]> git.proxmox.com Git - qemu.git/blame - linux-user/elfload.c
tcg-ppc64: Fix add2_i64
[qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
edf8e2af
MW
2#include <sys/time.h>
3#include <sys/param.h>
31e31b8a
FB
4
5#include <stdio.h>
6#include <sys/types.h>
7#include <fcntl.h>
31e31b8a
FB
8#include <errno.h>
9#include <unistd.h>
10#include <sys/mman.h>
edf8e2af 11#include <sys/resource.h>
31e31b8a
FB
12#include <stdlib.h>
13#include <string.h>
edf8e2af 14#include <time.h>
31e31b8a 15
3ef693a0 16#include "qemu.h"
76cad711 17#include "disas/disas.h"
31e31b8a 18
e58ffeb3 19#ifdef _ARCH_PPC64
a6cc84f4 20#undef ARCH_DLINFO
21#undef ELF_PLATFORM
22#undef ELF_HWCAP
23#undef ELF_CLASS
24#undef ELF_DATA
25#undef ELF_ARCH
26#endif
27
edf8e2af
MW
28#define ELF_OSABI ELFOSABI_SYSV
29
cb33da57
BS
30/* from personality.h */
31
32/*
33 * Flags for bug emulation.
34 *
35 * These occupy the top three bytes.
36 */
37enum {
d97ef72e
RH
38 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
39 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
40 descriptors (signal handling) */
41 MMAP_PAGE_ZERO = 0x0100000,
42 ADDR_COMPAT_LAYOUT = 0x0200000,
43 READ_IMPLIES_EXEC = 0x0400000,
44 ADDR_LIMIT_32BIT = 0x0800000,
45 SHORT_INODE = 0x1000000,
46 WHOLE_SECONDS = 0x2000000,
47 STICKY_TIMEOUTS = 0x4000000,
48 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
49};
50
51/*
52 * Personality types.
53 *
54 * These go in the low byte. Avoid using the top bit, it will
55 * conflict with error returns.
56 */
57enum {
d97ef72e
RH
58 PER_LINUX = 0x0000,
59 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
60 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
61 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
62 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
64 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
65 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
66 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
67 PER_BSD = 0x0006,
68 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
69 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
70 PER_LINUX32 = 0x0008,
71 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
72 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
73 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
74 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
75 PER_RISCOS = 0x000c,
76 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
77 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
78 PER_OSF4 = 0x000f, /* OSF/1 v4 */
79 PER_HPUX = 0x0010,
80 PER_MASK = 0x00ff,
cb33da57
BS
81};
82
83/*
84 * Return the base personality without flags.
85 */
d97ef72e 86#define personality(pers) (pers & PER_MASK)
cb33da57 87
83fb7adf
FB
88/* this flag is uneffective under linux too, should be deleted */
89#ifndef MAP_DENYWRITE
90#define MAP_DENYWRITE 0
91#endif
92
93/* should probably go in elf.h */
94#ifndef ELIBBAD
95#define ELIBBAD 80
96#endif
97
28490231
RH
98#ifdef TARGET_WORDS_BIGENDIAN
99#define ELF_DATA ELFDATA2MSB
100#else
101#define ELF_DATA ELFDATA2LSB
102#endif
103
a29f998d 104#ifdef TARGET_ABI_MIPSN32
918fc54c
PB
105typedef abi_ullong target_elf_greg_t;
106#define tswapreg(ptr) tswap64(ptr)
a29f998d
PB
107#else
108typedef abi_ulong target_elf_greg_t;
109#define tswapreg(ptr) tswapal(ptr)
110#endif
111
21e807fa 112#ifdef USE_UID16
1ddd592f
PB
113typedef abi_ushort target_uid_t;
114typedef abi_ushort target_gid_t;
21e807fa 115#else
f8fd4fc4
PB
116typedef abi_uint target_uid_t;
117typedef abi_uint target_gid_t;
21e807fa 118#endif
f8fd4fc4 119typedef abi_int target_pid_t;
21e807fa 120
30ac07d4
FB
121#ifdef TARGET_I386
122
15338fd7
FB
123#define ELF_PLATFORM get_elf_platform()
124
125static const char *get_elf_platform(void)
126{
127 static char elf_platform[] = "i386";
d5975363 128 int family = (thread_env->cpuid_version >> 8) & 0xff;
15338fd7
FB
129 if (family > 6)
130 family = 6;
131 if (family >= 3)
132 elf_platform[1] = '0' + family;
133 return elf_platform;
134}
135
136#define ELF_HWCAP get_elf_hwcap()
137
138static uint32_t get_elf_hwcap(void)
139{
0514ef2f 140 return thread_env->features[FEAT_1_EDX];
15338fd7
FB
141}
142
84409ddb
JM
143#ifdef TARGET_X86_64
144#define ELF_START_MMAP 0x2aaaaab000ULL
145#define elf_check_arch(x) ( ((x) == ELF_ARCH) )
146
147#define ELF_CLASS ELFCLASS64
84409ddb
JM
148#define ELF_ARCH EM_X86_64
149
150static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
151{
152 regs->rax = 0;
153 regs->rsp = infop->start_stack;
154 regs->rip = infop->entry;
155}
156
9edc5d79 157#define ELF_NREG 27
c227f099 158typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
159
160/*
161 * Note that ELF_NREG should be 29 as there should be place for
162 * TRAPNO and ERR "registers" as well but linux doesn't dump
163 * those.
164 *
165 * See linux kernel: arch/x86/include/asm/elf.h
166 */
05390248 167static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
168{
169 (*regs)[0] = env->regs[15];
170 (*regs)[1] = env->regs[14];
171 (*regs)[2] = env->regs[13];
172 (*regs)[3] = env->regs[12];
173 (*regs)[4] = env->regs[R_EBP];
174 (*regs)[5] = env->regs[R_EBX];
175 (*regs)[6] = env->regs[11];
176 (*regs)[7] = env->regs[10];
177 (*regs)[8] = env->regs[9];
178 (*regs)[9] = env->regs[8];
179 (*regs)[10] = env->regs[R_EAX];
180 (*regs)[11] = env->regs[R_ECX];
181 (*regs)[12] = env->regs[R_EDX];
182 (*regs)[13] = env->regs[R_ESI];
183 (*regs)[14] = env->regs[R_EDI];
184 (*regs)[15] = env->regs[R_EAX]; /* XXX */
185 (*regs)[16] = env->eip;
186 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
187 (*regs)[18] = env->eflags;
188 (*regs)[19] = env->regs[R_ESP];
189 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
190 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
191 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
192 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
193 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
194 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
195 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
196}
197
84409ddb
JM
198#else
199
30ac07d4
FB
200#define ELF_START_MMAP 0x80000000
201
30ac07d4
FB
202/*
203 * This is used to ensure we don't load something for the wrong architecture.
204 */
205#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
206
207/*
208 * These are used to set parameters in the core dumps.
209 */
d97ef72e 210#define ELF_CLASS ELFCLASS32
d97ef72e 211#define ELF_ARCH EM_386
30ac07d4 212
d97ef72e
RH
213static inline void init_thread(struct target_pt_regs *regs,
214 struct image_info *infop)
b346ff46
FB
215{
216 regs->esp = infop->start_stack;
217 regs->eip = infop->entry;
e5fe0c52
PB
218
219 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
220 starts %edx contains a pointer to a function which might be
221 registered using `atexit'. This provides a mean for the
222 dynamic linker to call DT_FINI functions for shared libraries
223 that have been loaded before the code runs.
224
225 A value of 0 tells we have no such handler. */
226 regs->edx = 0;
b346ff46 227}
9edc5d79 228
9edc5d79 229#define ELF_NREG 17
c227f099 230typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
231
232/*
233 * Note that ELF_NREG should be 19 as there should be place for
234 * TRAPNO and ERR "registers" as well but linux doesn't dump
235 * those.
236 *
237 * See linux kernel: arch/x86/include/asm/elf.h
238 */
05390248 239static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
240{
241 (*regs)[0] = env->regs[R_EBX];
242 (*regs)[1] = env->regs[R_ECX];
243 (*regs)[2] = env->regs[R_EDX];
244 (*regs)[3] = env->regs[R_ESI];
245 (*regs)[4] = env->regs[R_EDI];
246 (*regs)[5] = env->regs[R_EBP];
247 (*regs)[6] = env->regs[R_EAX];
248 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
249 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
250 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
251 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
252 (*regs)[11] = env->regs[R_EAX]; /* XXX */
253 (*regs)[12] = env->eip;
254 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
255 (*regs)[14] = env->eflags;
256 (*regs)[15] = env->regs[R_ESP];
257 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
258}
84409ddb 259#endif
b346ff46 260
9edc5d79 261#define USE_ELF_CORE_DUMP
d97ef72e 262#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
263
264#endif
265
266#ifdef TARGET_ARM
267
268#define ELF_START_MMAP 0x80000000
269
270#define elf_check_arch(x) ( (x) == EM_ARM )
271
d97ef72e 272#define ELF_CLASS ELFCLASS32
d97ef72e 273#define ELF_ARCH EM_ARM
b346ff46 274
d97ef72e
RH
275static inline void init_thread(struct target_pt_regs *regs,
276 struct image_info *infop)
b346ff46 277{
992f48a0 278 abi_long stack = infop->start_stack;
b346ff46
FB
279 memset(regs, 0, sizeof(*regs));
280 regs->ARM_cpsr = 0x10;
0240ded8 281 if (infop->entry & 1)
d97ef72e 282 regs->ARM_cpsr |= CPSR_T;
0240ded8 283 regs->ARM_pc = infop->entry & 0xfffffffe;
b346ff46 284 regs->ARM_sp = infop->start_stack;
2f619698
FB
285 /* FIXME - what to for failure of get_user()? */
286 get_user_ual(regs->ARM_r2, stack + 8); /* envp */
287 get_user_ual(regs->ARM_r1, stack + 4); /* envp */
a1516e92 288 /* XXX: it seems that r0 is zeroed after ! */
e5fe0c52
PB
289 regs->ARM_r0 = 0;
290 /* For uClinux PIC binaries. */
863cf0b7 291 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
e5fe0c52 292 regs->ARM_r10 = infop->start_data;
b346ff46
FB
293}
294
edf8e2af 295#define ELF_NREG 18
c227f099 296typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 297
05390248 298static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 299{
86cd7b2d
PB
300 (*regs)[0] = tswapreg(env->regs[0]);
301 (*regs)[1] = tswapreg(env->regs[1]);
302 (*regs)[2] = tswapreg(env->regs[2]);
303 (*regs)[3] = tswapreg(env->regs[3]);
304 (*regs)[4] = tswapreg(env->regs[4]);
305 (*regs)[5] = tswapreg(env->regs[5]);
306 (*regs)[6] = tswapreg(env->regs[6]);
307 (*regs)[7] = tswapreg(env->regs[7]);
308 (*regs)[8] = tswapreg(env->regs[8]);
309 (*regs)[9] = tswapreg(env->regs[9]);
310 (*regs)[10] = tswapreg(env->regs[10]);
311 (*regs)[11] = tswapreg(env->regs[11]);
312 (*regs)[12] = tswapreg(env->regs[12]);
313 (*regs)[13] = tswapreg(env->regs[13]);
314 (*regs)[14] = tswapreg(env->regs[14]);
315 (*regs)[15] = tswapreg(env->regs[15]);
316
317 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
318 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
edf8e2af
MW
319}
320
30ac07d4 321#define USE_ELF_CORE_DUMP
d97ef72e 322#define ELF_EXEC_PAGESIZE 4096
30ac07d4 323
afce2927
FB
324enum
325{
d97ef72e
RH
326 ARM_HWCAP_ARM_SWP = 1 << 0,
327 ARM_HWCAP_ARM_HALF = 1 << 1,
328 ARM_HWCAP_ARM_THUMB = 1 << 2,
329 ARM_HWCAP_ARM_26BIT = 1 << 3,
330 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
331 ARM_HWCAP_ARM_FPA = 1 << 5,
332 ARM_HWCAP_ARM_VFP = 1 << 6,
333 ARM_HWCAP_ARM_EDSP = 1 << 7,
334 ARM_HWCAP_ARM_JAVA = 1 << 8,
335 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
336 ARM_HWCAP_ARM_THUMBEE = 1 << 10,
337 ARM_HWCAP_ARM_NEON = 1 << 11,
338 ARM_HWCAP_ARM_VFPv3 = 1 << 12,
339 ARM_HWCAP_ARM_VFPv3D16 = 1 << 13,
afce2927
FB
340};
341
806d1021
MI
342#define TARGET_HAS_VALIDATE_GUEST_SPACE
343/* Return 1 if the proposed guest space is suitable for the guest.
