]> git.proxmox.com Git - mirror_qemu.git/blame - migration/ram.c
multifd: Be flexible about packet size
[mirror_qemu.git] / migration / ram.c
CommitLineData
56e93d26
JQ
1/*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
76cc7b58
JQ
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
56e93d26
JQ
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
e688df6b 28
1393a485 29#include "qemu/osdep.h"
33c11879 30#include "cpu.h"
56e93d26 31#include <zlib.h>
f348b6d1 32#include "qemu/cutils.h"
56e93d26
JQ
33#include "qemu/bitops.h"
34#include "qemu/bitmap.h"
7205c9ec 35#include "qemu/main-loop.h"
56eb90af 36#include "qemu/pmem.h"
709e3fe8 37#include "xbzrle.h"
7b1e1a22 38#include "ram.h"
6666c96a 39#include "migration.h"
71bb07db 40#include "socket.h"
f2a8f0a6 41#include "migration/register.h"
7b1e1a22 42#include "migration/misc.h"
08a0aee1 43#include "qemu-file.h"
be07b0ac 44#include "postcopy-ram.h"
53d37d36 45#include "page_cache.h"
56e93d26 46#include "qemu/error-report.h"
e688df6b 47#include "qapi/error.h"
9af23989 48#include "qapi/qapi-events-migration.h"
8acabf69 49#include "qapi/qmp/qerror.h"
56e93d26 50#include "trace.h"
56e93d26 51#include "exec/ram_addr.h"
f9494614 52#include "exec/target_page.h"
56e93d26 53#include "qemu/rcu_queue.h"
a91246c9 54#include "migration/colo.h"
53d37d36 55#include "block.h"
af8b7d2b
JQ
56#include "sysemu/sysemu.h"
57#include "qemu/uuid.h"
edd090c7 58#include "savevm.h"
b9ee2f7d 59#include "qemu/iov.h"
56e93d26 60
56e93d26
JQ
61/***********************************************************/
62/* ram save/restore */
63
bb890ed5
JQ
64/* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
65 * worked for pages that where filled with the same char. We switched
66 * it to only search for the zero value. And to avoid confusion with
67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
68 */
69
56e93d26 70#define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
bb890ed5 71#define RAM_SAVE_FLAG_ZERO 0x02
56e93d26
JQ
72#define RAM_SAVE_FLAG_MEM_SIZE 0x04
73#define RAM_SAVE_FLAG_PAGE 0x08
74#define RAM_SAVE_FLAG_EOS 0x10
75#define RAM_SAVE_FLAG_CONTINUE 0x20
76#define RAM_SAVE_FLAG_XBZRLE 0x40
77/* 0x80 is reserved in migration.h start with 0x100 next */
78#define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
79
56e93d26
JQ
80static inline bool is_zero_range(uint8_t *p, uint64_t size)
81{
a1febc49 82 return buffer_is_zero(p, size);
56e93d26
JQ
83}
84
9360447d
JQ
85XBZRLECacheStats xbzrle_counters;
86
56e93d26
JQ
87/* struct contains XBZRLE cache and a static page
88 used by the compression */
89static struct {
90 /* buffer used for XBZRLE encoding */
91 uint8_t *encoded_buf;
92 /* buffer for storing page content */
93 uint8_t *current_buf;
94 /* Cache for XBZRLE, Protected by lock. */
95 PageCache *cache;
96 QemuMutex lock;
c00e0928
JQ
97 /* it will store a page full of zeros */
98 uint8_t *zero_target_page;
f265e0e4
JQ
99 /* buffer used for XBZRLE decoding */
100 uint8_t *decoded_buf;
56e93d26
JQ
101} XBZRLE;
102
56e93d26
JQ
103static void XBZRLE_cache_lock(void)
104{
105 if (migrate_use_xbzrle())
106 qemu_mutex_lock(&XBZRLE.lock);
107}
108
109static void XBZRLE_cache_unlock(void)
110{
111 if (migrate_use_xbzrle())
112 qemu_mutex_unlock(&XBZRLE.lock);
113}
114
3d0684b2
JQ
115/**
116 * xbzrle_cache_resize: resize the xbzrle cache
117 *
118 * This function is called from qmp_migrate_set_cache_size in main
119 * thread, possibly while a migration is in progress. A running
120 * migration may be using the cache and might finish during this call,
121 * hence changes to the cache are protected by XBZRLE.lock().
122 *
c9dede2d 123 * Returns 0 for success or -1 for error
3d0684b2
JQ
124 *
125 * @new_size: new cache size
8acabf69 126 * @errp: set *errp if the check failed, with reason
56e93d26 127 */
c9dede2d 128int xbzrle_cache_resize(int64_t new_size, Error **errp)
56e93d26
JQ
129{
130 PageCache *new_cache;
c9dede2d 131 int64_t ret = 0;
56e93d26 132
8acabf69
JQ
133 /* Check for truncation */
134 if (new_size != (size_t)new_size) {
135 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
136 "exceeding address space");
137 return -1;
138 }
139
2a313e5c
JQ
140 if (new_size == migrate_xbzrle_cache_size()) {
141 /* nothing to do */
c9dede2d 142 return 0;
2a313e5c
JQ
143 }
144
56e93d26
JQ
145 XBZRLE_cache_lock();
146
147 if (XBZRLE.cache != NULL) {
80f8dfde 148 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
56e93d26 149 if (!new_cache) {
56e93d26
JQ
150 ret = -1;
151 goto out;
152 }
153
154 cache_fini(XBZRLE.cache);
155 XBZRLE.cache = new_cache;
156 }
56e93d26
JQ
157out:
158 XBZRLE_cache_unlock();
159 return ret;
160}
161
fbd162e6
YK
162static bool ramblock_is_ignored(RAMBlock *block)
163{
164 return !qemu_ram_is_migratable(block) ||
165 (migrate_ignore_shared() && qemu_ram_is_shared(block));
166}
167
b895de50 168/* Should be holding either ram_list.mutex, or the RCU lock. */
fbd162e6
YK
169#define RAMBLOCK_FOREACH_NOT_IGNORED(block) \
170 INTERNAL_RAMBLOCK_FOREACH(block) \
171 if (ramblock_is_ignored(block)) {} else
172
b895de50 173#define RAMBLOCK_FOREACH_MIGRATABLE(block) \
343f632c 174 INTERNAL_RAMBLOCK_FOREACH(block) \
b895de50
CLG
175 if (!qemu_ram_is_migratable(block)) {} else
176
343f632c
DDAG
177#undef RAMBLOCK_FOREACH
178
fbd162e6
YK
179int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
180{
181 RAMBlock *block;
182 int ret = 0;
183
184 rcu_read_lock();
185 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
186 ret = func(block, opaque);
187 if (ret) {
188 break;
189 }
190 }
191 rcu_read_unlock();
192 return ret;
193}
194
f9494614
AP
195static void ramblock_recv_map_init(void)
196{
197 RAMBlock *rb;
198
fbd162e6 199 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
f9494614
AP
200 assert(!rb->receivedmap);
201 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
202 }
203}
204
205int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
206{
207 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
208 rb->receivedmap);
209}
210
1cba9f6e
DDAG
211bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
212{
213 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
214}
215
f9494614
AP
216void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
217{
218 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
219}
220
221void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
222 size_t nr)
223{
224 bitmap_set_atomic(rb->receivedmap,
225 ramblock_recv_bitmap_offset(host_addr, rb),
226 nr);
227}
228
a335debb
PX
229#define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
230
231/*
232 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
233 *
234 * Returns >0 if success with sent bytes, or <0 if error.
235 */
236int64_t ramblock_recv_bitmap_send(QEMUFile *file,
237 const char *block_name)
238{
239 RAMBlock *block = qemu_ram_block_by_name(block_name);
240 unsigned long *le_bitmap, nbits;
241 uint64_t size;
242
243 if (!block) {
244 error_report("%s: invalid block name: %s", __func__, block_name);
245 return -1;
246 }
247
248 nbits = block->used_length >> TARGET_PAGE_BITS;
249
250 /*
251 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
252 * machines we may need 4 more bytes for padding (see below
253 * comment). So extend it a bit before hand.
254 */
255 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
256
257 /*
258 * Always use little endian when sending the bitmap. This is
259 * required that when source and destination VMs are not using the
260 * same endianess. (Note: big endian won't work.)
261 */
262 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
263
264 /* Size of the bitmap, in bytes */
a725ef9f 265 size = DIV_ROUND_UP(nbits, 8);
a335debb
PX
266
267 /*
268 * size is always aligned to 8 bytes for 64bit machines, but it
269 * may not be true for 32bit machines. We need this padding to
270 * make sure the migration can survive even between 32bit and
271 * 64bit machines.
272 */
273 size = ROUND_UP(size, 8);
274
275 qemu_put_be64(file, size);
276 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
277 /*
278 * Mark as an end, in case the middle part is screwed up due to
279 * some "misterious" reason.
280 */
281 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
282 qemu_fflush(file);
283
bf269906 284 g_free(le_bitmap);
a335debb
PX
285
286 if (qemu_file_get_error(file)) {
287 return qemu_file_get_error(file);
288 }
289
290 return size + sizeof(size);
291}
292
ec481c6c
JQ
293/*
294 * An outstanding page request, on the source, having been received
295 * and queued
296 */
297struct RAMSrcPageRequest {
298 RAMBlock *rb;
299 hwaddr offset;
300 hwaddr len;
301
302 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
303};
304
6f37bb8b
JQ
305/* State of RAM for migration */
306struct RAMState {
204b88b8
JQ
307 /* QEMUFile used for this migration */
308 QEMUFile *f;
6f37bb8b
JQ
309 /* Last block that we have visited searching for dirty pages */
310 RAMBlock *last_seen_block;
311 /* Last block from where we have sent data */
312 RAMBlock *last_sent_block;
269ace29
JQ
313 /* Last dirty target page we have sent */
314 ram_addr_t last_page;
6f37bb8b
JQ
315 /* last ram version we have seen */
316 uint32_t last_version;
317 /* We are in the first round */
318 bool ram_bulk_stage;
6eeb63f7
WW
319 /* The free page optimization is enabled */
320 bool fpo_enabled;
8d820d6f
JQ
321 /* How many times we have dirty too many pages */
322 int dirty_rate_high_cnt;
f664da80
JQ
323 /* these variables are used for bitmap sync */
324 /* last time we did a full bitmap_sync */
325 int64_t time_last_bitmap_sync;
eac74159 326 /* bytes transferred at start_time */
c4bdf0cf 327 uint64_t bytes_xfer_prev;
a66cd90c 328 /* number of dirty pages since start_time */
68908ed6 329 uint64_t num_dirty_pages_period;
b5833fde
JQ
330 /* xbzrle misses since the beginning of the period */
331 uint64_t xbzrle_cache_miss_prev;
76e03000
XG
332
333 /* compression statistics since the beginning of the period */
334 /* amount of count that no free thread to compress data */
335 uint64_t compress_thread_busy_prev;
336 /* amount bytes after compression */
337 uint64_t compressed_size_prev;
338 /* amount of compressed pages */
339 uint64_t compress_pages_prev;
340
be8b02ed
XG
341 /* total handled target pages at the beginning of period */
342 uint64_t target_page_count_prev;
343 /* total handled target pages since start */
344 uint64_t target_page_count;
9360447d 345 /* number of dirty bits in the bitmap */
2dfaf12e 346 uint64_t migration_dirty_pages;
386a907b 347 /* Protects modification of the bitmap and migration dirty pages */
108cfae0 348 QemuMutex bitmap_mutex;
68a098f3
JQ
349 /* The RAMBlock used in the last src_page_requests */
350 RAMBlock *last_req_rb;
ec481c6c
JQ
351 /* Queue of outstanding page requests from the destination */
352 QemuMutex src_page_req_mutex;
b58deb34 353 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
6f37bb8b
JQ
354};
355typedef struct RAMState RAMState;
356
53518d94 357static RAMState *ram_state;
6f37bb8b 358
bd227060
WW
359static NotifierWithReturnList precopy_notifier_list;
360
361void precopy_infrastructure_init(void)
362{
363 notifier_with_return_list_init(&precopy_notifier_list);
364}
365
366void precopy_add_notifier(NotifierWithReturn *n)
367{
368 notifier_with_return_list_add(&precopy_notifier_list, n);
369}
370
371void precopy_remove_notifier(NotifierWithReturn *n)
372{
373 notifier_with_return_remove(n);
374}
375
376int precopy_notify(PrecopyNotifyReason reason, Error **errp)
377{
378 PrecopyNotifyData pnd;
379 pnd.reason = reason;
380 pnd.errp = errp;
381
382 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
383}
384
6eeb63f7
WW
385void precopy_enable_free_page_optimization(void)
386{
387 if (!ram_state) {
388 return;
389 }
390
391 ram_state->fpo_enabled = true;
392}
393
9edabd4d 394uint64_t ram_bytes_remaining(void)
2f4fde93 395{
bae416e5
DDAG
396 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
397 0;
2f4fde93
JQ
398}
399
9360447d 400MigrationStats ram_counters;
96506894 401
b8fb8cb7
DDAG
402/* used by the search for pages to send */
403struct PageSearchStatus {
404 /* Current block being searched */
405 RAMBlock *block;
a935e30f
JQ
406 /* Current page to search from */
407 unsigned long page;
b8fb8cb7
DDAG
408 /* Set once we wrap around */
409 bool complete_round;
410};
411typedef struct PageSearchStatus PageSearchStatus;
412
76e03000
XG
413CompressionStats compression_counters;
414
56e93d26 415struct CompressParam {
56e93d26 416 bool done;
90e56fb4 417 bool quit;
5e5fdcff 418 bool zero_page;
56e93d26
JQ
419 QEMUFile *file;
420 QemuMutex mutex;
421 QemuCond cond;
422 RAMBlock *block;
423 ram_addr_t offset;
34ab9e97
XG
424
425 /* internally used fields */
dcaf446e 426 z_stream stream;
34ab9e97 427 uint8_t *originbuf;
56e93d26
JQ
428};
429typedef struct CompressParam CompressParam;
430
431struct DecompressParam {
73a8912b 432 bool done;
90e56fb4 433 bool quit;
56e93d26
JQ
434 QemuMutex mutex;
435 QemuCond cond;
436 void *des;
d341d9f3 437 uint8_t *compbuf;
56e93d26 438 int len;
797ca154 439 z_stream stream;
56e93d26
JQ
440};
441typedef struct DecompressParam DecompressParam;
442
443static CompressParam *comp_param;
444static QemuThread *compress_threads;
445/* comp_done_cond is used to wake up the migration thread when
446 * one of the compression threads has finished the compression.
447 * comp_done_lock is used to co-work with comp_done_cond.
448 */
0d9f9a5c
LL
449static QemuMutex comp_done_lock;
450static QemuCond comp_done_cond;
56e93d26
JQ
451/* The empty QEMUFileOps will be used by file in CompressParam */
452static const QEMUFileOps empty_ops = { };
453
34ab9e97 454static QEMUFile *decomp_file;
56e93d26
JQ
455static DecompressParam *decomp_param;
456static QemuThread *decompress_threads;
73a8912b
LL
457static QemuMutex decomp_done_lock;
458static QemuCond decomp_done_cond;
56e93d26 459
5e5fdcff 460static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
6ef3771c 461 ram_addr_t offset, uint8_t *source_buf);
56e93d26
JQ
462
463static void *do_data_compress(void *opaque)
464{
465 CompressParam *param = opaque;
a7a9a88f
LL
466 RAMBlock *block;
467 ram_addr_t offset;
5e5fdcff 468 bool zero_page;
56e93d26 469
a7a9a88f 470 qemu_mutex_lock(&param->mutex);
90e56fb4 471 while (!param->quit) {
a7a9a88f
LL
472 if (param->block) {
473 block = param->block;
474 offset = param->offset;
475 param->block = NULL;
476 qemu_mutex_unlock(&param->mutex);
477
5e5fdcff
XG
478 zero_page = do_compress_ram_page(param->file, &param->stream,
479 block, offset, param->originbuf);
a7a9a88f 480
0d9f9a5c 481 qemu_mutex_lock(&comp_done_lock);
a7a9a88f 482 param->done = true;
5e5fdcff 483 param->zero_page = zero_page;
0d9f9a5c
LL
484 qemu_cond_signal(&comp_done_cond);
485 qemu_mutex_unlock(&comp_done_lock);
a7a9a88f
LL
486
487 qemu_mutex_lock(&param->mutex);
488 } else {
56e93d26
JQ
489 qemu_cond_wait(&param->cond, &param->mutex);
490 }
56e93d26 491 }
a7a9a88f 492 qemu_mutex_unlock(&param->mutex);
56e93d26
JQ
493
494 return NULL;
495}
496
f0afa331 497static void compress_threads_save_cleanup(void)
56e93d26
JQ
498{
499 int i, thread_count;
500
05306935 501 if (!migrate_use_compression() || !comp_param) {
56e93d26
JQ
502 return;
503 }
05306935 504
56e93d26
JQ
505 thread_count = migrate_compress_threads();
506 for (i = 0; i < thread_count; i++) {
dcaf446e
XG
507 /*
508 * we use it as a indicator which shows if the thread is
509 * properly init'd or not
510 */
511 if (!comp_param[i].file) {
512 break;
513 }
05306935
FL
514
515 qemu_mutex_lock(&comp_param[i].mutex);
516 comp_param[i].quit = true;
517 qemu_cond_signal(&comp_param[i].cond);
518 qemu_mutex_unlock(&comp_param[i].mutex);
519
56e93d26 520 qemu_thread_join(compress_threads + i);
56e93d26
JQ
521 qemu_mutex_destroy(&comp_param[i].mutex);
522 qemu_cond_destroy(&comp_param[i].cond);
dcaf446e 523 deflateEnd(&comp_param[i].stream);
34ab9e97 524 g_free(comp_param[i].originbuf);
dcaf446e
XG
525 qemu_fclose(comp_param[i].file);
526 comp_param[i].file = NULL;
56e93d26 527 }
0d9f9a5c
LL
528 qemu_mutex_destroy(&comp_done_lock);
529 qemu_cond_destroy(&comp_done_cond);
56e93d26
JQ
530 g_free(compress_threads);
531 g_free(comp_param);
56e93d26
JQ
532 compress_threads = NULL;
533 comp_param = NULL;
56e93d26
JQ
534}
535
dcaf446e 536static int compress_threads_save_setup(void)
56e93d26
JQ
537{
538 int i, thread_count;
539
540 if (!migrate_use_compression()) {
dcaf446e 541 return 0;
56e93d26 542 }
56e93d26
JQ
543 thread_count = migrate_compress_threads();
544 compress_threads = g_new0(QemuThread, thread_count);
545 comp_param = g_new0(CompressParam, thread_count);
0d9f9a5c
LL
546 qemu_cond_init(&comp_done_cond);
547 qemu_mutex_init(&comp_done_lock);
56e93d26 548 for (i = 0; i < thread_count; i++) {
34ab9e97
XG
549 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
550 if (!comp_param[i].originbuf) {
551 goto exit;
552 }
553
dcaf446e
XG
554 if (deflateInit(&comp_param[i].stream,
555 migrate_compress_level()) != Z_OK) {
34ab9e97 556 g_free(comp_param[i].originbuf);
dcaf446e
XG
557 goto exit;
558 }
559
e110aa91
C
560 /* comp_param[i].file is just used as a dummy buffer to save data,
561 * set its ops to empty.
