]> git.proxmox.com Git - qemu.git/blame - linux-user/elfload.c
target-mips: Enable access to required RDHWR hardware registers
[qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
edf8e2af
MW
2#include <sys/time.h>
3#include <sys/param.h>
31e31b8a
FB
4
5#include <stdio.h>
6#include <sys/types.h>
7#include <fcntl.h>
31e31b8a
FB
8#include <errno.h>
9#include <unistd.h>
10#include <sys/mman.h>
edf8e2af 11#include <sys/resource.h>
31e31b8a
FB
12#include <stdlib.h>
13#include <string.h>
edf8e2af 14#include <time.h>
31e31b8a 15
3ef693a0 16#include "qemu.h"
689f936f 17#include "disas.h"
31e31b8a 18
e58ffeb3 19#ifdef _ARCH_PPC64
a6cc84f4 20#undef ARCH_DLINFO
21#undef ELF_PLATFORM
22#undef ELF_HWCAP
23#undef ELF_CLASS
24#undef ELF_DATA
25#undef ELF_ARCH
26#endif
27
edf8e2af
MW
28#define ELF_OSABI ELFOSABI_SYSV
29
cb33da57
BS
30/* from personality.h */
31
32/*
33 * Flags for bug emulation.
34 *
35 * These occupy the top three bytes.
36 */
37enum {
d97ef72e
RH
38 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
39 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
40 descriptors (signal handling) */
41 MMAP_PAGE_ZERO = 0x0100000,
42 ADDR_COMPAT_LAYOUT = 0x0200000,
43 READ_IMPLIES_EXEC = 0x0400000,
44 ADDR_LIMIT_32BIT = 0x0800000,
45 SHORT_INODE = 0x1000000,
46 WHOLE_SECONDS = 0x2000000,
47 STICKY_TIMEOUTS = 0x4000000,
48 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
49};
50
51/*
52 * Personality types.
53 *
54 * These go in the low byte. Avoid using the top bit, it will
55 * conflict with error returns.
56 */
57enum {
d97ef72e
RH
58 PER_LINUX = 0x0000,
59 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
60 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
61 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
62 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
64 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
65 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
66 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
67 PER_BSD = 0x0006,
68 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
69 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
70 PER_LINUX32 = 0x0008,
71 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
72 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
73 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
74 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
75 PER_RISCOS = 0x000c,
76 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
77 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
78 PER_OSF4 = 0x000f, /* OSF/1 v4 */
79 PER_HPUX = 0x0010,
80 PER_MASK = 0x00ff,
cb33da57
BS
81};
82
83/*
84 * Return the base personality without flags.
85 */
d97ef72e 86#define personality(pers) (pers & PER_MASK)
cb33da57 87
83fb7adf
FB
88/* this flag is uneffective under linux too, should be deleted */
89#ifndef MAP_DENYWRITE
90#define MAP_DENYWRITE 0
91#endif
92
93/* should probably go in elf.h */
94#ifndef ELIBBAD
95#define ELIBBAD 80
96#endif
97
28490231
RH
98#ifdef TARGET_WORDS_BIGENDIAN
99#define ELF_DATA ELFDATA2MSB
100#else
101#define ELF_DATA ELFDATA2LSB
102#endif
103
d97ef72e 104typedef target_ulong target_elf_greg_t;
21e807fa 105#ifdef USE_UID16
80f5ce75
LV
106typedef target_ushort target_uid_t;
107typedef target_ushort target_gid_t;
21e807fa 108#else
80f5ce75
LV
109typedef target_uint target_uid_t;
110typedef target_uint target_gid_t;
21e807fa 111#endif
80f5ce75 112typedef target_int target_pid_t;
21e807fa 113
30ac07d4
FB
114#ifdef TARGET_I386
115
15338fd7
FB
116#define ELF_PLATFORM get_elf_platform()
117
118static const char *get_elf_platform(void)
119{
120 static char elf_platform[] = "i386";
d5975363 121 int family = (thread_env->cpuid_version >> 8) & 0xff;
15338fd7
FB
122 if (family > 6)
123 family = 6;
124 if (family >= 3)
125 elf_platform[1] = '0' + family;
126 return elf_platform;
127}
128
129#define ELF_HWCAP get_elf_hwcap()
130
131static uint32_t get_elf_hwcap(void)
132{
d97ef72e 133 return thread_env->cpuid_features;
15338fd7
FB
134}
135
84409ddb
JM
136#ifdef TARGET_X86_64
137#define ELF_START_MMAP 0x2aaaaab000ULL
138#define elf_check_arch(x) ( ((x) == ELF_ARCH) )
139
140#define ELF_CLASS ELFCLASS64
84409ddb
JM
141#define ELF_ARCH EM_X86_64
142
143static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
144{
145 regs->rax = 0;
146 regs->rsp = infop->start_stack;
147 regs->rip = infop->entry;
148}
149
9edc5d79 150#define ELF_NREG 27
c227f099 151typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
152
153/*
154 * Note that ELF_NREG should be 29 as there should be place for
155 * TRAPNO and ERR "registers" as well but linux doesn't dump
156 * those.
157 *
158 * See linux kernel: arch/x86/include/asm/elf.h
159 */
05390248 160static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
161{
162 (*regs)[0] = env->regs[15];
163 (*regs)[1] = env->regs[14];
164 (*regs)[2] = env->regs[13];
165 (*regs)[3] = env->regs[12];
166 (*regs)[4] = env->regs[R_EBP];
167 (*regs)[5] = env->regs[R_EBX];
168 (*regs)[6] = env->regs[11];
169 (*regs)[7] = env->regs[10];
170 (*regs)[8] = env->regs[9];
171 (*regs)[9] = env->regs[8];
172 (*regs)[10] = env->regs[R_EAX];
173 (*regs)[11] = env->regs[R_ECX];
174 (*regs)[12] = env->regs[R_EDX];
175 (*regs)[13] = env->regs[R_ESI];
176 (*regs)[14] = env->regs[R_EDI];
177 (*regs)[15] = env->regs[R_EAX]; /* XXX */
178 (*regs)[16] = env->eip;
179 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
180 (*regs)[18] = env->eflags;
181 (*regs)[19] = env->regs[R_ESP];
182 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
183 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
184 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
185 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
186 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
187 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
188 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
189}
190
84409ddb
JM
191#else
192
30ac07d4
FB
193#define ELF_START_MMAP 0x80000000
194
30ac07d4
FB
195/*
196 * This is used to ensure we don't load something for the wrong architecture.
197 */
198#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
199
200/*
201 * These are used to set parameters in the core dumps.
202 */
d97ef72e 203#define ELF_CLASS ELFCLASS32
d97ef72e 204#define ELF_ARCH EM_386
30ac07d4 205
d97ef72e
RH
206static inline void init_thread(struct target_pt_regs *regs,
207 struct image_info *infop)
b346ff46
FB
208{
209 regs->esp = infop->start_stack;
210 regs->eip = infop->entry;
e5fe0c52
PB
211
212 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
213 starts %edx contains a pointer to a function which might be
214 registered using `atexit'. This provides a mean for the
215 dynamic linker to call DT_FINI functions for shared libraries
216 that have been loaded before the code runs.
217
218 A value of 0 tells we have no such handler. */
219 regs->edx = 0;
b346ff46 220}
9edc5d79 221
9edc5d79 222#define ELF_NREG 17
c227f099 223typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
224
225/*
226 * Note that ELF_NREG should be 19 as there should be place for
227 * TRAPNO and ERR "registers" as well but linux doesn't dump
228 * those.
229 *
230 * See linux kernel: arch/x86/include/asm/elf.h
231 */
05390248 232static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
233{
234 (*regs)[0] = env->regs[R_EBX];
235 (*regs)[1] = env->regs[R_ECX];
236 (*regs)[2] = env->regs[R_EDX];
237 (*regs)[3] = env->regs[R_ESI];
238 (*regs)[4] = env->regs[R_EDI];
239 (*regs)[5] = env->regs[R_EBP];
240 (*regs)[6] = env->regs[R_EAX];
241 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
242 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
243 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
244 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
245 (*regs)[11] = env->regs[R_EAX]; /* XXX */
246 (*regs)[12] = env->eip;
247 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
248 (*regs)[14] = env->eflags;
249 (*regs)[15] = env->regs[R_ESP];
250 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
251}
84409ddb 252#endif
b346ff46 253
9edc5d79 254#define USE_ELF_CORE_DUMP
d97ef72e 255#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
256
257#endif
258
259#ifdef TARGET_ARM
260
261#define ELF_START_MMAP 0x80000000
262
263#define elf_check_arch(x) ( (x) == EM_ARM )
264
d97ef72e 265#define ELF_CLASS ELFCLASS32
d97ef72e 266#define ELF_ARCH EM_ARM
b346ff46 267
d97ef72e
RH
268static inline void init_thread(struct target_pt_regs *regs,
269 struct image_info *infop)
b346ff46 270{
992f48a0 271 abi_long stack = infop->start_stack;
b346ff46
FB
272 memset(regs, 0, sizeof(*regs));
273 regs->ARM_cpsr = 0x10;
0240ded8 274 if (infop->entry & 1)
d97ef72e 275 regs->ARM_cpsr |= CPSR_T;
0240ded8 276 regs->ARM_pc = infop->entry & 0xfffffffe;
b346ff46 277 regs->ARM_sp = infop->start_stack;
2f619698
FB
278 /* FIXME - what to for failure of get_user()? */
279 get_user_ual(regs->ARM_r2, stack + 8); /* envp */
280 get_user_ual(regs->ARM_r1, stack + 4); /* envp */
a1516e92 281 /* XXX: it seems that r0 is zeroed after ! */
e5fe0c52
PB
282 regs->ARM_r0 = 0;
283 /* For uClinux PIC binaries. */
863cf0b7 284 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
e5fe0c52 285 regs->ARM_r10 = infop->start_data;
b346ff46
FB
286}
287
edf8e2af 288#define ELF_NREG 18
c227f099 289typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 290
05390248 291static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 292{
d049e626
NF
293 (*regs)[0] = tswapl(env->regs[0]);
294 (*regs)[1] = tswapl(env->regs[1]);
295 (*regs)[2] = tswapl(env->regs[2]);
296 (*regs)[3] = tswapl(env->regs[3]);
297 (*regs)[4] = tswapl(env->regs[4]);
298 (*regs)[5] = tswapl(env->regs[5]);
299 (*regs)[6] = tswapl(env->regs[6]);
300 (*regs)[7] = tswapl(env->regs[7]);
301 (*regs)[8] = tswapl(env->regs[8]);
302 (*regs)[9] = tswapl(env->regs[9]);
303 (*regs)[10] = tswapl(env->regs[10]);
304 (*regs)[11] = tswapl(env->regs[11]);
305 (*regs)[12] = tswapl(env->regs[12]);
306 (*regs)[13] = tswapl(env->regs[13]);
307 (*regs)[14] = tswapl(env->regs[14]);
308 (*regs)[15] = tswapl(env->regs[15]);
309
05390248 310 (*regs)[16] = tswapl(cpsr_read((CPUARMState *)env));
d049e626 311 (*regs)[17] = tswapl(env->regs[0]); /* XXX */
edf8e2af
MW
312}
313
30ac07d4 314#define USE_ELF_CORE_DUMP
d97ef72e 315#define ELF_EXEC_PAGESIZE 4096
30ac07d4 316
afce2927
FB
317enum
318{
d97ef72e
RH
319 ARM_HWCAP_ARM_SWP = 1 << 0,
320 ARM_HWCAP_ARM_HALF = 1 << 1,
321 ARM_HWCAP_ARM_THUMB = 1 << 2,
322 ARM_HWCAP_ARM_26BIT = 1 << 3,
323 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
324 ARM_HWCAP_ARM_FPA = 1 << 5,
325 ARM_HWCAP_ARM_VFP = 1 << 6,
326 ARM_HWCAP_ARM_EDSP = 1 << 7,
327 ARM_HWCAP_ARM_JAVA = 1 << 8,
328 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
329 ARM_HWCAP_ARM_THUMBEE = 1 << 10,
330 ARM_HWCAP_ARM_NEON = 1 << 11,
331 ARM_HWCAP_ARM_VFPv3 = 1 << 12,
332 ARM_HWCAP_ARM_VFPv3D16 = 1 << 13,
afce2927
FB
333};
334
806d1021
MI
335#define TARGET_HAS_VALIDATE_GUEST_SPACE
336/* Return 1 if the proposed guest space is suitable for the guest.
337 * Return 0 if the proposed guest space isn't suitable, but another
338 * address space should be tried.
