -ENOMEM;
353
05eb6e72
VD
354 /*
355 * Nodes preloaded by one cgroup can be be used by another cgroup, so
356 * they should never be accounted to any particular memory cgroup.
357 */
358 gfp_mask &= ~__GFP_ACCOUNT;
359
1da177e4 360 preempt_disable();
7c8e0181 361 rtp = this_cpu_ptr(&radix_tree_preloads);
c78c66d1 362 while (rtp->nr < nr) {
1da177e4 363 preempt_enable();
488514d1 364 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
1da177e4
LT
365 if (node == NULL)
366 goto out;
367 preempt_disable();
7c8e0181 368 rtp = this_cpu_ptr(&radix_tree_preloads);
c78c66d1 369 if (rtp->nr < nr) {
9d2a8da0
KS
370 node->private_data = rtp->nodes;
371 rtp->nodes = node;
372 rtp->nr++;
373 } else {
1da177e4 374 kmem_cache_free(radix_tree_node_cachep, node);
9d2a8da0 375 }
1da177e4
LT
376 }
377 ret = 0;
378out:
379 return ret;
380}
5e4c0d97
JK
381
382/*
383 * Load up this CPU's radix_tree_node buffer with sufficient objects to
384 * ensure that the addition of a single element in the tree cannot fail. On
385 * success, return zero, with preemption disabled. On error, return -ENOMEM
386 * with preemption not disabled.
387 *
388 * To make use of this facility, the radix tree must be initialised without
d0164adc 389 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
5e4c0d97
JK
390 */
391int radix_tree_preload(gfp_t gfp_mask)
392{
393 /* Warn on non-sensical use... */
d0164adc 394 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
c78c66d1 395 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
5e4c0d97 396}
d7f0923d 397EXPORT_SYMBOL(radix_tree_preload);
1da177e4 398
5e4c0d97
JK
399/*
400 * The same as above function, except we don't guarantee preloading happens.
401 * We do it, if we decide it helps. On success, return zero with preemption
402 * disabled. On error, return -ENOMEM with preemption not disabled.
403 */
404int radix_tree_maybe_preload(gfp_t gfp_mask)
405{
d0164adc 406 if (gfpflags_allow_blocking(gfp_mask))
c78c66d1 407 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
5e4c0d97
JK
408 /* Preloading doesn't help anything with this gfp mask, skip it */
409 preempt_disable();
410 return 0;
411}
412EXPORT_SYMBOL(radix_tree_maybe_preload);
413
c78c66d1
KS
414/*
415 * The same as function above, but preload number of nodes required to insert
416 * (1 << order) continuous naturally-aligned elements.
417 */
418int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
419{
420 unsigned long nr_subtrees;
421 int nr_nodes, subtree_height;
422
423 /* Preloading doesn't help anything with this gfp mask, skip it */
424 if (!gfpflags_allow_blocking(gfp_mask)) {
425 preempt_disable();
426 return 0;
427 }
428
429 /*
430 * Calculate number and height of fully populated subtrees it takes to
431 * store (1 << order) elements.
432 */
433 nr_subtrees = 1 << order;
434 for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
435 subtree_height++)
436 nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
437
438 /*
439 * The worst case is zero height tree with a single item at index 0 and
440 * then inserting items starting at ULONG_MAX - (1 << order).
441 *
442 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
443 * 0-index item.
444 */
445 nr_nodes = RADIX_TREE_MAX_PATH;
446
447 /* Plus branch to fully populated subtrees. */
448 nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
449
450 /* Root node is shared. */
451 nr_nodes--;
452
453 /* Plus nodes required to build subtrees. */
454 nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
455
456 return __radix_tree_preload(gfp_mask, nr_nodes);
457}
458
1da177e4 459/*
d0891265 460 * The maximum index which can be stored in a radix tree
1da177e4 461 */
c12e51b0
MW
462static inline unsigned long shift_maxindex(unsigned int shift)
463{
464 return (RADIX_TREE_MAP_SIZE << shift) - 1;
465}
466
1456a439
MW
467static inline unsigned long node_maxindex(struct radix_tree_node *node)
468{
c12e51b0 469 return shift_maxindex(node->shift);
1456a439
MW
470}
471
472static unsigned radix_tree_load_root(struct radix_tree_root *root,
473 struct radix_tree_node **nodep, unsigned long *maxindex)
474{
475 struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
476
477 *nodep = node;
478
b194d16c 479 if (likely(radix_tree_is_internal_node(node))) {
4dd6c098 480 node = entry_to_node(node);
1456a439 481 *maxindex = node_maxindex(node);
c12e51b0 482 return node->shift + RADIX_TREE_MAP_SHIFT;
1456a439
MW
483 }
484
485 *maxindex = 0;
486 return 0;
487}
488
1da177e4
LT
489/*
490 * Extend a radix tree so it can store key @index.
491 */
e6145236 492static int radix_tree_extend(struct radix_tree_root *root,
d0891265 493 unsigned long index, unsigned int shift)
1da177e4 494{
e2bdb933 495 struct radix_tree_node *slot;
d0891265 496 unsigned int maxshift;
1da177e4
LT
497 int tag;
498
d0891265
MW
499 /* Figure out what the shift should be. */
500 maxshift = shift;
501 while (index > shift_maxindex(maxshift))
502 maxshift += RADIX_TREE_MAP_SHIFT;
1da177e4 503
d0891265
MW
504 slot = root->rnode;
505 if (!slot)
1da177e4 506 goto out;
1da177e4 507
1da177e4 508 do {
2fcd9005
MW
509 struct radix_tree_node *node = radix_tree_node_alloc(root);
510
511 if (!node)
1da177e4
LT
512 return -ENOMEM;
513
1da177e4 514 /* Propagate the aggregated tag info into the new root */
daff89f3 515 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
612d6c19 516 if (root_tag_get(root, tag))
1da177e4
LT
517 tag_set(node, tag, 0);
518 }
519
d0891265
MW
520 BUG_ON(shift > BITS_PER_LONG);
521 node->shift = shift;
0c7fa0a8 522 node->offset = 0;
1da177e4 523 node->count = 1;
e2bdb933 524 node->parent = NULL;
f7942430 525 if (radix_tree_is_internal_node(slot)) {
4dd6c098 526 entry_to_node(slot)->parent = node;
f7942430
JW
527 } else {
528 /* Moving an exceptional root->rnode to a node */
529 if (radix_tree_exceptional_entry(slot))
530 node->exceptional = 1;
531 }
e2bdb933 532 node->slots[0] = slot;
a4db4dce
MW
533 slot = node_to_entry(node);
534 rcu_assign_pointer(root->rnode, slot);
d0891265 535 shift += RADIX_TREE_MAP_SHIFT;
d0891265 536 } while (shift <= maxshift);
1da177e4 537out:
d0891265 538 return maxshift + RADIX_TREE_MAP_SHIFT;
1da177e4
LT
539}
540
541/**
139e5616 542 * __radix_tree_create - create a slot in a radix tree
1da177e4
LT
543 * @root: radix tree root
544 * @index: index key
e6145236 545 * @order: index occupies 2^order aligned slots
139e5616
JW
546 * @nodep: returns node
547 * @slotp: returns slot
1da177e4 548 *
139e5616
JW
549 * Create, if necessary, and return the node and slot for an item
550 * at position @index in the radix tree @root.