56e93d26
JQ
562 */
563 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
564 comp_param[i].done = true;
90e56fb4 565 comp_param[i].quit = false;
56e93d26
JQ
566 qemu_mutex_init(&comp_param[i].mutex);
567 qemu_cond_init(&comp_param[i].cond);
568 qemu_thread_create(compress_threads + i, "compress",
569 do_data_compress, comp_param + i,
570 QEMU_THREAD_JOINABLE);
571 }
dcaf446e
XG
572 return 0;
573
574exit:
575 compress_threads_save_cleanup();
576 return -1;
56e93d26
JQ
577}
578
f986c3d2
JQ
579/* Multiple fd's */
580
af8b7d2b
JQ
581#define MULTIFD_MAGIC 0x11223344U
582#define MULTIFD_VERSION 1
583
6df264ac
JQ
584#define MULTIFD_FLAG_SYNC (1 << 0)
585
efd1a1d6
JQ
586/* This value needs to be a multiple of qemu_target_page_size() */
587#define MULTIFD_PACKET_SIZE (64 * 1024)
588
af8b7d2b
JQ
589typedef struct {
590 uint32_t magic;
591 uint32_t version;
592 unsigned char uuid[16]; /* QemuUUID */
593 uint8_t id;
594} __attribute__((packed)) MultiFDInit_t;
595
2a26c979
JQ
596typedef struct {
597 uint32_t magic;
598 uint32_t version;
599 uint32_t flags;
6f862692
JQ
600 /* maximum number of allocated pages */
601 uint32_t pages_alloc;
602 uint32_t pages_used;
2a34ee59
JQ
603 /* size of the next packet that contains pages */
604 uint32_t next_packet_size;
2a26c979
JQ
605 uint64_t packet_num;
606 char ramblock[256];
607 uint64_t offset[];
608} __attribute__((packed)) MultiFDPacket_t;
609
34c55a94
JQ
610typedef struct {
611 /* number of used pages */
612 uint32_t used;
613 /* number of allocated pages */
614 uint32_t allocated;
615 /* global number of generated multifd packets */
616 uint64_t packet_num;
617 /* offset of each page */
618 ram_addr_t *offset;
619 /* pointer to each page */
620 struct iovec *iov;
621 RAMBlock *block;
622} MultiFDPages_t;
623
8c4598f2
JQ
624typedef struct {
625 /* this fields are not changed once the thread is created */
626 /* channel number */
f986c3d2 627 uint8_t id;
8c4598f2 628 /* channel thread name */
f986c3d2 629 char *name;
8c4598f2 630 /* channel thread id */
f986c3d2 631 QemuThread thread;
8c4598f2 632 /* communication channel */
60df2d4a 633 QIOChannel *c;
8c4598f2 634 /* sem where to wait for more work */
f986c3d2 635 QemuSemaphore sem;
8c4598f2 636 /* this mutex protects the following parameters */
f986c3d2 637 QemuMutex mutex;
8c4598f2 638 /* is this channel thread running */
66770707 639 bool running;
8c4598f2 640 /* should this thread finish */
f986c3d2 641 bool quit;
0beb5ed3
JQ
642 /* thread has work to do */
643 int pending_job;
34c55a94
JQ
644 /* array of pages to sent */
645 MultiFDPages_t *pages;
2a26c979
JQ
646 /* packet allocated len */
647 uint32_t packet_len;
648 /* pointer to the packet */
649 MultiFDPacket_t *packet;
650 /* multifd flags for each packet */
651 uint32_t flags;
2a34ee59
JQ
652 /* size of the next packet that contains pages */
653 uint32_t next_packet_size;
2a26c979
JQ
654 /* global number of generated multifd packets */
655 uint64_t packet_num;
408ea6ae
JQ
656 /* thread local variables */
657 /* packets sent through this channel */
658 uint64_t num_packets;
659 /* pages sent through this channel */
660 uint64_t num_pages;
6df264ac
JQ
661 /* syncs main thread and channels */
662 QemuSemaphore sem_sync;
8c4598f2
JQ
663} MultiFDSendParams;
664
665typedef struct {
666 /* this fields are not changed once the thread is created */
667 /* channel number */
668 uint8_t id;
669 /* channel thread name */
670 char *name;
671 /* channel thread id */
672 QemuThread thread;
673 /* communication channel */
674 QIOChannel *c;
8c4598f2
JQ
675 /* this mutex protects the following parameters */
676 QemuMutex mutex;
677 /* is this channel thread running */
678 bool running;
34c55a94
JQ
679 /* array of pages to receive */
680 MultiFDPages_t *pages;
2a26c979
JQ
681 /* packet allocated len */
682 uint32_t packet_len;
683 /* pointer to the packet */
684 MultiFDPacket_t *packet;
685 /* multifd flags for each packet */
686 uint32_t flags;
687 /* global number of generated multifd packets */
688 uint64_t packet_num;
408ea6ae 689 /* thread local variables */
2a34ee59
JQ
690 /* size of the next packet that contains pages */
691 uint32_t next_packet_size;
408ea6ae
JQ
692 /* packets sent through this channel */
693 uint64_t num_packets;
694 /* pages sent through this channel */
695 uint64_t num_pages;
6df264ac
JQ
696 /* syncs main thread and channels */
697 QemuSemaphore sem_sync;
8c4598f2 698} MultiFDRecvParams;
f986c3d2 699
af8b7d2b
JQ
700static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
701{
702 MultiFDInit_t msg;
703 int ret;
704
705 msg.magic = cpu_to_be32(MULTIFD_MAGIC);
706 msg.version = cpu_to_be32(MULTIFD_VERSION);
707 msg.id = p->id;
708 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid));
709
710 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp);
711 if (ret != 0) {
712 return -1;
713 }
714 return 0;
715}
716
717static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
718{
719 MultiFDInit_t msg;
720 int ret;
721
722 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp);
723 if (ret != 0) {
724 return -1;
725 }
726
341ba0df
PM
727 msg.magic = be32_to_cpu(msg.magic);
728 msg.version = be32_to_cpu(msg.version);
af8b7d2b
JQ
729
730 if (msg.magic != MULTIFD_MAGIC) {
731 error_setg(errp, "multifd: received packet magic %x "
732 "expected %x", msg.magic, MULTIFD_MAGIC);
733 return -1;
734 }
735
736 if (msg.version != MULTIFD_VERSION) {
737 error_setg(errp, "multifd: received packet version %d "
738 "expected %d", msg.version, MULTIFD_VERSION);
739 return -1;
740 }
741
742 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) {
743 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid);
744 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid);
745
746 error_setg(errp, "multifd: received uuid '%s' and expected "
747 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id);
748 g_free(uuid);
749 g_free(msg_uuid);
750 return -1;
751 }
752
753 if (msg.id > migrate_multifd_channels()) {
754 error_setg(errp, "multifd: received channel version %d "
755 "expected %d", msg.version, MULTIFD_VERSION);
756 return -1;
757 }
758
759 return msg.id;
760}
761
34c55a94
JQ
762static MultiFDPages_t *multifd_pages_init(size_t size)
763{
764 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1);
765
766 pages->allocated = size;
767 pages->iov = g_new0(struct iovec, size);
768 pages->offset = g_new0(ram_addr_t, size);
769
770 return pages;
771}
772
773static void multifd_pages_clear(MultiFDPages_t *pages)
774{
775 pages->used = 0;
776 pages->allocated = 0;
777 pages->packet_num = 0;
778 pages->block = NULL;
779 g_free(pages->iov);
780 pages->iov = NULL;
781 g_free(pages->offset);
782 pages->offset = NULL;
783 g_free(pages);
784}
785
2a26c979
JQ
786static void multifd_send_fill_packet(MultiFDSendParams *p)
787{
788 MultiFDPacket_t *packet = p->packet;
7ed379b2 789 uint32_t page_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
2a26c979
JQ
790 int i;
791
792 packet->magic = cpu_to_be32(MULTIFD_MAGIC);
793 packet->version = cpu_to_be32(MULTIFD_VERSION);
794 packet->flags = cpu_to_be32(p->flags);
7ed379b2 795 packet->pages_alloc = cpu_to_be32(page_max);
6f862692 796 packet->pages_used = cpu_to_be32(p->pages->used);
2a34ee59 797 packet->next_packet_size = cpu_to_be32(p->next_packet_size);
2a26c979
JQ
798 packet->packet_num = cpu_to_be64(p->packet_num);
799
800 if (p->pages->block) {
801 strncpy(packet->ramblock, p->pages->block->idstr, 256);
802 }
803
804 for (i = 0; i < p->pages->used; i++) {
805 packet->offset[i] = cpu_to_be64(p->pages->offset[i]);
806 }
807}
808
809static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
810{
811 MultiFDPacket_t *packet = p->packet;
7ed379b2 812 uint32_t pages_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
2a26c979
JQ
813 RAMBlock *block;
814 int i;
815
341ba0df 816 packet->magic = be32_to_cpu(packet->magic);
2a26c979
JQ
817 if (packet->magic != MULTIFD_MAGIC) {
818 error_setg(errp, "multifd: received packet "
819 "magic %x and expected magic %x",
820 packet->magic, MULTIFD_MAGIC);
821 return -1;
822 }
823
341ba0df 824 packet->version = be32_to_cpu(packet->version);
2a26c979
JQ
825 if (packet->version != MULTIFD_VERSION) {
826 error_setg(errp, "multifd: received packet "
827 "version %d and expected version %d",
828 packet->version, MULTIFD_VERSION);
829 return -1;
830 }
831
832 p->flags = be32_to_cpu(packet->flags);
833
6f862692 834 packet->pages_alloc = be32_to_cpu(packet->pages_alloc);
7ed379b2
JQ
835 /*
836 * If we recevied a packet that is 100 times bigger than expected
837 * just stop migration. It is a magic number.
838 */
839 if (packet->pages_alloc > pages_max * 100) {
2a26c979 840 error_setg(errp, "multifd: received packet "
7ed379b2
JQ
841 "with size %d and expected a maximum size of %d",
842 packet->pages_alloc, pages_max * 100) ;
2a26c979
JQ
843 return -1;
844 }
7ed379b2
JQ
845 /*
846 * We received a packet that is bigger than expected but inside
847 * reasonable limits (see previous comment). Just reallocate.
848 */
849 if (packet->pages_alloc > p->pages->allocated) {
850 multifd_pages_clear(p->pages);
851 multifd_pages_init(packet->pages_alloc);
852 }
2a26c979 853
6f862692
JQ
854 p->pages->used = be32_to_cpu(packet->pages_used);
855 if (p->pages->used > packet->pages_alloc) {
2a26c979 856 error_setg(errp, "multifd: received packet "
6f862692
JQ
857 "with %d pages and expected maximum pages are %d",
858 p->pages->used, packet->pages_alloc) ;
2a26c979
JQ
859 return -1;
860 }
861
2a34ee59 862 p->next_packet_size = be32_to_cpu(packet->next_packet_size);
2a26c979
JQ
863 p->packet_num = be64_to_cpu(packet->packet_num);
864
865 if (p->pages->used) {
866 /* make sure that ramblock is 0 terminated */
867 packet->ramblock[255] = 0;
868 block = qemu_ram_block_by_name(packet->ramblock);
869 if (!block) {
870 error_setg(errp, "multifd: unknown ram block %s",
871 packet->ramblock);
872 return -1;
873 }
874 }
875
876 for (i = 0; i < p->pages->used; i++) {
877 ram_addr_t offset = be64_to_cpu(packet->offset[i]);
878
879 if (offset > (block->used_length - TARGET_PAGE_SIZE)) {
880 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT
881 " (max " RAM_ADDR_FMT ")",
882 offset, block->max_length);
883 return -1;
884 }
885 p->pages->iov[i].iov_base = block->host + offset;
886 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE;
887 }
888
889 return 0;
890}
891
f986c3d2
JQ
892struct {
893 MultiFDSendParams *params;
894 /* number of created threads */
895 int count;
34c55a94
JQ
896 /* array of pages to sent */
897 MultiFDPages_t *pages;
6df264ac
JQ
898 /* syncs main thread and channels */
899 QemuSemaphore sem_sync;
900 /* global number of generated multifd packets */
901 uint64_t packet_num;
b9ee2f7d
JQ
902 /* send channels ready */
903 QemuSemaphore channels_ready;
f986c3d2
JQ
904} *multifd_send_state;
905
b9ee2f7d
JQ
906/*
907 * How we use multifd_send_state->pages and channel->pages?
908 *
909 * We create a pages for each channel, and a main one. Each time that
910 * we need to send a batch of pages we interchange the ones between
911 * multifd_send_state and the channel that is sending it. There are
912 * two reasons for that:
913 * - to not have to do so many mallocs during migration
914 * - to make easier to know what to free at the end of migration
915 *
916 * This way we always know who is the owner of each "pages" struct,
917 * and we don't need any loocking. It belongs to the migration thread
918 * or to the channel thread. Switching is safe because the migration
919 * thread is using the channel mutex when changing it, and the channel
920 * have to had finish with its own, otherwise pending_job can't be
921 * false.
922 */
923
924static void multifd_send_pages(void)
925{
926 int i;
927 static int next_channel;
928 MultiFDSendParams *p = NULL; /* make happy gcc */
929 MultiFDPages_t *pages = multifd_send_state->pages;
930 uint64_t transferred;
931
932 qemu_sem_wait(&multifd_send_state->channels_ready);
933 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) {
934 p = &multifd_send_state->params[i];
935
936 qemu_mutex_lock(&p->mutex);
937 if (!p->pending_job) {
938 p->pending_job++;
939 next_channel = (i + 1) % migrate_multifd_channels();
940 break;
941 }
942 qemu_mutex_unlock(&p->mutex);
943 }
944 p->pages->used = 0;
945
946 p->packet_num = multifd_send_state->packet_num++;
947 p->pages->block = NULL;
948 multifd_send_state->pages = p->pages;
949 p->pages = pages;
4fcefd44 950 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len;
b9ee2f7d
JQ
951 ram_counters.multifd_bytes += transferred;
952 ram_counters.transferred += transferred;;
953 qemu_mutex_unlock(&p->mutex);
954 qemu_sem_post(&p->sem);
955}
956
957static void multifd_queue_page(RAMBlock *block, ram_addr_t offset)
958{
959 MultiFDPages_t *pages = multifd_send_state->pages;
960
961 if (!pages->block) {
962 pages->block = block;
963 }
964
965 if (pages->block == block) {
966 pages->offset[pages->used] = offset;
967 pages->iov[pages->used].iov_base = block->host + offset;
968 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE;
969 pages->used++;
970
971 if (pages->used < pages->allocated) {
972 return;
973 }
974 }
975
976 multifd_send_pages();
977
978 if (pages->block != block) {
979 multifd_queue_page(block, offset);
980 }
981}
982
66770707 983static void multifd_send_terminate_threads(Error *err)
f986c3d2
JQ
984{
985 int i;
986
7a169d74
JQ
987 if (err) {
988 MigrationState *s = migrate_get_current();
989 migrate_set_error(s, err);
990 if (s->state == MIGRATION_STATUS_SETUP ||
991 s->state == MIGRATION_STATUS_PRE_SWITCHOVER ||
992 s->state == MIGRATION_STATUS_DEVICE ||
993 s->state == MIGRATION_STATUS_ACTIVE) {
994 migrate_set_state(&s->state, s->state,
995 MIGRATION_STATUS_FAILED);
996 }
997 }
998
66770707 999 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
1000 MultiFDSendParams *p = &multifd_send_state->params[i];
1001
1002 qemu_mutex_lock(&p->mutex);
1003 p->quit = true;
1004 qemu_sem_post(&p->sem);
1005 qemu_mutex_unlock(&p->mutex);
1006 }
1007}
1008
1398b2e3 1009void multifd_save_cleanup(void)
f986c3d2
JQ
1010{
1011 int i;
f986c3d2
JQ
1012
1013 if (!migrate_use_multifd()) {
1398b2e3 1014 return;
f986c3d2 1015 }
66770707
JQ
1016 multifd_send_terminate_threads(NULL);
1017 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
1018 MultiFDSendParams *p = &multifd_send_state->params[i];
1019
66770707
JQ
1020 if (p->running) {
1021 qemu_thread_join(&p->thread);
1022 }
60df2d4a
JQ
1023 socket_send_channel_destroy(p->c);
1024 p->c = NULL;
f986c3d2
JQ
1025 qemu_mutex_destroy(&p->mutex);
1026 qemu_sem_destroy(&p->sem);
6df264ac 1027 qemu_sem_destroy(&p->sem_sync);
f986c3d2
JQ
1028 g_free(p->name);
1029 p->name = NULL;
34c55a94
JQ
1030 multifd_pages_clear(p->pages);
1031 p->pages = NULL;
2a26c979
JQ
1032 p->packet_len = 0;
1033 g_free(p->packet);
1034 p->packet = NULL;
f986c3d2 1035 }
b9ee2f7d 1036 qemu_sem_destroy(&multifd_send_state->channels_ready);
6df264ac 1037 qemu_sem_destroy(&multifd_send_state->sem_sync);
f986c3d2
JQ
1038 g_free(multifd_send_state->params);
1039 multifd_send_state->params = NULL;
34c55a94
JQ
1040 multifd_pages_clear(multifd_send_state->pages);
1041 multifd_send_state->pages = NULL;
f986c3d2
JQ
1042 g_free(multifd_send_state);
1043 multifd_send_state = NULL;
f986c3d2
JQ
1044}
1045
6df264ac
JQ
1046static void multifd_send_sync_main(void)
1047{
1048 int i;
1049
1050 if (!migrate_use_multifd()) {
1051 return;
1052 }
b9ee2f7d
JQ
1053 if (multifd_send_state->pages->used) {
1054 multifd_send_pages();
1055 }
6df264ac
JQ
1056 for (i = 0; i < migrate_multifd_channels(); i++) {
1057 MultiFDSendParams *p = &multifd_send_state->params[i];
1058
1059 trace_multifd_send_sync_main_signal(p->id);
1060
1061 qemu_mutex_lock(&p->mutex);
b9ee2f7d
JQ
1062
1063 p->packet_num = multifd_send_state->packet_num++;
6df264ac
JQ
1064 p->flags |= MULTIFD_FLAG_SYNC;
1065 p->pending_job++;
1066 qemu_mutex_unlock(&p->mutex);
1067 qemu_sem_post(&p->sem);
1068 }
1069 for (i = 0; i < migrate_multifd_channels(); i++) {
1070 MultiFDSendParams *p = &multifd_send_state->params[i];
1071
1072 trace_multifd_send_sync_main_wait(p->id);
1073 qemu_sem_wait(&multifd_send_state->sem_sync);
1074 }
1075 trace_multifd_send_sync_main(multifd_send_state->packet_num);
1076}
1077
f986c3d2
JQ
1078static void *multifd_send_thread(void *opaque)
1079{
1080 MultiFDSendParams *p = opaque;
af8b7d2b 1081 Error *local_err = NULL;
8b2db7f5 1082 int ret;
af8b7d2b 1083
408ea6ae 1084 trace_multifd_send_thread_start(p->id);
74637e6f 1085 rcu_register_thread();
408ea6ae 1086
af8b7d2b
JQ
1087 if (multifd_send_initial_packet(p, &local_err) < 0) {
1088 goto out;
1089 }
408ea6ae
JQ
1090 /* initial packet */
1091 p->num_packets = 1;
f986c3d2
JQ
1092
1093 while (true) {
d82628e4 1094 qemu_sem_wait(&p->sem);
f986c3d2 1095 qemu_mutex_lock(&p->mutex);
0beb5ed3
JQ
1096
1097 if (p->pending_job) {
1098 uint32_t used = p->pages->used;
1099 uint64_t packet_num = p->packet_num;
1100 uint32_t flags = p->flags;
1101
2a34ee59 1102 p->next_packet_size = used * qemu_target_page_size();
0beb5ed3
JQ
1103 multifd_send_fill_packet(p);
1104 p->flags = 0;
1105 p->num_packets++;
1106 p->num_pages += used;
1107 p->pages->used = 0;
1108 qemu_mutex_unlock(&p->mutex);
1109
2a34ee59
JQ
1110 trace_multifd_send(p->id, packet_num, used, flags,
1111 p->next_packet_size);
0beb5ed3 1112
8b2db7f5
JQ
1113 ret = qio_channel_write_all(p->c, (void *)p->packet,
1114 p->packet_len, &local_err);
1115 if (ret != 0) {
1116 break;
1117 }
1118
ad24c7cb
JQ
1119 if (used) {
1120 ret = qio_channel_writev_all(p->c, p->pages->iov,
1121 used, &local_err);
1122 if (ret != 0) {
1123 break;
1124 }
8b2db7f5 1125 }
0beb5ed3
JQ
1126
1127 qemu_mutex_lock(&p->mutex);
1128 p->pending_job--;
1129 qemu_mutex_unlock(&p->mutex);
6df264ac
JQ
1130
