]> git.proxmox.com Git - qemu.git/blame - linux-user/elfload.c
target-or32: Add instruction translation
[qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
edf8e2af
MW
2#include <sys/time.h>
3#include <sys/param.h>
31e31b8a
FB
4
5#include <stdio.h>
6#include <sys/types.h>
7#include <fcntl.h>
31e31b8a
FB
8#include <errno.h>
9#include <unistd.h>
10#include <sys/mman.h>
edf8e2af 11#include <sys/resource.h>
31e31b8a
FB
12#include <stdlib.h>
13#include <string.h>
edf8e2af 14#include <time.h>
31e31b8a 15
3ef693a0 16#include "qemu.h"
689f936f 17#include "disas.h"
31e31b8a 18
e58ffeb3 19#ifdef _ARCH_PPC64
a6cc84f4 20#undef ARCH_DLINFO
21#undef ELF_PLATFORM
22#undef ELF_HWCAP
23#undef ELF_CLASS
24#undef ELF_DATA
25#undef ELF_ARCH
26#endif
27
edf8e2af
MW
28#define ELF_OSABI ELFOSABI_SYSV
29
cb33da57
BS
30/* from personality.h */
31
32/*
33 * Flags for bug emulation.
34 *
35 * These occupy the top three bytes.
36 */
37enum {
d97ef72e
RH
38 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
39 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
40 descriptors (signal handling) */
41 MMAP_PAGE_ZERO = 0x0100000,
42 ADDR_COMPAT_LAYOUT = 0x0200000,
43 READ_IMPLIES_EXEC = 0x0400000,
44 ADDR_LIMIT_32BIT = 0x0800000,
45 SHORT_INODE = 0x1000000,
46 WHOLE_SECONDS = 0x2000000,
47 STICKY_TIMEOUTS = 0x4000000,
48 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
49};
50
51/*
52 * Personality types.
53 *
54 * These go in the low byte. Avoid using the top bit, it will
55 * conflict with error returns.
56 */
57enum {
d97ef72e
RH
58 PER_LINUX = 0x0000,
59 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
60 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
61 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
62 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
64 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
65 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
66 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
67 PER_BSD = 0x0006,
68 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
69 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
70 PER_LINUX32 = 0x0008,
71 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
72 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
73 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
74 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
75 PER_RISCOS = 0x000c,
76 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
77 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
78 PER_OSF4 = 0x000f, /* OSF/1 v4 */
79 PER_HPUX = 0x0010,
80 PER_MASK = 0x00ff,
cb33da57
BS
81};
82
83/*
84 * Return the base personality without flags.
85 */
d97ef72e 86#define personality(pers) (pers & PER_MASK)
cb33da57 87
83fb7adf
FB
88/* this flag is uneffective under linux too, should be deleted */
89#ifndef MAP_DENYWRITE
90#define MAP_DENYWRITE 0
91#endif
92
93/* should probably go in elf.h */
94#ifndef ELIBBAD
95#define ELIBBAD 80
96#endif
97
28490231
RH
98#ifdef TARGET_WORDS_BIGENDIAN
99#define ELF_DATA ELFDATA2MSB
100#else
101#define ELF_DATA ELFDATA2LSB
102#endif
103
d97ef72e 104typedef target_ulong target_elf_greg_t;
21e807fa 105#ifdef USE_UID16
80f5ce75
LV
106typedef target_ushort target_uid_t;
107typedef target_ushort target_gid_t;
21e807fa 108#else
80f5ce75
LV
109typedef target_uint target_uid_t;
110typedef target_uint target_gid_t;
21e807fa 111#endif
80f5ce75 112typedef target_int target_pid_t;
21e807fa 113
30ac07d4
FB
114#ifdef TARGET_I386
115
15338fd7
FB
116#define ELF_PLATFORM get_elf_platform()
117
118static const char *get_elf_platform(void)
119{
120 static char elf_platform[] = "i386";
d5975363 121 int family = (thread_env->cpuid_version >> 8) & 0xff;
15338fd7
FB
122 if (family > 6)
123 family = 6;
124 if (family >= 3)
125 elf_platform[1] = '0' + family;
126 return elf_platform;
127}
128
129#define ELF_HWCAP get_elf_hwcap()
130
131static uint32_t get_elf_hwcap(void)
132{
d97ef72e 133 return thread_env->cpuid_features;
15338fd7
FB
134}
135
84409ddb
JM
136#ifdef TARGET_X86_64
137#define ELF_START_MMAP 0x2aaaaab000ULL
138#define elf_check_arch(x) ( ((x) == ELF_ARCH) )
139
140#define ELF_CLASS ELFCLASS64
84409ddb
JM
141#define ELF_ARCH EM_X86_64
142
143static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
144{
145 regs->rax = 0;
146 regs->rsp = infop->start_stack;
147 regs->rip = infop->entry;
148}
149
9edc5d79 150#define ELF_NREG 27
c227f099 151typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
152
153/*
154 * Note that ELF_NREG should be 29 as there should be place for
155 * TRAPNO and ERR "registers" as well but linux doesn't dump
156 * those.
157 *
158 * See linux kernel: arch/x86/include/asm/elf.h
159 */
05390248 160static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
161{
162 (*regs)[0] = env->regs[15];
163 (*regs)[1] = env->regs[14];
164 (*regs)[2] = env->regs[13];
165 (*regs)[3] = env->regs[12];
166 (*regs)[4] = env->regs[R_EBP];
167 (*regs)[5] = env->regs[R_EBX];
168 (*regs)[6] = env->regs[11];
169 (*regs)[7] = env->regs[10];
170 (*regs)[8] = env->regs[9];
171 (*regs)[9] = env->regs[8];
172 (*regs)[10] = env->regs[R_EAX];
173 (*regs)[11] = env->regs[R_ECX];
174 (*regs)[12] = env->regs[R_EDX];
175 (*regs)[13] = env->regs[R_ESI];
176 (*regs)[14] = env->regs[R_EDI];
177 (*regs)[15] = env->regs[R_EAX]; /* XXX */
178 (*regs)[16] = env->eip;
179 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
180 (*regs)[18] = env->eflags;
181 (*regs)[19] = env->regs[R_ESP];
182 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
183 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
184 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
185 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
186 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
187 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
188 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
189}
190
84409ddb
JM
191#else
192
30ac07d4
FB
193#define ELF_START_MMAP 0x80000000
194
30ac07d4
FB
195/*
196 * This is used to ensure we don't load something for the wrong architecture.
197 */
198#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
199
200/*
201 * These are used to set parameters in the core dumps.
202 */
d97ef72e 203#define ELF_CLASS ELFCLASS32
d97ef72e 204#define ELF_ARCH EM_386
30ac07d4 205
d97ef72e
RH
206static inline void init_thread(struct target_pt_regs *regs,
207 struct image_info *infop)
b346ff46
FB
208{
209 regs->esp = infop->start_stack;
210 regs->eip = infop->entry;
e5fe0c52
PB
211
212 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
213 starts %edx contains a pointer to a function which might be
214 registered using `atexit'. This provides a mean for the
215 dynamic linker to call DT_FINI functions for shared libraries
216 that have been loaded before the code runs.
217
218 A value of 0 tells we have no such handler. */
219 regs->edx = 0;
b346ff46 220}
9edc5d79 221
9edc5d79 222#define ELF_NREG 17
c227f099 223typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
224
225/*
226 * Note that ELF_NREG should be 19 as there should be place for
227 * TRAPNO and ERR "registers" as well but linux doesn't dump
228 * those.
229 *
230 * See linux kernel: arch/x86/include/asm/elf.h
231 */
05390248 232static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
233{
234 (*regs)[0] = env->regs[R_EBX];
235 (*regs)[1] = env->regs[R_ECX];
236 (*regs)[2] = env->regs[R_EDX];
237 (*regs)[3] = env->regs[R_ESI];
238 (*regs)[4] = env->regs[R_EDI];
239 (*regs)[5] = env->regs[R_EBP];
240 (*regs)[6] = env->regs[R_EAX];
241 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
242 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
243 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
244 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
245 (*regs)[11] = env->regs[R_EAX]; /* XXX */
246 (*regs)[12] = env->eip;
247 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
248 (*regs)[14] = env->eflags;
249 (*regs)[15] = env->regs[R_ESP];
250 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
251}
84409ddb 252#endif
b346ff46 253
9edc5d79 254#define USE_ELF_CORE_DUMP
d97ef72e 255#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
256
257#endif
258
259#ifdef TARGET_ARM
260
261#define ELF_START_MMAP 0x80000000
262
263#define elf_check_arch(x) ( (x) == EM_ARM )
264
d97ef72e 265#define ELF_CLASS ELFCLASS32
d97ef72e 266#define ELF_ARCH EM_ARM
b346ff46 267
d97ef72e
RH
268static inline void init_thread(struct target_pt_regs *regs,
269 struct image_info *infop)
b346ff46 270{
992f48a0 271 abi_long stack = infop->start_stack;
b346ff46
FB
272 memset(regs, 0, sizeof(*regs));
273 regs->ARM_cpsr = 0x10;
0240ded8 274 if (infop->entry & 1)
d97ef72e 275 regs->ARM_cpsr |= CPSR_T;
0240ded8 276 regs->ARM_pc = infop->entry & 0xfffffffe;
b346ff46 277 regs->ARM_sp = infop->start_stack;
2f619698
FB
278 /* FIXME - what to for failure of get_user()? */
279 get_user_ual(regs->ARM_r2, stack + 8); /* envp */
280 get_user_ual(regs->ARM_r1, stack + 4); /* envp */
a1516e92 281 /* XXX: it seems that r0 is zeroed after ! */
e5fe0c52
PB
282 regs->ARM_r0 = 0;
283 /* For uClinux PIC binaries. */
863cf0b7 284 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
e5fe0c52 285 regs->ARM_r10 = infop->start_data;
b346ff46
FB
286}
287
edf8e2af 288#define ELF_NREG 18
c227f099 289typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 290
05390248 291static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 292{
d049e626
NF
293 (*regs)[0] = tswapl(env->regs[0]);
294 (*regs)[1] = tswapl(env->regs[1]);
295 (*regs)[2] = tswapl(env->regs[2]);
296 (*regs)[3] = tswapl(env->regs[3]);
297 (*regs)[4] = tswapl(env->regs[4]);
298 (*regs)[5] = tswapl(env->regs[5]);
299 (*regs)[6] = tswapl(env->regs[6]);
300 (*regs)[7] = tswapl(env->regs[7]);
301 (*regs)[8] = tswapl(env->regs[8]);
302 (*regs)[9] = tswapl(env->regs[9]);
303 (*regs)[10] = tswapl(env->regs[10]);
304 (*regs)[11] = tswapl(env->regs[11]);
305 (*regs)[12] = tswapl(env->regs[12]);
306 (*regs)[13] = tswapl(env->regs[13]);
307 (*regs)[14] = tswapl(env->regs[14]);
308 (*regs)[15] = tswapl(env->regs[15]);
309
05390248 310 (*regs)[16] = tswapl(cpsr_read((CPUARMState *)env));
d049e626 311 (*regs)[17] = tswapl(env->regs[0]); /* XXX */
edf8e2af
MW
312}
313
30ac07d4 314#define USE_ELF_CORE_DUMP
d97ef72e 315#define ELF_EXEC_PAGESIZE 4096
30ac07d4 316