551 *
552 * Until there is more than one item in the tree, no nodes are
553 * allocated and @root->rnode is used as a direct slot instead of
554 * pointing to a node, in which case *@nodep will be NULL.
555 *
556 * Returns -ENOMEM, or 0 for success.
1da177e4 557 */
139e5616 558int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
e6145236
MW
559 unsigned order, struct radix_tree_node **nodep,
560 void ***slotp)
1da177e4 561{
89148aa4
MW
562 struct radix_tree_node *node = NULL, *child;
563 void **slot = (void **)&root->rnode;
49ea6ebc 564 unsigned long maxindex;
89148aa4 565 unsigned int shift, offset = 0;
49ea6ebc
MW
566 unsigned long max = index | ((1UL << order) - 1);
567
89148aa4 568 shift = radix_tree_load_root(root, &child, &maxindex);
1da177e4
LT
569
570 /* Make sure the tree is high enough. */
49ea6ebc 571 if (max > maxindex) {
d0891265 572 int error = radix_tree_extend(root, max, shift);
49ea6ebc 573 if (error < 0)
1da177e4 574 return error;
49ea6ebc 575 shift = error;
89148aa4 576 child = root->rnode;
d0891265 577 if (order == shift)
49ea6ebc 578 shift += RADIX_TREE_MAP_SHIFT;
1da177e4
LT
579 }
580
e6145236 581 while (shift > order) {
c12e51b0 582 shift -= RADIX_TREE_MAP_SHIFT;
89148aa4 583 if (child == NULL) {
1da177e4 584 /* Have to add a child node. */
89148aa4
MW
585 child = radix_tree_node_alloc(root);
586 if (!child)
1da177e4 587 return -ENOMEM;
89148aa4
MW
588 child->shift = shift;
589 child->offset = offset;
590 child->parent = node;
591 rcu_assign_pointer(*slot, node_to_entry(child));
592 if (node)
1da177e4 593 node->count++;
89148aa4 594 } else if (!radix_tree_is_internal_node(child))
e6145236 595 break;
1da177e4
LT
596
597 /* Go a level down */
89148aa4 598 node = entry_to_node(child);
9e85d811 599 offset = radix_tree_descend(node, &child, index);
89148aa4 600 slot = &node->slots[offset];
e6145236
MW
601 }
602
57578c2e 603#ifdef CONFIG_RADIX_TREE_MULTIORDER
e6145236 604 /* Insert pointers to the canonical entry */
3b8c00f6 605 if (order > shift) {
89148aa4 606 unsigned i, n = 1 << (order - shift);
e6145236 607 offset = offset & ~(n - 1);
89148aa4
MW
608 slot = &node->slots[offset];
609 child = node_to_entry(slot);
e6145236 610 for (i = 0; i < n; i++) {
89148aa4 611 if (slot[i])
e6145236
MW
612 return -EEXIST;
613 }
614
615 for (i = 1; i < n; i++) {
89148aa4 616 rcu_assign_pointer(slot[i], child);
e6145236
MW
617 node->count++;
618 }
612d6c19 619 }
57578c2e 620#endif
1da177e4 621
139e5616
JW
622 if (nodep)
623 *nodep = node;
624 if (slotp)
89148aa4 625 *slotp = slot;
139e5616
JW
626 return 0;
627}
628
629/**
e6145236 630 * __radix_tree_insert - insert into a radix tree
139e5616
JW
631 * @root: radix tree root
632 * @index: index key
e6145236 633 * @order: key covers the 2^order indices around index
139e5616
JW
634 * @item: item to insert
635 *
636 * Insert an item into the radix tree at position @index.
637 */
e6145236
MW
638int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
639 unsigned order, void *item)
139e5616
JW
640{
641 struct radix_tree_node *node;
642 void **slot;
643 int error;
644
b194d16c 645 BUG_ON(radix_tree_is_internal_node(item));
139e5616 646
e6145236 647 error = __radix_tree_create(root, index, order, &node, &slot);
139e5616
JW
648 if (error)
649 return error;
650 if (*slot != NULL)
1da177e4 651 return -EEXIST;
139e5616 652 rcu_assign_pointer(*slot, item);
201b6264 653
612d6c19 654 if (node) {
7b60e9ad 655 unsigned offset = get_slot_offset(node, slot);
612d6c19 656 node->count++;
f7942430
JW
657 if (radix_tree_exceptional_entry(item))
658 node->exceptional++;
7b60e9ad
MW
659 BUG_ON(tag_get(node, 0, offset));
660 BUG_ON(tag_get(node, 1, offset));
661 BUG_ON(tag_get(node, 2, offset));
612d6c19 662 } else {
7b60e9ad 663 BUG_ON(root_tags_get(root));
612d6c19 664 }
1da177e4 665
1da177e4
LT
666 return 0;
667}
e6145236 668EXPORT_SYMBOL(__radix_tree_insert);
1da177e4 669
139e5616
JW
670/**
671 * __radix_tree_lookup - lookup an item in a radix tree
672 * @root: radix tree root
673 * @index: index key
674 * @nodep: returns node
675 * @slotp: returns slot
676 *
677 * Lookup and return the item at position @index in the radix
678 * tree @root.
679 *
680 * Until there is more than one item in the tree, no nodes are
681 * allocated and @root->rnode is used as a direct slot instead of
682 * pointing to a node, in which case *@nodep will be NULL.