1131 if (flags & MULTIFD_FLAG_SYNC) {
1132 qemu_sem_post(&multifd_send_state->sem_sync);
1133 }
b9ee2f7d 1134 qemu_sem_post(&multifd_send_state->channels_ready);
0beb5ed3 1135 } else if (p->quit) {
f986c3d2
JQ
1136 qemu_mutex_unlock(&p->mutex);
1137 break;
6df264ac
JQ
1138 } else {
1139 qemu_mutex_unlock(&p->mutex);
1140 /* sometimes there are spurious wakeups */
f986c3d2 1141 }
f986c3d2
JQ
1142 }
1143
af8b7d2b
JQ
1144out:
1145 if (local_err) {
1146 multifd_send_terminate_threads(local_err);
1147 }
1148
66770707
JQ
1149 qemu_mutex_lock(&p->mutex);
1150 p->running = false;
1151 qemu_mutex_unlock(&p->mutex);
1152
74637e6f 1153 rcu_unregister_thread();
408ea6ae
JQ
1154 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages);
1155
f986c3d2
JQ
1156 return NULL;
1157}
1158
60df2d4a
JQ
1159static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque)
1160{
1161 MultiFDSendParams *p = opaque;
1162 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task));
1163 Error *local_err = NULL;
1164
1165 if (qio_task_propagate_error(task, &local_err)) {
1398b2e3
FL
1166 migrate_set_error(migrate_get_current(), local_err);
1167 multifd_save_cleanup();
60df2d4a
JQ
1168 } else {
1169 p->c = QIO_CHANNEL(sioc);
1170 qio_channel_set_delay(p->c, false);
1171 p->running = true;
1172 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
1173 QEMU_THREAD_JOINABLE);
1174
1175 atomic_inc(&multifd_send_state->count);
1176 }
1177}
1178
f986c3d2
JQ
1179int multifd_save_setup(void)
1180{
1181 int thread_count;
efd1a1d6 1182 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
f986c3d2
JQ
1183 uint8_t i;
1184
1185 if (!migrate_use_multifd()) {
1186 return 0;
1187 }
1188 thread_count = migrate_multifd_channels();
1189 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
1190 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
66770707 1191 atomic_set(&multifd_send_state->count, 0);
34c55a94 1192 multifd_send_state->pages = multifd_pages_init(page_count);
6df264ac 1193 qemu_sem_init(&multifd_send_state->sem_sync, 0);
b9ee2f7d 1194 qemu_sem_init(&multifd_send_state->channels_ready, 0);
34c55a94 1195
f986c3d2
JQ
1196 for (i = 0; i < thread_count; i++) {
1197 MultiFDSendParams *p = &multifd_send_state->params[i];
1198
1199 qemu_mutex_init(&p->mutex);
1200 qemu_sem_init(&p->sem, 0);
6df264ac 1201 qemu_sem_init(&p->sem_sync, 0);
f986c3d2 1202 p->quit = false;
0beb5ed3 1203 p->pending_job = 0;
f986c3d2 1204 p->id = i;
34c55a94 1205 p->pages = multifd_pages_init(page_count);
2a26c979
JQ
1206 p->packet_len = sizeof(MultiFDPacket_t)
1207 + sizeof(ram_addr_t) * page_count;
1208 p->packet = g_malloc0(p->packet_len);
f986c3d2 1209 p->name = g_strdup_printf("multifdsend_%d", i);
60df2d4a 1210 socket_send_channel_create(multifd_new_send_channel_async, p);
f986c3d2
JQ
1211 }
1212 return 0;
1213}
1214
f986c3d2
JQ
1215struct {
1216 MultiFDRecvParams *params;
1217 /* number of created threads */
1218 int count;
6df264ac
JQ
1219 /* syncs main thread and channels */
1220 QemuSemaphore sem_sync;
1221 /* global number of generated multifd packets */
1222 uint64_t packet_num;
f986c3d2
JQ
1223} *multifd_recv_state;
1224
66770707 1225static void multifd_recv_terminate_threads(Error *err)
f986c3d2
JQ
1226{
1227 int i;
1228
7a169d74
JQ
1229 if (err) {
1230 MigrationState *s = migrate_get_current();
1231 migrate_set_error(s, err);
1232 if (s->state == MIGRATION_STATUS_SETUP ||
1233 s->state == MIGRATION_STATUS_ACTIVE) {
1234 migrate_set_state(&s->state, s->state,
1235 MIGRATION_STATUS_FAILED);
1236 }
1237 }
1238
66770707 1239 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
1240 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1241
1242 qemu_mutex_lock(&p->mutex);
7a5cc33c
JQ
1243 /* We could arrive here for two reasons:
1244 - normal quit, i.e. everything went fine, just finished
1245 - error quit: We close the channels so the channel threads
1246 finish the qio_channel_read_all_eof() */
1247 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL);
f986c3d2
JQ
1248 qemu_mutex_unlock(&p->mutex);
1249 }
1250}
1251
1252int multifd_load_cleanup(Error **errp)
1253{
1254 int i;
1255 int ret = 0;
1256
1257 if (!migrate_use_multifd()) {
1258 return 0;
1259 }
66770707
JQ
1260 multifd_recv_terminate_threads(NULL);
1261 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
1262 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1263
66770707
JQ
1264 if (p->running) {
1265 qemu_thread_join(&p->thread);
1266 }
60df2d4a
JQ
1267 object_unref(OBJECT(p->c));
1268 p->c = NULL;
f986c3d2 1269 qemu_mutex_destroy(&p->mutex);
6df264ac 1270 qemu_sem_destroy(&p->sem_sync);
f986c3d2
JQ
1271 g_free(p->name);
1272 p->name = NULL;
34c55a94
JQ
1273 multifd_pages_clear(p->pages);
1274 p->pages = NULL;
2a26c979
JQ
1275 p->packet_len = 0;
1276 g_free(p->packet);
1277 p->packet = NULL;
f986c3d2 1278 }
6df264ac 1279 qemu_sem_destroy(&multifd_recv_state->sem_sync);
f986c3d2
JQ
1280 g_free(multifd_recv_state->params);
1281 multifd_recv_state->params = NULL;
1282 g_free(multifd_recv_state);
1283 multifd_recv_state = NULL;
1284
1285 return ret;
1286}
1287
6df264ac
JQ
1288static void multifd_recv_sync_main(void)
1289{
1290 int i;
1291
1292 if (!migrate_use_multifd()) {
1293 return;
1294 }
1295 for (i = 0; i < migrate_multifd_channels(); i++) {
1296 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1297
6df264ac
JQ
1298 trace_multifd_recv_sync_main_wait(p->id);
1299 qemu_sem_wait(&multifd_recv_state->sem_sync);
1300 qemu_mutex_lock(&p->mutex);
1301 if (multifd_recv_state->packet_num < p->packet_num) {
1302 multifd_recv_state->packet_num = p->packet_num;
1303 }
1304 qemu_mutex_unlock(&p->mutex);
1305 }
1306 for (i = 0; i < migrate_multifd_channels(); i++) {
1307 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1308
1309 trace_multifd_recv_sync_main_signal(p->id);
6df264ac
JQ
1310 qemu_sem_post(&p->sem_sync);
1311 }
1312 trace_multifd_recv_sync_main(multifd_recv_state->packet_num);
1313}
1314
f986c3d2
JQ
1315static void *multifd_recv_thread(void *opaque)
1316{
1317 MultiFDRecvParams *p = opaque;
2a26c979
JQ
1318 Error *local_err = NULL;
1319 int ret;
f986c3d2 1320
408ea6ae 1321 trace_multifd_recv_thread_start(p->id);
74637e6f 1322 rcu_register_thread();
408ea6ae 1323
f986c3d2 1324 while (true) {
6df264ac
JQ
1325 uint32_t used;
1326 uint32_t flags;
0beb5ed3 1327
8b2db7f5
JQ
1328 ret = qio_channel_read_all_eof(p->c, (void *)p->packet,
1329 p->packet_len, &local_err);
1330 if (ret == 0) { /* EOF */
1331 break;
1332 }
1333 if (ret == -1) { /* Error */
1334 break;
1335 }
2a26c979 1336
6df264ac
JQ
1337 qemu_mutex_lock(&p->mutex);
1338 ret = multifd_recv_unfill_packet(p, &local_err);
1339 if (ret) {
f986c3d2
JQ
1340 qemu_mutex_unlock(&p->mutex);
1341 break;
1342 }
6df264ac
JQ
1343
1344 used = p->pages->used;
1345 flags = p->flags;
2a34ee59
JQ
1346 trace_multifd_recv(p->id, p->packet_num, used, flags,
1347 p->next_packet_size);
6df264ac
JQ
1348 p->num_packets++;
1349 p->num_pages += used;
f986c3d2 1350 qemu_mutex_unlock(&p->mutex);
6df264ac 1351
ad24c7cb
JQ
1352 if (used) {
1353 ret = qio_channel_readv_all(p->c, p->pages->iov,
1354 used, &local_err);
1355 if (ret != 0) {
1356 break;
1357 }
8b2db7f5
JQ
1358 }
1359
6df264ac
JQ
1360 if (flags & MULTIFD_FLAG_SYNC) {
1361 qemu_sem_post(&multifd_recv_state->sem_sync);
1362 qemu_sem_wait(&p->sem_sync);
1363 }
f986c3d2
JQ
1364 }
1365
d82628e4
JQ
1366 if (local_err) {
1367 multifd_recv_terminate_threads(local_err);
1368 }
66770707
JQ
1369 qemu_mutex_lock(&p->mutex);
1370 p->running = false;
1371 qemu_mutex_unlock(&p->mutex);
1372
74637e6f 1373 rcu_unregister_thread();
408ea6ae
JQ
1374 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages);
1375
f986c3d2
JQ
1376 return NULL;
1377}
1378
1379int multifd_load_setup(void)
1380{
1381 int thread_count;
efd1a1d6 1382 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
f986c3d2
JQ
1383 uint8_t i;
1384
1385 if (!migrate_use_multifd()) {
1386 return 0;
1387 }
1388 thread_count = migrate_multifd_channels();
1389 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
1390 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
66770707 1391 atomic_set(&multifd_recv_state->count, 0);
6df264ac 1392 qemu_sem_init(&multifd_recv_state->sem_sync, 0);
34c55a94 1393
f986c3d2
JQ
1394 for (i = 0; i < thread_count; i++) {
1395 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1396
1397 qemu_mutex_init(&p->mutex);
6df264ac 1398 qemu_sem_init(&p->sem_sync, 0);
f986c3d2 1399 p->id = i;
34c55a94 1400 p->pages = multifd_pages_init(page_count);
2a26c979
JQ
1401 p->packet_len = sizeof(MultiFDPacket_t)
1402 + sizeof(ram_addr_t) * page_count;
1403 p->packet = g_malloc0(p->packet_len);
f986c3d2 1404 p->name = g_strdup_printf("multifdrecv_%d", i);
f986c3d2
JQ
1405 }
1406 return 0;
1407}
1408
62c1e0ca
JQ
1409bool multifd_recv_all_channels_created(void)
1410{
1411 int thread_count = migrate_multifd_channels();
1412
1413 if (!migrate_use_multifd()) {
1414 return true;
1415 }
1416
1417 return thread_count == atomic_read(&multifd_recv_state->count);
1418}
1419
49ed0d24
FL
1420/*
1421 * Try to receive all multifd channels to get ready for the migration.
1422 * - Return true and do not set @errp when correctly receving all channels;
1423 * - Return false and do not set @errp when correctly receiving the current one;
1424 * - Return false and set @errp when failing to receive the current channel.
1425 */
1426bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp)
71bb07db 1427{
60df2d4a 1428 MultiFDRecvParams *p;
af8b7d2b
JQ
1429 Error *local_err = NULL;
1430 int id;
60df2d4a 1431
af8b7d2b
JQ
1432 id = multifd_recv_initial_packet(ioc, &local_err);
1433 if (id < 0) {
1434 multifd_recv_terminate_threads(local_err);
49ed0d24
FL
1435 error_propagate_prepend(errp, local_err,
1436 "failed to receive packet"
1437 " via multifd channel %d: ",
1438 atomic_read(&multifd_recv_state->count));
81e62053 1439 return false;
af8b7d2b
JQ
1440 }
1441
1442 p = &multifd_recv_state->params[id];
1443 if (p->c != NULL) {
1444 error_setg(&local_err, "multifd: received id '%d' already setup'",
1445 id);
1446 multifd_recv_terminate_threads(local_err);
49ed0d24 1447 error_propagate(errp, local_err);
81e62053 1448 return false;
af8b7d2b 1449 }
60df2d4a
JQ
1450 p->c = ioc;
1451 object_ref(OBJECT(ioc));
408ea6ae
JQ
1452 /* initial packet */
1453 p->num_packets = 1;
60df2d4a
JQ
1454
1455 p->running = true;
1456 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
1457 QEMU_THREAD_JOINABLE);
1458 atomic_inc(&multifd_recv_state->count);
49ed0d24
FL
1459 return atomic_read(&multifd_recv_state->count) ==
1460 migrate_multifd_channels();
71bb07db
JQ
1461}
1462
56e93d26 1463/**
3d0684b2 1464 * save_page_header: write page header to wire
56e93d26
JQ
1465 *
1466 * If this is the 1st block, it also writes the block identification
1467 *
3d0684b2 1468 * Returns the number of bytes written
56e93d26
JQ
1469 *
1470 * @f: QEMUFile where to send the data
1471 * @block: block that contains the page we want to send
1472 * @offset: offset inside the block for the page
1473 * in the lower bits, it contains flags
1474 */
2bf3aa85
JQ
1475static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
1476 ram_addr_t offset)
56e93d26 1477{
9f5f380b 1478 size_t size, len;
56e93d26 1479
24795694
JQ
1480 if (block == rs->last_sent_block) {
1481 offset |= RAM_SAVE_FLAG_CONTINUE;
1482 }
2bf3aa85 1483 qemu_put_be64(f, offset);
56e93d26
JQ
1484 size = 8;
1485
1486 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
9f5f380b 1487 len = strlen(block->idstr);
2bf3aa85
JQ
1488 qemu_put_byte(f, len);
1489 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
9f5f380b 1490 size += 1 + len;
24795694 1491 rs->last_sent_block = block;
56e93d26
JQ
1492 }
1493 return size;
1494}
1495
3d0684b2
JQ
1496/**
1497 * mig_throttle_guest_down: throotle down the guest
1498 *
1499 * Reduce amount of guest cpu execution to hopefully slow down memory
1500 * writes. If guest dirty memory rate is reduced below the rate at
1501 * which we can transfer pages to the destination then we should be
1502 * able to complete migration. Some workloads dirty memory way too
1503 * fast and will not effectively converge, even with auto-converge.
070afca2
JH
1504 */
1505static void mig_throttle_guest_down(void)
1506{
1507 MigrationState *s = migrate_get_current();
2594f56d
DB
1508 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
1509 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
4cbc9c7f 1510 int pct_max = s->parameters.max_cpu_throttle;
070afca2
JH
1511
1512 /* We have not started throttling yet. Let's start it. */
1513 if (!cpu_throttle_active()) {
1514 cpu_throttle_set(pct_initial);
1515 } else {
1516 /* Throttling already on, just increase the rate */
4cbc9c7f
LQ
1517 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement,
1518 pct_max));
070afca2
JH
1519 }
1520}
1521
3d0684b2
JQ
1522/**
1523 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
1524 *
6f37bb8b 1525 * @rs: current RAM state
3d0684b2
JQ
1526 * @current_addr: address for the zero page
1527 *
1528 * Update the xbzrle cache to reflect a page that's been sent as all 0.
56e93d26
JQ
1529 * The important thing is that a stale (not-yet-0'd) page be replaced
1530 * by the new data.
1531 * As a bonus, if the page wasn't in the cache it gets added so that
3d0684b2 1532 * when a small write is made into the 0'd page it gets XBZRLE sent.
56e93d26 1533 */
6f37bb8b 1534static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
56e93d26 1535{
6f37bb8b 1536 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
56e93d26
JQ
1537 return;
1538 }
1539
1540 /* We don't care if this fails to allocate a new cache page
1541 * as long as it updated an old one */
c00e0928 1542 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
9360447d 1543 ram_counters.dirty_sync_count);
56e93d26
JQ
1544}
1545
1546#define ENCODING_FLAG_XBZRLE 0x1
1547
1548/**
1549 * save_xbzrle_page: compress and send current page
1550 *
1551 * Returns: 1 means that we wrote the page
1552 * 0 means that page is identical to the one already sent
1553 * -1 means that xbzrle would be longer than normal
1554 *
5a987738 1555 * @rs: current RAM state
3d0684b2
JQ
1556 * @current_data: pointer to the address of the page contents
1557 * @current_addr: addr of the page
56e93d26
JQ
1558 * @block: block that contains the page we want to send
1559 * @offset: offset inside the block for the page
1560 * @last_stage: if we are at the completion stage
56e93d26 1561 */
204b88b8 1562static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
56e93d26 1563 ram_addr_t current_addr, RAMBlock *block,
072c2511 1564 ram_addr_t offset, bool last_stage)
56e93d26
JQ
1565{
1566 int encoded_len = 0, bytes_xbzrle;
1567 uint8_t *prev_cached_page;
1568
9360447d
JQ
1569 if (!cache_is_cached(XBZRLE.cache, current_addr,
1570 ram_counters.dirty_sync_count)) {
1571 xbzrle_counters.cache_miss++;
56e93d26
JQ
1572 if (!last_stage) {
1573 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
9360447d 1574 ram_counters.dirty_sync_count) == -1) {
56e93d26
JQ
1575 return -1;
1576 } else {
1577 /* update *current_data when the page has been
1578 inserted into cache */
1579 *current_data = get_cached_data(XBZRLE.cache, current_addr);
1580 }
1581 }
1582 return -1;
1583 }
1584
1585 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
1586
1587 /* save current buffer into memory */
1588 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
1589
1590 /* XBZRLE encoding (if there is no overflow) */
1591 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
1592 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
1593 TARGET_PAGE_SIZE);
1594 if (encoded_len == 0) {
55c4446b 1595 trace_save_xbzrle_page_skipping();
56e93d26
JQ
1596 return 0;
1597 } else if (encoded_len == -1) {
55c4446b 1598 trace_save_xbzrle_page_overflow();
9360447d 1599 xbzrle_counters.overflow++;
56e93d26
JQ
1600 /* update data in the cache */
1601 if (!last_stage) {
1602 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
1603 *current_data = prev_cached_page;
1604 }
1605 return -1;
1606 }
1607
1608 /* we need to update the data in the cache, in order to get the same data */
1609 if (!last_stage) {
1610 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
1611 }
1612
1613 /* Send XBZRLE based compressed page */
2bf3aa85 1614 bytes_xbzrle = save_page_header(rs, rs->f, block,
204b88b8
JQ
1615 offset | RAM_SAVE_FLAG_XBZRLE);
1616 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
1617 qemu_put_be16(rs->f, encoded_len);
1618 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
56e93d26 1619 bytes_xbzrle += encoded_len + 1 + 2;
9360447d
JQ
1620 xbzrle_counters.pages++;
1621 xbzrle_counters.bytes += bytes_xbzrle;
1622 ram_counters.transferred += bytes_xbzrle;
56e93d26
JQ
1623
1624 return 1;
1625}
1626
3d0684b2
JQ
1627/**
1628 * migration_bitmap_find_dirty: find the next dirty page from start
f3f491fc 1629 *
3d0684b2
JQ
1630 * Called with rcu_read_lock() to protect migration_bitmap
1631 *
1632 * Returns the byte offset within memory region of the start of a dirty page
1633 *
6f37bb8b 1634 * @rs: current RAM state
3d0684b2 1635 * @rb: RAMBlock where to search for dirty pages
a935e30f 1636 * @start: page where we start the search
f3f491fc 1637 */
56e93d26 1638static inline
a935e30f 1639unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
f20e2865 1640 unsigned long start)
56e93d26 1641{
6b6712ef
JQ
1642 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
1643 unsigned long *bitmap = rb->bmap;
56e93d26
JQ
1644 unsigned long next;
1645
fbd162e6 1646 if (ramblock_is_ignored(rb)) {
b895de50
CLG
1647 return size;
1648 }
1649
6eeb63f7
WW
1650 /*
1651 * When the free page optimization is enabled, we need to check the bitmap
1652 * to send the non-free pages rather than all the pages in the bulk stage.