afce2927
FB
317enum
318{
d97ef72e
RH
319 ARM_HWCAP_ARM_SWP = 1 << 0,
320 ARM_HWCAP_ARM_HALF = 1 << 1,
321 ARM_HWCAP_ARM_THUMB = 1 << 2,
322 ARM_HWCAP_ARM_26BIT = 1 << 3,
323 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
324 ARM_HWCAP_ARM_FPA = 1 << 5,
325 ARM_HWCAP_ARM_VFP = 1 << 6,
326 ARM_HWCAP_ARM_EDSP = 1 << 7,
327 ARM_HWCAP_ARM_JAVA = 1 << 8,
328 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
329 ARM_HWCAP_ARM_THUMBEE = 1 << 10,
330 ARM_HWCAP_ARM_NEON = 1 << 11,
331 ARM_HWCAP_ARM_VFPv3 = 1 << 12,
332 ARM_HWCAP_ARM_VFPv3D16 = 1 << 13,
afce2927
FB
333};
334
97cc7560
DDAG
335#define TARGET_HAS_GUEST_VALIDATE_BASE
336/* We want the opportunity to check the suggested base */
337bool guest_validate_base(unsigned long guest_base)
338{
339 unsigned long real_start, test_page_addr;
340
341 /* We need to check that we can force a fault on access to the
342 * commpage at 0xffff0fxx
343 */
344 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
345 /* Note it needs to be writeable to let us initialise it */
346 real_start = (unsigned long)
347 mmap((void *)test_page_addr, qemu_host_page_size,
348 PROT_READ | PROT_WRITE,
349 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
350
351 /* If we can't map it then try another address */
352 if (real_start == -1ul) {
353 return 0;
354 }
355
356 if (real_start != test_page_addr) {
357 /* OS didn't put the page where we asked - unmap and reject */
358 munmap((void *)real_start, qemu_host_page_size);
359 return 0;
360 }
361
362 /* Leave the page mapped
363 * Populate it (mmap should have left it all 0'd)
364 */
365
366 /* Kernel helper versions */
367 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
368
369 /* Now it's populated make it RO */
370 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
371 perror("Protecting guest commpage");
372 exit(-1);
373 }
374
375 return 1; /* All good */
376}
377
adf050b1
BC
378
379#define ELF_HWCAP get_elf_hwcap()
380
381static uint32_t get_elf_hwcap(void)
382{
383 CPUARMState *e = thread_env;
384 uint32_t hwcaps = 0;
385
386 hwcaps |= ARM_HWCAP_ARM_SWP;
387 hwcaps |= ARM_HWCAP_ARM_HALF;
388 hwcaps |= ARM_HWCAP_ARM_THUMB;
389 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
390 hwcaps |= ARM_HWCAP_ARM_FPA;
391
392 /* probe for the extra features */
393#define GET_FEATURE(feat, hwcap) \
394 do {if (arm_feature(e, feat)) { hwcaps |= hwcap; } } while (0)
395 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
396 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
397 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
398 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
399 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
400 GET_FEATURE(ARM_FEATURE_VFP_FP16, ARM_HWCAP_ARM_VFPv3D16);
401#undef GET_FEATURE
402
403 return hwcaps;
404}
afce2927 405
30ac07d4
FB
406#endif
407
d2fbca94
GX
408#ifdef TARGET_UNICORE32
409
410#define ELF_START_MMAP 0x80000000
411
412#define elf_check_arch(x) ((x) == EM_UNICORE32)
413
414#define ELF_CLASS ELFCLASS32
415#define ELF_DATA ELFDATA2LSB
416#define ELF_ARCH EM_UNICORE32
417
418static inline void init_thread(struct target_pt_regs *regs,
419 struct image_info *infop)
420{
421 abi_long stack = infop->start_stack;
422 memset(regs, 0, sizeof(*regs));
423 regs->UC32_REG_asr = 0x10;
424 regs->UC32_REG_pc = infop->entry & 0xfffffffe;
425 regs->UC32_REG_sp = infop->start_stack;
426 /* FIXME - what to for failure of get_user()? */
427 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
428 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
429 /* XXX: it seems that r0 is zeroed after ! */
430 regs->UC32_REG_00 = 0;
431}
432
433#define ELF_NREG 34
434typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
435
05390248 436static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
d2fbca94
GX
437{
438 (*regs)[0] = env->regs[0];
439 (*regs)[1] = env->regs[1];
440 (*regs)[2] = env->regs[2];
441 (*regs)[3] = env->regs[3];
442 (*regs)[4] = env->regs[4];
443 (*regs)[5] = env->regs[5];
444 (*regs)[6] = env->regs[6];
445 (*regs)[7] = env->regs[7];
446 (*regs)[8] = env->regs[8];
447 (*regs)[9] = env->regs[9];
448 (*regs)[10] = env->regs[10];
449 (*regs)[11] = env->regs[11];
450 (*regs)[12] = env->regs[12];
451 (*regs)[13] = env->regs[13];
452 (*regs)[14] = env->regs[14];
453 (*regs)[15] = env->regs[15];
454 (*regs)[16] = env->regs[16];
455 (*regs)[17] = env->regs[17];
456 (*regs)[18] = env->regs[18];
457 (*regs)[19] = env->regs[19];
458 (*regs)[20] = env->regs[20];
459 (*regs)[21] = env->regs[21];
460 (*regs)[22] = env->regs[22];
461 (*regs)[23] = env->regs[23];
462 (*regs)[24] = env->regs[24];
463 (*regs)[25] = env->regs[25];
464 (*regs)[26] = env->regs[26];
465 (*regs)[27] = env->regs[27];
466 (*regs)[28] = env->regs[28];
467 (*regs)[29] = env->regs[29];
468 (*regs)[30] = env->regs[30];
469 (*regs)[31] = env->regs[31];
470
05390248 471 (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
d2fbca94
GX
472 (*regs)[33] = env->regs[0]; /* XXX */
473}
474
475#define USE_ELF_CORE_DUMP
476#define ELF_EXEC_PAGESIZE 4096
477
478#define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
479
480#endif
481
853d6f7a 482#ifdef TARGET_SPARC
a315a145 483#ifdef TARGET_SPARC64
853d6f7a
FB
484
485#define ELF_START_MMAP 0x80000000
cf973e46
AT
486#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
487 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 488#ifndef TARGET_ABI32
cb33da57 489#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
490#else
491#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
492#endif
853d6f7a 493
a315a145 494#define ELF_CLASS ELFCLASS64
5ef54116
FB
495#define ELF_ARCH EM_SPARCV9
496
d97ef72e 497#define STACK_BIAS 2047
a315a145 498
d97ef72e
RH
499static inline void init_thread(struct target_pt_regs *regs,
500 struct image_info *infop)
a315a145 501{
992f48a0 502#ifndef TARGET_ABI32
a315a145 503 regs->tstate = 0;
992f48a0 504#endif
a315a145
FB
505 regs->pc = infop->entry;
506 regs->npc = regs->pc + 4;
507 regs->y = 0;
992f48a0
BS
508#ifdef TARGET_ABI32
509 regs->u_regs[14] = infop->start_stack - 16 * 4;
510#else
cb33da57
BS
511 if (personality(infop->personality) == PER_LINUX32)
512 regs->u_regs[14] = infop->start_stack - 16 * 4;
513 else
514 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 515#endif
a315a145
FB
516}
517
518#else
519#define ELF_START_MMAP 0x80000000
cf973e46
AT
520#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
521 | HWCAP_SPARC_MULDIV)
a315a145
FB
522#define elf_check_arch(x) ( (x) == EM_SPARC )
523
853d6f7a 524#define ELF_CLASS ELFCLASS32
853d6f7a
FB
525#define ELF_ARCH EM_SPARC
526
d97ef72e
RH
527static inline void init_thread(struct target_pt_regs *regs,
528 struct image_info *infop)
853d6f7a 529{
f5155289
FB
530 regs->psr = 0;
531 regs->pc = infop->entry;
532 regs->npc = regs->pc + 4;
533 regs->y = 0;
534 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
535}
536
a315a145 537#endif
853d6f7a
FB
538#endif
539
67867308
FB
540#ifdef TARGET_PPC
541
542#define ELF_START_MMAP 0x80000000
543
e85e7c6e 544#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
545
546#define elf_check_arch(x) ( (x) == EM_PPC64 )
547
d97ef72e 548#define ELF_CLASS ELFCLASS64
84409ddb
JM
549
550#else
551
67867308
FB
552#define elf_check_arch(x) ( (x) == EM_PPC )
553
d97ef72e 554#define ELF_CLASS ELFCLASS32
84409ddb
JM
555
556#endif
557
d97ef72e 558#define ELF_ARCH EM_PPC
67867308 559
df84e4f3
NF
560/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
561 See arch/powerpc/include/asm/cputable.h. */
562enum {
3efa9a67 563 QEMU_PPC_FEATURE_32 = 0x80000000,
564 QEMU_PPC_FEATURE_64 = 0x40000000,
565 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
566 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
567 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
568 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
569 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
570 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
571 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
572 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
573 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
574 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
575 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
576 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
577 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
578 QEMU_PPC_FEATURE_CELL = 0x00010000,
579 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
580 QEMU_PPC_FEATURE_SMT = 0x00004000,
581 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
582 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
583 QEMU_PPC_FEATURE_PA6T = 0x00000800,
584 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
585 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
586 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
587 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
588 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
589
590 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
591 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
df84e4f3
NF
592};
593
594#define ELF_HWCAP get_elf_hwcap()
595
596static uint32_t get_elf_hwcap(void)
597{
05390248 598 CPUPPCState *e = thread_env;
df84e4f3
NF
599 uint32_t features = 0;
600
601 /* We don't have to be terribly complete here; the high points are
602 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 603#define GET_FEATURE(flag, feature) \
df84e4f3 604 do {if (e->insns_flags & flag) features |= feature; } while(0)
3efa9a67 605 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
606 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
607 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
608 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
609 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
610 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
611 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
612 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
df84e4f3
NF
613#undef GET_FEATURE
614
615 return features;
616}
617
f5155289
FB
618/*
619 * The requirements here are:
620 * - keep the final alignment of sp (sp & 0xf)
621 * - make sure the 32-bit value at the first 16 byte aligned position of
622 * AUXV is greater than 16 for glibc compatibility.
623 * AT_IGNOREPPC is used for that.