7cf9c2c7 683 */
139e5616
JW
684void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
685 struct radix_tree_node **nodep, void ***slotp)
1da177e4 686{
139e5616 687 struct radix_tree_node *node, *parent;
85829954 688 unsigned long maxindex;
139e5616 689 void **slot;
612d6c19 690
85829954
MW
691 restart:
692 parent = NULL;
693 slot = (void **)&root->rnode;
9e85d811 694 radix_tree_load_root(root, &node, &maxindex);
85829954 695 if (index > maxindex)
1da177e4
LT
696 return NULL;
697
b194d16c 698 while (radix_tree_is_internal_node(node)) {
85829954 699 unsigned offset;
1da177e4 700
85829954
MW
701 if (node == RADIX_TREE_RETRY)
702 goto restart;
4dd6c098 703 parent = entry_to_node(node);
9e85d811 704 offset = radix_tree_descend(parent, &node, index);
85829954
MW
705 slot = parent->slots + offset;
706 }
1da177e4 707
139e5616
JW
708 if (nodep)
709 *nodep = parent;
710 if (slotp)
711 *slotp = slot;
712 return node;
b72b71c6
HS
713}
714
715/**
716 * radix_tree_lookup_slot - lookup a slot in a radix tree
717 * @root: radix tree root
718 * @index: index key
719 *
720 * Returns: the slot corresponding to the position @index in the
721 * radix tree @root. This is useful for update-if-exists operations.
722 *
723 * This function can be called under rcu_read_lock iff the slot is not
724 * modified by radix_tree_replace_slot, otherwise it must be called
725 * exclusive from other writers. Any dereference of the slot must be done
726 * using radix_tree_deref_slot.
727 */
728void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
729{
139e5616
JW
730 void **slot;
731
732 if (!__radix_tree_lookup(root, index, NULL, &slot))
733 return NULL;
734 return slot;
a4331366 735}
a4331366
HR
736EXPORT_SYMBOL(radix_tree_lookup_slot);
737
738/**
739 * radix_tree_lookup - perform lookup operation on a radix tree
740 * @root: radix tree root
741 * @index: index key
742 *
743 * Lookup the item at the position @index in the radix tree @root.
7cf9c2c7
NP
744 *
745 * This function can be called under rcu_read_lock, however the caller
746 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
747 * them safely). No RCU barriers are required to access or modify the
748 * returned item, however.
a4331366
HR
749 */
750void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
751{
139e5616 752 return __radix_tree_lookup(root, index, NULL, NULL);
1da177e4
LT
753}
754EXPORT_SYMBOL(radix_tree_lookup);
755
f7942430
JW
756/**
757 * __radix_tree_replace - replace item in a slot
758 * @root: radix tree root
759 * @node: pointer to tree node
760 * @slot: pointer to slot in @node
761 * @item: new item to store in the slot.
762 *
763 * For use with __radix_tree_lookup(). Caller must hold tree write locked
764 * across slot lookup and replacement.
765 */
766void __radix_tree_replace(struct radix_tree_root *root,
767 struct radix_tree_node *node,
768 void **slot, void *item)
769{
770 void *old = rcu_dereference_raw(*slot);
771 int exceptional;
772
773 WARN_ON_ONCE(radix_tree_is_internal_node(item));
774 WARN_ON_ONCE(!!item - !!old);
775
776 exceptional = !!radix_tree_exceptional_entry(item) -
777 !!radix_tree_exceptional_entry(old);
778
779 WARN_ON_ONCE(exceptional && !node && slot != (void **)&root->rnode);
780
781 if (node)
782 node->exceptional += exceptional;
783
784 rcu_assign_pointer(*slot, item);
785}
786
1da177e4
LT
787/**
788 * radix_tree_tag_set - set a tag on a radix tree node
789 * @root: radix tree root
790 * @index: index key
2fcd9005 791 * @tag: tag index
1da177e4 792 *
daff89f3
JC
793 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
794 * corresponding to @index in the radix tree. From
1da177e4
LT
795 * the root all the way down to the leaf node.
796 *
2fcd9005 797 * Returns the address of the tagged item. Setting a tag on a not-present
1da177e4
LT
798 * item is a bug.
799 */
800void *radix_tree_tag_set(struct radix_tree_root *root,
daff89f3 801 unsigned long index, unsigned int tag)
1da177e4 802{
fb969909
RZ
803 struct radix_tree_node *node, *parent;
804 unsigned long maxindex;
1da177e4 805
9e85d811 806 radix_tree_load_root(root, &node, &maxindex);
fb969909 807 BUG_ON(index > maxindex);
1da177e4 808
b194d16c 809 while (radix_tree_is_internal_node(node)) {
fb969909 810 unsigned offset;
1da177e4 811
4dd6c098 812 parent = entry_to_node(node);
9e85d811 813 offset = radix_tree_descend(parent, &node, index);
fb969909
RZ
814 BUG_ON(!node);
815
816 if (!tag_get(parent, tag, offset))
817 tag_set(parent, tag, offset);
1da177e4
LT
818 }
819
612d6c19 820 /* set the root's tag bit */
fb969909 821 if (!root_tag_get(root, tag))
612d6c19
NP
822 root_tag_set(root, tag);
823
fb969909 824 return node;
1da177e4
LT
825}
826EXPORT_SYMBOL(radix_tree_tag_set);
827
d604c324
MW
828static void node_tag_clear(struct radix_tree_root *root,
829 struct radix_tree_node *node,
830 unsigned int tag, unsigned int offset)
831{
832 while (node) {
833 if (!tag_get(node, tag, offset))
834 return;
835 tag_clear(node, tag, offset);
836 if (any_tag_set(node, tag))
837 return;
838
839 offset = node->offset;
840 node = node->parent;
841 }
842
843 /* clear the root's tag bit */
844 if (root_tag_get(root, tag))
845 root_tag_clear(root, tag);
846}
847
1da177e4
LT
848/**
849 * radix_tree_tag_clear - clear a tag on a radix tree node
850 * @root: radix tree root
851 * @index: index key
2fcd9005 852 * @tag: tag index
1da177e4 853 *
daff89f3 854 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
2fcd9005
MW
855 * corresponding to @index in the radix tree. If this causes
856 * the leaf node to have no tags set then clear the tag in the
1da177e4
LT
857 * next-to-leaf node, etc.
858 *
859 * Returns the address of the tagged item on success, else NULL. ie:
860 * has the same return value and semantics as radix_tree_lookup().
