]> git.proxmox.com Git - qemu.git/blame - linux-user/elfload.c
pc: add machine type for 0.12
[qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
edf8e2af
MW
2#include <sys/time.h>
3#include <sys/param.h>
31e31b8a
FB
4
5#include <stdio.h>
6#include <sys/types.h>
7#include <fcntl.h>
31e31b8a
FB
8#include <errno.h>
9#include <unistd.h>
10#include <sys/mman.h>
edf8e2af 11#include <sys/resource.h>
31e31b8a
FB
12#include <stdlib.h>
13#include <string.h>
edf8e2af 14#include <time.h>
31e31b8a 15
3ef693a0 16#include "qemu.h"
689f936f 17#include "disas.h"
31e31b8a 18
e58ffeb3 19#ifdef _ARCH_PPC64
a6cc84f4 20#undef ARCH_DLINFO
21#undef ELF_PLATFORM
22#undef ELF_HWCAP
23#undef ELF_CLASS
24#undef ELF_DATA
25#undef ELF_ARCH
26#endif
27
edf8e2af
MW
28#define ELF_OSABI ELFOSABI_SYSV
29
cb33da57
BS
30/* from personality.h */
31
32/*
33 * Flags for bug emulation.
34 *
35 * These occupy the top three bytes.
36 */
37enum {
38 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
39 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to descriptors
40 * (signal handling)
41 */
42 MMAP_PAGE_ZERO = 0x0100000,
43 ADDR_COMPAT_LAYOUT = 0x0200000,
44 READ_IMPLIES_EXEC = 0x0400000,
45 ADDR_LIMIT_32BIT = 0x0800000,
46 SHORT_INODE = 0x1000000,
47 WHOLE_SECONDS = 0x2000000,
48 STICKY_TIMEOUTS = 0x4000000,
49 ADDR_LIMIT_3GB = 0x8000000,
50};
51
52/*
53 * Personality types.
54 *
55 * These go in the low byte. Avoid using the top bit, it will
56 * conflict with error returns.
57 */
58enum {
59 PER_LINUX = 0x0000,
60 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
61 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
62 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
63 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
64 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS |
65 WHOLE_SECONDS | SHORT_INODE,
66 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
67 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
68 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
69 PER_BSD = 0x0006,
70 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
71 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
72 PER_LINUX32 = 0x0008,
73 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
74 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
75 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
76 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
77 PER_RISCOS = 0x000c,
78 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
79 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
80 PER_OSF4 = 0x000f, /* OSF/1 v4 */
81 PER_HPUX = 0x0010,
82 PER_MASK = 0x00ff,
83};
84
85/*
86 * Return the base personality without flags.
87 */
88#define personality(pers) (pers & PER_MASK)
89
83fb7adf
FB
90/* this flag is uneffective under linux too, should be deleted */
91#ifndef MAP_DENYWRITE
92#define MAP_DENYWRITE 0
93#endif
94
95/* should probably go in elf.h */
96#ifndef ELIBBAD
97#define ELIBBAD 80
98#endif
99
30ac07d4
FB
100#ifdef TARGET_I386
101
15338fd7
FB
102#define ELF_PLATFORM get_elf_platform()
103
104static const char *get_elf_platform(void)
105{
106 static char elf_platform[] = "i386";
d5975363 107 int family = (thread_env->cpuid_version >> 8) & 0xff;
15338fd7
FB
108 if (family > 6)
109 family = 6;
110 if (family >= 3)
111 elf_platform[1] = '0' + family;
112 return elf_platform;
113}
114
115#define ELF_HWCAP get_elf_hwcap()
116
117static uint32_t get_elf_hwcap(void)
118{
d5975363 119 return thread_env->cpuid_features;
15338fd7
FB
120}
121
84409ddb
JM
122#ifdef TARGET_X86_64
123#define ELF_START_MMAP 0x2aaaaab000ULL
124#define elf_check_arch(x) ( ((x) == ELF_ARCH) )
125
126#define ELF_CLASS ELFCLASS64
127#define ELF_DATA ELFDATA2LSB
128#define ELF_ARCH EM_X86_64
129
130static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
131{
132 regs->rax = 0;
133 regs->rsp = infop->start_stack;
134 regs->rip = infop->entry;
135}
136
c227f099
AL
137typedef target_ulong target_elf_greg_t;
138typedef uint32_t target_uid_t;
139typedef uint32_t target_gid_t;
140typedef int32_t target_pid_t;
9edc5d79
MW
141
142#define ELF_NREG 27
c227f099 143typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
144
145/*
146 * Note that ELF_NREG should be 29 as there should be place for
147 * TRAPNO and ERR "registers" as well but linux doesn't dump
148 * those.
149 *
150 * See linux kernel: arch/x86/include/asm/elf.h
151 */
c227f099 152static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
9edc5d79
MW
153{
154 (*regs)[0] = env->regs[15];
155 (*regs)[1] = env->regs[14];
156 (*regs)[2] = env->regs[13];
157 (*regs)[3] = env->regs[12];
158 (*regs)[4] = env->regs[R_EBP];
159 (*regs)[5] = env->regs[R_EBX];
160 (*regs)[6] = env->regs[11];
161 (*regs)[7] = env->regs[10];
162 (*regs)[8] = env->regs[9];
163 (*regs)[9] = env->regs[8];
164 (*regs)[10] = env->regs[R_EAX];
165 (*regs)[11] = env->regs[R_ECX];
166 (*regs)[12] = env->regs[R_EDX];
167 (*regs)[13] = env->regs[R_ESI];
168 (*regs)[14] = env->regs[R_EDI];
169 (*regs)[15] = env->regs[R_EAX]; /* XXX */
170 (*regs)[16] = env->eip;
171 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
172 (*regs)[18] = env->eflags;
173 (*regs)[19] = env->regs[R_ESP];
174 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
175 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
176 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
177 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
178 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
179 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
180 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
181}
182
84409ddb
JM
183#else
184
30ac07d4
FB
185#define ELF_START_MMAP 0x80000000
186
30ac07d4
FB
187/*
188 * This is used to ensure we don't load something for the wrong architecture.
189 */
190#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
191
192/*
193 * These are used to set parameters in the core dumps.
194 */
195#define ELF_CLASS ELFCLASS32
196#define ELF_DATA ELFDATA2LSB
197#define ELF_ARCH EM_386
198
b346ff46
FB
199static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
200{
201 regs->esp = infop->start_stack;
202 regs->eip = infop->entry;
e5fe0c52
PB
203
204 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
205 starts %edx contains a pointer to a function which might be
206 registered using `atexit'. This provides a mean for the
207 dynamic linker to call DT_FINI functions for shared libraries
208 that have been loaded before the code runs.
209
210 A value of 0 tells we have no such handler. */
211 regs->edx = 0;
b346ff46 212}
9edc5d79 213
c227f099
AL
214typedef target_ulong target_elf_greg_t;
215typedef uint16_t target_uid_t;
216typedef uint16_t target_gid_t;
217typedef int32_t target_pid_t;
9edc5d79
MW
218
219#define ELF_NREG 17
c227f099 220typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
221
222/*
223 * Note that ELF_NREG should be 19 as there should be place for
224 * TRAPNO and ERR "registers" as well but linux doesn't dump
225 * those.
226 *
227 * See linux kernel: arch/x86/include/asm/elf.h
228 */
c227f099 229static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
9edc5d79
MW
230{
231 (*regs)[0] = env->regs[R_EBX];
232 (*regs)[1] = env->regs[R_ECX];
233 (*regs)[2] = env->regs[R_EDX];
234 (*regs)[3] = env->regs[R_ESI];
235 (*regs)[4] = env->regs[R_EDI];
236 (*regs)[5] = env->regs[R_EBP];
237 (*regs)[6] = env->regs[R_EAX];
238 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
239 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
240 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
241 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
242 (*regs)[11] = env->regs[R_EAX]; /* XXX */
243 (*regs)[12] = env->eip;
244 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
245 (*regs)[14] = env->eflags;
246 (*regs)[15] = env->regs[R_ESP];
247 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
248}
84409ddb 249#endif
b346ff46 250
9edc5d79 251#define USE_ELF_CORE_DUMP
b346ff46
FB
252#define ELF_EXEC_PAGESIZE 4096
253
254#endif
255
256#ifdef TARGET_ARM
257
258#define ELF_START_MMAP 0x80000000
259
260#define elf_check_arch(x) ( (x) == EM_ARM )
261
262#define ELF_CLASS ELFCLASS32
263#ifdef TARGET_WORDS_BIGENDIAN
264#define ELF_DATA ELFDATA2MSB
265#else
266#define ELF_DATA ELFDATA2LSB
267#endif
268#define ELF_ARCH EM_ARM
269
b346ff46
FB
270static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
271{
992f48a0 272 abi_long stack = infop->start_stack;
b346ff46
FB
273 memset(regs, 0, sizeof(*regs));
274 regs->ARM_cpsr = 0x10;
0240ded8
PB
275 if (infop->entry & 1)
276 regs->ARM_cpsr |= CPSR_T;
277 regs->ARM_pc = infop->entry & 0xfffffffe;
b346ff46 278 regs->ARM_sp = infop->start_stack;
2f619698
FB
279 /* FIXME - what to for failure of get_user()? */
280 get_user_ual(regs->ARM_r2, stack + 8); /* envp */
281 get_user_ual(regs->ARM_r1, stack + 4); /* envp */
a1516e92 282 /* XXX: it seems that r0 is zeroed after ! */
e5fe0c52
PB
283 regs->ARM_r0 = 0;
284 /* For uClinux PIC binaries. */
863cf0b7 285 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
e5fe0c52 286 regs->ARM_r10 = infop->start_data;
b346ff46
FB
287}
288
c227f099
AL
289typedef uint32_t target_elf_greg_t;
290typedef uint16_t target_uid_t;
291typedef uint16_t target_gid_t;
292typedef int32_t target_pid_t;
edf8e2af
MW
293
294#define ELF_NREG 18
c227f099 295typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 296
c227f099 297static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
edf8e2af
MW
298{
299 (*regs)[0] = env->regs[0];
300 (*regs)[1] = env->regs[1];
301 (*regs)[2] = env->regs[2];
302 (*regs)[3] = env->regs[3];
303 (*regs)[4] = env->regs[4];
304 (*regs)[5] = env->regs[5];
305 (*regs)[6] = env->regs[6];
306 (*regs)[7] = env->regs[7];
307 (*regs)[8] = env->regs[8];
308 (*regs)[9] = env->regs[9];
309 (*regs)[10] = env->regs[10];
310 (*regs)[11] = env->regs[11];
311 (*regs)[12] = env->regs[12];
312 (*regs)[13] = env->regs[13];
313 (*regs)[14] = env->regs[14];
314 (*regs)[15] = env->regs[15];
315
316 (*regs)[16] = cpsr_read((CPUState *)env);
317 (*regs)[17] = env->regs[0]; /* XXX */
318}
319
30ac07d4
FB
320#define USE_ELF_CORE_DUMP
321#define ELF_EXEC_PAGESIZE 4096
322
afce2927
FB
323enum
324{
325 ARM_HWCAP_ARM_SWP = 1 << 0,
326 ARM_HWCAP_ARM_HALF = 1 << 1,
327 ARM_HWCAP_ARM_THUMB = 1 << 2,