624 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
625 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
626 */
0bccf03d 627#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
628#define ARCH_DLINFO \
629 do { \
630 NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20); \
631 NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20); \
632 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
633 /* \
634 * Now handle glibc compatibility. \
635 */ \
636 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
637 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
638 } while (0)
f5155289 639
67867308
FB
640static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
641{
67867308 642 _regs->gpr[1] = infop->start_stack;
e85e7c6e 643#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
8e78064e
RH
644 _regs->gpr[2] = ldq_raw(infop->entry + 8) + infop->load_bias;
645 infop->entry = ldq_raw(infop->entry) + infop->load_bias;
84409ddb 646#endif
67867308
FB
647 _regs->nip = infop->entry;
648}
649
e2f3e741
NF
650/* See linux kernel: arch/powerpc/include/asm/elf.h. */
651#define ELF_NREG 48
652typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
653
05390248 654static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
655{
656 int i;
657 target_ulong ccr = 0;
658
659 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
660 (*regs)[i] = tswapl(env->gpr[i]);
661 }
662
663 (*regs)[32] = tswapl(env->nip);
664 (*regs)[33] = tswapl(env->msr);
665 (*regs)[35] = tswapl(env->ctr);
666 (*regs)[36] = tswapl(env->lr);
667 (*regs)[37] = tswapl(env->xer);
668
669 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
670 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
671 }
672 (*regs)[38] = tswapl(ccr);
673}
674
675#define USE_ELF_CORE_DUMP
d97ef72e 676#define ELF_EXEC_PAGESIZE 4096
67867308
FB
677
678#endif
679
048f6b4d
FB
680#ifdef TARGET_MIPS
681
682#define ELF_START_MMAP 0x80000000
683
684#define elf_check_arch(x) ( (x) == EM_MIPS )
685
388bb21a
TS
686#ifdef TARGET_MIPS64
687#define ELF_CLASS ELFCLASS64
688#else
048f6b4d 689#define ELF_CLASS ELFCLASS32
388bb21a 690#endif
048f6b4d
FB
691#define ELF_ARCH EM_MIPS
692
d97ef72e
RH
693static inline void init_thread(struct target_pt_regs *regs,
694 struct image_info *infop)
048f6b4d 695{
623a930e 696 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
697 regs->cp0_epc = infop->entry;
698 regs->regs[29] = infop->start_stack;
699}
700
51e52606
NF
701/* See linux kernel: arch/mips/include/asm/elf.h. */
702#define ELF_NREG 45
703typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
704
705/* See linux kernel: arch/mips/include/asm/reg.h. */
706enum {
707#ifdef TARGET_MIPS64
708 TARGET_EF_R0 = 0,
709#else
710 TARGET_EF_R0 = 6,
711#endif
712 TARGET_EF_R26 = TARGET_EF_R0 + 26,
713 TARGET_EF_R27 = TARGET_EF_R0 + 27,
714 TARGET_EF_LO = TARGET_EF_R0 + 32,
715 TARGET_EF_HI = TARGET_EF_R0 + 33,
716 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
717 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
718 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
719 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
720};
721
722/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 723static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
724{
725 int i;
726
727 for (i = 0; i < TARGET_EF_R0; i++) {
728 (*regs)[i] = 0;
729 }
730 (*regs)[TARGET_EF_R0] = 0;
731
732 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
733 (*regs)[TARGET_EF_R0 + i] = tswapl(env->active_tc.gpr[i]);
734 }
735
736 (*regs)[TARGET_EF_R26] = 0;
737 (*regs)[TARGET_EF_R27] = 0;
738 (*regs)[TARGET_EF_LO] = tswapl(env->active_tc.LO[0]);
739 (*regs)[TARGET_EF_HI] = tswapl(env->active_tc.HI[0]);
740 (*regs)[TARGET_EF_CP0_EPC] = tswapl(env->active_tc.PC);
741 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapl(env->CP0_BadVAddr);
742 (*regs)[TARGET_EF_CP0_STATUS] = tswapl(env->CP0_Status);
743 (*regs)[TARGET_EF_CP0_CAUSE] = tswapl(env->CP0_Cause);
744}
745
746#define USE_ELF_CORE_DUMP
388bb21a
TS
747#define ELF_EXEC_PAGESIZE 4096
748
048f6b4d
FB
749#endif /* TARGET_MIPS */
750
b779e29e
EI
751#ifdef TARGET_MICROBLAZE
752
753#define ELF_START_MMAP 0x80000000
754
0d5d4699 755#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
756
757#define ELF_CLASS ELFCLASS32
0d5d4699 758#define ELF_ARCH EM_MICROBLAZE
b779e29e 759
d97ef72e
RH
760static inline void init_thread(struct target_pt_regs *regs,
761 struct image_info *infop)
b779e29e
EI
762{
763 regs->pc = infop->entry;
764 regs->r1 = infop->start_stack;
765
766}
767
b779e29e
EI
768#define ELF_EXEC_PAGESIZE 4096
769
e4cbd44d
EI
770#define USE_ELF_CORE_DUMP
771#define ELF_NREG 38
772typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
773
774/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 775static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
776{
777 int i, pos = 0;
778
779 for (i = 0; i < 32; i++) {
780 (*regs)[pos++] = tswapl(env->regs[i]);
781 }
782
783 for (i = 0; i < 6; i++) {
784 (*regs)[pos++] = tswapl(env->sregs[i]);
785 }
786}
787
b779e29e
EI
788#endif /* TARGET_MICROBLAZE */
789
fdf9b3e8
FB
790#ifdef TARGET_SH4
791
792#define ELF_START_MMAP 0x80000000
793
794#define elf_check_arch(x) ( (x) == EM_SH )
795
796#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
797#define ELF_ARCH EM_SH
798
d97ef72e
RH
799static inline void init_thread(struct target_pt_regs *regs,
800 struct image_info *infop)
fdf9b3e8 801{
d97ef72e
RH
802 /* Check other registers XXXXX */
803 regs->pc = infop->entry;
804 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
805}
806
7631c97e
NF
807/* See linux kernel: arch/sh/include/asm/elf.h. */
808#define ELF_NREG 23
809typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
810
811/* See linux kernel: arch/sh/include/asm/ptrace.h. */
812enum {
813 TARGET_REG_PC = 16,
814 TARGET_REG_PR = 17,
815 TARGET_REG_SR = 18,
816 TARGET_REG_GBR = 19,
817 TARGET_REG_MACH = 20,
818 TARGET_REG_MACL = 21,
819 TARGET_REG_SYSCALL = 22
820};
821
d97ef72e 822static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 823 const CPUSH4State *env)
7631c97e
NF
824{
825 int i;
826
827 for (i = 0; i < 16; i++) {
828 (*regs[i]) = tswapl(env->gregs[i]);
829 }
830
831 (*regs)[TARGET_REG_PC] = tswapl(env->pc);
832 (*regs)[TARGET_REG_PR] = tswapl(env->pr);
833 (*regs)[TARGET_REG_SR] = tswapl(env->sr);
834 (*regs)[TARGET_REG_GBR] = tswapl(env->gbr);
835 (*regs)[TARGET_REG_MACH] = tswapl(env->mach);
836 (*regs)[TARGET_REG_MACL] = tswapl(env->macl);
837 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
838}
839
840#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
841#define ELF_EXEC_PAGESIZE 4096
842
843#endif
844
48733d19
TS
845#ifdef TARGET_CRIS
846
847#define ELF_START_MMAP 0x80000000
848
849#define elf_check_arch(x) ( (x) == EM_CRIS )
850
851#define ELF_CLASS ELFCLASS32
48733d19
TS
852#define ELF_ARCH EM_CRIS
853
d97ef72e
RH
854static inline void init_thread(struct target_pt_regs *regs,
855 struct image_info *infop)
48733d19 856{
d97ef72e 857 regs->erp = infop->entry;
48733d19
TS
858}
859
48733d19
TS
860#define ELF_EXEC_PAGESIZE 8192
861
862#endif
863
e6e5906b
PB
864#ifdef TARGET_M68K
865
866#define ELF_START_MMAP 0x80000000
867
868#define elf_check_arch(x) ( (x) == EM_68K )
869
d97ef72e 870#define ELF_CLASS ELFCLASS32
d97ef72e 871#define ELF_ARCH EM_68K
e6e5906b
PB
872
873/* ??? Does this need to do anything?
d97ef72e 874 #define ELF_PLAT_INIT(_r) */
e6e5906b 875
d97ef72e
RH
876static inline void init_thread(struct target_pt_regs *regs,
877 struct image_info *infop)
e6e5906b
PB
878{
879 regs->usp = infop->start_stack;
880 regs->sr = 0;
881 regs->pc = infop->entry;
882}
883
7a93cc55
NF
884/* See linux kernel: arch/m68k/include/asm/elf.h. */
885#define ELF_NREG 20
886typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
887
05390248 888static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55
NF
889{
890 (*regs)[0] = tswapl(env->dregs[1]);
891 (*regs)[1] = tswapl(env->dregs[2]);
892 (*regs)[2] = tswapl(env->dregs[3]);
893 (*regs)[3] = tswapl(env->dregs[4]);
894 (*regs)[4] = tswapl(env->dregs[5]);
895 (*regs)[5] = tswapl(env->dregs[6]);
896 (*regs)[6] = tswapl(env->dregs[7]);
897 (*regs)[7] = tswapl(env->aregs[0]);
898 (*regs)[8] = tswapl(env->aregs[1]);
899 (*regs)[9] = tswapl(env->aregs[2]);
900 (*regs)[10] = tswapl(env->aregs[3]);
901 (*regs)[11] = tswapl(env->aregs[4]);
902 (*regs)[12] = tswapl(env->aregs[5]);
903 (*regs)[13] = tswapl(env->aregs[6]);
904 (*regs)[14] = tswapl(env->dregs[0]);
905 (*regs)[15] = tswapl(env->aregs[7]);
906 (*regs)[16] = tswapl(env->dregs[0]); /* FIXME: orig_d0 */
907 (*regs)[17] = tswapl(env->sr);
908 (*regs)[18] = tswapl(env->pc);
909 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
910}
911
912#define USE_ELF_CORE_DUMP
d97ef72e 913#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
914
915#endif
916
7a3148a9
JM
917#ifdef TARGET_ALPHA
918
919#define ELF_START_MMAP (0x30000000000ULL)
920
921#define elf_check_arch(x) ( (x) == ELF_ARCH )
922
923#define ELF_CLASS ELFCLASS64
7a3148a9
JM
924#define ELF_ARCH EM_ALPHA
925
d97ef72e
RH
926static inline void init_thread(struct target_pt_regs *regs,
927 struct image_info *infop)
7a3148a9
JM
928{
929 regs->pc = infop->entry;
930 regs->ps = 8;
931 regs->usp = infop->start_stack;
7a3148a9
JM
932}
933
7a3148a9
JM
934#define ELF_EXEC_PAGESIZE 8192
935
936#endif /* TARGET_ALPHA */
937
a4c075f1
UH
938#ifdef TARGET_S390X
939
940#define ELF_START_MMAP (0x20000000000ULL)
941
942#define elf_check_arch(x) ( (x) == ELF_ARCH )
943
944#define ELF_CLASS ELFCLASS64
945#define ELF_DATA ELFDATA2MSB
946#define ELF_ARCH EM_S390
947
948static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
949{
950 regs->psw.addr = infop->entry;
951 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
952 regs->gprs[15] = infop->start_stack;
953}
954
955#endif /* TARGET_S390X */
956
15338fd7
FB
957#ifndef ELF_PLATFORM
958#define ELF_PLATFORM (NULL)
959#endif
960
961#ifndef ELF_HWCAP
962#define ELF_HWCAP 0
963#endif
964
992f48a0 965#ifdef TARGET_ABI32
cb33da57 966#undef ELF_CLASS
992f48a0 967#define ELF_CLASS ELFCLASS32
cb33da57
BS
968#undef bswaptls
969#define bswaptls(ptr) bswap32s(ptr)
970#endif
971
31e31b8a 972#include "elf.h"
09bfb054 973
09bfb054
FB
974struct exec
975{
d97ef72e
RH
976 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
977 unsigned int a_text; /* length of text, in bytes */
978 unsigned int a_data; /* length of data, in bytes */
979 unsigned int a_bss; /* length of uninitialized data area, in bytes */
980 unsigned int a_syms; /* length of symbol table data in file, in bytes */
981 unsigned int a_entry; /* start address */
982 unsigned int a_trsize; /* length of relocation info for text, in bytes */
983 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
984};
985
986
987#define N_MAGIC(exec) ((exec).a_info & 0xffff)
988#define OMAGIC 0407
989#define NMAGIC 0410
990#define ZMAGIC 0413
991#define QMAGIC 0314
992
31e31b8a 993/* Necessary parameters */
54936004
FB
994#define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
995#define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
996#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 997
14322bad 998#define DLINFO_ITEMS 13
31e31b8a 999
09bfb054
FB
1000static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1001{
d97ef72e 1002 memcpy(to, from, n);
09bfb054 1003}
d691f669 1004
31e31b8a 1005#ifdef BSWAP_NEEDED
92a31b1f 1006static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 1007{
d97ef72e
RH
1008 bswap16s(&ehdr->e_type); /* Object file type */
1009 bswap16s(&ehdr->e_machine); /* Architecture */
1010 bswap32s(&ehdr->e_version); /* Object file version */
1011 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1012 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1013 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1014 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1015 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1016 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1017 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1018 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1019 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1020 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
1021}
1022
991f8f0c 1023static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 1024{
991f8f0c
RH
1025 int i;
1026 for (i = 0; i < phnum; ++i, ++phdr) {
1027 bswap32s(&phdr->p_type); /* Segment type */
1028 bswap32s(&phdr->p_flags); /* Segment flags */
1029 bswaptls(&phdr->p_offset); /* Segment file offset */
1030 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1031 bswaptls(&phdr->p_paddr); /* Segment physical address */
1032 bswaptls(&phdr->p_filesz); /* Segment size in file */
1033 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1034 bswaptls(&phdr->p_align); /* Segment alignment */
1035 }
31e31b8a 1036}
689f936f 1037
991f8f0c 1038static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 1039{
991f8f0c
RH
1040 int i;
1041 for (i = 0; i < shnum; ++i, ++shdr) {
1042 bswap32s(&shdr->sh_name);
1043 bswap32s(&shdr->sh_type);
1044 bswaptls(&shdr->sh_flags);
1045 bswaptls(&shdr->sh_addr);
1046 bswaptls(&shdr->sh_offset);
1047 bswaptls(&shdr->sh_size);
1048 bswap32s(&shdr->sh_link);
1049 bswap32s(&shdr->sh_info);
1050 bswaptls(&shdr->sh_addralign);
1051 bswaptls(&shdr->sh_entsize);
1052 }
689f936f
FB
1053}
1054
7a3148a9 1055static void bswap_sym(struct elf_sym *sym)
689f936f
FB
1056{
1057 bswap32s(&sym->st_name);
7a3148a9
JM
1058 bswaptls(&sym->st_value);
1059 bswaptls(&sym->st_size);
689f936f
FB
1060 bswap16s(&sym->st_shndx);
1061}
991f8f0c
RH
1062#else
1063static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1064static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1065static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1066static inline void bswap_sym(struct elf_sym *sym) { }
31e31b8a
FB
1067#endif
1068
edf8e2af 1069#ifdef USE_ELF_CORE_DUMP
9349b4f9 1070static int elf_core_dump(int, const CPUArchState *);
edf8e2af 1071#endif /* USE_ELF_CORE_DUMP */
682674b8 1072static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 1073
9058abdd
RH
1074/* Verify the portions of EHDR within E_IDENT for the target.