344 * Return 0 if the proposed guest space isn't suitable, but another
345 * address space should be tried.
346 * Return -1 if there is no way the proposed guest space can be
347 * valid regardless of the base.
348 * The guest code may leave a page mapped and populate it if the
349 * address is suitable.
350 */
351static int validate_guest_space(unsigned long guest_base,
352 unsigned long guest_size)
97cc7560
DDAG
353{
354 unsigned long real_start, test_page_addr;
355
356 /* We need to check that we can force a fault on access to the
357 * commpage at 0xffff0fxx
358 */
359 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
806d1021
MI
360
361 /* If the commpage lies within the already allocated guest space,
362 * then there is no way we can allocate it.
363 */
364 if (test_page_addr >= guest_base
365 && test_page_addr <= (guest_base + guest_size)) {
366 return -1;
367 }
368
97cc7560
DDAG
369 /* Note it needs to be writeable to let us initialise it */
370 real_start = (unsigned long)
371 mmap((void *)test_page_addr, qemu_host_page_size,
372 PROT_READ | PROT_WRITE,
373 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
374
375 /* If we can't map it then try another address */
376 if (real_start == -1ul) {
377 return 0;
378 }
379
380 if (real_start != test_page_addr) {
381 /* OS didn't put the page where we asked - unmap and reject */
382 munmap((void *)real_start, qemu_host_page_size);
383 return 0;
384 }
385
386 /* Leave the page mapped
387 * Populate it (mmap should have left it all 0'd)
388 */
389
390 /* Kernel helper versions */
391 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
392
393 /* Now it's populated make it RO */
394 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
395 perror("Protecting guest commpage");
396 exit(-1);
397 }
398
399 return 1; /* All good */
400}
401
adf050b1
BC
402
403#define ELF_HWCAP get_elf_hwcap()
404
405static uint32_t get_elf_hwcap(void)
406{
407 CPUARMState *e = thread_env;
408 uint32_t hwcaps = 0;
409
410 hwcaps |= ARM_HWCAP_ARM_SWP;
411 hwcaps |= ARM_HWCAP_ARM_HALF;
412 hwcaps |= ARM_HWCAP_ARM_THUMB;
413 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
414 hwcaps |= ARM_HWCAP_ARM_FPA;
415
416 /* probe for the extra features */
417#define GET_FEATURE(feat, hwcap) \
418 do {if (arm_feature(e, feat)) { hwcaps |= hwcap; } } while (0)
419 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
420 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
421 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
422 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
423 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
424 GET_FEATURE(ARM_FEATURE_VFP_FP16, ARM_HWCAP_ARM_VFPv3D16);
425#undef GET_FEATURE
426
427 return hwcaps;
428}
afce2927 429
30ac07d4
FB
430#endif
431
d2fbca94
GX
432#ifdef TARGET_UNICORE32
433
434#define ELF_START_MMAP 0x80000000
435
436#define elf_check_arch(x) ((x) == EM_UNICORE32)
437
438#define ELF_CLASS ELFCLASS32
439#define ELF_DATA ELFDATA2LSB
440#define ELF_ARCH EM_UNICORE32
441
442static inline void init_thread(struct target_pt_regs *regs,
443 struct image_info *infop)
444{
445 abi_long stack = infop->start_stack;
446 memset(regs, 0, sizeof(*regs));
447 regs->UC32_REG_asr = 0x10;
448 regs->UC32_REG_pc = infop->entry & 0xfffffffe;
449 regs->UC32_REG_sp = infop->start_stack;
450 /* FIXME - what to for failure of get_user()? */
451 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
452 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
453 /* XXX: it seems that r0 is zeroed after ! */
454 regs->UC32_REG_00 = 0;
455}
456
457#define ELF_NREG 34
458typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
459
05390248 460static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
d2fbca94
GX
461{
462 (*regs)[0] = env->regs[0];
463 (*regs)[1] = env->regs[1];
464 (*regs)[2] = env->regs[2];
465 (*regs)[3] = env->regs[3];
466 (*regs)[4] = env->regs[4];
467 (*regs)[5] = env->regs[5];
468 (*regs)[6] = env->regs[6];
469 (*regs)[7] = env->regs[7];
470 (*regs)[8] = env->regs[8];
471 (*regs)[9] = env->regs[9];
472 (*regs)[10] = env->regs[10];
473 (*regs)[11] = env->regs[11];
474 (*regs)[12] = env->regs[12];
475 (*regs)[13] = env->regs[13];
476 (*regs)[14] = env->regs[14];
477 (*regs)[15] = env->regs[15];
478 (*regs)[16] = env->regs[16];
479 (*regs)[17] = env->regs[17];
480 (*regs)[18] = env->regs[18];
481 (*regs)[19] = env->regs[19];
482 (*regs)[20] = env->regs[20];
483 (*regs)[21] = env->regs[21];
484 (*regs)[22] = env->regs[22];
485 (*regs)[23] = env->regs[23];
486 (*regs)[24] = env->regs[24];
487 (*regs)[25] = env->regs[25];
488 (*regs)[26] = env->regs[26];
489 (*regs)[27] = env->regs[27];
490 (*regs)[28] = env->regs[28];
491 (*regs)[29] = env->regs[29];
492 (*regs)[30] = env->regs[30];
493 (*regs)[31] = env->regs[31];
494
05390248 495 (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
d2fbca94
GX
496 (*regs)[33] = env->regs[0]; /* XXX */
497}
498
499#define USE_ELF_CORE_DUMP
500#define ELF_EXEC_PAGESIZE 4096
501
502#define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
503
504#endif
505
853d6f7a 506#ifdef TARGET_SPARC
a315a145 507#ifdef TARGET_SPARC64
853d6f7a
FB
508
509#define ELF_START_MMAP 0x80000000
cf973e46
AT
510#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
511 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 512#ifndef TARGET_ABI32
cb33da57 513#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
514#else
515#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
516#endif
853d6f7a 517
a315a145 518#define ELF_CLASS ELFCLASS64
5ef54116
FB
519#define ELF_ARCH EM_SPARCV9
520
d97ef72e 521#define STACK_BIAS 2047
a315a145 522
d97ef72e
RH
523static inline void init_thread(struct target_pt_regs *regs,
524 struct image_info *infop)
a315a145 525{
992f48a0 526#ifndef TARGET_ABI32
a315a145 527 regs->tstate = 0;
992f48a0 528#endif
a315a145
FB
529 regs->pc = infop->entry;
530 regs->npc = regs->pc + 4;
531 regs->y = 0;
992f48a0
BS
532#ifdef TARGET_ABI32
533 regs->u_regs[14] = infop->start_stack - 16 * 4;
534#else
cb33da57
BS
535 if (personality(infop->personality) == PER_LINUX32)
536 regs->u_regs[14] = infop->start_stack - 16 * 4;
537 else
538 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 539#endif
a315a145
FB
540}
541
542#else
543#define ELF_START_MMAP 0x80000000
cf973e46
AT
544#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
545 | HWCAP_SPARC_MULDIV)
a315a145
FB
546#define elf_check_arch(x) ( (x) == EM_SPARC )
547
853d6f7a 548#define ELF_CLASS ELFCLASS32
853d6f7a
FB
549#define ELF_ARCH EM_SPARC
550
d97ef72e
RH
551static inline void init_thread(struct target_pt_regs *regs,
552 struct image_info *infop)
853d6f7a 553{
f5155289
FB
554 regs->psr = 0;
555 regs->pc = infop->entry;
556 regs->npc = regs->pc + 4;
557 regs->y = 0;
558 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
559}
560
a315a145 561#endif
853d6f7a
FB
562#endif
563
67867308
FB
564#ifdef TARGET_PPC
565
566#define ELF_START_MMAP 0x80000000
567
e85e7c6e 568#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
569
570#define elf_check_arch(x) ( (x) == EM_PPC64 )
571
d97ef72e 572#define ELF_CLASS ELFCLASS64
84409ddb
JM
573
574#else
575
67867308
FB
576#define elf_check_arch(x) ( (x) == EM_PPC )
577
d97ef72e 578#define ELF_CLASS ELFCLASS32
84409ddb
JM
579
580#endif
581
d97ef72e 582#define ELF_ARCH EM_PPC
67867308 583
df84e4f3
NF
584/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
585 See arch/powerpc/include/asm/cputable.h. */
586enum {
3efa9a67 587 QEMU_PPC_FEATURE_32 = 0x80000000,
588 QEMU_PPC_FEATURE_64 = 0x40000000,
589 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
590 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
591 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
592 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
593 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
594 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
595 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
596 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
597 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
598 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
599 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
600 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
601 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
602 QEMU_PPC_FEATURE_CELL = 0x00010000,
603 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
604 QEMU_PPC_FEATURE_SMT = 0x00004000,
605 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
606 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
607 QEMU_PPC_FEATURE_PA6T = 0x00000800,
608 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
609 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
610 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
611 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
612 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
613
614 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
615 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
df84e4f3
NF
616};
617
618#define ELF_HWCAP get_elf_hwcap()
619
620static uint32_t get_elf_hwcap(void)
621{
05390248 622 CPUPPCState *e = thread_env;
df84e4f3
NF
623 uint32_t features = 0;
624
625 /* We don't have to be terribly complete here; the high points are
626 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 627#define GET_FEATURE(flag, feature) \
df84e4f3 628 do {if (e->insns_flags & flag) features |= feature; } while(0)
3efa9a67 629 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
630 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
631 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
632 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
633 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
634 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
635 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
636 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
df84e4f3
NF
637#undef GET_FEATURE
638
639 return features;
640}
641
f5155289
FB
642/*
643 * The requirements here are:
644 * - keep the final alignment of sp (sp & 0xf)
645 * - make sure the 32-bit value at the first 16 byte aligned position of
646 * AUXV is greater than 16 for glibc compatibility.
647 * AT_IGNOREPPC is used for that.