328 ARM_HWCAP_ARM_26BIT = 1 << 3,
329 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
330 ARM_HWCAP_ARM_FPA = 1 << 5,
331 ARM_HWCAP_ARM_VFP = 1 << 6,
332 ARM_HWCAP_ARM_EDSP = 1 << 7,
cf6de34a
RV
333 ARM_HWCAP_ARM_JAVA = 1 << 8,
334 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
335 ARM_HWCAP_ARM_THUMBEE = 1 << 10,
336 ARM_HWCAP_ARM_NEON = 1 << 11,
337 ARM_HWCAP_ARM_VFPv3 = 1 << 12,
338 ARM_HWCAP_ARM_VFPv3D16 = 1 << 13,
afce2927
FB
339};
340
15338fd7 341#define ELF_HWCAP (ARM_HWCAP_ARM_SWP | ARM_HWCAP_ARM_HALF \
afce2927 342 | ARM_HWCAP_ARM_THUMB | ARM_HWCAP_ARM_FAST_MULT \
cf6de34a
RV
343 | ARM_HWCAP_ARM_FPA | ARM_HWCAP_ARM_VFP \
344 | ARM_HWCAP_ARM_NEON | ARM_HWCAP_ARM_VFPv3 )
afce2927 345
30ac07d4
FB
346#endif
347
853d6f7a 348#ifdef TARGET_SPARC
a315a145 349#ifdef TARGET_SPARC64
853d6f7a
FB
350
351#define ELF_START_MMAP 0x80000000
352
992f48a0 353#ifndef TARGET_ABI32
cb33da57 354#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
355#else
356#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
357#endif
853d6f7a 358
a315a145
FB
359#define ELF_CLASS ELFCLASS64
360#define ELF_DATA ELFDATA2MSB
5ef54116
FB
361#define ELF_ARCH EM_SPARCV9
362
363#define STACK_BIAS 2047
a315a145 364
a315a145
FB
365static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
366{
992f48a0 367#ifndef TARGET_ABI32
a315a145 368 regs->tstate = 0;
992f48a0 369#endif
a315a145
FB
370 regs->pc = infop->entry;
371 regs->npc = regs->pc + 4;
372 regs->y = 0;
992f48a0
BS
373#ifdef TARGET_ABI32
374 regs->u_regs[14] = infop->start_stack - 16 * 4;
375#else
cb33da57
BS
376 if (personality(infop->personality) == PER_LINUX32)
377 regs->u_regs[14] = infop->start_stack - 16 * 4;
378 else
379 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 380#endif
a315a145
FB
381}
382
383#else
384#define ELF_START_MMAP 0x80000000
385
386#define elf_check_arch(x) ( (x) == EM_SPARC )
387
853d6f7a
FB
388#define ELF_CLASS ELFCLASS32
389#define ELF_DATA ELFDATA2MSB
390#define ELF_ARCH EM_SPARC
391
853d6f7a
FB
392static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
393{
f5155289
FB
394 regs->psr = 0;
395 regs->pc = infop->entry;
396 regs->npc = regs->pc + 4;
397 regs->y = 0;
398 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
399}
400
a315a145 401#endif
853d6f7a
FB
402#endif
403
67867308
FB
404#ifdef TARGET_PPC
405
406#define ELF_START_MMAP 0x80000000
407
e85e7c6e 408#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
409
410#define elf_check_arch(x) ( (x) == EM_PPC64 )
411
412#define ELF_CLASS ELFCLASS64
413
414#else
415
67867308
FB
416#define elf_check_arch(x) ( (x) == EM_PPC )
417
418#define ELF_CLASS ELFCLASS32
84409ddb
JM
419
420#endif
421
67867308
FB
422#ifdef TARGET_WORDS_BIGENDIAN
423#define ELF_DATA ELFDATA2MSB
424#else
425#define ELF_DATA ELFDATA2LSB
426#endif
427#define ELF_ARCH EM_PPC
428
df84e4f3
NF
429/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
430 See arch/powerpc/include/asm/cputable.h. */
431enum {
3efa9a67 432 QEMU_PPC_FEATURE_32 = 0x80000000,
433 QEMU_PPC_FEATURE_64 = 0x40000000,
434 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
435 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
436 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
437 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
438 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
439 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
440 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
441 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
442 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
443 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
444 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
445 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
446 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
447 QEMU_PPC_FEATURE_CELL = 0x00010000,
448 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
449 QEMU_PPC_FEATURE_SMT = 0x00004000,
450 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
451 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
452 QEMU_PPC_FEATURE_PA6T = 0x00000800,
453 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
454 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
455 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
456 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
457 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
458
459 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
460 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
df84e4f3
NF
461};
462
463#define ELF_HWCAP get_elf_hwcap()
464
465static uint32_t get_elf_hwcap(void)
466{
467 CPUState *e = thread_env;
468 uint32_t features = 0;
469
470 /* We don't have to be terribly complete here; the high points are
471 Altivec/FP/SPE support. Anything else is just a bonus. */
472#define GET_FEATURE(flag, feature) \
473 do {if (e->insns_flags & flag) features |= feature; } while(0)
3efa9a67 474 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
475 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
476 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
477 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
478 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
479 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
480 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
481 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
df84e4f3
NF
482#undef GET_FEATURE
483
484 return features;
485}
486
f5155289
FB
487/*
488 * We need to put in some extra aux table entries to tell glibc what
489 * the cache block size is, so it can use the dcbz instruction safely.
490 */
491#define AT_DCACHEBSIZE 19
492#define AT_ICACHEBSIZE 20
493#define AT_UCACHEBSIZE 21
494/* A special ignored type value for PPC, for glibc compatibility. */
495#define AT_IGNOREPPC 22
496/*
497 * The requirements here are:
498 * - keep the final alignment of sp (sp & 0xf)
499 * - make sure the 32-bit value at the first 16 byte aligned position of
500 * AUXV is greater than 16 for glibc compatibility.
501 * AT_IGNOREPPC is used for that.
502 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
503 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
504 */
0bccf03d 505#define DLINFO_ARCH_ITEMS 5
f5155289
FB
506#define ARCH_DLINFO \
507do { \
0bccf03d
FB
508 NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20); \
509 NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20); \
510 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
f5155289
FB
511 /* \
512 * Now handle glibc compatibility. \
513 */ \
0bccf03d
FB
514 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
515 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
f5155289
FB
516 } while (0)
517
67867308
FB
518static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
519{
992f48a0
BS
520 abi_ulong pos = infop->start_stack;
521 abi_ulong tmp;
e85e7c6e 522#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
992f48a0 523 abi_ulong entry, toc;
84409ddb 524#endif
e5fe0c52 525
67867308 526 _regs->gpr[1] = infop->start_stack;
e85e7c6e 527#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
528 entry = ldq_raw(infop->entry) + infop->load_addr;
529 toc = ldq_raw(infop->entry + 8) + infop->load_addr;
530 _regs->gpr[2] = toc;
531 infop->entry = entry;
532#endif
67867308 533 _regs->nip = infop->entry;
e5fe0c52
PB
534 /* Note that isn't exactly what regular kernel does
535 * but this is what the ABI wants and is needed to allow
536 * execution of PPC BSD programs.
537 */
2f619698
FB
538 /* FIXME - what to for failure of get_user()? */
539 get_user_ual(_regs->gpr[3], pos);
992f48a0 540 pos += sizeof(abi_ulong);
e5fe0c52 541 _regs->gpr[4] = pos;
992f48a0 542 for (tmp = 1; tmp != 0; pos += sizeof(abi_ulong))
e5fe0c52
PB
543 tmp = ldl(pos);
544 _regs->gpr[5] = pos;
67867308
FB
545}
546
67867308
FB
547#define ELF_EXEC_PAGESIZE 4096
548
549#endif
550
048f6b4d
FB
551#ifdef TARGET_MIPS
552
553#define ELF_START_MMAP 0x80000000
554
555#define elf_check_arch(x) ( (x) == EM_MIPS )
556
388bb21a
TS
557#ifdef TARGET_MIPS64
558#define ELF_CLASS ELFCLASS64
559#else
048f6b4d 560#define ELF_CLASS ELFCLASS32
388bb21a 561#endif
048f6b4d
FB
562#ifdef TARGET_WORDS_BIGENDIAN
563#define ELF_DATA ELFDATA2MSB
564#else
565#define ELF_DATA ELFDATA2LSB
566#endif
567#define ELF_ARCH EM_MIPS
568
048f6b4d
FB
569static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
570{
623a930e 571 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
572 regs->cp0_epc = infop->entry;
573 regs->regs[29] = infop->start_stack;
574}
575
388bb21a
TS
576#define ELF_EXEC_PAGESIZE 4096
577
048f6b4d
FB
578#endif /* TARGET_MIPS */
579
b779e29e
EI
580#ifdef TARGET_MICROBLAZE
581
582#define ELF_START_MMAP 0x80000000
583
584#define elf_check_arch(x) ( (x) == EM_XILINX_MICROBLAZE )
585
586#define ELF_CLASS ELFCLASS32
587#define ELF_DATA ELFDATA2MSB
588#define ELF_ARCH EM_MIPS
589
590static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
591{
592 regs->pc = infop->entry;
593 regs->r1 = infop->start_stack;
594
595}
596
b779e29e
EI
597#define ELF_EXEC_PAGESIZE 4096
598
599#endif /* TARGET_MICROBLAZE */
600
fdf9b3e8
FB
601#ifdef TARGET_SH4
602
603#define ELF_START_MMAP 0x80000000
604
605#define elf_check_arch(x) ( (x) == EM_SH )
606
607#define ELF_CLASS ELFCLASS32
608#define ELF_DATA ELFDATA2LSB
609#define ELF_ARCH EM_SH
610
fdf9b3e8
FB
611static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
612{
613 /* Check other registers XXXXX */
614 regs->pc = infop->entry;
072ae847 615 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
616}
617
fdf9b3e8
FB
618#define ELF_EXEC_PAGESIZE 4096
619
620#endif
621
48733d19
TS
622#ifdef TARGET_CRIS
623
624#define ELF_START_MMAP 0x80000000
625
626#define elf_check_arch(x) ( (x) == EM_CRIS )
627
628#define ELF_CLASS ELFCLASS32
629#define ELF_DATA ELFDATA2LSB
630#define ELF_ARCH EM_CRIS
631
632static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
633{
634 regs->erp = infop->entry;
635}
636
48733d19
TS
637#define ELF_EXEC_PAGESIZE 8192
638
639#endif
640
e6e5906b
PB
641#ifdef TARGET_M68K
642
643#define ELF_START_MMAP 0x80000000
644
645#define elf_check_arch(x) ( (x) == EM_68K )
646
647#define ELF_CLASS ELFCLASS32
648#define ELF_DATA ELFDATA2MSB
649#define ELF_ARCH EM_68K
650
651/* ??? Does this need to do anything?