1653 */
1654 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) {
6b6712ef 1655 next = start + 1;
56e93d26 1656 } else {
6b6712ef 1657 next = find_next_bit(bitmap, size, start);
56e93d26
JQ
1658 }
1659
6b6712ef 1660 return next;
56e93d26
JQ
1661}
1662
06b10688 1663static inline bool migration_bitmap_clear_dirty(RAMState *rs,
f20e2865
JQ
1664 RAMBlock *rb,
1665 unsigned long page)
a82d593b
DDAG
1666{
1667 bool ret;
a82d593b 1668
386a907b 1669 qemu_mutex_lock(&rs->bitmap_mutex);
6b6712ef 1670 ret = test_and_clear_bit(page, rb->bmap);
a82d593b
DDAG
1671
1672 if (ret) {
0d8ec885 1673 rs->migration_dirty_pages--;
a82d593b 1674 }
386a907b
WW
1675 qemu_mutex_unlock(&rs->bitmap_mutex);
1676
a82d593b
DDAG
1677 return ret;
1678}
1679
15440dd5
JQ
1680static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb,
1681 ram_addr_t start, ram_addr_t length)
56e93d26 1682{
0d8ec885 1683 rs->migration_dirty_pages +=
6b6712ef 1684 cpu_physical_memory_sync_dirty_bitmap(rb, start, length,
0d8ec885 1685 &rs->num_dirty_pages_period);
56e93d26
JQ
1686}
1687
3d0684b2
JQ
1688/**
1689 * ram_pagesize_summary: calculate all the pagesizes of a VM
1690 *
1691 * Returns a summary bitmap of the page sizes of all RAMBlocks
1692 *
1693 * For VMs with just normal pages this is equivalent to the host page
1694 * size. If it's got some huge pages then it's the OR of all the
1695 * different page sizes.
e8ca1db2
DDAG
1696 */
1697uint64_t ram_pagesize_summary(void)
1698{
1699 RAMBlock *block;
1700 uint64_t summary = 0;
1701
fbd162e6 1702 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
e8ca1db2
DDAG
1703 summary |= block->page_size;
1704 }
1705
1706 return summary;
1707}
1708
aecbfe9c
XG
1709uint64_t ram_get_total_transferred_pages(void)
1710{
1711 return ram_counters.normal + ram_counters.duplicate +
1712 compression_counters.pages + xbzrle_counters.pages;
1713}
1714
b734035b
XG
1715static void migration_update_rates(RAMState *rs, int64_t end_time)
1716{
be8b02ed 1717 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
76e03000 1718 double compressed_size;
b734035b
XG
1719
1720 /* calculate period counters */
1721 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1722 / (end_time - rs->time_last_bitmap_sync);
1723
be8b02ed 1724 if (!page_count) {
b734035b
XG
1725 return;
1726 }
1727
1728 if (migrate_use_xbzrle()) {
1729 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
be8b02ed 1730 rs->xbzrle_cache_miss_prev) / page_count;
b734035b
XG
1731 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1732 }
76e03000
XG
1733
1734 if (migrate_use_compression()) {
1735 compression_counters.busy_rate = (double)(compression_counters.busy -
1736 rs->compress_thread_busy_prev) / page_count;
1737 rs->compress_thread_busy_prev = compression_counters.busy;
1738
1739 compressed_size = compression_counters.compressed_size -
1740 rs->compressed_size_prev;
1741 if (compressed_size) {
1742 double uncompressed_size = (compression_counters.pages -
1743 rs->compress_pages_prev) * TARGET_PAGE_SIZE;
1744
1745 /* Compression-Ratio = Uncompressed-size / Compressed-size */
1746 compression_counters.compression_rate =
1747 uncompressed_size / compressed_size;
1748
1749 rs->compress_pages_prev = compression_counters.pages;
1750 rs->compressed_size_prev = compression_counters.compressed_size;
1751 }
1752 }
b734035b
XG
1753}
1754
8d820d6f 1755static void migration_bitmap_sync(RAMState *rs)
56e93d26
JQ
1756{
1757 RAMBlock *block;
56e93d26 1758 int64_t end_time;
c4bdf0cf 1759 uint64_t bytes_xfer_now;
56e93d26 1760
9360447d 1761 ram_counters.dirty_sync_count++;
56e93d26 1762
f664da80
JQ
1763 if (!rs->time_last_bitmap_sync) {
1764 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
56e93d26
JQ
1765 }
1766
1767 trace_migration_bitmap_sync_start();
9c1f8f44 1768 memory_global_dirty_log_sync();
56e93d26 1769
108cfae0 1770 qemu_mutex_lock(&rs->bitmap_mutex);
56e93d26 1771 rcu_read_lock();
fbd162e6 1772 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
15440dd5 1773 migration_bitmap_sync_range(rs, block, 0, block->used_length);
56e93d26 1774 }
650af890 1775 ram_counters.remaining = ram_bytes_remaining();
56e93d26 1776 rcu_read_unlock();
108cfae0 1777 qemu_mutex_unlock(&rs->bitmap_mutex);
56e93d26 1778
a66cd90c 1779 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1ffb5dfd 1780
56e93d26
JQ
1781 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1782
1783 /* more than 1 second = 1000 millisecons */
f664da80 1784 if (end_time > rs->time_last_bitmap_sync + 1000) {
9360447d 1785 bytes_xfer_now = ram_counters.transferred;
d693c6f1 1786
9ac78b61
PL
1787 /* During block migration the auto-converge logic incorrectly detects
1788 * that ram migration makes no progress. Avoid this by disabling the
1789 * throttling logic during the bulk phase of block migration. */
1790 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
56e93d26
JQ
1791 /* The following detection logic can be refined later. For now:
1792 Check to see if the dirtied bytes is 50% more than the approx.
1793 amount of bytes that just got transferred since the last time we
070afca2
JH
1794 were in this routine. If that happens twice, start or increase
1795 throttling */
070afca2 1796
d693c6f1 1797 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
eac74159 1798 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
b4a3c64b 1799 (++rs->dirty_rate_high_cnt >= 2)) {
56e93d26 1800 trace_migration_throttle();
8d820d6f 1801 rs->dirty_rate_high_cnt = 0;
070afca2 1802 mig_throttle_guest_down();
d693c6f1 1803 }
56e93d26 1804 }
070afca2 1805
b734035b
XG
1806 migration_update_rates(rs, end_time);
1807
be8b02ed 1808 rs->target_page_count_prev = rs->target_page_count;
d693c6f1
FF
1809
1810 /* reset period counters */
f664da80 1811 rs->time_last_bitmap_sync = end_time;
a66cd90c 1812 rs->num_dirty_pages_period = 0;
d2a4d85a 1813 rs->bytes_xfer_prev = bytes_xfer_now;
56e93d26 1814 }
4addcd4f 1815 if (migrate_use_events()) {
3ab72385 1816 qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
4addcd4f 1817 }
56e93d26
JQ
1818}
1819
bd227060
WW
1820static void migration_bitmap_sync_precopy(RAMState *rs)
1821{
1822 Error *local_err = NULL;
1823
1824 /*
1825 * The current notifier usage is just an optimization to migration, so we
1826 * don't stop the normal migration process in the error case.
1827 */
1828 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1829 error_report_err(local_err);
1830 }
1831
1832 migration_bitmap_sync(rs);
1833
1834 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1835 error_report_err(local_err);
1836 }
1837}
1838
6c97ec5f
XG
1839/**
1840 * save_zero_page_to_file: send the zero page to the file
1841 *
1842 * Returns the size of data written to the file, 0 means the page is not
1843 * a zero page
1844 *
1845 * @rs: current RAM state
1846 * @file: the file where the data is saved
1847 * @block: block that contains the page we want to send
1848 * @offset: offset inside the block for the page
1849 */
1850static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1851 RAMBlock *block, ram_addr_t offset)
1852{
1853 uint8_t *p = block->host + offset;
1854 int len = 0;
1855
1856 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1857 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1858 qemu_put_byte(file, 0);
1859 len += 1;
1860 }
1861 return len;
1862}
1863
56e93d26 1864/**
3d0684b2 1865 * save_zero_page: send the zero page to the stream
56e93d26 1866 *
3d0684b2 1867 * Returns the number of pages written.
56e93d26 1868 *
f7ccd61b 1869 * @rs: current RAM state
56e93d26
JQ
1870 * @block: block that contains the page we want to send
1871 * @offset: offset inside the block for the page
56e93d26 1872 */
7faccdc3 1873static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
56e93d26 1874{
6c97ec5f 1875 int len = save_zero_page_to_file(rs, rs->f, block, offset);
56e93d26 1876
6c97ec5f 1877 if (len) {
9360447d 1878 ram_counters.duplicate++;
6c97ec5f
XG
1879 ram_counters.transferred += len;
1880 return 1;
56e93d26 1881 }
6c97ec5f 1882 return -1;
56e93d26
JQ
1883}
1884
5727309d 1885static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
53f09a10 1886{
5727309d 1887 if (!migrate_release_ram() || !migration_in_postcopy()) {
53f09a10
PB
1888 return;
1889 }
1890
aaa2064c 1891 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
53f09a10
PB
1892}
1893
059ff0fb
XG
1894/*
1895 * @pages: the number of pages written by the control path,
1896 * < 0 - error
1897 * > 0 - number of pages written
1898 *
1899 * Return true if the pages has been saved, otherwise false is returned.
1900 */
1901static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1902 int *pages)
1903{
1904 uint64_t bytes_xmit = 0;
1905 int ret;
1906
1907 *pages = -1;
1908 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1909 &bytes_xmit);
1910 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1911 return false;
1912 }
1913
1914 if (bytes_xmit) {
1915 ram_counters.transferred += bytes_xmit;
1916 *pages = 1;
1917 }
1918
1919 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1920 return true;
1921 }
1922
1923 if (bytes_xmit > 0) {
1924 ram_counters.normal++;
1925 } else if (bytes_xmit == 0) {
1926 ram_counters.duplicate++;
1927 }
1928
1929 return true;
1930}
1931
65dacaa0
XG
1932/*
1933 * directly send the page to the stream
1934 *
1935 * Returns the number of pages written.
1936 *
1937 * @rs: current RAM state
1938 * @block: block that contains the page we want to send
1939 * @offset: offset inside the block for the page
1940 * @buf: the page to be sent
1941 * @async: send to page asyncly
1942 */
1943static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1944 uint8_t *buf, bool async)
1945{
1946 ram_counters.transferred += save_page_header(rs, rs->f, block,
1947 offset | RAM_SAVE_FLAG_PAGE);
1948 if (async) {
1949 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
1950 migrate_release_ram() &
1951 migration_in_postcopy());
1952 } else {
1953 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
1954 }
1955 ram_counters.transferred += TARGET_PAGE_SIZE;
1956 ram_counters.normal++;
1957 return 1;
1958}
1959
56e93d26 1960/**
3d0684b2 1961 * ram_save_page: send the given page to the stream
56e93d26 1962 *
3d0684b2 1963 * Returns the number of pages written.
3fd3c4b3
DDAG
1964 * < 0 - error
1965 * >=0 - Number of pages written - this might legally be 0
1966 * if xbzrle noticed the page was the same.
56e93d26 1967 *
6f37bb8b 1968 * @rs: current RAM state
56e93d26
JQ
1969 * @block: block that contains the page we want to send
1970 * @offset: offset inside the block for the page
1971 * @last_stage: if we are at the completion stage
56e93d26 1972 */
a0a8aa14 1973static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
56e93d26
JQ
1974{
1975 int pages = -1;
56e93d26 1976 uint8_t *p;
56e93d26 1977 bool send_async = true;
a08f6890 1978 RAMBlock *block = pss->block;
a935e30f 1979 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
059ff0fb 1980 ram_addr_t current_addr = block->offset + offset;
56e93d26 1981
2f68e399 1982 p = block->host + offset;
1db9d8e5 1983 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
56e93d26 1984
56e93d26 1985 XBZRLE_cache_lock();
d7400a34
XG
1986 if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
1987 migrate_use_xbzrle()) {
059ff0fb
XG
1988 pages = save_xbzrle_page(rs, &p, current_addr, block,
1989 offset, last_stage);
1990 if (!last_stage) {
1991 /* Can't send this cached data async, since the cache page
1992 * might get updated before it gets to the wire
56e93d26 1993 */
059ff0fb 1994 send_async = false;
56e93d26
JQ
1995 }
1996 }
1997
1998 /* XBZRLE overflow or normal page */
1999 if (pages == -1) {
65dacaa0 2000 pages = save_normal_page(rs, block, offset, p, send_async);
56e93d26
JQ
2001 }
2002
2003 XBZRLE_cache_unlock();
2004
2005 return pages;
2006}
2007
b9ee2f7d
JQ
2008static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
2009 ram_addr_t offset)
2010{
b9ee2f7d 2011 multifd_queue_page(block, offset);
b9ee2f7d
JQ
2012 ram_counters.normal++;
2013
2014 return 1;
2015}
2016
5e5fdcff 2017static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
6ef3771c 2018 ram_addr_t offset, uint8_t *source_buf)
56e93d26 2019{
53518d94 2020 RAMState *rs = ram_state;
a7a9a88f 2021 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
5e5fdcff 2022 bool zero_page = false;
6ef3771c 2023 int ret;
56e93d26 2024
5e5fdcff
XG
2025 if (save_zero_page_to_file(rs, f, block, offset)) {
2026 zero_page = true;
2027 goto exit;
2028 }
2029
6ef3771c 2030 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
34ab9e97
XG
2031
2032 /*
2033 * copy it to a internal buffer to avoid it being modified by VM
2034 * so that we can catch up the error during compression and
2035 * decompression
2036 */
2037 memcpy(source_buf, p, TARGET_PAGE_SIZE);
6ef3771c
XG
2038 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
2039 if (ret < 0) {
2040 qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
b3be2896 2041 error_report("compressed data failed!");
5e5fdcff 2042 return false;
b3be2896 2043 }
56e93d26 2044
5e5fdcff 2045exit:
6ef3771c 2046 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
5e5fdcff
XG
2047 return zero_page;
2048}
2049
2050static void
2051update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
2052{
76e03000
XG
2053 ram_counters.transferred += bytes_xmit;
2054
5e5fdcff
XG
2055 if (param->zero_page) {
2056 ram_counters.duplicate++;
76e03000 2057 return;
5e5fdcff 2058 }
76e03000
XG
2059
2060 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
2061 compression_counters.compressed_size += bytes_xmit - 8;
2062 compression_counters.pages++;
56e93d26
JQ
2063}
2064
32b05495
XG
2065static bool save_page_use_compression(RAMState *rs);
2066
ce25d337 2067static void flush_compressed_data(RAMState *rs)
56e93d26
JQ
2068{
2069 int idx, len, thread_count;
2070
32b05495 2071 if (!save_page_use_compression(rs)) {
56e93d26
JQ
2072 return;
2073 }
2074 thread_count = migrate_compress_threads();
a7a9a88f 2075
0d9f9a5c 2076 qemu_mutex_lock(&comp_done_lock);
56e93d26 2077 for (idx = 0; idx < thread_count; idx++) {
a7a9a88f 2078 while (!comp_param[idx].done) {
0d9f9a5c 2079 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
56e93d26 2080 }
a7a9a88f 2081 }
0d9f9a5c 2082 qemu_mutex_unlock(&comp_done_lock);
a7a9a88f
LL
2083
2084 for (idx = 0; idx < thread_count; idx++) {
2085 qemu_mutex_lock(&comp_param[idx].mutex);
90e56fb4 2086 if (!comp_param[idx].quit) {
ce25d337 2087 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
5e5fdcff
XG
2088 /*
2089 * it's safe to fetch zero_page without holding comp_done_lock
2090 * as there is no further request submitted to the thread,
2091 * i.e, the thread should be waiting for a request at this point.
2092 */
2093 update_compress_thread_counts(&comp_param[idx], len);
56e93d26 2094 }
a7a9a88f 2095 qemu_mutex_unlock(&comp_param[idx].mutex);
56e93d26
JQ
2096 }
2097}
2098
2099static inline void set_compress_params(CompressParam *param, RAMBlock *block,
2100 ram_addr_t offset)
2101{
2102 param->block = block;
2103 param->offset = offset;
2104}
2105
ce25d337
JQ
2106static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
2107 ram_addr_t offset)
56e93d26
JQ
2108{
2109 int idx, thread_count, bytes_xmit = -1, pages = -1;
1d58872a 2110 bool wait = migrate_compress_wait_thread();
56e93d26
JQ
2111
2112 thread_count = migrate_compress_threads();
0d9f9a5c 2113 qemu_mutex_lock(&comp_done_lock);
1d58872a
XG
2114retry:
2115 for (idx = 0; idx < thread_count; idx++) {
2116 if (comp_param[idx].done) {
2117 comp_param[idx].done = false;
2118 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2119 qemu_mutex_lock(&comp_param[idx].mutex);
2120 set_compress_params(&comp_param[idx], block, offset);
2121 qemu_cond_signal(&comp_param[idx].cond);
2122 qemu_mutex_unlock(&comp_param[idx].mutex);
2123 pages = 1;
5e5fdcff 2124 update_compress_thread_counts(&comp_param[idx], bytes_xmit);
56e93d26 2125 break;
56e93d26
JQ
2126 }
2127 }
1d58872a
XG
2128
2129 /*
2130 * wait for the free thread if the user specifies 'compress-wait-thread',
2131 * otherwise we will post the page out in the main thread as normal page.
2132 */
2133 if (pages < 0 && wait) {
2134 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2135 goto retry;
2136 }
0d9f9a5c 2137 qemu_mutex_unlock(&comp_done_lock);
56e93d26
JQ
2138
2139 return pages;
2140}
2141
3d0684b2
JQ
2142/**
2143 * find_dirty_block: find the next dirty page and update any state
2144 * associated with the search process.
b9e60928 2145 *
3d0684b2 2146 * Returns if a page is found
b9e60928 2147 *
6f37bb8b 2148 * @rs: current RAM state
3d0684b2
JQ
2149 * @pss: data about the state of the current dirty page scan
2150 * @again: set to false if the search has scanned the whole of RAM
b9e60928 2151 */
f20e2865 2152static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
b9e60928 2153{
f20e2865 2154 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
6f37bb8b 2155 if (pss->complete_round && pss->block == rs->last_seen_block &&
a935e30f 2156 pss->page >= rs->last_page) {
b9e60928
DDAG
2157 /*
2158 * We've been once around the RAM and haven't found anything.
2159 * Give up.
2160 */
2161 *again = false;
2162 return false;
2163 }
a935e30f 2164 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
b9e60928 2165 /* Didn't find anything in this RAM Block */
a935e30f 2166 pss->page = 0;
b9e60928
DDAG
2167 pss->block = QLIST_NEXT_RCU(pss->block, next);
2168 if (!pss->block) {
48df9d80
XG
2169 /*
2170 * If memory migration starts over, we will meet a dirtied page
2171 * which may still exists in compression threads's ring, so we
2172 * should flush the compressed data to make sure the new page
2173 * is not overwritten by the old one in the destination.
2174 *
2175 * Also If xbzrle is on, stop using the data compression at this
2176 * point. In theory, xbzrle can do better than compression.
2177 */
2178 flush_compressed_data(rs);
2179
b9e60928
DDAG
2180 /* Hit the end of the list */
2181 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
2182 /* Flag that we've looped */
2183 pss->complete_round = true;
6f37bb8b 2184 rs->ram_bulk_stage = false;
b9e60928
DDAG
2185 }
2186 /* Didn't find anything this time, but try again on the new block */
2187 *again = true;
2188 return false;
2189 } else {
2190 /* Can go around again, but... */
2191 *again = true;
2192 /* We've found something so probably don't need to */
2193 return true;
2194 }
2195}
2196
3d0684b2
JQ
2197/**
2198 * unqueue_page: gets a page of the queue
2199 *
a82d593b 2200 * Helper for 'get_queued_page' - gets a page off the queue
a82d593b 2201 *
3d0684b2
JQ
2202 * Returns the block of the page (or NULL if none available)
2203 *
ec481c6c 2204 * @rs: current RAM state
3d0684b2 2205 * @offset: used to return the offset within the RAMBlock
a82d593b 2206 */
f20e2865 2207static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
a82d593b
DDAG
2208{
2209 RAMBlock *block = NULL;
2210
ae526e32
XG
2211 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) {
2212 return NULL;
2213 }
2214
ec481c6c
JQ
2215 qemu_mutex_lock(&rs->src_page_req_mutex);
2216 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
2217 struct RAMSrcPageRequest *entry =
2218 QSIMPLEQ_FIRST(&rs->src_page_requests);
a82d593b
DDAG
2219 block = entry->rb;
2220 *offset = entry->offset;
a82d593b
DDAG
2221
2222 if (entry->len > TARGET_PAGE_SIZE) {
2223 entry->len -= TARGET_PAGE_SIZE;
2224 entry->offset += TARGET_PAGE_SIZE;
2225 } else {
2226 memory_region_unref(block->mr);
ec481c6c 2227 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
a82d593b 2228 g_free(entry);
e03a34f8 2229 migration_consume_urgent_request();
a82d593b
DDAG
2230 }
2231 }
ec481c6c 2232 qemu_mutex_unlock(&rs->src_page_req_mutex);
a82d593b
DDAG
2233
2234 return block;
2235}
2236
3d0684b2
JQ
2237/**
2238 * get_queued_page: unqueue a page from the postocpy requests
2239 *
2240 * Skips pages that are already sent (!dirty)
a82d593b 2241 *
3d0684b2 2242 * Returns if a queued page is found
a82d593b 2243 *
6f37bb8b 2244 * @rs: current RAM state
3d0684b2 2245 * @pss: data about the state of the current dirty page scan
a82d593b 2246 */
f20e2865 2247static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
a82d593b
DDAG
2248{
2249 RAMBlock *block;
2250 ram_addr_t offset;
2251 bool dirty;
2252
2253 do {
f20e2865 2254 block = unqueue_page(rs, &offset);
a82d593b
DDAG
2255 /*
2256 * We're sending this page, and since it's postcopy nothing else
2257 * will dirty it, and we must make sure it doesn't get sent again
2258 * even if this queue request was received after the background
2259 * search already sent it.
