]> git.proxmox.com Git - qemu.git/blame - linux-user/elfload.c
target-arm: BKPT instructions should raise prefetch aborts with IFSR type 00010
[qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
edf8e2af
MW
2#include <sys/time.h>
3#include <sys/param.h>
31e31b8a
FB
4
5#include <stdio.h>
6#include <sys/types.h>
7#include <fcntl.h>
31e31b8a
FB
8#include <errno.h>
9#include <unistd.h>
10#include <sys/mman.h>
edf8e2af 11#include <sys/resource.h>
31e31b8a
FB
12#include <stdlib.h>
13#include <string.h>
edf8e2af 14#include <time.h>
31e31b8a 15
3ef693a0 16#include "qemu.h"
689f936f 17#include "disas.h"
31e31b8a 18
e58ffeb3 19#ifdef _ARCH_PPC64
a6cc84f4 20#undef ARCH_DLINFO
21#undef ELF_PLATFORM
22#undef ELF_HWCAP
23#undef ELF_CLASS
24#undef ELF_DATA
25#undef ELF_ARCH
26#endif
27
edf8e2af
MW
28#define ELF_OSABI ELFOSABI_SYSV
29
cb33da57
BS
30/* from personality.h */
31
32/*
33 * Flags for bug emulation.
34 *
35 * These occupy the top three bytes.
36 */
37enum {
d97ef72e
RH
38 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
39 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
40 descriptors (signal handling) */
41 MMAP_PAGE_ZERO = 0x0100000,
42 ADDR_COMPAT_LAYOUT = 0x0200000,
43 READ_IMPLIES_EXEC = 0x0400000,
44 ADDR_LIMIT_32BIT = 0x0800000,
45 SHORT_INODE = 0x1000000,
46 WHOLE_SECONDS = 0x2000000,
47 STICKY_TIMEOUTS = 0x4000000,
48 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
49};
50
51/*
52 * Personality types.
53 *
54 * These go in the low byte. Avoid using the top bit, it will
55 * conflict with error returns.
56 */
57enum {
d97ef72e
RH
58 PER_LINUX = 0x0000,
59 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
60 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
61 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
62 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
64 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
65 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
66 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
67 PER_BSD = 0x0006,
68 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
69 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
70 PER_LINUX32 = 0x0008,
71 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
72 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
73 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
74 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
75 PER_RISCOS = 0x000c,
76 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
77 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
78 PER_OSF4 = 0x000f, /* OSF/1 v4 */
79 PER_HPUX = 0x0010,
80 PER_MASK = 0x00ff,
cb33da57
BS
81};
82
83/*
84 * Return the base personality without flags.
85 */
d97ef72e 86#define personality(pers) (pers & PER_MASK)
cb33da57 87
83fb7adf
FB
88/* this flag is uneffective under linux too, should be deleted */
89#ifndef MAP_DENYWRITE
90#define MAP_DENYWRITE 0
91#endif
92
93/* should probably go in elf.h */
94#ifndef ELIBBAD
95#define ELIBBAD 80
96#endif
97
28490231
RH
98#ifdef TARGET_WORDS_BIGENDIAN
99#define ELF_DATA ELFDATA2MSB
100#else
101#define ELF_DATA ELFDATA2LSB
102#endif
103
d97ef72e 104typedef target_ulong target_elf_greg_t;
21e807fa 105#ifdef USE_UID16
80f5ce75
LV
106typedef target_ushort target_uid_t;
107typedef target_ushort target_gid_t;
21e807fa 108#else
80f5ce75
LV
109typedef target_uint target_uid_t;
110typedef target_uint target_gid_t;
21e807fa 111#endif
80f5ce75 112typedef target_int target_pid_t;
21e807fa 113
30ac07d4
FB
114#ifdef TARGET_I386
115
15338fd7
FB
116#define ELF_PLATFORM get_elf_platform()
117
118static const char *get_elf_platform(void)
119{
120 static char elf_platform[] = "i386";
d5975363 121 int family = (thread_env->cpuid_version >> 8) & 0xff;
15338fd7
FB
122 if (family > 6)
123 family = 6;
124 if (family >= 3)
125 elf_platform[1] = '0' + family;
126 return elf_platform;
127}
128
129#define ELF_HWCAP get_elf_hwcap()
130
131static uint32_t get_elf_hwcap(void)
132{
d97ef72e 133 return thread_env->cpuid_features;
15338fd7
FB
134}
135
84409ddb
JM
136#ifdef TARGET_X86_64
137#define ELF_START_MMAP 0x2aaaaab000ULL
138#define elf_check_arch(x) ( ((x) == ELF_ARCH) )
139
140#define ELF_CLASS ELFCLASS64
84409ddb
JM
141#define ELF_ARCH EM_X86_64
142
143static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
144{
145 regs->rax = 0;
146 regs->rsp = infop->start_stack;
147 regs->rip = infop->entry;
148}
149
9edc5d79 150#define ELF_NREG 27
c227f099 151typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
152
153/*
154 * Note that ELF_NREG should be 29 as there should be place for
155 * TRAPNO and ERR "registers" as well but linux doesn't dump
156 * those.
157 *
158 * See linux kernel: arch/x86/include/asm/elf.h
159 */
c227f099 160static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
9edc5d79
MW
161{
162 (*regs)[0] = env->regs[15];
163 (*regs)[1] = env->regs[14];
164 (*regs)[2] = env->regs[13];
165 (*regs)[3] = env->regs[12];
166 (*regs)[4] = env->regs[R_EBP];
167 (*regs)[5] = env->regs[R_EBX];
168 (*regs)[6] = env->regs[11];
169 (*regs)[7] = env->regs[10];
170 (*regs)[8] = env->regs[9];
171 (*regs)[9] = env->regs[8];
172 (*regs)[10] = env->regs[R_EAX];
173 (*regs)[11] = env->regs[R_ECX];
174 (*regs)[12] = env->regs[R_EDX];
175 (*regs)[13] = env->regs[R_ESI];
176 (*regs)[14] = env->regs[R_EDI];
177 (*regs)[15] = env->regs[R_EAX]; /* XXX */
178 (*regs)[16] = env->eip;
179 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
180 (*regs)[18] = env->eflags;
181 (*regs)[19] = env->regs[R_ESP];
182 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
183 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
184 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
185 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
186 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
187 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
188 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
189}
190
84409ddb
JM
191#else
192
30ac07d4
FB
193#define ELF_START_MMAP 0x80000000
194
30ac07d4
FB
195/*
196 * This is used to ensure we don't load something for the wrong architecture.
197 */
198#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
199
200/*
201 * These are used to set parameters in the core dumps.
202 */
d97ef72e 203#define ELF_CLASS ELFCLASS32
d97ef72e 204#define ELF_ARCH EM_386
30ac07d4 205
d97ef72e
RH
206static inline void init_thread(struct target_pt_regs *regs,
207 struct image_info *infop)
b346ff46
FB
208{
209 regs->esp = infop->start_stack;
210 regs->eip = infop->entry;
e5fe0c52
PB
211
212 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
213 starts %edx contains a pointer to a function which might be
214 registered using `atexit'. This provides a mean for the
215 dynamic linker to call DT_FINI functions for shared libraries
216 that have been loaded before the code runs.
217
218 A value of 0 tells we have no such handler. */
219 regs->edx = 0;
b346ff46 220}
9edc5d79 221
9edc5d79 222#define ELF_NREG 17
c227f099 223typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
224
225/*
226 * Note that ELF_NREG should be 19 as there should be place for
227 * TRAPNO and ERR "registers" as well but linux doesn't dump
228 * those.
229 *
230 * See linux kernel: arch/x86/include/asm/elf.h
231 */
c227f099 232static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
9edc5d79
MW
233{
234 (*regs)[0] = env->regs[R_EBX];
235 (*regs)[1] = env->regs[R_ECX];
236 (*regs)[2] = env->regs[R_EDX];
237 (*regs)[3] = env->regs[R_ESI];
238 (*regs)[4] = env->regs[R_EDI];
239 (*regs)[5] = env->regs[R_EBP];
240 (*regs)[6] = env->regs[R_EAX];
241 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
242 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
243 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
244 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
245 (*regs)[11] = env->regs[R_EAX]; /* XXX */
246 (*regs)[12] = env->eip;
247 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
248 (*regs)[14] = env->eflags;
249 (*regs)[15] = env->regs[R_ESP];
250 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
251}
84409ddb 252#endif
b346ff46 253
9edc5d79 254#define USE_ELF_CORE_DUMP
d97ef72e 255#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
256
257#endif
258
259#ifdef TARGET_ARM
260
261#define ELF_START_MMAP 0x80000000
262
263#define elf_check_arch(x) ( (x) == EM_ARM )
264
d97ef72e 265#define ELF_CLASS ELFCLASS32
d97ef72e 266#define ELF_ARCH EM_ARM
b346ff46 267
d97ef72e
RH
268static inline void init_thread(struct target_pt_regs *regs,
269 struct image_info *infop)
b346ff46 270{
992f48a0 271 abi_long stack = infop->start_stack;
b346ff46
FB
272 memset(regs, 0, sizeof(*regs));
273 regs->ARM_cpsr = 0x10;
0240ded8 274 if (infop->entry & 1)
d97ef72e 275 regs->ARM_cpsr |= CPSR_T;
0240ded8 276 regs->ARM_pc = infop->entry & 0xfffffffe;
b346ff46 277 regs->ARM_sp = infop->start_stack;
2f619698
FB
278 /* FIXME - what to for failure of get_user()? */
279 get_user_ual(regs->ARM_r2, stack + 8); /* envp */
280 get_user_ual(regs->ARM_r1, stack + 4); /* envp */
a1516e92 281 /* XXX: it seems that r0 is zeroed after ! */
e5fe0c52
PB
282 regs->ARM_r0 = 0;
283 /* For uClinux PIC binaries. */
863cf0b7 284 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
e5fe0c52 285 regs->ARM_r10 = infop->start_data;
b346ff46
FB
286}
287
edf8e2af 288#define ELF_NREG 18
c227f099 289typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 290
c227f099 291static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
edf8e2af 292{
d049e626
NF
293 (*regs)[0] = tswapl(env->regs[0]);
294 (*regs)[1] = tswapl(env->regs[1]);
295 (*regs)[2] = tswapl(env->regs[2]);
296 (*regs)[3] = tswapl(env->regs[3]);
297 (*regs)[4] = tswapl(env->regs[4]);
298 (*regs)[5] = tswapl(env->regs[5]);
299 (*regs)[6] = tswapl(env->regs[6]);
300 (*regs)[7] = tswapl(env->regs[7]);
301 (*regs)[8] = tswapl(env->regs[8]);
302 (*regs)[9] = tswapl(env->regs[9]);
303 (*regs)[10] = tswapl(env->regs[10]);
304 (*regs)[11] = tswapl(env->regs[11]);
305 (*regs)[12] = tswapl(env->regs[12]);
306 (*regs)[13] = tswapl(env->regs[13]);
307 (*regs)[14] = tswapl(env->regs[14]);
308 (*regs)[15] = tswapl(env->regs[15]);
309
310 (*regs)[16] = tswapl(cpsr_read((CPUState *)env));
311 (*regs)[17] = tswapl(env->regs[0]); /* XXX */
edf8e2af
MW
312}
313
30ac07d4 314#define USE_ELF_CORE_DUMP
d97ef72e 315#define ELF_EXEC_PAGESIZE 4096
30ac07d4 316
afce2927
FB
317enum
318{
d97ef72e
RH
319 ARM_HWCAP_ARM_SWP = 1 << 0,
320 ARM_HWCAP_ARM_HALF = 1 << 1,
321 ARM_HWCAP_ARM_THUMB = 1 << 2,
322 ARM_HWCAP_ARM_26BIT = 1 << 3,
323 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
324 ARM_HWCAP_ARM_FPA = 1 << 5,
325 ARM_HWCAP_ARM_VFP = 1 << 6,
326 ARM_HWCAP_ARM_EDSP = 1 << 7,
327 ARM_HWCAP_ARM_JAVA = 1 << 8,
328 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
329 ARM_HWCAP_ARM_THUMBEE = 1 << 10,