652#define ELF_PLAT_INIT(_r) */
653
654static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
655{
656 regs->usp = infop->start_stack;
657 regs->sr = 0;
658 regs->pc = infop->entry;
659}
660
e6e5906b
PB
661#define ELF_EXEC_PAGESIZE 8192
662
663#endif
664
7a3148a9
JM
665#ifdef TARGET_ALPHA
666
667#define ELF_START_MMAP (0x30000000000ULL)
668
669#define elf_check_arch(x) ( (x) == ELF_ARCH )
670
671#define ELF_CLASS ELFCLASS64
672#define ELF_DATA ELFDATA2MSB
673#define ELF_ARCH EM_ALPHA
674
675static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
676{
677 regs->pc = infop->entry;
678 regs->ps = 8;
679 regs->usp = infop->start_stack;
680 regs->unique = infop->start_data; /* ? */
681 printf("Set unique value to " TARGET_FMT_lx " (" TARGET_FMT_lx ")\n",
682 regs->unique, infop->start_data);
683}
684
7a3148a9
JM
685#define ELF_EXEC_PAGESIZE 8192
686
687#endif /* TARGET_ALPHA */
688
15338fd7
FB
689#ifndef ELF_PLATFORM
690#define ELF_PLATFORM (NULL)
691#endif
692
693#ifndef ELF_HWCAP
694#define ELF_HWCAP 0
695#endif
696
992f48a0 697#ifdef TARGET_ABI32
cb33da57 698#undef ELF_CLASS
992f48a0 699#define ELF_CLASS ELFCLASS32
cb33da57
BS
700#undef bswaptls
701#define bswaptls(ptr) bswap32s(ptr)
702#endif
703
31e31b8a 704#include "elf.h"
09bfb054 705
09bfb054
FB
706struct exec
707{
708 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
709 unsigned int a_text; /* length of text, in bytes */
710 unsigned int a_data; /* length of data, in bytes */
711 unsigned int a_bss; /* length of uninitialized data area, in bytes */
712 unsigned int a_syms; /* length of symbol table data in file, in bytes */
713 unsigned int a_entry; /* start address */
714 unsigned int a_trsize; /* length of relocation info for text, in bytes */
715 unsigned int a_drsize; /* length of relocation info for data, in bytes */
716};
717
718
719#define N_MAGIC(exec) ((exec).a_info & 0xffff)
720#define OMAGIC 0407
721#define NMAGIC 0410
722#define ZMAGIC 0413
723#define QMAGIC 0314
724
09bfb054
FB
725/* max code+data+bss space allocated to elf interpreter */
726#define INTERP_MAP_SIZE (32 * 1024 * 1024)
727
728/* max code+data+bss+brk space allocated to ET_DYN executables */
729#define ET_DYN_MAP_SIZE (128 * 1024 * 1024)
730
31e31b8a 731/* Necessary parameters */
54936004
FB
732#define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
733#define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
734#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a
FB
735
736#define INTERPRETER_NONE 0
737#define INTERPRETER_AOUT 1
738#define INTERPRETER_ELF 2
739
15338fd7 740#define DLINFO_ITEMS 12
31e31b8a 741
09bfb054
FB
742static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
743{
744 memcpy(to, from, n);
745}
d691f669 746
31e31b8a
FB
747static int load_aout_interp(void * exptr, int interp_fd);
748
749#ifdef BSWAP_NEEDED
92a31b1f 750static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a
FB
751{
752 bswap16s(&ehdr->e_type); /* Object file type */
753 bswap16s(&ehdr->e_machine); /* Architecture */
754 bswap32s(&ehdr->e_version); /* Object file version */
92a31b1f
FB
755 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
756 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
757 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
31e31b8a
FB
758 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
759 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
760 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
761 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
762 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
763 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
764 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
765}
766
92a31b1f 767static void bswap_phdr(struct elf_phdr *phdr)
31e31b8a
FB
768{
769 bswap32s(&phdr->p_type); /* Segment type */
92a31b1f
FB
770 bswaptls(&phdr->p_offset); /* Segment file offset */
771 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
772 bswaptls(&phdr->p_paddr); /* Segment physical address */
773 bswaptls(&phdr->p_filesz); /* Segment size in file */
774 bswaptls(&phdr->p_memsz); /* Segment size in memory */
31e31b8a 775 bswap32s(&phdr->p_flags); /* Segment flags */
92a31b1f 776 bswaptls(&phdr->p_align); /* Segment alignment */
31e31b8a 777}
689f936f 778
92a31b1f 779static void bswap_shdr(struct elf_shdr *shdr)
689f936f
FB
780{
781 bswap32s(&shdr->sh_name);
782 bswap32s(&shdr->sh_type);
92a31b1f
FB
783 bswaptls(&shdr->sh_flags);
784 bswaptls(&shdr->sh_addr);
785 bswaptls(&shdr->sh_offset);
786 bswaptls(&shdr->sh_size);
689f936f
FB
787 bswap32s(&shdr->sh_link);
788 bswap32s(&shdr->sh_info);
92a31b1f
FB
789 bswaptls(&shdr->sh_addralign);
790 bswaptls(&shdr->sh_entsize);
689f936f
FB
791}
792
7a3148a9 793static void bswap_sym(struct elf_sym *sym)
689f936f
FB
794{
795 bswap32s(&sym->st_name);
7a3148a9
JM
796 bswaptls(&sym->st_value);
797 bswaptls(&sym->st_size);
689f936f
FB
798 bswap16s(&sym->st_shndx);
799}
31e31b8a
FB
800#endif
801
edf8e2af
MW
802#ifdef USE_ELF_CORE_DUMP
803static int elf_core_dump(int, const CPUState *);
804
805#ifdef BSWAP_NEEDED
806static void bswap_note(struct elf_note *en)
807{
9fdca5aa 808 bswap32s(&en->n_namesz);
809 bswap32s(&en->n_descsz);
810 bswap32s(&en->n_type);
edf8e2af
MW
811}
812#endif /* BSWAP_NEEDED */
813
814#endif /* USE_ELF_CORE_DUMP */
815
31e31b8a 816/*
e5fe0c52 817 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
818 * memory to free pages in kernel mem. These are in a format ready
819 * to be put directly into the top of new user memory.
820 *
821 */
992f48a0
BS
822static abi_ulong copy_elf_strings(int argc,char ** argv, void **page,
823 abi_ulong p)
31e31b8a
FB
824{
825 char *tmp, *tmp1, *pag = NULL;
826 int len, offset = 0;
827
828 if (!p) {
829 return 0; /* bullet-proofing */
830 }
831 while (argc-- > 0) {
edf779ff
FB
832 tmp = argv[argc];
833 if (!tmp) {
31e31b8a
FB
834 fprintf(stderr, "VFS: argc is wrong");
835 exit(-1);
836 }
edf779ff
FB
837 tmp1 = tmp;
838 while (*tmp++);
31e31b8a
FB
839 len = tmp - tmp1;
840 if (p < len) { /* this shouldn't happen - 128kB */
841 return 0;
842 }
843 while (len) {
844 --p; --tmp; --len;
845 if (--offset < 0) {
54936004 846 offset = p % TARGET_PAGE_SIZE;
53a5960a 847 pag = (char *)page[p/TARGET_PAGE_SIZE];
44a91cae 848 if (!pag) {
53a5960a 849 pag = (char *)malloc(TARGET_PAGE_SIZE);
4118a970 850 memset(pag, 0, TARGET_PAGE_SIZE);
53a5960a 851 page[p/TARGET_PAGE_SIZE] = pag;
44a91cae
FB
852 if (!pag)
853 return 0;
31e31b8a
FB
854 }
855 }
856 if (len == 0 || offset == 0) {
edf779ff 857 *(pag + offset) = *tmp;
31e31b8a
FB
858 }
859 else {
860 int bytes_to_copy = (len > offset) ? offset : len;
861 tmp -= bytes_to_copy;
862 p -= bytes_to_copy;
863 offset -= bytes_to_copy;
864 len -= bytes_to_copy;
865 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1);
866 }
867 }
868 }
869 return p;
870}
871
992f48a0
BS
872static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm,
873 struct image_info *info)
53a5960a 874{
992f48a0 875 abi_ulong stack_base, size, error;
31e31b8a 876 int i;
31e31b8a 877
09bfb054
FB
878 /* Create enough stack to hold everything. If we don't use
879 * it for args, we'll use it for something else...
880 */
881 size = x86_stack_size;
54936004
FB
882 if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE)
883 size = MAX_ARG_PAGES*TARGET_PAGE_SIZE;
5fafdf24 884 error = target_mmap(0,
83fb7adf 885 size + qemu_host_page_size,
54936004
FB
886 PROT_READ | PROT_WRITE,
887 MAP_PRIVATE | MAP_ANONYMOUS,
888 -1, 0);
09bfb054
FB
889 if (error == -1) {
890 perror("stk mmap");
891 exit(-1);
892 }
893 /* we reserve one extra page at the top of the stack as guard */
83fb7adf 894 target_mprotect(error + size, qemu_host_page_size, PROT_NONE);
31e31b8a 895
54936004 896 stack_base = error + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE;
31e31b8a 897 p += stack_base;
09bfb054 898
31e31b8a
FB
899 for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
900 if (bprm->page[i]) {
901 info->rss++;
579a97f7 902 /* FIXME - check return value of memcpy_to_target() for failure */
53a5960a
PB
903 memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE);
904 free(bprm->page[i]);
31e31b8a 905 }
53a5960a 906 stack_base += TARGET_PAGE_SIZE;
31e31b8a
FB
907 }
908 return p;
909}
910
992f48a0 911static void set_brk(abi_ulong start, abi_ulong end)
31e31b8a
FB
912{
913 /* page-align the start and end addresses... */
54936004
FB
914 start = HOST_PAGE_ALIGN(start);
915 end = HOST_PAGE_ALIGN(end);
31e31b8a
FB
916 if (end <= start)
917 return;
54936004
FB
918 if(target_mmap(start, end - start,
919 PROT_READ | PROT_WRITE | PROT_EXEC,
920 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0) == -1) {
31e31b8a
FB
921 perror("cannot mmap brk");
922 exit(-1);
923 }
924}
925
926
853d6f7a
FB
927/* We need to explicitly zero any fractional pages after the data
928 section (i.e. bss). This would contain the junk from the file that
929 should not be in memory. */
992f48a0 930static void padzero(abi_ulong elf_bss, abi_ulong last_bss)
31e31b8a 931{
992f48a0 932 abi_ulong nbyte;
31e31b8a 933
768a4a36
TS
934 if (elf_bss >= last_bss)
935 return;
936
853d6f7a
FB
937 /* XXX: this is really a hack : if the real host page size is
938 smaller than the target page size, some pages after the end
939 of the file may not be mapped. A better fix would be to
940 patch target_mmap(), but it is more complicated as the file
941 size must be known */
83fb7adf 942 if (qemu_real_host_page_size < qemu_host_page_size) {
992f48a0 943 abi_ulong end_addr, end_addr1;
5fafdf24 944 end_addr1 = (elf_bss + qemu_real_host_page_size - 1) &
83fb7adf 945 ~(qemu_real_host_page_size - 1);
853d6f7a
FB
946 end_addr = HOST_PAGE_ALIGN(elf_bss);
947 if (end_addr1 < end_addr) {
863cf0b7 948 mmap((void *)g2h(end_addr1), end_addr - end_addr1,
853d6f7a
FB
949 PROT_READ|PROT_WRITE|PROT_EXEC,
950 MAP_FIXED|MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
951 }
952 }
953
83fb7adf 954 nbyte = elf_bss & (qemu_host_page_size-1);
31e31b8a 955 if (nbyte) {
83fb7adf 956 nbyte = qemu_host_page_size - nbyte;
31e31b8a 957 do {
2f619698
FB
958 /* FIXME - what to do if put_user() fails? */
959 put_user_u8(0, elf_bss);
53a5960a 960 elf_bss++;
31e31b8a
FB
961 } while (--nbyte);
962 }
963}
964
53a5960a 965
992f48a0
BS
966static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
967 struct elfhdr * exec,
968 abi_ulong load_addr,
969 abi_ulong load_bias,
970 abi_ulong interp_load_addr, int ibcs,
971 struct image_info *info)
31e31b8a 972{
992f48a0 973 abi_ulong sp;
53a5960a 974 int size;
992f48a0 975 abi_ulong u_platform;
15338fd7 976 const char *k_platform;
863cf0b7 977 const int n = sizeof(elf_addr_t);
edf779ff 978
53a5960a
PB
979 sp = p;
980 u_platform = 0;
15338fd7
FB
981 k_platform = ELF_PLATFORM;
982 if (k_platform) {
983 size_t len = strlen(k_platform) + 1;
53a5960a
PB
984 sp -= (len + n - 1) & ~(n - 1);
985 u_platform = sp;
579a97f7 986 /* FIXME - check return value of memcpy_to_target() for failure */
53a5960a 987 memcpy_to_target(sp, k_platform, len);
15338fd7 988 }
53a5960a
PB
989 /*
990 * Force 16 byte _final_ alignment here for generality.
991 */
992f48a0 992 sp = sp &~ (abi_ulong)15;
53a5960a 993 size = (DLINFO_ITEMS + 1) * 2;
15338fd7 994 if (k_platform)
53a5960a 995 size += 2;
f5155289 996#ifdef DLINFO_ARCH_ITEMS
53a5960a 997 size += DLINFO_ARCH_ITEMS * 2;
f5155289 998#endif
53a5960a
PB
999 size += envc + argc + 2;
1000 size += (!ibcs ? 3 : 1); /* argc itself */
1001 size *= n;
1002 if (size & 15)
1003 sp -= 16 - (size & 15);
3b46e624 1004
863cf0b7
JM
1005 /* This is correct because Linux defines
1006 * elf_addr_t as Elf32_Off / Elf64_Off
1007 */
2f619698
FB
1008#define NEW_AUX_ENT(id, val) do { \
1009 sp -= n; put_user_ual(val, sp); \
1010 sp -= n; put_user_ual(id, sp); \
53a5960a 1011 } while(0)
2f619698 1012
0bccf03d
FB
1013 NEW_AUX_ENT (AT_NULL, 0);
1014
1015 /* There must be exactly DLINFO_ITEMS entries here. */
992f48a0
BS
1016 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(load_addr + exec->e_phoff));
1017 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1018 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1019 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1020 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_load_addr));
1021 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
0bccf03d 1022 NEW_AUX_ENT(AT_ENTRY, load_bias + exec->e_entry);
992f48a0
BS
1023 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1024 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1025 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1026 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1027 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
a07c67df 1028 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
15338fd7 1029 if (k_platform)
53a5960a 1030 NEW_AUX_ENT(AT_PLATFORM, u_platform);
f5155289 1031#ifdef ARCH_DLINFO
5fafdf24 1032 /*
f5155289
FB
1033 * ARCH_DLINFO must come last so platform specific code can enforce
1034 * special alignment requirements on the AUXV if necessary (eg. PPC).