2260 */
2261 if (block) {
f20e2865
JQ
2262 unsigned long page;
2263
6b6712ef
JQ
2264 page = offset >> TARGET_PAGE_BITS;
2265 dirty = test_bit(page, block->bmap);
a82d593b 2266 if (!dirty) {
06b10688 2267 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
6b6712ef 2268 page, test_bit(page, block->unsentmap));
a82d593b 2269 } else {
f20e2865 2270 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
a82d593b
DDAG
2271 }
2272 }
2273
2274 } while (block && !dirty);
2275
2276 if (block) {
2277 /*
2278 * As soon as we start servicing pages out of order, then we have
2279 * to kill the bulk stage, since the bulk stage assumes
2280 * in (migration_bitmap_find_and_reset_dirty) that every page is
2281 * dirty, that's no longer true.
2282 */
6f37bb8b 2283 rs->ram_bulk_stage = false;
a82d593b
DDAG
2284
2285 /*
2286 * We want the background search to continue from the queued page
2287 * since the guest is likely to want other pages near to the page
2288 * it just requested.
2289 */
2290 pss->block = block;
a935e30f 2291 pss->page = offset >> TARGET_PAGE_BITS;
a82d593b
DDAG
2292 }
2293
2294 return !!block;
2295}
2296
6c595cde 2297/**
5e58f968
JQ
2298 * migration_page_queue_free: drop any remaining pages in the ram
2299 * request queue
6c595cde 2300 *
3d0684b2
JQ
2301 * It should be empty at the end anyway, but in error cases there may
2302 * be some left. in case that there is any page left, we drop it.
2303 *
6c595cde 2304 */
83c13382 2305static void migration_page_queue_free(RAMState *rs)
6c595cde 2306{
ec481c6c 2307 struct RAMSrcPageRequest *mspr, *next_mspr;
6c595cde
DDAG
2308 /* This queue generally should be empty - but in the case of a failed
2309 * migration might have some droppings in.
2310 */
2311 rcu_read_lock();
ec481c6c 2312 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
6c595cde 2313 memory_region_unref(mspr->rb->mr);
ec481c6c 2314 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
6c595cde
DDAG
2315 g_free(mspr);
2316 }
2317 rcu_read_unlock();
2318}
2319
2320/**
3d0684b2
JQ
2321 * ram_save_queue_pages: queue the page for transmission
2322 *
2323 * A request from postcopy destination for example.
2324 *
2325 * Returns zero on success or negative on error
2326 *
3d0684b2
JQ
2327 * @rbname: Name of the RAMBLock of the request. NULL means the
2328 * same that last one.
2329 * @start: starting address from the start of the RAMBlock
2330 * @len: length (in bytes) to send
6c595cde 2331 */
96506894 2332int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
6c595cde
DDAG
2333{
2334 RAMBlock *ramblock;
53518d94 2335 RAMState *rs = ram_state;
6c595cde 2336
9360447d 2337 ram_counters.postcopy_requests++;
6c595cde
DDAG
2338 rcu_read_lock();
2339 if (!rbname) {
2340 /* Reuse last RAMBlock */
68a098f3 2341 ramblock = rs->last_req_rb;
6c595cde
DDAG
2342
2343 if (!ramblock) {
2344 /*
2345 * Shouldn't happen, we can't reuse the last RAMBlock if
2346 * it's the 1st request.
2347 */
2348 error_report("ram_save_queue_pages no previous block");
2349 goto err;
2350 }
2351 } else {
2352 ramblock = qemu_ram_block_by_name(rbname);
2353
2354 if (!ramblock) {
2355 /* We shouldn't be asked for a non-existent RAMBlock */
2356 error_report("ram_save_queue_pages no block '%s'", rbname);
2357 goto err;
2358 }
68a098f3 2359 rs->last_req_rb = ramblock;
6c595cde
DDAG
2360 }
2361 trace_ram_save_queue_pages(ramblock->idstr, start, len);
2362 if (start+len > ramblock->used_length) {
9458ad6b
JQ
2363 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2364 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
6c595cde
DDAG
2365 __func__, start, len, ramblock->used_length);
2366 goto err;
2367 }
2368
ec481c6c
JQ
2369 struct RAMSrcPageRequest *new_entry =
2370 g_malloc0(sizeof(struct RAMSrcPageRequest));
6c595cde
DDAG
2371 new_entry->rb = ramblock;
2372 new_entry->offset = start;
2373 new_entry->len = len;
2374
2375 memory_region_ref(ramblock->mr);
ec481c6c
JQ
2376 qemu_mutex_lock(&rs->src_page_req_mutex);
2377 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
e03a34f8 2378 migration_make_urgent_request();
ec481c6c 2379 qemu_mutex_unlock(&rs->src_page_req_mutex);
6c595cde
DDAG
2380 rcu_read_unlock();
2381
2382 return 0;
2383
2384err:
2385 rcu_read_unlock();
2386 return -1;
2387}
2388
d7400a34
XG
2389static bool save_page_use_compression(RAMState *rs)
2390{
2391 if (!migrate_use_compression()) {
2392 return false;
2393 }
2394
2395 /*
2396 * If xbzrle is on, stop using the data compression after first
2397 * round of migration even if compression is enabled. In theory,
2398 * xbzrle can do better than compression.
2399 */
2400 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
2401 return true;
2402 }
2403
2404 return false;
2405}
2406
5e5fdcff
XG
2407/*
2408 * try to compress the page before posting it out, return true if the page
2409 * has been properly handled by compression, otherwise needs other
2410 * paths to handle it
2411 */
2412static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
2413{
2414 if (!save_page_use_compression(rs)) {
2415 return false;
2416 }
2417
2418 /*
2419 * When starting the process of a new block, the first page of
2420 * the block should be sent out before other pages in the same
2421 * block, and all the pages in last block should have been sent
2422 * out, keeping this order is important, because the 'cont' flag
2423 * is used to avoid resending the block name.
2424 *
2425 * We post the fist page as normal page as compression will take
2426 * much CPU resource.
2427 */
2428 if (block != rs->last_sent_block) {
2429 flush_compressed_data(rs);
2430 return false;
2431 }
2432
2433 if (compress_page_with_multi_thread(rs, block, offset) > 0) {
2434 return true;
2435 }
2436
76e03000 2437 compression_counters.busy++;
5e5fdcff
XG
2438 return false;
2439}
2440
a82d593b 2441/**
3d0684b2 2442 * ram_save_target_page: save one target page
a82d593b 2443 *
3d0684b2 2444 * Returns the number of pages written
a82d593b 2445 *
6f37bb8b 2446 * @rs: current RAM state
3d0684b2 2447 * @pss: data about the page we want to send
a82d593b 2448 * @last_stage: if we are at the completion stage
a82d593b 2449 */
a0a8aa14 2450static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
f20e2865 2451 bool last_stage)
a82d593b 2452{
a8ec91f9
XG
2453 RAMBlock *block = pss->block;
2454 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2455 int res;
2456
2457 if (control_save_page(rs, block, offset, &res)) {
2458 return res;
2459 }
2460
5e5fdcff
XG
2461 if (save_compress_page(rs, block, offset)) {
2462 return 1;
d7400a34
XG
2463 }
2464
2465 res = save_zero_page(rs, block, offset);
2466 if (res > 0) {
2467 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2468 * page would be stale
2469 */
2470 if (!save_page_use_compression(rs)) {
2471 XBZRLE_cache_lock();
2472 xbzrle_cache_zero_page(rs, block->offset + offset);
2473 XBZRLE_cache_unlock();
2474 }
2475 ram_release_pages(block->idstr, offset, res);
2476 return res;
2477 }
2478
da3f56cb 2479 /*
5e5fdcff
XG
2480 * do not use multifd for compression as the first page in the new
2481 * block should be posted out before sending the compressed page
da3f56cb 2482 */
5e5fdcff 2483 if (!save_page_use_compression(rs) && migrate_use_multifd()) {
b9ee2f7d 2484 return ram_save_multifd_page(rs, block, offset);
a82d593b
DDAG
2485 }
2486
1faa5665 2487 return ram_save_page(rs, pss, last_stage);
a82d593b
DDAG
2488}
2489
2490/**
3d0684b2 2491 * ram_save_host_page: save a whole host page
a82d593b 2492 *
3d0684b2
JQ
2493 * Starting at *offset send pages up to the end of the current host
2494 * page. It's valid for the initial offset to point into the middle of
2495 * a host page in which case the remainder of the hostpage is sent.
2496 * Only dirty target pages are sent. Note that the host page size may
2497 * be a huge page for this block.
1eb3fc0a
DDAG
2498 * The saving stops at the boundary of the used_length of the block
2499 * if the RAMBlock isn't a multiple of the host page size.
a82d593b 2500 *
3d0684b2
JQ
2501 * Returns the number of pages written or negative on error
2502 *
6f37bb8b 2503 * @rs: current RAM state
3d0684b2 2504 * @ms: current migration state
3d0684b2 2505 * @pss: data about the page we want to send
a82d593b 2506 * @last_stage: if we are at the completion stage
a82d593b 2507 */
a0a8aa14 2508static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
f20e2865 2509 bool last_stage)
a82d593b
DDAG
2510{
2511 int tmppages, pages = 0;
a935e30f
JQ
2512 size_t pagesize_bits =
2513 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
4c011c37 2514
fbd162e6 2515 if (ramblock_is_ignored(pss->block)) {
b895de50
CLG
2516 error_report("block %s should not be migrated !", pss->block->idstr);
2517 return 0;
2518 }
2519
a82d593b 2520 do {
1faa5665
XG
2521 /* Check the pages is dirty and if it is send it */
2522 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2523 pss->page++;
2524 continue;
2525 }
2526
f20e2865 2527 tmppages = ram_save_target_page(rs, pss, last_stage);
a82d593b
DDAG
2528 if (tmppages < 0) {
2529 return tmppages;
2530 }
2531
2532 pages += tmppages;
1faa5665
XG
2533 if (pss->block->unsentmap) {
2534 clear_bit(pss->page, pss->block->unsentmap);
2535 }
2536
a935e30f 2537 pss->page++;
1eb3fc0a
DDAG
2538 } while ((pss->page & (pagesize_bits - 1)) &&
2539 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
a82d593b
DDAG
2540
2541 /* The offset we leave with is the last one we looked at */
a935e30f 2542 pss->page--;
a82d593b
DDAG
2543 return pages;
2544}
6c595cde 2545
56e93d26 2546/**
3d0684b2 2547 * ram_find_and_save_block: finds a dirty page and sends it to f
56e93d26
JQ
2548 *
2549 * Called within an RCU critical section.
2550 *
e8f3735f
XG
2551 * Returns the number of pages written where zero means no dirty pages,
2552 * or negative on error
56e93d26 2553 *
6f37bb8b 2554 * @rs: current RAM state
56e93d26 2555 * @last_stage: if we are at the completion stage
a82d593b
DDAG
2556 *
2557 * On systems where host-page-size > target-page-size it will send all the
2558 * pages in a host page that are dirty.
56e93d26
JQ
2559 */
2560
ce25d337 2561static int ram_find_and_save_block(RAMState *rs, bool last_stage)
56e93d26 2562{
b8fb8cb7 2563 PageSearchStatus pss;
56e93d26 2564 int pages = 0;
b9e60928 2565 bool again, found;
56e93d26 2566
0827b9e9
AA
2567 /* No dirty page as there is zero RAM */
2568 if (!ram_bytes_total()) {
2569 return pages;
2570 }
2571
6f37bb8b 2572 pss.block = rs->last_seen_block;
a935e30f 2573 pss.page = rs->last_page;
b8fb8cb7
DDAG
2574 pss.complete_round = false;
2575
2576 if (!pss.block) {
2577 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2578 }
56e93d26 2579
b9e60928 2580 do {
a82d593b 2581 again = true;
f20e2865 2582 found = get_queued_page(rs, &pss);
b9e60928 2583
a82d593b
DDAG
2584 if (!found) {
2585 /* priority queue empty, so just search for something dirty */
f20e2865 2586 found = find_dirty_block(rs, &pss, &again);
a82d593b 2587 }
f3f491fc 2588
a82d593b 2589 if (found) {
f20e2865 2590 pages = ram_save_host_page(rs, &pss, last_stage);
56e93d26 2591 }
b9e60928 2592 } while (!pages && again);
56e93d26 2593
6f37bb8b 2594 rs->last_seen_block = pss.block;
a935e30f 2595 rs->last_page = pss.page;
56e93d26
JQ
2596
2597 return pages;
2598}
2599
2600void acct_update_position(QEMUFile *f, size_t size, bool zero)
2601{
2602 uint64_t pages = size / TARGET_PAGE_SIZE;
f7ccd61b 2603
56e93d26 2604 if (zero) {
9360447d 2605 ram_counters.duplicate += pages;
56e93d26 2606 } else {
9360447d
JQ
2607 ram_counters.normal += pages;
2608 ram_counters.transferred += size;
56e93d26
JQ
2609 qemu_update_position(f, size);
2610 }
2611}
2612
fbd162e6 2613static uint64_t ram_bytes_total_common(bool count_ignored)
56e93d26
JQ
2614{
2615 RAMBlock *block;
2616 uint64_t total = 0;
2617
2618 rcu_read_lock();
fbd162e6
YK
2619 if (count_ignored) {
2620 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2621 total += block->used_length;
2622 }
2623 } else {
2624 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2625 total += block->used_length;
2626 }
99e15582 2627 }
56e93d26
JQ
2628 rcu_read_unlock();
2629 return total;
2630}
2631
fbd162e6
YK
2632uint64_t ram_bytes_total(void)
2633{
2634 return ram_bytes_total_common(false);
2635}
2636
f265e0e4 2637static void xbzrle_load_setup(void)
56e93d26 2638{
f265e0e4 2639 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
56e93d26
JQ
2640}
2641
f265e0e4
JQ
2642static void xbzrle_load_cleanup(void)
2643{
2644 g_free(XBZRLE.decoded_buf);
2645 XBZRLE.decoded_buf = NULL;
2646}
2647
7d7c96be
PX
2648static void ram_state_cleanup(RAMState **rsp)
2649{
b9ccaf6d
DDAG
2650 if (*rsp) {
2651 migration_page_queue_free(*rsp);
2652 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2653 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2654 g_free(*rsp);
2655 *rsp = NULL;
2656 }
7d7c96be
PX
2657}
2658
84593a08
PX
2659static void xbzrle_cleanup(void)
2660{
2661 XBZRLE_cache_lock();
2662 if (XBZRLE.cache) {
2663 cache_fini(XBZRLE.cache);
2664 g_free(XBZRLE.encoded_buf);
2665 g_free(XBZRLE.current_buf);
2666 g_free(XBZRLE.zero_target_page);
2667 XBZRLE.cache = NULL;
2668 XBZRLE.encoded_buf = NULL;
2669 XBZRLE.current_buf = NULL;
2670 XBZRLE.zero_target_page = NULL;
2671 }
2672 XBZRLE_cache_unlock();
2673}
2674
f265e0e4 2675static void ram_save_cleanup(void *opaque)
56e93d26 2676{
53518d94 2677 RAMState **rsp = opaque;
6b6712ef 2678 RAMBlock *block;
eb859c53 2679
2ff64038
LZ
2680 /* caller have hold iothread lock or is in a bh, so there is
2681 * no writing race against this migration_bitmap
2682 */
6b6712ef
JQ
2683 memory_global_dirty_log_stop();
2684
fbd162e6 2685 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
6b6712ef
JQ
2686 g_free(block->bmap);
2687 block->bmap = NULL;
2688 g_free(block->unsentmap);
2689 block->unsentmap = NULL;
56e93d26
JQ
2690 }
2691
84593a08 2692 xbzrle_cleanup();
f0afa331 2693 compress_threads_save_cleanup();
7d7c96be 2694 ram_state_cleanup(rsp);
56e93d26
JQ
2695}
2696
6f37bb8b 2697static void ram_state_reset(RAMState *rs)
56e93d26 2698{
6f37bb8b
JQ
2699 rs->last_seen_block = NULL;
2700 rs->last_sent_block = NULL;
269ace29 2701 rs->last_page = 0;
6f37bb8b
JQ
2702 rs->last_version = ram_list.version;
2703 rs->ram_bulk_stage = true;
6eeb63f7 2704 rs->fpo_enabled = false;
56e93d26
JQ
2705}
2706
2707#define MAX_WAIT 50 /* ms, half buffered_file limit */
2708
4f2e4252
DDAG
2709/*
2710 * 'expected' is the value you expect the bitmap mostly to be full
2711 * of; it won't bother printing lines that are all this value.
2712 * If 'todump' is null the migration bitmap is dumped.
2713 */
6b6712ef
JQ
2714void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2715 unsigned long pages)
4f2e4252 2716{
4f2e4252
DDAG
2717 int64_t cur;
2718 int64_t linelen = 128;
2719 char linebuf[129];
2720
6b6712ef 2721 for (cur = 0; cur < pages; cur += linelen) {
4f2e4252
DDAG
2722 int64_t curb;
2723 bool found = false;
2724 /*
2725 * Last line; catch the case where the line length
2726 * is longer than remaining ram
2727 */
6b6712ef
JQ
2728 if (cur + linelen > pages) {
2729 linelen = pages - cur;
4f2e4252
DDAG
2730 }
2731 for (curb = 0; curb < linelen; curb++) {
2732 bool thisbit = test_bit(cur + curb, todump);
2733 linebuf[curb] = thisbit ? '1' : '.';
2734 found = found || (thisbit != expected);
2735 }
2736 if (found) {
2737 linebuf[curb] = '\0';
2738 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
2739 }
2740 }
2741}
2742
e0b266f0
DDAG
2743/* **** functions for postcopy ***** */
2744
ced1c616
PB
2745void ram_postcopy_migrated_memory_release(MigrationState *ms)
2746{
2747 struct RAMBlock *block;
ced1c616 2748
fbd162e6 2749 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
6b6712ef
JQ
2750 unsigned long *bitmap = block->bmap;
2751 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2752 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
ced1c616
PB
2753
2754 while (run_start < range) {
2755 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
aaa2064c 2756 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
ced1c616
PB
2757 (run_end - run_start) << TARGET_PAGE_BITS);
2758 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2759 }
2760 }
2761}
2762
3d0684b2
JQ
2763/**
2764 * postcopy_send_discard_bm_ram: discard a RAMBlock
2765 *
2766 * Returns zero on success
2767 *
e0b266f0
DDAG
2768 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2769 * Note: At this point the 'unsentmap' is the processed bitmap combined
2770 * with the dirtymap; so a '1' means it's either dirty or unsent.
3d0684b2
JQ
2771 *
2772 * @ms: current migration state
2773 * @pds: state for postcopy
2774 * @start: RAMBlock starting page
2775 * @length: RAMBlock size
e0b266f0
DDAG
2776 */
2777static int postcopy_send_discard_bm_ram(MigrationState *ms,
2778 PostcopyDiscardState *pds,
6b6712ef 2779 RAMBlock *block)
e0b266f0 2780{
6b6712ef 2781 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
e0b266f0 2782 unsigned long current;
6b6712ef 2783 unsigned long *unsentmap = block->unsentmap;
e0b266f0 2784
6b6712ef 2785 for (current = 0; current < end; ) {
e0b266f0
DDAG
2786 unsigned long one = find_next_bit(unsentmap, end, current);
2787
2788 if (one <= end) {
2789 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
2790 unsigned long discard_length;
2791
2792 if (zero >= end) {
2793 discard_length = end - one;
2794 } else {
2795 discard_length = zero - one;
2796 }
d688c62d
DDAG
2797 if (discard_length) {
2798 postcopy_discard_send_range(ms, pds, one, discard_length);
2799 }
e0b266f0
DDAG
2800 current = one + discard_length;
2801 } else {
2802 current = one;
2803 }
2804 }
2805
2806 return 0;
2807}
2808
3d0684b2
JQ
2809/**
2810 * postcopy_each_ram_send_discard: discard all RAMBlocks
2811 *
2812 * Returns 0 for success or negative for error
2813 *
e0b266f0
DDAG
2814 * Utility for the outgoing postcopy code.
2815 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2816 * passing it bitmap indexes and name.
e0b266f0
DDAG
2817 * (qemu_ram_foreach_block ends up passing unscaled lengths
2818 * which would mean postcopy code would have to deal with target page)
3d0684b2
JQ
2819 *
2820 * @ms: current migration state
e0b266f0
DDAG
2821 */
2822static int postcopy_each_ram_send_discard(MigrationState *ms)
2823{
2824 struct RAMBlock *block;
2825 int ret;
2826
fbd162e6 2827 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
6b6712ef
JQ
2828 PostcopyDiscardState *pds =
2829 postcopy_discard_send_init(ms, block->idstr);
e0b266f0
DDAG
2830
2831 /*
2832 * Postcopy sends chunks of bitmap over the wire, but it
2833 * just needs indexes at this point, avoids it having
2834 * target page specific code.