330 ARM_HWCAP_ARM_NEON = 1 << 11,
331 ARM_HWCAP_ARM_VFPv3 = 1 << 12,
332 ARM_HWCAP_ARM_VFPv3D16 = 1 << 13,
afce2927
FB
333};
334
d97ef72e
RH
335#define ELF_HWCAP (ARM_HWCAP_ARM_SWP | ARM_HWCAP_ARM_HALF \
336 | ARM_HWCAP_ARM_THUMB | ARM_HWCAP_ARM_FAST_MULT \
337 | ARM_HWCAP_ARM_FPA | ARM_HWCAP_ARM_VFP \
338 | ARM_HWCAP_ARM_NEON | ARM_HWCAP_ARM_VFPv3 )
afce2927 339
30ac07d4
FB
340#endif
341
d2fbca94
GX
342#ifdef TARGET_UNICORE32
343
344#define ELF_START_MMAP 0x80000000
345
346#define elf_check_arch(x) ((x) == EM_UNICORE32)
347
348#define ELF_CLASS ELFCLASS32
349#define ELF_DATA ELFDATA2LSB
350#define ELF_ARCH EM_UNICORE32
351
352static inline void init_thread(struct target_pt_regs *regs,
353 struct image_info *infop)
354{
355 abi_long stack = infop->start_stack;
356 memset(regs, 0, sizeof(*regs));
357 regs->UC32_REG_asr = 0x10;
358 regs->UC32_REG_pc = infop->entry & 0xfffffffe;
359 regs->UC32_REG_sp = infop->start_stack;
360 /* FIXME - what to for failure of get_user()? */
361 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
362 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
363 /* XXX: it seems that r0 is zeroed after ! */
364 regs->UC32_REG_00 = 0;
365}
366
367#define ELF_NREG 34
368typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
369
370static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
371{
372 (*regs)[0] = env->regs[0];
373 (*regs)[1] = env->regs[1];
374 (*regs)[2] = env->regs[2];
375 (*regs)[3] = env->regs[3];
376 (*regs)[4] = env->regs[4];
377 (*regs)[5] = env->regs[5];
378 (*regs)[6] = env->regs[6];
379 (*regs)[7] = env->regs[7];
380 (*regs)[8] = env->regs[8];
381 (*regs)[9] = env->regs[9];
382 (*regs)[10] = env->regs[10];
383 (*regs)[11] = env->regs[11];
384 (*regs)[12] = env->regs[12];
385 (*regs)[13] = env->regs[13];
386 (*regs)[14] = env->regs[14];
387 (*regs)[15] = env->regs[15];
388 (*regs)[16] = env->regs[16];
389 (*regs)[17] = env->regs[17];
390 (*regs)[18] = env->regs[18];
391 (*regs)[19] = env->regs[19];
392 (*regs)[20] = env->regs[20];
393 (*regs)[21] = env->regs[21];
394 (*regs)[22] = env->regs[22];
395 (*regs)[23] = env->regs[23];
396 (*regs)[24] = env->regs[24];
397 (*regs)[25] = env->regs[25];
398 (*regs)[26] = env->regs[26];
399 (*regs)[27] = env->regs[27];
400 (*regs)[28] = env->regs[28];
401 (*regs)[29] = env->regs[29];
402 (*regs)[30] = env->regs[30];
403 (*regs)[31] = env->regs[31];
404
405 (*regs)[32] = cpu_asr_read((CPUState *)env);
406 (*regs)[33] = env->regs[0]; /* XXX */
407}
408
409#define USE_ELF_CORE_DUMP
410#define ELF_EXEC_PAGESIZE 4096
411
412#define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
413
414#endif
415
853d6f7a 416#ifdef TARGET_SPARC
a315a145 417#ifdef TARGET_SPARC64
853d6f7a
FB
418
419#define ELF_START_MMAP 0x80000000
420
992f48a0 421#ifndef TARGET_ABI32
cb33da57 422#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
423#else
424#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
425#endif
853d6f7a 426
a315a145 427#define ELF_CLASS ELFCLASS64
5ef54116
FB
428#define ELF_ARCH EM_SPARCV9
429
d97ef72e 430#define STACK_BIAS 2047
a315a145 431
d97ef72e
RH
432static inline void init_thread(struct target_pt_regs *regs,
433 struct image_info *infop)
a315a145 434{
992f48a0 435#ifndef TARGET_ABI32
a315a145 436 regs->tstate = 0;
992f48a0 437#endif
a315a145
FB
438 regs->pc = infop->entry;
439 regs->npc = regs->pc + 4;
440 regs->y = 0;
992f48a0
BS
441#ifdef TARGET_ABI32
442 regs->u_regs[14] = infop->start_stack - 16 * 4;
443#else
cb33da57
BS
444 if (personality(infop->personality) == PER_LINUX32)
445 regs->u_regs[14] = infop->start_stack - 16 * 4;
446 else
447 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 448#endif
a315a145
FB
449}
450
451#else
452#define ELF_START_MMAP 0x80000000
453
454#define elf_check_arch(x) ( (x) == EM_SPARC )
455
853d6f7a 456#define ELF_CLASS ELFCLASS32
853d6f7a
FB
457#define ELF_ARCH EM_SPARC
458
d97ef72e
RH
459static inline void init_thread(struct target_pt_regs *regs,
460 struct image_info *infop)
853d6f7a 461{
f5155289
FB
462 regs->psr = 0;
463 regs->pc = infop->entry;
464 regs->npc = regs->pc + 4;
465 regs->y = 0;
466 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
467}
468
a315a145 469#endif
853d6f7a
FB
470#endif
471
67867308
FB
472#ifdef TARGET_PPC
473
474#define ELF_START_MMAP 0x80000000
475
e85e7c6e 476#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
477
478#define elf_check_arch(x) ( (x) == EM_PPC64 )
479
d97ef72e 480#define ELF_CLASS ELFCLASS64
84409ddb
JM
481
482#else
483
67867308
FB
484#define elf_check_arch(x) ( (x) == EM_PPC )
485
d97ef72e 486#define ELF_CLASS ELFCLASS32
84409ddb
JM
487
488#endif
489
d97ef72e 490#define ELF_ARCH EM_PPC
67867308 491
df84e4f3
NF
492/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
493 See arch/powerpc/include/asm/cputable.h. */
494enum {
3efa9a67 495 QEMU_PPC_FEATURE_32 = 0x80000000,
496 QEMU_PPC_FEATURE_64 = 0x40000000,
497 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
498 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
499 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
500 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
501 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
502 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
503 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
504 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
505 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
506 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
507 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
508 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
509 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
510 QEMU_PPC_FEATURE_CELL = 0x00010000,
511 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
512 QEMU_PPC_FEATURE_SMT = 0x00004000,
513 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
514 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
515 QEMU_PPC_FEATURE_PA6T = 0x00000800,
516 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
517 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
518 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
519 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
520 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
521
522 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
523 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
df84e4f3
NF
524};
525
526#define ELF_HWCAP get_elf_hwcap()
527
528static uint32_t get_elf_hwcap(void)
529{
530 CPUState *e = thread_env;
531 uint32_t features = 0;
532
533 /* We don't have to be terribly complete here; the high points are
534 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 535#define GET_FEATURE(flag, feature) \
df84e4f3 536 do {if (e->insns_flags & flag) features |= feature; } while(0)
3efa9a67 537 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
538 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
539 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
540 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
541 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
542 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
543 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
544 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
df84e4f3
NF
545#undef GET_FEATURE
546
547 return features;
548}
549
f5155289
FB
550/*
551 * The requirements here are:
552 * - keep the final alignment of sp (sp & 0xf)
553 * - make sure the 32-bit value at the first 16 byte aligned position of
554 * AUXV is greater than 16 for glibc compatibility.
555 * AT_IGNOREPPC is used for that.
556 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
557 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
558 */
0bccf03d 559#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
560#define ARCH_DLINFO \
561 do { \
562 NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20); \
563 NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20); \
564 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
565 /* \
566 * Now handle glibc compatibility. \
567 */ \
568 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
569 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
570 } while (0)
f5155289 571
67867308
FB
572static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
573{
67867308 574 _regs->gpr[1] = infop->start_stack;
e85e7c6e 575#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
7983f435
RL
576 _regs->gpr[2] = ldq_raw(infop->entry + 8) + infop->load_addr;
577 infop->entry = ldq_raw(infop->entry) + infop->load_addr;
84409ddb 578#endif
67867308
FB
579 _regs->nip = infop->entry;
580}
581
e2f3e741
NF
582/* See linux kernel: arch/powerpc/include/asm/elf.h. */
583#define ELF_NREG 48
584typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
585
586static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
587{
588 int i;
589 target_ulong ccr = 0;
590
591 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
592 (*regs)[i] = tswapl(env->gpr[i]);
593 }
594
595 (*regs)[32] = tswapl(env->nip);
596 (*regs)[33] = tswapl(env->msr);
597 (*regs)[35] = tswapl(env->ctr);
598 (*regs)[36] = tswapl(env->lr);
599 (*regs)[37] = tswapl(env->xer);
600
601 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
602 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
603 }
604 (*regs)[38] = tswapl(ccr);
605}
606
607#define USE_ELF_CORE_DUMP
d97ef72e 608#define ELF_EXEC_PAGESIZE 4096
67867308
FB
609
610#endif
611
048f6b4d
FB
612#ifdef TARGET_MIPS
613
614#define ELF_START_MMAP 0x80000000
615
616#define elf_check_arch(x) ( (x) == EM_MIPS )
617
388bb21a
TS
618#ifdef TARGET_MIPS64
619#define ELF_CLASS ELFCLASS64
620#else
048f6b4d 621#define ELF_CLASS ELFCLASS32
388bb21a 622#endif
048f6b4d
FB
623#define ELF_ARCH EM_MIPS
624
d97ef72e
RH
625static inline void init_thread(struct target_pt_regs *regs,
626 struct image_info *infop)
048f6b4d 627{
623a930e 628 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
629 regs->cp0_epc = infop->entry;
630 regs->regs[29] = infop->start_stack;
631}
632
51e52606
NF
633/* See linux kernel: arch/mips/include/asm/elf.h. */
634#define ELF_NREG 45
635typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
636
637/* See linux kernel: arch/mips/include/asm/reg.h. */
638enum {
639#ifdef TARGET_MIPS64
640 TARGET_EF_R0 = 0,
641#else
642 TARGET_EF_R0 = 6,
643#endif
644 TARGET_EF_R26 = TARGET_EF_R0 + 26,
645 TARGET_EF_R27 = TARGET_EF_R0 + 27,
646 TARGET_EF_LO = TARGET_EF_R0 + 32,
647 TARGET_EF_HI = TARGET_EF_R0 + 33,
648 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
649 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
650 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
651 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
652};
653
654/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
655static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
656{
657 int i;
658