1035 */
1036 ARCH_DLINFO;
1037#endif
1038#undef NEW_AUX_ENT
1039
edf8e2af
MW
1040 info->saved_auxv = sp;
1041
e5fe0c52 1042 sp = loader_build_argptr(envc, argc, sp, p, !ibcs);
31e31b8a
FB
1043 return sp;
1044}
1045
1046
992f48a0
BS
1047static abi_ulong load_elf_interp(struct elfhdr * interp_elf_ex,
1048 int interpreter_fd,
1049 abi_ulong *interp_load_addr)
31e31b8a
FB
1050{
1051 struct elf_phdr *elf_phdata = NULL;
1052 struct elf_phdr *eppnt;
992f48a0 1053 abi_ulong load_addr = 0;
31e31b8a
FB
1054 int load_addr_set = 0;
1055 int retval;
992f48a0
BS
1056 abi_ulong last_bss, elf_bss;
1057 abi_ulong error;
31e31b8a 1058 int i;
5fafdf24 1059
31e31b8a
FB
1060 elf_bss = 0;
1061 last_bss = 0;
1062 error = 0;
1063
644c433c
FB
1064#ifdef BSWAP_NEEDED
1065 bswap_ehdr(interp_elf_ex);
1066#endif
31e31b8a 1067 /* First of all, some simple consistency checks */
5fafdf24
TS
1068 if ((interp_elf_ex->e_type != ET_EXEC &&
1069 interp_elf_ex->e_type != ET_DYN) ||
31e31b8a 1070 !elf_check_arch(interp_elf_ex->e_machine)) {
992f48a0 1071 return ~((abi_ulong)0UL);
31e31b8a 1072 }
5fafdf24 1073
644c433c 1074
31e31b8a 1075 /* Now read in all of the header information */
5fafdf24 1076
54936004 1077 if (sizeof(struct elf_phdr) * interp_elf_ex->e_phnum > TARGET_PAGE_SIZE)
992f48a0 1078 return ~(abi_ulong)0UL;
5fafdf24
TS
1079
1080 elf_phdata = (struct elf_phdr *)
31e31b8a
FB
1081 malloc(sizeof(struct elf_phdr) * interp_elf_ex->e_phnum);
1082
1083 if (!elf_phdata)
992f48a0 1084 return ~((abi_ulong)0UL);
5fafdf24 1085
31e31b8a
FB
1086 /*
1087 * If the size of this structure has changed, then punt, since
1088 * we will be doing the wrong thing.
1089 */
09bfb054 1090 if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr)) {
31e31b8a 1091 free(elf_phdata);
992f48a0 1092 return ~((abi_ulong)0UL);
09bfb054 1093 }
31e31b8a
FB
1094
1095 retval = lseek(interpreter_fd, interp_elf_ex->e_phoff, SEEK_SET);
1096 if(retval >= 0) {
1097 retval = read(interpreter_fd,
1098 (char *) elf_phdata,
1099 sizeof(struct elf_phdr) * interp_elf_ex->e_phnum);
1100 }
31e31b8a
FB
1101 if (retval < 0) {
1102 perror("load_elf_interp");
1103 exit(-1);
1104 free (elf_phdata);
1105 return retval;
1106 }
1107#ifdef BSWAP_NEEDED
1108 eppnt = elf_phdata;
1109 for (i=0; i<interp_elf_ex->e_phnum; i++, eppnt++) {
1110 bswap_phdr(eppnt);
1111 }
1112#endif
09bfb054
FB
1113
1114 if (interp_elf_ex->e_type == ET_DYN) {
e91c8a77 1115 /* in order to avoid hardcoding the interpreter load
09bfb054 1116 address in qemu, we allocate a big enough memory zone */
54936004 1117 error = target_mmap(0, INTERP_MAP_SIZE,
5fafdf24 1118 PROT_NONE, MAP_PRIVATE | MAP_ANON,
54936004 1119 -1, 0);
09bfb054
FB
1120 if (error == -1) {
1121 perror("mmap");
1122 exit(-1);
1123 }
1124 load_addr = error;
1125 load_addr_set = 1;
1126 }
1127
31e31b8a
FB
1128 eppnt = elf_phdata;
1129 for(i=0; i<interp_elf_ex->e_phnum; i++, eppnt++)
1130 if (eppnt->p_type == PT_LOAD) {
1131 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
1132 int elf_prot = 0;
992f48a0
BS
1133 abi_ulong vaddr = 0;
1134 abi_ulong k;
31e31b8a
FB
1135
1136 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
1137 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1138 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
1139 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) {
1140 elf_type |= MAP_FIXED;
1141 vaddr = eppnt->p_vaddr;
1142 }
54936004
FB
1143 error = target_mmap(load_addr+TARGET_ELF_PAGESTART(vaddr),
1144 eppnt->p_filesz + TARGET_ELF_PAGEOFFSET(eppnt->p_vaddr),
31e31b8a
FB
1145 elf_prot,
1146 elf_type,
1147 interpreter_fd,
54936004 1148 eppnt->p_offset - TARGET_ELF_PAGEOFFSET(eppnt->p_vaddr));
3b46e624 1149
e89f07d3 1150 if (error == -1) {
31e31b8a
FB
1151 /* Real error */
1152 close(interpreter_fd);
1153 free(elf_phdata);
992f48a0 1154 return ~((abi_ulong)0UL);
31e31b8a
FB
1155 }
1156
1157 if (!load_addr_set && interp_elf_ex->e_type == ET_DYN) {
1158 load_addr = error;
1159 load_addr_set = 1;
1160 }
1161
1162 /*
1163 * Find the end of the file mapping for this phdr, and keep
1164 * track of the largest address we see for this.
1165 */
1166 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
1167 if (k > elf_bss) elf_bss = k;
1168
1169 /*
1170 * Do the same thing for the memory mapping - between
1171 * elf_bss and last_bss is the bss section.
1172 */
1173 k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
1174 if (k > last_bss) last_bss = k;
1175 }
5fafdf24 1176
31e31b8a
FB
1177 /* Now use mmap to map the library into memory. */
1178
1179 close(interpreter_fd);
1180
1181 /*
1182 * Now fill out the bss section. First pad the last page up
1183 * to the page boundary, and then perform a mmap to make sure
1184 * that there are zeromapped pages up to and including the last
1185 * bss page.
1186 */
768a4a36 1187 padzero(elf_bss, last_bss);
83fb7adf 1188 elf_bss = TARGET_ELF_PAGESTART(elf_bss + qemu_host_page_size - 1); /* What we have mapped so far */
31e31b8a
FB
1189
1190 /* Map the last of the bss segment */
1191 if (last_bss > elf_bss) {
54936004
FB
1192 target_mmap(elf_bss, last_bss-elf_bss,
1193 PROT_READ|PROT_WRITE|PROT_EXEC,
1194 MAP_FIXED|MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
31e31b8a
FB
1195 }
1196 free(elf_phdata);
1197
1198 *interp_load_addr = load_addr;
992f48a0 1199 return ((abi_ulong) interp_elf_ex->e_entry) + load_addr;
31e31b8a
FB
1200}
1201
49918a75
PB
1202static int symfind(const void *s0, const void *s1)
1203{
1204 struct elf_sym *key = (struct elf_sym *)s0;
1205 struct elf_sym *sym = (struct elf_sym *)s1;
1206 int result = 0;
1207 if (key->st_value < sym->st_value) {
1208 result = -1;
ec822001 1209 } else if (key->st_value >= sym->st_value + sym->st_size) {
49918a75
PB
1210 result = 1;
1211 }
1212 return result;
1213}
1214
1215static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
1216{
1217#if ELF_CLASS == ELFCLASS32
1218 struct elf_sym *syms = s->disas_symtab.elf32;
1219#else
1220 struct elf_sym *syms = s->disas_symtab.elf64;
1221#endif
1222
1223 // binary search
1224 struct elf_sym key;
1225 struct elf_sym *sym;
1226
1227 key.st_value = orig_addr;
1228
1229 sym = bsearch(&key, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 1230 if (sym != NULL) {
49918a75
PB
1231 return s->disas_strtab + sym->st_name;
1232 }
1233
1234 return "";
1235}
1236
1237/* FIXME: This should use elf_ops.h */
1238static int symcmp(const void *s0, const void *s1)
1239{
1240 struct elf_sym *sym0 = (struct elf_sym *)s0;
1241 struct elf_sym *sym1 = (struct elf_sym *)s1;
1242 return (sym0->st_value < sym1->st_value)
1243 ? -1
1244 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
1245}
1246
689f936f
FB
1247/* Best attempt to load symbols from this ELF object. */
1248static void load_symbols(struct elfhdr *hdr, int fd)
1249{
49918a75 1250 unsigned int i, nsyms;
689f936f
FB
1251 struct elf_shdr sechdr, symtab, strtab;
1252 char *strings;
e80cfcfc 1253 struct syminfo *s;
49918a75 1254 struct elf_sym *syms;
689f936f
FB
1255
1256 lseek(fd, hdr->e_shoff, SEEK_SET);
1257 for (i = 0; i < hdr->e_shnum; i++) {
49918a75
PB
1258 if (read(fd, &sechdr, sizeof(sechdr)) != sizeof(sechdr))
1259 return;
689f936f 1260#ifdef BSWAP_NEEDED
49918a75 1261 bswap_shdr(&sechdr);
689f936f 1262#endif
49918a75
PB
1263 if (sechdr.sh_type == SHT_SYMTAB) {
1264 symtab = sechdr;
1265 lseek(fd, hdr->e_shoff
1266 + sizeof(sechdr) * sechdr.sh_link, SEEK_SET);
1267 if (read(fd, &strtab, sizeof(strtab))
1268 != sizeof(strtab))
1269 return;
689f936f 1270#ifdef BSWAP_NEEDED
49918a75 1271 bswap_shdr(&strtab);
689f936f 1272#endif
49918a75
PB
1273 goto found;
1274 }
689f936f
FB
1275 }
1276 return; /* Shouldn't happen... */
1277
1278 found:
1279 /* Now know where the strtab and symtab are. Snarf them. */
e80cfcfc 1280 s = malloc(sizeof(*s));
49918a75
PB
1281 syms = malloc(symtab.sh_size);
1282 if (!syms)
1283 return;
e80cfcfc 1284 s->disas_strtab = strings = malloc(strtab.sh_size);
49918a75
PB
1285 if (!s->disas_strtab)
1286 return;
5fafdf24 1287
689f936f 1288 lseek(fd, symtab.sh_offset, SEEK_SET);
49918a75
PB
1289 if (read(fd, syms, symtab.sh_size) != symtab.sh_size)
1290 return;
1291
1292 nsyms = symtab.sh_size / sizeof(struct elf_sym);
31e31b8a 1293
49918a75
PB
1294 i = 0;
1295 while (i < nsyms) {
689f936f 1296#ifdef BSWAP_NEEDED
49918a75 1297 bswap_sym(syms + i);
689f936f 1298#endif
49918a75
PB
1299 // Throw away entries which we do not need.