339 * Return -1 if there is no way the proposed guest space can be
340 * valid regardless of the base.
341 * The guest code may leave a page mapped and populate it if the
342 * address is suitable.
343 */
344static int validate_guest_space(unsigned long guest_base,
345 unsigned long guest_size)
97cc7560
DDAG
346{
347 unsigned long real_start, test_page_addr;
348
349 /* We need to check that we can force a fault on access to the
350 * commpage at 0xffff0fxx
351 */
352 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
806d1021
MI
353
354 /* If the commpage lies within the already allocated guest space,
355 * then there is no way we can allocate it.
356 */
357 if (test_page_addr >= guest_base
358 && test_page_addr <= (guest_base + guest_size)) {
359 return -1;
360 }
361
97cc7560
DDAG
362 /* Note it needs to be writeable to let us initialise it */
363 real_start = (unsigned long)
364 mmap((void *)test_page_addr, qemu_host_page_size,
365 PROT_READ | PROT_WRITE,
366 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
367
368 /* If we can't map it then try another address */
369 if (real_start == -1ul) {
370 return 0;
371 }
372
373 if (real_start != test_page_addr) {
374 /* OS didn't put the page where we asked - unmap and reject */
375 munmap((void *)real_start, qemu_host_page_size);
376 return 0;
377 }
378
379 /* Leave the page mapped
380 * Populate it (mmap should have left it all 0'd)
381 */
382
383 /* Kernel helper versions */
384 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
385
386 /* Now it's populated make it RO */
387 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
388 perror("Protecting guest commpage");
389 exit(-1);
390 }
391
392 return 1; /* All good */
393}
394
adf050b1
BC
395
396#define ELF_HWCAP get_elf_hwcap()
397
398static uint32_t get_elf_hwcap(void)
399{
400 CPUARMState *e = thread_env;
401 uint32_t hwcaps = 0;
402
403 hwcaps |= ARM_HWCAP_ARM_SWP;
404 hwcaps |= ARM_HWCAP_ARM_HALF;
405 hwcaps |= ARM_HWCAP_ARM_THUMB;
406 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
407 hwcaps |= ARM_HWCAP_ARM_FPA;
408
409 /* probe for the extra features */
410#define GET_FEATURE(feat, hwcap) \
411 do {if (arm_feature(e, feat)) { hwcaps |= hwcap; } } while (0)
412 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
413 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
414 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
415 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
416 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
417 GET_FEATURE(ARM_FEATURE_VFP_FP16, ARM_HWCAP_ARM_VFPv3D16);
418#undef GET_FEATURE
419
420 return hwcaps;
421}
afce2927 422
30ac07d4
FB
423#endif
424
d2fbca94
GX
425#ifdef TARGET_UNICORE32
426
427#define ELF_START_MMAP 0x80000000
428
429#define elf_check_arch(x) ((x) == EM_UNICORE32)
430
431#define ELF_CLASS ELFCLASS32
432#define ELF_DATA ELFDATA2LSB
433#define ELF_ARCH EM_UNICORE32
434
435static inline void init_thread(struct target_pt_regs *regs,
436 struct image_info *infop)
437{
438 abi_long stack = infop->start_stack;
439 memset(regs, 0, sizeof(*regs));
440 regs->UC32_REG_asr = 0x10;
441 regs->UC32_REG_pc = infop->entry & 0xfffffffe;
442 regs->UC32_REG_sp = infop->start_stack;
443 /* FIXME - what to for failure of get_user()? */
444 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
445 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
446 /* XXX: it seems that r0 is zeroed after ! */
447 regs->UC32_REG_00 = 0;
448}
449
450#define ELF_NREG 34
451typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
452
05390248 453static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
d2fbca94
GX
454{
455 (*regs)[0] = env->regs[0];
456 (*regs)[1] = env->regs[1];
457 (*regs)[2] = env->regs[2];
458 (*regs)[3] = env->regs[3];
459 (*regs)[4] = env->regs[4];
460 (*regs)[5] = env->regs[5];
461 (*regs)[6] = env->regs[6];
462 (*regs)[7] = env->regs[7];
463 (*regs)[8] = env->regs[8];
464 (*regs)[9] = env->regs[9];
465 (*regs)[10] = env->regs[10];
466 (*regs)[11] = env->regs[11];
467 (*regs)[12] = env->regs[12];
468 (*regs)[13] = env->regs[13];
469 (*regs)[14] = env->regs[14];
470 (*regs)[15] = env->regs[15];
471 (*regs)[16] = env->regs[16];
472 (*regs)[17] = env->regs[17];
473 (*regs)[18] = env->regs[18];
474 (*regs)[19] = env->regs[19];
475 (*regs)[20] = env->regs[20];
476 (*regs)[21] = env->regs[21];
477 (*regs)[22] = env->regs[22];
478 (*regs)[23] = env->regs[23];
479 (*regs)[24] = env->regs[24];
480 (*regs)[25] = env->regs[25];
481 (*regs)[26] = env->regs[26];
482 (*regs)[27] = env->regs[27];
483 (*regs)[28] = env->regs[28];
484 (*regs)[29] = env->regs[29];
485 (*regs)[30] = env->regs[30];
486 (*regs)[31] = env->regs[31];
487
05390248 488 (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
d2fbca94
GX
489 (*regs)[33] = env->regs[0]; /* XXX */
490}
491
492#define USE_ELF_CORE_DUMP
493#define ELF_EXEC_PAGESIZE 4096
494
495#define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
496
497#endif
498
853d6f7a 499#ifdef TARGET_SPARC
a315a145 500#ifdef TARGET_SPARC64
853d6f7a
FB
501
502#define ELF_START_MMAP 0x80000000
cf973e46
AT
503#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
504 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 505#ifndef TARGET_ABI32
cb33da57 506#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
507#else
508#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
509#endif
853d6f7a 510
a315a145 511#define ELF_CLASS ELFCLASS64
5ef54116
FB
512#define ELF_ARCH EM_SPARCV9
513
d97ef72e 514#define STACK_BIAS 2047
a315a145 515
d97ef72e
RH
516static inline void init_thread(struct target_pt_regs *regs,
517 struct image_info *infop)
a315a145 518{
992f48a0 519#ifndef TARGET_ABI32
a315a145 520 regs->tstate = 0;
992f48a0 521#endif
a315a145
FB
522 regs->pc = infop->entry;
523 regs->npc = regs->pc + 4;
524 regs->y = 0;
992f48a0
BS
525#ifdef TARGET_ABI32
526 regs->u_regs[14] = infop->start_stack - 16 * 4;
527#else
cb33da57
BS
528 if (personality(infop->personality) == PER_LINUX32)
529 regs->u_regs[14] = infop->start_stack - 16 * 4;
530 else
531 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 532#endif
a315a145
FB
533}
534
535#else
536#define ELF_START_MMAP 0x80000000
cf973e46
AT
537#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
538 | HWCAP_SPARC_MULDIV)
a315a145
FB
539#define elf_check_arch(x) ( (x) == EM_SPARC )
540
853d6f7a 541#define ELF_CLASS ELFCLASS32
853d6f7a
FB
542#define ELF_ARCH EM_SPARC
543
d97ef72e
RH
544static inline void init_thread(struct target_pt_regs *regs,
545 struct image_info *infop)
853d6f7a 546{
f5155289
FB
547 regs->psr = 0;
548 regs->pc = infop->entry;
549 regs->npc = regs->pc + 4;
550 regs->y = 0;
551 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
552}
553
a315a145 554#endif
853d6f7a
FB
555#endif
556
67867308
FB
557#ifdef TARGET_PPC
558
559#define ELF_START_MMAP 0x80000000
560
e85e7c6e 561#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
562
563#define elf_check_arch(x) ( (x) == EM_PPC64 )
564
d97ef72e 565#define ELF_CLASS ELFCLASS64
84409ddb
JM
566
567#else
568
67867308
FB
569#define elf_check_arch(x) ( (x) == EM_PPC )
570
d97ef72e 571#define ELF_CLASS ELFCLASS32
84409ddb
JM
572
573#endif
574
d97ef72e 575#define ELF_ARCH EM_PPC
67867308 576
df84e4f3
NF
577/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
578 See arch/powerpc/include/asm/cputable.h. */
579enum {
3efa9a67 580 QEMU_PPC_FEATURE_32 = 0x80000000,
581 QEMU_PPC_FEATURE_64 = 0x40000000,
582 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
583 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
584 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
585 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
586 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
587 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
588 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
589 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
590 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
591 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
592 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
593 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
594 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
595 QEMU_PPC_FEATURE_CELL = 0x00010000,
596 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
597 QEMU_PPC_FEATURE_SMT = 0x00004000,
598 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
599 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
600 QEMU_PPC_FEATURE_PA6T = 0x00000800,
601 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
602 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
603 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
604 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
605 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
606
607 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
608 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
df84e4f3
NF
609};
610
611#define ELF_HWCAP get_elf_hwcap()
612
613static uint32_t get_elf_hwcap(void)
614{
05390248 615 CPUPPCState *e = thread_env;
df84e4f3
NF
616 uint32_t features = 0;
617
618 /* We don't have to be terribly complete here; the high points are
619 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 620#define GET_FEATURE(flag, feature) \
df84e4f3 621 do {if (e->insns_flags & flag) features |= feature; } while(0)
3efa9a67 622 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
623 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
624 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
625 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
626 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
627 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
628 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
629 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
df84e4f3
NF
630#undef GET_FEATURE
631
632 return features;
633}
634
f5155289
FB
635/*
636 * The requirements here are:
637 * - keep the final alignment of sp (sp & 0xf)
638 * - make sure the 32-bit value at the first 16 byte aligned position of
639 * AUXV is greater than 16 for glibc compatibility.
640 * AT_IGNOREPPC is used for that.