861 */
862void *radix_tree_tag_clear(struct radix_tree_root *root,
daff89f3 863 unsigned long index, unsigned int tag)
1da177e4 864{
00f47b58
RZ
865 struct radix_tree_node *node, *parent;
866 unsigned long maxindex;
e2bdb933 867 int uninitialized_var(offset);
1da177e4 868
9e85d811 869 radix_tree_load_root(root, &node, &maxindex);
00f47b58
RZ
870 if (index > maxindex)
871 return NULL;
1da177e4 872
00f47b58 873 parent = NULL;
1da177e4 874
b194d16c 875 while (radix_tree_is_internal_node(node)) {
4dd6c098 876 parent = entry_to_node(node);
9e85d811 877 offset = radix_tree_descend(parent, &node, index);
1da177e4
LT
878 }
879
d604c324
MW
880 if (node)
881 node_tag_clear(root, parent, tag, offset);
1da177e4 882
00f47b58 883 return node;
1da177e4
LT
884}
885EXPORT_SYMBOL(radix_tree_tag_clear);
886
1da177e4 887/**
32605a18
MT
888 * radix_tree_tag_get - get a tag on a radix tree node
889 * @root: radix tree root
890 * @index: index key
2fcd9005 891 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
1da177e4 892 *
32605a18 893 * Return values:
1da177e4 894 *
612d6c19
NP
895 * 0: tag not present or not set
896 * 1: tag set
ce82653d
DH
897 *
898 * Note that the return value of this function may not be relied on, even if
899 * the RCU lock is held, unless tag modification and node deletion are excluded
900 * from concurrency.
1da177e4
LT
901 */
902int radix_tree_tag_get(struct radix_tree_root *root,
daff89f3 903 unsigned long index, unsigned int tag)
1da177e4 904{
4589ba6d
RZ
905 struct radix_tree_node *node, *parent;
906 unsigned long maxindex;
1da177e4 907
612d6c19
NP
908 if (!root_tag_get(root, tag))
909 return 0;
910
9e85d811 911 radix_tree_load_root(root, &node, &maxindex);
4589ba6d
RZ
912 if (index > maxindex)
913 return 0;
7cf9c2c7
NP
914 if (node == NULL)
915 return 0;
916
b194d16c 917 while (radix_tree_is_internal_node(node)) {
9e85d811 918 unsigned offset;
1da177e4 919
4dd6c098 920 parent = entry_to_node(node);
9e85d811 921 offset = radix_tree_descend(parent, &node, index);
1da177e4 922
4589ba6d 923 if (!node)
1da177e4 924 return 0;
4589ba6d 925 if (!tag_get(parent, tag, offset))
3fa36acb 926 return 0;
4589ba6d
RZ
927 if (node == RADIX_TREE_RETRY)
928 break;
1da177e4 929 }
4589ba6d
RZ
930
931 return 1;
1da177e4
LT
932}
933EXPORT_SYMBOL(radix_tree_tag_get);
1da177e4 934
21ef5339
RZ
935static inline void __set_iter_shift(struct radix_tree_iter *iter,
936 unsigned int shift)
937{
938#ifdef CONFIG_RADIX_TREE_MULTIORDER
939 iter->shift = shift;
940#endif
941}
942
78c1d784
KK
943/**
944 * radix_tree_next_chunk - find next chunk of slots for iteration
945 *
946 * @root: radix tree root
947 * @iter: iterator state
948 * @flags: RADIX_TREE_ITER_* flags and tag index
949 * Returns: pointer to chunk first slot, or NULL if iteration is over
950 */
951void **radix_tree_next_chunk(struct radix_tree_root *root,
952 struct radix_tree_iter *iter, unsigned flags)
953{
9e85d811 954 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
8c1244de 955 struct radix_tree_node *node, *child;
21ef5339 956 unsigned long index, offset, maxindex;
78c1d784
KK
957
958 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
959 return NULL;
960
961 /*
962 * Catch next_index overflow after ~0UL. iter->index never overflows
963 * during iterating; it can be zero only at the beginning.
964 * And we cannot overflow iter->next_index in a single step,
965 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
fffaee36
KK
966 *
967 * This condition also used by radix_tree_next_slot() to stop
968 * contiguous iterating, and forbid swithing to the next chunk.
78c1d784
KK
969 */
970 index = iter->next_index;
971 if (!index && iter->index)
972 return NULL;
973
21ef5339 974 restart:
9e85d811 975 radix_tree_load_root(root, &child, &maxindex);
21ef5339
RZ
976 if (index > maxindex)
977 return NULL;
8c1244de
MW
978 if (!child)
979 return NULL;
21ef5339 980
8c1244de 981 if (!radix_tree_is_internal_node(child)) {
78c1d784 982 /* Single-slot tree */
21ef5339
RZ
983 iter->index = index;
984 iter->next_index = maxindex + 1;
78c1d784 985 iter->tags = 1;
8c1244de 986 __set_iter_shift(iter, 0);
78c1d784 987 return (void **)&root->rnode;
8c1244de 988 }
21ef5339 989
8c1244de
MW
990 do {
991 node = entry_to_node(child);
9e85d811 992 offset = radix_tree_descend(node, &child, index);
21ef5339 993
78c1d784 994 if ((flags & RADIX_TREE_ITER_TAGGED) ?
8c1244de 995 !tag_get(node, tag, offset) : !child) {
78c1d784
KK
996 /* Hole detected */
997 if (flags & RADIX_TREE_ITER_CONTIG)
998 return NULL;
999
1000 if (flags & RADIX_TREE_ITER_TAGGED)
1001 offset = radix_tree_find_next_bit(
1002 node->tags[tag],
1003 RADIX_TREE_MAP_SIZE,
1004 offset + 1);
1005 else
1006 while (++offset < RADIX_TREE_MAP_SIZE) {
21ef5339
RZ
1007 void *slot = node->slots[offset];
1008 if (is_sibling_entry(node, slot))
1009 continue;
1010 if (slot)
78c1d784
KK
1011 break;
1012 }
8c1244de 1013 index &= ~node_maxindex(node);
9e85d811 1014 index += offset << node->shift;
78c1d784
KK
1015 /* Overflow after ~0UL */
1016 if (!index)
1017 return NULL;
1018 if (offset == RADIX_TREE_MAP_SIZE)
1019 goto restart;
8c1244de 1020 child = rcu_dereference_raw(node->slots[offset]);
78c1d784
KK
1021 }
1022
8c1244de 1023 if ((child == NULL) || (child == RADIX_TREE_RETRY))
78c1d784 1024 goto restart;
8c1244de 1025 } while (radix_tree_is_internal_node(child));
78c1d784
KK
1026
1027 /* Update the iterator state */
8c1244de
MW
1028 iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
1029 iter->next_index = (index | node_maxindex(node)) + 1;
9e85d811 1030 __set_iter_shift(iter, node->shift);
78c1d784
KK
1031
1032 /* Construct iter->tags bit-mask from node->tags[tag] array */
1033 if (flags & RADIX_TREE_ITER_TAGGED) {
1034 unsigned tag_long, tag_bit;
1035
1036 tag_long = offset / BITS_PER_LONG;
1037 tag_bit = offset % BITS_PER_LONG;
1038 iter->tags = node->tags[tag][tag_long] >> tag_bit;
1039 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1040 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1041 /* Pick tags from next element */
1042 if (tag_bit)
1043 iter->tags |= node->tags[tag][tag_long + 1] <<
1044 (BITS_PER_LONG - tag_bit);
1045 /* Clip chunk size, here only BITS_PER_LONG tags */
1046 iter->next_index = index + BITS_PER_LONG;
1047 }
1048 }
1049
1050 return node->slots + offset;
1051}
1052EXPORT_SYMBOL(radix_tree_next_chunk);
1053
ebf8aa44
JK
1054/**
1055 * radix_tree_range_tag_if_tagged - for each item in given range set given
1056 * tag if item has another tag set
1057 * @root: radix tree root
1058 * @first_indexp: pointer to a starting index of a range to scan
1059 * @last_index: last index of a range to scan
1060 * @nr_to_tag: maximum number items to tag
1061 * @iftag: tag index to test
1062 * @settag: tag index to set if tested tag is set
1063 *
1064 * This function scans range of radix tree from first_index to last_index
1065 * (inclusive). For each item in the range if iftag is set, the function sets
1066 * also settag. The function stops either after tagging nr_to_tag items or
1067 * after reaching last_index.