1300 if (syms[i].st_shndx == SHN_UNDEF ||
1301 syms[i].st_shndx >= SHN_LORESERVE ||
1302 ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
1303 nsyms--;
1304 if (i < nsyms) {
1305 syms[i] = syms[nsyms];
1306 }
1307 continue;
1308 }
1309#if defined(TARGET_ARM) || defined (TARGET_MIPS)
1310 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
1311 syms[i].st_value &= ~(target_ulong)1;
0774bed1 1312#endif
49918a75 1313 i++;
0774bed1 1314 }
49918a75
PB
1315 syms = realloc(syms, nsyms * sizeof(*syms));
1316
1317 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f
FB
1318
1319 lseek(fd, strtab.sh_offset, SEEK_SET);
1320 if (read(fd, strings, strtab.sh_size) != strtab.sh_size)
49918a75
PB
1321 return;
1322 s->disas_num_syms = nsyms;
1323#if ELF_CLASS == ELFCLASS32
1324 s->disas_symtab.elf32 = syms;
ca20cf32 1325 s->lookup_symbol = (lookup_symbol_t)lookup_symbolxx;
49918a75
PB
1326#else
1327 s->disas_symtab.elf64 = syms;
ca20cf32 1328 s->lookup_symbol = (lookup_symbol_t)lookup_symbolxx;
49918a75 1329#endif
e80cfcfc
FB
1330 s->next = syminfos;
1331 syminfos = s;
689f936f 1332}
31e31b8a 1333
e5fe0c52
PB
1334int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
1335 struct image_info * info)
31e31b8a
FB
1336{
1337 struct elfhdr elf_ex;
1338 struct elfhdr interp_elf_ex;
1339 struct exec interp_ex;
1340 int interpreter_fd = -1; /* avoid warning */
992f48a0 1341 abi_ulong load_addr, load_bias;
31e31b8a
FB
1342 int load_addr_set = 0;
1343 unsigned int interpreter_type = INTERPRETER_NONE;
1344 unsigned char ibcs2_interpreter;
1345 int i;
992f48a0 1346 abi_ulong mapped_addr;
31e31b8a
FB
1347 struct elf_phdr * elf_ppnt;
1348 struct elf_phdr *elf_phdata;
992f48a0 1349 abi_ulong elf_bss, k, elf_brk;
31e31b8a
FB
1350 int retval;
1351 char * elf_interpreter;
992f48a0 1352 abi_ulong elf_entry, interp_load_addr = 0;
31e31b8a 1353 int status;
992f48a0
BS
1354 abi_ulong start_code, end_code, start_data, end_data;
1355 abi_ulong reloc_func_desc = 0;
1356 abi_ulong elf_stack;
31e31b8a
FB
1357 char passed_fileno[6];
1358
1359 ibcs2_interpreter = 0;
1360 status = 0;
1361 load_addr = 0;
09bfb054 1362 load_bias = 0;
31e31b8a
FB
1363 elf_ex = *((struct elfhdr *) bprm->buf); /* exec-header */
1364#ifdef BSWAP_NEEDED
1365 bswap_ehdr(&elf_ex);
1366#endif
1367
31e31b8a
FB
1368 /* First of all, some simple consistency checks */
1369 if ((elf_ex.e_type != ET_EXEC && elf_ex.e_type != ET_DYN) ||
1370 (! elf_check_arch(elf_ex.e_machine))) {
1371 return -ENOEXEC;
1372 }
1373
e5fe0c52
PB
1374 bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p);
1375 bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p);
1376 bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p);
1377 if (!bprm->p) {
1378 retval = -E2BIG;
1379 }
1380
31e31b8a 1381 /* Now read in all of the header information */
31e31b8a
FB
1382 elf_phdata = (struct elf_phdr *)malloc(elf_ex.e_phentsize*elf_ex.e_phnum);
1383 if (elf_phdata == NULL) {
1384 return -ENOMEM;
1385 }
1386
1387 retval = lseek(bprm->fd, elf_ex.e_phoff, SEEK_SET);
1388 if(retval > 0) {
5fafdf24 1389 retval = read(bprm->fd, (char *) elf_phdata,
31e31b8a
FB
1390 elf_ex.e_phentsize * elf_ex.e_phnum);
1391 }
1392
1393 if (retval < 0) {
1394 perror("load_elf_binary");
1395 exit(-1);
1396 free (elf_phdata);
1397 return -errno;
1398 }
1399
b17780d5
FB
1400#ifdef BSWAP_NEEDED
1401 elf_ppnt = elf_phdata;
1402 for (i=0; i<elf_ex.e_phnum; i++, elf_ppnt++) {
1403 bswap_phdr(elf_ppnt);
1404 }
1405#endif
31e31b8a
FB
1406 elf_ppnt = elf_phdata;
1407
1408 elf_bss = 0;
1409 elf_brk = 0;
1410
1411
992f48a0 1412 elf_stack = ~((abi_ulong)0UL);
31e31b8a 1413 elf_interpreter = NULL;
992f48a0 1414 start_code = ~((abi_ulong)0UL);
31e31b8a 1415 end_code = 0;
863cf0b7 1416 start_data = 0;
31e31b8a 1417 end_data = 0;
98448f58 1418 interp_ex.a_info = 0;
31e31b8a
FB
1419
1420 for(i=0;i < elf_ex.e_phnum; i++) {
1421 if (elf_ppnt->p_type == PT_INTERP) {
1422 if ( elf_interpreter != NULL )
1423 {
1424 free (elf_phdata);
1425 free(elf_interpreter);
1426 close(bprm->fd);
1427 return -EINVAL;
1428 }
1429
1430 /* This is the program interpreter used for
1431 * shared libraries - for now assume that this
1432 * is an a.out format binary
1433 */
1434
32ce6337 1435 elf_interpreter = (char *)malloc(elf_ppnt->p_filesz);
31e31b8a
FB
1436
1437 if (elf_interpreter == NULL) {
1438 free (elf_phdata);
1439 close(bprm->fd);
1440 return -ENOMEM;
1441 }
1442
31e31b8a
FB
1443 retval = lseek(bprm->fd, elf_ppnt->p_offset, SEEK_SET);
1444 if(retval >= 0) {
32ce6337 1445 retval = read(bprm->fd, elf_interpreter, elf_ppnt->p_filesz);
31e31b8a
FB
1446 }
1447 if(retval < 0) {
1448 perror("load_elf_binary2");
1449 exit(-1);
5fafdf24 1450 }
31e31b8a
FB
1451
1452 /* If the program interpreter is one of these two,
1453 then assume an iBCS2 image. Otherwise assume
1454 a native linux image. */
1455
1456 /* JRP - Need to add X86 lib dir stuff here... */
1457
1458 if (strcmp(elf_interpreter,"/usr/lib/libc.so.1") == 0 ||
1459 strcmp(elf_interpreter,"/usr/lib/ld.so.1") == 0) {
1460 ibcs2_interpreter = 1;
1461 }
1462
1463#if 0
3bc0bdca 1464 printf("Using ELF interpreter %s\n", path(elf_interpreter));
31e31b8a
FB
1465#endif
1466 if (retval >= 0) {
32ce6337 1467 retval = open(path(elf_interpreter), O_RDONLY);
31e31b8a
FB
1468 if(retval >= 0) {
1469 interpreter_fd = retval;
1470 }
1471 else {
1472 perror(elf_interpreter);
1473 exit(-1);
1474 /* retval = -errno; */
1475 }
1476 }
1477
1478 if (retval >= 0) {
1479 retval = lseek(interpreter_fd, 0, SEEK_SET);
1480 if(retval >= 0) {
1481 retval = read(interpreter_fd,bprm->buf,128);
1482 }
1483 }
1484 if (retval >= 0) {
1485 interp_ex = *((struct exec *) bprm->buf); /* aout exec-header */
6ece4df6 1486 interp_elf_ex = *((struct elfhdr *) bprm->buf); /* elf exec-header */
31e31b8a
FB
1487 }
1488 if (retval < 0) {
1489 perror("load_elf_binary3");
1490 exit(-1);
1491 free (elf_phdata);
1492 free(elf_interpreter);
1493 close(bprm->fd);
1494 return retval;
1495 }
1496 }
1497 elf_ppnt++;
1498 }
1499
1500 /* Some simple consistency checks for the interpreter */
1501 if (elf_interpreter){
1502 interpreter_type = INTERPRETER_ELF | INTERPRETER_AOUT;
1503
1504 /* Now figure out which format our binary is */
1505 if ((N_MAGIC(interp_ex) != OMAGIC) && (N_MAGIC(interp_ex) != ZMAGIC) &&
1506 (N_MAGIC(interp_ex) != QMAGIC)) {
1507 interpreter_type = INTERPRETER_ELF;
1508 }
1509
1510 if (interp_elf_ex.e_ident[0] != 0x7f ||
b55266b5 1511 strncmp((char *)&interp_elf_ex.e_ident[1], "ELF",3) != 0) {
31e31b8a
FB
1512 interpreter_type &= ~INTERPRETER_ELF;
1513 }
1514
1515 if (!interpreter_type) {
1516 free(elf_interpreter);
1517 free(elf_phdata);
1518 close(bprm->fd);
1519 return -ELIBBAD;
1520 }
1521 }
1522
1523 /* OK, we are done with that, now set up the arg stuff,
1524 and then start this sucker up */
1525
e5fe0c52 1526 {
31e31b8a
FB
1527 char * passed_p;
1528
1529 if (interpreter_type == INTERPRETER_AOUT) {
eba2af63 1530 snprintf(passed_fileno, sizeof(passed_fileno), "%d", bprm->fd);
31e31b8a
FB
1531 passed_p = passed_fileno;
1532
1533 if (elf_interpreter) {
e5fe0c52 1534 bprm->p = copy_elf_strings(1,&passed_p,bprm->page,bprm->p);
31e31b8a
FB
1535 bprm->argc++;
1536 }
1537 }
1538 if (!bprm->p) {
1539 if (elf_interpreter) {
1540 free(elf_interpreter);
1541 }
1542 free (elf_phdata);
1543 close(bprm->fd);
1544 return -E2BIG;
1545 }
1546 }
1547
1548 /* OK, This is the point of no return */
1549 info->end_data = 0;
1550 info->end_code = 0;
992f48a0 1551 info->start_mmap = (abi_ulong)ELF_START_MMAP;
31e31b8a 1552 info->mmap = 0;
992f48a0 1553 elf_entry = (abi_ulong) elf_ex.e_entry;
31e31b8a 1554
379f6698
PB
1555#if defined(CONFIG_USE_GUEST_BASE)
1556 /*
1557 * In case where user has not explicitly set the guest_base, we
1558 * probe here that should we set it automatically.
1559 */
1560 if (!have_guest_base) {
1561 /*
1562 * Go through ELF program header table and find out whether
1563 * any of the segments drop below our current mmap_min_addr and
1564 * in that case set guest_base to corresponding address.
1565 */
1566 for (i = 0, elf_ppnt = elf_phdata; i < elf_ex.e_phnum;
1567 i++, elf_ppnt++) {
1568 if (elf_ppnt->p_type != PT_LOAD)
1569 continue;
1570 if (HOST_PAGE_ALIGN(elf_ppnt->p_vaddr) < mmap_min_addr) {
1571 guest_base = HOST_PAGE_ALIGN(mmap_min_addr);
1572 break;
1573 }
1574 }
1575 }
1576#endif /* CONFIG_USE_GUEST_BASE */
1577
31e31b8a
FB
1578 /* Do this so that we can load the interpreter, if need be. We will
1579 change some of these later */
1580 info->rss = 0;
1581 bprm->p = setup_arg_pages(bprm->p, bprm, info);
1582 info->start_stack = bprm->p;
1583
1584 /* Now we do a little grungy work by mmaping the ELF image into
1585 * the correct location in memory. At this point, we assume that
1586 * the image should be loaded at fixed address, not at a variable
1587 * address.