1075 This can be performed before bswapping the entire header. */
1076static bool elf_check_ident(struct elfhdr *ehdr)
1077{
1078 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1079 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1080 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1081 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1082 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1083 && ehdr->e_ident[EI_DATA] == ELF_DATA
1084 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1085}
1086
1087/* Verify the portions of EHDR outside of E_IDENT for the target.
1088 This has to wait until after bswapping the header. */
1089static bool elf_check_ehdr(struct elfhdr *ehdr)
1090{
1091 return (elf_check_arch(ehdr->e_machine)
1092 && ehdr->e_ehsize == sizeof(struct elfhdr)
1093 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1094 && ehdr->e_shentsize == sizeof(struct elf_shdr)
1095 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1096}
1097
31e31b8a 1098/*
e5fe0c52 1099 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
1100 * memory to free pages in kernel mem. These are in a format ready
1101 * to be put directly into the top of new user memory.
1102 *
1103 */
992f48a0
BS
1104static abi_ulong copy_elf_strings(int argc,char ** argv, void **page,
1105 abi_ulong p)
31e31b8a
FB
1106{
1107 char *tmp, *tmp1, *pag = NULL;
1108 int len, offset = 0;
1109
1110 if (!p) {
d97ef72e 1111 return 0; /* bullet-proofing */
31e31b8a
FB
1112 }
1113 while (argc-- > 0) {
edf779ff
FB
1114 tmp = argv[argc];
1115 if (!tmp) {
d97ef72e
RH
1116 fprintf(stderr, "VFS: argc is wrong");
1117 exit(-1);
1118 }
edf779ff 1119 tmp1 = tmp;
d97ef72e
RH
1120 while (*tmp++);
1121 len = tmp - tmp1;
1122 if (p < len) { /* this shouldn't happen - 128kB */
1123 return 0;
1124 }
1125 while (len) {
1126 --p; --tmp; --len;
1127 if (--offset < 0) {
1128 offset = p % TARGET_PAGE_SIZE;
53a5960a 1129 pag = (char *)page[p/TARGET_PAGE_SIZE];
44a91cae 1130 if (!pag) {
7dd47667 1131 pag = g_try_malloc0(TARGET_PAGE_SIZE);
53a5960a 1132 page[p/TARGET_PAGE_SIZE] = pag;
44a91cae
FB
1133 if (!pag)
1134 return 0;
d97ef72e
RH
1135 }
1136 }
1137 if (len == 0 || offset == 0) {
1138 *(pag + offset) = *tmp;
1139 }
1140 else {
1141 int bytes_to_copy = (len > offset) ? offset : len;
1142 tmp -= bytes_to_copy;
1143 p -= bytes_to_copy;
1144 offset -= bytes_to_copy;
1145 len -= bytes_to_copy;
1146 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1);
1147 }
1148 }
31e31b8a
FB
1149 }
1150 return p;
1151}
1152
992f48a0
BS
1153static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm,
1154 struct image_info *info)
53a5960a 1155{
60dcbcb5 1156 abi_ulong stack_base, size, error, guard;
31e31b8a 1157 int i;
31e31b8a 1158
09bfb054 1159 /* Create enough stack to hold everything. If we don't use
60dcbcb5 1160 it for args, we'll use it for something else. */
703e0e89 1161 size = guest_stack_size;
60dcbcb5 1162 if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) {
54936004 1163 size = MAX_ARG_PAGES*TARGET_PAGE_SIZE;
60dcbcb5
RH
1164 }
1165 guard = TARGET_PAGE_SIZE;
1166 if (guard < qemu_real_host_page_size) {
1167 guard = qemu_real_host_page_size;
1168 }
1169
1170 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1171 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 1172 if (error == -1) {
60dcbcb5 1173 perror("mmap stack");
09bfb054
FB
1174 exit(-1);
1175 }
31e31b8a 1176
60dcbcb5
RH
1177 /* We reserve one extra page at the top of the stack as guard. */
1178 target_mprotect(error, guard, PROT_NONE);
1179
1180 info->stack_limit = error + guard;
1181 stack_base = info->stack_limit + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE;
31e31b8a 1182 p += stack_base;
09bfb054 1183
31e31b8a 1184 for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
d97ef72e
RH
1185 if (bprm->page[i]) {
1186 info->rss++;
579a97f7 1187 /* FIXME - check return value of memcpy_to_target() for failure */
d97ef72e 1188 memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE);
7dd47667 1189 g_free(bprm->page[i]);
d97ef72e 1190 }
53a5960a 1191 stack_base += TARGET_PAGE_SIZE;
31e31b8a
FB
1192 }
1193 return p;
1194}
1195
cf129f3a
RH
1196/* Map and zero the bss. We need to explicitly zero any fractional pages
1197 after the data section (i.e. bss). */
1198static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 1199{
cf129f3a
RH
1200 uintptr_t host_start, host_map_start, host_end;
1201
1202 last_bss = TARGET_PAGE_ALIGN(last_bss);
1203
1204 /* ??? There is confusion between qemu_real_host_page_size and
1205 qemu_host_page_size here and elsewhere in target_mmap, which
1206 may lead to the end of the data section mapping from the file
1207 not being mapped. At least there was an explicit test and
1208 comment for that here, suggesting that "the file size must
1209 be known". The comment probably pre-dates the introduction
1210 of the fstat system call in target_mmap which does in fact
1211 find out the size. What isn't clear is if the workaround
1212 here is still actually needed. For now, continue with it,
1213 but merge it with the "normal" mmap that would allocate the bss. */
1214
1215 host_start = (uintptr_t) g2h(elf_bss);
1216 host_end = (uintptr_t) g2h(last_bss);
1217 host_map_start = (host_start + qemu_real_host_page_size - 1);
1218 host_map_start &= -qemu_real_host_page_size;
1219
1220 if (host_map_start < host_end) {
1221 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1222 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1223 if (p == MAP_FAILED) {
1224 perror("cannot mmap brk");
1225 exit(-1);
853d6f7a
FB
1226 }
1227
cf129f3a
RH
1228 /* Since we didn't use target_mmap, make sure to record
1229 the validity of the pages with qemu. */
1230 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot|PAGE_VALID);
1231 }
31e31b8a 1232
cf129f3a
RH
1233 if (host_start < host_map_start) {
1234 memset((void *)host_start, 0, host_map_start - host_start);
1235 }
1236}
53a5960a 1237
1af02e83
MF
1238#ifdef CONFIG_USE_FDPIC
1239static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1240{
1241 uint16_t n;
1242 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1243
1244 /* elf32_fdpic_loadseg */
1245 n = info->nsegs;
1246 while (n--) {
1247 sp -= 12;
1248 put_user_u32(loadsegs[n].addr, sp+0);
1249 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1250 put_user_u32(loadsegs[n].p_memsz, sp+8);
1251 }
1252
1253 /* elf32_fdpic_loadmap */
1254 sp -= 4;
1255 put_user_u16(0, sp+0); /* version */
1256 put_user_u16(info->nsegs, sp+2); /* nsegs */
1257
1258 info->personality = PER_LINUX_FDPIC;
1259 info->loadmap_addr = sp;
1260
1261 return sp;
1262}
1263#endif
1264
992f48a0 1265static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
1266 struct elfhdr *exec,
1267 struct image_info *info,
1268 struct image_info *interp_info)
31e31b8a 1269{
d97ef72e 1270 abi_ulong sp;
125b0f55 1271 abi_ulong sp_auxv;
d97ef72e 1272 int size;
14322bad
LA
1273 int i;
1274 abi_ulong u_rand_bytes;
1275 uint8_t k_rand_bytes[16];
d97ef72e
RH
1276 abi_ulong u_platform;
1277 const char *k_platform;
1278 const int n = sizeof(elf_addr_t);
1279
1280 sp = p;
1af02e83
MF
1281
1282#ifdef CONFIG_USE_FDPIC
1283 /* Needs to be before we load the env/argc/... */
1284 if (elf_is_fdpic(exec)) {
1285 /* Need 4 byte alignment for these structs */
1286 sp &= ~3;
1287 sp = loader_build_fdpic_loadmap(info, sp);
1288 info->other_info = interp_info;
1289 if (interp_info) {
1290 interp_info->other_info = info;
1291 sp = loader_build_fdpic_loadmap(interp_info, sp);
1292 }
1293 }
1294#endif
1295
d97ef72e
RH
1296 u_platform = 0;
1297 k_platform = ELF_PLATFORM;
1298 if (k_platform) {
1299 size_t len = strlen(k_platform) + 1;
1300 sp -= (len + n - 1) & ~(n - 1);
1301 u_platform = sp;
1302 /* FIXME - check return value of memcpy_to_target() for failure */
1303 memcpy_to_target(sp, k_platform, len);
1304 }
14322bad
LA
1305
1306 /*
1307 * Generate 16 random bytes for userspace PRNG seeding (not
1308 * cryptically secure but it's not the aim of QEMU).
1309 */
1310 srand((unsigned int) time(NULL));
1311 for (i = 0; i < 16; i++) {
1312 k_rand_bytes[i] = rand();
1313 }
1314 sp -= 16;
1315 u_rand_bytes = sp;
1316 /* FIXME - check return value of memcpy_to_target() for failure */
1317 memcpy_to_target(sp, k_rand_bytes, 16);
1318
d97ef72e
RH
1319 /*
1320 * Force 16 byte _final_ alignment here for generality.
1321 */
1322 sp = sp &~ (abi_ulong)15;
1323 size = (DLINFO_ITEMS + 1) * 2;
1324 if (k_platform)
1325 size += 2;
f5155289 1326#ifdef DLINFO_ARCH_ITEMS
d97ef72e 1327 size += DLINFO_ARCH_ITEMS * 2;
f5155289 1328#endif
d97ef72e 1329 size += envc + argc + 2;
b9329d4b 1330 size += 1; /* argc itself */
d97ef72e
RH
1331 size *= n;
1332 if (size & 15)
1333 sp -= 16 - (size & 15);
1334
1335 /* This is correct because Linux defines
1336 * elf_addr_t as Elf32_Off / Elf64_Off
1337 */
1338#define NEW_AUX_ENT(id, val) do { \
1339 sp -= n; put_user_ual(val, sp); \
1340 sp -= n; put_user_ual(id, sp); \
1341 } while(0)
1342
125b0f55 1343 sp_auxv = sp;
d97ef72e
RH
1344 NEW_AUX_ENT (AT_NULL, 0);
1345
1346 /* There must be exactly DLINFO_ITEMS entries here. */
8e62a717 1347 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
1348 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1349 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1350 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
8e62a717 1351 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 1352 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 1353 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
1354 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1355 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1356 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1357 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1358 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1359 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad
LA
1360 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1361
d97ef72e
RH
1362 if (k_platform)
1363 NEW_AUX_ENT(AT_PLATFORM, u_platform);
f5155289 1364#ifdef ARCH_DLINFO
d97ef72e
RH
1365 /*
1366 * ARCH_DLINFO must come last so platform specific code can enforce
1367 * special alignment requirements on the AUXV if necessary (eg. PPC).
