]> git.proxmox.com Git - mirror_qemu.git/blob - migration/ram.c
multifd: Be flexible about packet size
[mirror_qemu.git] / migration / ram.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
28
29 #include "qemu/osdep.h"
30 #include "cpu.h"
31 #include <zlib.h>
32 #include "qemu/cutils.h"
33 #include "qemu/bitops.h"
34 #include "qemu/bitmap.h"
35 #include "qemu/main-loop.h"
36 #include "qemu/pmem.h"
37 #include "xbzrle.h"
38 #include "ram.h"
39 #include "migration.h"
40 #include "socket.h"
41 #include "migration/register.h"
42 #include "migration/misc.h"
43 #include "qemu-file.h"
44 #include "postcopy-ram.h"
45 #include "page_cache.h"
46 #include "qemu/error-report.h"
47 #include "qapi/error.h"
48 #include "qapi/qapi-events-migration.h"
49 #include "qapi/qmp/qerror.h"
50 #include "trace.h"
51 #include "exec/ram_addr.h"
52 #include "exec/target_page.h"
53 #include "qemu/rcu_queue.h"
54 #include "migration/colo.h"
55 #include "block.h"
56 #include "sysemu/sysemu.h"
57 #include "qemu/uuid.h"
58 #include "savevm.h"
59 #include "qemu/iov.h"
60
61 /***********************************************************/
62 /* ram save/restore */
63
64 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
65 * worked for pages that where filled with the same char. We switched
66 * it to only search for the zero value. And to avoid confusion with
67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
68 */
69
70 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
71 #define RAM_SAVE_FLAG_ZERO 0x02
72 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
73 #define RAM_SAVE_FLAG_PAGE 0x08
74 #define RAM_SAVE_FLAG_EOS 0x10
75 #define RAM_SAVE_FLAG_CONTINUE 0x20
76 #define RAM_SAVE_FLAG_XBZRLE 0x40
77 /* 0x80 is reserved in migration.h start with 0x100 next */
78 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
79
80 static inline bool is_zero_range(uint8_t *p, uint64_t size)
81 {
82 return buffer_is_zero(p, size);
83 }
84
85 XBZRLECacheStats xbzrle_counters;
86
87 /* struct contains XBZRLE cache and a static page
88 used by the compression */
89 static struct {
90 /* buffer used for XBZRLE encoding */
91 uint8_t *encoded_buf;
92 /* buffer for storing page content */
93 uint8_t *current_buf;
94 /* Cache for XBZRLE, Protected by lock. */
95 PageCache *cache;
96 QemuMutex lock;
97 /* it will store a page full of zeros */
98 uint8_t *zero_target_page;
99 /* buffer used for XBZRLE decoding */
100 uint8_t *decoded_buf;
101 } XBZRLE;
102
103 static void XBZRLE_cache_lock(void)
104 {
105 if (migrate_use_xbzrle())
106 qemu_mutex_lock(&XBZRLE.lock);
107 }
108
109 static void XBZRLE_cache_unlock(void)
110 {
111 if (migrate_use_xbzrle())
112 qemu_mutex_unlock(&XBZRLE.lock);
113 }
114
115 /**
116 * xbzrle_cache_resize: resize the xbzrle cache
117 *
118 * This function is called from qmp_migrate_set_cache_size in main
119 * thread, possibly while a migration is in progress. A running
120 * migration may be using the cache and might finish during this call,
121 * hence changes to the cache are protected by XBZRLE.lock().
122 *
123 * Returns 0 for success or -1 for error
124 *
125 * @new_size: new cache size
126 * @errp: set *errp if the check failed, with reason
127 */
128 int xbzrle_cache_resize(int64_t new_size, Error **errp)
129 {
130 PageCache *new_cache;
131 int64_t ret = 0;
132
133 /* Check for truncation */
134 if (new_size != (size_t)new_size) {
135 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
136 "exceeding address space");
137 return -1;
138 }
139
140 if (new_size == migrate_xbzrle_cache_size()) {
141 /* nothing to do */
142 return 0;
143 }
144
145 XBZRLE_cache_lock();
146
147 if (XBZRLE.cache != NULL) {
148 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
149 if (!new_cache) {
150 ret = -1;
151 goto out;
152 }
153
154 cache_fini(XBZRLE.cache);
155 XBZRLE.cache = new_cache;
156 }
157 out:
158 XBZRLE_cache_unlock();
159 return ret;
160 }
161
162 static bool ramblock_is_ignored(RAMBlock *block)
163 {
164 return !qemu_ram_is_migratable(block) ||
165 (migrate_ignore_shared() && qemu_ram_is_shared(block));
166 }
167
168 /* Should be holding either ram_list.mutex, or the RCU lock. */
169 #define RAMBLOCK_FOREACH_NOT_IGNORED(block) \
170 INTERNAL_RAMBLOCK_FOREACH(block) \
171 if (ramblock_is_ignored(block)) {} else
172
173 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \
174 INTERNAL_RAMBLOCK_FOREACH(block) \
175 if (!qemu_ram_is_migratable(block)) {} else
176
177 #undef RAMBLOCK_FOREACH
178
179 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
180 {
181 RAMBlock *block;
182 int ret = 0;
183
184 rcu_read_lock();
185 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
186 ret = func(block, opaque);
187 if (ret) {
188 break;
189 }
190 }
191 rcu_read_unlock();
192 return ret;
193 }
194
195 static void ramblock_recv_map_init(void)
196 {
197 RAMBlock *rb;
198
199 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
200 assert(!rb->receivedmap);
201 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
202 }
203 }
204
205 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
206 {
207 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
208 rb->receivedmap);
209 }
210
211 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
212 {
213 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
214 }
215
216 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
217 {
218 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
219 }
220
221 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
222 size_t nr)
223 {
224 bitmap_set_atomic(rb->receivedmap,
225 ramblock_recv_bitmap_offset(host_addr, rb),
226 nr);
227 }
228
229 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
230
231 /*
232 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
233 *
234 * Returns >0 if success with sent bytes, or <0 if error.
235 */
236 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
237 const char *block_name)
238 {
239 RAMBlock *block = qemu_ram_block_by_name(block_name);
240 unsigned long *le_bitmap, nbits;
241 uint64_t size;
242
243 if (!block) {
244 error_report("%s: invalid block name: %s", __func__, block_name);
245 return -1;
246 }
247
248 nbits = block->used_length >> TARGET_PAGE_BITS;
249
250 /*
251 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
252 * machines we may need 4 more bytes for padding (see below
253 * comment). So extend it a bit before hand.
254 */
255 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
256
257 /*
258 * Always use little endian when sending the bitmap. This is
259 * required that when source and destination VMs are not using the
260 * same endianess. (Note: big endian won't work.)