1068 *
144dcfc0
DC
1069 * The tags must be set from the leaf level only and propagated back up the
1070 * path to the root. We must do this so that we resolve the full path before
1071 * setting any tags on intermediate nodes. If we set tags as we descend, then
1072 * we can get to the leaf node and find that the index that has the iftag
1073 * set is outside the range we are scanning. This reults in dangling tags and
1074 * can lead to problems with later tag operations (e.g. livelocks on lookups).
1075 *
2fcd9005 1076 * The function returns the number of leaves where the tag was set and sets
ebf8aa44 1077 * *first_indexp to the first unscanned index.
d5ed3a4a
JK
1078 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
1079 * be prepared to handle that.
ebf8aa44
JK
1080 */
1081unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
1082 unsigned long *first_indexp, unsigned long last_index,
1083 unsigned long nr_to_tag,
1084 unsigned int iftag, unsigned int settag)
1085{
a8e4da25 1086 struct radix_tree_node *parent, *node, *child;
070c5ac2 1087 unsigned long maxindex;
144dcfc0
DC
1088 unsigned long tagged = 0;
1089 unsigned long index = *first_indexp;
ebf8aa44 1090
9e85d811 1091 radix_tree_load_root(root, &child, &maxindex);
070c5ac2 1092 last_index = min(last_index, maxindex);
ebf8aa44
JK
1093 if (index > last_index)
1094 return 0;
1095 if (!nr_to_tag)
1096 return 0;
1097 if (!root_tag_get(root, iftag)) {
1098 *first_indexp = last_index + 1;
1099 return 0;
1100 }
a8e4da25 1101 if (!radix_tree_is_internal_node(child)) {
ebf8aa44
JK
1102 *first_indexp = last_index + 1;
1103 root_tag_set(root, settag);
1104 return 1;
1105 }
1106
a8e4da25 1107 node = entry_to_node(child);
ebf8aa44
JK
1108
1109 for (;;) {
9e85d811 1110 unsigned offset = radix_tree_descend(node, &child, index);
a8e4da25 1111 if (!child)
ebf8aa44 1112 goto next;
070c5ac2 1113 if (!tag_get(node, iftag, offset))
ebf8aa44 1114 goto next;
070c5ac2 1115 /* Sibling slots never have tags set on them */
a8e4da25
MW
1116 if (radix_tree_is_internal_node(child)) {
1117 node = entry_to_node(child);
070c5ac2 1118 continue;
144dcfc0
DC
1119 }
1120
1121 /* tag the leaf */
070c5ac2
MW
1122 tagged++;
1123 tag_set(node, settag, offset);
144dcfc0
DC
1124
1125 /* walk back up the path tagging interior nodes */
a8e4da25
MW
1126 parent = node;
1127 for (;;) {
1128 offset = parent->offset;
1129 parent = parent->parent;
1130 if (!parent)
1131 break;
144dcfc0 1132 /* stop if we find a node with the tag already set */
a8e4da25 1133 if (tag_get(parent, settag, offset))
144dcfc0 1134 break;
a8e4da25 1135 tag_set(parent, settag, offset);
ebf8aa44 1136 }
070c5ac2 1137 next:
9e85d811
MW
1138 /* Go to next entry in node */
1139 index = ((index >> node->shift) + 1) << node->shift;
d5ed3a4a
JK
1140 /* Overflow can happen when last_index is ~0UL... */
1141 if (index > last_index || !index)
ebf8aa44 1142 break;
9e85d811 1143 offset = (index >> node->shift) & RADIX_TREE_MAP_MASK;
070c5ac2 1144 while (offset == 0) {
ebf8aa44
JK
1145 /*
1146 * We've fully scanned this node. Go up. Because
1147 * last_index is guaranteed to be in the tree, what
1148 * we do below cannot wander astray.
1149 */
070c5ac2 1150 node = node->parent;
9e85d811 1151 offset = (index >> node->shift) & RADIX_TREE_MAP_MASK;
ebf8aa44 1152 }
070c5ac2
MW
1153 if (is_sibling_entry(node, node->slots[offset]))
1154 goto next;
1155 if (tagged >= nr_to_tag)
1156 break;
ebf8aa44
JK
1157 }
1158 /*
ac15ee69
TO
1159 * We need not to tag the root tag if there is no tag which is set with
1160 * settag within the range from *first_indexp to last_index.
ebf8aa44 1161 */
ac15ee69
TO
1162 if (tagged > 0)
1163 root_tag_set(root, settag);
ebf8aa44
JK
1164 *first_indexp = index;
1165
1166 return tagged;
1167}
1168EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
1169
1da177e4
LT
1170/**
1171 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1172 * @root: radix tree root
1173 * @results: where the results of the lookup are placed
1174 * @first_index: start the lookup from this key
1175 * @max_items: place up to this many items at *results
1176 *
1177 * Performs an index-ascending scan of the tree for present items. Places
1178 * them at *@results and returns the number of items which were placed at
1179 * *@results.
1180 *
1181 * The implementation is naive.
7cf9c2c7
NP
1182 *
1183 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1184 * rcu_read_lock. In this case, rather than the returned results being
2fcd9005
MW
1185 * an atomic snapshot of the tree at a single point in time, the
1186 * semantics of an RCU protected gang lookup are as though multiple
1187 * radix_tree_lookups have been issued in individual locks, and results
1188 * stored in 'results'.