659 for (i = 0; i < TARGET_EF_R0; i++) {
660 (*regs)[i] = 0;
661 }
662 (*regs)[TARGET_EF_R0] = 0;
663
664 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
665 (*regs)[TARGET_EF_R0 + i] = tswapl(env->active_tc.gpr[i]);
666 }
667
668 (*regs)[TARGET_EF_R26] = 0;
669 (*regs)[TARGET_EF_R27] = 0;
670 (*regs)[TARGET_EF_LO] = tswapl(env->active_tc.LO[0]);
671 (*regs)[TARGET_EF_HI] = tswapl(env->active_tc.HI[0]);
672 (*regs)[TARGET_EF_CP0_EPC] = tswapl(env->active_tc.PC);
673 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapl(env->CP0_BadVAddr);
674 (*regs)[TARGET_EF_CP0_STATUS] = tswapl(env->CP0_Status);
675 (*regs)[TARGET_EF_CP0_CAUSE] = tswapl(env->CP0_Cause);
676}
677
678#define USE_ELF_CORE_DUMP
388bb21a
TS
679#define ELF_EXEC_PAGESIZE 4096
680
048f6b4d
FB
681#endif /* TARGET_MIPS */
682
b779e29e
EI
683#ifdef TARGET_MICROBLAZE
684
685#define ELF_START_MMAP 0x80000000
686
0d5d4699 687#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
688
689#define ELF_CLASS ELFCLASS32
0d5d4699 690#define ELF_ARCH EM_MICROBLAZE
b779e29e 691
d97ef72e
RH
692static inline void init_thread(struct target_pt_regs *regs,
693 struct image_info *infop)
b779e29e
EI
694{
695 regs->pc = infop->entry;
696 regs->r1 = infop->start_stack;
697
698}
699
b779e29e
EI
700#define ELF_EXEC_PAGESIZE 4096
701
e4cbd44d
EI
702#define USE_ELF_CORE_DUMP
703#define ELF_NREG 38
704typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
705
706/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
707static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
708{
709 int i, pos = 0;
710
711 for (i = 0; i < 32; i++) {
712 (*regs)[pos++] = tswapl(env->regs[i]);
713 }
714
715 for (i = 0; i < 6; i++) {
716 (*regs)[pos++] = tswapl(env->sregs[i]);
717 }
718}
719
b779e29e
EI
720#endif /* TARGET_MICROBLAZE */
721
fdf9b3e8
FB
722#ifdef TARGET_SH4
723
724#define ELF_START_MMAP 0x80000000
725
726#define elf_check_arch(x) ( (x) == EM_SH )
727
728#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
729#define ELF_ARCH EM_SH
730
d97ef72e
RH
731static inline void init_thread(struct target_pt_regs *regs,
732 struct image_info *infop)
fdf9b3e8 733{
d97ef72e
RH
734 /* Check other registers XXXXX */
735 regs->pc = infop->entry;
736 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
737}
738
7631c97e
NF
739/* See linux kernel: arch/sh/include/asm/elf.h. */
740#define ELF_NREG 23
741typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
742
743/* See linux kernel: arch/sh/include/asm/ptrace.h. */
744enum {
745 TARGET_REG_PC = 16,
746 TARGET_REG_PR = 17,
747 TARGET_REG_SR = 18,
748 TARGET_REG_GBR = 19,
749 TARGET_REG_MACH = 20,
750 TARGET_REG_MACL = 21,
751 TARGET_REG_SYSCALL = 22
752};
753
d97ef72e
RH
754static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
755 const CPUState *env)
7631c97e
NF
756{
757 int i;
758
759 for (i = 0; i < 16; i++) {
760 (*regs[i]) = tswapl(env->gregs[i]);
761 }
762
763 (*regs)[TARGET_REG_PC] = tswapl(env->pc);
764 (*regs)[TARGET_REG_PR] = tswapl(env->pr);
765 (*regs)[TARGET_REG_SR] = tswapl(env->sr);
766 (*regs)[TARGET_REG_GBR] = tswapl(env->gbr);
767 (*regs)[TARGET_REG_MACH] = tswapl(env->mach);
768 (*regs)[TARGET_REG_MACL] = tswapl(env->macl);
769 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
770}
771
772#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
773#define ELF_EXEC_PAGESIZE 4096
774
775#endif
776
48733d19
TS
777#ifdef TARGET_CRIS
778
779#define ELF_START_MMAP 0x80000000
780
781#define elf_check_arch(x) ( (x) == EM_CRIS )
782
783#define ELF_CLASS ELFCLASS32
48733d19
TS
784#define ELF_ARCH EM_CRIS
785
d97ef72e
RH
786static inline void init_thread(struct target_pt_regs *regs,
787 struct image_info *infop)
48733d19 788{
d97ef72e 789 regs->erp = infop->entry;
48733d19
TS
790}
791
48733d19
TS
792#define ELF_EXEC_PAGESIZE 8192
793
794#endif
795
e6e5906b
PB
796#ifdef TARGET_M68K
797
798#define ELF_START_MMAP 0x80000000
799
800#define elf_check_arch(x) ( (x) == EM_68K )
801
d97ef72e 802#define ELF_CLASS ELFCLASS32
d97ef72e 803#define ELF_ARCH EM_68K
e6e5906b
PB
804
805/* ??? Does this need to do anything?
d97ef72e 806 #define ELF_PLAT_INIT(_r) */
e6e5906b 807
d97ef72e
RH
808static inline void init_thread(struct target_pt_regs *regs,
809 struct image_info *infop)
e6e5906b
PB
810{
811 regs->usp = infop->start_stack;
812 regs->sr = 0;
813 regs->pc = infop->entry;
814}
815
7a93cc55
NF
816/* See linux kernel: arch/m68k/include/asm/elf.h. */
817#define ELF_NREG 20
818typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
819
820static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
821{
822 (*regs)[0] = tswapl(env->dregs[1]);
823 (*regs)[1] = tswapl(env->dregs[2]);
824 (*regs)[2] = tswapl(env->dregs[3]);
825 (*regs)[3] = tswapl(env->dregs[4]);
826 (*regs)[4] = tswapl(env->dregs[5]);
827 (*regs)[5] = tswapl(env->dregs[6]);
828 (*regs)[6] = tswapl(env->dregs[7]);
829 (*regs)[7] = tswapl(env->aregs[0]);
830 (*regs)[8] = tswapl(env->aregs[1]);
831 (*regs)[9] = tswapl(env->aregs[2]);
832 (*regs)[10] = tswapl(env->aregs[3]);
833 (*regs)[11] = tswapl(env->aregs[4]);
834 (*regs)[12] = tswapl(env->aregs[5]);
835 (*regs)[13] = tswapl(env->aregs[6]);
836 (*regs)[14] = tswapl(env->dregs[0]);
837 (*regs)[15] = tswapl(env->aregs[7]);
838 (*regs)[16] = tswapl(env->dregs[0]); /* FIXME: orig_d0 */
839 (*regs)[17] = tswapl(env->sr);
840 (*regs)[18] = tswapl(env->pc);
841 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
842}
843
844#define USE_ELF_CORE_DUMP
d97ef72e 845#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
846
847#endif
848
7a3148a9
JM
849#ifdef TARGET_ALPHA
850
851#define ELF_START_MMAP (0x30000000000ULL)
852
853#define elf_check_arch(x) ( (x) == ELF_ARCH )
854
855#define ELF_CLASS ELFCLASS64
7a3148a9
JM
856#define ELF_ARCH EM_ALPHA
857
d97ef72e
RH
858static inline void init_thread(struct target_pt_regs *regs,
859 struct image_info *infop)
7a3148a9
JM
860{
861 regs->pc = infop->entry;
862 regs->ps = 8;
863 regs->usp = infop->start_stack;
7a3148a9
JM
864}
865
7a3148a9
JM
866#define ELF_EXEC_PAGESIZE 8192
867
868#endif /* TARGET_ALPHA */
869
a4c075f1
UH
870#ifdef TARGET_S390X
871
872#define ELF_START_MMAP (0x20000000000ULL)
873
874#define elf_check_arch(x) ( (x) == ELF_ARCH )
875
876#define ELF_CLASS ELFCLASS64
877#define ELF_DATA ELFDATA2MSB
878#define ELF_ARCH EM_S390
879
880static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
881{
882 regs->psw.addr = infop->entry;
883 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
884 regs->gprs[15] = infop->start_stack;
885}
886
887#endif /* TARGET_S390X */
888
15338fd7
FB
889#ifndef ELF_PLATFORM
890#define ELF_PLATFORM (NULL)
891#endif
892
893#ifndef ELF_HWCAP
894#define ELF_HWCAP 0
895#endif
896
992f48a0 897#ifdef TARGET_ABI32
cb33da57 898#undef ELF_CLASS
992f48a0 899#define ELF_CLASS ELFCLASS32
cb33da57
BS
900#undef bswaptls
901#define bswaptls(ptr) bswap32s(ptr)
902#endif
903
31e31b8a 904#include "elf.h"
09bfb054 905
09bfb054
FB
906struct exec
907{
d97ef72e
RH
908 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
909 unsigned int a_text; /* length of text, in bytes */
910 unsigned int a_data; /* length of data, in bytes */
911 unsigned int a_bss; /* length of uninitialized data area, in bytes */
912 unsigned int a_syms; /* length of symbol table data in file, in bytes */
913 unsigned int a_entry; /* start address */
914 unsigned int a_trsize; /* length of relocation info for text, in bytes */
915 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
916};
917
918
919#define N_MAGIC(exec) ((exec).a_info & 0xffff)
920#define OMAGIC 0407
921#define NMAGIC 0410
922#define ZMAGIC 0413
923#define QMAGIC 0314
924
31e31b8a 925/* Necessary parameters */
54936004
FB
926#define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
927#define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
928#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 929
15338fd7 930#define DLINFO_ITEMS 12
31e31b8a 931
09bfb054
FB
932static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
933{
d97ef72e 934 memcpy(to, from, n);
09bfb054 935}
d691f669 936
31e31b8a 937#ifdef BSWAP_NEEDED
92a31b1f 938static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 939{
d97ef72e
RH
940 bswap16s(&ehdr->e_type); /* Object file type */
941 bswap16s(&ehdr->e_machine); /* Architecture */
942 bswap32s(&ehdr->e_version); /* Object file version */
943 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
944 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
945 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
946 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
947 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
948 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
949 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
950 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
951 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
952 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
953}
954
991f8f0c 955static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 956{
991f8f0c
RH
957 int i;
958 for (i = 0; i < phnum; ++i, ++phdr) {
959 bswap32s(&phdr->p_type); /* Segment type */
960 bswap32s(&phdr->p_flags); /* Segment flags */
961 bswaptls(&phdr->p_offset); /* Segment file offset */
962 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
963 bswaptls(&phdr->p_paddr); /* Segment physical address */
964 bswaptls(&phdr->p_filesz); /* Segment size in file */
965 bswaptls(&phdr->p_memsz); /* Segment size in memory */
966 bswaptls(&phdr->p_align); /* Segment alignment */
967 }
31e31b8a 968}
689f936f 969
991f8f0c 970static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 971{
991f8f0c
RH
972 int i;
973 for (i = 0; i < shnum; ++i, ++shdr) {
974 bswap32s(&shdr->sh_name);
975 bswap32s(&shdr->sh_type);
976 bswaptls(&shdr->sh_flags);
977 bswaptls(&shdr->sh_addr);
978 bswaptls(&shdr->sh_offset);
979 bswaptls(&shdr->sh_size);
980 bswap32s(&shdr->sh_link);
981 bswap32s(&shdr->sh_info);
982 bswaptls(&shdr->sh_addralign);
983 bswaptls(&shdr->sh_entsize);
984 }
689f936f
FB
985}
986
7a3148a9 987static void bswap_sym(struct elf_sym *sym)
689f936f
FB
988{
989 bswap32s(&sym->st_name);
7a3148a9
JM
990 bswaptls(&sym->st_value);
991 bswaptls(&sym->st_size);
689f936f
FB
992 bswap16s(&sym->st_shndx);
993}
991f8f0c
RH
994#else
995static inline void bswap_ehdr(struct elfhdr *ehdr) { }
996static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
997static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
998static inline void bswap_sym(struct elf_sym *sym) { }
31e31b8a
FB
999#endif
1000
edf8e2af
MW
1001#ifdef USE_ELF_CORE_DUMP
1002static int elf_core_dump(int, const CPUState *);
edf8e2af 1003#endif /* USE_ELF_CORE_DUMP */
682674b8 1004static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 1005
9058abdd
RH
1006/* Verify the portions of EHDR within E_IDENT for the target.