1588 */
1589
31e31b8a 1590 for(i = 0, elf_ppnt = elf_phdata; i < elf_ex.e_phnum; i++, elf_ppnt++) {
09bfb054
FB
1591 int elf_prot = 0;
1592 int elf_flags = 0;
992f48a0 1593 abi_ulong error;
3b46e624 1594
09bfb054
FB
1595 if (elf_ppnt->p_type != PT_LOAD)
1596 continue;
3b46e624 1597
09bfb054
FB
1598 if (elf_ppnt->p_flags & PF_R) elf_prot |= PROT_READ;
1599 if (elf_ppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1600 if (elf_ppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
1601 elf_flags = MAP_PRIVATE | MAP_DENYWRITE;
1602 if (elf_ex.e_type == ET_EXEC || load_addr_set) {
1603 elf_flags |= MAP_FIXED;
1604 } else if (elf_ex.e_type == ET_DYN) {
1605 /* Try and get dynamic programs out of the way of the default mmap
1606 base, as well as whatever program they might try to exec. This
1607 is because the brk will follow the loader, and is not movable. */
1608 /* NOTE: for qemu, we do a big mmap to get enough space
e91c8a77 1609 without hardcoding any address */
54936004 1610 error = target_mmap(0, ET_DYN_MAP_SIZE,
5fafdf24 1611 PROT_NONE, MAP_PRIVATE | MAP_ANON,
54936004 1612 -1, 0);
09bfb054
FB
1613 if (error == -1) {
1614 perror("mmap");
1615 exit(-1);
1616 }
54936004 1617 load_bias = TARGET_ELF_PAGESTART(error - elf_ppnt->p_vaddr);
09bfb054 1618 }
3b46e624 1619
54936004
FB
1620 error = target_mmap(TARGET_ELF_PAGESTART(load_bias + elf_ppnt->p_vaddr),
1621 (elf_ppnt->p_filesz +
1622 TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr)),
1623 elf_prot,
1624 (MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE),
1625 bprm->fd,
5fafdf24 1626 (elf_ppnt->p_offset -
54936004 1627 TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr)));
09bfb054
FB
1628 if (error == -1) {
1629 perror("mmap");
1630 exit(-1);
1631 }
31e31b8a
FB
1632
1633#ifdef LOW_ELF_STACK
54936004
FB
1634 if (TARGET_ELF_PAGESTART(elf_ppnt->p_vaddr) < elf_stack)
1635 elf_stack = TARGET_ELF_PAGESTART(elf_ppnt->p_vaddr);
31e31b8a 1636#endif
3b46e624 1637
09bfb054
FB
1638 if (!load_addr_set) {
1639 load_addr_set = 1;
1640 load_addr = elf_ppnt->p_vaddr - elf_ppnt->p_offset;
1641 if (elf_ex.e_type == ET_DYN) {
1642 load_bias += error -
54936004 1643 TARGET_ELF_PAGESTART(load_bias + elf_ppnt->p_vaddr);
09bfb054 1644 load_addr += load_bias;
84409ddb 1645 reloc_func_desc = load_bias;
09bfb054
FB
1646 }
1647 }
1648 k = elf_ppnt->p_vaddr;
5fafdf24 1649 if (k < start_code)
09bfb054 1650 start_code = k;
863cf0b7
JM
1651 if (start_data < k)
1652 start_data = k;
09bfb054 1653 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
5fafdf24 1654 if (k > elf_bss)
09bfb054
FB
1655 elf_bss = k;
1656 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1657 end_code = k;
5fafdf24 1658 if (end_data < k)
09bfb054
FB
1659 end_data = k;
1660 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1661 if (k > elf_brk) elf_brk = k;
31e31b8a
FB
1662 }
1663
09bfb054
FB
1664 elf_entry += load_bias;
1665 elf_bss += load_bias;
1666 elf_brk += load_bias;
1667 start_code += load_bias;
1668 end_code += load_bias;
863cf0b7 1669 start_data += load_bias;
09bfb054
FB
1670 end_data += load_bias;
1671
31e31b8a
FB
1672 if (elf_interpreter) {
1673 if (interpreter_type & 1) {
1674 elf_entry = load_aout_interp(&interp_ex, interpreter_fd);
1675 }
1676 else if (interpreter_type & 2) {
1677 elf_entry = load_elf_interp(&interp_elf_ex, interpreter_fd,
1678 &interp_load_addr);
1679 }
84409ddb 1680 reloc_func_desc = interp_load_addr;
31e31b8a
FB
1681
1682 close(interpreter_fd);
1683 free(elf_interpreter);
1684
992f48a0 1685 if (elf_entry == ~((abi_ulong)0UL)) {
31e31b8a
FB
1686 printf("Unable to load interpreter\n");
1687 free(elf_phdata);
1688 exit(-1);
1689 return 0;
1690 }
1691 }
1692
1693 free(elf_phdata);
1694
93fcfe39 1695 if (qemu_log_enabled())
689f936f
FB
1696 load_symbols(&elf_ex, bprm->fd);
1697
31e31b8a
FB
1698 if (interpreter_type != INTERPRETER_AOUT) close(bprm->fd);
1699 info->personality = (ibcs2_interpreter ? PER_SVR4 : PER_LINUX);
1700
1701#ifdef LOW_ELF_STACK
1702 info->start_stack = bprm->p = elf_stack - 4;
1703#endif
53a5960a 1704 bprm->p = create_elf_tables(bprm->p,
31e31b8a
FB
1705 bprm->argc,
1706 bprm->envc,
a1516e92 1707 &elf_ex,
09bfb054 1708 load_addr, load_bias,
31e31b8a
FB
1709 interp_load_addr,
1710 (interpreter_type == INTERPRETER_AOUT ? 0 : 1),
1711 info);
92a343da 1712 info->load_addr = reloc_func_desc;
31e31b8a
FB
1713 info->start_brk = info->brk = elf_brk;
1714 info->end_code = end_code;
1715 info->start_code = start_code;
863cf0b7 1716 info->start_data = start_data;
31e31b8a
FB
1717 info->end_data = end_data;
1718 info->start_stack = bprm->p;
1719
1720 /* Calling set_brk effectively mmaps the pages that we need for the bss and break
1721 sections */
1722 set_brk(elf_bss, elf_brk);
1723
768a4a36 1724 padzero(elf_bss, elf_brk);
31e31b8a
FB
1725
1726#if 0
1727 printf("(start_brk) %x\n" , info->start_brk);
1728 printf("(end_code) %x\n" , info->end_code);
1729 printf("(start_code) %x\n" , info->start_code);
1730 printf("(end_data) %x\n" , info->end_data);
1731 printf("(start_stack) %x\n" , info->start_stack);
1732 printf("(brk) %x\n" , info->brk);
1733#endif
1734
1735 if ( info->personality == PER_SVR4 )
1736 {
1737 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1738 and some applications "depend" upon this behavior.
1739 Since we do not have the power to recompile these, we
1740 emulate the SVr4 behavior. Sigh. */
83fb7adf 1741 mapped_addr = target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
54936004 1742 MAP_FIXED | MAP_PRIVATE, -1, 0);
31e31b8a
FB
1743 }
1744
31e31b8a
FB
1745 info->entry = elf_entry;
1746
edf8e2af
MW
1747#ifdef USE_ELF_CORE_DUMP
1748 bprm->core_dump = &elf_core_dump;
1749#endif
1750
31e31b8a
FB
1751 return 0;
1752}
1753
edf8e2af
MW
1754#ifdef USE_ELF_CORE_DUMP
1755
1756/*
1757 * Definitions to generate Intel SVR4-like core files.
a2547a13 1758 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
1759 * tacked on the front to prevent clashes with linux definitions,
1760 * and the typedef forms have been avoided. This is mostly like
1761 * the SVR4 structure, but more Linuxy, with things that Linux does
1762 * not support and which gdb doesn't really use excluded.
1763 *
1764 * Fields we don't dump (their contents is zero) in linux-user qemu
1765 * are marked with XXX.
1766 *
1767 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
1768 *
1769 * Porting ELF coredump for target is (quite) simple process. First you
1770 * define ELF_USE_CORE_DUMP in target ELF code (where init_thread() for
1771 * the target resides):
1772 *
1773 * #define USE_ELF_CORE_DUMP
1774 *
1775 * Next you define type of register set used for dumping. ELF specification
1776 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
1777 *
c227f099 1778 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 1779 * #define ELF_NREG <number of registers>
c227f099 1780 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af
MW
1781 *
1782 * Then define following types to match target types. Actual types can
1783 * be found from linux kernel (arch/<ARCH>/include/asm/posix_types.h):
1784 *
c227f099
AL
1785 * typedef <target_uid_type> target_uid_t;
1786 * typedef <target_gid_type> target_gid_t;
1787 * typedef <target_pid_type> target_pid_t;
edf8e2af
MW
1788 *
1789 * Last step is to implement target specific function that copies registers
1790 * from given cpu into just specified register set. Prototype is:
1791 *
c227f099 1792 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
a2547a13 1793 * const CPUState *env);
edf8e2af
MW
1794 *
1795 * Parameters:
1796 * regs - copy register values into here (allocated and zeroed by caller)
1797 * env - copy registers from here
1798 *
1799 * Example for ARM target is provided in this file.
1800 */
1801
1802/* An ELF note in memory */
1803struct memelfnote {
1804 const char *name;
1805 size_t namesz;
1806 size_t namesz_rounded;
1807 int type;
1808 size_t datasz;
1809 void *data;
1810 size_t notesz;
1811};
1812
a2547a13 1813struct target_elf_siginfo {
edf8e2af
MW
1814 int si_signo; /* signal number */
1815 int si_code; /* extra code */
1816 int si_errno; /* errno */
1817};
1818
a2547a13
LD
1819struct target_elf_prstatus {
1820 struct target_elf_siginfo pr_info; /* Info associated with signal */
edf8e2af
MW
1821 short pr_cursig; /* Current signal */
1822 target_ulong pr_sigpend; /* XXX */
1823 target_ulong pr_sighold; /* XXX */
c227f099
AL
1824 target_pid_t pr_pid;
1825 target_pid_t pr_ppid;
1826 target_pid_t pr_pgrp;
1827 target_pid_t pr_sid;
edf8e2af
MW
1828 struct target_timeval pr_utime; /* XXX User time */
1829 struct target_timeval pr_stime; /* XXX System time */
1830 struct target_timeval pr_cutime; /* XXX Cumulative user time */
1831 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 1832 target_elf_gregset_t pr_reg; /* GP registers */
edf8e2af
MW
1833 int pr_fpvalid; /* XXX */
1834};
1835
1836#define ELF_PRARGSZ (80) /* Number of chars for args */
1837
a2547a13 1838struct target_elf_prpsinfo {
edf8e2af
MW
1839 char pr_state; /* numeric process state */
1840 char pr_sname; /* char for pr_state */
1841 char pr_zomb; /* zombie */
1842 char pr_nice; /* nice val */
1843 target_ulong pr_flag; /* flags */
c227f099
AL
1844 target_uid_t pr_uid;
1845 target_gid_t pr_gid;
1846 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af
MW
1847 /* Lots missing */
1848 char pr_fname[16]; /* filename of executable */
1849 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
1850};
1851
1852/* Here is the structure in which status of each thread is captured. */
1853struct elf_thread_status {
72cf2d4f 1854 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 1855 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
1856#if 0
1857 elf_fpregset_t fpu; /* NT_PRFPREG */
1858 struct task_struct *thread;
1859 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1860#endif
1861 struct memelfnote notes[1];
1862 int num_notes;
1863};
1864
1865struct elf_note_info {
1866 struct memelfnote *notes;
a2547a13
LD
1867 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
1868 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 1869
72cf2d4f 1870 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
edf8e2af
MW
1871#if 0
1872 /*
1873 * Current version of ELF coredump doesn't support
1874 * dumping fp regs etc.