641 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
642 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
643 */
0bccf03d 644#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
645#define ARCH_DLINFO \
646 do { \
647 NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20); \
648 NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20); \
649 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
650 /* \
651 * Now handle glibc compatibility. \
652 */ \
653 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
654 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
655 } while (0)
f5155289 656
67867308
FB
657static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
658{
67867308 659 _regs->gpr[1] = infop->start_stack;
e85e7c6e 660#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
8e78064e
RH
661 _regs->gpr[2] = ldq_raw(infop->entry + 8) + infop->load_bias;
662 infop->entry = ldq_raw(infop->entry) + infop->load_bias;
84409ddb 663#endif
67867308
FB
664 _regs->nip = infop->entry;
665}
666
e2f3e741
NF
667/* See linux kernel: arch/powerpc/include/asm/elf.h. */
668#define ELF_NREG 48
669typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
670
05390248 671static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
672{
673 int i;
674 target_ulong ccr = 0;
675
676 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
677 (*regs)[i] = tswapl(env->gpr[i]);
678 }
679
680 (*regs)[32] = tswapl(env->nip);
681 (*regs)[33] = tswapl(env->msr);
682 (*regs)[35] = tswapl(env->ctr);
683 (*regs)[36] = tswapl(env->lr);
684 (*regs)[37] = tswapl(env->xer);
685
686 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
687 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
688 }
689 (*regs)[38] = tswapl(ccr);
690}
691
692#define USE_ELF_CORE_DUMP
d97ef72e 693#define ELF_EXEC_PAGESIZE 4096
67867308
FB
694
695#endif
696
048f6b4d
FB
697#ifdef TARGET_MIPS
698
699#define ELF_START_MMAP 0x80000000
700
701#define elf_check_arch(x) ( (x) == EM_MIPS )
702
388bb21a
TS
703#ifdef TARGET_MIPS64
704#define ELF_CLASS ELFCLASS64
705#else
048f6b4d 706#define ELF_CLASS ELFCLASS32
388bb21a 707#endif
048f6b4d
FB
708#define ELF_ARCH EM_MIPS
709
d97ef72e
RH
710static inline void init_thread(struct target_pt_regs *regs,
711 struct image_info *infop)
048f6b4d 712{
623a930e 713 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
714 regs->cp0_epc = infop->entry;
715 regs->regs[29] = infop->start_stack;
716}
717
51e52606
NF
718/* See linux kernel: arch/mips/include/asm/elf.h. */
719#define ELF_NREG 45
720typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
721
722/* See linux kernel: arch/mips/include/asm/reg.h. */
723enum {
724#ifdef TARGET_MIPS64
725 TARGET_EF_R0 = 0,
726#else
727 TARGET_EF_R0 = 6,
728#endif
729 TARGET_EF_R26 = TARGET_EF_R0 + 26,
730 TARGET_EF_R27 = TARGET_EF_R0 + 27,
731 TARGET_EF_LO = TARGET_EF_R0 + 32,
732 TARGET_EF_HI = TARGET_EF_R0 + 33,
733 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
734 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
735 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
736 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
737};
738
739/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 740static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
741{
742 int i;
743
744 for (i = 0; i < TARGET_EF_R0; i++) {
745 (*regs)[i] = 0;
746 }
747 (*regs)[TARGET_EF_R0] = 0;
748
749 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
750 (*regs)[TARGET_EF_R0 + i] = tswapl(env->active_tc.gpr[i]);
751 }
752
753 (*regs)[TARGET_EF_R26] = 0;
754 (*regs)[TARGET_EF_R27] = 0;
755 (*regs)[TARGET_EF_LO] = tswapl(env->active_tc.LO[0]);
756 (*regs)[TARGET_EF_HI] = tswapl(env->active_tc.HI[0]);
757 (*regs)[TARGET_EF_CP0_EPC] = tswapl(env->active_tc.PC);
758 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapl(env->CP0_BadVAddr);
759 (*regs)[TARGET_EF_CP0_STATUS] = tswapl(env->CP0_Status);
760 (*regs)[TARGET_EF_CP0_CAUSE] = tswapl(env->CP0_Cause);
761}
762
763#define USE_ELF_CORE_DUMP
388bb21a
TS
764#define ELF_EXEC_PAGESIZE 4096
765
048f6b4d
FB
766#endif /* TARGET_MIPS */
767
b779e29e
EI
768#ifdef TARGET_MICROBLAZE
769
770#define ELF_START_MMAP 0x80000000
771
0d5d4699 772#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
773
774#define ELF_CLASS ELFCLASS32
0d5d4699 775#define ELF_ARCH EM_MICROBLAZE
b779e29e 776
d97ef72e
RH
777static inline void init_thread(struct target_pt_regs *regs,
778 struct image_info *infop)
b779e29e
EI
779{
780 regs->pc = infop->entry;
781 regs->r1 = infop->start_stack;
782
783}
784
b779e29e
EI
785#define ELF_EXEC_PAGESIZE 4096
786
e4cbd44d
EI
787#define USE_ELF_CORE_DUMP
788#define ELF_NREG 38
789typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
790
791/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 792static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
793{
794 int i, pos = 0;
795
796 for (i = 0; i < 32; i++) {
797 (*regs)[pos++] = tswapl(env->regs[i]);
798 }
799
800 for (i = 0; i < 6; i++) {
801 (*regs)[pos++] = tswapl(env->sregs[i]);
802 }
803}
804
b779e29e
EI
805#endif /* TARGET_MICROBLAZE */
806
d962783e
JL
807#ifdef TARGET_OPENRISC
808
809#define ELF_START_MMAP 0x08000000
810
811#define elf_check_arch(x) ((x) == EM_OPENRISC)
812
813#define ELF_ARCH EM_OPENRISC
814#define ELF_CLASS ELFCLASS32
815#define ELF_DATA ELFDATA2MSB
816
817static inline void init_thread(struct target_pt_regs *regs,
818 struct image_info *infop)
819{
820 regs->pc = infop->entry;
821 regs->gpr[1] = infop->start_stack;
822}
823
824#define USE_ELF_CORE_DUMP
825#define ELF_EXEC_PAGESIZE 8192
826
827/* See linux kernel arch/openrisc/include/asm/elf.h. */
828#define ELF_NREG 34 /* gprs and pc, sr */
829typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
830
831static void elf_core_copy_regs(target_elf_gregset_t *regs,
832 const CPUOpenRISCState *env)
833{
834 int i;
835
836 for (i = 0; i < 32; i++) {
837 (*regs)[i] = tswapl(env->gpr[i]);
838 }
839
840 (*regs)[32] = tswapl(env->pc);
841 (*regs)[33] = tswapl(env->sr);
842}
843#define ELF_HWCAP 0
844#define ELF_PLATFORM NULL
845
846#endif /* TARGET_OPENRISC */
847
fdf9b3e8
FB
848#ifdef TARGET_SH4
849
850#define ELF_START_MMAP 0x80000000
851
852#define elf_check_arch(x) ( (x) == EM_SH )
853
854#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
855#define ELF_ARCH EM_SH
856
d97ef72e
RH
857static inline void init_thread(struct target_pt_regs *regs,
858 struct image_info *infop)
fdf9b3e8 859{
d97ef72e
RH
860 /* Check other registers XXXXX */
861 regs->pc = infop->entry;
862 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
863}
864
7631c97e
NF
865/* See linux kernel: arch/sh/include/asm/elf.h. */
866#define ELF_NREG 23
867typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
868
869/* See linux kernel: arch/sh/include/asm/ptrace.h. */
870enum {
871 TARGET_REG_PC = 16,
872 TARGET_REG_PR = 17,
873 TARGET_REG_SR = 18,
874 TARGET_REG_GBR = 19,
875 TARGET_REG_MACH = 20,
876 TARGET_REG_MACL = 21,
877 TARGET_REG_SYSCALL = 22
878};
879
d97ef72e 880static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 881 const CPUSH4State *env)
7631c97e
NF
882{
883 int i;
884
885 for (i = 0; i < 16; i++) {
886 (*regs[i]) = tswapl(env->gregs[i]);
887 }
888
889 (*regs)[TARGET_REG_PC] = tswapl(env->pc);
890 (*regs)[TARGET_REG_PR] = tswapl(env->pr);
891 (*regs)[TARGET_REG_SR] = tswapl(env->sr);
892 (*regs)[TARGET_REG_GBR] = tswapl(env->gbr);
893 (*regs)[TARGET_REG_MACH] = tswapl(env->mach);
894 (*regs)[TARGET_REG_MACL] = tswapl(env->macl);
895 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
896}
897
898#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
899#define ELF_EXEC_PAGESIZE 4096
900
901#endif
902
48733d19
TS
903#ifdef TARGET_CRIS
904
905#define ELF_START_MMAP 0x80000000
906
907#define elf_check_arch(x) ( (x) == EM_CRIS )
908
909#define ELF_CLASS ELFCLASS32
48733d19
TS
910#define ELF_ARCH EM_CRIS
911
d97ef72e
RH
912static inline void init_thread(struct target_pt_regs *regs,
913 struct image_info *infop)
48733d19 914{
d97ef72e 915 regs->erp = infop->entry;
48733d19
TS
916}
917
48733d19
TS
918#define ELF_EXEC_PAGESIZE 8192
919
920#endif
921
e6e5906b
PB
922#ifdef TARGET_M68K
923
924#define ELF_START_MMAP 0x80000000
925
926#define elf_check_arch(x) ( (x) == EM_68K )
927
d97ef72e 928#define ELF_CLASS ELFCLASS32
d97ef72e 929#define ELF_ARCH EM_68K
e6e5906b
PB
930
931/* ??? Does this need to do anything?
d97ef72e 932 #define ELF_PLAT_INIT(_r) */
e6e5906b 933
d97ef72e
RH
934static inline void init_thread(struct target_pt_regs *regs,
935 struct image_info *infop)
e6e5906b
PB
936{
937 regs->usp = infop->start_stack;
938 regs->sr = 0;
939 regs->pc = infop->entry;
940}
941
7a93cc55
NF
942/* See linux kernel: arch/m68k/include/asm/elf.h. */
943#define ELF_NREG 20
944typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
945
05390248 946static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55
NF
947{
948 (*regs)[0] = tswapl(env->dregs[1]);
949 (*regs)[1] = tswapl(env->dregs[2]);
950 (*regs)[2] = tswapl(env->dregs[3]);
951 (*regs)[3] = tswapl(env->dregs[4]);
952 (*regs)[4] = tswapl(env->dregs[5]);
953 (*regs)[5] = tswapl(env->dregs[6]);
954 (*regs)[6] = tswapl(env->dregs[7]);
955 (*regs)[7] = tswapl(env->aregs[0]);
956 (*regs)[8] = tswapl(env->aregs[1]);
957 (*regs)[9] = tswapl(env->aregs[2]);
958 (*regs)[10] = tswapl(env->aregs[3]);
959 (*regs)[11] = tswapl(env->aregs[4]);
960 (*regs)[12] = tswapl(env->aregs[5]);
961 (*regs)[13] = tswapl(env->aregs[6]);
962 (*regs)[14] = tswapl(env->dregs[0]);
963 (*regs)[15] = tswapl(env->aregs[7]);
964 (*regs)[16] = tswapl(env->dregs[0]); /* FIXME: orig_d0 */
965 (*regs)[17] = tswapl(env->sr);
966 (*regs)[18] = tswapl(env->pc);
967 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
968}
969
970#define USE_ELF_CORE_DUMP
d97ef72e 971#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
972
973#endif
974
7a3148a9
JM
975#ifdef TARGET_ALPHA
976
977#define ELF_START_MMAP (0x30000000000ULL)
978
979#define elf_check_arch(x) ( (x) == ELF_ARCH )
980
981#define ELF_CLASS ELFCLASS64
7a3148a9
JM
982#define ELF_ARCH EM_ALPHA
983
d97ef72e
RH
984static inline void init_thread(struct target_pt_regs *regs,
985 struct image_info *infop)
7a3148a9
JM
986{
987 regs->pc = infop->entry;
988 regs->ps = 8;
989 regs->usp = infop->start_stack;
7a3148a9
JM
990}
991
7a3148a9
JM
992#define ELF_EXEC_PAGESIZE 8192
993
994#endif /* TARGET_ALPHA */
995
a4c075f1
UH
996#ifdef TARGET_S390X
997
998#define ELF_START_MMAP (0x20000000000ULL)
999
1000#define elf_check_arch(x) ( (x) == ELF_ARCH )
1001
1002#define ELF_CLASS ELFCLASS64
1003#define ELF_DATA ELFDATA2MSB
1004#define ELF_ARCH EM_S390
1005
1006static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1007{
1008 regs->psw.addr = infop->entry;
1009 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1010 regs->gprs[15] = infop->start_stack;
1011}
1012
1013#endif /* TARGET_S390X */
1014
15338fd7
FB
1015#ifndef ELF_PLATFORM
1016#define ELF_PLATFORM (NULL)
1017#endif
1018
1019#ifndef ELF_HWCAP
1020#define ELF_HWCAP 0
1021#endif
1022
992f48a0 1023#ifdef TARGET_ABI32
cb33da57 1024#undef ELF_CLASS
992f48a0 1025#define ELF_CLASS ELFCLASS32
cb33da57
BS
1026#undef bswaptls
1027#define bswaptls(ptr) bswap32s(ptr)
1028#endif
1029
31e31b8a 1030#include "elf.h"
09bfb054 1031
09bfb054
FB
1032struct exec
1033{
d97ef72e
RH
1034 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1035 unsigned int a_text; /* length of text, in bytes */
1036 unsigned int a_data; /* length of data, in bytes */
1037 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1038 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1039 unsigned int a_entry; /* start address */
1040 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1041 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
1042};
1043
1044
1045#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1046#define OMAGIC 0407
1047#define NMAGIC 0410
1048#define ZMAGIC 0413
1049#define QMAGIC 0314
1050
31e31b8a 1051/* Necessary parameters */
54936004
FB
1052#define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1053#define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
1054#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 1055
14322bad 1056#define DLINFO_ITEMS 13
31e31b8a 1057
09bfb054
FB
1058static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1059{
d97ef72e 1060 memcpy(to, from, n);
09bfb054 1061}
d691f669 1062
31e31b8a 1063#ifdef BSWAP_NEEDED
92a31b1f 1064static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 1065{
d97ef72e
RH
1066 bswap16s(&ehdr->e_type); /* Object file type */
1067 bswap16s(&ehdr->e_machine); /* Architecture */
1068 bswap32s(&ehdr->e_version); /* Object file version */
1069 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1070 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1071 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1072 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1073 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1074 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1075 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1076 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1077 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1078 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
1079}
1080
991f8f0c 1081static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 1082{
991f8f0c
RH
1083 int i;
1084 for (i = 0; i < phnum; ++i, ++phdr) {
1085 bswap32s(&phdr->p_type); /* Segment type */
1086 bswap32s(&phdr->p_flags); /* Segment flags */
1087 bswaptls(&phdr->p_offset); /* Segment file offset */
1088 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1089 bswaptls(&phdr->p_paddr); /* Segment physical address */
1090 bswaptls(&phdr->p_filesz); /* Segment size in file */
1091 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1092 bswaptls(&phdr->p_align); /* Segment alignment */
1093 }
31e31b8a 1094}
689f936f 1095
991f8f0c 1096static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 1097{
991f8f0c
RH
1098 int i;
1099 for (i = 0; i < shnum; ++i, ++shdr) {
1100 bswap32s(&shdr->sh_name);
1101 bswap32s(&shdr->sh_type);
1102 bswaptls(&shdr->sh_flags);
1103 bswaptls(&shdr->sh_addr);
1104 bswaptls(&shdr->sh_offset);
1105 bswaptls(&shdr->sh_size);
1106 bswap32s(&shdr->sh_link);
1107 bswap32s(&shdr->sh_info);
1108 bswaptls(&shdr->sh_addralign);
1109 bswaptls(&shdr->sh_entsize);
1110 }
689f936f
FB
1111}
1112
7a3148a9 1113static void bswap_sym(struct elf_sym *sym)
689f936f
FB
1114{
1115 bswap32s(&sym->st_name);
7a3148a9
JM
1116 bswaptls(&sym->st_value);
1117 bswaptls(&sym->st_size);
689f936f
FB
1118 bswap16s(&sym->st_shndx);
1119}
991f8f0c
RH
1120#else
1121static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1122static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1123static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1124static inline void bswap_sym(struct elf_sym *sym) { }
31e31b8a
FB
1125#endif
1126
edf8e2af 1127#ifdef USE_ELF_CORE_DUMP
9349b4f9 1128static int elf_core_dump(int, const CPUArchState *);
edf8e2af 1129#endif /* USE_ELF_CORE_DUMP */
682674b8 1130static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 1131
9058abdd
RH
1132/* Verify the portions of EHDR within E_IDENT for the target.