1007 This can be performed before bswapping the entire header. */
1008static bool elf_check_ident(struct elfhdr *ehdr)
1009{
1010 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1011 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1012 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1013 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1014 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1015 && ehdr->e_ident[EI_DATA] == ELF_DATA
1016 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1017}
1018
1019/* Verify the portions of EHDR outside of E_IDENT for the target.
1020 This has to wait until after bswapping the header. */
1021static bool elf_check_ehdr(struct elfhdr *ehdr)
1022{
1023 return (elf_check_arch(ehdr->e_machine)
1024 && ehdr->e_ehsize == sizeof(struct elfhdr)
1025 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1026 && ehdr->e_shentsize == sizeof(struct elf_shdr)
1027 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1028}
1029
31e31b8a 1030/*
e5fe0c52 1031 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
1032 * memory to free pages in kernel mem. These are in a format ready
1033 * to be put directly into the top of new user memory.
1034 *
1035 */
992f48a0
BS
1036static abi_ulong copy_elf_strings(int argc,char ** argv, void **page,
1037 abi_ulong p)
31e31b8a
FB
1038{
1039 char *tmp, *tmp1, *pag = NULL;
1040 int len, offset = 0;
1041
1042 if (!p) {
d97ef72e 1043 return 0; /* bullet-proofing */
31e31b8a
FB
1044 }
1045 while (argc-- > 0) {
edf779ff
FB
1046 tmp = argv[argc];
1047 if (!tmp) {
d97ef72e
RH
1048 fprintf(stderr, "VFS: argc is wrong");
1049 exit(-1);
1050 }
edf779ff 1051 tmp1 = tmp;
d97ef72e
RH
1052 while (*tmp++);
1053 len = tmp - tmp1;
1054 if (p < len) { /* this shouldn't happen - 128kB */
1055 return 0;
1056 }
1057 while (len) {
1058 --p; --tmp; --len;
1059 if (--offset < 0) {
1060 offset = p % TARGET_PAGE_SIZE;
53a5960a 1061 pag = (char *)page[p/TARGET_PAGE_SIZE];
44a91cae 1062 if (!pag) {
53a5960a 1063 pag = (char *)malloc(TARGET_PAGE_SIZE);
4118a970 1064 memset(pag, 0, TARGET_PAGE_SIZE);
53a5960a 1065 page[p/TARGET_PAGE_SIZE] = pag;
44a91cae
FB
1066 if (!pag)
1067 return 0;
d97ef72e
RH
1068 }
1069 }
1070 if (len == 0 || offset == 0) {
1071 *(pag + offset) = *tmp;
1072 }
1073 else {
1074 int bytes_to_copy = (len > offset) ? offset : len;
1075 tmp -= bytes_to_copy;
1076 p -= bytes_to_copy;
1077 offset -= bytes_to_copy;
1078 len -= bytes_to_copy;
1079 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1);
1080 }
1081 }
31e31b8a
FB
1082 }
1083 return p;
1084}
1085
992f48a0
BS
1086static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm,
1087 struct image_info *info)
53a5960a 1088{
60dcbcb5 1089 abi_ulong stack_base, size, error, guard;
31e31b8a 1090 int i;
31e31b8a 1091
09bfb054 1092 /* Create enough stack to hold everything. If we don't use
60dcbcb5 1093 it for args, we'll use it for something else. */
703e0e89 1094 size = guest_stack_size;
60dcbcb5 1095 if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) {
54936004 1096 size = MAX_ARG_PAGES*TARGET_PAGE_SIZE;
60dcbcb5
RH
1097 }
1098 guard = TARGET_PAGE_SIZE;
1099 if (guard < qemu_real_host_page_size) {
1100 guard = qemu_real_host_page_size;
1101 }
1102
1103 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1104 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 1105 if (error == -1) {
60dcbcb5 1106 perror("mmap stack");
09bfb054
FB
1107 exit(-1);
1108 }
31e31b8a 1109
60dcbcb5
RH
1110 /* We reserve one extra page at the top of the stack as guard. */
1111 target_mprotect(error, guard, PROT_NONE);
1112
1113 info->stack_limit = error + guard;
1114 stack_base = info->stack_limit + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE;
31e31b8a 1115 p += stack_base;
09bfb054 1116
31e31b8a 1117 for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
d97ef72e
RH
1118 if (bprm->page[i]) {
1119 info->rss++;
579a97f7 1120 /* FIXME - check return value of memcpy_to_target() for failure */
d97ef72e
RH
1121 memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE);
1122 free(bprm->page[i]);
1123 }
53a5960a 1124 stack_base += TARGET_PAGE_SIZE;
31e31b8a
FB
1125 }
1126 return p;
1127}
1128
cf129f3a
RH
1129/* Map and zero the bss. We need to explicitly zero any fractional pages
1130 after the data section (i.e. bss). */
1131static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 1132{
cf129f3a
RH
1133 uintptr_t host_start, host_map_start, host_end;
1134
1135 last_bss = TARGET_PAGE_ALIGN(last_bss);
1136
1137 /* ??? There is confusion between qemu_real_host_page_size and
1138 qemu_host_page_size here and elsewhere in target_mmap, which
1139 may lead to the end of the data section mapping from the file
1140 not being mapped. At least there was an explicit test and
1141 comment for that here, suggesting that "the file size must
1142 be known". The comment probably pre-dates the introduction
1143 of the fstat system call in target_mmap which does in fact
1144 find out the size. What isn't clear is if the workaround
1145 here is still actually needed. For now, continue with it,
1146 but merge it with the "normal" mmap that would allocate the bss. */
1147
1148 host_start = (uintptr_t) g2h(elf_bss);
1149 host_end = (uintptr_t) g2h(last_bss);
1150 host_map_start = (host_start + qemu_real_host_page_size - 1);
1151 host_map_start &= -qemu_real_host_page_size;
1152
1153 if (host_map_start < host_end) {
1154 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1155 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1156 if (p == MAP_FAILED) {
1157 perror("cannot mmap brk");
1158 exit(-1);
853d6f7a
FB
1159 }
1160
cf129f3a
RH
1161 /* Since we didn't use target_mmap, make sure to record
1162 the validity of the pages with qemu. */
1163 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot|PAGE_VALID);
1164 }
31e31b8a 1165
cf129f3a
RH
1166 if (host_start < host_map_start) {
1167 memset((void *)host_start, 0, host_map_start - host_start);
1168 }
1169}
53a5960a 1170
1af02e83
MF
1171#ifdef CONFIG_USE_FDPIC
1172static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1173{
1174 uint16_t n;
1175 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1176
1177 /* elf32_fdpic_loadseg */
1178 n = info->nsegs;
1179 while (n--) {
1180 sp -= 12;
1181 put_user_u32(loadsegs[n].addr, sp+0);
1182 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1183 put_user_u32(loadsegs[n].p_memsz, sp+8);
1184 }
1185
1186 /* elf32_fdpic_loadmap */
1187 sp -= 4;
1188 put_user_u16(0, sp+0); /* version */
1189 put_user_u16(info->nsegs, sp+2); /* nsegs */
1190
1191 info->personality = PER_LINUX_FDPIC;
1192 info->loadmap_addr = sp;
1193
1194 return sp;
1195}
1196#endif
1197
992f48a0 1198static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
1199 struct elfhdr *exec,
1200 struct image_info *info,
1201 struct image_info *interp_info)
31e31b8a 1202{
d97ef72e
RH
1203 abi_ulong sp;
1204 int size;
1205 abi_ulong u_platform;
1206 const char *k_platform;
1207 const int n = sizeof(elf_addr_t);
1208
1209 sp = p;
1af02e83
MF
1210
1211#ifdef CONFIG_USE_FDPIC
1212 /* Needs to be before we load the env/argc/... */
1213 if (elf_is_fdpic(exec)) {
1214 /* Need 4 byte alignment for these structs */
1215 sp &= ~3;
1216 sp = loader_build_fdpic_loadmap(info, sp);
1217 info->other_info = interp_info;
1218 if (interp_info) {
1219 interp_info->other_info = info;
1220 sp = loader_build_fdpic_loadmap(interp_info, sp);
1221 }
1222 }
1223#endif
1224
d97ef72e
RH
1225 u_platform = 0;
1226 k_platform = ELF_PLATFORM;
1227 if (k_platform) {
1228 size_t len = strlen(k_platform) + 1;
1229 sp -= (len + n - 1) & ~(n - 1);
1230 u_platform = sp;
1231 /* FIXME - check return value of memcpy_to_target() for failure */
1232 memcpy_to_target(sp, k_platform, len);
1233 }
1234 /*
1235 * Force 16 byte _final_ alignment here for generality.
1236 */
1237 sp = sp &~ (abi_ulong)15;
1238 size = (DLINFO_ITEMS + 1) * 2;
1239 if (k_platform)
1240 size += 2;
f5155289 1241#ifdef DLINFO_ARCH_ITEMS
d97ef72e 1242 size += DLINFO_ARCH_ITEMS * 2;
f5155289 1243#endif
d97ef72e 1244 size += envc + argc + 2;
b9329d4b 1245 size += 1; /* argc itself */
d97ef72e
RH
1246 size *= n;
1247 if (size & 15)
1248 sp -= 16 - (size & 15);
1249
1250 /* This is correct because Linux defines
1251 * elf_addr_t as Elf32_Off / Elf64_Off
1252 */
1253#define NEW_AUX_ENT(id, val) do { \
1254 sp -= n; put_user_ual(val, sp); \
1255 sp -= n; put_user_ual(id, sp); \
1256 } while(0)
1257
1258 NEW_AUX_ENT (AT_NULL, 0);
1259
1260 /* There must be exactly DLINFO_ITEMS entries here. */
8e62a717 1261 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
1262 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1263 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1264 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
8e62a717 1265 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 1266 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 1267 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
1268 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1269 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1270 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1271 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1272 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1273 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1274 if (k_platform)
1275 NEW_AUX_ENT(AT_PLATFORM, u_platform);
f5155289 1276#ifdef ARCH_DLINFO
d97ef72e
RH
1277 /*
1278 * ARCH_DLINFO must come last so platform specific code can enforce
1279 * special alignment requirements on the AUXV if necessary (eg. PPC).
1280 */
1281 ARCH_DLINFO;
f5155289
FB
1282#endif
1283#undef NEW_AUX_ENT
1284
d97ef72e 1285 info->saved_auxv = sp;
edf8e2af 1286
b9329d4b 1287 sp = loader_build_argptr(envc, argc, sp, p, 0);
d97ef72e 1288 return sp;
31e31b8a
FB
1289}
1290
8e62a717 1291/* Load an ELF image into the address space.
31e31b8a 1292
8e62a717
RH
1293 IMAGE_NAME is the filename of the image, to use in error messages.
1294 IMAGE_FD is the open file descriptor for the image.
1295
1296 BPRM_BUF is a copy of the beginning of the file; this of course
1297 contains the elf file header at offset 0. It is assumed that this
1298 buffer is sufficiently aligned to present no problems to the host
1299 in accessing data at aligned offsets within the buffer.