1368 */
1369 ARCH_DLINFO;
f5155289
FB
1370#endif
1371#undef NEW_AUX_ENT
1372
d97ef72e 1373 info->saved_auxv = sp;
125b0f55 1374 info->auxv_len = sp_auxv - sp;
edf8e2af 1375
b9329d4b 1376 sp = loader_build_argptr(envc, argc, sp, p, 0);
d97ef72e 1377 return sp;
31e31b8a
FB
1378}
1379
97cc7560
DDAG
1380#ifndef TARGET_HAS_GUEST_VALIDATE_BASE
1381/* If the guest doesn't have a validation function just agree */
1382bool guest_validate_base(unsigned long guest_base)
1383{
1384 return 1;
1385}
1386#endif
1387
f3ed1f5d
PM
1388static void probe_guest_base(const char *image_name,
1389 abi_ulong loaddr, abi_ulong hiaddr)
1390{
1391 /* Probe for a suitable guest base address, if the user has not set
1392 * it explicitly, and set guest_base appropriately.
1393 * In case of error we will print a suitable message and exit.
1394 */
1395#if defined(CONFIG_USE_GUEST_BASE)
1396 const char *errmsg;
1397 if (!have_guest_base && !reserved_va) {
1398 unsigned long host_start, real_start, host_size;
1399
1400 /* Round addresses to page boundaries. */
1401 loaddr &= qemu_host_page_mask;
1402 hiaddr = HOST_PAGE_ALIGN(hiaddr);
1403
1404 if (loaddr < mmap_min_addr) {
1405 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1406 } else {
1407 host_start = loaddr;
1408 if (host_start != loaddr) {
1409 errmsg = "Address overflow loading ELF binary";
1410 goto exit_errmsg;
1411 }
1412 }
1413 host_size = hiaddr - loaddr;
1414 while (1) {
1415 /* Do not use mmap_find_vma here because that is limited to the
1416 guest address space. We are going to make the
1417 guest address space fit whatever we're given. */
1418 real_start = (unsigned long)
1419 mmap((void *)host_start, host_size, PROT_NONE,
1420 MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE, -1, 0);
1421 if (real_start == (unsigned long)-1) {
1422 goto exit_perror;
1423 }
97cc7560
DDAG
1424 guest_base = real_start - loaddr;
1425 if ((real_start == host_start) &&
1426 guest_validate_base(guest_base)) {
f3ed1f5d
PM
1427 break;
1428 }
1429 /* That address didn't work. Unmap and try a different one.
1430 The address the host picked because is typically right at
1431 the top of the host address space and leaves the guest with
1432 no usable address space. Resort to a linear search. We
1433 already compensated for mmap_min_addr, so this should not
1434 happen often. Probably means we got unlucky and host
1435 address space randomization put a shared library somewhere
1436 inconvenient. */
1437 munmap((void *)real_start, host_size);
1438 host_start += qemu_host_page_size;
1439 if (host_start == loaddr) {
1440 /* Theoretically possible if host doesn't have any suitably
1441 aligned areas. Normally the first mmap will fail. */
1442 errmsg = "Unable to find space for application";
1443 goto exit_errmsg;
1444 }
1445 }
1446 qemu_log("Relocating guest address space from 0x"
1447 TARGET_ABI_FMT_lx " to 0x%lx\n",
1448 loaddr, real_start);
f3ed1f5d
PM
1449 }
1450 return;
1451
1452exit_perror:
1453 errmsg = strerror(errno);
1454exit_errmsg:
1455 fprintf(stderr, "%s: %s\n", image_name, errmsg);
1456 exit(-1);
1457#endif
1458}
1459
1460
8e62a717 1461/* Load an ELF image into the address space.
31e31b8a 1462
8e62a717
RH
1463 IMAGE_NAME is the filename of the image, to use in error messages.
1464 IMAGE_FD is the open file descriptor for the image.
1465
1466 BPRM_BUF is a copy of the beginning of the file; this of course
1467 contains the elf file header at offset 0. It is assumed that this
1468 buffer is sufficiently aligned to present no problems to the host
1469 in accessing data at aligned offsets within the buffer.
1470
1471 On return: INFO values will be filled in, as necessary or available. */
1472
1473static void load_elf_image(const char *image_name, int image_fd,
bf858897 1474 struct image_info *info, char **pinterp_name,
8e62a717 1475 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 1476{
8e62a717
RH
1477 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1478 struct elf_phdr *phdr;
1479 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1480 int i, retval;
1481 const char *errmsg;
5fafdf24 1482
8e62a717
RH
1483 /* First of all, some simple consistency checks */
1484 errmsg = "Invalid ELF image for this architecture";
1485 if (!elf_check_ident(ehdr)) {
1486 goto exit_errmsg;
1487 }
1488 bswap_ehdr(ehdr);
1489 if (!elf_check_ehdr(ehdr)) {
1490 goto exit_errmsg;
d97ef72e 1491 }
5fafdf24 1492
8e62a717
RH
1493 i = ehdr->e_phnum * sizeof(struct elf_phdr);
1494 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1495 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 1496 } else {
8e62a717
RH
1497 phdr = (struct elf_phdr *) alloca(i);
1498 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 1499 if (retval != i) {
8e62a717 1500 goto exit_read;
9955ffac 1501 }
d97ef72e 1502 }
8e62a717 1503 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 1504
1af02e83
MF
1505#ifdef CONFIG_USE_FDPIC
1506 info->nsegs = 0;
1507 info->pt_dynamic_addr = 0;
1508#endif
1509
682674b8
RH
1510 /* Find the maximum size of the image and allocate an appropriate
1511 amount of memory to handle that. */
1512 loaddr = -1, hiaddr = 0;
8e62a717
RH
1513 for (i = 0; i < ehdr->e_phnum; ++i) {
1514 if (phdr[i].p_type == PT_LOAD) {
1515 abi_ulong a = phdr[i].p_vaddr;
682674b8
RH
1516 if (a < loaddr) {
1517 loaddr = a;
1518 }
8e62a717 1519 a += phdr[i].p_memsz;
682674b8
RH
1520 if (a > hiaddr) {
1521 hiaddr = a;
1522 }
1af02e83
MF
1523#ifdef CONFIG_USE_FDPIC
1524 ++info->nsegs;
1525#endif
682674b8
RH
1526 }
1527 }
1528
1529 load_addr = loaddr;
8e62a717 1530 if (ehdr->e_type == ET_DYN) {
682674b8
RH
1531 /* The image indicates that it can be loaded anywhere. Find a
1532 location that can hold the memory space required. If the
1533 image is pre-linked, LOADDR will be non-zero. Since we do
1534 not supply MAP_FIXED here we'll use that address if and
1535 only if it remains available. */
1536 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
1537 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
1538 -1, 0);
1539 if (load_addr == -1) {
8e62a717 1540 goto exit_perror;
d97ef72e 1541 }
bf858897
RH
1542 } else if (pinterp_name != NULL) {
1543 /* This is the main executable. Make sure that the low
1544 address does not conflict with MMAP_MIN_ADDR or the
1545 QEMU application itself. */
f3ed1f5d 1546 probe_guest_base(image_name, loaddr, hiaddr);
d97ef72e 1547 }
682674b8 1548 load_bias = load_addr - loaddr;
d97ef72e 1549
1af02e83
MF
1550#ifdef CONFIG_USE_FDPIC
1551 {
1552 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 1553 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
1554
1555 for (i = 0; i < ehdr->e_phnum; ++i) {
1556 switch (phdr[i].p_type) {
1557 case PT_DYNAMIC:
1558 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
1559 break;
1560 case PT_LOAD:
1561 loadsegs->addr = phdr[i].p_vaddr + load_bias;
1562 loadsegs->p_vaddr = phdr[i].p_vaddr;
1563 loadsegs->p_memsz = phdr[i].p_memsz;
1564 ++loadsegs;
1565 break;
1566 }
1567 }
1568 }
1569#endif
1570
8e62a717
RH
1571 info->load_bias = load_bias;
1572 info->load_addr = load_addr;
1573 info->entry = ehdr->e_entry + load_bias;
1574 info->start_code = -1;
1575 info->end_code = 0;
1576 info->start_data = -1;
1577 info->end_data = 0;
1578 info->brk = 0;
d8fd2954 1579 info->elf_flags = ehdr->e_flags;
8e62a717
RH
1580
1581 for (i = 0; i < ehdr->e_phnum; i++) {
1582 struct elf_phdr *eppnt = phdr + i;
d97ef72e 1583 if (eppnt->p_type == PT_LOAD) {
682674b8 1584 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
d97ef72e 1585 int elf_prot = 0;
d97ef72e
RH
1586
1587 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
1588 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1589 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
d97ef72e 1590
682674b8
RH
1591 vaddr = load_bias + eppnt->p_vaddr;
1592 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
1593 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
1594
1595 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
1596 elf_prot, MAP_PRIVATE | MAP_FIXED,
8e62a717 1597 image_fd, eppnt->p_offset - vaddr_po);
09bfb054 1598 if (error == -1) {
8e62a717 1599 goto exit_perror;
09bfb054 1600 }
09bfb054 1601
682674b8
RH
1602 vaddr_ef = vaddr + eppnt->p_filesz;
1603 vaddr_em = vaddr + eppnt->p_memsz;
31e31b8a 1604
cf129f3a 1605 /* If the load segment requests extra zeros (e.g. bss), map it. */
682674b8
RH
1606 if (vaddr_ef < vaddr_em) {
1607 zero_bss(vaddr_ef, vaddr_em, elf_prot);
cf129f3a 1608 }
8e62a717
RH
1609
1610 /* Find the full program boundaries. */
1611 if (elf_prot & PROT_EXEC) {
1612 if (vaddr < info->start_code) {
1613 info->start_code = vaddr;
1614 }
1615 if (vaddr_ef > info->end_code) {
1616 info->end_code = vaddr_ef;
1617 }
1618 }
1619 if (elf_prot & PROT_WRITE) {
1620 if (vaddr < info->start_data) {
1621 info->start_data = vaddr;
1622 }
1623 if (vaddr_ef > info->end_data) {
1624 info->end_data = vaddr_ef;
1625 }
1626 if (vaddr_em > info->brk) {
1627 info->brk = vaddr_em;
1628 }
1629 }
bf858897
RH
1630 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
1631 char *interp_name;
1632
1633 if (*pinterp_name) {
1634 errmsg = "Multiple PT_INTERP entries";
1635 goto exit_errmsg;
1636 }
1637 interp_name = malloc(eppnt->p_filesz);
1638 if (!interp_name) {
1639 goto exit_perror;
1640 }
1641
1642 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
1643 memcpy(interp_name, bprm_buf + eppnt->p_offset,
1644 eppnt->p_filesz);
1645 } else {
1646 retval = pread(image_fd, interp_name, eppnt->p_filesz,
1647 eppnt->p_offset);
1648 if (retval != eppnt->p_filesz) {
1649 goto exit_perror;
1650 }
1651 }
1652 if (interp_name[eppnt->p_filesz - 1] != 0) {
1653 errmsg = "Invalid PT_INTERP entry";
1654 goto exit_errmsg;
1655 }
1656 *pinterp_name = interp_name;
d97ef72e 1657 }
682674b8 1658 }
5fafdf24 1659
8e62a717
RH
1660 if (info->end_data == 0) {
1661 info->start_data = info->end_code;
1662 info->end_data = info->end_code;
1663 info->brk = info->end_code;
1664 }
1665
682674b8 1666 if (qemu_log_enabled()) {
8e62a717 1667 load_symbols(ehdr, image_fd, load_bias);
682674b8 1668 }
31e31b8a 1669
8e62a717
RH
1670 close(image_fd);
1671 return;
1672
1673 exit_read:
1674 if (retval >= 0) {
1675 errmsg = "Incomplete read of file header";
1676 goto exit_errmsg;
1677 }
1678 exit_perror:
1679 errmsg = strerror(errno);
1680 exit_errmsg:
1681 fprintf(stderr, "%s: %s\n", image_name, errmsg);
1682 exit(-1);
1683}
1684
1685static void load_elf_interp(const char *filename, struct image_info *info,
1686 char bprm_buf[BPRM_BUF_SIZE])
1687{
1688 int fd, retval;
1689
1690 fd = open(path(filename), O_RDONLY);
1691 if (fd < 0) {
1692 goto exit_perror;
1693 }
31e31b8a 1694
8e62a717
RH
1695 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
1696 if (retval < 0) {
1697 goto exit_perror;
1698 }
1699 if (retval < BPRM_BUF_SIZE) {
1700 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
1701 }
1702
bf858897 1703 load_elf_image(filename, fd, info, NULL, bprm_buf);
8e62a717
RH
1704 return;
1705
1706 exit_perror:
1707 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
1708 exit(-1);
31e31b8a
FB
1709}
1710
49918a75
PB
1711static int symfind(const void *s0, const void *s1)
1712{
c7c530cd 1713 target_ulong addr = *(target_ulong *)s0;
49918a75
PB
1714 struct elf_sym *sym = (struct elf_sym *)s1;
1715 int result = 0;
c7c530cd 1716 if (addr < sym->st_value) {
49918a75 1717 result = -1;