648 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
649 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
650 */
0bccf03d 651#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
652#define ARCH_DLINFO \
653 do { \
654 NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20); \
655 NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20); \
656 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
657 /* \
658 * Now handle glibc compatibility. \
659 */ \
660 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
661 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
662 } while (0)
f5155289 663
67867308
FB
664static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
665{
67867308 666 _regs->gpr[1] = infop->start_stack;
e85e7c6e 667#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
8e78064e
RH
668 _regs->gpr[2] = ldq_raw(infop->entry + 8) + infop->load_bias;
669 infop->entry = ldq_raw(infop->entry) + infop->load_bias;
84409ddb 670#endif
67867308
FB
671 _regs->nip = infop->entry;
672}
673
e2f3e741
NF
674/* See linux kernel: arch/powerpc/include/asm/elf.h. */
675#define ELF_NREG 48
676typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
677
05390248 678static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
679{
680 int i;
681 target_ulong ccr = 0;
682
683 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
86cd7b2d 684 (*regs)[i] = tswapreg(env->gpr[i]);
e2f3e741
NF
685 }
686
86cd7b2d
PB
687 (*regs)[32] = tswapreg(env->nip);
688 (*regs)[33] = tswapreg(env->msr);
689 (*regs)[35] = tswapreg(env->ctr);
690 (*regs)[36] = tswapreg(env->lr);
691 (*regs)[37] = tswapreg(env->xer);
e2f3e741
NF
692
693 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
694 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
695 }
86cd7b2d 696 (*regs)[38] = tswapreg(ccr);
e2f3e741
NF
697}
698
699#define USE_ELF_CORE_DUMP
d97ef72e 700#define ELF_EXEC_PAGESIZE 4096
67867308
FB
701
702#endif
703
048f6b4d
FB
704#ifdef TARGET_MIPS
705
706#define ELF_START_MMAP 0x80000000
707
708#define elf_check_arch(x) ( (x) == EM_MIPS )
709
388bb21a
TS
710#ifdef TARGET_MIPS64
711#define ELF_CLASS ELFCLASS64
712#else
048f6b4d 713#define ELF_CLASS ELFCLASS32
388bb21a 714#endif
048f6b4d
FB
715#define ELF_ARCH EM_MIPS
716
d97ef72e
RH
717static inline void init_thread(struct target_pt_regs *regs,
718 struct image_info *infop)
048f6b4d 719{
623a930e 720 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
721 regs->cp0_epc = infop->entry;
722 regs->regs[29] = infop->start_stack;
723}
724
51e52606
NF
725/* See linux kernel: arch/mips/include/asm/elf.h. */
726#define ELF_NREG 45
727typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
728
729/* See linux kernel: arch/mips/include/asm/reg.h. */
730enum {
731#ifdef TARGET_MIPS64
732 TARGET_EF_R0 = 0,
733#else
734 TARGET_EF_R0 = 6,
735#endif
736 TARGET_EF_R26 = TARGET_EF_R0 + 26,
737 TARGET_EF_R27 = TARGET_EF_R0 + 27,
738 TARGET_EF_LO = TARGET_EF_R0 + 32,
739 TARGET_EF_HI = TARGET_EF_R0 + 33,
740 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
741 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
742 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
743 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
744};
745
746/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 747static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
748{
749 int i;
750
751 for (i = 0; i < TARGET_EF_R0; i++) {
752 (*regs)[i] = 0;
753 }
754 (*regs)[TARGET_EF_R0] = 0;
755
756 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
a29f998d 757 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
51e52606
NF
758 }
759
760 (*regs)[TARGET_EF_R26] = 0;
761 (*regs)[TARGET_EF_R27] = 0;
a29f998d
PB
762 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
763 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
764 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
765 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
766 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
767 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
51e52606
NF
768}
769
770#define USE_ELF_CORE_DUMP
388bb21a
TS
771#define ELF_EXEC_PAGESIZE 4096
772
048f6b4d
FB
773#endif /* TARGET_MIPS */
774
b779e29e
EI
775#ifdef TARGET_MICROBLAZE
776
777#define ELF_START_MMAP 0x80000000
778
0d5d4699 779#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
780
781#define ELF_CLASS ELFCLASS32
0d5d4699 782#define ELF_ARCH EM_MICROBLAZE
b779e29e 783
d97ef72e
RH
784static inline void init_thread(struct target_pt_regs *regs,
785 struct image_info *infop)
b779e29e
EI
786{
787 regs->pc = infop->entry;
788 regs->r1 = infop->start_stack;
789
790}
791
b779e29e
EI
792#define ELF_EXEC_PAGESIZE 4096
793
e4cbd44d
EI
794#define USE_ELF_CORE_DUMP
795#define ELF_NREG 38
796typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
797
798/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 799static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
800{
801 int i, pos = 0;
802
803 for (i = 0; i < 32; i++) {
86cd7b2d 804 (*regs)[pos++] = tswapreg(env->regs[i]);
e4cbd44d
EI
805 }
806
807 for (i = 0; i < 6; i++) {
86cd7b2d 808 (*regs)[pos++] = tswapreg(env->sregs[i]);
e4cbd44d
EI
809 }
810}
811
b779e29e
EI
812#endif /* TARGET_MICROBLAZE */
813
d962783e
JL
814#ifdef TARGET_OPENRISC
815
816#define ELF_START_MMAP 0x08000000
817
818#define elf_check_arch(x) ((x) == EM_OPENRISC)
819
820#define ELF_ARCH EM_OPENRISC
821#define ELF_CLASS ELFCLASS32
822#define ELF_DATA ELFDATA2MSB
823
824static inline void init_thread(struct target_pt_regs *regs,
825 struct image_info *infop)
826{
827 regs->pc = infop->entry;
828 regs->gpr[1] = infop->start_stack;
829}
830
831#define USE_ELF_CORE_DUMP
832#define ELF_EXEC_PAGESIZE 8192
833
834/* See linux kernel arch/openrisc/include/asm/elf.h. */
835#define ELF_NREG 34 /* gprs and pc, sr */
836typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
837
838static void elf_core_copy_regs(target_elf_gregset_t *regs,
839 const CPUOpenRISCState *env)
840{
841 int i;
842
843 for (i = 0; i < 32; i++) {
86cd7b2d 844 (*regs)[i] = tswapreg(env->gpr[i]);
d962783e
JL
845 }
846
86cd7b2d
PB
847 (*regs)[32] = tswapreg(env->pc);
848 (*regs)[33] = tswapreg(env->sr);
d962783e
JL
849}
850#define ELF_HWCAP 0
851#define ELF_PLATFORM NULL
852
853#endif /* TARGET_OPENRISC */
854
fdf9b3e8
FB
855#ifdef TARGET_SH4
856
857#define ELF_START_MMAP 0x80000000
858
859#define elf_check_arch(x) ( (x) == EM_SH )
860
861#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
862#define ELF_ARCH EM_SH
863
d97ef72e
RH
864static inline void init_thread(struct target_pt_regs *regs,
865 struct image_info *infop)
fdf9b3e8 866{
d97ef72e
RH
867 /* Check other registers XXXXX */
868 regs->pc = infop->entry;
869 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
870}
871
7631c97e
NF
872/* See linux kernel: arch/sh/include/asm/elf.h. */
873#define ELF_NREG 23
874typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
875
876/* See linux kernel: arch/sh/include/asm/ptrace.h. */
877enum {
878 TARGET_REG_PC = 16,
879 TARGET_REG_PR = 17,
880 TARGET_REG_SR = 18,
881 TARGET_REG_GBR = 19,
882 TARGET_REG_MACH = 20,
883 TARGET_REG_MACL = 21,
884 TARGET_REG_SYSCALL = 22
885};
886
d97ef72e 887static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 888 const CPUSH4State *env)
7631c97e
NF
889{
890 int i;
891
892 for (i = 0; i < 16; i++) {
86cd7b2d 893 (*regs[i]) = tswapreg(env->gregs[i]);
7631c97e
NF
894 }
895
86cd7b2d
PB
896 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
897 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
898 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
899 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
900 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
901 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
7631c97e
NF
902 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
903}
904
905#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
906#define ELF_EXEC_PAGESIZE 4096
907
908#endif
909
48733d19
TS
910#ifdef TARGET_CRIS
911
912#define ELF_START_MMAP 0x80000000
913
914#define elf_check_arch(x) ( (x) == EM_CRIS )
915
916#define ELF_CLASS ELFCLASS32
48733d19
TS
917#define ELF_ARCH EM_CRIS
918
d97ef72e
RH
919static inline void init_thread(struct target_pt_regs *regs,
920 struct image_info *infop)
48733d19 921{
d97ef72e 922 regs->erp = infop->entry;
48733d19
TS
923}
924
48733d19
TS
925#define ELF_EXEC_PAGESIZE 8192
926
927#endif
928
e6e5906b
PB
929#ifdef TARGET_M68K
930
931#define ELF_START_MMAP 0x80000000
932
933#define elf_check_arch(x) ( (x) == EM_68K )
934
d97ef72e 935#define ELF_CLASS ELFCLASS32
d97ef72e 936#define ELF_ARCH EM_68K
e6e5906b
PB
937
938/* ??? Does this need to do anything?
d97ef72e 939 #define ELF_PLAT_INIT(_r) */
e6e5906b 940
d97ef72e
RH
941static inline void init_thread(struct target_pt_regs *regs,
942 struct image_info *infop)
e6e5906b
PB
943{
944 regs->usp = infop->start_stack;
945 regs->sr = 0;
946 regs->pc = infop->entry;
947}
948
7a93cc55
NF
949/* See linux kernel: arch/m68k/include/asm/elf.h. */
950#define ELF_NREG 20
951typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
952
05390248 953static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55 954{
86cd7b2d
PB
955 (*regs)[0] = tswapreg(env->dregs[1]);
956 (*regs)[1] = tswapreg(env->dregs[2]);
957 (*regs)[2] = tswapreg(env->dregs[3]);
958 (*regs)[3] = tswapreg(env->dregs[4]);
959 (*regs)[4] = tswapreg(env->dregs[5]);
960 (*regs)[5] = tswapreg(env->dregs[6]);
961 (*regs)[6] = tswapreg(env->dregs[7]);
962 (*regs)[7] = tswapreg(env->aregs[0]);
963 (*regs)[8] = tswapreg(env->aregs[1]);
964 (*regs)[9] = tswapreg(env->aregs[2]);
965 (*regs)[10] = tswapreg(env->aregs[3]);
966 (*regs)[11] = tswapreg(env->aregs[4]);
967 (*regs)[12] = tswapreg(env->aregs[5]);
968 (*regs)[13] = tswapreg(env->aregs[6]);
969 (*regs)[14] = tswapreg(env->dregs[0]);
970 (*regs)[15] = tswapreg(env->aregs[7]);
971 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
972 (*regs)[17] = tswapreg(env->sr);
973 (*regs)[18] = tswapreg(env->pc);
7a93cc55
NF
974 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
975}
976
977#define USE_ELF_CORE_DUMP
d97ef72e 978#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
979
980#endif
981
7a3148a9
JM
982#ifdef TARGET_ALPHA
983
984#define ELF_START_MMAP (0x30000000000ULL)
985
986#define elf_check_arch(x) ( (x) == ELF_ARCH )
987
988#define ELF_CLASS ELFCLASS64
7a3148a9
JM
989#define ELF_ARCH EM_ALPHA
990
d97ef72e
RH
991static inline void init_thread(struct target_pt_regs *regs,
992 struct image_info *infop)
7a3148a9
JM
993{
994 regs->pc = infop->entry;
995 regs->ps = 8;
996 regs->usp = infop->start_stack;
7a3148a9
JM
997}
998
7a3148a9
JM
999#define ELF_EXEC_PAGESIZE 8192
1000
1001#endif /* TARGET_ALPHA */
1002
a4c075f1
UH
1003#ifdef TARGET_S390X
1004
1005#define ELF_START_MMAP (0x20000000000ULL)
1006
1007#define elf_check_arch(x) ( (x) == ELF_ARCH )
1008
1009#define ELF_CLASS ELFCLASS64
1010#define ELF_DATA ELFDATA2MSB
1011#define ELF_ARCH EM_S390
1012
1013static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1014{
1015 regs->psw.addr = infop->entry;
1016 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1017 regs->gprs[15] = infop->start_stack;
1018}
1019
1020#endif /* TARGET_S390X */
1021
15338fd7
FB
1022#ifndef ELF_PLATFORM
1023#define ELF_PLATFORM (NULL)
1024#endif
1025
1026#ifndef ELF_HWCAP
1027#define ELF_HWCAP 0
1028#endif
1029
992f48a0 1030#ifdef TARGET_ABI32
cb33da57 1031#undef ELF_CLASS
992f48a0 1032#define ELF_CLASS ELFCLASS32
cb33da57
BS
1033#undef bswaptls
1034#define bswaptls(ptr) bswap32s(ptr)
1035#endif
1036
31e31b8a 1037#include "elf.h"
09bfb054 1038
09bfb054
FB
1039struct exec
1040{
d97ef72e
RH
1041 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1042 unsigned int a_text; /* length of text, in bytes */
1043 unsigned int a_data; /* length of data, in bytes */
1044 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1045 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1046 unsigned int a_entry; /* start address */
1047 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1048 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
1049};
1050
1051
1052#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1053#define OMAGIC 0407
1054#define NMAGIC 0410
1055#define ZMAGIC 0413
1056#define QMAGIC 0314
1057
31e31b8a 1058/* Necessary parameters */
54936004
FB
1059#define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1060#define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
1061#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 1062
14322bad 1063#define DLINFO_ITEMS 13
31e31b8a 1064
09bfb054
FB
1065static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1066{
d97ef72e 1067 memcpy(to, from, n);
09bfb054 1068}
d691f669 1069
31e31b8a 1070#ifdef BSWAP_NEEDED
92a31b1f 1071static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 1072{
d97ef72e
RH
1073 bswap16s(&ehdr->e_type); /* Object file type */
1074 bswap16s(&ehdr->e_machine); /* Architecture */
1075 bswap32s(&ehdr->e_version); /* Object file version */
1076 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1077 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1078 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1079 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1080 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1081 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1082 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1083 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1084 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1085 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
1086}
1087
991f8f0c 1088static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 1089{
991f8f0c
RH
1090 int i;
1091 for (i = 0; i < phnum; ++i, ++phdr) {
1092 bswap32s(&phdr->p_type); /* Segment type */
1093 bswap32s(&phdr->p_flags); /* Segment flags */
1094 bswaptls(&phdr->p_offset); /* Segment file offset */
1095 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1096 bswaptls(&phdr->p_paddr); /* Segment physical address */
1097 bswaptls(&phdr->p_filesz); /* Segment size in file */
1098 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1099 bswaptls(&phdr->p_align); /* Segment alignment */
1100 }
31e31b8a 1101}
689f936f 1102
991f8f0c 1103static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 1104{
991f8f0c
RH
1105 int i;
1106 for (i = 0; i < shnum; ++i, ++shdr) {
1107 bswap32s(&shdr->sh_name);
1108 bswap32s(&shdr->sh_type);
1109 bswaptls(&shdr->sh_flags);
1110 bswaptls(&shdr->sh_addr);
1111 bswaptls(&shdr->sh_offset);
1112 bswaptls(&shdr->sh_size);
1113 bswap32s(&shdr->sh_link);
1114 bswap32s(&shdr->sh_info);
1115 bswaptls(&shdr->sh_addralign);
1116 bswaptls(&shdr->sh_entsize);
1117 }
689f936f
FB
1118}
1119
7a3148a9 1120static void bswap_sym(struct elf_sym *sym)
689f936f
FB
1121{
1122 bswap32s(&sym->st_name);
7a3148a9
JM
1123 bswaptls(&sym->st_value);
1124 bswaptls(&sym->st_size);
689f936f
FB
1125 bswap16s(&sym->st_shndx);
1126}
991f8f0c
RH
1127#else
1128static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1129static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1130static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1131static inline void bswap_sym(struct elf_sym *sym) { }
31e31b8a
FB
1132#endif
1133
edf8e2af 1134#ifdef USE_ELF_CORE_DUMP
9349b4f9 1135static int elf_core_dump(int, const CPUArchState *);
edf8e2af 1136#endif /* USE_ELF_CORE_DUMP */
682674b8 1137static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 1138
9058abdd
RH
1139/* Verify the portions of EHDR within E_IDENT for the target.