1da177e4
LT
1189 */
1190unsigned int
1191radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1192 unsigned long first_index, unsigned int max_items)
1193{
cebbd29e
KK
1194 struct radix_tree_iter iter;
1195 void **slot;
1196 unsigned int ret = 0;
7cf9c2c7 1197
cebbd29e 1198 if (unlikely(!max_items))
7cf9c2c7 1199 return 0;
1da177e4 1200
cebbd29e 1201 radix_tree_for_each_slot(slot, root, &iter, first_index) {
46437f9a 1202 results[ret] = rcu_dereference_raw(*slot);
cebbd29e
KK
1203 if (!results[ret])
1204 continue;
b194d16c 1205 if (radix_tree_is_internal_node(results[ret])) {
46437f9a
MW
1206 slot = radix_tree_iter_retry(&iter);
1207 continue;
1208 }
cebbd29e 1209 if (++ret == max_items)
1da177e4 1210 break;
1da177e4 1211 }
7cf9c2c7 1212
1da177e4
LT
1213 return ret;
1214}
1215EXPORT_SYMBOL(radix_tree_gang_lookup);
1216
47feff2c
NP
1217/**
1218 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1219 * @root: radix tree root
1220 * @results: where the results of the lookup are placed
6328650b 1221 * @indices: where their indices should be placed (but usually NULL)
47feff2c
NP
1222 * @first_index: start the lookup from this key
1223 * @max_items: place up to this many items at *results
1224 *
1225 * Performs an index-ascending scan of the tree for present items. Places
1226 * their slots at *@results and returns the number of items which were
1227 * placed at *@results.
1228 *
1229 * The implementation is naive.
1230 *
1231 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1232 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1233 * protection, radix_tree_deref_slot may fail requiring a retry.
1234 */
1235unsigned int
6328650b
HD
1236radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1237 void ***results, unsigned long *indices,
47feff2c
NP
1238 unsigned long first_index, unsigned int max_items)
1239{
cebbd29e
KK
1240 struct radix_tree_iter iter;
1241 void **slot;
1242 unsigned int ret = 0;
47feff2c 1243
cebbd29e 1244 if (unlikely(!max_items))
47feff2c
NP
1245 return 0;
1246
cebbd29e
KK
1247 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1248 results[ret] = slot;
6328650b 1249 if (indices)
cebbd29e
KK
1250 indices[ret] = iter.index;
1251 if (++ret == max_items)
47feff2c 1252 break;
47feff2c
NP
1253 }
1254
1255 return ret;
1256}
1257EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1258
1da177e4
LT
1259/**
1260 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1261 * based on a tag
1262 * @root: radix tree root
1263 * @results: where the results of the lookup are placed
1264 * @first_index: start the lookup from this key
1265 * @max_items: place up to this many items at *results
daff89f3 1266 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1da177e4
LT
1267 *
1268 * Performs an index-ascending scan of the tree for present items which
1269 * have the tag indexed by @tag set. Places the items at *@results and
1270 * returns the number of items which were placed at *@results.
1271 */
1272unsigned int
1273radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
daff89f3
JC
1274 unsigned long first_index, unsigned int max_items,
1275 unsigned int tag)
1da177e4 1276{
cebbd29e
KK
1277 struct radix_tree_iter iter;
1278 void **slot;
1279 unsigned int ret = 0;
612d6c19 1280
cebbd29e 1281 if (unlikely(!max_items))
7cf9c2c7
NP
1282 return 0;
1283
cebbd29e 1284 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
46437f9a 1285 results[ret] = rcu_dereference_raw(*slot);
cebbd29e
KK
1286 if (!results[ret])
1287 continue;
b194d16c 1288 if (radix_tree_is_internal_node(results[ret])) {
46437f9a
MW
1289 slot = radix_tree_iter_retry(&iter);
1290 continue;
1291 }
cebbd29e 1292 if (++ret == max_items)
1da177e4 1293 break;
1da177e4 1294 }
7cf9c2c7 1295
1da177e4
LT
1296 return ret;
1297}
1298EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1299
47feff2c
NP
1300/**
1301 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1302 * radix tree based on a tag
1303 * @root: radix tree root
1304 * @results: where the results of the lookup are placed
1305 * @first_index: start the lookup from this key
1306 * @max_items: place up to this many items at *results
1307 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1308 *
1309 * Performs an index-ascending scan of the tree for present items which
1310 * have the tag indexed by @tag set. Places the slots at *@results and
1311 * returns the number of slots which were placed at *@results.
1312 */
1313unsigned int
1314radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1315 unsigned long first_index, unsigned int max_items,
1316 unsigned int tag)
1317{
cebbd29e
KK
1318 struct radix_tree_iter iter;
1319 void **slot;
1320 unsigned int ret = 0;
47feff2c 1321
cebbd29e 1322 if (unlikely(!max_items))
47feff2c
NP
1323 return 0;
1324
cebbd29e
KK
1325 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1326 results[ret] = slot;
1327 if (++ret == max_items)
47feff2c 1328 break;
47feff2c
NP
1329 }
1330
1331 return ret;
1332}
1333EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1334
e504f3fd
HD
1335#if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1336#include <linux/sched.h> /* for cond_resched() */
1337
0a2efc6c
MW
1338struct locate_info {
1339 unsigned long found_index;
1340 bool stop;
1341};
1342
e504f3fd
HD
1343/*
1344 * This linear search is at present only useful to shmem_unuse_inode().
1345 */
1346static unsigned long __locate(struct radix_tree_node *slot, void *item,
0a2efc6c 1347 unsigned long index, struct locate_info *info)
e504f3fd 1348{
e504f3fd
HD
1349 unsigned long i;
1350
0a2efc6c 1351 do {
9e85d811 1352 unsigned int shift = slot->shift;
e504f3fd 1353
0a2efc6c
MW
1354 for (i = (index >> shift) & RADIX_TREE_MAP_MASK;
1355 i < RADIX_TREE_MAP_SIZE;
1356 i++, index += (1UL << shift)) {
1357 struct radix_tree_node *node =
1358 rcu_dereference_raw(slot->slots[i]);
1359 if (node == RADIX_TREE_RETRY)
1360 goto out;
b194d16c 1361 if (!radix_tree_is_internal_node(node)) {
0a2efc6c
MW
1362 if (node == item) {
1363 info->found_index = index;
1364 info->stop = true;
1365 goto out;
1366 }
1367 continue;
e6145236 1368 }
4dd6c098 1369 node = entry_to_node(node);
0a2efc6c
MW
1370 if (is_sibling_entry(slot, node))
1371 continue;
1372 slot = node;
1373 break;
e6145236 1374 }
9e85d811 1375 } while (i < RADIX_TREE_MAP_SIZE);
e504f3fd 1376
e504f3fd 1377out:
0a2efc6c
MW
1378 if ((index == 0) && (i == RADIX_TREE_MAP_SIZE))
1379 info->stop = true;
e504f3fd
HD
1380 return index;
1381}
1382
1383/**
1384 * radix_tree_locate_item - search through radix tree for item
1385 * @root: radix tree root
1386 * @item: item to be found
1387 *
1388 * Returns index where item was found, or -1 if not found.