261 */
262 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
263
264 /* Size of the bitmap, in bytes */
265 size = DIV_ROUND_UP(nbits, 8);
266
267 /*
268 * size is always aligned to 8 bytes for 64bit machines, but it
269 * may not be true for 32bit machines. We need this padding to
270 * make sure the migration can survive even between 32bit and
271 * 64bit machines.
272 */
273 size = ROUND_UP(size, 8);
274
275 qemu_put_be64(file, size);
276 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
277 /*
278 * Mark as an end, in case the middle part is screwed up due to
279 * some "misterious" reason.
280 */
281 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
282 qemu_fflush(file);
283
284 g_free(le_bitmap);
285
286 if (qemu_file_get_error(file)) {
287 return qemu_file_get_error(file);
288 }
289
290 return size + sizeof(size);
291 }
292
293 /*
294 * An outstanding page request, on the source, having been received
295 * and queued
296 */
297 struct RAMSrcPageRequest {
298 RAMBlock *rb;
299 hwaddr offset;
300 hwaddr len;
301
302 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
303 };
304
305 /* State of RAM for migration */
306 struct RAMState {
307 /* QEMUFile used for this migration */
308 QEMUFile *f;
309 /* Last block that we have visited searching for dirty pages */
310 RAMBlock *last_seen_block;
311 /* Last block from where we have sent data */
312 RAMBlock *last_sent_block;
313 /* Last dirty target page we have sent */
314 ram_addr_t last_page;
315 /* last ram version we have seen */
316 uint32_t last_version;
317 /* We are in the first round */
318 bool ram_bulk_stage;
319 /* The free page optimization is enabled */
320 bool fpo_enabled;
321 /* How many times we have dirty too many pages */
322 int dirty_rate_high_cnt;
323 /* these variables are used for bitmap sync */
324 /* last time we did a full bitmap_sync */
325 int64_t time_last_bitmap_sync;
326 /* bytes transferred at start_time */
327 uint64_t bytes_xfer_prev;
328 /* number of dirty pages since start_time */
329 uint64_t num_dirty_pages_period;
330 /* xbzrle misses since the beginning of the period */
331 uint64_t xbzrle_cache_miss_prev;
332
333 /* compression statistics since the beginning of the period */
334 /* amount of count that no free thread to compress data */
335 uint64_t compress_thread_busy_prev;
336 /* amount bytes after compression */
337 uint64_t compressed_size_prev;
338 /* amount of compressed pages */
339 uint64_t compress_pages_prev;
340
341 /* total handled target pages at the beginning of period */
342 uint64_t target_page_count_prev;
343 /* total handled target pages since start */
344 uint64_t target_page_count;
345 /* number of dirty bits in the bitmap */
346 uint64_t migration_dirty_pages;
347 /* Protects modification of the bitmap and migration dirty pages */
348 QemuMutex bitmap_mutex;
349 /* The RAMBlock used in the last src_page_requests */
350 RAMBlock *last_req_rb;
351 /* Queue of outstanding page requests from the destination */
352 QemuMutex src_page_req_mutex;
353 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
354 };
355 typedef struct RAMState RAMState;
356
357 static RAMState *ram_state;
358
359 static NotifierWithReturnList precopy_notifier_list;
360
361 void precopy_infrastructure_init(void)
362 {
363 notifier_with_return_list_init(&precopy_notifier_list);
364 }
365
366 void precopy_add_notifier(NotifierWithReturn *n)
367 {
368 notifier_with_return_list_add(&precopy_notifier_list, n);
369 }
370
371 void precopy_remove_notifier(NotifierWithReturn *n)
372 {
373 notifier_with_return_remove(n);
374 }
375
376 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
377 {
378 PrecopyNotifyData pnd;
379 pnd.reason = reason;
380 pnd.errp = errp;
381
382 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
383 }
384
385 void precopy_enable_free_page_optimization(void)
386 {
387 if (!ram_state) {
388 return;
389 }
390
391 ram_state->fpo_enabled = true;
392 }
393
394 uint64_t ram_bytes_remaining(void)
395 {
396 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
397 0;
398 }
399
400 MigrationStats ram_counters;
401
402 /* used by the search for pages to send */
403 struct PageSearchStatus {
404 /* Current block being searched */
405 RAMBlock *block;
406 /* Current page to search from */
407 unsigned long page;
408 /* Set once we wrap around */
409 bool complete_round;
410 };
411 typedef struct PageSearchStatus PageSearchStatus;
412
413 CompressionStats compression_counters;
414
415 struct CompressParam {
416 bool done;
417 bool quit;
418 bool zero_page;
419 QEMUFile *file;
420 QemuMutex mutex;
421 QemuCond cond;
422 RAMBlock *block;
423 ram_addr_t offset;
424
425 /* internally used fields */
426 z_stream stream;
427 uint8_t *originbuf;
428 };
429 typedef struct CompressParam CompressParam;
430
431 struct DecompressParam {
432 bool done;
433 bool quit;
434 QemuMutex mutex;
435 QemuCond cond;
436 void *des;
437 uint8_t *compbuf;
438 int len;
439 z_stream stream;
440 };
441 typedef struct DecompressParam DecompressParam;
442
443 static CompressParam *comp_param;
444 static QemuThread *compress_threads;
445 /* comp_done_cond is used to wake up the migration thread when
446 * one of the compression threads has finished the compression.
447 * comp_done_lock is used to co-work with comp_done_cond.