2835 */
6b6712ef 2836 ret = postcopy_send_discard_bm_ram(ms, pds, block);
e0b266f0
DDAG
2837 postcopy_discard_send_finish(ms, pds);
2838 if (ret) {
2839 return ret;
2840 }
2841 }
2842
2843 return 0;
2844}
2845
3d0684b2
JQ
2846/**
2847 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
2848 *
2849 * Helper for postcopy_chunk_hostpages; it's called twice to
2850 * canonicalize the two bitmaps, that are similar, but one is
2851 * inverted.
99e314eb 2852 *
3d0684b2
JQ
2853 * Postcopy requires that all target pages in a hostpage are dirty or
2854 * clean, not a mix. This function canonicalizes the bitmaps.
99e314eb 2855 *
3d0684b2
JQ
2856 * @ms: current migration state
2857 * @unsent_pass: if true we need to canonicalize partially unsent host pages
2858 * otherwise we need to canonicalize partially dirty host pages
2859 * @block: block that contains the page we want to canonicalize
2860 * @pds: state for postcopy
99e314eb
DDAG
2861 */
2862static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
2863 RAMBlock *block,
2864 PostcopyDiscardState *pds)
2865{
53518d94 2866 RAMState *rs = ram_state;
6b6712ef
JQ
2867 unsigned long *bitmap = block->bmap;
2868 unsigned long *unsentmap = block->unsentmap;
29c59172 2869 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
6b6712ef 2870 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
99e314eb
DDAG
2871 unsigned long run_start;
2872
29c59172
DDAG
2873 if (block->page_size == TARGET_PAGE_SIZE) {
2874 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2875 return;
2876 }
2877
99e314eb
DDAG
2878 if (unsent_pass) {
2879 /* Find a sent page */
6b6712ef 2880 run_start = find_next_zero_bit(unsentmap, pages, 0);
99e314eb
DDAG
2881 } else {
2882 /* Find a dirty page */
6b6712ef 2883 run_start = find_next_bit(bitmap, pages, 0);
99e314eb
DDAG
2884 }
2885
6b6712ef 2886 while (run_start < pages) {
99e314eb
DDAG
2887 bool do_fixup = false;
2888 unsigned long fixup_start_addr;
2889 unsigned long host_offset;
2890
2891 /*
2892 * If the start of this run of pages is in the middle of a host
2893 * page, then we need to fixup this host page.
2894 */
2895 host_offset = run_start % host_ratio;
2896 if (host_offset) {
2897 do_fixup = true;
2898 run_start -= host_offset;
2899 fixup_start_addr = run_start;
2900 /* For the next pass */
2901 run_start = run_start + host_ratio;
2902 } else {
2903 /* Find the end of this run */
2904 unsigned long run_end;
2905 if (unsent_pass) {
6b6712ef 2906 run_end = find_next_bit(unsentmap, pages, run_start + 1);
99e314eb 2907 } else {
6b6712ef 2908 run_end = find_next_zero_bit(bitmap, pages, run_start + 1);
99e314eb
DDAG
2909 }
2910 /*
2911 * If the end isn't at the start of a host page, then the
2912 * run doesn't finish at the end of a host page
2913 * and we need to discard.
2914 */
2915 host_offset = run_end % host_ratio;
2916 if (host_offset) {
2917 do_fixup = true;
2918 fixup_start_addr = run_end - host_offset;
2919 /*
2920 * This host page has gone, the next loop iteration starts
2921 * from after the fixup
2922 */
2923 run_start = fixup_start_addr + host_ratio;
2924 } else {
2925 /*
2926 * No discards on this iteration, next loop starts from
2927 * next sent/dirty page
2928 */
2929 run_start = run_end + 1;
2930 }
2931 }
2932
2933 if (do_fixup) {
2934 unsigned long page;
2935
2936 /* Tell the destination to discard this page */
2937 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
2938 /* For the unsent_pass we:
2939 * discard partially sent pages
2940 * For the !unsent_pass (dirty) we:
2941 * discard partially dirty pages that were sent
2942 * (any partially sent pages were already discarded
2943 * by the previous unsent_pass)
2944 */
2945 postcopy_discard_send_range(ms, pds, fixup_start_addr,
2946 host_ratio);
2947 }
2948
2949 /* Clean up the bitmap */
2950 for (page = fixup_start_addr;
2951 page < fixup_start_addr + host_ratio; page++) {
2952 /* All pages in this host page are now not sent */
2953 set_bit(page, unsentmap);
2954
2955 /*
2956 * Remark them as dirty, updating the count for any pages
2957 * that weren't previously dirty.
2958 */
0d8ec885 2959 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
99e314eb
DDAG
2960 }
2961 }
2962
2963 if (unsent_pass) {
2964 /* Find the next sent page for the next iteration */
6b6712ef 2965 run_start = find_next_zero_bit(unsentmap, pages, run_start);
99e314eb
DDAG
2966 } else {
2967 /* Find the next dirty page for the next iteration */
6b6712ef 2968 run_start = find_next_bit(bitmap, pages, run_start);
99e314eb
DDAG
2969 }
2970 }
2971}
2972
3d0684b2
JQ
2973/**
2974 * postcopy_chuck_hostpages: discrad any partially sent host page
2975 *
99e314eb
DDAG
2976 * Utility for the outgoing postcopy code.
2977 *
2978 * Discard any partially sent host-page size chunks, mark any partially
29c59172
DDAG
2979 * dirty host-page size chunks as all dirty. In this case the host-page
2980 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
99e314eb 2981 *
3d0684b2
JQ
2982 * Returns zero on success
2983 *
2984 * @ms: current migration state
6b6712ef 2985 * @block: block we want to work with
99e314eb 2986 */
6b6712ef 2987static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
99e314eb 2988{
6b6712ef
JQ
2989 PostcopyDiscardState *pds =
2990 postcopy_discard_send_init(ms, block->idstr);
99e314eb 2991
6b6712ef
JQ
2992 /* First pass: Discard all partially sent host pages */
2993 postcopy_chunk_hostpages_pass(ms, true, block, pds);
2994 /*
2995 * Second pass: Ensure that all partially dirty host pages are made
2996 * fully dirty.
2997 */
2998 postcopy_chunk_hostpages_pass(ms, false, block, pds);
99e314eb 2999
6b6712ef 3000 postcopy_discard_send_finish(ms, pds);
99e314eb
DDAG
3001 return 0;
3002}
3003
3d0684b2
JQ
3004/**
3005 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
3006 *
3007 * Returns zero on success
3008 *
e0b266f0
DDAG
3009 * Transmit the set of pages to be discarded after precopy to the target
3010 * these are pages that:
3011 * a) Have been previously transmitted but are now dirty again
3012 * b) Pages that have never been transmitted, this ensures that
3013 * any pages on the destination that have been mapped by background
3014 * tasks get discarded (transparent huge pages is the specific concern)
3015 * Hopefully this is pretty sparse
3d0684b2
JQ
3016 *
3017 * @ms: current migration state
e0b266f0
DDAG
3018 */
3019int ram_postcopy_send_discard_bitmap(MigrationState *ms)
3020{
53518d94 3021 RAMState *rs = ram_state;
6b6712ef 3022 RAMBlock *block;
e0b266f0 3023 int ret;
e0b266f0
DDAG
3024
3025 rcu_read_lock();
3026
3027 /* This should be our last sync, the src is now paused */
eb859c53 3028 migration_bitmap_sync(rs);
e0b266f0 3029
6b6712ef
JQ
3030 /* Easiest way to make sure we don't resume in the middle of a host-page */
3031 rs->last_seen_block = NULL;
3032 rs->last_sent_block = NULL;
3033 rs->last_page = 0;
e0b266f0 3034
fbd162e6 3035 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
6b6712ef
JQ
3036 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
3037 unsigned long *bitmap = block->bmap;
3038 unsigned long *unsentmap = block->unsentmap;
3039
3040 if (!unsentmap) {
3041 /* We don't have a safe way to resize the sentmap, so
3042 * if the bitmap was resized it will be NULL at this
3043 * point.
3044 */
3045 error_report("migration ram resized during precopy phase");
3046 rcu_read_unlock();
3047 return -EINVAL;
3048 }
3049 /* Deal with TPS != HPS and huge pages */
3050 ret = postcopy_chunk_hostpages(ms, block);
3051 if (ret) {
3052 rcu_read_unlock();
3053 return ret;
3054 }
e0b266f0 3055
6b6712ef
JQ
3056 /*
3057 * Update the unsentmap to be unsentmap = unsentmap | dirty
3058 */
3059 bitmap_or(unsentmap, unsentmap, bitmap, pages);
e0b266f0 3060#ifdef DEBUG_POSTCOPY
6b6712ef 3061 ram_debug_dump_bitmap(unsentmap, true, pages);
e0b266f0 3062#endif
6b6712ef
JQ
3063 }
3064 trace_ram_postcopy_send_discard_bitmap();
e0b266f0
DDAG
3065
3066 ret = postcopy_each_ram_send_discard(ms);
3067 rcu_read_unlock();
3068
3069 return ret;
3070}
3071
3d0684b2
JQ
3072/**
3073 * ram_discard_range: discard dirtied pages at the beginning of postcopy
e0b266f0 3074 *
3d0684b2 3075 * Returns zero on success
e0b266f0 3076 *
36449157
JQ
3077 * @rbname: name of the RAMBlock of the request. NULL means the
3078 * same that last one.
3d0684b2
JQ
3079 * @start: RAMBlock starting page
3080 * @length: RAMBlock size
e0b266f0 3081 */
aaa2064c 3082int ram_discard_range(const char *rbname, uint64_t start, size_t length)
e0b266f0
DDAG
3083{
3084 int ret = -1;
3085
36449157 3086 trace_ram_discard_range(rbname, start, length);
d3a5038c 3087
e0b266f0 3088 rcu_read_lock();
36449157 3089 RAMBlock *rb = qemu_ram_block_by_name(rbname);
e0b266f0
DDAG
3090
3091 if (!rb) {
36449157 3092 error_report("ram_discard_range: Failed to find block '%s'", rbname);
e0b266f0
DDAG
3093 goto err;
3094 }
3095
814bb08f
PX
3096 /*
3097 * On source VM, we don't need to update the received bitmap since
3098 * we don't even have one.
3099 */
3100 if (rb->receivedmap) {
3101 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
3102 length >> qemu_target_page_bits());
3103 }
3104
d3a5038c 3105 ret = ram_block_discard_range(rb, start, length);
e0b266f0
DDAG
3106
3107err:
3108 rcu_read_unlock();
3109
3110 return ret;
3111}
3112
84593a08
PX
3113/*
3114 * For every allocation, we will try not to crash the VM if the
3115 * allocation failed.
3116 */
3117static int xbzrle_init(void)
3118{
3119 Error *local_err = NULL;
3120
3121 if (!migrate_use_xbzrle()) {
3122 return 0;
3123 }
3124
3125 XBZRLE_cache_lock();
3126
3127 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
3128 if (!XBZRLE.zero_target_page) {
3129 error_report("%s: Error allocating zero page", __func__);
3130 goto err_out;
3131 }
3132
3133 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
3134 TARGET_PAGE_SIZE, &local_err);
3135 if (!XBZRLE.cache) {
3136 error_report_err(local_err);
3137 goto free_zero_page;
3138 }
3139
3140 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
3141 if (!XBZRLE.encoded_buf) {
3142 error_report("%s: Error allocating encoded_buf", __func__);
3143 goto free_cache;
3144 }
3145
3146 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
3147 if (!XBZRLE.current_buf) {
3148 error_report("%s: Error allocating current_buf", __func__);
3149 goto free_encoded_buf;
3150 }
3151
3152 /* We are all good */
3153 XBZRLE_cache_unlock();
3154 return 0;
3155
3156free_encoded_buf:
3157 g_free(XBZRLE.encoded_buf);
3158 XBZRLE.encoded_buf = NULL;
3159free_cache:
3160 cache_fini(XBZRLE.cache);
3161 XBZRLE.cache = NULL;
3162free_zero_page:
3163 g_free(XBZRLE.zero_target_page);
3164 XBZRLE.zero_target_page = NULL;
3165err_out:
3166 XBZRLE_cache_unlock();
3167 return -ENOMEM;
3168}
3169
53518d94 3170static int ram_state_init(RAMState **rsp)
56e93d26 3171{
7d00ee6a
PX
3172 *rsp = g_try_new0(RAMState, 1);
3173
3174 if (!*rsp) {
3175 error_report("%s: Init ramstate fail", __func__);
3176 return -1;
3177 }
53518d94
JQ
3178
3179 qemu_mutex_init(&(*rsp)->bitmap_mutex);
3180 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
3181 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
56e93d26 3182
7d00ee6a
PX
3183 /*
3184 * Count the total number of pages used by ram blocks not including any
3185 * gaps due to alignment or unplugs.
3186 */
3187 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
3188
3189 ram_state_reset(*rsp);
3190
3191 return 0;
3192}
3193
d6eff5d7 3194static void ram_list_init_bitmaps(void)
7d00ee6a 3195{
d6eff5d7
PX
3196 RAMBlock *block;
3197 unsigned long pages;
56e93d26 3198
0827b9e9
AA
3199 /* Skip setting bitmap if there is no RAM */
3200 if (ram_bytes_total()) {
fbd162e6 3201 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
d6eff5d7 3202 pages = block->max_length >> TARGET_PAGE_BITS;
6b6712ef
JQ
3203 block->bmap = bitmap_new(pages);
3204 bitmap_set(block->bmap, 0, pages);
3205 if (migrate_postcopy_ram()) {
3206 block->unsentmap = bitmap_new(pages);
3207 bitmap_set(block->unsentmap, 0, pages);
3208 }
0827b9e9 3209 }
f3f491fc 3210 }
d6eff5d7
PX
3211}
3212
3213static void ram_init_bitmaps(RAMState *rs)
3214{
3215 /* For memory_global_dirty_log_start below. */
3216 qemu_mutex_lock_iothread();
3217 qemu_mutex_lock_ramlist();
3218 rcu_read_lock();
f3f491fc 3219
d6eff5d7 3220 ram_list_init_bitmaps();
56e93d26 3221 memory_global_dirty_log_start();
bd227060 3222 migration_bitmap_sync_precopy(rs);
d6eff5d7
PX
3223
3224 rcu_read_unlock();
56e93d26 3225 qemu_mutex_unlock_ramlist();
49877834 3226 qemu_mutex_unlock_iothread();
d6eff5d7
PX
3227}
3228
3229static int ram_init_all(RAMState **rsp)
3230{
3231 if (ram_state_init(rsp)) {
3232 return -1;
3233 }
3234
3235 if (xbzrle_init()) {
3236 ram_state_cleanup(rsp);
3237 return -1;
3238 }
3239
3240 ram_init_bitmaps(*rsp);
a91246c9
HZ
3241
3242 return 0;
3243}
3244
08614f34
PX
3245static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
3246{
3247 RAMBlock *block;
3248 uint64_t pages = 0;
3249
3250 /*
3251 * Postcopy is not using xbzrle/compression, so no need for that.
3252 * Also, since source are already halted, we don't need to care
3253 * about dirty page logging as well.
3254 */
3255
fbd162e6 3256 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
08614f34
PX
3257 pages += bitmap_count_one(block->bmap,
3258 block->used_length >> TARGET_PAGE_BITS);
3259 }
3260
3261 /* This may not be aligned with current bitmaps. Recalculate. */
3262 rs->migration_dirty_pages = pages;
3263
3264 rs->last_seen_block = NULL;
3265 rs->last_sent_block = NULL;
3266 rs->last_page = 0;
3267 rs->last_version = ram_list.version;
3268 /*
3269 * Disable the bulk stage, otherwise we'll resend the whole RAM no
3270 * matter what we have sent.
3271 */
3272 rs->ram_bulk_stage = false;
3273
3274 /* Update RAMState cache of output QEMUFile */
3275 rs->f = out;
3276
3277 trace_ram_state_resume_prepare(pages);
3278}
3279
6bcb05fc
WW
3280/*
3281 * This function clears bits of the free pages reported by the caller from the
3282 * migration dirty bitmap. @addr is the host address corresponding to the
3283 * start of the continuous guest free pages, and @len is the total bytes of
3284 * those pages.
3285 */
3286void qemu_guest_free_page_hint(void *addr, size_t len)
3287{
3288 RAMBlock *block;
3289 ram_addr_t offset;
3290 size_t used_len, start, npages;
3291 MigrationState *s = migrate_get_current();
3292
3293 /* This function is currently expected to be used during live migration */
3294 if (!migration_is_setup_or_active(s->state)) {
3295 return;
3296 }
3297
3298 for (; len > 0; len -= used_len, addr += used_len) {
3299 block = qemu_ram_block_from_host(addr, false, &offset);
3300 if (unlikely(!block || offset >= block->used_length)) {
3301 /*
3302 * The implementation might not support RAMBlock resize during
3303 * live migration, but it could happen in theory with future
3304 * updates. So we add a check here to capture that case.
3305 */
3306 error_report_once("%s unexpected error", __func__);
3307 return;
3308 }
3309
3310 if (len <= block->used_length - offset) {
3311 used_len = len;
3312 } else {
3313 used_len = block->used_length - offset;
3314 }
3315
3316 start = offset >> TARGET_PAGE_BITS;
3317 npages = used_len >> TARGET_PAGE_BITS;
3318
3319 qemu_mutex_lock(&ram_state->bitmap_mutex);
3320 ram_state->migration_dirty_pages -=
3321 bitmap_count_one_with_offset(block->bmap, start, npages);
3322 bitmap_clear(block->bmap, start, npages);
3323 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3324 }
3325}
3326
3d0684b2
JQ
3327/*
3328 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
a91246c9
HZ
3329 * long-running RCU critical section. When rcu-reclaims in the code
3330 * start to become numerous it will be necessary to reduce the
3331 * granularity of these critical sections.
3332 */
3333
3d0684b2
JQ
3334/**
3335 * ram_save_setup: Setup RAM for migration
3336 *
3337 * Returns zero to indicate success and negative for error
3338 *
3339 * @f: QEMUFile where to send the data
3340 * @opaque: RAMState pointer
3341 */
a91246c9
HZ
3342static int ram_save_setup(QEMUFile *f, void *opaque)
3343{
53518d94 3344 RAMState **rsp = opaque;
a91246c9
HZ
3345 RAMBlock *block;
3346
dcaf446e
XG
3347 if (compress_threads_save_setup()) {
3348 return -1;
3349 }
3350
a91246c9
HZ
3351 /* migration has already setup the bitmap, reuse it. */
3352 if (!migration_in_colo_state()) {
7d00ee6a 3353 if (ram_init_all(rsp) != 0) {
dcaf446e 3354 compress_threads_save_cleanup();
a91246c9 3355 return -1;
53518d94 3356 }
a91246c9 3357 }
53518d94 3358 (*rsp)->f = f;
a91246c9
HZ
3359
3360 rcu_read_lock();
56e93d26 3361
fbd162e6 3362 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
56e93d26 3363
b895de50 3364 RAMBLOCK_FOREACH_MIGRATABLE(block) {
56e93d26
JQ
3365 qemu_put_byte(f, strlen(block->idstr));
3366 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3367 qemu_put_be64(f, block->used_length);
ef08fb38
DDAG
3368 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
3369 qemu_put_be64(f, block->page_size);
3370 }
fbd162e6
YK
3371 if (migrate_ignore_shared()) {
3372 qemu_put_be64(f, block->mr->addr);
3373 qemu_put_byte(f, ramblock_is_ignored(block) ? 1 : 0);
3374 }
56e93d26
JQ
3375 }
3376
3377 rcu_read_unlock();
3378
3379 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3380 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3381
6df264ac 3382 multifd_send_sync_main();
56e93d26 3383 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
35374cbd 3384 qemu_fflush(f);
56e93d26
JQ
3385
3386 return 0;
3387}
3388
3d0684b2
JQ
3389/**
3390 * ram_save_iterate: iterative stage for migration
3391 *
3392 * Returns zero to indicate success and negative for error
3393 *
3394 * @f: QEMUFile where to send the data
3395 * @opaque: RAMState pointer
3396 */
56e93d26
JQ
3397static int ram_save_iterate(QEMUFile *f, void *opaque)
3398{
53518d94
JQ
3399 RAMState **temp = opaque;
3400 RAMState *rs = *temp;
56e93d26
JQ
3401 int ret;
3402 int i;
3403 int64_t t0;
5c90308f 3404 int done = 0;
56e93d26 3405
b2557345
PL
3406 if (blk_mig_bulk_active()) {
3407 /* Avoid transferring ram during bulk phase of block migration as
3408 * the bulk phase will usually take a long time and transferring
3409 * ram updates during that time is pointless. */
3410 goto out;
3411 }
3412
56e93d26 3413 rcu_read_lock();
6f37bb8b
JQ
3414 if (ram_list.version != rs->last_version) {
3415 ram_state_reset(rs);
56e93d26
JQ
3416 }
3417
3418 /* Read version before ram_list.blocks */
3419 smp_rmb();
3420
3421 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3422
3423 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3424 i = 0;
e03a34f8
DDAG
3425 while ((ret = qemu_file_rate_limit(f)) == 0 ||
3426 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
56e93d26
JQ
3427 int pages;
3428
e03a34f8
DDAG
3429 if (qemu_file_get_error(f)) {
3430 break;
3431 }
3432
ce25d337 3433 pages = ram_find_and_save_block(rs, false);
56e93d26
JQ
3434 /* no more pages to sent */
3435 if (pages == 0) {
5c90308f 3436 done = 1;
56e93d26
JQ
3437 break;
3438 }
e8f3735f
XG
3439
3440 if (pages < 0) {
3441 qemu_file_set_error(f, pages);
3442 break;
3443 }
3444
be8b02ed 3445 rs->target_page_count += pages;
070afca2 3446
56e93d26
JQ
3447 /* we want to check in the 1st loop, just in case it was the 1st time
3448 and we had to sync the dirty bitmap.