c7c530cd 1718 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
1719 result = 1;
1720 }
1721 return result;
1722}
1723
1724static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
1725{
1726#if ELF_CLASS == ELFCLASS32
1727 struct elf_sym *syms = s->disas_symtab.elf32;
1728#else
1729 struct elf_sym *syms = s->disas_symtab.elf64;
1730#endif
1731
1732 // binary search
49918a75
PB
1733 struct elf_sym *sym;
1734
c7c530cd 1735 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 1736 if (sym != NULL) {
49918a75
PB
1737 return s->disas_strtab + sym->st_name;
1738 }
1739
1740 return "";
1741}
1742
1743/* FIXME: This should use elf_ops.h */
1744static int symcmp(const void *s0, const void *s1)
1745{
1746 struct elf_sym *sym0 = (struct elf_sym *)s0;
1747 struct elf_sym *sym1 = (struct elf_sym *)s1;
1748 return (sym0->st_value < sym1->st_value)
1749 ? -1
1750 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
1751}
1752
689f936f 1753/* Best attempt to load symbols from this ELF object. */
682674b8 1754static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 1755{
682674b8
RH
1756 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1757 struct elf_shdr *shdr;
b9475279
CV
1758 char *strings = NULL;
1759 struct syminfo *s = NULL;
1760 struct elf_sym *new_syms, *syms = NULL;
689f936f 1761
682674b8
RH
1762 shnum = hdr->e_shnum;
1763 i = shnum * sizeof(struct elf_shdr);
1764 shdr = (struct elf_shdr *)alloca(i);
1765 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
1766 return;
1767 }
1768
1769 bswap_shdr(shdr, shnum);
1770 for (i = 0; i < shnum; ++i) {
1771 if (shdr[i].sh_type == SHT_SYMTAB) {
1772 sym_idx = i;
1773 str_idx = shdr[i].sh_link;
49918a75
PB
1774 goto found;
1775 }
689f936f 1776 }
682674b8
RH
1777
1778 /* There will be no symbol table if the file was stripped. */
1779 return;
689f936f
FB
1780
1781 found:
682674b8 1782 /* Now know where the strtab and symtab are. Snarf them. */
e80cfcfc 1783 s = malloc(sizeof(*s));
682674b8 1784 if (!s) {
b9475279 1785 goto give_up;
682674b8 1786 }
5fafdf24 1787
682674b8
RH
1788 i = shdr[str_idx].sh_size;
1789 s->disas_strtab = strings = malloc(i);
1790 if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
b9475279 1791 goto give_up;
682674b8 1792 }
49918a75 1793
682674b8
RH
1794 i = shdr[sym_idx].sh_size;
1795 syms = malloc(i);
1796 if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
b9475279 1797 goto give_up;
682674b8 1798 }
31e31b8a 1799
682674b8
RH
1800 nsyms = i / sizeof(struct elf_sym);
1801 for (i = 0; i < nsyms; ) {
49918a75 1802 bswap_sym(syms + i);
682674b8
RH
1803 /* Throw away entries which we do not need. */
1804 if (syms[i].st_shndx == SHN_UNDEF
1805 || syms[i].st_shndx >= SHN_LORESERVE
1806 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
1807 if (i < --nsyms) {
49918a75
PB
1808 syms[i] = syms[nsyms];
1809 }
682674b8 1810 } else {
49918a75 1811#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
1812 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
1813 syms[i].st_value &= ~(target_ulong)1;
0774bed1 1814#endif
682674b8
RH
1815 syms[i].st_value += load_bias;
1816 i++;
1817 }
0774bed1 1818 }
49918a75 1819
b9475279
CV
1820 /* No "useful" symbol. */
1821 if (nsyms == 0) {
1822 goto give_up;
1823 }
1824
5d5c9930
RH
1825 /* Attempt to free the storage associated with the local symbols
1826 that we threw away. Whether or not this has any effect on the
1827 memory allocation depends on the malloc implementation and how
1828 many symbols we managed to discard. */
8d79de6e
SW
1829 new_syms = realloc(syms, nsyms * sizeof(*syms));
1830 if (new_syms == NULL) {
b9475279 1831 goto give_up;
5d5c9930 1832 }
8d79de6e 1833 syms = new_syms;
5d5c9930 1834
49918a75 1835 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 1836
49918a75
PB
1837 s->disas_num_syms = nsyms;
1838#if ELF_CLASS == ELFCLASS32
1839 s->disas_symtab.elf32 = syms;
49918a75
PB
1840#else
1841 s->disas_symtab.elf64 = syms;
49918a75 1842#endif
682674b8 1843 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
1844 s->next = syminfos;
1845 syminfos = s;
b9475279
CV
1846
1847 return;
1848
1849give_up:
1850 free(s);
1851 free(strings);
1852 free(syms);
689f936f 1853}
31e31b8a 1854
e5fe0c52
PB
1855int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
1856 struct image_info * info)
31e31b8a 1857{
8e62a717 1858 struct image_info interp_info;
31e31b8a 1859 struct elfhdr elf_ex;
8e62a717 1860 char *elf_interpreter = NULL;
31e31b8a 1861
bf858897
RH
1862 info->start_mmap = (abi_ulong)ELF_START_MMAP;
1863 info->mmap = 0;
1864 info->rss = 0;
1865
1866 load_elf_image(bprm->filename, bprm->fd, info,
1867 &elf_interpreter, bprm->buf);
31e31b8a 1868
bf858897
RH
1869 /* ??? We need a copy of the elf header for passing to create_elf_tables.
1870 If we do nothing, we'll have overwritten this when we re-use bprm->buf
1871 when we load the interpreter. */
1872 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 1873
e5fe0c52
PB
1874 bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p);
1875 bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p);
1876 bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p);
1877 if (!bprm->p) {
bf858897
RH
1878 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
1879 exit(-1);
379f6698 1880 }
379f6698 1881
31e31b8a
FB
1882 /* Do this so that we can load the interpreter, if need be. We will
1883 change some of these later */
31e31b8a 1884 bprm->p = setup_arg_pages(bprm->p, bprm, info);
31e31b8a 1885
8e62a717
RH
1886 if (elf_interpreter) {
1887 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 1888
8e62a717
RH
1889 /* If the program interpreter is one of these two, then assume
1890 an iBCS2 image. Otherwise assume a native linux image. */
1891
1892 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
1893 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
1894 info->personality = PER_SVR4;
31e31b8a 1895
8e62a717
RH
1896 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1897 and some applications "depend" upon this behavior. Since
1898 we do not have the power to recompile these, we emulate
1899 the SVr4 behavior. Sigh. */
1900 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
1901 MAP_FIXED | MAP_PRIVATE, -1, 0);
1902 }
31e31b8a
FB
1903 }
1904
8e62a717
RH
1905 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
1906 info, (elf_interpreter ? &interp_info : NULL));
1907 info->start_stack = bprm->p;
1908
1909 /* If we have an interpreter, set that as the program's entry point.
8e78064e 1910 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
1911 point as a function descriptor. Do this after creating elf tables
1912 so that we copy the original program entry point into the AUXV. */
1913 if (elf_interpreter) {
8e78064e 1914 info->load_bias = interp_info.load_bias;
8e62a717 1915 info->entry = interp_info.entry;
bf858897 1916 free(elf_interpreter);
8e62a717 1917 }
31e31b8a 1918
edf8e2af
MW
1919#ifdef USE_ELF_CORE_DUMP
1920 bprm->core_dump = &elf_core_dump;
1921#endif
1922
31e31b8a
FB
1923 return 0;
1924}
1925
edf8e2af 1926#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
1927/*
1928 * Definitions to generate Intel SVR4-like core files.
a2547a13 1929 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
1930 * tacked on the front to prevent clashes with linux definitions,
1931 * and the typedef forms have been avoided. This is mostly like
1932 * the SVR4 structure, but more Linuxy, with things that Linux does
1933 * not support and which gdb doesn't really use excluded.
1934 *
1935 * Fields we don't dump (their contents is zero) in linux-user qemu
1936 * are marked with XXX.
1937 *
1938 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
1939 *
1940 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 1941 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
1942 * the target resides):
1943 *
1944 * #define USE_ELF_CORE_DUMP
1945 *
1946 * Next you define type of register set used for dumping. ELF specification
1947 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
1948 *
c227f099 1949 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 1950 * #define ELF_NREG <number of registers>
c227f099 1951 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 1952 *
edf8e2af
MW
1953 * Last step is to implement target specific function that copies registers
1954 * from given cpu into just specified register set. Prototype is:
1955 *
c227f099 1956 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 1957 * const CPUArchState *env);
edf8e2af
MW
1958 *
1959 * Parameters:
1960 * regs - copy register values into here (allocated and zeroed by caller)
1961 * env - copy registers from here
1962 *
1963 * Example for ARM target is provided in this file.
1964 */
1965
1966/* An ELF note in memory */
1967struct memelfnote {
1968 const char *name;
1969 size_t namesz;
1970 size_t namesz_rounded;
1971 int type;
1972 size_t datasz;
80f5ce75 1973 size_t datasz_rounded;
edf8e2af
MW
1974 void *data;
1975 size_t notesz;
1976};
1977
a2547a13 1978struct target_elf_siginfo {
80f5ce75
LV
1979 target_int si_signo; /* signal number */
1980 target_int si_code; /* extra code */
1981 target_int si_errno; /* errno */
edf8e2af
MW
1982};
1983
a2547a13
LD
1984struct target_elf_prstatus {
1985 struct target_elf_siginfo pr_info; /* Info associated with signal */
80f5ce75 1986 target_short pr_cursig; /* Current signal */
edf8e2af
MW
1987 target_ulong pr_sigpend; /* XXX */
1988 target_ulong pr_sighold; /* XXX */
c227f099
AL
1989 target_pid_t pr_pid;
1990 target_pid_t pr_ppid;
1991 target_pid_t pr_pgrp;
1992 target_pid_t pr_sid;
edf8e2af
MW
1993 struct target_timeval pr_utime; /* XXX User time */
1994 struct target_timeval pr_stime; /* XXX System time */
1995 struct target_timeval pr_cutime; /* XXX Cumulative user time */
1996 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 1997 target_elf_gregset_t pr_reg; /* GP registers */
80f5ce75 1998 target_int pr_fpvalid; /* XXX */
edf8e2af
MW
1999};
2000
2001#define ELF_PRARGSZ (80) /* Number of chars for args */
2002
a2547a13 2003struct target_elf_prpsinfo {
edf8e2af
MW
2004 char pr_state; /* numeric process state */
2005 char pr_sname; /* char for pr_state */
2006 char pr_zomb; /* zombie */
2007 char pr_nice; /* nice val */
2008 target_ulong pr_flag; /* flags */
c227f099
AL
2009 target_uid_t pr_uid;
2010 target_gid_t pr_gid;
2011 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af
MW
2012 /* Lots missing */
2013 char pr_fname[16]; /* filename of executable */
2014 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2015};
2016
2017/* Here is the structure in which status of each thread is captured. */
2018struct elf_thread_status {
72cf2d4f 2019 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 2020 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
2021#if 0
2022 elf_fpregset_t fpu; /* NT_PRFPREG */
2023 struct task_struct *thread;
2024 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2025#endif
2026 struct memelfnote notes[1];
2027 int num_notes;
2028};
2029
2030struct elf_note_info {
2031 struct memelfnote *notes;
a2547a13
LD
2032 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2033 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 2034
72cf2d4f 2035 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
edf8e2af
MW
2036#if 0
2037 /*
2038 * Current version of ELF coredump doesn't support
2039 * dumping fp regs etc.