448 */
449 static QemuMutex comp_done_lock;
450 static QemuCond comp_done_cond;
451 /* The empty QEMUFileOps will be used by file in CompressParam */
452 static const QEMUFileOps empty_ops = { };
453
454 static QEMUFile *decomp_file;
455 static DecompressParam *decomp_param;
456 static QemuThread *decompress_threads;
457 static QemuMutex decomp_done_lock;
458 static QemuCond decomp_done_cond;
459
460 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
461 ram_addr_t offset, uint8_t *source_buf);
462
463 static void *do_data_compress(void *opaque)
464 {
465 CompressParam *param = opaque;
466 RAMBlock *block;
467 ram_addr_t offset;
468 bool zero_page;
469
470 qemu_mutex_lock(&param->mutex);
471 while (!param->quit) {
472 if (param->block) {
473 block = param->block;
474 offset = param->offset;
475 param->block = NULL;
476 qemu_mutex_unlock(&param->mutex);
477
478 zero_page = do_compress_ram_page(param->file, &param->stream,
479 block, offset, param->originbuf);
480
481 qemu_mutex_lock(&comp_done_lock);
482 param->done = true;
483 param->zero_page = zero_page;
484 qemu_cond_signal(&comp_done_cond);
485 qemu_mutex_unlock(&comp_done_lock);
486
487 qemu_mutex_lock(&param->mutex);
488 } else {
489 qemu_cond_wait(&param->cond, &param->mutex);
490 }
491 }
492 qemu_mutex_unlock(&param->mutex);
493
494 return NULL;
495 }
496
497 static void compress_threads_save_cleanup(void)
498 {
499 int i, thread_count;
500
501 if (!migrate_use_compression() || !comp_param) {
502 return;
503 }
504
505 thread_count = migrate_compress_threads();
506 for (i = 0; i < thread_count; i++) {
507 /*
508 * we use it as a indicator which shows if the thread is
509 * properly init'd or not
510 */
511 if (!comp_param[i].file) {
512 break;
513 }
514
515 qemu_mutex_lock(&comp_param[i].mutex);
516 comp_param[i].quit = true;
517 qemu_cond_signal(&comp_param[i].cond);
518 qemu_mutex_unlock(&comp_param[i].mutex);
519
520 qemu_thread_join(compress_threads + i);
521 qemu_mutex_destroy(&comp_param[i].mutex);
522 qemu_cond_destroy(&comp_param[i].cond);
523 deflateEnd(&comp_param[i].stream);
524 g_free(comp_param[i].originbuf);
525 qemu_fclose(comp_param[i].file);
526 comp_param[i].file = NULL;
527 }
528 qemu_mutex_destroy(&comp_done_lock);
529 qemu_cond_destroy(&comp_done_cond);
530 g_free(compress_threads);
531 g_free(comp_param);
532 compress_threads = NULL;
533 comp_param = NULL;
534 }
535
536 static int compress_threads_save_setup(void)
537 {
538 int i, thread_count;
539
540 if (!migrate_use_compression()) {
541 return 0;
542 }
543 thread_count = migrate_compress_threads();
544 compress_threads = g_new0(QemuThread, thread_count);
545 comp_param = g_new0(CompressParam, thread_count);
546 qemu_cond_init(&comp_done_cond);
547 qemu_mutex_init(&comp_done_lock);
548 for (i = 0; i < thread_count; i++) {
549 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
550 if (!comp_param[i].originbuf) {
551 goto exit;
552 }
553
554 if (deflateInit(&comp_param[i].stream,
555 migrate_compress_level()) != Z_OK) {
556 g_free(comp_param[i].originbuf);
557 goto exit;
558 }
559
560 /* comp_param[i].file is just used as a dummy buffer to save data,
561 * set its ops to empty.
562 */
563 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
564 comp_param[i].done = true;
565 comp_param[i].quit = false;
566 qemu_mutex_init(&comp_param[i].mutex);
567 qemu_cond_init(&comp_param[i].cond);
568 qemu_thread_create(compress_threads + i, "compress",
569 do_data_compress, comp_param + i,
570 QEMU_THREAD_JOINABLE);
571 }
572 return 0;
573
574 exit:
575 compress_threads_save_cleanup();
576 return -1;
577 }
578
579 /* Multiple fd's */
580
581 #define MULTIFD_MAGIC 0x11223344U
582 #define MULTIFD_VERSION 1
583
584 #define MULTIFD_FLAG_SYNC (1 << 0)
585
586 /* This value needs to be a multiple of qemu_target_page_size() */
587 #define MULTIFD_PACKET_SIZE (64 * 1024)
588
589 typedef struct {
590 uint32_t magic;
591 uint32_t version;
592 unsigned char uuid[16]; /* QemuUUID */
593 uint8_t id;
594 } __attribute__((packed)) MultiFDInit_t;
595
596 typedef struct {
597 uint32_t magic;
598 uint32_t version;
599 uint32_t flags;
600 /* maximum number of allocated pages */
601 uint32_t pages_alloc;
602 uint32_t pages_used;
603 /* size of the next packet that contains pages */
604 uint32_t next_packet_size;
605 uint64_t packet_num;
606 char ramblock[256];
607 uint64_t offset[];
608 } __attribute__((packed)) MultiFDPacket_t;
609
610 typedef struct {
611 /* number of used pages */
612 uint32_t used;
613 /* number of allocated pages */
614 uint32_t allocated;
615 /* global number of generated multifd packets */
616 uint64_t packet_num;
617 /* offset of each page */
618 ram_addr_t *offset;
619 /* pointer to each page */
620 struct iovec *iov;
621 RAMBlock *block;
622 } MultiFDPages_t;
623
624 typedef struct {
625 /* this fields are not changed once the thread is created */
626 /* channel number */
627 uint8_t id;
628 /* channel thread name */
629 char *name;
630 /* channel thread id */
631 QemuThread thread;
632 /* communication channel */
633 QIOChannel *c;
634 /* sem where to wait for more work */
635 QemuSemaphore sem;
636 /* this mutex protects the following parameters */
637 QemuMutex mutex;
638 /* is this channel thread running */
639 bool running;
640 /* should this thread finish */
641 bool quit;
642 /* thread has work to do */
643 int pending_job;
644 /* array of pages to sent */
645 MultiFDPages_t *pages;
646 /* packet allocated len */
647 uint32_t packet_len;
648 /* pointer to the packet */
649 MultiFDPacket_t *packet;
650 /* multifd flags for each packet */
651 uint32_t flags;
652 /* size of the next packet that contains pages */
653 uint32_t next_packet_size;
654 /* global number of generated multifd packets */
655 uint64_t packet_num;
656 /* thread local variables */
657 /* packets sent through this channel */
658 uint64_t num_packets;
659 /* pages sent through this channel */
660 uint64_t num_pages;
661 /* syncs main thread and channels */
662 QemuSemaphore sem_sync;
663 } MultiFDSendParams;
664
665 typedef struct {
666 /* this fields are not changed once the thread is created */
667 /* channel number */
668 uint8_t id;
669 /* channel thread name */
670 char *name;
671 /* channel thread id */
672 QemuThread thread;
673 /* communication channel */
674 QIOChannel *c;
675 /* this mutex protects the following parameters */
676 QemuMutex mutex;
677 /* is this channel thread running */
678 bool running;
679 /* array of pages to receive */
680 MultiFDPages_t *pages;
681 /* packet allocated len */
682 uint32_t packet_len;
683 /* pointer to the packet */
684 MultiFDPacket_t *packet;
685 /* multifd flags for each packet */
686 uint32_t flags;
687 /* global number of generated multifd packets */
688 uint64_t packet_num;
689 /* thread local variables */
690 /* size of the next packet that contains pages */
691 uint32_t next_packet_size;
692 /* packets sent through this channel */
693 uint64_t num_packets;
694 /* pages sent through this channel */