1133 This can be performed before bswapping the entire header. */
1134static bool elf_check_ident(struct elfhdr *ehdr)
1135{
1136 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1137 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1138 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1139 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1140 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1141 && ehdr->e_ident[EI_DATA] == ELF_DATA
1142 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1143}
1144
1145/* Verify the portions of EHDR outside of E_IDENT for the target.
1146 This has to wait until after bswapping the header. */
1147static bool elf_check_ehdr(struct elfhdr *ehdr)
1148{
1149 return (elf_check_arch(ehdr->e_machine)
1150 && ehdr->e_ehsize == sizeof(struct elfhdr)
1151 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1152 && ehdr->e_shentsize == sizeof(struct elf_shdr)
1153 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1154}
1155
31e31b8a 1156/*
e5fe0c52 1157 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
1158 * memory to free pages in kernel mem. These are in a format ready
1159 * to be put directly into the top of new user memory.
1160 *
1161 */
992f48a0
BS
1162static abi_ulong copy_elf_strings(int argc,char ** argv, void **page,
1163 abi_ulong p)
31e31b8a
FB
1164{
1165 char *tmp, *tmp1, *pag = NULL;
1166 int len, offset = 0;
1167
1168 if (!p) {
d97ef72e 1169 return 0; /* bullet-proofing */
31e31b8a
FB
1170 }
1171 while (argc-- > 0) {
edf779ff
FB
1172 tmp = argv[argc];
1173 if (!tmp) {
d97ef72e
RH
1174 fprintf(stderr, "VFS: argc is wrong");
1175 exit(-1);
1176 }
edf779ff 1177 tmp1 = tmp;
d97ef72e
RH
1178 while (*tmp++);
1179 len = tmp - tmp1;
1180 if (p < len) { /* this shouldn't happen - 128kB */
1181 return 0;
1182 }
1183 while (len) {
1184 --p; --tmp; --len;
1185 if (--offset < 0) {
1186 offset = p % TARGET_PAGE_SIZE;
53a5960a 1187 pag = (char *)page[p/TARGET_PAGE_SIZE];
44a91cae 1188 if (!pag) {
7dd47667 1189 pag = g_try_malloc0(TARGET_PAGE_SIZE);
53a5960a 1190 page[p/TARGET_PAGE_SIZE] = pag;
44a91cae
FB
1191 if (!pag)
1192 return 0;
d97ef72e
RH
1193 }
1194 }
1195 if (len == 0 || offset == 0) {
1196 *(pag + offset) = *tmp;
1197 }
1198 else {
1199 int bytes_to_copy = (len > offset) ? offset : len;
1200 tmp -= bytes_to_copy;
1201 p -= bytes_to_copy;
1202 offset -= bytes_to_copy;
1203 len -= bytes_to_copy;
1204 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1);
1205 }
1206 }
31e31b8a
FB
1207 }
1208 return p;
1209}
1210
992f48a0
BS
1211static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm,
1212 struct image_info *info)
53a5960a 1213{
60dcbcb5 1214 abi_ulong stack_base, size, error, guard;
31e31b8a 1215 int i;
31e31b8a 1216
09bfb054 1217 /* Create enough stack to hold everything. If we don't use
60dcbcb5 1218 it for args, we'll use it for something else. */
703e0e89 1219 size = guest_stack_size;
60dcbcb5 1220 if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) {
54936004 1221 size = MAX_ARG_PAGES*TARGET_PAGE_SIZE;
60dcbcb5
RH
1222 }
1223 guard = TARGET_PAGE_SIZE;
1224 if (guard < qemu_real_host_page_size) {
1225 guard = qemu_real_host_page_size;
1226 }
1227
1228 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1229 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 1230 if (error == -1) {
60dcbcb5 1231 perror("mmap stack");
09bfb054
FB
1232 exit(-1);
1233 }
31e31b8a 1234
60dcbcb5
RH
1235 /* We reserve one extra page at the top of the stack as guard. */
1236 target_mprotect(error, guard, PROT_NONE);
1237
1238 info->stack_limit = error + guard;
1239 stack_base = info->stack_limit + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE;
31e31b8a 1240 p += stack_base;
09bfb054 1241
31e31b8a 1242 for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
d97ef72e
RH
1243 if (bprm->page[i]) {
1244 info->rss++;
579a97f7 1245 /* FIXME - check return value of memcpy_to_target() for failure */
d97ef72e 1246 memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE);
7dd47667 1247 g_free(bprm->page[i]);
d97ef72e 1248 }
53a5960a 1249 stack_base += TARGET_PAGE_SIZE;
31e31b8a
FB
1250 }
1251 return p;
1252}
1253
cf129f3a
RH
1254/* Map and zero the bss. We need to explicitly zero any fractional pages
1255 after the data section (i.e. bss). */
1256static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 1257{
cf129f3a
RH
1258 uintptr_t host_start, host_map_start, host_end;
1259
1260 last_bss = TARGET_PAGE_ALIGN(last_bss);
1261
1262 /* ??? There is confusion between qemu_real_host_page_size and
1263 qemu_host_page_size here and elsewhere in target_mmap, which
1264 may lead to the end of the data section mapping from the file
1265 not being mapped. At least there was an explicit test and
1266 comment for that here, suggesting that "the file size must
1267 be known". The comment probably pre-dates the introduction
1268 of the fstat system call in target_mmap which does in fact
1269 find out the size. What isn't clear is if the workaround
1270 here is still actually needed. For now, continue with it,
1271 but merge it with the "normal" mmap that would allocate the bss. */
1272
1273 host_start = (uintptr_t) g2h(elf_bss);
1274 host_end = (uintptr_t) g2h(last_bss);
1275 host_map_start = (host_start + qemu_real_host_page_size - 1);
1276 host_map_start &= -qemu_real_host_page_size;
1277
1278 if (host_map_start < host_end) {
1279 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1280 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1281 if (p == MAP_FAILED) {
1282 perror("cannot mmap brk");
1283 exit(-1);
853d6f7a
FB
1284 }
1285
cf129f3a
RH
1286 /* Since we didn't use target_mmap, make sure to record
1287 the validity of the pages with qemu. */
1288 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot|PAGE_VALID);
1289 }
31e31b8a 1290
cf129f3a
RH
1291 if (host_start < host_map_start) {
1292 memset((void *)host_start, 0, host_map_start - host_start);
1293 }
1294}
53a5960a 1295
1af02e83
MF
1296#ifdef CONFIG_USE_FDPIC
1297static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1298{
1299 uint16_t n;
1300 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1301
1302 /* elf32_fdpic_loadseg */
1303 n = info->nsegs;
1304 while (n--) {
1305 sp -= 12;
1306 put_user_u32(loadsegs[n].addr, sp+0);
1307 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1308 put_user_u32(loadsegs[n].p_memsz, sp+8);
1309 }
1310
1311 /* elf32_fdpic_loadmap */
1312 sp -= 4;
1313 put_user_u16(0, sp+0); /* version */
1314 put_user_u16(info->nsegs, sp+2); /* nsegs */
1315
1316 info->personality = PER_LINUX_FDPIC;
1317 info->loadmap_addr = sp;
1318
1319 return sp;
1320}
1321#endif
1322
992f48a0 1323static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
1324 struct elfhdr *exec,
1325 struct image_info *info,
1326 struct image_info *interp_info)
31e31b8a 1327{
d97ef72e 1328 abi_ulong sp;
125b0f55 1329 abi_ulong sp_auxv;
d97ef72e 1330 int size;
14322bad
LA
1331 int i;
1332 abi_ulong u_rand_bytes;
1333 uint8_t k_rand_bytes[16];
d97ef72e
RH
1334 abi_ulong u_platform;
1335 const char *k_platform;
1336 const int n = sizeof(elf_addr_t);
1337
1338 sp = p;
1af02e83
MF
1339
1340#ifdef CONFIG_USE_FDPIC
1341 /* Needs to be before we load the env/argc/... */
1342 if (elf_is_fdpic(exec)) {
1343 /* Need 4 byte alignment for these structs */
1344 sp &= ~3;
1345 sp = loader_build_fdpic_loadmap(info, sp);
1346 info->other_info = interp_info;
1347 if (interp_info) {
1348 interp_info->other_info = info;
1349 sp = loader_build_fdpic_loadmap(interp_info, sp);
1350 }
1351 }
1352#endif
1353
d97ef72e
RH
1354 u_platform = 0;
1355 k_platform = ELF_PLATFORM;
1356 if (k_platform) {
1357 size_t len = strlen(k_platform) + 1;
1358 sp -= (len + n - 1) & ~(n - 1);
1359 u_platform = sp;
1360 /* FIXME - check return value of memcpy_to_target() for failure */
1361 memcpy_to_target(sp, k_platform, len);
1362 }
14322bad
LA
1363
1364 /*
1365 * Generate 16 random bytes for userspace PRNG seeding (not
1366 * cryptically secure but it's not the aim of QEMU).
1367 */
1368 srand((unsigned int) time(NULL));
1369 for (i = 0; i < 16; i++) {
1370 k_rand_bytes[i] = rand();
1371 }
1372 sp -= 16;
1373 u_rand_bytes = sp;
1374 /* FIXME - check return value of memcpy_to_target() for failure */
1375 memcpy_to_target(sp, k_rand_bytes, 16);
1376
d97ef72e
RH
1377 /*
1378 * Force 16 byte _final_ alignment here for generality.
1379 */
1380 sp = sp &~ (abi_ulong)15;
1381 size = (DLINFO_ITEMS + 1) * 2;
1382 if (k_platform)
1383 size += 2;
f5155289 1384#ifdef DLINFO_ARCH_ITEMS
d97ef72e 1385 size += DLINFO_ARCH_ITEMS * 2;
f5155289 1386#endif
d97ef72e 1387 size += envc + argc + 2;
b9329d4b 1388 size += 1; /* argc itself */
d97ef72e
RH
1389 size *= n;
1390 if (size & 15)
1391 sp -= 16 - (size & 15);
1392
1393 /* This is correct because Linux defines
1394 * elf_addr_t as Elf32_Off / Elf64_Off
1395 */
1396#define NEW_AUX_ENT(id, val) do { \
1397 sp -= n; put_user_ual(val, sp); \
1398 sp -= n; put_user_ual(id, sp); \
1399 } while(0)
1400
125b0f55 1401 sp_auxv = sp;
d97ef72e
RH
1402 NEW_AUX_ENT (AT_NULL, 0);
1403
1404 /* There must be exactly DLINFO_ITEMS entries here. */
8e62a717 1405 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
1406 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1407 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1408 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
8e62a717 1409 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 1410 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 1411 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
1412 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1413 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1414 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1415 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1416 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1417 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad
LA
1418 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1419
d97ef72e
RH
1420 if (k_platform)
1421 NEW_AUX_ENT(AT_PLATFORM, u_platform);
f5155289 1422#ifdef ARCH_DLINFO
d97ef72e
RH
1423 /*
1424 * ARCH_DLINFO must come last so platform specific code can enforce
1425 * special alignment requirements on the AUXV if necessary (eg. PPC).