3449 qemu_get_clock_ns() is a bit expensive, so we only check each some
3450 iterations
3451 */
3452 if ((i & 63) == 0) {
3453 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
3454 if (t1 > MAX_WAIT) {
55c4446b 3455 trace_ram_save_iterate_big_wait(t1, i);
56e93d26
JQ
3456 break;
3457 }
3458 }
3459 i++;
3460 }
56e93d26
JQ
3461 rcu_read_unlock();
3462
3463 /*
3464 * Must occur before EOS (or any QEMUFile operation)
3465 * because of RDMA protocol.
3466 */
3467 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3468
6df264ac 3469 multifd_send_sync_main();
b2557345 3470out:
56e93d26 3471 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
35374cbd 3472 qemu_fflush(f);
9360447d 3473 ram_counters.transferred += 8;
56e93d26
JQ
3474
3475 ret = qemu_file_get_error(f);
3476 if (ret < 0) {
3477 return ret;
3478 }
3479
5c90308f 3480 return done;
56e93d26
JQ
3481}
3482
3d0684b2
JQ
3483/**
3484 * ram_save_complete: function called to send the remaining amount of ram
3485 *
e8f3735f 3486 * Returns zero to indicate success or negative on error
3d0684b2
JQ
3487 *
3488 * Called with iothread lock
3489 *
3490 * @f: QEMUFile where to send the data
3491 * @opaque: RAMState pointer
3492 */
56e93d26
JQ
3493static int ram_save_complete(QEMUFile *f, void *opaque)
3494{
53518d94
JQ
3495 RAMState **temp = opaque;
3496 RAMState *rs = *temp;
e8f3735f 3497 int ret = 0;
6f37bb8b 3498
56e93d26
JQ
3499 rcu_read_lock();
3500
5727309d 3501 if (!migration_in_postcopy()) {
bd227060 3502 migration_bitmap_sync_precopy(rs);
663e6c1d 3503 }
56e93d26
JQ
3504
3505 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3506
3507 /* try transferring iterative blocks of memory */
3508
3509 /* flush all remaining blocks regardless of rate limiting */
3510 while (true) {
3511 int pages;
3512
ce25d337 3513 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
56e93d26
JQ
3514 /* no more blocks to sent */
3515 if (pages == 0) {
3516 break;
3517 }
e8f3735f
XG
3518 if (pages < 0) {
3519 ret = pages;
3520 break;
3521 }
56e93d26
JQ
3522 }
3523
ce25d337 3524 flush_compressed_data(rs);
56e93d26 3525 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
56e93d26
JQ
3526
3527 rcu_read_unlock();
d09a6fde 3528
6df264ac 3529 multifd_send_sync_main();
56e93d26 3530 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
35374cbd 3531 qemu_fflush(f);
56e93d26 3532
e8f3735f 3533 return ret;
56e93d26
JQ
3534}
3535
c31b098f 3536static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
47995026
VSO
3537 uint64_t *res_precopy_only,
3538 uint64_t *res_compatible,
3539 uint64_t *res_postcopy_only)
56e93d26 3540{
53518d94
JQ
3541 RAMState **temp = opaque;
3542 RAMState *rs = *temp;
56e93d26
JQ
3543 uint64_t remaining_size;
3544
9edabd4d 3545 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
56e93d26 3546
5727309d 3547 if (!migration_in_postcopy() &&
663e6c1d 3548 remaining_size < max_size) {
56e93d26
JQ
3549 qemu_mutex_lock_iothread();
3550 rcu_read_lock();
bd227060 3551 migration_bitmap_sync_precopy(rs);
56e93d26
JQ
3552 rcu_read_unlock();
3553 qemu_mutex_unlock_iothread();
9edabd4d 3554 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
56e93d26 3555 }
c31b098f 3556
86e1167e
VSO
3557 if (migrate_postcopy_ram()) {
3558 /* We can do postcopy, and all the data is postcopiable */
47995026 3559 *res_compatible += remaining_size;
86e1167e 3560 } else {
47995026 3561 *res_precopy_only += remaining_size;
86e1167e 3562 }
56e93d26
JQ
3563}
3564
3565static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3566{
3567 unsigned int xh_len;
3568 int xh_flags;
063e760a 3569 uint8_t *loaded_data;
56e93d26 3570
56e93d26
JQ
3571 /* extract RLE header */
3572 xh_flags = qemu_get_byte(f);
3573 xh_len = qemu_get_be16(f);
3574
3575 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3576 error_report("Failed to load XBZRLE page - wrong compression!");
3577 return -1;
3578 }
3579
3580 if (xh_len > TARGET_PAGE_SIZE) {
3581 error_report("Failed to load XBZRLE page - len overflow!");
3582 return -1;
3583 }
f265e0e4 3584 loaded_data = XBZRLE.decoded_buf;
56e93d26 3585 /* load data and decode */
f265e0e4 3586 /* it can change loaded_data to point to an internal buffer */
063e760a 3587 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
56e93d26
JQ
3588
3589 /* decode RLE */
063e760a 3590 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
56e93d26
JQ
3591 TARGET_PAGE_SIZE) == -1) {
3592 error_report("Failed to load XBZRLE page - decode error!");
3593 return -1;
3594 }
3595
3596 return 0;
3597}
3598
3d0684b2
JQ
3599/**
3600 * ram_block_from_stream: read a RAMBlock id from the migration stream
3601 *
3602 * Must be called from within a rcu critical section.
3603 *
56e93d26 3604 * Returns a pointer from within the RCU-protected ram_list.
a7180877 3605 *
3d0684b2
JQ
3606 * @f: QEMUFile where to read the data from
3607 * @flags: Page flags (mostly to see if it's a continuation of previous block)
a7180877 3608 */
3d0684b2 3609static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
56e93d26
JQ
3610{
3611 static RAMBlock *block = NULL;
3612 char id[256];
3613 uint8_t len;
3614
3615 if (flags & RAM_SAVE_FLAG_CONTINUE) {
4c4bad48 3616 if (!block) {
56e93d26
JQ
3617 error_report("Ack, bad migration stream!");
3618 return NULL;
3619 }
4c4bad48 3620 return block;
56e93d26
JQ
3621 }
3622
3623 len = qemu_get_byte(f);
3624 qemu_get_buffer(f, (uint8_t *)id, len);
3625 id[len] = 0;
3626
e3dd7493 3627 block = qemu_ram_block_by_name(id);
4c4bad48
HZ
3628 if (!block) {
3629 error_report("Can't find block %s", id);
3630 return NULL;
56e93d26
JQ
3631 }
3632
fbd162e6 3633 if (ramblock_is_ignored(block)) {
b895de50
CLG
3634 error_report("block %s should not be migrated !", id);
3635 return NULL;
3636 }
3637
4c4bad48
HZ
3638 return block;
3639}
3640
3641static inline void *host_from_ram_block_offset(RAMBlock *block,
3642 ram_addr_t offset)
3643{
3644 if (!offset_in_ramblock(block, offset)) {
3645 return NULL;
3646 }
3647
3648 return block->host + offset;
56e93d26
JQ
3649}
3650
13af18f2
ZC
3651static inline void *colo_cache_from_block_offset(RAMBlock *block,
3652 ram_addr_t offset)
3653{
3654 if (!offset_in_ramblock(block, offset)) {
3655 return NULL;
3656 }
3657 if (!block->colo_cache) {
3658 error_report("%s: colo_cache is NULL in block :%s",
3659 __func__, block->idstr);
3660 return NULL;
3661 }
7d9acafa
ZC
3662
3663 /*
3664 * During colo checkpoint, we need bitmap of these migrated pages.
3665 * It help us to decide which pages in ram cache should be flushed
3666 * into VM's RAM later.
3667 */
3668 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
3669 ram_state->migration_dirty_pages++;
3670 }
13af18f2
ZC
3671 return block->colo_cache + offset;
3672}
3673
3d0684b2
JQ
3674/**
3675 * ram_handle_compressed: handle the zero page case
3676 *
56e93d26
JQ
3677 * If a page (or a whole RDMA chunk) has been
3678 * determined to be zero, then zap it.
3d0684b2
JQ
3679 *
3680 * @host: host address for the zero page
3681 * @ch: what the page is filled from. We only support zero
3682 * @size: size of the zero page
56e93d26
JQ
3683 */
3684void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3685{
3686 if (ch != 0 || !is_zero_range(host, size)) {
3687 memset(host, ch, size);
3688 }
3689}
3690
797ca154
XG
3691/* return the size after decompression, or negative value on error */
3692static int
3693qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3694 const uint8_t *source, size_t source_len)
3695{
3696 int err;
3697
3698 err = inflateReset(stream);
3699 if (err != Z_OK) {
3700 return -1;
3701 }
3702
3703 stream->avail_in = source_len;
3704 stream->next_in = (uint8_t *)source;
3705 stream->avail_out = dest_len;
3706 stream->next_out = dest;
3707
3708 err = inflate(stream, Z_NO_FLUSH);
3709 if (err != Z_STREAM_END) {
3710 return -1;
3711 }
3712
3713 return stream->total_out;
3714}
3715
56e93d26
JQ
3716static void *do_data_decompress(void *opaque)
3717{
3718 DecompressParam *param = opaque;
3719 unsigned long pagesize;
33d151f4 3720 uint8_t *des;
34ab9e97 3721 int len, ret;
56e93d26 3722
33d151f4 3723 qemu_mutex_lock(&param->mutex);
90e56fb4 3724 while (!param->quit) {
33d151f4
LL
3725 if (param->des) {
3726 des = param->des;
3727 len = param->len;
3728 param->des = 0;
3729 qemu_mutex_unlock(&param->mutex);
3730
56e93d26 3731 pagesize = TARGET_PAGE_SIZE;
34ab9e97
XG
3732
3733 ret = qemu_uncompress_data(&param->stream, des, pagesize,
3734 param->compbuf, len);
f548222c 3735 if (ret < 0 && migrate_get_current()->decompress_error_check) {
34ab9e97
XG
3736 error_report("decompress data failed");
3737 qemu_file_set_error(decomp_file, ret);
3738 }
73a8912b 3739
33d151f4
LL
3740 qemu_mutex_lock(&decomp_done_lock);
3741 param->done = true;
3742 qemu_cond_signal(&decomp_done_cond);
3743 qemu_mutex_unlock(&decomp_done_lock);
3744
3745 qemu_mutex_lock(&param->mutex);
3746 } else {
3747 qemu_cond_wait(&param->cond, &param->mutex);
3748 }
56e93d26 3749 }
33d151f4 3750 qemu_mutex_unlock(&param->mutex);
56e93d26
JQ
3751
3752 return NULL;
3753}
3754
34ab9e97 3755static int wait_for_decompress_done(void)
5533b2e9
LL
3756{
3757 int idx, thread_count;
3758
3759 if (!migrate_use_compression()) {
34ab9e97 3760 return 0;
5533b2e9
LL
3761 }
3762
3763 thread_count = migrate_decompress_threads();
3764 qemu_mutex_lock(&decomp_done_lock);
3765 for (idx = 0; idx < thread_count; idx++) {
3766 while (!decomp_param[idx].done) {
3767 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3768 }
3769 }
3770 qemu_mutex_unlock(&decomp_done_lock);
34ab9e97 3771 return qemu_file_get_error(decomp_file);
5533b2e9
LL
3772}
3773
f0afa331 3774static void compress_threads_load_cleanup(void)
56e93d26
JQ
3775{
3776 int i, thread_count;
3777
3416ab5b
JQ
3778 if (!migrate_use_compression()) {
3779 return;
3780 }
56e93d26
JQ
3781 thread_count = migrate_decompress_threads();
3782 for (i = 0; i < thread_count; i++) {
797ca154
XG
3783 /*
3784 * we use it as a indicator which shows if the thread is
3785 * properly init'd or not
3786 */
3787 if (!decomp_param[i].compbuf) {
3788 break;
3789 }
3790
56e93d26 3791 qemu_mutex_lock(&decomp_param[i].mutex);
90e56fb4 3792 decomp_param[i].quit = true;
56e93d26
JQ
3793 qemu_cond_signal(&decomp_param[i].cond);
3794 qemu_mutex_unlock(&decomp_param[i].mutex);
3795 }
3796 for (i = 0; i < thread_count; i++) {
797ca154
XG
3797 if (!decomp_param[i].compbuf) {
3798 break;
3799 }
3800
56e93d26
JQ
3801 qemu_thread_join(decompress_threads + i);
3802 qemu_mutex_destroy(&decomp_param[i].mutex);
3803 qemu_cond_destroy(&decomp_param[i].cond);
797ca154 3804 inflateEnd(&decomp_param[i].stream);
56e93d26 3805 g_free(decomp_param[i].compbuf);
797ca154 3806 decomp_param[i].compbuf = NULL;
56e93d26
JQ
3807 }
3808 g_free(decompress_threads);
3809 g_free(decomp_param);
56e93d26
JQ
3810 decompress_threads = NULL;
3811 decomp_param = NULL;
34ab9e97 3812 decomp_file = NULL;
56e93d26
JQ
3813}
3814
34ab9e97 3815static int compress_threads_load_setup(QEMUFile *f)
797ca154
XG
3816{
3817 int i, thread_count;
3818
3819 if (!migrate_use_compression()) {
3820 return 0;
3821 }
3822
3823 thread_count = migrate_decompress_threads();
3824 decompress_threads = g_new0(QemuThread, thread_count);
3825 decomp_param = g_new0(DecompressParam, thread_count);
3826 qemu_mutex_init(&decomp_done_lock);
3827 qemu_cond_init(&decomp_done_cond);
34ab9e97 3828 decomp_file = f;
797ca154
XG
3829 for (i = 0; i < thread_count; i++) {
3830 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3831 goto exit;
3832 }
3833
3834 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3835 qemu_mutex_init(&decomp_param[i].mutex);
3836 qemu_cond_init(&decomp_param[i].cond);
3837 decomp_param[i].done = true;
3838 decomp_param[i].quit = false;
3839 qemu_thread_create(decompress_threads + i, "decompress",
3840 do_data_decompress, decomp_param + i,
3841 QEMU_THREAD_JOINABLE);
3842 }
3843 return 0;
3844exit:
3845 compress_threads_load_cleanup();
3846 return -1;
3847}
3848
c1bc6626 3849static void decompress_data_with_multi_threads(QEMUFile *f,
56e93d26
JQ
3850 void *host, int len)
3851{
3852 int idx, thread_count;
3853
3854 thread_count = migrate_decompress_threads();
73a8912b 3855 qemu_mutex_lock(&decomp_done_lock);
56e93d26
JQ
3856 while (true) {
3857 for (idx = 0; idx < thread_count; idx++) {
73a8912b 3858 if (decomp_param[idx].done) {
33d151f4
LL
3859 decomp_param[idx].done = false;
3860 qemu_mutex_lock(&decomp_param[idx].mutex);
c1bc6626 3861 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
56e93d26
JQ
3862 decomp_param[idx].des = host;
3863 decomp_param[idx].len = len;
33d151f4
LL
3864 qemu_cond_signal(&decomp_param[idx].cond);
3865 qemu_mutex_unlock(&decomp_param[idx].mutex);
56e93d26
JQ
3866 break;
3867 }
3868 }
3869 if (idx < thread_count) {
3870 break;
73a8912b
LL
3871 } else {
3872 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
56e93d26
JQ
3873 }
3874 }
73a8912b 3875 qemu_mutex_unlock(&decomp_done_lock);
56e93d26
JQ
3876}
3877
13af18f2
ZC
3878/*
3879 * colo cache: this is for secondary VM, we cache the whole
3880 * memory of the secondary VM, it is need to hold the global lock
3881 * to call this helper.
3882 */
3883int colo_init_ram_cache(void)
3884{
3885 RAMBlock *block;
3886
3887 rcu_read_lock();
fbd162e6 3888 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
13af18f2
ZC
3889 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3890 NULL,
3891 false);
3892 if (!block->colo_cache) {
3893 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3894 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3895 block->used_length);
3896 goto out_locked;
3897 }
3898 memcpy(block->colo_cache, block->host, block->used_length);
3899 }
3900 rcu_read_unlock();
7d9acafa
ZC
3901 /*
3902 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3903 * with to decide which page in cache should be flushed into SVM's RAM. Here
3904 * we use the same name 'ram_bitmap' as for migration.
3905 */
3906 if (ram_bytes_total()) {
3907 RAMBlock *block;
3908
fbd162e6 3909 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
7d9acafa
ZC
3910 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3911
3912 block->bmap = bitmap_new(pages);
3913 bitmap_set(block->bmap, 0, pages);
3914 }
3915 }
3916 ram_state = g_new0(RAMState, 1);
3917 ram_state->migration_dirty_pages = 0;
d1955d22 3918 memory_global_dirty_log_start();
7d9acafa 3919
13af18f2
ZC
3920 return 0;
3921
3922out_locked:
7d9acafa 3923
fbd162e6 3924 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
13af18f2
ZC
3925 if (block->colo_cache) {
3926 qemu_anon_ram_free(block->colo_cache, block->used_length);
3927 block->colo_cache = NULL;
3928 }
3929 }
3930
3931 rcu_read_unlock();
3932 return -errno;
3933}
3934
3935/* It is need to hold the global lock to call this helper */
3936void colo_release_ram_cache(void)
3937{
3938 RAMBlock *block;
3939
d1955d22 3940 memory_global_dirty_log_stop();
fbd162e6 3941 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
7d9acafa
ZC
3942 g_free(block->bmap);
3943 block->bmap = NULL;
3944 }
3945
13af18f2 3946 rcu_read_lock();
7d9acafa 3947
fbd162e6 3948 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
13af18f2
ZC
3949 if (block->colo_cache) {
3950 qemu_anon_ram_free(block->colo_cache, block->used_length);
3951 block->colo_cache = NULL;
3952 }
3953 }
7d9acafa 3954
13af18f2 3955 rcu_read_unlock();
7d9acafa
ZC
3956 g_free(ram_state);
3957 ram_state = NULL;
13af18f2
ZC
3958}
3959
f265e0e4
JQ
3960/**
3961 * ram_load_setup: Setup RAM for migration incoming side
3962 *
3963 * Returns zero to indicate success and negative for error
3964 *
3965 * @f: QEMUFile where to receive the data
3966 * @opaque: RAMState pointer
3967 */
3968static int ram_load_setup(QEMUFile *f, void *opaque)
3969{
34ab9e97 3970 if (compress_threads_load_setup(f)) {
797ca154
XG
3971 return -1;
3972 }
3973
f265e0e4 3974 xbzrle_load_setup();
f9494614 3975 ramblock_recv_map_init();
13af18f2 3976
f265e0e4
JQ
3977 return 0;
3978}
3979
3980static int ram_load_cleanup(void *opaque)
3981{
f9494614 3982 RAMBlock *rb;
56eb90af 3983
fbd162e6 3984 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
56eb90af
JH
3985 if (ramblock_is_pmem(rb)) {
3986 pmem_persist(rb->host, rb->used_length);
3987 }
3988 }
3989
f265e0e4 3990 xbzrle_load_cleanup();
f0afa331 3991 compress_threads_load_cleanup();
f9494614 3992
fbd162e6 3993 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
f9494614
AP
3994 g_free(rb->receivedmap);
3995 rb->receivedmap = NULL;
3996 }
13af18f2 3997
f265e0e4
JQ
3998 return 0;
3999}
4000
3d0684b2
JQ
4001/**
4002 * ram_postcopy_incoming_init: allocate postcopy data structures
4003 *
4004 * Returns 0 for success and negative if there was one error
4005 *
4006 * @mis: current migration incoming state
4007 *
4008 * Allocate data structures etc needed by incoming migration with
4009 * postcopy-ram. postcopy-ram's similarly names
4010 * postcopy_ram_incoming_init does the work.