695 uint64_t num_pages;
696 /* syncs main thread and channels */
697 QemuSemaphore sem_sync;
698 } MultiFDRecvParams;
699
700 static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
701 {
702 MultiFDInit_t msg;
703 int ret;
704
705 msg.magic = cpu_to_be32(MULTIFD_MAGIC);
706 msg.version = cpu_to_be32(MULTIFD_VERSION);
707 msg.id = p->id;
708 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid));
709
710 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp);
711 if (ret != 0) {
712 return -1;
713 }
714 return 0;
715 }
716
717 static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
718 {
719 MultiFDInit_t msg;
720 int ret;
721
722 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp);
723 if (ret != 0) {
724 return -1;
725 }
726
727 msg.magic = be32_to_cpu(msg.magic);
728 msg.version = be32_to_cpu(msg.version);
729
730 if (msg.magic != MULTIFD_MAGIC) {
731 error_setg(errp, "multifd: received packet magic %x "
732 "expected %x", msg.magic, MULTIFD_MAGIC);
733 return -1;
734 }
735
736 if (msg.version != MULTIFD_VERSION) {
737 error_setg(errp, "multifd: received packet version %d "
738 "expected %d", msg.version, MULTIFD_VERSION);
739 return -1;
740 }
741
742 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) {
743 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid);
744 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid);
745
746 error_setg(errp, "multifd: received uuid '%s' and expected "
747 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id);
748 g_free(uuid);
749 g_free(msg_uuid);
750 return -1;
751 }
752
753 if (msg.id > migrate_multifd_channels()) {
754 error_setg(errp, "multifd: received channel version %d "
755 "expected %d", msg.version, MULTIFD_VERSION);
756 return -1;
757 }
758
759 return msg.id;
760 }
761
762 static MultiFDPages_t *multifd_pages_init(size_t size)
763 {
764 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1);
765
766 pages->allocated = size;
767 pages->iov = g_new0(struct iovec, size);
768 pages->offset = g_new0(ram_addr_t, size);
769
770 return pages;
771 }
772
773 static void multifd_pages_clear(MultiFDPages_t *pages)
774 {
775 pages->used = 0;
776 pages->allocated = 0;
777 pages->packet_num = 0;
778 pages->block = NULL;
779 g_free(pages->iov);
780 pages->iov = NULL;
781 g_free(pages->offset);
782 pages->offset = NULL;
783 g_free(pages);
784 }
785
786 static void multifd_send_fill_packet(MultiFDSendParams *p)
787 {
788 MultiFDPacket_t *packet = p->packet;
789 uint32_t page_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
790 int i;
791
792 packet->magic = cpu_to_be32(MULTIFD_MAGIC);
793 packet->version = cpu_to_be32(MULTIFD_VERSION);
794 packet->flags = cpu_to_be32(p->flags);
795 packet->pages_alloc = cpu_to_be32(page_max);
796 packet->pages_used = cpu_to_be32(p->pages->used);
797 packet->next_packet_size = cpu_to_be32(p->next_packet_size);
798 packet->packet_num = cpu_to_be64(p->packet_num);
799
800 if (p->pages->block) {
801 strncpy(packet->ramblock, p->pages->block->idstr, 256);
802 }
803
804 for (i = 0; i < p->pages->used; i++) {
805 packet->offset[i] = cpu_to_be64(p->pages->offset[i]);
806 }
807 }
808
809 static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
810 {
811 MultiFDPacket_t *packet = p->packet;
812 uint32_t pages_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
813 RAMBlock *block;
814 int i;
815
816 packet->magic = be32_to_cpu(packet->magic);
817 if (packet->magic != MULTIFD_MAGIC) {
818 error_setg(errp, "multifd: received packet "
819 "magic %x and expected magic %x",
820 packet->magic, MULTIFD_MAGIC);
821 return -1;
822 }
823
824 packet->version = be32_to_cpu(packet->version);
825 if (packet->version != MULTIFD_VERSION) {
826 error_setg(errp, "multifd: received packet "
827 "version %d and expected version %d",
828 packet->version, MULTIFD_VERSION);
829 return -1;
830 }
831
832 p->flags = be32_to_cpu(packet->flags);
833
834 packet->pages_alloc = be32_to_cpu(packet->pages_alloc);
835 /*
836 * If we recevied a packet that is 100 times bigger than expected
837 * just stop migration. It is a magic number.
838 */
839 if (packet->pages_alloc > pages_max * 100) {
840 error_setg(errp, "multifd: received packet "
841 "with size %d and expected a maximum size of %d",
842 packet->pages_alloc, pages_max * 100) ;
843 return -1;
844 }
845 /*
846 * We received a packet that is bigger than expected but inside
847 * reasonable limits (see previous comment). Just reallocate.
848 */
849 if (packet->pages_alloc > p->pages->allocated) {
850 multifd_pages_clear(p->pages);
851 multifd_pages_init(packet->pages_alloc);
852 }
853
854 p->pages->used = be32_to_cpu(packet->pages_used);
855 if (p->pages->used > packet->pages_alloc) {
856 error_setg(errp, "multifd: received packet "
857 "with %d pages and expected maximum pages are %d",
858 p->pages->used, packet->pages_alloc) ;
859 return -1;
860 }
861
862 p->next_packet_size = be32_to_cpu(packet->next_packet_size);
863 p->packet_num = be64_to_cpu(packet->packet_num);
864
865 if (p->pages->used) {
866 /* make sure that ramblock is 0 terminated */
867 packet->ramblock[255] = 0;
868 block = qemu_ram_block_by_name(packet->ramblock);
869 if (!block) {
870 error_setg(errp, "multifd: unknown ram block %s",
871 packet->ramblock);
872 return -1;
873 }
874 }
875
876 for (i = 0; i < p->pages->used; i++) {
877 ram_addr_t offset = be64_to_cpu(packet->offset[i]);
878
879 if (offset > (block->used_length - TARGET_PAGE_SIZE)) {
880 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT
881 " (max " RAM_ADDR_FMT ")",
882 offset, block->max_length);
883 return -1;
884 }
885 p->pages->iov[i].iov_base = block->host + offset;
886 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE;
887 }
888
889 return 0;
890 }
891
892 struct {
893 MultiFDSendParams *params;
894 /* number of created threads */
895 int count;
896 /* array of pages to sent */
897 MultiFDPages_t *pages;
898 /* syncs main thread and channels */
899 QemuSemaphore sem_sync;
900 /* global number of generated multifd packets */
901 uint64_t packet_num;
902 /* send channels ready */
903 QemuSemaphore channels_ready;
904 } *multifd_send_state;
905
906 /*
907 * How we use multifd_send_state->pages and channel->pages?
908 *
909 * We create a pages for each channel, and a main one. Each time that
910 * we need to send a batch of pages we interchange the ones between
911 * multifd_send_state and the channel that is sending it. There are
912 * two reasons for that:
913 * - to not have to do so many mallocs during migration
914 * - to make easier to know what to free at the end of migration
915 *
916 * This way we always know who is the owner of each "pages" struct,
917 * and we don't need any loocking. It belongs to the migration thread
918 * or to the channel thread. Switching is safe because the migration
919 * thread is using the channel mutex when changing it, and the channel
920 * have to had finish with its own, otherwise pending_job can't be
921 * false.