1426 */
1427 ARCH_DLINFO;
f5155289
FB
1428#endif
1429#undef NEW_AUX_ENT
1430
d97ef72e 1431 info->saved_auxv = sp;
125b0f55 1432 info->auxv_len = sp_auxv - sp;
edf8e2af 1433
b9329d4b 1434 sp = loader_build_argptr(envc, argc, sp, p, 0);
d97ef72e 1435 return sp;
31e31b8a
FB
1436}
1437
806d1021 1438#ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
97cc7560 1439/* If the guest doesn't have a validation function just agree */
806d1021
MI
1440static int validate_guest_space(unsigned long guest_base,
1441 unsigned long guest_size)
97cc7560
DDAG
1442{
1443 return 1;
1444}
1445#endif
1446
dce10401
MI
1447unsigned long init_guest_space(unsigned long host_start,
1448 unsigned long host_size,
1449 unsigned long guest_start,
1450 bool fixed)
1451{
1452 unsigned long current_start, real_start;
1453 int flags;
1454
1455 assert(host_start || host_size);
1456
1457 /* If just a starting address is given, then just verify that
1458 * address. */
1459 if (host_start && !host_size) {
806d1021 1460 if (validate_guest_space(host_start, host_size) == 1) {
dce10401
MI
1461 return host_start;
1462 } else {
1463 return (unsigned long)-1;
1464 }
1465 }
1466
1467 /* Setup the initial flags and start address. */
1468 current_start = host_start & qemu_host_page_mask;
1469 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1470 if (fixed) {
1471 flags |= MAP_FIXED;
1472 }
1473
1474 /* Otherwise, a non-zero size region of memory needs to be mapped
1475 * and validated. */
1476 while (1) {
806d1021
MI
1477 unsigned long real_size = host_size;
1478
dce10401
MI
1479 /* Do not use mmap_find_vma here because that is limited to the
1480 * guest address space. We are going to make the
1481 * guest address space fit whatever we're given.
1482 */
1483 real_start = (unsigned long)
1484 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1485 if (real_start == (unsigned long)-1) {
1486 return (unsigned long)-1;
1487 }
1488
806d1021
MI
1489 /* Ensure the address is properly aligned. */
1490 if (real_start & ~qemu_host_page_mask) {
1491 munmap((void *)real_start, host_size);
1492 real_size = host_size + qemu_host_page_size;
1493 real_start = (unsigned long)
1494 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1495 if (real_start == (unsigned long)-1) {
1496 return (unsigned long)-1;
1497 }
1498 real_start = HOST_PAGE_ALIGN(real_start);
1499 }
1500
1501 /* Check to see if the address is valid. */
1502 if (!host_start || real_start == current_start) {
1503 int valid = validate_guest_space(real_start - guest_start,
1504 real_size);
1505 if (valid == 1) {
1506 break;
1507 } else if (valid == -1) {
1508 return (unsigned long)-1;
1509 }
1510 /* valid == 0, so try again. */
dce10401
MI
1511 }
1512
1513 /* That address didn't work. Unmap and try a different one.
1514 * The address the host picked because is typically right at
1515 * the top of the host address space and leaves the guest with
1516 * no usable address space. Resort to a linear search. We
1517 * already compensated for mmap_min_addr, so this should not
1518 * happen often. Probably means we got unlucky and host
1519 * address space randomization put a shared library somewhere
1520 * inconvenient.
1521 */
1522 munmap((void *)real_start, host_size);
1523 current_start += qemu_host_page_size;
1524 if (host_start == current_start) {
1525 /* Theoretically possible if host doesn't have any suitably
1526 * aligned areas. Normally the first mmap will fail.
1527 */
1528 return (unsigned long)-1;
1529 }
1530 }
1531
806d1021
MI
1532 qemu_log("Reserved 0x%lx bytes of guest address space\n", host_size);
1533
dce10401
MI
1534 return real_start;
1535}
1536
f3ed1f5d
PM
1537static void probe_guest_base(const char *image_name,
1538 abi_ulong loaddr, abi_ulong hiaddr)
1539{
1540 /* Probe for a suitable guest base address, if the user has not set
1541 * it explicitly, and set guest_base appropriately.
1542 * In case of error we will print a suitable message and exit.
1543 */
1544#if defined(CONFIG_USE_GUEST_BASE)
1545 const char *errmsg;
1546 if (!have_guest_base && !reserved_va) {
1547 unsigned long host_start, real_start, host_size;
1548
1549 /* Round addresses to page boundaries. */
1550 loaddr &= qemu_host_page_mask;
1551 hiaddr = HOST_PAGE_ALIGN(hiaddr);
1552
1553 if (loaddr < mmap_min_addr) {
1554 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1555 } else {
1556 host_start = loaddr;
1557 if (host_start != loaddr) {
1558 errmsg = "Address overflow loading ELF binary";
1559 goto exit_errmsg;
1560 }
1561 }
1562 host_size = hiaddr - loaddr;
dce10401
MI
1563
1564 /* Setup the initial guest memory space with ranges gleaned from
1565 * the ELF image that is being loaded.
1566 */
1567 real_start = init_guest_space(host_start, host_size, loaddr, false);
1568 if (real_start == (unsigned long)-1) {
1569 errmsg = "Unable to find space for application";
1570 goto exit_errmsg;
f3ed1f5d 1571 }
dce10401
MI
1572 guest_base = real_start - loaddr;
1573
f3ed1f5d
PM
1574 qemu_log("Relocating guest address space from 0x"
1575 TARGET_ABI_FMT_lx " to 0x%lx\n",
1576 loaddr, real_start);
f3ed1f5d
PM
1577 }
1578 return;
1579
f3ed1f5d
PM
1580exit_errmsg:
1581 fprintf(stderr, "%s: %s\n", image_name, errmsg);
1582 exit(-1);
1583#endif
1584}
1585
1586
8e62a717 1587/* Load an ELF image into the address space.
31e31b8a 1588
8e62a717
RH
1589 IMAGE_NAME is the filename of the image, to use in error messages.
1590 IMAGE_FD is the open file descriptor for the image.
1591
1592 BPRM_BUF is a copy of the beginning of the file; this of course
1593 contains the elf file header at offset 0. It is assumed that this
1594 buffer is sufficiently aligned to present no problems to the host
1595 in accessing data at aligned offsets within the buffer.
1596
1597 On return: INFO values will be filled in, as necessary or available. */
1598
1599static void load_elf_image(const char *image_name, int image_fd,
bf858897 1600 struct image_info *info, char **pinterp_name,
8e62a717 1601 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 1602{
8e62a717
RH
1603 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1604 struct elf_phdr *phdr;
1605 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1606 int i, retval;
1607 const char *errmsg;
5fafdf24 1608
8e62a717
RH
1609 /* First of all, some simple consistency checks */
1610 errmsg = "Invalid ELF image for this architecture";
1611 if (!elf_check_ident(ehdr)) {
1612 goto exit_errmsg;
1613 }
1614 bswap_ehdr(ehdr);
1615 if (!elf_check_ehdr(ehdr)) {
1616 goto exit_errmsg;
d97ef72e 1617 }
5fafdf24 1618
8e62a717
RH
1619 i = ehdr->e_phnum * sizeof(struct elf_phdr);
1620 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1621 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 1622 } else {
8e62a717
RH
1623 phdr = (struct elf_phdr *) alloca(i);
1624 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 1625 if (retval != i) {
8e62a717 1626 goto exit_read;
9955ffac 1627 }
d97ef72e 1628 }
8e62a717 1629 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 1630
1af02e83
MF
1631#ifdef CONFIG_USE_FDPIC
1632 info->nsegs = 0;
1633 info->pt_dynamic_addr = 0;
1634#endif
1635
682674b8
RH
1636 /* Find the maximum size of the image and allocate an appropriate
1637 amount of memory to handle that. */
1638 loaddr = -1, hiaddr = 0;
8e62a717
RH
1639 for (i = 0; i < ehdr->e_phnum; ++i) {
1640 if (phdr[i].p_type == PT_LOAD) {
1641 abi_ulong a = phdr[i].p_vaddr;
682674b8
RH
1642 if (a < loaddr) {
1643 loaddr = a;
1644 }
8e62a717 1645 a += phdr[i].p_memsz;
682674b8
RH
1646 if (a > hiaddr) {
1647 hiaddr = a;
1648 }
1af02e83
MF
1649#ifdef CONFIG_USE_FDPIC
1650 ++info->nsegs;
1651#endif
682674b8
RH
1652 }
1653 }
1654
1655 load_addr = loaddr;
8e62a717 1656 if (ehdr->e_type == ET_DYN) {
682674b8
RH
1657 /* The image indicates that it can be loaded anywhere. Find a
1658 location that can hold the memory space required. If the
1659 image is pre-linked, LOADDR will be non-zero. Since we do
1660 not supply MAP_FIXED here we'll use that address if and
1661 only if it remains available. */
1662 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
1663 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
1664 -1, 0);
1665 if (load_addr == -1) {
8e62a717 1666 goto exit_perror;
d97ef72e 1667 }
bf858897
RH
1668 } else if (pinterp_name != NULL) {
1669 /* This is the main executable. Make sure that the low
1670 address does not conflict with MMAP_MIN_ADDR or the
1671 QEMU application itself. */
f3ed1f5d 1672 probe_guest_base(image_name, loaddr, hiaddr);
d97ef72e 1673 }
682674b8 1674 load_bias = load_addr - loaddr;
d97ef72e 1675
1af02e83
MF
1676#ifdef CONFIG_USE_FDPIC
1677 {
1678 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 1679 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
1680
1681 for (i = 0; i < ehdr->e_phnum; ++i) {
1682 switch (phdr[i].p_type) {
1683 case PT_DYNAMIC:
1684 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
1685 break;
1686 case PT_LOAD:
1687 loadsegs->addr = phdr[i].p_vaddr + load_bias;
1688 loadsegs->p_vaddr = phdr[i].p_vaddr;
1689 loadsegs->p_memsz = phdr[i].p_memsz;
1690 ++loadsegs;
1691 break;
1692 }
1693 }
1694 }
1695#endif
1696
8e62a717
RH
1697 info->load_bias = load_bias;
1698 info->load_addr = load_addr;
1699 info->entry = ehdr->e_entry + load_bias;
1700 info->start_code = -1;
1701 info->end_code = 0;
1702 info->start_data = -1;
1703 info->end_data = 0;
1704 info->brk = 0;
d8fd2954 1705 info->elf_flags = ehdr->e_flags;
8e62a717
RH
1706
1707 for (i = 0; i < ehdr->e_phnum; i++) {
1708 struct elf_phdr *eppnt = phdr + i;
d97ef72e 1709 if (eppnt->p_type == PT_LOAD) {
682674b8 1710 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
d97ef72e 1711 int elf_prot = 0;
d97ef72e
RH
1712
1713 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
1714 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1715 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
d97ef72e 1716
682674b8
RH
1717 vaddr = load_bias + eppnt->p_vaddr;
1718 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
1719 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
1720
1721 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
1722 elf_prot, MAP_PRIVATE | MAP_FIXED,
8e62a717 1723 image_fd, eppnt->p_offset - vaddr_po);
09bfb054 1724 if (error == -1) {
8e62a717 1725 goto exit_perror;
09bfb054 1726 }
09bfb054 1727
682674b8
RH
1728 vaddr_ef = vaddr + eppnt->p_filesz;
1729 vaddr_em = vaddr + eppnt->p_memsz;
31e31b8a 1730
cf129f3a 1731 /* If the load segment requests extra zeros (e.g. bss), map it. */
682674b8
RH
1732 if (vaddr_ef < vaddr_em) {
1733 zero_bss(vaddr_ef, vaddr_em, elf_prot);
cf129f3a 1734 }
8e62a717
RH
1735
1736 /* Find the full program boundaries. */
1737 if (elf_prot & PROT_EXEC) {
1738 if (vaddr < info->start_code) {
1739 info->start_code = vaddr;
1740 }
1741 if (vaddr_ef > info->end_code) {
1742 info->end_code = vaddr_ef;
1743 }
1744 }
1745 if (elf_prot & PROT_WRITE) {
1746 if (vaddr < info->start_data) {
1747 info->start_data = vaddr;
1748 }
1749 if (vaddr_ef > info->end_data) {
1750 info->end_data = vaddr_ef;
1751 }
1752 if (vaddr_em > info->brk) {
1753 info->brk = vaddr_em;