1300
1301 On return: INFO values will be filled in, as necessary or available. */
1302
1303static void load_elf_image(const char *image_name, int image_fd,
bf858897 1304 struct image_info *info, char **pinterp_name,
8e62a717 1305 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 1306{
8e62a717
RH
1307 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1308 struct elf_phdr *phdr;
1309 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1310 int i, retval;
1311 const char *errmsg;
5fafdf24 1312
8e62a717
RH
1313 /* First of all, some simple consistency checks */
1314 errmsg = "Invalid ELF image for this architecture";
1315 if (!elf_check_ident(ehdr)) {
1316 goto exit_errmsg;
1317 }
1318 bswap_ehdr(ehdr);
1319 if (!elf_check_ehdr(ehdr)) {
1320 goto exit_errmsg;
d97ef72e 1321 }
5fafdf24 1322
8e62a717
RH
1323 i = ehdr->e_phnum * sizeof(struct elf_phdr);
1324 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1325 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 1326 } else {
8e62a717
RH
1327 phdr = (struct elf_phdr *) alloca(i);
1328 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 1329 if (retval != i) {
8e62a717 1330 goto exit_read;
9955ffac 1331 }
d97ef72e 1332 }
8e62a717 1333 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 1334
1af02e83
MF
1335#ifdef CONFIG_USE_FDPIC
1336 info->nsegs = 0;
1337 info->pt_dynamic_addr = 0;
1338#endif
1339
682674b8
RH
1340 /* Find the maximum size of the image and allocate an appropriate
1341 amount of memory to handle that. */
1342 loaddr = -1, hiaddr = 0;
8e62a717
RH
1343 for (i = 0; i < ehdr->e_phnum; ++i) {
1344 if (phdr[i].p_type == PT_LOAD) {
1345 abi_ulong a = phdr[i].p_vaddr;
682674b8
RH
1346 if (a < loaddr) {
1347 loaddr = a;
1348 }
8e62a717 1349 a += phdr[i].p_memsz;
682674b8
RH
1350 if (a > hiaddr) {
1351 hiaddr = a;
1352 }
1af02e83
MF
1353#ifdef CONFIG_USE_FDPIC
1354 ++info->nsegs;
1355#endif
682674b8
RH
1356 }
1357 }
1358
1359 load_addr = loaddr;
8e62a717 1360 if (ehdr->e_type == ET_DYN) {
682674b8
RH
1361 /* The image indicates that it can be loaded anywhere. Find a
1362 location that can hold the memory space required. If the
1363 image is pre-linked, LOADDR will be non-zero. Since we do
1364 not supply MAP_FIXED here we'll use that address if and
1365 only if it remains available. */
1366 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
1367 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
1368 -1, 0);
1369 if (load_addr == -1) {
8e62a717 1370 goto exit_perror;
d97ef72e 1371 }
bf858897
RH
1372 } else if (pinterp_name != NULL) {
1373 /* This is the main executable. Make sure that the low
1374 address does not conflict with MMAP_MIN_ADDR or the
1375 QEMU application itself. */
1376#if defined(CONFIG_USE_GUEST_BASE)
1377 /*
1378 * In case where user has not explicitly set the guest_base, we
1379 * probe here that should we set it automatically.
1380 */
1381 if (!have_guest_base && !reserved_va) {
1382 unsigned long host_start, real_start, host_size;
1383
1384 /* Round addresses to page boundaries. */
1385 loaddr &= qemu_host_page_mask;
1386 hiaddr = HOST_PAGE_ALIGN(hiaddr);
1387
1388 if (loaddr < mmap_min_addr) {
1389 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1390 } else {
1391 host_start = loaddr;
1392 if (host_start != loaddr) {
1393 errmsg = "Address overflow loading ELF binary";
1394 goto exit_errmsg;
1395 }
1396 }
1397 host_size = hiaddr - loaddr;
1398 while (1) {
1399 /* Do not use mmap_find_vma here because that is limited to the
1400 guest address space. We are going to make the
1401 guest address space fit whatever we're given. */
1402 real_start = (unsigned long)
1403 mmap((void *)host_start, host_size, PROT_NONE,
1404 MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE, -1, 0);
1405 if (real_start == (unsigned long)-1) {
1406 goto exit_perror;
1407 }
1408 if (real_start == host_start) {
1409 break;
1410 }
1411 /* That address didn't work. Unmap and try a different one.
1412 The address the host picked because is typically right at
1413 the top of the host address space and leaves the guest with
1414 no usable address space. Resort to a linear search. We
1415 already compensated for mmap_min_addr, so this should not
1416 happen often. Probably means we got unlucky and host
1417 address space randomization put a shared library somewhere
1418 inconvenient. */
1419 munmap((void *)real_start, host_size);
1420 host_start += qemu_host_page_size;
1421 if (host_start == loaddr) {
1422 /* Theoretically possible if host doesn't have any suitably
1423 aligned areas. Normally the first mmap will fail. */
1424 errmsg = "Unable to find space for application";
1425 goto exit_errmsg;
1426 }
1427 }
1428 qemu_log("Relocating guest address space from 0x"
1429 TARGET_ABI_FMT_lx " to 0x%lx\n", loaddr, real_start);
1430 guest_base = real_start - loaddr;
1431 }
1432#endif
d97ef72e 1433 }
682674b8 1434 load_bias = load_addr - loaddr;
d97ef72e 1435
1af02e83
MF
1436#ifdef CONFIG_USE_FDPIC
1437 {
1438 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
1439 qemu_malloc(sizeof(*loadsegs) * info->nsegs);
1440
1441 for (i = 0; i < ehdr->e_phnum; ++i) {
1442 switch (phdr[i].p_type) {
1443 case PT_DYNAMIC:
1444 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
1445 break;
1446 case PT_LOAD:
1447 loadsegs->addr = phdr[i].p_vaddr + load_bias;
1448 loadsegs->p_vaddr = phdr[i].p_vaddr;
1449 loadsegs->p_memsz = phdr[i].p_memsz;
1450 ++loadsegs;
1451 break;
1452 }
1453 }
1454 }
1455#endif
1456
8e62a717
RH
1457 info->load_bias = load_bias;
1458 info->load_addr = load_addr;
1459 info->entry = ehdr->e_entry + load_bias;
1460 info->start_code = -1;
1461 info->end_code = 0;
1462 info->start_data = -1;
1463 info->end_data = 0;
1464 info->brk = 0;
1465
1466 for (i = 0; i < ehdr->e_phnum; i++) {
1467 struct elf_phdr *eppnt = phdr + i;
d97ef72e 1468 if (eppnt->p_type == PT_LOAD) {
682674b8 1469 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
d97ef72e 1470 int elf_prot = 0;
d97ef72e
RH
1471
1472 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
1473 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1474 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
d97ef72e 1475
682674b8
RH
1476 vaddr = load_bias + eppnt->p_vaddr;
1477 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
1478 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
1479
1480 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
1481 elf_prot, MAP_PRIVATE | MAP_FIXED,
8e62a717 1482 image_fd, eppnt->p_offset - vaddr_po);
09bfb054 1483 if (error == -1) {
8e62a717 1484 goto exit_perror;
09bfb054 1485 }
09bfb054 1486
682674b8
RH
1487 vaddr_ef = vaddr + eppnt->p_filesz;
1488 vaddr_em = vaddr + eppnt->p_memsz;
31e31b8a 1489
cf129f3a 1490 /* If the load segment requests extra zeros (e.g. bss), map it. */
682674b8
RH
1491 if (vaddr_ef < vaddr_em) {
1492 zero_bss(vaddr_ef, vaddr_em, elf_prot);
cf129f3a 1493 }
8e62a717
RH
1494
1495 /* Find the full program boundaries. */
1496 if (elf_prot & PROT_EXEC) {
1497 if (vaddr < info->start_code) {
1498 info->start_code = vaddr;
1499 }
1500 if (vaddr_ef > info->end_code) {
1501 info->end_code = vaddr_ef;
1502 }
1503 }
1504 if (elf_prot & PROT_WRITE) {
1505 if (vaddr < info->start_data) {
1506 info->start_data = vaddr;
1507 }
1508 if (vaddr_ef > info->end_data) {
1509 info->end_data = vaddr_ef;
1510 }
1511 if (vaddr_em > info->brk) {
1512 info->brk = vaddr_em;
1513 }
1514 }
bf858897
RH
1515 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
1516 char *interp_name;
1517
1518 if (*pinterp_name) {
1519 errmsg = "Multiple PT_INTERP entries";
1520 goto exit_errmsg;
1521 }
1522 interp_name = malloc(eppnt->p_filesz);
1523 if (!interp_name) {
1524 goto exit_perror;
1525 }
1526
1527 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
1528 memcpy(interp_name, bprm_buf + eppnt->p_offset,
1529 eppnt->p_filesz);
1530 } else {
1531 retval = pread(image_fd, interp_name, eppnt->p_filesz,
1532 eppnt->p_offset);
1533 if (retval != eppnt->p_filesz) {
1534 goto exit_perror;
1535 }
1536 }
1537 if (interp_name[eppnt->p_filesz - 1] != 0) {
1538 errmsg = "Invalid PT_INTERP entry";
1539 goto exit_errmsg;
1540 }
1541 *pinterp_name = interp_name;
d97ef72e 1542 }
682674b8 1543 }
5fafdf24 1544
8e62a717
RH
1545 if (info->end_data == 0) {
1546 info->start_data = info->end_code;
1547 info->end_data = info->end_code;
1548 info->brk = info->end_code;
1549 }
1550
682674b8 1551 if (qemu_log_enabled()) {
8e62a717 1552 load_symbols(ehdr, image_fd, load_bias);
682674b8 1553 }
31e31b8a 1554
8e62a717
RH
1555 close(image_fd);
1556 return;
1557
1558 exit_read:
1559 if (retval >= 0) {
1560 errmsg = "Incomplete read of file header";
1561 goto exit_errmsg;
1562 }
1563 exit_perror:
1564 errmsg = strerror(errno);
1565 exit_errmsg:
1566 fprintf(stderr, "%s: %s\n", image_name, errmsg);
1567 exit(-1);
1568}
1569
1570static void load_elf_interp(const char *filename, struct image_info *info,
1571 char bprm_buf[BPRM_BUF_SIZE])
1572{
1573 int fd, retval;
1574
1575 fd = open(path(filename), O_RDONLY);
1576 if (fd < 0) {
1577 goto exit_perror;
1578 }
31e31b8a 1579
8e62a717
RH
1580 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
1581 if (retval < 0) {
1582 goto exit_perror;
1583 }
1584 if (retval < BPRM_BUF_SIZE) {
1585 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
1586 }
1587
bf858897 1588 load_elf_image(filename, fd, info, NULL, bprm_buf);
8e62a717
RH
1589 return;
1590
1591 exit_perror:
1592 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
1593 exit(-1);
31e31b8a
FB
1594}
1595
49918a75
PB
1596static int symfind(const void *s0, const void *s1)
1597{
1598 struct elf_sym *key = (struct elf_sym *)s0;
1599 struct elf_sym *sym = (struct elf_sym *)s1;
1600 int result = 0;
1601 if (key->st_value < sym->st_value) {
1602 result = -1;
ec822001 1603 } else if (key->st_value >= sym->st_value + sym->st_size) {
49918a75
PB
1604 result = 1;
1605 }
1606 return result;
1607}
1608
1609static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
1610{
1611#if ELF_CLASS == ELFCLASS32
1612 struct elf_sym *syms = s->disas_symtab.elf32;
1613#else
1614 struct elf_sym *syms = s->disas_symtab.elf64;
1615#endif
1616
1617 // binary search
1618 struct elf_sym key;
1619 struct elf_sym *sym;
1620
1621 key.st_value = orig_addr;
1622
1623 sym = bsearch(&key, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 1624 if (sym != NULL) {
49918a75
PB
1625 return s->disas_strtab + sym->st_name;
1626 }
1627
1628 return "";
1629}
1630
1631/* FIXME: This should use elf_ops.h */
1632static int symcmp(const void *s0, const void *s1)