922 */
923
924 static void multifd_send_pages(void)
925 {
926 int i;
927 static int next_channel;
928 MultiFDSendParams *p = NULL; /* make happy gcc */
929 MultiFDPages_t *pages = multifd_send_state->pages;
930 uint64_t transferred;
931
932 qemu_sem_wait(&multifd_send_state->channels_ready);
933 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) {
934 p = &multifd_send_state->params[i];
935
936 qemu_mutex_lock(&p->mutex);
937 if (!p->pending_job) {
938 p->pending_job++;
939 next_channel = (i + 1) % migrate_multifd_channels();
940 break;
941 }
942 qemu_mutex_unlock(&p->mutex);
943 }
944 p->pages->used = 0;
945
946 p->packet_num = multifd_send_state->packet_num++;
947 p->pages->block = NULL;
948 multifd_send_state->pages = p->pages;
949 p->pages = pages;
950 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len;
951 ram_counters.multifd_bytes += transferred;
952 ram_counters.transferred += transferred;;
953 qemu_mutex_unlock(&p->mutex);
954 qemu_sem_post(&p->sem);
955 }
956
957 static void multifd_queue_page(RAMBlock *block, ram_addr_t offset)
958 {
959 MultiFDPages_t *pages = multifd_send_state->pages;
960
961 if (!pages->block) {
962 pages->block = block;
963 }
964
965 if (pages->block == block) {
966 pages->offset[pages->used] = offset;
967 pages->iov[pages->used].iov_base = block->host + offset;
968 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE;
969 pages->used++;
970
971 if (pages->used < pages->allocated) {
972 return;
973 }
974 }
975
976 multifd_send_pages();
977
978 if (pages->block != block) {
979 multifd_queue_page(block, offset);
980 }
981 }
982
983 static void multifd_send_terminate_threads(Error *err)
984 {
985 int i;
986
987 if (err) {
988 MigrationState *s = migrate_get_current();
989 migrate_set_error(s, err);
990 if (s->state == MIGRATION_STATUS_SETUP ||
991 s->state == MIGRATION_STATUS_PRE_SWITCHOVER ||
992 s->state == MIGRATION_STATUS_DEVICE ||
993 s->state == MIGRATION_STATUS_ACTIVE) {
994 migrate_set_state(&s->state, s->state,
995 MIGRATION_STATUS_FAILED);
996 }
997 }
998
999 for (i = 0; i < migrate_multifd_channels(); i++) {
1000 MultiFDSendParams *p = &multifd_send_state->params[i];
1001
1002 qemu_mutex_lock(&p->mutex);
1003 p->quit = true;
1004 qemu_sem_post(&p->sem);
1005 qemu_mutex_unlock(&p->mutex);
1006 }
1007 }
1008
1009 void multifd_save_cleanup(void)
1010 {
1011 int i;
1012
1013 if (!migrate_use_multifd()) {
1014 return;
1015 }
1016 multifd_send_terminate_threads(NULL);
1017 for (i = 0; i < migrate_multifd_channels(); i++) {
1018 MultiFDSendParams *p = &multifd_send_state->params[i];
1019
1020 if (p->running) {
1021 qemu_thread_join(&p->thread);
1022 }
1023 socket_send_channel_destroy(p->c);
1024 p->c = NULL;
1025 qemu_mutex_destroy(&p->mutex);
1026 qemu_sem_destroy(&p->sem);
1027 qemu_sem_destroy(&p->sem_sync);
1028 g_free(p->name);
1029 p->name = NULL;
1030 multifd_pages_clear(p->pages);
1031 p->pages = NULL;
1032 p->packet_len = 0;
1033 g_free(p->packet);
1034 p->packet = NULL;
1035 }
1036 qemu_sem_destroy(&multifd_send_state->channels_ready);
1037 qemu_sem_destroy(&multifd_send_state->sem_sync);
1038 g_free(multifd_send_state->params);
1039 multifd_send_state->params = NULL;
1040 multifd_pages_clear(multifd_send_state->pages);
1041 multifd_send_state->pages = NULL;
1042 g_free(multifd_send_state);
1043 multifd_send_state = NULL;
1044 }
1045
1046 static void multifd_send_sync_main(void)
1047 {
1048 int i;
1049
1050 if (!migrate_use_multifd()) {
1051 return;
1052 }
1053 if (multifd_send_state->pages->used) {
1054 multifd_send_pages();
1055 }
1056 for (i = 0; i < migrate_multifd_channels(); i++) {
1057 MultiFDSendParams *p = &multifd_send_state->params[i];
1058
1059 trace_multifd_send_sync_main_signal(p->id);
1060
1061 qemu_mutex_lock(&p->mutex);
1062
1063 p->packet_num = multifd_send_state->packet_num++;
1064 p->flags |= MULTIFD_FLAG_SYNC;
1065 p->pending_job++;
1066 qemu_mutex_unlock(&p->mutex);
1067 qemu_sem_post(&p->sem);
1068 }
1069 for (i = 0; i < migrate_multifd_channels(); i++) {
1070 MultiFDSendParams *p = &multifd_send_state->params[i];
1071
1072 trace_multifd_send_sync_main_wait(p->id);
1073 qemu_sem_wait(&multifd_send_state->sem_sync);
1074 }
1075 trace_multifd_send_sync_main(multifd_send_state->packet_num);
1076 }
1077
1078 static void *multifd_send_thread(void *opaque)
1079 {
1080 MultiFDSendParams *p = opaque;
1081 Error *local_err = NULL;
1082 int ret;
1083
1084 trace_multifd_send_thread_start(p->id);
1085 rcu_register_thread();
1086
1087 if (multifd_send_initial_packet(p, &local_err) < 0) {
1088 goto out;
1089 }
1090 /* initial packet */
1091 p->num_packets = 1;
1092
1093 while (true) {
1094 qemu_sem_wait(&p->sem);
1095 qemu_mutex_lock(&p->mutex);
1096
1097 if (p->pending_job) {
1098 uint32_t used = p->pages->used;
1099 uint64_t packet_num = p->packet_num;
1100 uint32_t flags = p->flags;
1101
1102 p->next_packet_size = used * qemu_target_page_size();
1103 multifd_send_fill_packet(p);
1104 p->flags = 0;
1105 p->num_packets++;
1106 p->num_pages += used;
1107 p->pages->used = 0;
1108 qemu_mutex_unlock(&p->mutex);
1109
1110 trace_multifd_send(p->id, packet_num, used, flags,
1111 p->next_packet_size);
1112
1113 ret = qio_channel_write_all(p->c, (void *)p->packet,
1114 p->packet_len, &local_err);
1115 if (ret != 0) {
1116 break;
1117 }
1118
1119 if (used) {
1120 ret = qio_channel_writev_all(p->c, p->pages->iov,
1121 used, &local_err);
1122 if (ret != 0) {
1123 break;
1124 }
1125 }
1126
1127 qemu_mutex_lock(&p->mutex);
1128 p->pending_job--;
1129 qemu_mutex_unlock(&p->mutex);
1130
1131 if (flags & MULTIFD_FLAG_SYNC) {
1132 qemu_sem_post(&multifd_send_state->sem_sync);
1133 }
1134 qemu_sem_post(&multifd_send_state->channels_ready);
1135 } else if (p->quit) {
1136 qemu_mutex_unlock(&p->mutex);
1137 break;
1138 } else {
1139 qemu_mutex_unlock(&p->mutex);