1140 This can be performed before bswapping the entire header. */
1141static bool elf_check_ident(struct elfhdr *ehdr)
1142{
1143 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1144 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1145 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1146 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1147 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1148 && ehdr->e_ident[EI_DATA] == ELF_DATA
1149 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1150}
1151
1152/* Verify the portions of EHDR outside of E_IDENT for the target.
1153 This has to wait until after bswapping the header. */
1154static bool elf_check_ehdr(struct elfhdr *ehdr)
1155{
1156 return (elf_check_arch(ehdr->e_machine)
1157 && ehdr->e_ehsize == sizeof(struct elfhdr)
1158 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1159 && ehdr->e_shentsize == sizeof(struct elf_shdr)
1160 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1161}
1162
31e31b8a 1163/*
e5fe0c52 1164 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
1165 * memory to free pages in kernel mem. These are in a format ready
1166 * to be put directly into the top of new user memory.
1167 *
1168 */
992f48a0
BS
1169static abi_ulong copy_elf_strings(int argc,char ** argv, void **page,
1170 abi_ulong p)
31e31b8a
FB
1171{
1172 char *tmp, *tmp1, *pag = NULL;
1173 int len, offset = 0;
1174
1175 if (!p) {
d97ef72e 1176 return 0; /* bullet-proofing */
31e31b8a
FB
1177 }
1178 while (argc-- > 0) {
edf779ff
FB
1179 tmp = argv[argc];
1180 if (!tmp) {
d97ef72e
RH
1181 fprintf(stderr, "VFS: argc is wrong");
1182 exit(-1);
1183 }
edf779ff 1184 tmp1 = tmp;
d97ef72e
RH
1185 while (*tmp++);
1186 len = tmp - tmp1;
1187 if (p < len) { /* this shouldn't happen - 128kB */
1188 return 0;
1189 }
1190 while (len) {
1191 --p; --tmp; --len;
1192 if (--offset < 0) {
1193 offset = p % TARGET_PAGE_SIZE;
53a5960a 1194 pag = (char *)page[p/TARGET_PAGE_SIZE];
44a91cae 1195 if (!pag) {
7dd47667 1196 pag = g_try_malloc0(TARGET_PAGE_SIZE);
53a5960a 1197 page[p/TARGET_PAGE_SIZE] = pag;
44a91cae
FB
1198 if (!pag)
1199 return 0;
d97ef72e
RH
1200 }
1201 }
1202 if (len == 0 || offset == 0) {
1203 *(pag + offset) = *tmp;
1204 }
1205 else {
1206 int bytes_to_copy = (len > offset) ? offset : len;
1207 tmp -= bytes_to_copy;
1208 p -= bytes_to_copy;
1209 offset -= bytes_to_copy;
1210 len -= bytes_to_copy;
1211 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1);
1212 }
1213 }
31e31b8a
FB
1214 }
1215 return p;
1216}
1217
992f48a0
BS
1218static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm,
1219 struct image_info *info)
53a5960a 1220{
60dcbcb5 1221 abi_ulong stack_base, size, error, guard;
31e31b8a 1222 int i;
31e31b8a 1223
09bfb054 1224 /* Create enough stack to hold everything. If we don't use
60dcbcb5 1225 it for args, we'll use it for something else. */
703e0e89 1226 size = guest_stack_size;
60dcbcb5 1227 if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) {
54936004 1228 size = MAX_ARG_PAGES*TARGET_PAGE_SIZE;
60dcbcb5
RH
1229 }
1230 guard = TARGET_PAGE_SIZE;
1231 if (guard < qemu_real_host_page_size) {
1232 guard = qemu_real_host_page_size;
1233 }
1234
1235 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1236 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 1237 if (error == -1) {
60dcbcb5 1238 perror("mmap stack");
09bfb054
FB
1239 exit(-1);
1240 }
31e31b8a 1241
60dcbcb5
RH
1242 /* We reserve one extra page at the top of the stack as guard. */
1243 target_mprotect(error, guard, PROT_NONE);
1244
1245 info->stack_limit = error + guard;
1246 stack_base = info->stack_limit + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE;
31e31b8a 1247 p += stack_base;
09bfb054 1248
31e31b8a 1249 for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
d97ef72e
RH
1250 if (bprm->page[i]) {
1251 info->rss++;
579a97f7 1252 /* FIXME - check return value of memcpy_to_target() for failure */
d97ef72e 1253 memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE);
7dd47667 1254 g_free(bprm->page[i]);
d97ef72e 1255 }
53a5960a 1256 stack_base += TARGET_PAGE_SIZE;
31e31b8a
FB
1257 }
1258 return p;
1259}
1260
cf129f3a
RH
1261/* Map and zero the bss. We need to explicitly zero any fractional pages
1262 after the data section (i.e. bss). */
1263static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 1264{
cf129f3a
RH
1265 uintptr_t host_start, host_map_start, host_end;
1266
1267 last_bss = TARGET_PAGE_ALIGN(last_bss);
1268
1269 /* ??? There is confusion between qemu_real_host_page_size and
1270 qemu_host_page_size here and elsewhere in target_mmap, which
1271 may lead to the end of the data section mapping from the file
1272 not being mapped. At least there was an explicit test and
1273 comment for that here, suggesting that "the file size must
1274 be known". The comment probably pre-dates the introduction
1275 of the fstat system call in target_mmap which does in fact
1276 find out the size. What isn't clear is if the workaround
1277 here is still actually needed. For now, continue with it,
1278 but merge it with the "normal" mmap that would allocate the bss. */
1279
1280 host_start = (uintptr_t) g2h(elf_bss);
1281 host_end = (uintptr_t) g2h(last_bss);
1282 host_map_start = (host_start + qemu_real_host_page_size - 1);
1283 host_map_start &= -qemu_real_host_page_size;
1284
1285 if (host_map_start < host_end) {
1286 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1287 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1288 if (p == MAP_FAILED) {
1289 perror("cannot mmap brk");
1290 exit(-1);
853d6f7a
FB
1291 }
1292
cf129f3a
RH
1293 /* Since we didn't use target_mmap, make sure to record
1294 the validity of the pages with qemu. */
1295 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot|PAGE_VALID);
1296 }
31e31b8a 1297
cf129f3a
RH
1298 if (host_start < host_map_start) {
1299 memset((void *)host_start, 0, host_map_start - host_start);
1300 }
1301}
53a5960a 1302
1af02e83
MF
1303#ifdef CONFIG_USE_FDPIC
1304static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1305{
1306 uint16_t n;
1307 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1308
1309 /* elf32_fdpic_loadseg */
1310 n = info->nsegs;
1311 while (n--) {
1312 sp -= 12;
1313 put_user_u32(loadsegs[n].addr, sp+0);
1314 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1315 put_user_u32(loadsegs[n].p_memsz, sp+8);
1316 }
1317
1318 /* elf32_fdpic_loadmap */
1319 sp -= 4;
1320 put_user_u16(0, sp+0); /* version */
1321 put_user_u16(info->nsegs, sp+2); /* nsegs */
1322
1323 info->personality = PER_LINUX_FDPIC;
1324 info->loadmap_addr = sp;
1325
1326 return sp;
1327}
1328#endif
1329
992f48a0 1330static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
1331 struct elfhdr *exec,
1332 struct image_info *info,
1333 struct image_info *interp_info)
31e31b8a 1334{
d97ef72e 1335 abi_ulong sp;
125b0f55 1336 abi_ulong sp_auxv;
d97ef72e 1337 int size;
14322bad
LA
1338 int i;
1339 abi_ulong u_rand_bytes;
1340 uint8_t k_rand_bytes[16];
d97ef72e
RH
1341 abi_ulong u_platform;
1342 const char *k_platform;
1343 const int n = sizeof(elf_addr_t);
1344
1345 sp = p;
1af02e83
MF
1346
1347#ifdef CONFIG_USE_FDPIC
1348 /* Needs to be before we load the env/argc/... */
1349 if (elf_is_fdpic(exec)) {
1350 /* Need 4 byte alignment for these structs */
1351 sp &= ~3;
1352 sp = loader_build_fdpic_loadmap(info, sp);
1353 info->other_info = interp_info;
1354 if (interp_info) {
1355 interp_info->other_info = info;
1356 sp = loader_build_fdpic_loadmap(interp_info, sp);
1357 }
1358 }
1359#endif
1360
d97ef72e
RH
1361 u_platform = 0;
1362 k_platform = ELF_PLATFORM;
1363 if (k_platform) {
1364 size_t len = strlen(k_platform) + 1;
1365 sp -= (len + n - 1) & ~(n - 1);
1366 u_platform = sp;
1367 /* FIXME - check return value of memcpy_to_target() for failure */
1368 memcpy_to_target(sp, k_platform, len);
1369 }
14322bad
LA
1370
1371 /*
1372 * Generate 16 random bytes for userspace PRNG seeding (not
1373 * cryptically secure but it's not the aim of QEMU).
1374 */
1375 srand((unsigned int) time(NULL));
1376 for (i = 0; i < 16; i++) {
1377 k_rand_bytes[i] = rand();
1378 }
1379 sp -= 16;
1380 u_rand_bytes = sp;
1381 /* FIXME - check return value of memcpy_to_target() for failure */
1382 memcpy_to_target(sp, k_rand_bytes, 16);
1383
d97ef72e
RH
1384 /*
1385 * Force 16 byte _final_ alignment here for generality.
1386 */
1387 sp = sp &~ (abi_ulong)15;
1388 size = (DLINFO_ITEMS + 1) * 2;
1389 if (k_platform)
1390 size += 2;
f5155289 1391#ifdef DLINFO_ARCH_ITEMS
d97ef72e 1392 size += DLINFO_ARCH_ITEMS * 2;
f5155289 1393#endif
d97ef72e 1394 size += envc + argc + 2;
b9329d4b 1395 size += 1; /* argc itself */
d97ef72e
RH
1396 size *= n;
1397 if (size & 15)
1398 sp -= 16 - (size & 15);
1399
1400 /* This is correct because Linux defines
1401 * elf_addr_t as Elf32_Off / Elf64_Off
1402 */
1403#define NEW_AUX_ENT(id, val) do { \
1404 sp -= n; put_user_ual(val, sp); \
1405 sp -= n; put_user_ual(id, sp); \
1406 } while(0)
1407
125b0f55 1408 sp_auxv = sp;
d97ef72e
RH
1409 NEW_AUX_ENT (AT_NULL, 0);
1410
1411 /* There must be exactly DLINFO_ITEMS entries here. */
8e62a717 1412 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
1413 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1414 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1415 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
8e62a717 1416 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 1417 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 1418 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
1419 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1420 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1421 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1422 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1423 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1424 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad
LA
1425 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1426
d97ef72e
RH
1427 if (k_platform)
1428 NEW_AUX_ENT(AT_PLATFORM, u_platform);
f5155289 1429#ifdef ARCH_DLINFO
d97ef72e
RH
1430 /*
1431 * ARCH_DLINFO must come last so platform specific code can enforce
1432 * special alignment requirements on the AUXV if necessary (eg. PPC).