1875 */
1876 elf_fpregset_t *fpu;
1877 elf_fpxregset_t *xfpu;
1878 int thread_status_size;
1879#endif
1880 int notes_size;
1881 int numnote;
1882};
1883
1884struct vm_area_struct {
1885 abi_ulong vma_start; /* start vaddr of memory region */
1886 abi_ulong vma_end; /* end vaddr of memory region */
1887 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 1888 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
1889};
1890
1891struct mm_struct {
72cf2d4f 1892 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
1893 int mm_count; /* number of mappings */
1894};
1895
1896static struct mm_struct *vma_init(void);
1897static void vma_delete(struct mm_struct *);
1898static int vma_add_mapping(struct mm_struct *, abi_ulong,
1899 abi_ulong, abi_ulong);
1900static int vma_get_mapping_count(const struct mm_struct *);
1901static struct vm_area_struct *vma_first(const struct mm_struct *);
1902static struct vm_area_struct *vma_next(struct vm_area_struct *);
1903static abi_ulong vma_dump_size(const struct vm_area_struct *);
1904static int vma_walker(void *priv, unsigned long start, unsigned long end,
1905 unsigned long flags);
1906
1907static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
1908static void fill_note(struct memelfnote *, const char *, int,
1909 unsigned int, void *);
a2547a13
LD
1910static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
1911static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
1912static void fill_auxv_note(struct memelfnote *, const TaskState *);
1913static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
1914static size_t note_size(const struct memelfnote *);
1915static void free_note_info(struct elf_note_info *);
1916static int fill_note_info(struct elf_note_info *, long, const CPUState *);
1917static void fill_thread_info(struct elf_note_info *, const CPUState *);
1918static int core_dump_filename(const TaskState *, char *, size_t);
1919
1920static int dump_write(int, const void *, size_t);
1921static int write_note(struct memelfnote *, int);
1922static int write_note_info(struct elf_note_info *, int);
1923
1924#ifdef BSWAP_NEEDED
a2547a13
LD
1925static void bswap_prstatus(struct target_elf_prstatus *);
1926static void bswap_psinfo(struct target_elf_prpsinfo *);
edf8e2af 1927
a2547a13 1928static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af
MW
1929{
1930 prstatus->pr_info.si_signo = tswapl(prstatus->pr_info.si_signo);
1931 prstatus->pr_info.si_code = tswapl(prstatus->pr_info.si_code);
1932 prstatus->pr_info.si_errno = tswapl(prstatus->pr_info.si_errno);
1933 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
1934 prstatus->pr_sigpend = tswapl(prstatus->pr_sigpend);
1935 prstatus->pr_sighold = tswapl(prstatus->pr_sighold);
1936 prstatus->pr_pid = tswap32(prstatus->pr_pid);
1937 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
1938 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
1939 prstatus->pr_sid = tswap32(prstatus->pr_sid);
1940 /* cpu times are not filled, so we skip them */
1941 /* regs should be in correct format already */
1942 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
1943}
1944
a2547a13 1945static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af
MW
1946{
1947 psinfo->pr_flag = tswapl(psinfo->pr_flag);
1948 psinfo->pr_uid = tswap16(psinfo->pr_uid);
1949 psinfo->pr_gid = tswap16(psinfo->pr_gid);
1950 psinfo->pr_pid = tswap32(psinfo->pr_pid);
1951 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
1952 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
1953 psinfo->pr_sid = tswap32(psinfo->pr_sid);
1954}
1955#endif /* BSWAP_NEEDED */
1956
1957/*
1958 * Minimal support for linux memory regions. These are needed
1959 * when we are finding out what memory exactly belongs to
1960 * emulated process. No locks needed here, as long as
1961 * thread that received the signal is stopped.
1962 */
1963
1964static struct mm_struct *vma_init(void)
1965{
1966 struct mm_struct *mm;
1967
1968 if ((mm = qemu_malloc(sizeof (*mm))) == NULL)
1969 return (NULL);
1970
1971 mm->mm_count = 0;
72cf2d4f 1972 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
1973
1974 return (mm);
1975}
1976
1977static void vma_delete(struct mm_struct *mm)
1978{
1979 struct vm_area_struct *vma;
1980
1981 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 1982 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
1983 qemu_free(vma);
1984 }
1985 qemu_free(mm);
1986}
1987
1988static int vma_add_mapping(struct mm_struct *mm, abi_ulong start,
1989 abi_ulong end, abi_ulong flags)
1990{
1991 struct vm_area_struct *vma;
1992
1993 if ((vma = qemu_mallocz(sizeof (*vma))) == NULL)
1994 return (-1);
1995
1996 vma->vma_start = start;
1997 vma->vma_end = end;
1998 vma->vma_flags = flags;
1999
72cf2d4f 2000 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
2001 mm->mm_count++;
2002
2003 return (0);
2004}
2005
2006static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2007{
72cf2d4f 2008 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
2009}
2010
2011static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2012{
72cf2d4f 2013 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
2014}
2015
2016static int vma_get_mapping_count(const struct mm_struct *mm)
2017{
2018 return (mm->mm_count);
2019}
2020
2021/*
2022 * Calculate file (dump) size of given memory region.
2023 */
2024static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2025{
2026 /* if we cannot even read the first page, skip it */
2027 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2028 return (0);
2029
2030 /*
2031 * Usually we don't dump executable pages as they contain
2032 * non-writable code that debugger can read directly from
2033 * target library etc. However, thread stacks are marked
2034 * also executable so we read in first page of given region
2035 * and check whether it contains elf header. If there is
2036 * no elf header, we dump it.
2037 */
2038 if (vma->vma_flags & PROT_EXEC) {
2039 char page[TARGET_PAGE_SIZE];
2040
2041 copy_from_user(page, vma->vma_start, sizeof (page));
2042 if ((page[EI_MAG0] == ELFMAG0) &&
2043 (page[EI_MAG1] == ELFMAG1) &&
2044 (page[EI_MAG2] == ELFMAG2) &&
2045 (page[EI_MAG3] == ELFMAG3)) {
2046 /*
2047 * Mappings are possibly from ELF binary. Don't dump
2048 * them.
2049 */
2050 return (0);
2051 }
2052 }
2053
2054 return (vma->vma_end - vma->vma_start);
2055}
2056
2057static int vma_walker(void *priv, unsigned long start, unsigned long end,
2058 unsigned long flags)
2059{
2060 struct mm_struct *mm = (struct mm_struct *)priv;
2061
2062 /*
2063 * Don't dump anything that qemu has reserved for internal use.
2064 */
2065 if (flags & PAGE_RESERVED)
2066 return (0);
2067
2068 vma_add_mapping(mm, start, end, flags);
2069 return (0);
2070}
2071
2072static void fill_note(struct memelfnote *note, const char *name, int type,
2073 unsigned int sz, void *data)
2074{
2075 unsigned int namesz;
2076
2077 namesz = strlen(name) + 1;
2078 note->name = name;
2079 note->namesz = namesz;
2080 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2081 note->type = type;
2082 note->datasz = roundup(sz, sizeof (int32_t));;
2083 note->data = data;
2084
2085 /*
2086 * We calculate rounded up note size here as specified by
2087 * ELF document.
2088 */
2089 note->notesz = sizeof (struct elf_note) +
2090 note->namesz_rounded + note->datasz;
2091}
2092
2093static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2094 uint32_t flags)
2095{
2096 (void) memset(elf, 0, sizeof(*elf));
2097
2098 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2099 elf->e_ident[EI_CLASS] = ELF_CLASS;
2100 elf->e_ident[EI_DATA] = ELF_DATA;
2101 elf->e_ident[EI_VERSION] = EV_CURRENT;
2102 elf->e_ident[EI_OSABI] = ELF_OSABI;
2103
2104 elf->e_type = ET_CORE;
2105 elf->e_machine = machine;
2106 elf->e_version = EV_CURRENT;
2107 elf->e_phoff = sizeof(struct elfhdr);
2108 elf->e_flags = flags;
2109 elf->e_ehsize = sizeof(struct elfhdr);
2110 elf->e_phentsize = sizeof(struct elf_phdr);
2111 elf->e_phnum = segs;
2112
2113#ifdef BSWAP_NEEDED
2114 bswap_ehdr(elf);
2115#endif
2116}
2117
2118static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2119{
2120 phdr->p_type = PT_NOTE;
2121 phdr->p_offset = offset;
2122 phdr->p_vaddr = 0;
2123 phdr->p_paddr = 0;
2124 phdr->p_filesz = sz;
2125 phdr->p_memsz = 0;
2126 phdr->p_flags = 0;
2127 phdr->p_align = 0;
2128
2129#ifdef BSWAP_NEEDED
2130 bswap_phdr(phdr);
2131#endif
2132}
2133
2134static size_t note_size(const struct memelfnote *note)
2135{
2136 return (note->notesz);
2137}
2138
a2547a13 2139static void fill_prstatus(struct target_elf_prstatus *prstatus,
edf8e2af
MW
2140 const TaskState *ts, int signr)
2141{
2142 (void) memset(prstatus, 0, sizeof (*prstatus));
2143 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2144 prstatus->pr_pid = ts->ts_tid;
2145 prstatus->pr_ppid = getppid();
2146 prstatus->pr_pgrp = getpgrp();
2147 prstatus->pr_sid = getsid(0);
2148
2149#ifdef BSWAP_NEEDED
2150 bswap_prstatus(prstatus);
2151#endif
2152}
2153
a2547a13 2154static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af
MW
2155{
2156 char *filename, *base_filename;
2157 unsigned int i, len;
2158
2159 (void) memset(psinfo, 0, sizeof (*psinfo));
2160
2161 len = ts->info->arg_end - ts->info->arg_start;
2162 if (len >= ELF_PRARGSZ)
2163 len = ELF_PRARGSZ - 1;
2164 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2165 return -EFAULT;
2166 for (i = 0; i < len; i++)
2167 if (psinfo->pr_psargs[i] == 0)
2168 psinfo->pr_psargs[i] = ' ';
2169 psinfo->pr_psargs[len] = 0;
2170
2171 psinfo->pr_pid = getpid();
2172 psinfo->pr_ppid = getppid();
2173 psinfo->pr_pgrp = getpgrp();
2174 psinfo->pr_sid = getsid(0);
2175 psinfo->pr_uid = getuid();
2176 psinfo->pr_gid = getgid();
2177
2178 filename = strdup(ts->bprm->filename);
2179 base_filename = strdup(basename(filename));
2180 (void) strncpy(psinfo->pr_fname, base_filename,
2181 sizeof(psinfo->pr_fname));
2182 free(base_filename);
2183 free(filename);
2184
2185#ifdef BSWAP_NEEDED
2186 bswap_psinfo(psinfo);
2187#endif
2188 return (0);
2189}
2190
2191static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2192{
2193 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2194 elf_addr_t orig_auxv = auxv;
2195 abi_ulong val;
2196 void *ptr;
2197 int i, len;
2198
2199 /*
2200 * Auxiliary vector is stored in target process stack. It contains
2201 * {type, value} pairs that we need to dump into note. This is not
2202 * strictly necessary but we do it here for sake of completeness.
2203 */
2204
2205 /* find out lenght of the vector, AT_NULL is terminator */
2206 i = len = 0;
2207 do {
2208 get_user_ual(val, auxv);
2209 i += 2;
2210 auxv += 2 * sizeof (elf_addr_t);
2211 } while (val != AT_NULL);
2212 len = i * sizeof (elf_addr_t);
2213
2214 /* read in whole auxv vector and copy it to memelfnote */
2215 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2216 if (ptr != NULL) {
2217 fill_note(note, "CORE", NT_AUXV, len, ptr);
2218 unlock_user(ptr, auxv, len);
2219 }
2220}
2221
2222/*
2223 * Constructs name of coredump file. We have following convention
2224 * for the name:
2225 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2226 *
2227 * Returns 0 in case of success, -1 otherwise (errno is set).