1140 /* sometimes there are spurious wakeups */
1141 }
1142 }
1143
1144 out:
1145 if (local_err) {
1146 multifd_send_terminate_threads(local_err);
1147 }
1148
1149 qemu_mutex_lock(&p->mutex);
1150 p->running = false;
1151 qemu_mutex_unlock(&p->mutex);
1152
1153 rcu_unregister_thread();
1154 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages);
1155
1156 return NULL;
1157 }
1158
1159 static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque)
1160 {
1161 MultiFDSendParams *p = opaque;
1162 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task));
1163 Error *local_err = NULL;
1164
1165 if (qio_task_propagate_error(task, &local_err)) {
1166 migrate_set_error(migrate_get_current(), local_err);
1167 multifd_save_cleanup();
1168 } else {
1169 p->c = QIO_CHANNEL(sioc);
1170 qio_channel_set_delay(p->c, false);
1171 p->running = true;
1172 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
1173 QEMU_THREAD_JOINABLE);
1174
1175 atomic_inc(&multifd_send_state->count);
1176 }
1177 }
1178
1179 int multifd_save_setup(void)
1180 {
1181 int thread_count;
1182 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
1183 uint8_t i;
1184
1185 if (!migrate_use_multifd()) {
1186 return 0;
1187 }
1188 thread_count = migrate_multifd_channels();
1189 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
1190 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
1191 atomic_set(&multifd_send_state->count, 0);
1192 multifd_send_state->pages = multifd_pages_init(page_count);
1193 qemu_sem_init(&multifd_send_state->sem_sync, 0);
1194 qemu_sem_init(&multifd_send_state->channels_ready, 0);
1195
1196 for (i = 0; i < thread_count; i++) {
1197 MultiFDSendParams *p = &multifd_send_state->params[i];
1198
1199 qemu_mutex_init(&p->mutex);
1200 qemu_sem_init(&p->sem, 0);
1201 qemu_sem_init(&p->sem_sync, 0);
1202 p->quit = false;
1203 p->pending_job = 0;
1204 p->id = i;
1205 p->pages = multifd_pages_init(page_count);
1206 p->packet_len = sizeof(MultiFDPacket_t)
1207 + sizeof(ram_addr_t) * page_count;
1208 p->packet = g_malloc0(p->packet_len);
1209 p->name = g_strdup_printf("multifdsend_%d", i);
1210 socket_send_channel_create(multifd_new_send_channel_async, p);
1211 }
1212 return 0;
1213 }
1214
1215 struct {
1216 MultiFDRecvParams *params;
1217 /* number of created threads */
1218 int count;
1219 /* syncs main thread and channels */
1220 QemuSemaphore sem_sync;
1221 /* global number of generated multifd packets */
1222 uint64_t packet_num;
1223 } *multifd_recv_state;
1224
1225 static void multifd_recv_terminate_threads(Error *err)
1226 {
1227 int i;
1228
1229 if (err) {
1230 MigrationState *s = migrate_get_current();
1231 migrate_set_error(s, err);
1232 if (s->state == MIGRATION_STATUS_SETUP ||
1233 s->state == MIGRATION_STATUS_ACTIVE) {
1234 migrate_set_state(&s->state, s->state,
1235 MIGRATION_STATUS_FAILED);
1236 }
1237 }
1238
1239 for (i = 0; i < migrate_multifd_channels(); i++) {
1240 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1241
1242 qemu_mutex_lock(&p->mutex);
1243 /* We could arrive here for two reasons:
1244 - normal quit, i.e. everything went fine, just finished
1245 - error quit: We close the channels so the channel threads
1246 finish the qio_channel_read_all_eof() */
1247 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL);
1248 qemu_mutex_unlock(&p->mutex);
1249 }
1250 }
1251
1252 int multifd_load_cleanup(Error **errp)
1253 {
1254 int i;
1255 int ret = 0;
1256
1257 if (!migrate_use_multifd()) {
1258 return 0;
1259 }
1260 multifd_recv_terminate_threads(NULL);
1261 for (i = 0; i < migrate_multifd_channels(); i++) {
1262 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1263
1264 if (p->running) {
1265 qemu_thread_join(&p->thread);
1266 }
1267 object_unref(OBJECT(p->c));
1268 p->c = NULL;
1269 qemu_mutex_destroy(&p->mutex);
1270 qemu_sem_destroy(&p->sem_sync);
1271 g_free(p->name);
1272 p->name = NULL;
1273 multifd_pages_clear(p->pages);
1274 p->pages = NULL;
1275 p->packet_len = 0;
1276 g_free(p->packet);
1277 p->packet = NULL;
1278 }
1279 qemu_sem_destroy(&multifd_recv_state->sem_sync);
1280 g_free(multifd_recv_state->params);
1281 multifd_recv_state->params = NULL;
1282 g_free(multifd_recv_state);
1283 multifd_recv_state = NULL;
1284
1285 return ret;
1286 }
1287
1288 static void multifd_recv_sync_main(void)
1289 {
1290 int i;
1291
1292 if (!migrate_use_multifd()) {
1293 return;
1294 }
1295 for (i = 0; i < migrate_multifd_channels(); i++) {
1296 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1297
1298 trace_multifd_recv_sync_main_wait(p->id);
1299 qemu_sem_wait(&multifd_recv_state->sem_sync);
1300 qemu_mutex_lock(&p->mutex);
1301 if (multifd_recv_state->packet_num < p->packet_num) {
1302 multifd_recv_state->packet_num = p->packet_num;
1303 }
1304 qemu_mutex_unlock(&p->mutex);
1305 }
1306 for (i = 0; i < migrate_multifd_channels(); i++) {
1307 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1308
1309 trace_multifd_recv_sync_main_signal(p->id);
1310 qemu_sem_post(&p->sem_sync);
1311 }
1312 trace_multifd_recv_sync_main(multifd_recv_state->packet_num);
1313 }
1314
1315 static void *multifd_recv_thread(void *opaque)
1316 {
1317 MultiFDRecvParams *p = opaque;
1318 Error *local_err = NULL;
1319 int ret;
1320
1321 trace_multifd_recv_thread_start(p->id);
1322 rcu_register_thread();
1323
1324 while (true) {
1325 uint32_t used;
1326 uint32_t flags;
1327
1328 ret = qio_channel_read_all_eof(p->c, (void *)p->packet,
1329 p->packet_len, &local_err);
1330 if (ret == 0) { /* EOF */
1331 break;
1332 }
1333 if (ret == -1) { /* Error */
1334 break;
1335 }
1336
1337 qemu_mutex_lock(&p->mutex);
1338 ret = multifd_recv_unfill_packet(p, &local_err);
1339 if (ret) {
1340 qemu_mutex_unlock(&p->mutex);
1341 break;
1342 }
1343
1344 used = p->pages->used;
1345 flags = p->flags;