2040 */
2041 elf_fpregset_t *fpu;
2042 elf_fpxregset_t *xfpu;
2043 int thread_status_size;
2044#endif
2045 int notes_size;
2046 int numnote;
2047};
2048
2049struct vm_area_struct {
2050 abi_ulong vma_start; /* start vaddr of memory region */
2051 abi_ulong vma_end; /* end vaddr of memory region */
2052 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 2053 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
2054};
2055
2056struct mm_struct {
72cf2d4f 2057 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
2058 int mm_count; /* number of mappings */
2059};
2060
2061static struct mm_struct *vma_init(void);
2062static void vma_delete(struct mm_struct *);
2063static int vma_add_mapping(struct mm_struct *, abi_ulong,
d97ef72e 2064 abi_ulong, abi_ulong);
edf8e2af
MW
2065static int vma_get_mapping_count(const struct mm_struct *);
2066static struct vm_area_struct *vma_first(const struct mm_struct *);
2067static struct vm_area_struct *vma_next(struct vm_area_struct *);
2068static abi_ulong vma_dump_size(const struct vm_area_struct *);
b480d9b7 2069static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
d97ef72e 2070 unsigned long flags);
edf8e2af
MW
2071
2072static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2073static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 2074 unsigned int, void *);
a2547a13
LD
2075static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2076static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
2077static void fill_auxv_note(struct memelfnote *, const TaskState *);
2078static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2079static size_t note_size(const struct memelfnote *);
2080static void free_note_info(struct elf_note_info *);
9349b4f9
AF
2081static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2082static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
2083static int core_dump_filename(const TaskState *, char *, size_t);
2084
2085static int dump_write(int, const void *, size_t);
2086static int write_note(struct memelfnote *, int);
2087static int write_note_info(struct elf_note_info *, int);
2088
2089#ifdef BSWAP_NEEDED
a2547a13 2090static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af
MW
2091{
2092 prstatus->pr_info.si_signo = tswapl(prstatus->pr_info.si_signo);
2093 prstatus->pr_info.si_code = tswapl(prstatus->pr_info.si_code);
2094 prstatus->pr_info.si_errno = tswapl(prstatus->pr_info.si_errno);
2095 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2096 prstatus->pr_sigpend = tswapl(prstatus->pr_sigpend);
2097 prstatus->pr_sighold = tswapl(prstatus->pr_sighold);
2098 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2099 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2100 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2101 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2102 /* cpu times are not filled, so we skip them */
2103 /* regs should be in correct format already */
2104 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2105}
2106
a2547a13 2107static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af
MW
2108{
2109 psinfo->pr_flag = tswapl(psinfo->pr_flag);
2110 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2111 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2112 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2113 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2114 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2115 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2116}
991f8f0c
RH
2117
2118static void bswap_note(struct elf_note *en)
2119{
2120 bswap32s(&en->n_namesz);
2121 bswap32s(&en->n_descsz);
2122 bswap32s(&en->n_type);
2123}
2124#else
2125static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2126static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2127static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
2128#endif /* BSWAP_NEEDED */
2129
2130/*
2131 * Minimal support for linux memory regions. These are needed
2132 * when we are finding out what memory exactly belongs to
2133 * emulated process. No locks needed here, as long as
2134 * thread that received the signal is stopped.
2135 */
2136
2137static struct mm_struct *vma_init(void)
2138{
2139 struct mm_struct *mm;
2140
7267c094 2141 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
2142 return (NULL);
2143
2144 mm->mm_count = 0;
72cf2d4f 2145 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
2146
2147 return (mm);
2148}
2149
2150static void vma_delete(struct mm_struct *mm)
2151{
2152 struct vm_area_struct *vma;
2153
2154 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 2155 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 2156 g_free(vma);
edf8e2af 2157 }
7267c094 2158 g_free(mm);
edf8e2af
MW
2159}
2160
2161static int vma_add_mapping(struct mm_struct *mm, abi_ulong start,
d97ef72e 2162 abi_ulong end, abi_ulong flags)
edf8e2af
MW
2163{
2164 struct vm_area_struct *vma;
2165
7267c094 2166 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
2167 return (-1);
2168
2169 vma->vma_start = start;
2170 vma->vma_end = end;
2171 vma->vma_flags = flags;
2172
72cf2d4f 2173 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
2174 mm->mm_count++;
2175
2176 return (0);
2177}
2178
2179static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2180{
72cf2d4f 2181 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
2182}
2183
2184static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2185{
72cf2d4f 2186 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
2187}
2188
2189static int vma_get_mapping_count(const struct mm_struct *mm)
2190{
2191 return (mm->mm_count);
2192}
2193
2194/*
2195 * Calculate file (dump) size of given memory region.
2196 */
2197static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2198{
2199 /* if we cannot even read the first page, skip it */
2200 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2201 return (0);
2202
2203 /*
2204 * Usually we don't dump executable pages as they contain
2205 * non-writable code that debugger can read directly from
2206 * target library etc. However, thread stacks are marked
2207 * also executable so we read in first page of given region
2208 * and check whether it contains elf header. If there is
2209 * no elf header, we dump it.
2210 */
2211 if (vma->vma_flags & PROT_EXEC) {
2212 char page[TARGET_PAGE_SIZE];
2213
2214 copy_from_user(page, vma->vma_start, sizeof (page));
2215 if ((page[EI_MAG0] == ELFMAG0) &&
2216 (page[EI_MAG1] == ELFMAG1) &&
2217 (page[EI_MAG2] == ELFMAG2) &&
2218 (page[EI_MAG3] == ELFMAG3)) {
2219 /*
2220 * Mappings are possibly from ELF binary. Don't dump
2221 * them.
2222 */
2223 return (0);
2224 }
2225 }
2226
2227 return (vma->vma_end - vma->vma_start);
2228}
2229
b480d9b7 2230static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
d97ef72e 2231 unsigned long flags)
edf8e2af
MW
2232{
2233 struct mm_struct *mm = (struct mm_struct *)priv;
2234
edf8e2af
MW
2235 vma_add_mapping(mm, start, end, flags);
2236 return (0);
2237}
2238
2239static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 2240 unsigned int sz, void *data)
edf8e2af
MW
2241{
2242 unsigned int namesz;
2243
2244 namesz = strlen(name) + 1;
2245 note->name = name;
2246 note->namesz = namesz;
2247 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2248 note->type = type;
80f5ce75
LV
2249 note->datasz = sz;
2250 note->datasz_rounded = roundup(sz, sizeof (int32_t));
2251
edf8e2af
MW
2252 note->data = data;
2253
2254 /*
2255 * We calculate rounded up note size here as specified by
2256 * ELF document.
2257 */
2258 note->notesz = sizeof (struct elf_note) +
80f5ce75 2259 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
2260}
2261
2262static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 2263 uint32_t flags)
edf8e2af
MW
2264{
2265 (void) memset(elf, 0, sizeof(*elf));
2266
2267 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2268 elf->e_ident[EI_CLASS] = ELF_CLASS;
2269 elf->e_ident[EI_DATA] = ELF_DATA;
2270 elf->e_ident[EI_VERSION] = EV_CURRENT;
2271 elf->e_ident[EI_OSABI] = ELF_OSABI;
2272
2273 elf->e_type = ET_CORE;
2274 elf->e_machine = machine;
2275 elf->e_version = EV_CURRENT;
2276 elf->e_phoff = sizeof(struct elfhdr);
2277 elf->e_flags = flags;
2278 elf->e_ehsize = sizeof(struct elfhdr);
2279 elf->e_phentsize = sizeof(struct elf_phdr);
2280 elf->e_phnum = segs;
2281
edf8e2af 2282 bswap_ehdr(elf);
edf8e2af
MW
2283}
2284
2285static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2286{
2287 phdr->p_type = PT_NOTE;
2288 phdr->p_offset = offset;
2289 phdr->p_vaddr = 0;
2290 phdr->p_paddr = 0;
2291 phdr->p_filesz = sz;
2292 phdr->p_memsz = 0;
2293 phdr->p_flags = 0;
2294 phdr->p_align = 0;
2295
991f8f0c 2296 bswap_phdr(phdr, 1);
edf8e2af
MW
2297}
2298
2299static size_t note_size(const struct memelfnote *note)
2300{
2301 return (note->notesz);
2302}
2303
a2547a13 2304static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 2305 const TaskState *ts, int signr)
edf8e2af
MW
2306{
2307 (void) memset(prstatus, 0, sizeof (*prstatus));
2308 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2309 prstatus->pr_pid = ts->ts_tid;
2310 prstatus->pr_ppid = getppid();
2311 prstatus->pr_pgrp = getpgrp();
2312 prstatus->pr_sid = getsid(0);
2313
edf8e2af 2314 bswap_prstatus(prstatus);
edf8e2af
MW
2315}
2316
a2547a13 2317static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af
MW
2318{
2319 char *filename, *base_filename;
2320 unsigned int i, len;
2321
2322 (void) memset(psinfo, 0, sizeof (*psinfo));
2323
2324 len = ts->info->arg_end - ts->info->arg_start;
2325 if (len >= ELF_PRARGSZ)
2326 len = ELF_PRARGSZ - 1;
2327 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2328 return -EFAULT;
2329 for (i = 0; i < len; i++)
2330 if (psinfo->pr_psargs[i] == 0)
2331 psinfo->pr_psargs[i] = ' ';
2332 psinfo->pr_psargs[len] = 0;
2333
2334 psinfo->pr_pid = getpid();
2335 psinfo->pr_ppid = getppid();
2336 psinfo->pr_pgrp = getpgrp();
2337 psinfo->pr_sid = getsid(0);
2338 psinfo->pr_uid = getuid();
2339 psinfo->pr_gid = getgid();
2340
2341 filename = strdup(ts->bprm->filename);
2342 base_filename = strdup(basename(filename));
2343 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 2344 sizeof(psinfo->pr_fname));
edf8e2af
MW
2345 free(base_filename);
2346 free(filename);
2347
edf8e2af 2348 bswap_psinfo(psinfo);
edf8e2af
MW
2349 return (0);
2350}
2351
2352static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2353{
2354 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2355 elf_addr_t orig_auxv = auxv;
edf8e2af 2356 void *ptr;
125b0f55 2357 int len = ts->info->auxv_len;
edf8e2af
MW
2358
2359 /*
2360 * Auxiliary vector is stored in target process stack. It contains
2361 * {type, value} pairs that we need to dump into note. This is not
2362 * strictly necessary but we do it here for sake of completeness.
2363 */
2364
edf8e2af
MW
2365 /* read in whole auxv vector and copy it to memelfnote */
2366 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2367 if (ptr != NULL) {
2368 fill_note(note, "CORE", NT_AUXV, len, ptr);
2369 unlock_user(ptr, auxv, len);
2370 }
2371}
2372
2373/*
2374 * Constructs name of coredump file. We have following convention
2375 * for the name:
2376 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2377 *
2378 * Returns 0 in case of success, -1 otherwise (errno is set).