1754 }
1755 }
bf858897
RH
1756 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
1757 char *interp_name;
1758
1759 if (*pinterp_name) {
1760 errmsg = "Multiple PT_INTERP entries";
1761 goto exit_errmsg;
1762 }
1763 interp_name = malloc(eppnt->p_filesz);
1764 if (!interp_name) {
1765 goto exit_perror;
1766 }
1767
1768 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
1769 memcpy(interp_name, bprm_buf + eppnt->p_offset,
1770 eppnt->p_filesz);
1771 } else {
1772 retval = pread(image_fd, interp_name, eppnt->p_filesz,
1773 eppnt->p_offset);
1774 if (retval != eppnt->p_filesz) {
1775 goto exit_perror;
1776 }
1777 }
1778 if (interp_name[eppnt->p_filesz - 1] != 0) {
1779 errmsg = "Invalid PT_INTERP entry";
1780 goto exit_errmsg;
1781 }
1782 *pinterp_name = interp_name;
d97ef72e 1783 }
682674b8 1784 }
5fafdf24 1785
8e62a717
RH
1786 if (info->end_data == 0) {
1787 info->start_data = info->end_code;
1788 info->end_data = info->end_code;
1789 info->brk = info->end_code;
1790 }
1791
682674b8 1792 if (qemu_log_enabled()) {
8e62a717 1793 load_symbols(ehdr, image_fd, load_bias);
682674b8 1794 }
31e31b8a 1795
8e62a717
RH
1796 close(image_fd);
1797 return;
1798
1799 exit_read:
1800 if (retval >= 0) {
1801 errmsg = "Incomplete read of file header";
1802 goto exit_errmsg;
1803 }
1804 exit_perror:
1805 errmsg = strerror(errno);
1806 exit_errmsg:
1807 fprintf(stderr, "%s: %s\n", image_name, errmsg);
1808 exit(-1);
1809}
1810
1811static void load_elf_interp(const char *filename, struct image_info *info,
1812 char bprm_buf[BPRM_BUF_SIZE])
1813{
1814 int fd, retval;
1815
1816 fd = open(path(filename), O_RDONLY);
1817 if (fd < 0) {
1818 goto exit_perror;
1819 }
31e31b8a 1820
8e62a717
RH
1821 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
1822 if (retval < 0) {
1823 goto exit_perror;
1824 }
1825 if (retval < BPRM_BUF_SIZE) {
1826 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
1827 }
1828
bf858897 1829 load_elf_image(filename, fd, info, NULL, bprm_buf);
8e62a717
RH
1830 return;
1831
1832 exit_perror:
1833 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
1834 exit(-1);
31e31b8a
FB
1835}
1836
49918a75
PB
1837static int symfind(const void *s0, const void *s1)
1838{
c7c530cd 1839 target_ulong addr = *(target_ulong *)s0;
49918a75
PB
1840 struct elf_sym *sym = (struct elf_sym *)s1;
1841 int result = 0;
c7c530cd 1842 if (addr < sym->st_value) {
49918a75 1843 result = -1;
c7c530cd 1844 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
1845 result = 1;
1846 }
1847 return result;
1848}
1849
1850static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
1851{
1852#if ELF_CLASS == ELFCLASS32
1853 struct elf_sym *syms = s->disas_symtab.elf32;
1854#else
1855 struct elf_sym *syms = s->disas_symtab.elf64;
1856#endif
1857
1858 // binary search
49918a75
PB
1859 struct elf_sym *sym;
1860
c7c530cd 1861 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 1862 if (sym != NULL) {
49918a75
PB
1863 return s->disas_strtab + sym->st_name;
1864 }
1865
1866 return "";
1867}
1868
1869/* FIXME: This should use elf_ops.h */
1870static int symcmp(const void *s0, const void *s1)
1871{
1872 struct elf_sym *sym0 = (struct elf_sym *)s0;
1873 struct elf_sym *sym1 = (struct elf_sym *)s1;
1874 return (sym0->st_value < sym1->st_value)
1875 ? -1
1876 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
1877}
1878
689f936f 1879/* Best attempt to load symbols from this ELF object. */
682674b8 1880static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 1881{
682674b8
RH
1882 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1883 struct elf_shdr *shdr;
b9475279
CV
1884 char *strings = NULL;
1885 struct syminfo *s = NULL;
1886 struct elf_sym *new_syms, *syms = NULL;
689f936f 1887
682674b8
RH
1888 shnum = hdr->e_shnum;
1889 i = shnum * sizeof(struct elf_shdr);
1890 shdr = (struct elf_shdr *)alloca(i);
1891 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
1892 return;
1893 }
1894
1895 bswap_shdr(shdr, shnum);
1896 for (i = 0; i < shnum; ++i) {
1897 if (shdr[i].sh_type == SHT_SYMTAB) {
1898 sym_idx = i;
1899 str_idx = shdr[i].sh_link;
49918a75
PB
1900 goto found;
1901 }
689f936f 1902 }
682674b8
RH
1903
1904 /* There will be no symbol table if the file was stripped. */
1905 return;
689f936f
FB
1906
1907 found:
682674b8 1908 /* Now know where the strtab and symtab are. Snarf them. */
e80cfcfc 1909 s = malloc(sizeof(*s));
682674b8 1910 if (!s) {
b9475279 1911 goto give_up;
682674b8 1912 }
5fafdf24 1913
682674b8
RH
1914 i = shdr[str_idx].sh_size;
1915 s->disas_strtab = strings = malloc(i);
1916 if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
b9475279 1917 goto give_up;
682674b8 1918 }
49918a75 1919
682674b8
RH
1920 i = shdr[sym_idx].sh_size;
1921 syms = malloc(i);
1922 if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
b9475279 1923 goto give_up;
682674b8 1924 }
31e31b8a 1925
682674b8
RH
1926 nsyms = i / sizeof(struct elf_sym);
1927 for (i = 0; i < nsyms; ) {
49918a75 1928 bswap_sym(syms + i);
682674b8
RH
1929 /* Throw away entries which we do not need. */
1930 if (syms[i].st_shndx == SHN_UNDEF
1931 || syms[i].st_shndx >= SHN_LORESERVE
1932 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
1933 if (i < --nsyms) {
49918a75
PB
1934 syms[i] = syms[nsyms];
1935 }
682674b8 1936 } else {
49918a75 1937#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
1938 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
1939 syms[i].st_value &= ~(target_ulong)1;
0774bed1 1940#endif
682674b8
RH
1941 syms[i].st_value += load_bias;
1942 i++;
1943 }
0774bed1 1944 }
49918a75 1945
b9475279
CV
1946 /* No "useful" symbol. */
1947 if (nsyms == 0) {
1948 goto give_up;
1949 }
1950
5d5c9930
RH
1951 /* Attempt to free the storage associated with the local symbols
1952 that we threw away. Whether or not this has any effect on the
1953 memory allocation depends on the malloc implementation and how
1954 many symbols we managed to discard. */
8d79de6e
SW
1955 new_syms = realloc(syms, nsyms * sizeof(*syms));
1956 if (new_syms == NULL) {
b9475279 1957 goto give_up;
5d5c9930 1958 }
8d79de6e 1959 syms = new_syms;
5d5c9930 1960
49918a75 1961 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 1962
49918a75
PB
1963 s->disas_num_syms = nsyms;
1964#if ELF_CLASS == ELFCLASS32
1965 s->disas_symtab.elf32 = syms;
49918a75
PB
1966#else
1967 s->disas_symtab.elf64 = syms;
49918a75 1968#endif
682674b8 1969 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
1970 s->next = syminfos;
1971 syminfos = s;
b9475279
CV
1972
1973 return;
1974
1975give_up:
1976 free(s);
1977 free(strings);
1978 free(syms);
689f936f 1979}
31e31b8a 1980
e5fe0c52
PB
1981int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
1982 struct image_info * info)
31e31b8a 1983{
8e62a717 1984 struct image_info interp_info;
31e31b8a 1985 struct elfhdr elf_ex;
8e62a717 1986 char *elf_interpreter = NULL;
31e31b8a 1987
bf858897
RH
1988 info->start_mmap = (abi_ulong)ELF_START_MMAP;
1989 info->mmap = 0;
1990 info->rss = 0;
1991
1992 load_elf_image(bprm->filename, bprm->fd, info,
1993 &elf_interpreter, bprm->buf);
31e31b8a 1994
bf858897
RH
1995 /* ??? We need a copy of the elf header for passing to create_elf_tables.
1996 If we do nothing, we'll have overwritten this when we re-use bprm->buf
1997 when we load the interpreter. */
1998 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 1999
e5fe0c52
PB
2000 bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p);
2001 bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p);
2002 bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p);
2003 if (!bprm->p) {
bf858897
RH
2004 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2005 exit(-1);
379f6698 2006 }
379f6698 2007
31e31b8a
FB
2008 /* Do this so that we can load the interpreter, if need be. We will
2009 change some of these later */
31e31b8a 2010 bprm->p = setup_arg_pages(bprm->p, bprm, info);
31e31b8a 2011
8e62a717
RH
2012 if (elf_interpreter) {
2013 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 2014
8e62a717
RH
2015 /* If the program interpreter is one of these two, then assume
2016 an iBCS2 image. Otherwise assume a native linux image. */
2017
2018 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2019 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2020 info->personality = PER_SVR4;
31e31b8a 2021
8e62a717
RH
2022 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2023 and some applications "depend" upon this behavior. Since
2024 we do not have the power to recompile these, we emulate
2025 the SVr4 behavior. Sigh. */
2026 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2027 MAP_FIXED | MAP_PRIVATE, -1, 0);
2028 }
31e31b8a
FB
2029 }
2030
8e62a717
RH
2031 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2032 info, (elf_interpreter ? &interp_info : NULL));
2033 info->start_stack = bprm->p;
2034
2035 /* If we have an interpreter, set that as the program's entry point.
8e78064e 2036 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
2037 point as a function descriptor. Do this after creating elf tables
2038 so that we copy the original program entry point into the AUXV. */
2039 if (elf_interpreter) {
8e78064e 2040 info->load_bias = interp_info.load_bias;
8e62a717 2041 info->entry = interp_info.entry;
bf858897 2042 free(elf_interpreter);
8e62a717 2043 }
31e31b8a 2044
edf8e2af
MW
2045#ifdef USE_ELF_CORE_DUMP
2046 bprm->core_dump = &elf_core_dump;
2047#endif
2048
31e31b8a
FB
2049 return 0;
2050}
2051
edf8e2af 2052#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
2053/*
2054 * Definitions to generate Intel SVR4-like core files.
a2547a13 2055 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
2056 * tacked on the front to prevent clashes with linux definitions,
2057 * and the typedef forms have been avoided. This is mostly like
2058 * the SVR4 structure, but more Linuxy, with things that Linux does
2059 * not support and which gdb doesn't really use excluded.
2060 *
2061 * Fields we don't dump (their contents is zero) in linux-user qemu
2062 * are marked with XXX.
2063 *
2064 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2065 *
2066 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 2067 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
2068 * the target resides):
2069 *
2070 * #define USE_ELF_CORE_DUMP
2071 *
2072 * Next you define type of register set used for dumping. ELF specification
2073 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2074 *
c227f099 2075 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 2076 * #define ELF_NREG <number of registers>
c227f099 2077 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 2078 *
edf8e2af
MW
2079 * Last step is to implement target specific function that copies registers
2080 * from given cpu into just specified register set. Prototype is:
2081 *
c227f099 2082 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 2083 * const CPUArchState *env);
edf8e2af
MW
2084 *
2085 * Parameters:
2086 * regs - copy register values into here (allocated and zeroed by caller)
2087 * env - copy registers from here
2088 *
2089 * Example for ARM target is provided in this file.