1433 */
1434 ARCH_DLINFO;
f5155289
FB
1435#endif
1436#undef NEW_AUX_ENT
1437
d97ef72e 1438 info->saved_auxv = sp;
125b0f55 1439 info->auxv_len = sp_auxv - sp;
edf8e2af 1440
b9329d4b 1441 sp = loader_build_argptr(envc, argc, sp, p, 0);
d97ef72e 1442 return sp;
31e31b8a
FB
1443}
1444
806d1021 1445#ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
97cc7560 1446/* If the guest doesn't have a validation function just agree */
806d1021
MI
1447static int validate_guest_space(unsigned long guest_base,
1448 unsigned long guest_size)
97cc7560
DDAG
1449{
1450 return 1;
1451}
1452#endif
1453
dce10401
MI
1454unsigned long init_guest_space(unsigned long host_start,
1455 unsigned long host_size,
1456 unsigned long guest_start,
1457 bool fixed)
1458{
1459 unsigned long current_start, real_start;
1460 int flags;
1461
1462 assert(host_start || host_size);
1463
1464 /* If just a starting address is given, then just verify that
1465 * address. */
1466 if (host_start && !host_size) {
806d1021 1467 if (validate_guest_space(host_start, host_size) == 1) {
dce10401
MI
1468 return host_start;
1469 } else {
1470 return (unsigned long)-1;
1471 }
1472 }
1473
1474 /* Setup the initial flags and start address. */
1475 current_start = host_start & qemu_host_page_mask;
1476 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1477 if (fixed) {
1478 flags |= MAP_FIXED;
1479 }
1480
1481 /* Otherwise, a non-zero size region of memory needs to be mapped
1482 * and validated. */
1483 while (1) {
806d1021
MI
1484 unsigned long real_size = host_size;
1485
dce10401
MI
1486 /* Do not use mmap_find_vma here because that is limited to the
1487 * guest address space. We are going to make the
1488 * guest address space fit whatever we're given.
1489 */
1490 real_start = (unsigned long)
1491 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1492 if (real_start == (unsigned long)-1) {
1493 return (unsigned long)-1;
1494 }
1495
806d1021
MI
1496 /* Ensure the address is properly aligned. */
1497 if (real_start & ~qemu_host_page_mask) {
1498 munmap((void *)real_start, host_size);
1499 real_size = host_size + qemu_host_page_size;
1500 real_start = (unsigned long)
1501 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1502 if (real_start == (unsigned long)-1) {
1503 return (unsigned long)-1;
1504 }
1505 real_start = HOST_PAGE_ALIGN(real_start);
1506 }
1507
1508 /* Check to see if the address is valid. */
1509 if (!host_start || real_start == current_start) {
1510 int valid = validate_guest_space(real_start - guest_start,
1511 real_size);
1512 if (valid == 1) {
1513 break;
1514 } else if (valid == -1) {
1515 return (unsigned long)-1;
1516 }
1517 /* valid == 0, so try again. */
dce10401
MI
1518 }
1519
1520 /* That address didn't work. Unmap and try a different one.
1521 * The address the host picked because is typically right at
1522 * the top of the host address space and leaves the guest with
1523 * no usable address space. Resort to a linear search. We
1524 * already compensated for mmap_min_addr, so this should not
1525 * happen often. Probably means we got unlucky and host
1526 * address space randomization put a shared library somewhere
1527 * inconvenient.
1528 */
1529 munmap((void *)real_start, host_size);
1530 current_start += qemu_host_page_size;
1531 if (host_start == current_start) {
1532 /* Theoretically possible if host doesn't have any suitably
1533 * aligned areas. Normally the first mmap will fail.
1534 */
1535 return (unsigned long)-1;
1536 }
1537 }
1538
806d1021
MI
1539 qemu_log("Reserved 0x%lx bytes of guest address space\n", host_size);
1540
dce10401
MI
1541 return real_start;
1542}
1543
f3ed1f5d
PM
1544static void probe_guest_base(const char *image_name,
1545 abi_ulong loaddr, abi_ulong hiaddr)
1546{
1547 /* Probe for a suitable guest base address, if the user has not set
1548 * it explicitly, and set guest_base appropriately.
1549 * In case of error we will print a suitable message and exit.
1550 */
1551#if defined(CONFIG_USE_GUEST_BASE)
1552 const char *errmsg;
1553 if (!have_guest_base && !reserved_va) {
1554 unsigned long host_start, real_start, host_size;
1555
1556 /* Round addresses to page boundaries. */
1557 loaddr &= qemu_host_page_mask;
1558 hiaddr = HOST_PAGE_ALIGN(hiaddr);
1559
1560 if (loaddr < mmap_min_addr) {
1561 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1562 } else {
1563 host_start = loaddr;
1564 if (host_start != loaddr) {
1565 errmsg = "Address overflow loading ELF binary";
1566 goto exit_errmsg;
1567 }
1568 }
1569 host_size = hiaddr - loaddr;
dce10401
MI
1570
1571 /* Setup the initial guest memory space with ranges gleaned from
1572 * the ELF image that is being loaded.
1573 */
1574 real_start = init_guest_space(host_start, host_size, loaddr, false);
1575 if (real_start == (unsigned long)-1) {
1576 errmsg = "Unable to find space for application";
1577 goto exit_errmsg;
f3ed1f5d 1578 }
dce10401
MI
1579 guest_base = real_start - loaddr;
1580
f3ed1f5d
PM
1581 qemu_log("Relocating guest address space from 0x"
1582 TARGET_ABI_FMT_lx " to 0x%lx\n",
1583 loaddr, real_start);
f3ed1f5d
PM
1584 }
1585 return;
1586
f3ed1f5d
PM
1587exit_errmsg:
1588 fprintf(stderr, "%s: %s\n", image_name, errmsg);
1589 exit(-1);
1590#endif
1591}
1592
1593
8e62a717 1594/* Load an ELF image into the address space.
31e31b8a 1595
8e62a717
RH
1596 IMAGE_NAME is the filename of the image, to use in error messages.
1597 IMAGE_FD is the open file descriptor for the image.
1598
1599 BPRM_BUF is a copy of the beginning of the file; this of course
1600 contains the elf file header at offset 0. It is assumed that this
1601 buffer is sufficiently aligned to present no problems to the host
1602 in accessing data at aligned offsets within the buffer.
1603
1604 On return: INFO values will be filled in, as necessary or available. */
1605
1606static void load_elf_image(const char *image_name, int image_fd,
bf858897 1607 struct image_info *info, char **pinterp_name,
8e62a717 1608 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 1609{
8e62a717
RH
1610 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1611 struct elf_phdr *phdr;
1612 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1613 int i, retval;
1614 const char *errmsg;
5fafdf24 1615
8e62a717
RH
1616 /* First of all, some simple consistency checks */
1617 errmsg = "Invalid ELF image for this architecture";
1618 if (!elf_check_ident(ehdr)) {
1619 goto exit_errmsg;
1620 }
1621 bswap_ehdr(ehdr);
1622 if (!elf_check_ehdr(ehdr)) {
1623 goto exit_errmsg;
d97ef72e 1624 }
5fafdf24 1625
8e62a717
RH
1626 i = ehdr->e_phnum * sizeof(struct elf_phdr);
1627 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1628 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 1629 } else {
8e62a717
RH
1630 phdr = (struct elf_phdr *) alloca(i);
1631 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 1632 if (retval != i) {
8e62a717 1633 goto exit_read;
9955ffac 1634 }
d97ef72e 1635 }
8e62a717 1636 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 1637
1af02e83
MF
1638#ifdef CONFIG_USE_FDPIC
1639 info->nsegs = 0;
1640 info->pt_dynamic_addr = 0;
1641#endif
1642
682674b8
RH
1643 /* Find the maximum size of the image and allocate an appropriate
1644 amount of memory to handle that. */
1645 loaddr = -1, hiaddr = 0;
8e62a717
RH
1646 for (i = 0; i < ehdr->e_phnum; ++i) {
1647 if (phdr[i].p_type == PT_LOAD) {
1648 abi_ulong a = phdr[i].p_vaddr;
682674b8
RH
1649 if (a < loaddr) {
1650 loaddr = a;
1651 }
8e62a717 1652 a += phdr[i].p_memsz;
682674b8
RH
1653 if (a > hiaddr) {
1654 hiaddr = a;
1655 }
1af02e83
MF
1656#ifdef CONFIG_USE_FDPIC
1657 ++info->nsegs;
1658#endif
682674b8
RH
1659 }
1660 }
1661
1662 load_addr = loaddr;
8e62a717 1663 if (ehdr->e_type == ET_DYN) {
682674b8
RH
1664 /* The image indicates that it can be loaded anywhere. Find a
1665 location that can hold the memory space required. If the
1666 image is pre-linked, LOADDR will be non-zero. Since we do
1667 not supply MAP_FIXED here we'll use that address if and
1668 only if it remains available. */
1669 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
1670 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
1671 -1, 0);
1672 if (load_addr == -1) {
8e62a717 1673 goto exit_perror;
d97ef72e 1674 }
bf858897
RH
1675 } else if (pinterp_name != NULL) {
1676 /* This is the main executable. Make sure that the low
1677 address does not conflict with MMAP_MIN_ADDR or the
1678 QEMU application itself. */
f3ed1f5d 1679 probe_guest_base(image_name, loaddr, hiaddr);
d97ef72e 1680 }
682674b8 1681 load_bias = load_addr - loaddr;
d97ef72e 1682
1af02e83
MF
1683#ifdef CONFIG_USE_FDPIC
1684 {
1685 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 1686 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
1687
1688 for (i = 0; i < ehdr->e_phnum; ++i) {
1689 switch (phdr[i].p_type) {
1690 case PT_DYNAMIC:
1691 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
1692 break;
1693 case PT_LOAD:
1694 loadsegs->addr = phdr[i].p_vaddr + load_bias;
1695 loadsegs->p_vaddr = phdr[i].p_vaddr;
1696 loadsegs->p_memsz = phdr[i].p_memsz;
1697 ++loadsegs;
1698 break;
1699 }
1700 }
1701 }
1702#endif
1703
8e62a717
RH
1704 info->load_bias = load_bias;
1705 info->load_addr = load_addr;
1706 info->entry = ehdr->e_entry + load_bias;
1707 info->start_code = -1;
1708 info->end_code = 0;
1709 info->start_data = -1;
1710 info->end_data = 0;
1711 info->brk = 0;
d8fd2954 1712 info->elf_flags = ehdr->e_flags;
8e62a717
RH
1713
1714 for (i = 0; i < ehdr->e_phnum; i++) {
1715 struct elf_phdr *eppnt = phdr + i;
d97ef72e 1716 if (eppnt->p_type == PT_LOAD) {
682674b8 1717 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
d97ef72e 1718 int elf_prot = 0;
d97ef72e
RH
1719
1720 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
1721 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1722 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
d97ef72e 1723
682674b8
RH
1724 vaddr = load_bias + eppnt->p_vaddr;
1725 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
1726 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
1727
1728 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
1729 elf_prot, MAP_PRIVATE | MAP_FIXED,
8e62a717 1730 image_fd, eppnt->p_offset - vaddr_po);
09bfb054 1731 if (error == -1) {
8e62a717 1732 goto exit_perror;
09bfb054 1733 }
09bfb054 1734
682674b8
RH
1735 vaddr_ef = vaddr + eppnt->p_filesz;
1736 vaddr_em = vaddr + eppnt->p_memsz;
31e31b8a 1737
cf129f3a 1738 /* If the load segment requests extra zeros (e.g. bss), map it. */
682674b8
RH
1739 if (vaddr_ef < vaddr_em) {
1740 zero_bss(vaddr_ef, vaddr_em, elf_prot);
cf129f3a 1741 }
8e62a717
RH
1742
1743 /* Find the full program boundaries. */
1744 if (elf_prot & PROT_EXEC) {
1745 if (vaddr < info->start_code) {
1746 info->start_code = vaddr;
1747 }
1748 if (vaddr_ef > info->end_code) {
1749 info->end_code = vaddr_ef;
1750 }
1751 }
1752 if (elf_prot & PROT_WRITE) {
1753 if (vaddr < info->start_data) {
1754 info->start_data = vaddr;
1755 }
1756 if (vaddr_ef > info->end_data) {
1757 info->end_data = vaddr_ef;
1758 }
1759 if (vaddr_em > info->brk) {