1346 trace_multifd_recv(p->id, p->packet_num, used, flags,
1347 p->next_packet_size);
1348 p->num_packets++;
1349 p->num_pages += used;
1350 qemu_mutex_unlock(&p->mutex);
1351
1352 if (used) {
1353 ret = qio_channel_readv_all(p->c, p->pages->iov,
1354 used, &local_err);
1355 if (ret != 0) {
1356 break;
1357 }
1358 }
1359
1360 if (flags & MULTIFD_FLAG_SYNC) {
1361 qemu_sem_post(&multifd_recv_state->sem_sync);
1362 qemu_sem_wait(&p->sem_sync);
1363 }
1364 }
1365
1366 if (local_err) {
1367 multifd_recv_terminate_threads(local_err);
1368 }
1369 qemu_mutex_lock(&p->mutex);
1370 p->running = false;
1371 qemu_mutex_unlock(&p->mutex);
1372
1373 rcu_unregister_thread();
1374 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages);
1375
1376 return NULL;
1377 }
1378
1379 int multifd_load_setup(void)
1380 {
1381 int thread_count;
1382 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
1383 uint8_t i;
1384
1385 if (!migrate_use_multifd()) {
1386 return 0;
1387 }
1388 thread_count = migrate_multifd_channels();
1389 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
1390 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
1391 atomic_set(&multifd_recv_state->count, 0);
1392 qemu_sem_init(&multifd_recv_state->sem_sync, 0);
1393
1394 for (i = 0; i < thread_count; i++) {
1395 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1396
1397 qemu_mutex_init(&p->mutex);
1398 qemu_sem_init(&p->sem_sync, 0);
1399 p->id = i;
1400 p->pages = multifd_pages_init(page_count);
1401 p->packet_len = sizeof(MultiFDPacket_t)
1402 + sizeof(ram_addr_t) * page_count;
1403 p->packet = g_malloc0(p->packet_len);
1404 p->name = g_strdup_printf("multifdrecv_%d", i);
1405 }
1406 return 0;
1407 }
1408
1409 bool multifd_recv_all_channels_created(void)
1410 {
1411 int thread_count = migrate_multifd_channels();
1412
1413 if (!migrate_use_multifd()) {
1414 return true;
1415 }
1416
1417 return thread_count == atomic_read(&multifd_recv_state->count);
1418 }
1419
1420 /*
1421 * Try to receive all multifd channels to get ready for the migration.
1422 * - Return true and do not set @errp when correctly receving all channels;
1423 * - Return false and do not set @errp when correctly receiving the current one;
1424 * - Return false and set @errp when failing to receive the current channel.
1425 */
1426 bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp)
1427 {
1428 MultiFDRecvParams *p;
1429 Error *local_err = NULL;
1430 int id;
1431
1432 id = multifd_recv_initial_packet(ioc, &local_err);
1433 if (id < 0) {
1434 multifd_recv_terminate_threads(local_err);
1435 error_propagate_prepend(errp, local_err,
1436 "failed to receive packet"
1437 " via multifd channel %d: ",
1438 atomic_read(&multifd_recv_state->count));
1439 return false;
1440 }
1441
1442 p = &multifd_recv_state->params[id];
1443 if (p->c != NULL) {
1444 error_setg(&local_err, "multifd: received id '%d' already setup'",
1445 id);
1446 multifd_recv_terminate_threads(local_err);
1447 error_propagate(errp, local_err);
1448 return false;
1449 }
1450 p->c = ioc;
1451 object_ref(OBJECT(ioc));
1452 /* initial packet */
1453 p->num_packets = 1;
1454
1455 p->running = true;
1456 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
1457 QEMU_THREAD_JOINABLE);
1458 atomic_inc(&multifd_recv_state->count);
1459 return atomic_read(&multifd_recv_state->count) ==
1460 migrate_multifd_channels();
1461 }
1462
1463 /**
1464 * save_page_header: write page header to wire
1465 *
1466 * If this is the 1st block, it also writes the block identification
1467 *
1468 * Returns the number of bytes written
1469 *
1470 * @f: QEMUFile where to send the data
1471 * @block: block that contains the page we want to send
1472 * @offset: offset inside the block for the page
1473 * in the lower bits, it contains flags
1474 */
1475 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
1476 ram_addr_t offset)
1477 {
1478 size_t size, len;
1479
1480 if (block == rs->last_sent_block) {
1481 offset |= RAM_SAVE_FLAG_CONTINUE;
1482 }
1483 qemu_put_be64(f, offset);
1484 size = 8;
1485
1486 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
1487 len = strlen(block->idstr);
1488 qemu_put_byte(f, len);
1489 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
1490 size += 1 + len;
1491 rs->last_sent_block = block;
1492 }
1493 return size;
1494 }
1495
1496 /**
1497 * mig_throttle_guest_down: throotle down the guest
1498 *
1499 * Reduce amount of guest cpu execution to hopefully slow down memory
1500 * writes. If guest dirty memory rate is reduced below the rate at
1501 * which we can transfer pages to the destination then we should be
1502 * able to complete migration. Some workloads dirty memory way too
1503 * fast and will not effectively converge, even with auto-converge.
1504 */
1505 static void mig_throttle_guest_down(void)
1506 {
1507 MigrationState *s = migrate_get_current();
1508 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
1509 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
1510 int pct_max = s->parameters.max_cpu_throttle;
1511
1512 /* We have not started throttling yet. Let's start it. */
1513 if (!cpu_throttle_active()) {
1514 cpu_throttle_set(pct_initial);
1515 } else {
1516 /* Throttling already on, just increase the rate */
1517 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement,
1518 pct_max));
1519 }
1520 }
1521
1522 /**
1523 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
1524 *
1525 * @rs: current RAM state
1526 * @current_addr: address for the zero page
1527 *
1528 * Update the xbzrle cache to reflect a page that's been sent as all 0.
1529 * The important thing is that a stale (not-yet-0'd) page be replaced
1530 * by the new data.
1531 * As a bonus, if the page wasn't in the cache it gets added so that
1532 * when a small write is made into the 0'd page it gets XBZRLE sent.