1389 * Caller must hold no lock (since this time-consuming function needs
1390 * to be preemptible), and must check afterwards if item is still there.
1391 */
1392unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1393{
1394 struct radix_tree_node *node;
1395 unsigned long max_index;
1396 unsigned long cur_index = 0;
0a2efc6c
MW
1397 struct locate_info info = {
1398 .found_index = -1,
1399 .stop = false,
1400 };
e504f3fd
HD
1401
1402 do {
1403 rcu_read_lock();
1404 node = rcu_dereference_raw(root->rnode);
b194d16c 1405 if (!radix_tree_is_internal_node(node)) {
e504f3fd
HD
1406 rcu_read_unlock();
1407 if (node == item)
0a2efc6c 1408 info.found_index = 0;
e504f3fd
HD
1409 break;
1410 }
1411
4dd6c098 1412 node = entry_to_node(node);
0a2efc6c
MW
1413
1414 max_index = node_maxindex(node);
5f30fc94
HD
1415 if (cur_index > max_index) {
1416 rcu_read_unlock();
e504f3fd 1417 break;
5f30fc94 1418 }
e504f3fd 1419
0a2efc6c 1420 cur_index = __locate(node, item, cur_index, &info);
e504f3fd
HD
1421 rcu_read_unlock();
1422 cond_resched();
0a2efc6c 1423 } while (!info.stop && cur_index <= max_index);
e504f3fd 1424
0a2efc6c 1425 return info.found_index;
e504f3fd
HD
1426}
1427#else
1428unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1429{
1430 return -1;
1431}
1432#endif /* CONFIG_SHMEM && CONFIG_SWAP */
47feff2c 1433
a5f51c96 1434/**
d0891265 1435 * radix_tree_shrink - shrink radix tree to minimum height
a5f51c96
NP
1436 * @root radix tree root
1437 */
fb209019 1438static inline bool radix_tree_shrink(struct radix_tree_root *root)
a5f51c96 1439{
fb209019
MW
1440 bool shrunk = false;
1441
d0891265 1442 for (;;) {
af49a63e
MW
1443 struct radix_tree_node *node = root->rnode;
1444 struct radix_tree_node *child;
a5f51c96 1445
af49a63e 1446 if (!radix_tree_is_internal_node(node))
d0891265 1447 break;
af49a63e 1448 node = entry_to_node(node);
c0bc9875
NP
1449
1450 /*
1451 * The candidate node has more than one child, or its child
d0891265
MW
1452 * is not at the leftmost slot, or the child is a multiorder
1453 * entry, we cannot shrink.
c0bc9875 1454 */
af49a63e 1455 if (node->count != 1)
c0bc9875 1456 break;
af49a63e
MW
1457 child = node->slots[0];
1458 if (!child)
c0bc9875 1459 break;
af49a63e 1460 if (!radix_tree_is_internal_node(child) && node->shift)
afe0e395
MW
1461 break;
1462
af49a63e
MW
1463 if (radix_tree_is_internal_node(child))
1464 entry_to_node(child)->parent = NULL;
c0bc9875 1465
7cf9c2c7
NP
1466 /*
1467 * We don't need rcu_assign_pointer(), since we are simply
27d20fdd
NP
1468 * moving the node from one part of the tree to another: if it
1469 * was safe to dereference the old pointer to it
af49a63e 1470 * (node->slots[0]), it will be safe to dereference the new
27d20fdd 1471 * one (root->rnode) as far as dependent read barriers go.
7cf9c2c7 1472 */
af49a63e 1473 root->rnode = child;
27d20fdd
NP
1474
1475 /*
1476 * We have a dilemma here. The node's slot[0] must not be
1477 * NULLed in case there are concurrent lookups expecting to
1478 * find the item. However if this was a bottom-level node,
1479 * then it may be subject to the slot pointer being visible
1480 * to callers dereferencing it. If item corresponding to
1481 * slot[0] is subsequently deleted, these callers would expect
1482 * their slot to become empty sooner or later.
1483 *
1484 * For example, lockless pagecache will look up a slot, deref
2fcd9005 1485 * the page pointer, and if the page has 0 refcount it means it
27d20fdd
NP
1486 * was concurrently deleted from pagecache so try the deref
1487 * again. Fortunately there is already a requirement for logic
1488 * to retry the entire slot lookup -- the indirect pointer
1489 * problem (replacing direct root node with an indirect pointer
1490 * also results in a stale slot). So tag the slot as indirect
1491 * to force callers to retry.
1492 */
af49a63e
MW
1493 if (!radix_tree_is_internal_node(child))
1494 node->slots[0] = RADIX_TREE_RETRY;
27d20fdd 1495
af49a63e 1496 radix_tree_node_free(node);
fb209019 1497 shrunk = true;
a5f51c96 1498 }
fb209019
MW
1499
1500 return shrunk;
a5f51c96
NP
1501}
1502
139e5616
JW
1503/**
1504 * __radix_tree_delete_node - try to free node after clearing a slot
1505 * @root: radix tree root
139e5616
JW
1506 * @node: node containing @index
1507 *
1508 * After clearing the slot at @index in @node from radix tree
1509 * rooted at @root, call this function to attempt freeing the
1510 * node and shrinking the tree.
1511 *
1512 * Returns %true if @node was freed, %false otherwise.