1633{
1634 struct elf_sym *sym0 = (struct elf_sym *)s0;
1635 struct elf_sym *sym1 = (struct elf_sym *)s1;
1636 return (sym0->st_value < sym1->st_value)
1637 ? -1
1638 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
1639}
1640
689f936f 1641/* Best attempt to load symbols from this ELF object. */
682674b8 1642static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 1643{
682674b8
RH
1644 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1645 struct elf_shdr *shdr;
689f936f 1646 char *strings;
e80cfcfc 1647 struct syminfo *s;
8d79de6e 1648 struct elf_sym *syms, *new_syms;
689f936f 1649
682674b8
RH
1650 shnum = hdr->e_shnum;
1651 i = shnum * sizeof(struct elf_shdr);
1652 shdr = (struct elf_shdr *)alloca(i);
1653 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
1654 return;
1655 }
1656
1657 bswap_shdr(shdr, shnum);
1658 for (i = 0; i < shnum; ++i) {
1659 if (shdr[i].sh_type == SHT_SYMTAB) {
1660 sym_idx = i;
1661 str_idx = shdr[i].sh_link;
49918a75
PB
1662 goto found;
1663 }
689f936f 1664 }
682674b8
RH
1665
1666 /* There will be no symbol table if the file was stripped. */
1667 return;
689f936f
FB
1668
1669 found:
682674b8 1670 /* Now know where the strtab and symtab are. Snarf them. */
e80cfcfc 1671 s = malloc(sizeof(*s));
682674b8 1672 if (!s) {
49918a75 1673 return;
682674b8 1674 }
5fafdf24 1675
682674b8
RH
1676 i = shdr[str_idx].sh_size;
1677 s->disas_strtab = strings = malloc(i);
1678 if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
1679 free(s);
1680 free(strings);
49918a75 1681 return;
682674b8 1682 }
49918a75 1683
682674b8
RH
1684 i = shdr[sym_idx].sh_size;
1685 syms = malloc(i);
1686 if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
1687 free(s);
1688 free(strings);
1689 free(syms);
1690 return;
1691 }
31e31b8a 1692
682674b8
RH
1693 nsyms = i / sizeof(struct elf_sym);
1694 for (i = 0; i < nsyms; ) {
49918a75 1695 bswap_sym(syms + i);
682674b8
RH
1696 /* Throw away entries which we do not need. */
1697 if (syms[i].st_shndx == SHN_UNDEF
1698 || syms[i].st_shndx >= SHN_LORESERVE
1699 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
1700 if (i < --nsyms) {
49918a75
PB
1701 syms[i] = syms[nsyms];
1702 }
682674b8 1703 } else {
49918a75 1704#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
1705 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
1706 syms[i].st_value &= ~(target_ulong)1;
0774bed1 1707#endif
682674b8
RH
1708 syms[i].st_value += load_bias;
1709 i++;
1710 }
0774bed1 1711 }
49918a75 1712
5d5c9930
RH
1713 /* Attempt to free the storage associated with the local symbols
1714 that we threw away. Whether or not this has any effect on the
1715 memory allocation depends on the malloc implementation and how
1716 many symbols we managed to discard. */
8d79de6e
SW
1717 new_syms = realloc(syms, nsyms * sizeof(*syms));
1718 if (new_syms == NULL) {
5d5c9930 1719 free(s);
8d79de6e 1720 free(syms);
5d5c9930
RH
1721 free(strings);
1722 return;
1723 }
8d79de6e 1724 syms = new_syms;
5d5c9930 1725
49918a75 1726 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 1727
49918a75
PB
1728 s->disas_num_syms = nsyms;
1729#if ELF_CLASS == ELFCLASS32
1730 s->disas_symtab.elf32 = syms;
49918a75
PB
1731#else
1732 s->disas_symtab.elf64 = syms;
49918a75 1733#endif
682674b8 1734 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
1735 s->next = syminfos;
1736 syminfos = s;
689f936f 1737}
31e31b8a 1738
e5fe0c52
PB
1739int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
1740 struct image_info * info)
31e31b8a 1741{
8e62a717 1742 struct image_info interp_info;
31e31b8a 1743 struct elfhdr elf_ex;
8e62a717 1744 char *elf_interpreter = NULL;
31e31b8a 1745
bf858897
RH
1746 info->start_mmap = (abi_ulong)ELF_START_MMAP;
1747 info->mmap = 0;
1748 info->rss = 0;
1749
1750 load_elf_image(bprm->filename, bprm->fd, info,
1751 &elf_interpreter, bprm->buf);
31e31b8a 1752
bf858897
RH
1753 /* ??? We need a copy of the elf header for passing to create_elf_tables.
1754 If we do nothing, we'll have overwritten this when we re-use bprm->buf
1755 when we load the interpreter. */
1756 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 1757
e5fe0c52
PB
1758 bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p);
1759 bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p);
1760 bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p);
1761 if (!bprm->p) {
bf858897
RH
1762 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
1763 exit(-1);
379f6698 1764 }
379f6698 1765
31e31b8a
FB
1766 /* Do this so that we can load the interpreter, if need be. We will
1767 change some of these later */
31e31b8a 1768 bprm->p = setup_arg_pages(bprm->p, bprm, info);
31e31b8a 1769
8e62a717
RH
1770 if (elf_interpreter) {
1771 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 1772
8e62a717
RH
1773 /* If the program interpreter is one of these two, then assume
1774 an iBCS2 image. Otherwise assume a native linux image. */
1775
1776 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
1777 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
1778 info->personality = PER_SVR4;
31e31b8a 1779
8e62a717
RH
1780 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1781 and some applications "depend" upon this behavior. Since
1782 we do not have the power to recompile these, we emulate
1783 the SVr4 behavior. Sigh. */
1784 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
1785 MAP_FIXED | MAP_PRIVATE, -1, 0);
1786 }
31e31b8a
FB
1787 }
1788
8e62a717
RH
1789 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
1790 info, (elf_interpreter ? &interp_info : NULL));
1791 info->start_stack = bprm->p;
1792
1793 /* If we have an interpreter, set that as the program's entry point.
1794 Copy the load_addr as well, to help PPC64 interpret the entry
1795 point as a function descriptor. Do this after creating elf tables
1796 so that we copy the original program entry point into the AUXV. */
1797 if (elf_interpreter) {
1798 info->load_addr = interp_info.load_addr;
1799 info->entry = interp_info.entry;
bf858897 1800 free(elf_interpreter);
8e62a717 1801 }
31e31b8a 1802
edf8e2af
MW
1803#ifdef USE_ELF_CORE_DUMP
1804 bprm->core_dump = &elf_core_dump;
1805#endif
1806
31e31b8a
FB
1807 return 0;
1808}
1809
edf8e2af 1810#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
1811/*
1812 * Definitions to generate Intel SVR4-like core files.
a2547a13 1813 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
1814 * tacked on the front to prevent clashes with linux definitions,
1815 * and the typedef forms have been avoided. This is mostly like
1816 * the SVR4 structure, but more Linuxy, with things that Linux does
1817 * not support and which gdb doesn't really use excluded.
1818 *
1819 * Fields we don't dump (their contents is zero) in linux-user qemu
1820 * are marked with XXX.
1821 *
1822 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
1823 *
1824 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 1825 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
1826 * the target resides):
1827 *
1828 * #define USE_ELF_CORE_DUMP
1829 *
1830 * Next you define type of register set used for dumping. ELF specification
1831 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
1832 *
c227f099 1833 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 1834 * #define ELF_NREG <number of registers>
c227f099 1835 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 1836 *
edf8e2af
MW
1837 * Last step is to implement target specific function that copies registers
1838 * from given cpu into just specified register set. Prototype is:
1839 *
c227f099 1840 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
a2547a13 1841 * const CPUState *env);
edf8e2af
MW
1842 *
1843 * Parameters:
1844 * regs - copy register values into here (allocated and zeroed by caller)
1845 * env - copy registers from here
1846 *
1847 * Example for ARM target is provided in this file.
1848 */
1849
1850/* An ELF note in memory */
1851struct memelfnote {
1852 const char *name;
1853 size_t namesz;
1854 size_t namesz_rounded;
1855 int type;
1856 size_t datasz;
80f5ce75 1857 size_t datasz_rounded;
edf8e2af
MW
1858 void *data;
1859 size_t notesz;
1860};
1861
a2547a13 1862struct target_elf_siginfo {
80f5ce75
LV
1863 target_int si_signo; /* signal number */
1864 target_int si_code; /* extra code */
1865 target_int si_errno; /* errno */
edf8e2af
MW
1866};
1867
a2547a13
LD
1868struct target_elf_prstatus {
1869 struct target_elf_siginfo pr_info; /* Info associated with signal */
80f5ce75 1870 target_short pr_cursig; /* Current signal */
edf8e2af
MW
1871 target_ulong pr_sigpend; /* XXX */
1872 target_ulong pr_sighold; /* XXX */
c227f099
AL
1873 target_pid_t pr_pid;
1874 target_pid_t pr_ppid;
1875 target_pid_t pr_pgrp;
1876 target_pid_t pr_sid;
edf8e2af
MW
1877 struct target_timeval pr_utime; /* XXX User time */
1878 struct target_timeval pr_stime; /* XXX System time */
1879 struct target_timeval pr_cutime; /* XXX Cumulative user time */
1880 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 1881 target_elf_gregset_t pr_reg; /* GP registers */
80f5ce75 1882 target_int pr_fpvalid; /* XXX */
edf8e2af
MW
1883};
1884
1885#define ELF_PRARGSZ (80) /* Number of chars for args */
1886
a2547a13 1887struct target_elf_prpsinfo {
edf8e2af
MW
1888 char pr_state; /* numeric process state */
1889 char pr_sname; /* char for pr_state */
1890 char pr_zomb; /* zombie */
1891 char pr_nice; /* nice val */
1892 target_ulong pr_flag; /* flags */
c227f099
AL
1893 target_uid_t pr_uid;
1894 target_gid_t pr_gid;
1895 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af
MW
1896 /* Lots missing */
1897 char pr_fname[16]; /* filename of executable */
1898 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
1899};
1900
1901/* Here is the structure in which status of each thread is captured. */
1902struct elf_thread_status {
72cf2d4f 1903 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 1904 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
1905#if 0
1906 elf_fpregset_t fpu; /* NT_PRFPREG */
1907 struct task_struct *thread;
1908 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1909#endif
1910 struct memelfnote notes[1];
1911 int num_notes;
1912};
1913
1914struct elf_note_info {
1915 struct memelfnote *notes;
a2547a13
LD
1916 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
1917 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 1918
72cf2d4f 1919 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
edf8e2af
MW
1920#if 0
1921 /*
1922 * Current version of ELF coredump doesn't support
1923 * dumping fp regs etc.