1760 info->brk = vaddr_em;
1761 }
1762 }
bf858897
RH
1763 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
1764 char *interp_name;
1765
1766 if (*pinterp_name) {
1767 errmsg = "Multiple PT_INTERP entries";
1768 goto exit_errmsg;
1769 }
1770 interp_name = malloc(eppnt->p_filesz);
1771 if (!interp_name) {
1772 goto exit_perror;
1773 }
1774
1775 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
1776 memcpy(interp_name, bprm_buf + eppnt->p_offset,
1777 eppnt->p_filesz);
1778 } else {
1779 retval = pread(image_fd, interp_name, eppnt->p_filesz,
1780 eppnt->p_offset);
1781 if (retval != eppnt->p_filesz) {
1782 goto exit_perror;
1783 }
1784 }
1785 if (interp_name[eppnt->p_filesz - 1] != 0) {
1786 errmsg = "Invalid PT_INTERP entry";
1787 goto exit_errmsg;
1788 }
1789 *pinterp_name = interp_name;
d97ef72e 1790 }
682674b8 1791 }
5fafdf24 1792
8e62a717
RH
1793 if (info->end_data == 0) {
1794 info->start_data = info->end_code;
1795 info->end_data = info->end_code;
1796 info->brk = info->end_code;
1797 }
1798
682674b8 1799 if (qemu_log_enabled()) {
8e62a717 1800 load_symbols(ehdr, image_fd, load_bias);
682674b8 1801 }
31e31b8a 1802
8e62a717
RH
1803 close(image_fd);
1804 return;
1805
1806 exit_read:
1807 if (retval >= 0) {
1808 errmsg = "Incomplete read of file header";
1809 goto exit_errmsg;
1810 }
1811 exit_perror:
1812 errmsg = strerror(errno);
1813 exit_errmsg:
1814 fprintf(stderr, "%s: %s\n", image_name, errmsg);
1815 exit(-1);
1816}
1817
1818static void load_elf_interp(const char *filename, struct image_info *info,
1819 char bprm_buf[BPRM_BUF_SIZE])
1820{
1821 int fd, retval;
1822
1823 fd = open(path(filename), O_RDONLY);
1824 if (fd < 0) {
1825 goto exit_perror;
1826 }
31e31b8a 1827
8e62a717
RH
1828 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
1829 if (retval < 0) {
1830 goto exit_perror;
1831 }
1832 if (retval < BPRM_BUF_SIZE) {
1833 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
1834 }
1835
bf858897 1836 load_elf_image(filename, fd, info, NULL, bprm_buf);
8e62a717
RH
1837 return;
1838
1839 exit_perror:
1840 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
1841 exit(-1);
31e31b8a
FB
1842}
1843
49918a75
PB
1844static int symfind(const void *s0, const void *s1)
1845{
c7c530cd 1846 target_ulong addr = *(target_ulong *)s0;
49918a75
PB
1847 struct elf_sym *sym = (struct elf_sym *)s1;
1848 int result = 0;
c7c530cd 1849 if (addr < sym->st_value) {
49918a75 1850 result = -1;
c7c530cd 1851 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
1852 result = 1;
1853 }
1854 return result;
1855}
1856
1857static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
1858{
1859#if ELF_CLASS == ELFCLASS32
1860 struct elf_sym *syms = s->disas_symtab.elf32;
1861#else
1862 struct elf_sym *syms = s->disas_symtab.elf64;
1863#endif
1864
1865 // binary search
49918a75
PB
1866 struct elf_sym *sym;
1867
c7c530cd 1868 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 1869 if (sym != NULL) {
49918a75
PB
1870 return s->disas_strtab + sym->st_name;
1871 }
1872
1873 return "";
1874}
1875
1876/* FIXME: This should use elf_ops.h */
1877static int symcmp(const void *s0, const void *s1)
1878{
1879 struct elf_sym *sym0 = (struct elf_sym *)s0;
1880 struct elf_sym *sym1 = (struct elf_sym *)s1;
1881 return (sym0->st_value < sym1->st_value)
1882 ? -1
1883 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
1884}
1885
689f936f 1886/* Best attempt to load symbols from this ELF object. */
682674b8 1887static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 1888{
682674b8
RH
1889 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1890 struct elf_shdr *shdr;
b9475279
CV
1891 char *strings = NULL;
1892 struct syminfo *s = NULL;
1893 struct elf_sym *new_syms, *syms = NULL;
689f936f 1894
682674b8
RH
1895 shnum = hdr->e_shnum;
1896 i = shnum * sizeof(struct elf_shdr);
1897 shdr = (struct elf_shdr *)alloca(i);
1898 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
1899 return;
1900 }
1901
1902 bswap_shdr(shdr, shnum);
1903 for (i = 0; i < shnum; ++i) {
1904 if (shdr[i].sh_type == SHT_SYMTAB) {
1905 sym_idx = i;
1906 str_idx = shdr[i].sh_link;
49918a75
PB
1907 goto found;
1908 }
689f936f 1909 }
682674b8
RH
1910
1911 /* There will be no symbol table if the file was stripped. */
1912 return;
689f936f
FB
1913
1914 found:
682674b8 1915 /* Now know where the strtab and symtab are. Snarf them. */
e80cfcfc 1916 s = malloc(sizeof(*s));
682674b8 1917 if (!s) {
b9475279 1918 goto give_up;
682674b8 1919 }
5fafdf24 1920
682674b8
RH
1921 i = shdr[str_idx].sh_size;
1922 s->disas_strtab = strings = malloc(i);
1923 if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
b9475279 1924 goto give_up;
682674b8 1925 }
49918a75 1926
682674b8
RH
1927 i = shdr[sym_idx].sh_size;
1928 syms = malloc(i);
1929 if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
b9475279 1930 goto give_up;
682674b8 1931 }
31e31b8a 1932
682674b8
RH
1933 nsyms = i / sizeof(struct elf_sym);
1934 for (i = 0; i < nsyms; ) {
49918a75 1935 bswap_sym(syms + i);
682674b8
RH
1936 /* Throw away entries which we do not need. */
1937 if (syms[i].st_shndx == SHN_UNDEF
1938 || syms[i].st_shndx >= SHN_LORESERVE
1939 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
1940 if (i < --nsyms) {
49918a75
PB
1941 syms[i] = syms[nsyms];
1942 }
682674b8 1943 } else {
49918a75 1944#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
1945 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
1946 syms[i].st_value &= ~(target_ulong)1;
0774bed1 1947#endif
682674b8
RH
1948 syms[i].st_value += load_bias;
1949 i++;
1950 }
0774bed1 1951 }
49918a75 1952
b9475279
CV
1953 /* No "useful" symbol. */
1954 if (nsyms == 0) {
1955 goto give_up;
1956 }
1957
5d5c9930
RH
1958 /* Attempt to free the storage associated with the local symbols
1959 that we threw away. Whether or not this has any effect on the
1960 memory allocation depends on the malloc implementation and how
1961 many symbols we managed to discard. */
8d79de6e
SW
1962 new_syms = realloc(syms, nsyms * sizeof(*syms));
1963 if (new_syms == NULL) {
b9475279 1964 goto give_up;
5d5c9930 1965 }
8d79de6e 1966 syms = new_syms;
5d5c9930 1967
49918a75 1968 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 1969
49918a75
PB
1970 s->disas_num_syms = nsyms;
1971#if ELF_CLASS == ELFCLASS32
1972 s->disas_symtab.elf32 = syms;
49918a75
PB
1973#else
1974 s->disas_symtab.elf64 = syms;
49918a75 1975#endif
682674b8 1976 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
1977 s->next = syminfos;
1978 syminfos = s;
b9475279
CV
1979
1980 return;
1981
1982give_up:
1983 free(s);
1984 free(strings);
1985 free(syms);
689f936f 1986}
31e31b8a 1987
e5fe0c52
PB
1988int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
1989 struct image_info * info)
31e31b8a 1990{
8e62a717 1991 struct image_info interp_info;
31e31b8a 1992 struct elfhdr elf_ex;
8e62a717 1993 char *elf_interpreter = NULL;
31e31b8a 1994
bf858897
RH
1995 info->start_mmap = (abi_ulong)ELF_START_MMAP;
1996 info->mmap = 0;
1997 info->rss = 0;
1998
1999 load_elf_image(bprm->filename, bprm->fd, info,
2000 &elf_interpreter, bprm->buf);
31e31b8a 2001
bf858897
RH
2002 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2003 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2004 when we load the interpreter. */
2005 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 2006
e5fe0c52
PB
2007 bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p);
2008 bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p);
2009 bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p);
2010 if (!bprm->p) {
bf858897
RH
2011 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2012 exit(-1);
379f6698 2013 }
379f6698 2014
31e31b8a
FB
2015 /* Do this so that we can load the interpreter, if need be. We will
2016 change some of these later */
31e31b8a 2017 bprm->p = setup_arg_pages(bprm->p, bprm, info);
31e31b8a 2018
8e62a717
RH
2019 if (elf_interpreter) {
2020 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 2021
8e62a717
RH
2022 /* If the program interpreter is one of these two, then assume
2023 an iBCS2 image. Otherwise assume a native linux image. */
2024
2025 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2026 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2027 info->personality = PER_SVR4;
31e31b8a 2028
8e62a717
RH
2029 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2030 and some applications "depend" upon this behavior. Since
2031 we do not have the power to recompile these, we emulate
2032 the SVr4 behavior. Sigh. */
2033 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2034 MAP_FIXED | MAP_PRIVATE, -1, 0);
2035 }
31e31b8a
FB
2036 }
2037
8e62a717
RH
2038 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2039 info, (elf_interpreter ? &interp_info : NULL));
2040 info->start_stack = bprm->p;
2041
2042 /* If we have an interpreter, set that as the program's entry point.
8e78064e 2043 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
2044 point as a function descriptor. Do this after creating elf tables
2045 so that we copy the original program entry point into the AUXV. */
2046 if (elf_interpreter) {
8e78064e 2047 info->load_bias = interp_info.load_bias;
8e62a717 2048 info->entry = interp_info.entry;
bf858897 2049 free(elf_interpreter);
8e62a717 2050 }
31e31b8a 2051
edf8e2af
MW
2052#ifdef USE_ELF_CORE_DUMP
2053 bprm->core_dump = &elf_core_dump;
2054#endif
2055
31e31b8a
FB
2056 return 0;
2057}
2058
edf8e2af 2059#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
2060/*
2061 * Definitions to generate Intel SVR4-like core files.
a2547a13 2062 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
2063 * tacked on the front to prevent clashes with linux definitions,
2064 * and the typedef forms have been avoided. This is mostly like
2065 * the SVR4 structure, but more Linuxy, with things that Linux does
2066 * not support and which gdb doesn't really use excluded.
2067 *
2068 * Fields we don't dump (their contents is zero) in linux-user qemu
2069 * are marked with XXX.
2070 *
2071 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2072 *
2073 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 2074 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
2075 * the target resides):
2076 *
2077 * #define USE_ELF_CORE_DUMP
2078 *
2079 * Next you define type of register set used for dumping. ELF specification
2080 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2081 *
c227f099 2082 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 2083 * #define ELF_NREG <number of registers>
c227f099 2084 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 2085 *
edf8e2af
MW
2086 * Last step is to implement target specific function that copies registers
2087 * from given cpu into just specified register set. Prototype is:
2088 *
c227f099 2089 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 2090 * const CPUArchState *env);
edf8e2af
MW
2091 *
2092 * Parameters:
2093 * regs - copy register values into here (allocated and zeroed by caller)
2094 * env - copy registers from here
2095 *
2096 * Example for ARM target is provided in this file.