1513 */
449dd698 1514bool __radix_tree_delete_node(struct radix_tree_root *root,
139e5616
JW
1515 struct radix_tree_node *node)
1516{
1517 bool deleted = false;
1518
1519 do {
1520 struct radix_tree_node *parent;
1521
1522 if (node->count) {
4dd6c098 1523 if (node == entry_to_node(root->rnode))
fb209019 1524 deleted |= radix_tree_shrink(root);
139e5616
JW
1525 return deleted;
1526 }
1527
1528 parent = node->parent;
1529 if (parent) {
0c7fa0a8 1530 parent->slots[node->offset] = NULL;
139e5616
JW
1531 parent->count--;
1532 } else {
1533 root_tag_clear_all(root);
139e5616
JW
1534 root->rnode = NULL;
1535 }
1536
1537 radix_tree_node_free(node);
1538 deleted = true;
1539
1540 node = parent;
1541 } while (node);
1542
1543 return deleted;
1544}
1545
57578c2e
MW
1546static inline void delete_sibling_entries(struct radix_tree_node *node,
1547 void *ptr, unsigned offset)
1548{
1549#ifdef CONFIG_RADIX_TREE_MULTIORDER
1550 int i;
1551 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1552 if (node->slots[offset + i] != ptr)
1553 break;
1554 node->slots[offset + i] = NULL;
1555 node->count--;
1556 }
1557#endif
1558}
1559
1da177e4 1560/**
53c59f26 1561 * radix_tree_delete_item - delete an item from a radix tree
1da177e4
LT
1562 * @root: radix tree root
1563 * @index: index key
53c59f26 1564 * @item: expected item
1da177e4 1565 *
53c59f26 1566 * Remove @item at @index from the radix tree rooted at @root.
1da177e4 1567 *
53c59f26
JW
1568 * Returns the address of the deleted item, or NULL if it was not present
1569 * or the entry at the given @index was not @item.
1da177e4 1570 */
53c59f26
JW
1571void *radix_tree_delete_item(struct radix_tree_root *root,
1572 unsigned long index, void *item)
1da177e4 1573{
139e5616 1574 struct radix_tree_node *node;
57578c2e 1575 unsigned int offset;
139e5616
JW
1576 void **slot;
1577 void *entry;
d5274261 1578 int tag;
1da177e4 1579
139e5616
JW
1580 entry = __radix_tree_lookup(root, index, &node, &slot);
1581 if (!entry)
1582 return NULL;
1da177e4 1583
139e5616
JW
1584 if (item && entry != item)
1585 return NULL;
1586
1587 if (!node) {
612d6c19
NP
1588 root_tag_clear_all(root);
1589 root->rnode = NULL;
139e5616 1590 return entry;
612d6c19 1591 }
1da177e4 1592
29e0967c 1593 offset = get_slot_offset(node, slot);
53c59f26 1594
d604c324
MW
1595 /* Clear all tags associated with the item to be deleted. */
1596 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1597 node_tag_clear(root, node, tag, offset);
1da177e4 1598
a4db4dce 1599 delete_sibling_entries(node, node_to_entry(slot), offset);
139e5616
JW
1600 node->slots[offset] = NULL;
1601 node->count--;
f7942430
JW
1602 if (radix_tree_exceptional_entry(entry))
1603 node->exceptional--;
e2bdb933 1604
449dd698 1605 __radix_tree_delete_node(root, node);
612d6c19 1606
139e5616 1607 return entry;
1da177e4 1608}
53c59f26
JW
1609EXPORT_SYMBOL(radix_tree_delete_item);
1610
1611/**
1612 * radix_tree_delete - delete an item from a radix tree
1613 * @root: radix tree root
1614 * @index: index key
1615 *
1616 * Remove the item at @index from the radix tree rooted at @root.
1617 *
1618 * Returns the address of the deleted item, or NULL if it was not present.
1619 */
1620void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1621{
1622 return radix_tree_delete_item(root, index, NULL);
1623}
1da177e4
LT
1624EXPORT_SYMBOL(radix_tree_delete);
1625
d3798ae8
JW
1626void radix_tree_clear_tags(struct radix_tree_root *root,
1627 struct radix_tree_node *node,
1628 void **slot)
d604c324 1629{
d604c324
MW
1630 if (node) {
1631 unsigned int tag, offset = get_slot_offset(node, slot);
1632 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1633 node_tag_clear(root, node, tag, offset);
1634 } else {
1635 /* Clear root node tags */
1636 root->gfp_mask &= __GFP_BITS_MASK;
1637 }
d604c324
MW
1638}
1639
1da177e4
LT
1640/**
1641 * radix_tree_tagged - test whether any items in the tree are tagged
1642 * @root: radix tree root
1643 * @tag: tag to test
1644 */
daff89f3 1645int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1da177e4 1646{
612d6c19 1647 return root_tag_get(root, tag);
1da177e4
LT
1648}
1649EXPORT_SYMBOL(radix_tree_tagged);
1650
1651static void
449dd698 1652radix_tree_node_ctor(void *arg)
1da177e4 1653{
449dd698
JW
1654 struct radix_tree_node *node = arg;
1655
1656 memset(node, 0, sizeof(*node));
1657 INIT_LIST_HEAD(&node->private_list);
1da177e4
LT
1658}
1659
c78c66d1
KS
1660static __init unsigned long __maxindex(unsigned int height)
1661{
1662 unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1663 int shift = RADIX_TREE_INDEX_BITS - width;
1664
1665 if (shift < 0)
1666 return ~0UL;
1667 if (shift >= BITS_PER_LONG)
1668 return 0UL;
1669 return ~0UL >> shift;
1670}
1671
1672static __init void radix_tree_init_maxnodes(void)
1673{
1674 unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
1675 unsigned int i, j;
1676
1677 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1678 height_to_maxindex[i] = __maxindex(i);
1679 for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
1680 for (j = i; j > 0; j--)
1681 height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
1682 }
1683}
1684
1da177e4 1685static int radix_tree_callback(struct notifier_block *nfb,
2fcd9005 1686 unsigned long action, void *hcpu)
1da177e4 1687{
2fcd9005
MW
1688 int cpu = (long)hcpu;
1689 struct radix_tree_preload *rtp;
1690 struct radix_tree_node *node;
1691
1692 /* Free per-cpu pool of preloaded nodes */
1693 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1694 rtp = &per_cpu(radix_tree_preloads, cpu);
1695 while (rtp->nr) {
9d2a8da0
KS
1696 node = rtp->nodes;
1697 rtp->nodes = node->private_data;
1698 kmem_cache_free(radix_tree_node_cachep, node);
1699 rtp->nr--;
2fcd9005
MW
1700 }
1701 }
1702 return NOTIFY_OK;
1da177e4 1703}
1da177e4
LT
1704
1705void __init radix_tree_init(void)
1706{
1707 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1708 sizeof(struct radix_tree_node), 0,
488514d1
CL
1709 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1710 radix_tree_node_ctor);
c78c66d1 1711 radix_tree_init_maxnodes();
1da177e4
LT
1712 hotcpu_notifier(radix_tree_callback, 0);
1713}