1924 */
1925 elf_fpregset_t *fpu;
1926 elf_fpxregset_t *xfpu;
1927 int thread_status_size;
1928#endif
1929 int notes_size;
1930 int numnote;
1931};
1932
1933struct vm_area_struct {
1934 abi_ulong vma_start; /* start vaddr of memory region */
1935 abi_ulong vma_end; /* end vaddr of memory region */
1936 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 1937 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
1938};
1939
1940struct mm_struct {
72cf2d4f 1941 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
1942 int mm_count; /* number of mappings */
1943};
1944
1945static struct mm_struct *vma_init(void);
1946static void vma_delete(struct mm_struct *);
1947static int vma_add_mapping(struct mm_struct *, abi_ulong,
d97ef72e 1948 abi_ulong, abi_ulong);
edf8e2af
MW
1949static int vma_get_mapping_count(const struct mm_struct *);
1950static struct vm_area_struct *vma_first(const struct mm_struct *);
1951static struct vm_area_struct *vma_next(struct vm_area_struct *);
1952static abi_ulong vma_dump_size(const struct vm_area_struct *);
b480d9b7 1953static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
d97ef72e 1954 unsigned long flags);
edf8e2af
MW
1955
1956static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
1957static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 1958 unsigned int, void *);
a2547a13
LD
1959static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
1960static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
1961static void fill_auxv_note(struct memelfnote *, const TaskState *);
1962static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
1963static size_t note_size(const struct memelfnote *);
1964static void free_note_info(struct elf_note_info *);
1965static int fill_note_info(struct elf_note_info *, long, const CPUState *);
1966static void fill_thread_info(struct elf_note_info *, const CPUState *);
1967static int core_dump_filename(const TaskState *, char *, size_t);
1968
1969static int dump_write(int, const void *, size_t);
1970static int write_note(struct memelfnote *, int);
1971static int write_note_info(struct elf_note_info *, int);
1972
1973#ifdef BSWAP_NEEDED
a2547a13 1974static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af
MW
1975{
1976 prstatus->pr_info.si_signo = tswapl(prstatus->pr_info.si_signo);
1977 prstatus->pr_info.si_code = tswapl(prstatus->pr_info.si_code);
1978 prstatus->pr_info.si_errno = tswapl(prstatus->pr_info.si_errno);
1979 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
1980 prstatus->pr_sigpend = tswapl(prstatus->pr_sigpend);
1981 prstatus->pr_sighold = tswapl(prstatus->pr_sighold);
1982 prstatus->pr_pid = tswap32(prstatus->pr_pid);
1983 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
1984 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
1985 prstatus->pr_sid = tswap32(prstatus->pr_sid);
1986 /* cpu times are not filled, so we skip them */
1987 /* regs should be in correct format already */
1988 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
1989}
1990
a2547a13 1991static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af
MW
1992{
1993 psinfo->pr_flag = tswapl(psinfo->pr_flag);
1994 psinfo->pr_uid = tswap16(psinfo->pr_uid);
1995 psinfo->pr_gid = tswap16(psinfo->pr_gid);
1996 psinfo->pr_pid = tswap32(psinfo->pr_pid);
1997 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
1998 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
1999 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2000}
991f8f0c
RH
2001
2002static void bswap_note(struct elf_note *en)
2003{
2004 bswap32s(&en->n_namesz);
2005 bswap32s(&en->n_descsz);
2006 bswap32s(&en->n_type);
2007}
2008#else
2009static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2010static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2011static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
2012#endif /* BSWAP_NEEDED */
2013
2014/*
2015 * Minimal support for linux memory regions. These are needed
2016 * when we are finding out what memory exactly belongs to
2017 * emulated process. No locks needed here, as long as
2018 * thread that received the signal is stopped.
2019 */
2020
2021static struct mm_struct *vma_init(void)
2022{
2023 struct mm_struct *mm;
2024
2025 if ((mm = qemu_malloc(sizeof (*mm))) == NULL)
2026 return (NULL);
2027
2028 mm->mm_count = 0;
72cf2d4f 2029 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
2030
2031 return (mm);
2032}
2033
2034static void vma_delete(struct mm_struct *mm)
2035{
2036 struct vm_area_struct *vma;
2037
2038 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 2039 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
2040 qemu_free(vma);
2041 }
2042 qemu_free(mm);
2043}
2044
2045static int vma_add_mapping(struct mm_struct *mm, abi_ulong start,
d97ef72e 2046 abi_ulong end, abi_ulong flags)
edf8e2af
MW
2047{
2048 struct vm_area_struct *vma;
2049
2050 if ((vma = qemu_mallocz(sizeof (*vma))) == NULL)
2051 return (-1);
2052
2053 vma->vma_start = start;
2054 vma->vma_end = end;
2055 vma->vma_flags = flags;
2056
72cf2d4f 2057 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
2058 mm->mm_count++;
2059
2060 return (0);
2061}
2062
2063static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2064{
72cf2d4f 2065 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
2066}
2067
2068static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2069{
72cf2d4f 2070 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
2071}
2072
2073static int vma_get_mapping_count(const struct mm_struct *mm)
2074{
2075 return (mm->mm_count);
2076}
2077
2078/*
2079 * Calculate file (dump) size of given memory region.
2080 */
2081static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2082{
2083 /* if we cannot even read the first page, skip it */
2084 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2085 return (0);
2086
2087 /*
2088 * Usually we don't dump executable pages as they contain
2089 * non-writable code that debugger can read directly from
2090 * target library etc. However, thread stacks are marked
2091 * also executable so we read in first page of given region
2092 * and check whether it contains elf header. If there is
2093 * no elf header, we dump it.
2094 */
2095 if (vma->vma_flags & PROT_EXEC) {
2096 char page[TARGET_PAGE_SIZE];
2097
2098 copy_from_user(page, vma->vma_start, sizeof (page));
2099 if ((page[EI_MAG0] == ELFMAG0) &&
2100 (page[EI_MAG1] == ELFMAG1) &&
2101 (page[EI_MAG2] == ELFMAG2) &&
2102 (page[EI_MAG3] == ELFMAG3)) {
2103 /*
2104 * Mappings are possibly from ELF binary. Don't dump
2105 * them.
2106 */
2107 return (0);
2108 }
2109 }
2110
2111 return (vma->vma_end - vma->vma_start);
2112}
2113
b480d9b7 2114static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
d97ef72e 2115 unsigned long flags)
edf8e2af
MW
2116{
2117 struct mm_struct *mm = (struct mm_struct *)priv;
2118
edf8e2af
MW
2119 vma_add_mapping(mm, start, end, flags);
2120 return (0);
2121}
2122
2123static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 2124 unsigned int sz, void *data)
edf8e2af
MW
2125{
2126 unsigned int namesz;
2127
2128 namesz = strlen(name) + 1;
2129 note->name = name;
2130 note->namesz = namesz;
2131 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2132 note->type = type;
80f5ce75
LV
2133 note->datasz = sz;
2134 note->datasz_rounded = roundup(sz, sizeof (int32_t));
2135
edf8e2af
MW
2136 note->data = data;
2137
2138 /*
2139 * We calculate rounded up note size here as specified by
2140 * ELF document.
2141 */
2142 note->notesz = sizeof (struct elf_note) +
80f5ce75 2143 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
2144}
2145
2146static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 2147 uint32_t flags)
edf8e2af
MW
2148{
2149 (void) memset(elf, 0, sizeof(*elf));
2150
2151 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2152 elf->e_ident[EI_CLASS] = ELF_CLASS;
2153 elf->e_ident[EI_DATA] = ELF_DATA;
2154 elf->e_ident[EI_VERSION] = EV_CURRENT;
2155 elf->e_ident[EI_OSABI] = ELF_OSABI;
2156
2157 elf->e_type = ET_CORE;
2158 elf->e_machine = machine;
2159 elf->e_version = EV_CURRENT;
2160 elf->e_phoff = sizeof(struct elfhdr);
2161 elf->e_flags = flags;
2162 elf->e_ehsize = sizeof(struct elfhdr);
2163 elf->e_phentsize = sizeof(struct elf_phdr);
2164 elf->e_phnum = segs;
2165
edf8e2af 2166 bswap_ehdr(elf);
edf8e2af
MW
2167}
2168
2169static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2170{
2171 phdr->p_type = PT_NOTE;
2172 phdr->p_offset = offset;
2173 phdr->p_vaddr = 0;
2174 phdr->p_paddr = 0;
2175 phdr->p_filesz = sz;
2176 phdr->p_memsz = 0;
2177 phdr->p_flags = 0;
2178 phdr->p_align = 0;
2179
991f8f0c 2180 bswap_phdr(phdr, 1);
edf8e2af
MW
2181}
2182
2183static size_t note_size(const struct memelfnote *note)
2184{
2185 return (note->notesz);
2186}
2187
a2547a13 2188static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 2189 const TaskState *ts, int signr)
edf8e2af
MW
2190{
2191 (void) memset(prstatus, 0, sizeof (*prstatus));
2192 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2193 prstatus->pr_pid = ts->ts_tid;
2194 prstatus->pr_ppid = getppid();
2195 prstatus->pr_pgrp = getpgrp();
2196 prstatus->pr_sid = getsid(0);
2197
edf8e2af 2198 bswap_prstatus(prstatus);
edf8e2af
MW
2199}
2200
a2547a13 2201static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af
MW
2202{
2203 char *filename, *base_filename;
2204 unsigned int i, len;
2205
2206 (void) memset(psinfo, 0, sizeof (*psinfo));
2207
2208 len = ts->info->arg_end - ts->info->arg_start;
2209 if (len >= ELF_PRARGSZ)
2210 len = ELF_PRARGSZ - 1;
2211 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2212 return -EFAULT;
2213 for (i = 0; i < len; i++)
2214 if (psinfo->pr_psargs[i] == 0)
2215 psinfo->pr_psargs[i] = ' ';
2216 psinfo->pr_psargs[len] = 0;
2217
2218 psinfo->pr_pid = getpid();
2219 psinfo->pr_ppid = getppid();
2220 psinfo->pr_pgrp = getpgrp();
2221 psinfo->pr_sid = getsid(0);
2222 psinfo->pr_uid = getuid();
2223 psinfo->pr_gid = getgid();
2224
2225 filename = strdup(ts->bprm->filename);
2226 base_filename = strdup(basename(filename));
2227 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 2228 sizeof(psinfo->pr_fname));
edf8e2af
MW
2229 free(base_filename);
2230 free(filename);
2231
edf8e2af 2232 bswap_psinfo(psinfo);
edf8e2af
MW
2233 return (0);
2234}
2235
2236static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2237{
2238 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2239 elf_addr_t orig_auxv = auxv;
2240 abi_ulong val;
2241 void *ptr;
2242 int i, len;
2243
2244 /*
2245 * Auxiliary vector is stored in target process stack. It contains
2246 * {type, value} pairs that we need to dump into note. This is not
2247 * strictly necessary but we do it here for sake of completeness.
2248 */
2249
2250 /* find out lenght of the vector, AT_NULL is terminator */
2251 i = len = 0;
2252 do {
2253 get_user_ual(val, auxv);
2254 i += 2;
2255 auxv += 2 * sizeof (elf_addr_t);
2256 } while (val != AT_NULL);
2257 len = i * sizeof (elf_addr_t);
2258
2259 /* read in whole auxv vector and copy it to memelfnote */
2260 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2261 if (ptr != NULL) {
2262 fill_note(note, "CORE", NT_AUXV, len, ptr);
2263 unlock_user(ptr, auxv, len);
2264 }
2265}
2266
2267/*
2268 * Constructs name of coredump file. We have following convention
2269 * for the name:
2270 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2271 *
2272 * Returns 0 in case of success, -1 otherwise (errno is set).