2228 */
2229static int core_dump_filename(const TaskState *ts, char *buf,
2230 size_t bufsize)
2231{
2232 char timestamp[64];
2233 char *filename = NULL;
2234 char *base_filename = NULL;
2235 struct timeval tv;
2236 struct tm tm;
2237
2238 assert(bufsize >= PATH_MAX);
2239
2240 if (gettimeofday(&tv, NULL) < 0) {
2241 (void) fprintf(stderr, "unable to get current timestamp: %s",
2242 strerror(errno));
2243 return (-1);
2244 }
2245
2246 filename = strdup(ts->bprm->filename);
2247 base_filename = strdup(basename(filename));
2248 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2249 localtime_r(&tv.tv_sec, &tm));
2250 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
2251 base_filename, timestamp, (int)getpid());
2252 free(base_filename);
2253 free(filename);
2254
2255 return (0);
2256}
2257
2258static int dump_write(int fd, const void *ptr, size_t size)
2259{
2260 const char *bufp = (const char *)ptr;
2261 ssize_t bytes_written, bytes_left;
2262 struct rlimit dumpsize;
2263 off_t pos;
2264
2265 bytes_written = 0;
2266 getrlimit(RLIMIT_CORE, &dumpsize);
2267 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2268 if (errno == ESPIPE) { /* not a seekable stream */
2269 bytes_left = size;
2270 } else {
2271 return pos;
2272 }
2273 } else {
2274 if (dumpsize.rlim_cur <= pos) {
2275 return -1;
2276 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2277 bytes_left = size;
2278 } else {
2279 size_t limit_left=dumpsize.rlim_cur - pos;
2280 bytes_left = limit_left >= size ? size : limit_left ;
2281 }
2282 }
2283
2284 /*
2285 * In normal conditions, single write(2) should do but
2286 * in case of socket etc. this mechanism is more portable.
2287 */
2288 do {
2289 bytes_written = write(fd, bufp, bytes_left);
2290 if (bytes_written < 0) {
2291 if (errno == EINTR)
2292 continue;
2293 return (-1);
2294 } else if (bytes_written == 0) { /* eof */
2295 return (-1);
2296 }
2297 bufp += bytes_written;
2298 bytes_left -= bytes_written;
2299 } while (bytes_left > 0);
2300
2301 return (0);
2302}
2303
2304static int write_note(struct memelfnote *men, int fd)
2305{
2306 struct elf_note en;
2307
2308 en.n_namesz = men->namesz;
2309 en.n_type = men->type;
2310 en.n_descsz = men->datasz;
2311
2312#ifdef BSWAP_NEEDED
2313 bswap_note(&en);
2314#endif
2315
2316 if (dump_write(fd, &en, sizeof(en)) != 0)
2317 return (-1);
2318 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2319 return (-1);
2320 if (dump_write(fd, men->data, men->datasz) != 0)
2321 return (-1);
2322
2323 return (0);
2324}
2325
2326static void fill_thread_info(struct elf_note_info *info, const CPUState *env)
2327{
2328 TaskState *ts = (TaskState *)env->opaque;
2329 struct elf_thread_status *ets;
2330
2331 ets = qemu_mallocz(sizeof (*ets));
2332 ets->num_notes = 1; /* only prstatus is dumped */
2333 fill_prstatus(&ets->prstatus, ts, 0);
2334 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2335 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
2336 &ets->prstatus);
2337
72cf2d4f 2338 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
2339
2340 info->notes_size += note_size(&ets->notes[0]);
2341}
2342
2343static int fill_note_info(struct elf_note_info *info,
2344 long signr, const CPUState *env)
2345{
2346#define NUMNOTES 3
2347 CPUState *cpu = NULL;
2348 TaskState *ts = (TaskState *)env->opaque;
2349 int i;
2350
2351 (void) memset(info, 0, sizeof (*info));
2352
72cf2d4f 2353 QTAILQ_INIT(&info->thread_list);
edf8e2af
MW
2354
2355 info->notes = qemu_mallocz(NUMNOTES * sizeof (struct memelfnote));
2356 if (info->notes == NULL)
2357 return (-ENOMEM);
2358 info->prstatus = qemu_mallocz(sizeof (*info->prstatus));
2359 if (info->prstatus == NULL)
2360 return (-ENOMEM);
2361 info->psinfo = qemu_mallocz(sizeof (*info->psinfo));
2362 if (info->prstatus == NULL)
2363 return (-ENOMEM);
2364
2365 /*
2366 * First fill in status (and registers) of current thread
2367 * including process info & aux vector.
2368 */
2369 fill_prstatus(info->prstatus, ts, signr);
2370 elf_core_copy_regs(&info->prstatus->pr_reg, env);
2371 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
2372 sizeof (*info->prstatus), info->prstatus);
2373 fill_psinfo(info->psinfo, ts);
2374 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
2375 sizeof (*info->psinfo), info->psinfo);
2376 fill_auxv_note(&info->notes[2], ts);
2377 info->numnote = 3;
2378
2379 info->notes_size = 0;
2380 for (i = 0; i < info->numnote; i++)
2381 info->notes_size += note_size(&info->notes[i]);
2382
2383 /* read and fill status of all threads */
2384 cpu_list_lock();
2385 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
2386 if (cpu == thread_env)
2387 continue;
2388 fill_thread_info(info, cpu);
2389 }
2390 cpu_list_unlock();
2391
2392 return (0);
2393}
2394
2395static void free_note_info(struct elf_note_info *info)
2396{
2397 struct elf_thread_status *ets;
2398
72cf2d4f
BS
2399 while (!QTAILQ_EMPTY(&info->thread_list)) {
2400 ets = QTAILQ_FIRST(&info->thread_list);
2401 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
edf8e2af
MW
2402 qemu_free(ets);
2403 }
2404
2405 qemu_free(info->prstatus);
2406 qemu_free(info->psinfo);
2407 qemu_free(info->notes);
2408}
2409
2410static int write_note_info(struct elf_note_info *info, int fd)
2411{
2412 struct elf_thread_status *ets;
2413 int i, error = 0;
2414
2415 /* write prstatus, psinfo and auxv for current thread */
2416 for (i = 0; i < info->numnote; i++)
2417 if ((error = write_note(&info->notes[i], fd)) != 0)
2418 return (error);
2419
2420 /* write prstatus for each thread */
2421 for (ets = info->thread_list.tqh_first; ets != NULL;
2422 ets = ets->ets_link.tqe_next) {
2423 if ((error = write_note(&ets->notes[0], fd)) != 0)
2424 return (error);
2425 }
2426
2427 return (0);
2428}
2429
2430/*
2431 * Write out ELF coredump.
2432 *
2433 * See documentation of ELF object file format in:
2434 * http://www.caldera.com/developers/devspecs/gabi41.pdf
2435 *
2436 * Coredump format in linux is following:
2437 *
2438 * 0 +----------------------+ \
2439 * | ELF header | ET_CORE |
2440 * +----------------------+ |
2441 * | ELF program headers | |--- headers
2442 * | - NOTE section | |
2443 * | - PT_LOAD sections | |
2444 * +----------------------+ /
2445 * | NOTEs: |
2446 * | - NT_PRSTATUS |
2447 * | - NT_PRSINFO |
2448 * | - NT_AUXV |
2449 * +----------------------+ <-- aligned to target page
2450 * | Process memory dump |
2451 * : :
2452 * . .
2453 * : :
2454 * | |
2455 * +----------------------+
2456 *
2457 * NT_PRSTATUS -> struct elf_prstatus (per thread)
2458 * NT_PRSINFO -> struct elf_prpsinfo
2459 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2460 *
2461 * Format follows System V format as close as possible. Current
2462 * version limitations are as follows:
2463 * - no floating point registers are dumped
2464 *
2465 * Function returns 0 in case of success, negative errno otherwise.
2466 *
2467 * TODO: make this work also during runtime: it should be
2468 * possible to force coredump from running process and then
2469 * continue processing. For example qemu could set up SIGUSR2
2470 * handler (provided that target process haven't registered
2471 * handler for that) that does the dump when signal is received.
2472 */
2473static int elf_core_dump(int signr, const CPUState *env)
2474{
2475 const TaskState *ts = (const TaskState *)env->opaque;
2476 struct vm_area_struct *vma = NULL;
2477 char corefile[PATH_MAX];
2478 struct elf_note_info info;
2479 struct elfhdr elf;
2480 struct elf_phdr phdr;
2481 struct rlimit dumpsize;
2482 struct mm_struct *mm = NULL;
2483 off_t offset = 0, data_offset = 0;
2484 int segs = 0;
2485 int fd = -1;
2486
2487 errno = 0;
2488 getrlimit(RLIMIT_CORE, &dumpsize);
2489 if (dumpsize.rlim_cur == 0)
2490 return 0;
2491
2492 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
2493 return (-errno);
2494
2495 if ((fd = open(corefile, O_WRONLY | O_CREAT,
2496 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
2497 return (-errno);
2498
2499 /*
2500 * Walk through target process memory mappings and
2501 * set up structure containing this information. After
2502 * this point vma_xxx functions can be used.
2503 */
2504 if ((mm = vma_init()) == NULL)
2505 goto out;
2506
2507 walk_memory_regions(mm, vma_walker);
2508 segs = vma_get_mapping_count(mm);
2509
2510 /*
2511 * Construct valid coredump ELF header. We also
2512 * add one more segment for notes.
2513 */
2514 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
2515 if (dump_write(fd, &elf, sizeof (elf)) != 0)
2516 goto out;
2517
2518 /* fill in in-memory version of notes */
2519 if (fill_note_info(&info, signr, env) < 0)
2520 goto out;
2521
2522 offset += sizeof (elf); /* elf header */
2523 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
2524
2525 /* write out notes program header */
2526 fill_elf_note_phdr(&phdr, info.notes_size, offset);
2527
2528 offset += info.notes_size;
2529 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
2530 goto out;
2531
2532 /*
2533 * ELF specification wants data to start at page boundary so
2534 * we align it here.
2535 */
2536 offset = roundup(offset, ELF_EXEC_PAGESIZE);
2537
2538 /*
2539 * Write program headers for memory regions mapped in
2540 * the target process.
2541 */
2542 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2543 (void) memset(&phdr, 0, sizeof (phdr));
2544
2545 phdr.p_type = PT_LOAD;
2546 phdr.p_offset = offset;
2547 phdr.p_vaddr = vma->vma_start;
2548 phdr.p_paddr = 0;
2549 phdr.p_filesz = vma_dump_size(vma);
2550 offset += phdr.p_filesz;
2551 phdr.p_memsz = vma->vma_end - vma->vma_start;
2552 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
2553 if (vma->vma_flags & PROT_WRITE)
2554 phdr.p_flags |= PF_W;
2555 if (vma->vma_flags & PROT_EXEC)
2556 phdr.p_flags |= PF_X;
2557 phdr.p_align = ELF_EXEC_PAGESIZE;
2558
2559 dump_write(fd, &phdr, sizeof (phdr));
2560 }
2561
2562 /*
2563 * Next we write notes just after program headers. No
2564 * alignment needed here.
2565 */
2566 if (write_note_info(&info, fd) < 0)
2567 goto out;
2568
2569 /* align data to page boundary */
2570 data_offset = lseek(fd, 0, SEEK_CUR);
2571 data_offset = TARGET_PAGE_ALIGN(data_offset);
2572 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
2573 goto out;
2574
2575 /*
2576 * Finally we can dump process memory into corefile as well.
2577 */
2578 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2579 abi_ulong addr;
2580 abi_ulong end;
2581
2582 end = vma->vma_start + vma_dump_size(vma);
2583
2584 for (addr = vma->vma_start; addr < end;
2585 addr += TARGET_PAGE_SIZE) {
2586 char page[TARGET_PAGE_SIZE];
2587 int error;
2588
2589 /*
2590 * Read in page from target process memory and
2591 * write it to coredump file.
2592 */
2593 error = copy_from_user(page, addr, sizeof (page));
2594 if (error != 0) {
2595 (void) fprintf(stderr, "unable to dump " TARGET_FMT_lx "\n",
2596 addr);
2597 errno = -error;
2598 goto out;
2599 }
2600 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
2601 goto out;
2602 }
2603 }
2604
2605out:
2606 free_note_info(&info);
2607 if (mm != NULL)
2608 vma_delete(mm);
2609 (void) close(fd);
2610
2611 if (errno != 0)
2612 return (-errno);
2613 return (0);
2614}
2615
2616#endif /* USE_ELF_CORE_DUMP */
2617
31e31b8a
FB
2618static int load_aout_interp(void * exptr, int interp_fd)
2619{
2620 printf("a.out interpreter not yet supported\n");
2621 return(0);
2622}
2623
e5fe0c52
PB
2624void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
2625{
2626 init_thread(regs, infop);
2627}