1caddf8a
DDAG
4011 */
4012int ram_postcopy_incoming_init(MigrationIncomingState *mis)
4013{
c136180c 4014 return postcopy_ram_incoming_init(mis);
1caddf8a
DDAG
4015}
4016
3d0684b2
JQ
4017/**
4018 * ram_load_postcopy: load a page in postcopy case
4019 *
4020 * Returns 0 for success or -errno in case of error
4021 *
a7180877
DDAG
4022 * Called in postcopy mode by ram_load().
4023 * rcu_read_lock is taken prior to this being called.
3d0684b2
JQ
4024 *
4025 * @f: QEMUFile where to send the data
a7180877
DDAG
4026 */
4027static int ram_load_postcopy(QEMUFile *f)
4028{
4029 int flags = 0, ret = 0;
4030 bool place_needed = false;
1aa83678 4031 bool matches_target_page_size = false;
a7180877
DDAG
4032 MigrationIncomingState *mis = migration_incoming_get_current();
4033 /* Temporary page that is later 'placed' */
4034 void *postcopy_host_page = postcopy_get_tmp_page(mis);
c53b7ddc 4035 void *last_host = NULL;
a3b6ff6d 4036 bool all_zero = false;
a7180877
DDAG
4037
4038 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4039 ram_addr_t addr;
4040 void *host = NULL;
4041 void *page_buffer = NULL;
4042 void *place_source = NULL;
df9ff5e1 4043 RAMBlock *block = NULL;
a7180877 4044 uint8_t ch;
a7180877
DDAG
4045
4046 addr = qemu_get_be64(f);
7a9ddfbf
PX
4047
4048 /*
4049 * If qemu file error, we should stop here, and then "addr"
4050 * may be invalid
4051 */
4052 ret = qemu_file_get_error(f);
4053 if (ret) {
4054 break;
4055 }
4056
a7180877
DDAG
4057 flags = addr & ~TARGET_PAGE_MASK;
4058 addr &= TARGET_PAGE_MASK;
4059
4060 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
4061 place_needed = false;
bb890ed5 4062 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
df9ff5e1 4063 block = ram_block_from_stream(f, flags);
4c4bad48
HZ
4064
4065 host = host_from_ram_block_offset(block, addr);
a7180877
DDAG
4066 if (!host) {
4067 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4068 ret = -EINVAL;
4069 break;
4070 }
1aa83678 4071 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
a7180877 4072 /*
28abd200
DDAG
4073 * Postcopy requires that we place whole host pages atomically;
4074 * these may be huge pages for RAMBlocks that are backed by
4075 * hugetlbfs.
a7180877
DDAG
4076 * To make it atomic, the data is read into a temporary page
4077 * that's moved into place later.
4078 * The migration protocol uses, possibly smaller, target-pages
4079 * however the source ensures it always sends all the components
4080 * of a host page in order.
4081 */
4082 page_buffer = postcopy_host_page +
28abd200 4083 ((uintptr_t)host & (block->page_size - 1));
a7180877 4084 /* If all TP are zero then we can optimise the place */
28abd200 4085 if (!((uintptr_t)host & (block->page_size - 1))) {
a7180877 4086 all_zero = true;
c53b7ddc
DDAG
4087 } else {
4088 /* not the 1st TP within the HP */
4089 if (host != (last_host + TARGET_PAGE_SIZE)) {
9af9e0fe 4090 error_report("Non-sequential target page %p/%p",
c53b7ddc
DDAG
4091 host, last_host);
4092 ret = -EINVAL;
4093 break;
4094 }
a7180877
DDAG
4095 }
4096
c53b7ddc 4097
a7180877
DDAG
4098 /*
4099 * If it's the last part of a host page then we place the host
4100 * page
4101 */
4102 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
28abd200 4103 (block->page_size - 1)) == 0;
a7180877
DDAG
4104 place_source = postcopy_host_page;
4105 }
c53b7ddc 4106 last_host = host;
a7180877
DDAG
4107
4108 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
bb890ed5 4109 case RAM_SAVE_FLAG_ZERO:
a7180877
DDAG
4110 ch = qemu_get_byte(f);
4111 memset(page_buffer, ch, TARGET_PAGE_SIZE);
4112 if (ch) {
4113 all_zero = false;
4114 }
4115 break;
4116
4117 case RAM_SAVE_FLAG_PAGE:
4118 all_zero = false;
1aa83678
PX
4119 if (!matches_target_page_size) {
4120 /* For huge pages, we always use temporary buffer */
a7180877
DDAG
4121 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
4122 } else {
1aa83678
PX
4123 /*
4124 * For small pages that matches target page size, we
4125 * avoid the qemu_file copy. Instead we directly use
4126 * the buffer of QEMUFile to place the page. Note: we
4127 * cannot do any QEMUFile operation before using that
4128 * buffer to make sure the buffer is valid when
4129 * placing the page.
a7180877
DDAG
4130 */
4131 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
4132 TARGET_PAGE_SIZE);
4133 }
4134 break;
4135 case RAM_SAVE_FLAG_EOS:
4136 /* normal exit */
6df264ac 4137 multifd_recv_sync_main();
a7180877
DDAG
4138 break;
4139 default:
4140 error_report("Unknown combination of migration flags: %#x"
4141 " (postcopy mode)", flags);
4142 ret = -EINVAL;
7a9ddfbf
PX
4143 break;
4144 }
4145
4146 /* Detect for any possible file errors */
4147 if (!ret && qemu_file_get_error(f)) {
4148 ret = qemu_file_get_error(f);
a7180877
DDAG
4149 }
4150
7a9ddfbf 4151 if (!ret && place_needed) {
a7180877 4152 /* This gets called at the last target page in the host page */
df9ff5e1
DDAG
4153 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
4154
a7180877 4155 if (all_zero) {
df9ff5e1 4156 ret = postcopy_place_page_zero(mis, place_dest,
8be4620b 4157 block);
a7180877 4158 } else {
df9ff5e1 4159 ret = postcopy_place_page(mis, place_dest,
8be4620b 4160 place_source, block);
a7180877
DDAG
4161 }
4162 }
a7180877
DDAG
4163 }
4164
4165 return ret;
4166}
4167
acab30b8
DHB
4168static bool postcopy_is_advised(void)
4169{
4170 PostcopyState ps = postcopy_state_get();
4171 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
4172}
4173
4174static bool postcopy_is_running(void)
4175{
4176 PostcopyState ps = postcopy_state_get();
4177 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
4178}
4179
e6f4aa18
ZC
4180/*
4181 * Flush content of RAM cache into SVM's memory.
4182 * Only flush the pages that be dirtied by PVM or SVM or both.
4183 */
4184static void colo_flush_ram_cache(void)
4185{
4186 RAMBlock *block = NULL;
4187 void *dst_host;
4188 void *src_host;
4189 unsigned long offset = 0;
4190
d1955d22
HZ
4191 memory_global_dirty_log_sync();
4192 rcu_read_lock();
fbd162e6 4193 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
d1955d22
HZ
4194 migration_bitmap_sync_range(ram_state, block, 0, block->used_length);
4195 }
4196 rcu_read_unlock();
4197
e6f4aa18
ZC
4198 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
4199 rcu_read_lock();
4200 block = QLIST_FIRST_RCU(&ram_list.blocks);
4201
4202 while (block) {
4203 offset = migration_bitmap_find_dirty(ram_state, block, offset);
4204
4205 if (offset << TARGET_PAGE_BITS >= block->used_length) {
4206 offset = 0;
4207 block = QLIST_NEXT_RCU(block, next);
4208 } else {
4209 migration_bitmap_clear_dirty(ram_state, block, offset);
4210 dst_host = block->host + (offset << TARGET_PAGE_BITS);
4211 src_host = block->colo_cache + (offset << TARGET_PAGE_BITS);
4212 memcpy(dst_host, src_host, TARGET_PAGE_SIZE);
4213 }
4214 }
4215
4216 rcu_read_unlock();
4217 trace_colo_flush_ram_cache_end();
4218}
4219
56e93d26
JQ
4220static int ram_load(QEMUFile *f, void *opaque, int version_id)
4221{
edc60127 4222 int flags = 0, ret = 0, invalid_flags = 0;
56e93d26
JQ
4223 static uint64_t seq_iter;
4224 int len = 0;
a7180877
DDAG
4225 /*
4226 * If system is running in postcopy mode, page inserts to host memory must
4227 * be atomic
4228 */
acab30b8 4229 bool postcopy_running = postcopy_is_running();
ef08fb38 4230 /* ADVISE is earlier, it shows the source has the postcopy capability on */
acab30b8 4231 bool postcopy_advised = postcopy_is_advised();
56e93d26
JQ
4232
4233 seq_iter++;
4234
4235 if (version_id != 4) {
4236 ret = -EINVAL;
4237 }
4238
edc60127
JQ
4239 if (!migrate_use_compression()) {
4240 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4241 }
56e93d26
JQ
4242 /* This RCU critical section can be very long running.
4243 * When RCU reclaims in the code start to become numerous,
4244 * it will be necessary to reduce the granularity of this
4245 * critical section.
4246 */
4247 rcu_read_lock();
a7180877
DDAG
4248
4249 if (postcopy_running) {
4250 ret = ram_load_postcopy(f);
4251 }
4252
4253 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
56e93d26 4254 ram_addr_t addr, total_ram_bytes;
a776aa15 4255 void *host = NULL;
56e93d26
JQ
4256 uint8_t ch;
4257
4258 addr = qemu_get_be64(f);
4259 flags = addr & ~TARGET_PAGE_MASK;
4260 addr &= TARGET_PAGE_MASK;
4261
edc60127
JQ
4262 if (flags & invalid_flags) {
4263 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4264 error_report("Received an unexpected compressed page");
4265 }
4266
4267 ret = -EINVAL;
4268 break;
4269 }
4270
bb890ed5 4271 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
a776aa15 4272 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4c4bad48
HZ
4273 RAMBlock *block = ram_block_from_stream(f, flags);
4274
13af18f2
ZC
4275 /*
4276 * After going into COLO, we should load the Page into colo_cache.
4277 */
4278 if (migration_incoming_in_colo_state()) {
4279 host = colo_cache_from_block_offset(block, addr);
4280 } else {
4281 host = host_from_ram_block_offset(block, addr);
4282 }
a776aa15
DDAG
4283 if (!host) {
4284 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4285 ret = -EINVAL;
4286 break;
4287 }
13af18f2
ZC
4288
4289 if (!migration_incoming_in_colo_state()) {
4290 ramblock_recv_bitmap_set(block, host);
4291 }
4292
1db9d8e5 4293 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
a776aa15
DDAG
4294 }
4295
56e93d26
JQ
4296 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4297 case RAM_SAVE_FLAG_MEM_SIZE:
4298 /* Synchronize RAM block list */
4299 total_ram_bytes = addr;
4300 while (!ret && total_ram_bytes) {
4301 RAMBlock *block;
56e93d26
JQ
4302 char id[256];
4303 ram_addr_t length;
4304
4305 len = qemu_get_byte(f);
4306 qemu_get_buffer(f, (uint8_t *)id, len);
4307 id[len] = 0;
4308 length = qemu_get_be64(f);
4309
e3dd7493 4310 block = qemu_ram_block_by_name(id);
b895de50
CLG
4311 if (block && !qemu_ram_is_migratable(block)) {
4312 error_report("block %s should not be migrated !", id);
4313 ret = -EINVAL;
4314 } else if (block) {
e3dd7493
DDAG
4315 if (length != block->used_length) {
4316 Error *local_err = NULL;
56e93d26 4317
fa53a0e5 4318 ret = qemu_ram_resize(block, length,
e3dd7493
DDAG
4319 &local_err);
4320 if (local_err) {
4321 error_report_err(local_err);
56e93d26 4322 }
56e93d26 4323 }
ef08fb38
DDAG
4324 /* For postcopy we need to check hugepage sizes match */
4325 if (postcopy_advised &&
4326 block->page_size != qemu_host_page_size) {
4327 uint64_t remote_page_size = qemu_get_be64(f);
4328 if (remote_page_size != block->page_size) {
4329 error_report("Mismatched RAM page size %s "
4330 "(local) %zd != %" PRId64,
4331 id, block->page_size,
4332 remote_page_size);
4333 ret = -EINVAL;
4334 }
4335 }
fbd162e6
YK
4336 if (migrate_ignore_shared()) {
4337 hwaddr addr = qemu_get_be64(f);
4338 bool ignored = qemu_get_byte(f);
4339 if (ignored != ramblock_is_ignored(block)) {
4340 error_report("RAM block %s should %s be migrated",
4341 id, ignored ? "" : "not");
4342 ret = -EINVAL;
4343 }
4344 if (ramblock_is_ignored(block) &&
4345 block->mr->addr != addr) {
4346 error_report("Mismatched GPAs for block %s "
4347 "%" PRId64 "!= %" PRId64,
4348 id, (uint64_t)addr,
4349 (uint64_t)block->mr->addr);
4350 ret = -EINVAL;
4351 }
4352 }
e3dd7493
DDAG
4353 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
4354 block->idstr);
4355 } else {
56e93d26
JQ
4356 error_report("Unknown ramblock \"%s\", cannot "
4357 "accept migration", id);
4358 ret = -EINVAL;
4359 }
4360
4361 total_ram_bytes -= length;
4362 }
4363 break;
a776aa15 4364
bb890ed5 4365 case RAM_SAVE_FLAG_ZERO:
56e93d26
JQ
4366 ch = qemu_get_byte(f);
4367 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4368 break;
a776aa15 4369
56e93d26 4370 case RAM_SAVE_FLAG_PAGE:
56e93d26
JQ
4371 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4372 break;
56e93d26 4373
a776aa15 4374 case RAM_SAVE_FLAG_COMPRESS_PAGE:
56e93d26
JQ
4375 len = qemu_get_be32(f);
4376 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4377 error_report("Invalid compressed data length: %d", len);
4378 ret = -EINVAL;
4379 break;
4380 }
c1bc6626 4381 decompress_data_with_multi_threads(f, host, len);
56e93d26 4382 break;
a776aa15 4383
56e93d26 4384 case RAM_SAVE_FLAG_XBZRLE:
56e93d26
JQ
4385 if (load_xbzrle(f, addr, host) < 0) {
4386 error_report("Failed to decompress XBZRLE page at "
4387 RAM_ADDR_FMT, addr);
4388 ret = -EINVAL;
4389 break;
4390 }
4391 break;
4392 case RAM_SAVE_FLAG_EOS:
4393 /* normal exit */
6df264ac 4394 multifd_recv_sync_main();
56e93d26
JQ
4395 break;
4396 default:
4397 if (flags & RAM_SAVE_FLAG_HOOK) {
632e3a5c 4398 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
56e93d26
JQ
4399 } else {
4400 error_report("Unknown combination of migration flags: %#x",
4401 flags);
4402 ret = -EINVAL;
4403 }
4404 }
4405 if (!ret) {
4406 ret = qemu_file_get_error(f);
4407 }
4408 }
4409
34ab9e97 4410 ret |= wait_for_decompress_done();
56e93d26 4411 rcu_read_unlock();
55c4446b 4412 trace_ram_load_complete(ret, seq_iter);
e6f4aa18
ZC
4413
4414 if (!ret && migration_incoming_in_colo_state()) {
4415 colo_flush_ram_cache();
4416 }
56e93d26
JQ
4417 return ret;
4418}
4419
c6467627
VSO
4420static bool ram_has_postcopy(void *opaque)
4421{
469dd51b 4422 RAMBlock *rb;
fbd162e6 4423 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
469dd51b
JH
4424 if (ramblock_is_pmem(rb)) {
4425 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4426 "is not supported now!", rb->idstr, rb->host);
4427 return false;
4428 }
4429 }
4430
c6467627
VSO
4431 return migrate_postcopy_ram();
4432}
4433
edd090c7
PX
4434/* Sync all the dirty bitmap with destination VM. */
4435static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4436{
4437 RAMBlock *block;
4438 QEMUFile *file = s->to_dst_file;
4439 int ramblock_count = 0;
4440
4441 trace_ram_dirty_bitmap_sync_start();
4442
fbd162e6 4443 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
edd090c7
PX
4444 qemu_savevm_send_recv_bitmap(file, block->idstr);
4445 trace_ram_dirty_bitmap_request(block->idstr);
4446 ramblock_count++;
4447 }
4448
4449 trace_ram_dirty_bitmap_sync_wait();
4450
4451 /* Wait until all the ramblocks' dirty bitmap synced */
4452 while (ramblock_count--) {
4453 qemu_sem_wait(&s->rp_state.rp_sem);
4454 }
4455
4456 trace_ram_dirty_bitmap_sync_complete();
4457
4458 return 0;
4459}
4460
4461static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4462{
4463 qemu_sem_post(&s->rp_state.rp_sem);
4464}
4465
a335debb
PX
4466/*
4467 * Read the received bitmap, revert it as the initial dirty bitmap.
4468 * This is only used when the postcopy migration is paused but wants
4469 * to resume from a middle point.
4470 */
4471int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4472{
4473 int ret = -EINVAL;
4474 QEMUFile *file = s->rp_state.from_dst_file;
4475 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
a725ef9f 4476 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
a335debb
PX
4477 uint64_t size, end_mark;
4478
4479 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4480
4481 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4482 error_report("%s: incorrect state %s", __func__,
4483 MigrationStatus_str(s->state));
4484 return -EINVAL;
4485 }
4486
4487 /*
4488 * Note: see comments in ramblock_recv_bitmap_send() on why we
4489 * need the endianess convertion, and the paddings.
4490 */
4491 local_size = ROUND_UP(local_size, 8);
4492
4493 /* Add paddings */
4494 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4495
4496 size = qemu_get_be64(file);
4497
4498 /* The size of the bitmap should match with our ramblock */
4499 if (size != local_size) {
4500 error_report("%s: ramblock '%s' bitmap size mismatch "
4501 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4502 block->idstr, size, local_size);
4503 ret = -EINVAL;
4504 goto out;
4505 }
4506
4507 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4508 end_mark = qemu_get_be64(file);
4509
4510 ret = qemu_file_get_error(file);
4511 if (ret || size != local_size) {
4512 error_report("%s: read bitmap failed for ramblock '%s': %d"
4513 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4514 __func__, block->idstr, ret, local_size, size);
4515 ret = -EIO;
4516 goto out;
4517 }
4518
4519 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4520 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64,
4521 __func__, block->idstr, end_mark);
4522 ret = -EINVAL;
4523 goto out;
4524 }
4525
4526 /*
4527 * Endianess convertion. We are during postcopy (though paused).
4528 * The dirty bitmap won't change. We can directly modify it.
4529 */
4530 bitmap_from_le(block->bmap, le_bitmap, nbits);
4531
4532 /*
4533 * What we received is "received bitmap". Revert it as the initial
4534 * dirty bitmap for this ramblock.
4535 */
4536 bitmap_complement(block->bmap, block->bmap, nbits);
4537
4538 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4539
edd090c7
PX
4540 /*
4541 * We succeeded to sync bitmap for current ramblock. If this is
4542 * the last one to sync, we need to notify the main send thread.
4543 */
4544 ram_dirty_bitmap_reload_notify(s);
4545
a335debb
PX
4546 ret = 0;
4547out:
bf269906 4548 g_free(le_bitmap);
a335debb
PX
4549 return ret;
4550}
4551
edd090c7
PX
4552static int ram_resume_prepare(MigrationState *s, void *opaque)
4553{
4554 RAMState *rs = *(RAMState **)opaque;
08614f34 4555 int ret;
edd090c7 4556
08614f34
PX
4557 ret = ram_dirty_bitmap_sync_all(s, rs);
4558 if (ret) {
4559 return ret;
4560 }
4561
4562 ram_state_resume_prepare(rs, s->to_dst_file);
4563
4564 return 0;
edd090c7
PX
4565}
4566
56e93d26 4567static SaveVMHandlers savevm_ram_handlers = {
9907e842 4568 .save_setup = ram_save_setup,
56e93d26 4569 .save_live_iterate = ram_save_iterate,
763c906b 4570 .save_live_complete_postcopy = ram_save_complete,
a3e06c3d 4571 .save_live_complete_precopy = ram_save_complete,
c6467627 4572 .has_postcopy = ram_has_postcopy,
56e93d26
JQ
4573 .save_live_pending = ram_save_pending,
4574 .load_state = ram_load,
f265e0e4
JQ
4575 .save_cleanup = ram_save_cleanup,
4576 .load_setup = ram_load_setup,
4577 .load_cleanup = ram_load_cleanup,
edd090c7 4578 .resume_prepare = ram_resume_prepare,
56e93d26
JQ
4579};
4580
4581void ram_mig_init(void)
4582{
4583 qemu_mutex_init(&XBZRLE.lock);
6f37bb8b 4584 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state);
56e93d26 4585}