2379 */
2380static int core_dump_filename(const TaskState *ts, char *buf,
d97ef72e 2381 size_t bufsize)
edf8e2af
MW
2382{
2383 char timestamp[64];
2384 char *filename = NULL;
2385 char *base_filename = NULL;
2386 struct timeval tv;
2387 struct tm tm;
2388
2389 assert(bufsize >= PATH_MAX);
2390
2391 if (gettimeofday(&tv, NULL) < 0) {
2392 (void) fprintf(stderr, "unable to get current timestamp: %s",
d97ef72e 2393 strerror(errno));
edf8e2af
MW
2394 return (-1);
2395 }
2396
2397 filename = strdup(ts->bprm->filename);
2398 base_filename = strdup(basename(filename));
2399 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
d97ef72e 2400 localtime_r(&tv.tv_sec, &tm));
edf8e2af 2401 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
d97ef72e 2402 base_filename, timestamp, (int)getpid());
edf8e2af
MW
2403 free(base_filename);
2404 free(filename);
2405
2406 return (0);
2407}
2408
2409static int dump_write(int fd, const void *ptr, size_t size)
2410{
2411 const char *bufp = (const char *)ptr;
2412 ssize_t bytes_written, bytes_left;
2413 struct rlimit dumpsize;
2414 off_t pos;
2415
2416 bytes_written = 0;
2417 getrlimit(RLIMIT_CORE, &dumpsize);
2418 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2419 if (errno == ESPIPE) { /* not a seekable stream */
2420 bytes_left = size;
2421 } else {
2422 return pos;
2423 }
2424 } else {
2425 if (dumpsize.rlim_cur <= pos) {
2426 return -1;
2427 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2428 bytes_left = size;
2429 } else {
2430 size_t limit_left=dumpsize.rlim_cur - pos;
2431 bytes_left = limit_left >= size ? size : limit_left ;
2432 }
2433 }
2434
2435 /*
2436 * In normal conditions, single write(2) should do but
2437 * in case of socket etc. this mechanism is more portable.
2438 */
2439 do {
2440 bytes_written = write(fd, bufp, bytes_left);
2441 if (bytes_written < 0) {
2442 if (errno == EINTR)
2443 continue;
2444 return (-1);
2445 } else if (bytes_written == 0) { /* eof */
2446 return (-1);
2447 }
2448 bufp += bytes_written;
2449 bytes_left -= bytes_written;
2450 } while (bytes_left > 0);
2451
2452 return (0);
2453}
2454
2455static int write_note(struct memelfnote *men, int fd)
2456{
2457 struct elf_note en;
2458
2459 en.n_namesz = men->namesz;
2460 en.n_type = men->type;
2461 en.n_descsz = men->datasz;
2462
edf8e2af 2463 bswap_note(&en);
edf8e2af
MW
2464
2465 if (dump_write(fd, &en, sizeof(en)) != 0)
2466 return (-1);
2467 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2468 return (-1);
80f5ce75 2469 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
2470 return (-1);
2471
2472 return (0);
2473}
2474
9349b4f9 2475static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af
MW
2476{
2477 TaskState *ts = (TaskState *)env->opaque;
2478 struct elf_thread_status *ets;
2479
7267c094 2480 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
2481 ets->num_notes = 1; /* only prstatus is dumped */
2482 fill_prstatus(&ets->prstatus, ts, 0);
2483 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2484 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 2485 &ets->prstatus);
edf8e2af 2486
72cf2d4f 2487 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
2488
2489 info->notes_size += note_size(&ets->notes[0]);
2490}
2491
2492static int fill_note_info(struct elf_note_info *info,
9349b4f9 2493 long signr, const CPUArchState *env)
edf8e2af
MW
2494{
2495#define NUMNOTES 3
9349b4f9 2496 CPUArchState *cpu = NULL;
edf8e2af
MW
2497 TaskState *ts = (TaskState *)env->opaque;
2498 int i;
2499
2500 (void) memset(info, 0, sizeof (*info));
2501
72cf2d4f 2502 QTAILQ_INIT(&info->thread_list);
edf8e2af 2503
7267c094 2504 info->notes = g_malloc0(NUMNOTES * sizeof (struct memelfnote));
edf8e2af
MW
2505 if (info->notes == NULL)
2506 return (-ENOMEM);
7267c094 2507 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
2508 if (info->prstatus == NULL)
2509 return (-ENOMEM);
7267c094 2510 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
2511 if (info->prstatus == NULL)
2512 return (-ENOMEM);
2513
2514 /*
2515 * First fill in status (and registers) of current thread
2516 * including process info & aux vector.
2517 */
2518 fill_prstatus(info->prstatus, ts, signr);
2519 elf_core_copy_regs(&info->prstatus->pr_reg, env);
2520 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 2521 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
2522 fill_psinfo(info->psinfo, ts);
2523 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 2524 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
2525 fill_auxv_note(&info->notes[2], ts);
2526 info->numnote = 3;
2527
2528 info->notes_size = 0;
2529 for (i = 0; i < info->numnote; i++)
2530 info->notes_size += note_size(&info->notes[i]);
2531
2532 /* read and fill status of all threads */
2533 cpu_list_lock();
2534 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
2535 if (cpu == thread_env)
2536 continue;
2537 fill_thread_info(info, cpu);
2538 }
2539 cpu_list_unlock();
2540
2541 return (0);
2542}
2543
2544static void free_note_info(struct elf_note_info *info)
2545{
2546 struct elf_thread_status *ets;
2547
72cf2d4f
BS
2548 while (!QTAILQ_EMPTY(&info->thread_list)) {
2549 ets = QTAILQ_FIRST(&info->thread_list);
2550 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 2551 g_free(ets);
edf8e2af
MW
2552 }
2553
7267c094
AL
2554 g_free(info->prstatus);
2555 g_free(info->psinfo);
2556 g_free(info->notes);
edf8e2af
MW
2557}
2558
2559static int write_note_info(struct elf_note_info *info, int fd)
2560{
2561 struct elf_thread_status *ets;
2562 int i, error = 0;
2563
2564 /* write prstatus, psinfo and auxv for current thread */
2565 for (i = 0; i < info->numnote; i++)
2566 if ((error = write_note(&info->notes[i], fd)) != 0)
2567 return (error);
2568
2569 /* write prstatus for each thread */
2570 for (ets = info->thread_list.tqh_first; ets != NULL;
d97ef72e 2571 ets = ets->ets_link.tqe_next) {
edf8e2af
MW
2572 if ((error = write_note(&ets->notes[0], fd)) != 0)
2573 return (error);
2574 }
2575
2576 return (0);
2577}
2578
2579/*
2580 * Write out ELF coredump.
2581 *
2582 * See documentation of ELF object file format in:
2583 * http://www.caldera.com/developers/devspecs/gabi41.pdf
2584 *
2585 * Coredump format in linux is following:
2586 *
2587 * 0 +----------------------+ \
2588 * | ELF header | ET_CORE |
2589 * +----------------------+ |
2590 * | ELF program headers | |--- headers
2591 * | - NOTE section | |
2592 * | - PT_LOAD sections | |
2593 * +----------------------+ /
2594 * | NOTEs: |
2595 * | - NT_PRSTATUS |
2596 * | - NT_PRSINFO |
2597 * | - NT_AUXV |
2598 * +----------------------+ <-- aligned to target page
2599 * | Process memory dump |
2600 * : :
2601 * . .
2602 * : :
2603 * | |
2604 * +----------------------+
2605 *
2606 * NT_PRSTATUS -> struct elf_prstatus (per thread)
2607 * NT_PRSINFO -> struct elf_prpsinfo
2608 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2609 *
2610 * Format follows System V format as close as possible. Current
2611 * version limitations are as follows:
2612 * - no floating point registers are dumped
2613 *
2614 * Function returns 0 in case of success, negative errno otherwise.
2615 *
2616 * TODO: make this work also during runtime: it should be
2617 * possible to force coredump from running process and then
2618 * continue processing. For example qemu could set up SIGUSR2
2619 * handler (provided that target process haven't registered
2620 * handler for that) that does the dump when signal is received.
2621 */
9349b4f9 2622static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af
MW
2623{
2624 const TaskState *ts = (const TaskState *)env->opaque;
2625 struct vm_area_struct *vma = NULL;
2626 char corefile[PATH_MAX];
2627 struct elf_note_info info;
2628 struct elfhdr elf;
2629 struct elf_phdr phdr;
2630 struct rlimit dumpsize;
2631 struct mm_struct *mm = NULL;
2632 off_t offset = 0, data_offset = 0;
2633 int segs = 0;
2634 int fd = -1;
2635
2636 errno = 0;
2637 getrlimit(RLIMIT_CORE, &dumpsize);
2638 if (dumpsize.rlim_cur == 0)
d97ef72e 2639 return 0;
edf8e2af
MW
2640
2641 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
2642 return (-errno);
2643
2644 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 2645 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
2646 return (-errno);
2647
2648 /*
2649 * Walk through target process memory mappings and
2650 * set up structure containing this information. After
2651 * this point vma_xxx functions can be used.
2652 */
2653 if ((mm = vma_init()) == NULL)
2654 goto out;
2655
2656 walk_memory_regions(mm, vma_walker);
2657 segs = vma_get_mapping_count(mm);
2658
2659 /*
2660 * Construct valid coredump ELF header. We also
2661 * add one more segment for notes.
2662 */
2663 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
2664 if (dump_write(fd, &elf, sizeof (elf)) != 0)
2665 goto out;
2666
2667 /* fill in in-memory version of notes */
2668 if (fill_note_info(&info, signr, env) < 0)
2669 goto out;
2670
2671 offset += sizeof (elf); /* elf header */
2672 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
2673
2674 /* write out notes program header */
2675 fill_elf_note_phdr(&phdr, info.notes_size, offset);
2676
2677 offset += info.notes_size;
2678 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
2679 goto out;
2680
2681 /*
2682 * ELF specification wants data to start at page boundary so
2683 * we align it here.
2684 */
80f5ce75 2685 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
2686
2687 /*
2688 * Write program headers for memory regions mapped in
2689 * the target process.
2690 */
2691 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2692 (void) memset(&phdr, 0, sizeof (phdr));
2693
2694 phdr.p_type = PT_LOAD;
2695 phdr.p_offset = offset;
2696 phdr.p_vaddr = vma->vma_start;
2697 phdr.p_paddr = 0;
2698 phdr.p_filesz = vma_dump_size(vma);
2699 offset += phdr.p_filesz;
2700 phdr.p_memsz = vma->vma_end - vma->vma_start;
2701 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
2702 if (vma->vma_flags & PROT_WRITE)
2703 phdr.p_flags |= PF_W;
2704 if (vma->vma_flags & PROT_EXEC)
2705 phdr.p_flags |= PF_X;
2706 phdr.p_align = ELF_EXEC_PAGESIZE;
2707
80f5ce75 2708 bswap_phdr(&phdr, 1);
edf8e2af
MW
2709 dump_write(fd, &phdr, sizeof (phdr));
2710 }
2711
2712 /*
2713 * Next we write notes just after program headers. No
2714 * alignment needed here.
2715 */
2716 if (write_note_info(&info, fd) < 0)
2717 goto out;
2718
2719 /* align data to page boundary */
edf8e2af
MW
2720 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
2721 goto out;
2722
2723 /*
2724 * Finally we can dump process memory into corefile as well.
2725 */
2726 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2727 abi_ulong addr;
2728 abi_ulong end;
2729
2730 end = vma->vma_start + vma_dump_size(vma);
2731
2732 for (addr = vma->vma_start; addr < end;
d97ef72e 2733 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
2734 char page[TARGET_PAGE_SIZE];
2735 int error;
2736
2737 /*
2738 * Read in page from target process memory and
2739 * write it to coredump file.
2740 */
2741 error = copy_from_user(page, addr, sizeof (page));
2742 if (error != 0) {
49995e17 2743 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 2744 addr);
edf8e2af
MW
2745 errno = -error;
2746 goto out;
2747 }
2748 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
2749 goto out;
2750 }
2751 }
2752
d97ef72e 2753 out:
edf8e2af
MW
2754 free_note_info(&info);
2755 if (mm != NULL)
2756 vma_delete(mm);
2757 (void) close(fd);
2758
2759 if (errno != 0)
2760 return (-errno);
2761 return (0);
2762}
edf8e2af
MW
2763#endif /* USE_ELF_CORE_DUMP */
2764
e5fe0c52
PB
2765void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
2766{
2767 init_thread(regs, infop);
2768}