2273 */
2274static int core_dump_filename(const TaskState *ts, char *buf,
d97ef72e 2275 size_t bufsize)
edf8e2af
MW
2276{
2277 char timestamp[64];
2278 char *filename = NULL;
2279 char *base_filename = NULL;
2280 struct timeval tv;
2281 struct tm tm;
2282
2283 assert(bufsize >= PATH_MAX);
2284
2285 if (gettimeofday(&tv, NULL) < 0) {
2286 (void) fprintf(stderr, "unable to get current timestamp: %s",
d97ef72e 2287 strerror(errno));
edf8e2af
MW
2288 return (-1);
2289 }
2290
2291 filename = strdup(ts->bprm->filename);
2292 base_filename = strdup(basename(filename));
2293 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
d97ef72e 2294 localtime_r(&tv.tv_sec, &tm));
edf8e2af 2295 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
d97ef72e 2296 base_filename, timestamp, (int)getpid());
edf8e2af
MW
2297 free(base_filename);
2298 free(filename);
2299
2300 return (0);
2301}
2302
2303static int dump_write(int fd, const void *ptr, size_t size)
2304{
2305 const char *bufp = (const char *)ptr;
2306 ssize_t bytes_written, bytes_left;
2307 struct rlimit dumpsize;
2308 off_t pos;
2309
2310 bytes_written = 0;
2311 getrlimit(RLIMIT_CORE, &dumpsize);
2312 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2313 if (errno == ESPIPE) { /* not a seekable stream */
2314 bytes_left = size;
2315 } else {
2316 return pos;
2317 }
2318 } else {
2319 if (dumpsize.rlim_cur <= pos) {
2320 return -1;
2321 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2322 bytes_left = size;
2323 } else {
2324 size_t limit_left=dumpsize.rlim_cur - pos;
2325 bytes_left = limit_left >= size ? size : limit_left ;
2326 }
2327 }
2328
2329 /*
2330 * In normal conditions, single write(2) should do but
2331 * in case of socket etc. this mechanism is more portable.
2332 */
2333 do {
2334 bytes_written = write(fd, bufp, bytes_left);
2335 if (bytes_written < 0) {
2336 if (errno == EINTR)
2337 continue;
2338 return (-1);
2339 } else if (bytes_written == 0) { /* eof */
2340 return (-1);
2341 }
2342 bufp += bytes_written;
2343 bytes_left -= bytes_written;
2344 } while (bytes_left > 0);
2345
2346 return (0);
2347}
2348
2349static int write_note(struct memelfnote *men, int fd)
2350{
2351 struct elf_note en;
2352
2353 en.n_namesz = men->namesz;
2354 en.n_type = men->type;
2355 en.n_descsz = men->datasz;
2356
edf8e2af 2357 bswap_note(&en);
edf8e2af
MW
2358
2359 if (dump_write(fd, &en, sizeof(en)) != 0)
2360 return (-1);
2361 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2362 return (-1);
80f5ce75 2363 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
2364 return (-1);
2365
2366 return (0);
2367}
2368
2369static void fill_thread_info(struct elf_note_info *info, const CPUState *env)
2370{
2371 TaskState *ts = (TaskState *)env->opaque;
2372 struct elf_thread_status *ets;
2373
2374 ets = qemu_mallocz(sizeof (*ets));
2375 ets->num_notes = 1; /* only prstatus is dumped */
2376 fill_prstatus(&ets->prstatus, ts, 0);
2377 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2378 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 2379 &ets->prstatus);
edf8e2af 2380
72cf2d4f 2381 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
2382
2383 info->notes_size += note_size(&ets->notes[0]);
2384}
2385
2386static int fill_note_info(struct elf_note_info *info,
d97ef72e 2387 long signr, const CPUState *env)
edf8e2af
MW
2388{
2389#define NUMNOTES 3
2390 CPUState *cpu = NULL;
2391 TaskState *ts = (TaskState *)env->opaque;
2392 int i;
2393
2394 (void) memset(info, 0, sizeof (*info));
2395
72cf2d4f 2396 QTAILQ_INIT(&info->thread_list);
edf8e2af
MW
2397
2398 info->notes = qemu_mallocz(NUMNOTES * sizeof (struct memelfnote));
2399 if (info->notes == NULL)
2400 return (-ENOMEM);
2401 info->prstatus = qemu_mallocz(sizeof (*info->prstatus));
2402 if (info->prstatus == NULL)
2403 return (-ENOMEM);
2404 info->psinfo = qemu_mallocz(sizeof (*info->psinfo));
2405 if (info->prstatus == NULL)
2406 return (-ENOMEM);
2407
2408 /*
2409 * First fill in status (and registers) of current thread
2410 * including process info & aux vector.
2411 */
2412 fill_prstatus(info->prstatus, ts, signr);
2413 elf_core_copy_regs(&info->prstatus->pr_reg, env);
2414 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 2415 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
2416 fill_psinfo(info->psinfo, ts);
2417 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 2418 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
2419 fill_auxv_note(&info->notes[2], ts);
2420 info->numnote = 3;
2421
2422 info->notes_size = 0;
2423 for (i = 0; i < info->numnote; i++)
2424 info->notes_size += note_size(&info->notes[i]);
2425
2426 /* read and fill status of all threads */
2427 cpu_list_lock();
2428 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
2429 if (cpu == thread_env)
2430 continue;
2431 fill_thread_info(info, cpu);
2432 }
2433 cpu_list_unlock();
2434
2435 return (0);
2436}
2437
2438static void free_note_info(struct elf_note_info *info)
2439{
2440 struct elf_thread_status *ets;
2441
72cf2d4f
BS
2442 while (!QTAILQ_EMPTY(&info->thread_list)) {
2443 ets = QTAILQ_FIRST(&info->thread_list);
2444 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
edf8e2af
MW
2445 qemu_free(ets);
2446 }
2447
2448 qemu_free(info->prstatus);
2449 qemu_free(info->psinfo);
2450 qemu_free(info->notes);
2451}
2452
2453static int write_note_info(struct elf_note_info *info, int fd)
2454{
2455 struct elf_thread_status *ets;
2456 int i, error = 0;
2457
2458 /* write prstatus, psinfo and auxv for current thread */
2459 for (i = 0; i < info->numnote; i++)
2460 if ((error = write_note(&info->notes[i], fd)) != 0)
2461 return (error);
2462
2463 /* write prstatus for each thread */
2464 for (ets = info->thread_list.tqh_first; ets != NULL;
d97ef72e 2465 ets = ets->ets_link.tqe_next) {
edf8e2af
MW
2466 if ((error = write_note(&ets->notes[0], fd)) != 0)
2467 return (error);
2468 }
2469
2470 return (0);
2471}
2472
2473/*
2474 * Write out ELF coredump.
2475 *
2476 * See documentation of ELF object file format in:
2477 * http://www.caldera.com/developers/devspecs/gabi41.pdf
2478 *
2479 * Coredump format in linux is following:
2480 *
2481 * 0 +----------------------+ \
2482 * | ELF header | ET_CORE |
2483 * +----------------------+ |
2484 * | ELF program headers | |--- headers
2485 * | - NOTE section | |
2486 * | - PT_LOAD sections | |
2487 * +----------------------+ /
2488 * | NOTEs: |
2489 * | - NT_PRSTATUS |
2490 * | - NT_PRSINFO |
2491 * | - NT_AUXV |
2492 * +----------------------+ <-- aligned to target page
2493 * | Process memory dump |
2494 * : :
2495 * . .
2496 * : :
2497 * | |
2498 * +----------------------+
2499 *
2500 * NT_PRSTATUS -> struct elf_prstatus (per thread)
2501 * NT_PRSINFO -> struct elf_prpsinfo
2502 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2503 *
2504 * Format follows System V format as close as possible. Current
2505 * version limitations are as follows:
2506 * - no floating point registers are dumped
2507 *
2508 * Function returns 0 in case of success, negative errno otherwise.
2509 *
2510 * TODO: make this work also during runtime: it should be
2511 * possible to force coredump from running process and then
2512 * continue processing. For example qemu could set up SIGUSR2
2513 * handler (provided that target process haven't registered
2514 * handler for that) that does the dump when signal is received.
2515 */
2516static int elf_core_dump(int signr, const CPUState *env)
2517{
2518 const TaskState *ts = (const TaskState *)env->opaque;
2519 struct vm_area_struct *vma = NULL;
2520 char corefile[PATH_MAX];
2521 struct elf_note_info info;
2522 struct elfhdr elf;
2523 struct elf_phdr phdr;
2524 struct rlimit dumpsize;
2525 struct mm_struct *mm = NULL;
2526 off_t offset = 0, data_offset = 0;
2527 int segs = 0;
2528 int fd = -1;
2529
2530 errno = 0;
2531 getrlimit(RLIMIT_CORE, &dumpsize);
2532 if (dumpsize.rlim_cur == 0)
d97ef72e 2533 return 0;
edf8e2af
MW
2534
2535 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
2536 return (-errno);
2537
2538 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 2539 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
2540 return (-errno);
2541
2542 /*
2543 * Walk through target process memory mappings and
2544 * set up structure containing this information. After
2545 * this point vma_xxx functions can be used.
2546 */
2547 if ((mm = vma_init()) == NULL)
2548 goto out;
2549
2550 walk_memory_regions(mm, vma_walker);
2551 segs = vma_get_mapping_count(mm);
2552
2553 /*
2554 * Construct valid coredump ELF header. We also
2555 * add one more segment for notes.
2556 */
2557 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
2558 if (dump_write(fd, &elf, sizeof (elf)) != 0)
2559 goto out;
2560
2561 /* fill in in-memory version of notes */
2562 if (fill_note_info(&info, signr, env) < 0)
2563 goto out;
2564
2565 offset += sizeof (elf); /* elf header */
2566 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
2567
2568 /* write out notes program header */
2569 fill_elf_note_phdr(&phdr, info.notes_size, offset);
2570
2571 offset += info.notes_size;
2572 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
2573 goto out;
2574
2575 /*
2576 * ELF specification wants data to start at page boundary so
2577 * we align it here.
2578 */
80f5ce75 2579 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
2580
2581 /*
2582 * Write program headers for memory regions mapped in
2583 * the target process.
2584 */
2585 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2586 (void) memset(&phdr, 0, sizeof (phdr));
2587
2588 phdr.p_type = PT_LOAD;
2589 phdr.p_offset = offset;
2590 phdr.p_vaddr = vma->vma_start;
2591 phdr.p_paddr = 0;
2592 phdr.p_filesz = vma_dump_size(vma);
2593 offset += phdr.p_filesz;
2594 phdr.p_memsz = vma->vma_end - vma->vma_start;
2595 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
2596 if (vma->vma_flags & PROT_WRITE)
2597 phdr.p_flags |= PF_W;
2598 if (vma->vma_flags & PROT_EXEC)
2599 phdr.p_flags |= PF_X;
2600 phdr.p_align = ELF_EXEC_PAGESIZE;
2601
80f5ce75 2602 bswap_phdr(&phdr, 1);
edf8e2af
MW
2603 dump_write(fd, &phdr, sizeof (phdr));
2604 }
2605
2606 /*
2607 * Next we write notes just after program headers. No
2608 * alignment needed here.
2609 */
2610 if (write_note_info(&info, fd) < 0)
2611 goto out;
2612
2613 /* align data to page boundary */
edf8e2af
MW
2614 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
2615 goto out;
2616
2617 /*
2618 * Finally we can dump process memory into corefile as well.
2619 */
2620 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2621 abi_ulong addr;
2622 abi_ulong end;
2623
2624 end = vma->vma_start + vma_dump_size(vma);
2625
2626 for (addr = vma->vma_start; addr < end;
d97ef72e 2627 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
2628 char page[TARGET_PAGE_SIZE];
2629 int error;
2630
2631 /*
2632 * Read in page from target process memory and
2633 * write it to coredump file.
2634 */
2635 error = copy_from_user(page, addr, sizeof (page));
2636 if (error != 0) {
49995e17 2637 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 2638 addr);
edf8e2af
MW
2639 errno = -error;
2640 goto out;
2641 }
2642 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
2643 goto out;
2644 }
2645 }
2646
d97ef72e 2647 out:
edf8e2af
MW
2648 free_note_info(&info);
2649 if (mm != NULL)
2650 vma_delete(mm);
2651 (void) close(fd);
2652
2653 if (errno != 0)
2654 return (-errno);
2655 return (0);
2656}
edf8e2af
MW
2657#endif /* USE_ELF_CORE_DUMP */
2658
e5fe0c52
PB
2659void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
2660{
2661 init_thread(regs, infop);
2662}