2097 */
2098
2099/* An ELF note in memory */
2100struct memelfnote {
2101 const char *name;
2102 size_t namesz;
2103 size_t namesz_rounded;
2104 int type;
2105 size_t datasz;
80f5ce75 2106 size_t datasz_rounded;
edf8e2af
MW
2107 void *data;
2108 size_t notesz;
2109};
2110
a2547a13 2111struct target_elf_siginfo {
f8fd4fc4
PB
2112 abi_int si_signo; /* signal number */
2113 abi_int si_code; /* extra code */
2114 abi_int si_errno; /* errno */
edf8e2af
MW
2115};
2116
a2547a13
LD
2117struct target_elf_prstatus {
2118 struct target_elf_siginfo pr_info; /* Info associated with signal */
1ddd592f 2119 abi_short pr_cursig; /* Current signal */
ca98ac83
PB
2120 abi_ulong pr_sigpend; /* XXX */
2121 abi_ulong pr_sighold; /* XXX */
c227f099
AL
2122 target_pid_t pr_pid;
2123 target_pid_t pr_ppid;
2124 target_pid_t pr_pgrp;
2125 target_pid_t pr_sid;
edf8e2af
MW
2126 struct target_timeval pr_utime; /* XXX User time */
2127 struct target_timeval pr_stime; /* XXX System time */
2128 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2129 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 2130 target_elf_gregset_t pr_reg; /* GP registers */
f8fd4fc4 2131 abi_int pr_fpvalid; /* XXX */
edf8e2af
MW
2132};
2133
2134#define ELF_PRARGSZ (80) /* Number of chars for args */
2135
a2547a13 2136struct target_elf_prpsinfo {
edf8e2af
MW
2137 char pr_state; /* numeric process state */
2138 char pr_sname; /* char for pr_state */
2139 char pr_zomb; /* zombie */
2140 char pr_nice; /* nice val */
ca98ac83 2141 abi_ulong pr_flag; /* flags */
c227f099
AL
2142 target_uid_t pr_uid;
2143 target_gid_t pr_gid;
2144 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af
MW
2145 /* Lots missing */
2146 char pr_fname[16]; /* filename of executable */
2147 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2148};
2149
2150/* Here is the structure in which status of each thread is captured. */
2151struct elf_thread_status {
72cf2d4f 2152 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 2153 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
2154#if 0
2155 elf_fpregset_t fpu; /* NT_PRFPREG */
2156 struct task_struct *thread;
2157 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2158#endif
2159 struct memelfnote notes[1];
2160 int num_notes;
2161};
2162
2163struct elf_note_info {
2164 struct memelfnote *notes;
a2547a13
LD
2165 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2166 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 2167
72cf2d4f 2168 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
edf8e2af
MW
2169#if 0
2170 /*
2171 * Current version of ELF coredump doesn't support
2172 * dumping fp regs etc.
2173 */
2174 elf_fpregset_t *fpu;
2175 elf_fpxregset_t *xfpu;
2176 int thread_status_size;
2177#endif
2178 int notes_size;
2179 int numnote;
2180};
2181
2182struct vm_area_struct {
2183 abi_ulong vma_start; /* start vaddr of memory region */
2184 abi_ulong vma_end; /* end vaddr of memory region */
2185 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 2186 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
2187};
2188
2189struct mm_struct {
72cf2d4f 2190 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
2191 int mm_count; /* number of mappings */
2192};
2193
2194static struct mm_struct *vma_init(void);
2195static void vma_delete(struct mm_struct *);
2196static int vma_add_mapping(struct mm_struct *, abi_ulong,
d97ef72e 2197 abi_ulong, abi_ulong);
edf8e2af
MW
2198static int vma_get_mapping_count(const struct mm_struct *);
2199static struct vm_area_struct *vma_first(const struct mm_struct *);
2200static struct vm_area_struct *vma_next(struct vm_area_struct *);
2201static abi_ulong vma_dump_size(const struct vm_area_struct *);
b480d9b7 2202static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
d97ef72e 2203 unsigned long flags);
edf8e2af
MW
2204
2205static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2206static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 2207 unsigned int, void *);
a2547a13
LD
2208static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2209static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
2210static void fill_auxv_note(struct memelfnote *, const TaskState *);
2211static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2212static size_t note_size(const struct memelfnote *);
2213static void free_note_info(struct elf_note_info *);
9349b4f9
AF
2214static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2215static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
2216static int core_dump_filename(const TaskState *, char *, size_t);
2217
2218static int dump_write(int, const void *, size_t);
2219static int write_note(struct memelfnote *, int);
2220static int write_note_info(struct elf_note_info *, int);
2221
2222#ifdef BSWAP_NEEDED
a2547a13 2223static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af 2224{
ca98ac83
PB
2225 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2226 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2227 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
edf8e2af 2228 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
ca98ac83
PB
2229 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2230 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
edf8e2af
MW
2231 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2232 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2233 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2234 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2235 /* cpu times are not filled, so we skip them */
2236 /* regs should be in correct format already */
2237 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2238}
2239
a2547a13 2240static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af 2241{
ca98ac83 2242 psinfo->pr_flag = tswapal(psinfo->pr_flag);
edf8e2af
MW
2243 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2244 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2245 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2246 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2247 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2248 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2249}
991f8f0c
RH
2250
2251static void bswap_note(struct elf_note *en)
2252{
2253 bswap32s(&en->n_namesz);
2254 bswap32s(&en->n_descsz);
2255 bswap32s(&en->n_type);
2256}
2257#else
2258static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2259static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2260static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
2261#endif /* BSWAP_NEEDED */
2262
2263/*
2264 * Minimal support for linux memory regions. These are needed
2265 * when we are finding out what memory exactly belongs to
2266 * emulated process. No locks needed here, as long as
2267 * thread that received the signal is stopped.
2268 */
2269
2270static struct mm_struct *vma_init(void)
2271{
2272 struct mm_struct *mm;
2273
7267c094 2274 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
2275 return (NULL);
2276
2277 mm->mm_count = 0;
72cf2d4f 2278 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
2279
2280 return (mm);
2281}
2282
2283static void vma_delete(struct mm_struct *mm)
2284{
2285 struct vm_area_struct *vma;
2286
2287 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 2288 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 2289 g_free(vma);
edf8e2af 2290 }
7267c094 2291 g_free(mm);
edf8e2af
MW
2292}
2293
2294static int vma_add_mapping(struct mm_struct *mm, abi_ulong start,
d97ef72e 2295 abi_ulong end, abi_ulong flags)
edf8e2af
MW
2296{
2297 struct vm_area_struct *vma;
2298
7267c094 2299 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
2300 return (-1);
2301
2302 vma->vma_start = start;
2303 vma->vma_end = end;
2304 vma->vma_flags = flags;
2305
72cf2d4f 2306 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
2307 mm->mm_count++;
2308
2309 return (0);
2310}
2311
2312static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2313{
72cf2d4f 2314 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
2315}
2316
2317static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2318{
72cf2d4f 2319 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
2320}
2321
2322static int vma_get_mapping_count(const struct mm_struct *mm)
2323{
2324 return (mm->mm_count);
2325}
2326
2327/*
2328 * Calculate file (dump) size of given memory region.
2329 */
2330static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2331{
2332 /* if we cannot even read the first page, skip it */
2333 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2334 return (0);
2335
2336 /*
2337 * Usually we don't dump executable pages as they contain
2338 * non-writable code that debugger can read directly from
2339 * target library etc. However, thread stacks are marked
2340 * also executable so we read in first page of given region
2341 * and check whether it contains elf header. If there is
2342 * no elf header, we dump it.
2343 */
2344 if (vma->vma_flags & PROT_EXEC) {
2345 char page[TARGET_PAGE_SIZE];
2346
2347 copy_from_user(page, vma->vma_start, sizeof (page));
2348 if ((page[EI_MAG0] == ELFMAG0) &&
2349 (page[EI_MAG1] == ELFMAG1) &&
2350 (page[EI_MAG2] == ELFMAG2) &&
2351 (page[EI_MAG3] == ELFMAG3)) {
2352 /*
2353 * Mappings are possibly from ELF binary. Don't dump
2354 * them.
2355 */
2356 return (0);
2357 }
2358 }
2359
2360 return (vma->vma_end - vma->vma_start);
2361}
2362
b480d9b7 2363static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
d97ef72e 2364 unsigned long flags)
edf8e2af
MW
2365{
2366 struct mm_struct *mm = (struct mm_struct *)priv;
2367
edf8e2af
MW
2368 vma_add_mapping(mm, start, end, flags);
2369 return (0);
2370}
2371
2372static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 2373 unsigned int sz, void *data)
edf8e2af
MW
2374{
2375 unsigned int namesz;
2376
2377 namesz = strlen(name) + 1;
2378 note->name = name;
2379 note->namesz = namesz;
2380 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2381 note->type = type;
80f5ce75
LV
2382 note->datasz = sz;
2383 note->datasz_rounded = roundup(sz, sizeof (int32_t));
2384
edf8e2af
MW
2385 note->data = data;
2386
2387 /*
2388 * We calculate rounded up note size here as specified by
2389 * ELF document.
2390 */
2391 note->notesz = sizeof (struct elf_note) +
80f5ce75 2392 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
2393}
2394
2395static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 2396 uint32_t flags)
edf8e2af
MW
2397{
2398 (void) memset(elf, 0, sizeof(*elf));
2399
2400 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2401 elf->e_ident[EI_CLASS] = ELF_CLASS;
2402 elf->e_ident[EI_DATA] = ELF_DATA;
2403 elf->e_ident[EI_VERSION] = EV_CURRENT;
2404 elf->e_ident[EI_OSABI] = ELF_OSABI;
2405
2406 elf->e_type = ET_CORE;
2407 elf->e_machine = machine;
2408 elf->e_version = EV_CURRENT;
2409 elf->e_phoff = sizeof(struct elfhdr);
2410 elf->e_flags = flags;
2411 elf->e_ehsize = sizeof(struct elfhdr);
2412 elf->e_phentsize = sizeof(struct elf_phdr);
2413 elf->e_phnum = segs;
2414
edf8e2af 2415 bswap_ehdr(elf);
edf8e2af
MW
2416}
2417
2418static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2419{
2420 phdr->p_type = PT_NOTE;
2421 phdr->p_offset = offset;
2422 phdr->p_vaddr = 0;
2423 phdr->p_paddr = 0;
2424 phdr->p_filesz = sz;
2425 phdr->p_memsz = 0;
2426 phdr->p_flags = 0;
2427 phdr->p_align = 0;
2428
991f8f0c 2429 bswap_phdr(phdr, 1);
edf8e2af
MW
2430}
2431
2432static size_t note_size(const struct memelfnote *note)
2433{
2434 return (note->notesz);
2435}
2436
a2547a13 2437static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 2438 const TaskState *ts, int signr)
edf8e2af
MW
2439{
2440 (void) memset(prstatus, 0, sizeof (*prstatus));
2441 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2442 prstatus->pr_pid = ts->ts_tid;
2443 prstatus->pr_ppid = getppid();
2444 prstatus->pr_pgrp = getpgrp();
2445 prstatus->pr_sid = getsid(0);
2446
edf8e2af 2447 bswap_prstatus(prstatus);
edf8e2af
MW
2448}
2449
a2547a13 2450static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af 2451{
900cfbca 2452 char *base_filename;
edf8e2af
MW
2453 unsigned int i, len;
2454
2455 (void) memset(psinfo, 0, sizeof (*psinfo));
2456
2457 len = ts->info->arg_end - ts->info->arg_start;
2458 if (len >= ELF_PRARGSZ)
2459 len = ELF_PRARGSZ - 1;
2460 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2461 return -EFAULT;
2462 for (i = 0; i < len; i++)
2463 if (psinfo->pr_psargs[i] == 0)
2464 psinfo->pr_psargs[i] = ' ';
2465 psinfo->pr_psargs[len] = 0;
2466
2467 psinfo->pr_pid = getpid();
2468 psinfo->pr_ppid = getppid();
2469 psinfo->pr_pgrp = getpgrp();
2470 psinfo->pr_sid = getsid(0);
2471 psinfo->pr_uid = getuid();
2472 psinfo->pr_gid = getgid();
2473
900cfbca
JM
2474 base_filename = g_path_get_basename(ts->bprm->filename);
2475 /*
2476 * Using strncpy here is fine: at max-length,
2477 * this field is not NUL-terminated.
2478 */
edf8e2af 2479 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 2480 sizeof(psinfo->pr_fname));
edf8e2af 2481
900cfbca 2482 g_free(base_filename);
edf8e2af 2483 bswap_psinfo(psinfo);
edf8e2af
MW
2484 return (0);
2485}
2486
2487static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2488{
2489 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2490 elf_addr_t orig_auxv = auxv;
edf8e2af 2491 void *ptr;
125b0f55 2492 int len = ts->info->auxv_len;
edf8e2af
MW
2493
2494 /*
2495 * Auxiliary vector is stored in target process stack. It contains
2496 * {type, value} pairs that we need to dump into note. This is not
2497 * strictly necessary but we do it here for sake of completeness.
2498 */
2499
edf8e2af
MW
2500 /* read in whole auxv vector and copy it to memelfnote */
2501 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2502 if (ptr != NULL) {
2503 fill_note(note, "CORE", NT_AUXV, len, ptr);
2504 unlock_user(ptr, auxv, len);
2505 }
2506}
2507
2508/*
2509 * Constructs name of coredump file. We have following convention
2510 * for the name:
2511 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2512 *
2513 * Returns 0 in case of success, -1 otherwise (errno is set).