2090 */
2091
2092/* An ELF note in memory */
2093struct memelfnote {
2094 const char *name;
2095 size_t namesz;
2096 size_t namesz_rounded;
2097 int type;
2098 size_t datasz;
80f5ce75 2099 size_t datasz_rounded;
edf8e2af
MW
2100 void *data;
2101 size_t notesz;
2102};
2103
a2547a13 2104struct target_elf_siginfo {
80f5ce75
LV
2105 target_int si_signo; /* signal number */
2106 target_int si_code; /* extra code */
2107 target_int si_errno; /* errno */
edf8e2af
MW
2108};
2109
a2547a13
LD
2110struct target_elf_prstatus {
2111 struct target_elf_siginfo pr_info; /* Info associated with signal */
80f5ce75 2112 target_short pr_cursig; /* Current signal */
edf8e2af
MW
2113 target_ulong pr_sigpend; /* XXX */
2114 target_ulong pr_sighold; /* XXX */
c227f099
AL
2115 target_pid_t pr_pid;
2116 target_pid_t pr_ppid;
2117 target_pid_t pr_pgrp;
2118 target_pid_t pr_sid;
edf8e2af
MW
2119 struct target_timeval pr_utime; /* XXX User time */
2120 struct target_timeval pr_stime; /* XXX System time */
2121 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2122 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 2123 target_elf_gregset_t pr_reg; /* GP registers */
80f5ce75 2124 target_int pr_fpvalid; /* XXX */
edf8e2af
MW
2125};
2126
2127#define ELF_PRARGSZ (80) /* Number of chars for args */
2128
a2547a13 2129struct target_elf_prpsinfo {
edf8e2af
MW
2130 char pr_state; /* numeric process state */
2131 char pr_sname; /* char for pr_state */
2132 char pr_zomb; /* zombie */
2133 char pr_nice; /* nice val */
2134 target_ulong pr_flag; /* flags */
c227f099
AL
2135 target_uid_t pr_uid;
2136 target_gid_t pr_gid;
2137 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af
MW
2138 /* Lots missing */
2139 char pr_fname[16]; /* filename of executable */
2140 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2141};
2142
2143/* Here is the structure in which status of each thread is captured. */
2144struct elf_thread_status {
72cf2d4f 2145 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 2146 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
2147#if 0
2148 elf_fpregset_t fpu; /* NT_PRFPREG */
2149 struct task_struct *thread;
2150 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2151#endif
2152 struct memelfnote notes[1];
2153 int num_notes;
2154};
2155
2156struct elf_note_info {
2157 struct memelfnote *notes;
a2547a13
LD
2158 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2159 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 2160
72cf2d4f 2161 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
edf8e2af
MW
2162#if 0
2163 /*
2164 * Current version of ELF coredump doesn't support
2165 * dumping fp regs etc.
2166 */
2167 elf_fpregset_t *fpu;
2168 elf_fpxregset_t *xfpu;
2169 int thread_status_size;
2170#endif
2171 int notes_size;
2172 int numnote;
2173};
2174
2175struct vm_area_struct {
2176 abi_ulong vma_start; /* start vaddr of memory region */
2177 abi_ulong vma_end; /* end vaddr of memory region */
2178 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 2179 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
2180};
2181
2182struct mm_struct {
72cf2d4f 2183 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
2184 int mm_count; /* number of mappings */
2185};
2186
2187static struct mm_struct *vma_init(void);
2188static void vma_delete(struct mm_struct *);
2189static int vma_add_mapping(struct mm_struct *, abi_ulong,
d97ef72e 2190 abi_ulong, abi_ulong);
edf8e2af
MW
2191static int vma_get_mapping_count(const struct mm_struct *);
2192static struct vm_area_struct *vma_first(const struct mm_struct *);
2193static struct vm_area_struct *vma_next(struct vm_area_struct *);
2194static abi_ulong vma_dump_size(const struct vm_area_struct *);
b480d9b7 2195static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
d97ef72e 2196 unsigned long flags);
edf8e2af
MW
2197
2198static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2199static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 2200 unsigned int, void *);
a2547a13
LD
2201static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2202static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
2203static void fill_auxv_note(struct memelfnote *, const TaskState *);
2204static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2205static size_t note_size(const struct memelfnote *);
2206static void free_note_info(struct elf_note_info *);
9349b4f9
AF
2207static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2208static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
2209static int core_dump_filename(const TaskState *, char *, size_t);
2210
2211static int dump_write(int, const void *, size_t);
2212static int write_note(struct memelfnote *, int);
2213static int write_note_info(struct elf_note_info *, int);
2214
2215#ifdef BSWAP_NEEDED
a2547a13 2216static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af
MW
2217{
2218 prstatus->pr_info.si_signo = tswapl(prstatus->pr_info.si_signo);
2219 prstatus->pr_info.si_code = tswapl(prstatus->pr_info.si_code);
2220 prstatus->pr_info.si_errno = tswapl(prstatus->pr_info.si_errno);
2221 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2222 prstatus->pr_sigpend = tswapl(prstatus->pr_sigpend);
2223 prstatus->pr_sighold = tswapl(prstatus->pr_sighold);
2224 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2225 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2226 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2227 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2228 /* cpu times are not filled, so we skip them */
2229 /* regs should be in correct format already */
2230 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2231}
2232
a2547a13 2233static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af
MW
2234{
2235 psinfo->pr_flag = tswapl(psinfo->pr_flag);
2236 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2237 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2238 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2239 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2240 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2241 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2242}
991f8f0c
RH
2243
2244static void bswap_note(struct elf_note *en)
2245{
2246 bswap32s(&en->n_namesz);
2247 bswap32s(&en->n_descsz);
2248 bswap32s(&en->n_type);
2249}
2250#else
2251static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2252static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2253static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
2254#endif /* BSWAP_NEEDED */
2255
2256/*
2257 * Minimal support for linux memory regions. These are needed
2258 * when we are finding out what memory exactly belongs to
2259 * emulated process. No locks needed here, as long as
2260 * thread that received the signal is stopped.
2261 */
2262
2263static struct mm_struct *vma_init(void)
2264{
2265 struct mm_struct *mm;
2266
7267c094 2267 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
2268 return (NULL);
2269
2270 mm->mm_count = 0;
72cf2d4f 2271 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
2272
2273 return (mm);
2274}
2275
2276static void vma_delete(struct mm_struct *mm)
2277{
2278 struct vm_area_struct *vma;
2279
2280 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 2281 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 2282 g_free(vma);
edf8e2af 2283 }
7267c094 2284 g_free(mm);
edf8e2af
MW
2285}
2286
2287static int vma_add_mapping(struct mm_struct *mm, abi_ulong start,
d97ef72e 2288 abi_ulong end, abi_ulong flags)
edf8e2af
MW
2289{
2290 struct vm_area_struct *vma;
2291
7267c094 2292 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
2293 return (-1);
2294
2295 vma->vma_start = start;
2296 vma->vma_end = end;
2297 vma->vma_flags = flags;
2298
72cf2d4f 2299 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
2300 mm->mm_count++;
2301
2302 return (0);
2303}
2304
2305static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2306{
72cf2d4f 2307 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
2308}
2309
2310static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2311{
72cf2d4f 2312 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
2313}
2314
2315static int vma_get_mapping_count(const struct mm_struct *mm)
2316{
2317 return (mm->mm_count);
2318}
2319
2320/*
2321 * Calculate file (dump) size of given memory region.
2322 */
2323static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2324{
2325 /* if we cannot even read the first page, skip it */
2326 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2327 return (0);
2328
2329 /*
2330 * Usually we don't dump executable pages as they contain
2331 * non-writable code that debugger can read directly from
2332 * target library etc. However, thread stacks are marked
2333 * also executable so we read in first page of given region
2334 * and check whether it contains elf header. If there is
2335 * no elf header, we dump it.
2336 */
2337 if (vma->vma_flags & PROT_EXEC) {
2338 char page[TARGET_PAGE_SIZE];
2339
2340 copy_from_user(page, vma->vma_start, sizeof (page));
2341 if ((page[EI_MAG0] == ELFMAG0) &&
2342 (page[EI_MAG1] == ELFMAG1) &&
2343 (page[EI_MAG2] == ELFMAG2) &&
2344 (page[EI_MAG3] == ELFMAG3)) {
2345 /*
2346 * Mappings are possibly from ELF binary. Don't dump
2347 * them.
2348 */
2349 return (0);
2350 }
2351 }
2352
2353 return (vma->vma_end - vma->vma_start);
2354}
2355
b480d9b7 2356static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
d97ef72e 2357 unsigned long flags)
edf8e2af
MW
2358{
2359 struct mm_struct *mm = (struct mm_struct *)priv;
2360
edf8e2af
MW
2361 vma_add_mapping(mm, start, end, flags);
2362 return (0);
2363}
2364
2365static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 2366 unsigned int sz, void *data)
edf8e2af
MW
2367{
2368 unsigned int namesz;
2369
2370 namesz = strlen(name) + 1;
2371 note->name = name;
2372 note->namesz = namesz;
2373 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2374 note->type = type;
80f5ce75
LV
2375 note->datasz = sz;
2376 note->datasz_rounded = roundup(sz, sizeof (int32_t));
2377
edf8e2af
MW
2378 note->data = data;
2379
2380 /*
2381 * We calculate rounded up note size here as specified by
2382 * ELF document.
2383 */
2384 note->notesz = sizeof (struct elf_note) +
80f5ce75 2385 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
2386}
2387
2388static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 2389 uint32_t flags)
edf8e2af
MW
2390{
2391 (void) memset(elf, 0, sizeof(*elf));
2392
2393 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2394 elf->e_ident[EI_CLASS] = ELF_CLASS;
2395 elf->e_ident[EI_DATA] = ELF_DATA;
2396 elf->e_ident[EI_VERSION] = EV_CURRENT;
2397 elf->e_ident[EI_OSABI] = ELF_OSABI;
2398
2399 elf->e_type = ET_CORE;
2400 elf->e_machine = machine;
2401 elf->e_version = EV_CURRENT;
2402 elf->e_phoff = sizeof(struct elfhdr);
2403 elf->e_flags = flags;
2404 elf->e_ehsize = sizeof(struct elfhdr);
2405 elf->e_phentsize = sizeof(struct elf_phdr);
2406 elf->e_phnum = segs;
2407
edf8e2af 2408 bswap_ehdr(elf);
edf8e2af
MW
2409}
2410
2411static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2412{
2413 phdr->p_type = PT_NOTE;
2414 phdr->p_offset = offset;
2415 phdr->p_vaddr = 0;
2416 phdr->p_paddr = 0;
2417 phdr->p_filesz = sz;
2418 phdr->p_memsz = 0;
2419 phdr->p_flags = 0;
2420 phdr->p_align = 0;
2421
991f8f0c 2422 bswap_phdr(phdr, 1);
edf8e2af
MW
2423}
2424
2425static size_t note_size(const struct memelfnote *note)
2426{
2427 return (note->notesz);
2428}
2429
a2547a13 2430static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 2431 const TaskState *ts, int signr)
edf8e2af
MW
2432{
2433 (void) memset(prstatus, 0, sizeof (*prstatus));
2434 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2435 prstatus->pr_pid = ts->ts_tid;
2436 prstatus->pr_ppid = getppid();
2437 prstatus->pr_pgrp = getpgrp();
2438 prstatus->pr_sid = getsid(0);
2439
edf8e2af 2440 bswap_prstatus(prstatus);
edf8e2af
MW
2441}
2442
a2547a13 2443static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af
MW
2444{
2445 char *filename, *base_filename;
2446 unsigned int i, len;
2447
2448 (void) memset(psinfo, 0, sizeof (*psinfo));
2449
2450 len = ts->info->arg_end - ts->info->arg_start;
2451 if (len >= ELF_PRARGSZ)
2452 len = ELF_PRARGSZ - 1;
2453 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2454 return -EFAULT;
2455 for (i = 0; i < len; i++)
2456 if (psinfo->pr_psargs[i] == 0)
2457 psinfo->pr_psargs[i] = ' ';
2458 psinfo->pr_psargs[len] = 0;
2459
2460 psinfo->pr_pid = getpid();
2461 psinfo->pr_ppid = getppid();
2462 psinfo->pr_pgrp = getpgrp();
2463 psinfo->pr_sid = getsid(0);
2464 psinfo->pr_uid = getuid();
2465 psinfo->pr_gid = getgid();
2466
2467 filename = strdup(ts->bprm->filename);
2468 base_filename = strdup(basename(filename));
2469 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 2470 sizeof(psinfo->pr_fname));
edf8e2af
MW
2471 free(base_filename);
2472 free(filename);
2473
edf8e2af 2474 bswap_psinfo(psinfo);
edf8e2af
MW
2475 return (0);
2476}
2477
2478static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2479{
2480 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2481 elf_addr_t orig_auxv = auxv;
edf8e2af 2482 void *ptr;
125b0f55 2483 int len = ts->info->auxv_len;
edf8e2af
MW
2484
2485 /*
2486 * Auxiliary vector is stored in target process stack. It contains
2487 * {type, value} pairs that we need to dump into note. This is not
2488 * strictly necessary but we do it here for sake of completeness.
2489 */
2490
edf8e2af
MW
2491 /* read in whole auxv vector and copy it to memelfnote */
2492 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2493 if (ptr != NULL) {
2494 fill_note(note, "CORE", NT_AUXV, len, ptr);
2495 unlock_user(ptr, auxv, len);
2496 }
2497}
2498
2499/*
2500 * Constructs name of coredump file. We have following convention
2501 * for the name:
2502 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2503 *
2504 * Returns 0 in case of success, -1 otherwise (errno is set).