2514 */
2515static int core_dump_filename(const TaskState *ts, char *buf,
d97ef72e 2516 size_t bufsize)
edf8e2af
MW
2517{
2518 char timestamp[64];
2519 char *filename = NULL;
2520 char *base_filename = NULL;
2521 struct timeval tv;
2522 struct tm tm;
2523
2524 assert(bufsize >= PATH_MAX);
2525
2526 if (gettimeofday(&tv, NULL) < 0) {
2527 (void) fprintf(stderr, "unable to get current timestamp: %s",
d97ef72e 2528 strerror(errno));
edf8e2af
MW
2529 return (-1);
2530 }
2531
2532 filename = strdup(ts->bprm->filename);
2533 base_filename = strdup(basename(filename));
2534 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
d97ef72e 2535 localtime_r(&tv.tv_sec, &tm));
edf8e2af 2536 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
d97ef72e 2537 base_filename, timestamp, (int)getpid());
edf8e2af
MW
2538 free(base_filename);
2539 free(filename);
2540
2541 return (0);
2542}
2543
2544static int dump_write(int fd, const void *ptr, size_t size)
2545{
2546 const char *bufp = (const char *)ptr;
2547 ssize_t bytes_written, bytes_left;
2548 struct rlimit dumpsize;
2549 off_t pos;
2550
2551 bytes_written = 0;
2552 getrlimit(RLIMIT_CORE, &dumpsize);
2553 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2554 if (errno == ESPIPE) { /* not a seekable stream */
2555 bytes_left = size;
2556 } else {
2557 return pos;
2558 }
2559 } else {
2560 if (dumpsize.rlim_cur <= pos) {
2561 return -1;
2562 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2563 bytes_left = size;
2564 } else {
2565 size_t limit_left=dumpsize.rlim_cur - pos;
2566 bytes_left = limit_left >= size ? size : limit_left ;
2567 }
2568 }
2569
2570 /*
2571 * In normal conditions, single write(2) should do but
2572 * in case of socket etc. this mechanism is more portable.
2573 */
2574 do {
2575 bytes_written = write(fd, bufp, bytes_left);
2576 if (bytes_written < 0) {
2577 if (errno == EINTR)
2578 continue;
2579 return (-1);
2580 } else if (bytes_written == 0) { /* eof */
2581 return (-1);
2582 }
2583 bufp += bytes_written;
2584 bytes_left -= bytes_written;
2585 } while (bytes_left > 0);
2586
2587 return (0);
2588}
2589
2590static int write_note(struct memelfnote *men, int fd)
2591{
2592 struct elf_note en;
2593
2594 en.n_namesz = men->namesz;
2595 en.n_type = men->type;
2596 en.n_descsz = men->datasz;
2597
edf8e2af 2598 bswap_note(&en);
edf8e2af
MW
2599
2600 if (dump_write(fd, &en, sizeof(en)) != 0)
2601 return (-1);
2602 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2603 return (-1);
80f5ce75 2604 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
2605 return (-1);
2606
2607 return (0);
2608}
2609
9349b4f9 2610static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af
MW
2611{
2612 TaskState *ts = (TaskState *)env->opaque;
2613 struct elf_thread_status *ets;
2614
7267c094 2615 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
2616 ets->num_notes = 1; /* only prstatus is dumped */
2617 fill_prstatus(&ets->prstatus, ts, 0);
2618 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2619 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 2620 &ets->prstatus);
edf8e2af 2621
72cf2d4f 2622 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
2623
2624 info->notes_size += note_size(&ets->notes[0]);
2625}
2626
2627static int fill_note_info(struct elf_note_info *info,
9349b4f9 2628 long signr, const CPUArchState *env)
edf8e2af
MW
2629{
2630#define NUMNOTES 3
9349b4f9 2631 CPUArchState *cpu = NULL;
edf8e2af
MW
2632 TaskState *ts = (TaskState *)env->opaque;
2633 int i;
2634
2635 (void) memset(info, 0, sizeof (*info));
2636
72cf2d4f 2637 QTAILQ_INIT(&info->thread_list);
edf8e2af 2638
7267c094 2639 info->notes = g_malloc0(NUMNOTES * sizeof (struct memelfnote));
edf8e2af
MW
2640 if (info->notes == NULL)
2641 return (-ENOMEM);
7267c094 2642 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
2643 if (info->prstatus == NULL)
2644 return (-ENOMEM);
7267c094 2645 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
2646 if (info->prstatus == NULL)
2647 return (-ENOMEM);
2648
2649 /*
2650 * First fill in status (and registers) of current thread
2651 * including process info & aux vector.
2652 */
2653 fill_prstatus(info->prstatus, ts, signr);
2654 elf_core_copy_regs(&info->prstatus->pr_reg, env);
2655 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 2656 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
2657 fill_psinfo(info->psinfo, ts);
2658 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 2659 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
2660 fill_auxv_note(&info->notes[2], ts);
2661 info->numnote = 3;
2662
2663 info->notes_size = 0;
2664 for (i = 0; i < info->numnote; i++)
2665 info->notes_size += note_size(&info->notes[i]);
2666
2667 /* read and fill status of all threads */
2668 cpu_list_lock();
2669 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
2670 if (cpu == thread_env)
2671 continue;
2672 fill_thread_info(info, cpu);
2673 }
2674 cpu_list_unlock();
2675
2676 return (0);
2677}
2678
2679static void free_note_info(struct elf_note_info *info)
2680{
2681 struct elf_thread_status *ets;
2682
72cf2d4f
BS
2683 while (!QTAILQ_EMPTY(&info->thread_list)) {
2684 ets = QTAILQ_FIRST(&info->thread_list);
2685 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 2686 g_free(ets);
edf8e2af
MW
2687 }
2688
7267c094
AL
2689 g_free(info->prstatus);
2690 g_free(info->psinfo);
2691 g_free(info->notes);
edf8e2af
MW
2692}
2693
2694static int write_note_info(struct elf_note_info *info, int fd)
2695{
2696 struct elf_thread_status *ets;
2697 int i, error = 0;
2698
2699 /* write prstatus, psinfo and auxv for current thread */
2700 for (i = 0; i < info->numnote; i++)
2701 if ((error = write_note(&info->notes[i], fd)) != 0)
2702 return (error);
2703
2704 /* write prstatus for each thread */
2705 for (ets = info->thread_list.tqh_first; ets != NULL;
d97ef72e 2706 ets = ets->ets_link.tqe_next) {
edf8e2af
MW
2707 if ((error = write_note(&ets->notes[0], fd)) != 0)
2708 return (error);
2709 }
2710
2711 return (0);
2712}
2713
2714/*
2715 * Write out ELF coredump.
2716 *
2717 * See documentation of ELF object file format in:
2718 * http://www.caldera.com/developers/devspecs/gabi41.pdf
2719 *
2720 * Coredump format in linux is following:
2721 *
2722 * 0 +----------------------+ \
2723 * | ELF header | ET_CORE |
2724 * +----------------------+ |
2725 * | ELF program headers | |--- headers
2726 * | - NOTE section | |
2727 * | - PT_LOAD sections | |
2728 * +----------------------+ /
2729 * | NOTEs: |
2730 * | - NT_PRSTATUS |
2731 * | - NT_PRSINFO |
2732 * | - NT_AUXV |
2733 * +----------------------+ <-- aligned to target page
2734 * | Process memory dump |
2735 * : :
2736 * . .
2737 * : :
2738 * | |
2739 * +----------------------+
2740 *
2741 * NT_PRSTATUS -> struct elf_prstatus (per thread)
2742 * NT_PRSINFO -> struct elf_prpsinfo
2743 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2744 *
2745 * Format follows System V format as close as possible. Current
2746 * version limitations are as follows:
2747 * - no floating point registers are dumped
2748 *
2749 * Function returns 0 in case of success, negative errno otherwise.
2750 *
2751 * TODO: make this work also during runtime: it should be
2752 * possible to force coredump from running process and then
2753 * continue processing. For example qemu could set up SIGUSR2
2754 * handler (provided that target process haven't registered
2755 * handler for that) that does the dump when signal is received.
2756 */
9349b4f9 2757static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af
MW
2758{
2759 const TaskState *ts = (const TaskState *)env->opaque;
2760 struct vm_area_struct *vma = NULL;
2761 char corefile[PATH_MAX];
2762 struct elf_note_info info;
2763 struct elfhdr elf;
2764 struct elf_phdr phdr;
2765 struct rlimit dumpsize;
2766 struct mm_struct *mm = NULL;
2767 off_t offset = 0, data_offset = 0;
2768 int segs = 0;
2769 int fd = -1;
2770
2771 errno = 0;
2772 getrlimit(RLIMIT_CORE, &dumpsize);
2773 if (dumpsize.rlim_cur == 0)
d97ef72e 2774 return 0;
edf8e2af
MW
2775
2776 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
2777 return (-errno);
2778
2779 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 2780 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
2781 return (-errno);
2782
2783 /*
2784 * Walk through target process memory mappings and
2785 * set up structure containing this information. After
2786 * this point vma_xxx functions can be used.
2787 */
2788 if ((mm = vma_init()) == NULL)
2789 goto out;
2790
2791 walk_memory_regions(mm, vma_walker);
2792 segs = vma_get_mapping_count(mm);
2793
2794 /*
2795 * Construct valid coredump ELF header. We also
2796 * add one more segment for notes.
2797 */
2798 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
2799 if (dump_write(fd, &elf, sizeof (elf)) != 0)
2800 goto out;
2801
2802 /* fill in in-memory version of notes */
2803 if (fill_note_info(&info, signr, env) < 0)
2804 goto out;
2805
2806 offset += sizeof (elf); /* elf header */
2807 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
2808
2809 /* write out notes program header */
2810 fill_elf_note_phdr(&phdr, info.notes_size, offset);
2811
2812 offset += info.notes_size;
2813 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
2814 goto out;
2815
2816 /*
2817 * ELF specification wants data to start at page boundary so
2818 * we align it here.
2819 */
80f5ce75 2820 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
2821
2822 /*
2823 * Write program headers for memory regions mapped in
2824 * the target process.
2825 */
2826 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2827 (void) memset(&phdr, 0, sizeof (phdr));
2828
2829 phdr.p_type = PT_LOAD;
2830 phdr.p_offset = offset;
2831 phdr.p_vaddr = vma->vma_start;
2832 phdr.p_paddr = 0;
2833 phdr.p_filesz = vma_dump_size(vma);
2834 offset += phdr.p_filesz;
2835 phdr.p_memsz = vma->vma_end - vma->vma_start;
2836 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
2837 if (vma->vma_flags & PROT_WRITE)
2838 phdr.p_flags |= PF_W;
2839 if (vma->vma_flags & PROT_EXEC)
2840 phdr.p_flags |= PF_X;
2841 phdr.p_align = ELF_EXEC_PAGESIZE;
2842
80f5ce75 2843 bswap_phdr(&phdr, 1);
edf8e2af
MW
2844 dump_write(fd, &phdr, sizeof (phdr));
2845 }
2846
2847 /*
2848 * Next we write notes just after program headers. No
2849 * alignment needed here.
2850 */
2851 if (write_note_info(&info, fd) < 0)
2852 goto out;
2853
2854 /* align data to page boundary */
edf8e2af
MW
2855 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
2856 goto out;
2857
2858 /*
2859 * Finally we can dump process memory into corefile as well.
2860 */
2861 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2862 abi_ulong addr;
2863 abi_ulong end;
2864
2865 end = vma->vma_start + vma_dump_size(vma);
2866
2867 for (addr = vma->vma_start; addr < end;
d97ef72e 2868 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
2869 char page[TARGET_PAGE_SIZE];
2870 int error;
2871
2872 /*
2873 * Read in page from target process memory and
2874 * write it to coredump file.
2875 */
2876 error = copy_from_user(page, addr, sizeof (page));
2877 if (error != 0) {
49995e17 2878 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 2879 addr);
edf8e2af
MW
2880 errno = -error;
2881 goto out;
2882 }
2883 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
2884 goto out;
2885 }
2886 }
2887
d97ef72e 2888 out:
edf8e2af
MW
2889 free_note_info(&info);
2890 if (mm != NULL)
2891 vma_delete(mm);
2892 (void) close(fd);
2893
2894 if (errno != 0)
2895 return (-errno);
2896 return (0);
2897}
edf8e2af
MW
2898#endif /* USE_ELF_CORE_DUMP */
2899
e5fe0c52
PB
2900void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
2901{
2902 init_thread(regs, infop);
2903}