2505 */
2506static int core_dump_filename(const TaskState *ts, char *buf,
d97ef72e 2507 size_t bufsize)
edf8e2af
MW
2508{
2509 char timestamp[64];
2510 char *filename = NULL;
2511 char *base_filename = NULL;
2512 struct timeval tv;
2513 struct tm tm;
2514
2515 assert(bufsize >= PATH_MAX);
2516
2517 if (gettimeofday(&tv, NULL) < 0) {
2518 (void) fprintf(stderr, "unable to get current timestamp: %s",
d97ef72e 2519 strerror(errno));
edf8e2af
MW
2520 return (-1);
2521 }
2522
2523 filename = strdup(ts->bprm->filename);
2524 base_filename = strdup(basename(filename));
2525 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
d97ef72e 2526 localtime_r(&tv.tv_sec, &tm));
edf8e2af 2527 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
d97ef72e 2528 base_filename, timestamp, (int)getpid());
edf8e2af
MW
2529 free(base_filename);
2530 free(filename);
2531
2532 return (0);
2533}
2534
2535static int dump_write(int fd, const void *ptr, size_t size)
2536{
2537 const char *bufp = (const char *)ptr;
2538 ssize_t bytes_written, bytes_left;
2539 struct rlimit dumpsize;
2540 off_t pos;
2541
2542 bytes_written = 0;
2543 getrlimit(RLIMIT_CORE, &dumpsize);
2544 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2545 if (errno == ESPIPE) { /* not a seekable stream */
2546 bytes_left = size;
2547 } else {
2548 return pos;
2549 }
2550 } else {
2551 if (dumpsize.rlim_cur <= pos) {
2552 return -1;
2553 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2554 bytes_left = size;
2555 } else {
2556 size_t limit_left=dumpsize.rlim_cur - pos;
2557 bytes_left = limit_left >= size ? size : limit_left ;
2558 }
2559 }
2560
2561 /*
2562 * In normal conditions, single write(2) should do but
2563 * in case of socket etc. this mechanism is more portable.
2564 */
2565 do {
2566 bytes_written = write(fd, bufp, bytes_left);
2567 if (bytes_written < 0) {
2568 if (errno == EINTR)
2569 continue;
2570 return (-1);
2571 } else if (bytes_written == 0) { /* eof */
2572 return (-1);
2573 }
2574 bufp += bytes_written;
2575 bytes_left -= bytes_written;
2576 } while (bytes_left > 0);
2577
2578 return (0);
2579}
2580
2581static int write_note(struct memelfnote *men, int fd)
2582{
2583 struct elf_note en;
2584
2585 en.n_namesz = men->namesz;
2586 en.n_type = men->type;
2587 en.n_descsz = men->datasz;
2588
edf8e2af 2589 bswap_note(&en);
edf8e2af
MW
2590
2591 if (dump_write(fd, &en, sizeof(en)) != 0)
2592 return (-1);
2593 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2594 return (-1);
80f5ce75 2595 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
2596 return (-1);
2597
2598 return (0);
2599}
2600
9349b4f9 2601static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af
MW
2602{
2603 TaskState *ts = (TaskState *)env->opaque;
2604 struct elf_thread_status *ets;
2605
7267c094 2606 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
2607 ets->num_notes = 1; /* only prstatus is dumped */
2608 fill_prstatus(&ets->prstatus, ts, 0);
2609 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2610 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 2611 &ets->prstatus);
edf8e2af 2612
72cf2d4f 2613 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
2614
2615 info->notes_size += note_size(&ets->notes[0]);
2616}
2617
2618static int fill_note_info(struct elf_note_info *info,
9349b4f9 2619 long signr, const CPUArchState *env)
edf8e2af
MW
2620{
2621#define NUMNOTES 3
9349b4f9 2622 CPUArchState *cpu = NULL;
edf8e2af
MW
2623 TaskState *ts = (TaskState *)env->opaque;
2624 int i;
2625
2626 (void) memset(info, 0, sizeof (*info));
2627
72cf2d4f 2628 QTAILQ_INIT(&info->thread_list);
edf8e2af 2629
7267c094 2630 info->notes = g_malloc0(NUMNOTES * sizeof (struct memelfnote));
edf8e2af
MW
2631 if (info->notes == NULL)
2632 return (-ENOMEM);
7267c094 2633 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
2634 if (info->prstatus == NULL)
2635 return (-ENOMEM);
7267c094 2636 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
2637 if (info->prstatus == NULL)
2638 return (-ENOMEM);
2639
2640 /*
2641 * First fill in status (and registers) of current thread
2642 * including process info & aux vector.
2643 */
2644 fill_prstatus(info->prstatus, ts, signr);
2645 elf_core_copy_regs(&info->prstatus->pr_reg, env);
2646 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 2647 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
2648 fill_psinfo(info->psinfo, ts);
2649 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 2650 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
2651 fill_auxv_note(&info->notes[2], ts);
2652 info->numnote = 3;
2653
2654 info->notes_size = 0;
2655 for (i = 0; i < info->numnote; i++)
2656 info->notes_size += note_size(&info->notes[i]);
2657
2658 /* read and fill status of all threads */
2659 cpu_list_lock();
2660 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
2661 if (cpu == thread_env)
2662 continue;
2663 fill_thread_info(info, cpu);
2664 }
2665 cpu_list_unlock();
2666
2667 return (0);
2668}
2669
2670static void free_note_info(struct elf_note_info *info)
2671{
2672 struct elf_thread_status *ets;
2673
72cf2d4f
BS
2674 while (!QTAILQ_EMPTY(&info->thread_list)) {
2675 ets = QTAILQ_FIRST(&info->thread_list);
2676 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 2677 g_free(ets);
edf8e2af
MW
2678 }
2679
7267c094
AL
2680 g_free(info->prstatus);
2681 g_free(info->psinfo);
2682 g_free(info->notes);
edf8e2af
MW
2683}
2684
2685static int write_note_info(struct elf_note_info *info, int fd)
2686{
2687 struct elf_thread_status *ets;
2688 int i, error = 0;
2689
2690 /* write prstatus, psinfo and auxv for current thread */
2691 for (i = 0; i < info->numnote; i++)
2692 if ((error = write_note(&info->notes[i], fd)) != 0)
2693 return (error);
2694
2695 /* write prstatus for each thread */
2696 for (ets = info->thread_list.tqh_first; ets != NULL;
d97ef72e 2697 ets = ets->ets_link.tqe_next) {
edf8e2af
MW
2698 if ((error = write_note(&ets->notes[0], fd)) != 0)
2699 return (error);
2700 }
2701
2702 return (0);
2703}
2704
2705/*
2706 * Write out ELF coredump.
2707 *
2708 * See documentation of ELF object file format in:
2709 * http://www.caldera.com/developers/devspecs/gabi41.pdf
2710 *
2711 * Coredump format in linux is following:
2712 *
2713 * 0 +----------------------+ \
2714 * | ELF header | ET_CORE |
2715 * +----------------------+ |
2716 * | ELF program headers | |--- headers
2717 * | - NOTE section | |
2718 * | - PT_LOAD sections | |
2719 * +----------------------+ /
2720 * | NOTEs: |
2721 * | - NT_PRSTATUS |
2722 * | - NT_PRSINFO |
2723 * | - NT_AUXV |
2724 * +----------------------+ <-- aligned to target page
2725 * | Process memory dump |
2726 * : :
2727 * . .
2728 * : :
2729 * | |
2730 * +----------------------+
2731 *
2732 * NT_PRSTATUS -> struct elf_prstatus (per thread)
2733 * NT_PRSINFO -> struct elf_prpsinfo
2734 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2735 *
2736 * Format follows System V format as close as possible. Current
2737 * version limitations are as follows:
2738 * - no floating point registers are dumped
2739 *
2740 * Function returns 0 in case of success, negative errno otherwise.
2741 *
2742 * TODO: make this work also during runtime: it should be
2743 * possible to force coredump from running process and then
2744 * continue processing. For example qemu could set up SIGUSR2
2745 * handler (provided that target process haven't registered
2746 * handler for that) that does the dump when signal is received.
2747 */
9349b4f9 2748static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af
MW
2749{
2750 const TaskState *ts = (const TaskState *)env->opaque;
2751 struct vm_area_struct *vma = NULL;
2752 char corefile[PATH_MAX];
2753 struct elf_note_info info;
2754 struct elfhdr elf;
2755 struct elf_phdr phdr;
2756 struct rlimit dumpsize;
2757 struct mm_struct *mm = NULL;
2758 off_t offset = 0, data_offset = 0;
2759 int segs = 0;
2760 int fd = -1;
2761
2762 errno = 0;
2763 getrlimit(RLIMIT_CORE, &dumpsize);
2764 if (dumpsize.rlim_cur == 0)
d97ef72e 2765 return 0;
edf8e2af
MW
2766
2767 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
2768 return (-errno);
2769
2770 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 2771 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
2772 return (-errno);
2773
2774 /*
2775 * Walk through target process memory mappings and
2776 * set up structure containing this information. After
2777 * this point vma_xxx functions can be used.
2778 */
2779 if ((mm = vma_init()) == NULL)
2780 goto out;
2781
2782 walk_memory_regions(mm, vma_walker);
2783 segs = vma_get_mapping_count(mm);
2784
2785 /*
2786 * Construct valid coredump ELF header. We also
2787 * add one more segment for notes.
2788 */
2789 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
2790 if (dump_write(fd, &elf, sizeof (elf)) != 0)
2791 goto out;
2792
2793 /* fill in in-memory version of notes */
2794 if (fill_note_info(&info, signr, env) < 0)
2795 goto out;
2796
2797 offset += sizeof (elf); /* elf header */
2798 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
2799
2800 /* write out notes program header */
2801 fill_elf_note_phdr(&phdr, info.notes_size, offset);
2802
2803 offset += info.notes_size;
2804 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
2805 goto out;
2806
2807 /*
2808 * ELF specification wants data to start at page boundary so
2809 * we align it here.
2810 */
80f5ce75 2811 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
2812
2813 /*
2814 * Write program headers for memory regions mapped in
2815 * the target process.
2816 */
2817 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2818 (void) memset(&phdr, 0, sizeof (phdr));
2819
2820 phdr.p_type = PT_LOAD;
2821 phdr.p_offset = offset;
2822 phdr.p_vaddr = vma->vma_start;
2823 phdr.p_paddr = 0;
2824 phdr.p_filesz = vma_dump_size(vma);
2825 offset += phdr.p_filesz;
2826 phdr.p_memsz = vma->vma_end - vma->vma_start;
2827 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
2828 if (vma->vma_flags & PROT_WRITE)
2829 phdr.p_flags |= PF_W;
2830 if (vma->vma_flags & PROT_EXEC)
2831 phdr.p_flags |= PF_X;
2832 phdr.p_align = ELF_EXEC_PAGESIZE;
2833
80f5ce75 2834 bswap_phdr(&phdr, 1);
edf8e2af
MW
2835 dump_write(fd, &phdr, sizeof (phdr));
2836 }
2837
2838 /*
2839 * Next we write notes just after program headers. No
2840 * alignment needed here.
2841 */
2842 if (write_note_info(&info, fd) < 0)
2843 goto out;
2844
2845 /* align data to page boundary */
edf8e2af
MW
2846 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
2847 goto out;
2848
2849 /*
2850 * Finally we can dump process memory into corefile as well.
2851 */
2852 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2853 abi_ulong addr;
2854 abi_ulong end;
2855
2856 end = vma->vma_start + vma_dump_size(vma);
2857
2858 for (addr = vma->vma_start; addr < end;
d97ef72e 2859 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
2860 char page[TARGET_PAGE_SIZE];
2861 int error;
2862
2863 /*
2864 * Read in page from target process memory and
2865 * write it to coredump file.
2866 */
2867 error = copy_from_user(page, addr, sizeof (page));
2868 if (error != 0) {
49995e17 2869 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 2870 addr);
edf8e2af
MW
2871 errno = -error;
2872 goto out;
2873 }
2874 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
2875 goto out;
2876 }
2877 }
2878
d97ef72e 2879 out:
edf8e2af
MW
2880 free_note_info(&info);
2881 if (mm != NULL)
2882 vma_delete(mm);
2883 (void) close(fd);
2884
2885 if (errno != 0)
2886 return (-errno);
2887 return (0);
2888}
edf8e2af
MW
2889#endif /* USE_ELF_CORE_DUMP */
2890
e5fe0c52
PB
2891void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
2892{
2893 init_thread(regs, infop);
2894}