1533 */
1534 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
1535 {
1536 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
1537 return;
1538 }
1539
1540 /* We don't care if this fails to allocate a new cache page
1541 * as long as it updated an old one */
1542 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
1543 ram_counters.dirty_sync_count);
1544 }
1545
1546 #define ENCODING_FLAG_XBZRLE 0x1
1547
1548 /**
1549 * save_xbzrle_page: compress and send current page
1550 *
1551 * Returns: 1 means that we wrote the page
1552 * 0 means that page is identical to the one already sent
1553 * -1 means that xbzrle would be longer than normal
1554 *
1555 * @rs: current RAM state
1556 * @current_data: pointer to the address of the page contents
1557 * @current_addr: addr of the page
1558 * @block: block that contains the page we want to send
1559 * @offset: offset inside the block for the page
1560 * @last_stage: if we are at the completion stage
1561 */
1562 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
1563 ram_addr_t current_addr, RAMBlock *block,
1564 ram_addr_t offset, bool last_stage)
1565 {
1566 int encoded_len = 0, bytes_xbzrle;
1567 uint8_t *prev_cached_page;
1568
1569 if (!cache_is_cached(XBZRLE.cache, current_addr,
1570 ram_counters.dirty_sync_count)) {
1571 xbzrle_counters.cache_miss++;
1572 if (!last_stage) {
1573 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
1574 ram_counters.dirty_sync_count) == -1) {
1575 return -1;
1576 } else {
1577 /* update *current_data when the page has been
1578 inserted into cache */
1579 *current_data = get_cached_data(XBZRLE.cache, current_addr);
1580 }
1581 }
1582 return -1;
1583 }
1584
1585 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
1586
1587 /* save current buffer into memory */
1588 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
1589
1590 /* XBZRLE encoding (if there is no overflow) */
1591 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
1592 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
1593 TARGET_PAGE_SIZE);
1594 if (encoded_len == 0) {
1595 trace_save_xbzrle_page_skipping();
1596 return 0;
1597 } else if (encoded_len == -1) {
1598 trace_save_xbzrle_page_overflow();
1599 xbzrle_counters.overflow++;
1600 /* update data in the cache */
1601 if (!last_stage) {
1602 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
1603 *current_data = prev_cached_page;
1604 }
1605 return -1;
1606 }
1607
1608 /* we need to update the data in the cache, in order to get the same data */
1609 if (!last_stage) {
1610 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
1611 }
1612
1613 /* Send XBZRLE based compressed page */
1614 bytes_xbzrle = save_page_header(rs, rs->f, block,
1615 offset | RAM_SAVE_FLAG_XBZRLE);
1616 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
1617 qemu_put_be16(rs->f, encoded_len);
1618 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
1619 bytes_xbzrle += encoded_len + 1 + 2;
1620 xbzrle_counters.pages++;
1621 xbzrle_counters.bytes += bytes_xbzrle;
1622 ram_counters.transferred += bytes_xbzrle;
1623
1624 return 1;
1625 }
1626
1627 /**
1628 * migration_bitmap_find_dirty: find the next dirty page from start
1629 *
1630 * Called with rcu_read_lock() to protect migration_bitmap
1631 *
1632 * Returns the byte offset within memory region of the start of a dirty page
1633 *
1634 * @rs: current RAM state
1635 * @rb: RAMBlock where to search for dirty pages
1636 * @start: page where we start the search
1637 */
1638 static inline
1639 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
1640 unsigned long start)
1641 {
1642 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
1643 unsigned long *bitmap = rb->bmap;
1644 unsigned long next;
1645
1646 if (ramblock_is_ignored(rb)) {
1647 return size;
1648 }
1649
1650 /*
1651 * When the free page optimization is enabled, we need to check the bitmap
1652 * to send the non-free pages rather than all the pages in the bulk stage.
1653 */
1654 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) {
1655 next = start + 1;
1656 } else {
1657 next = find_next_bit(bitmap, size, start);
1658 }
1659
1660 return next;
1661 }
1662
1663 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
1664 RAMBlock *rb,
1665 unsigned long page)
1666 {
1667 bool ret;
1668
1669 qemu_mutex_lock(&rs->bitmap_mutex);
1670 ret = test_and_clear_bit(page, rb->bmap);
1671
1672 if (ret) {
1673 rs->migration_dirty_pages--;
1674 }
1675 qemu_mutex_unlock(&rs->bitmap_mutex);
1676
1677 return ret;
1678 }
1679
1680 static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb,
1681 ram_addr_t start, ram_addr_t length)
1682 {
1683 rs->migration_dirty_pages +=
1684 cpu_physical_memory_sync_dirty_bitmap(rb, start, length,
1685 &rs->num_dirty_pages_period);
1686 }
1687
1688 /**
1689 * ram_pagesize_summary: calculate all the pagesizes of a VM
1690 *
1691 * Returns a summary bitmap of the page sizes of all RAMBlocks
1692 *
1693 * For VMs with just normal pages this is equivalent to the host page
1694 * size. If it's got some huge pages then it's the OR of all the
1695 * different page sizes.
1696 */
1697 uint64_t ram_pagesize_summary(void)
1698 {
1699 RAMBlock *block;
1700 uint64_t summary = 0;
1701
1702 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1703 summary |= block->page_size;
1704 }
1705
1706 return summary;
1707 }
1708
1709 uint64_t ram_get_total_transferred_pages(void)
1710 {
1711 return ram_counters.normal + ram_counters.duplicate +
1712 compression_counters.pages + xbzrle_counters.pages;
1713 }
1714
1715 static void migration_update_rates(RAMState *rs, int64_t end_time)
1716 {
1717 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
1718 double compressed_size;
1719
1720 /* calculate period counters */
1721 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1722 / (end_time - rs->time_last_bitmap_sync);
1723
1724 if (!page_count) {
1725 return;
1726 }
1727
1728 if (migrate_use_xbzrle()) {
1729 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
1730 rs->xbzrle_cache_miss_prev) / page_count;
1731 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1732 }
1733
1734 if (migrate_use_compression()) {
1735 compression_counters.busy_rate = (double)(compression_counters.busy -
1736 rs->compress_thread_busy_prev) / page_count;
1737 rs->compress_thread_busy_prev = compression_counters.busy;
1738
1739 compressed_size = compression_counters.compressed_size -
1740 rs->compressed_size_prev;
1741 if (compressed_size) {
1742 double uncompressed_size = (compression_counters.pages -
1743 rs->compress_pages_prev) * TARGET_PAGE_SIZE;
1744
1745 /* Compression-Ratio = Uncompressed-size / Compressed-size */
1746 compression_counters.compression_rate =
1747 uncompressed_size / compressed_size;
1748
1749 rs->compress_pages_prev = compression_counters.pages;
1750 rs->compressed_size_prev = compression_counters.compressed_size;
1751 }
1752 }
1753 }
1754
1755 static void migration_bitmap_sync(RAMState *rs)
1756 {
1757 RAMBlock *block;
1758 int64_t end_time;
1759 uint64_t bytes_xfer_now;
1760
1761 ram_counters.dirty_sync_count++;
1762
1763 if (!rs->time_last_bitmap_sync) {
1764 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1765 }
1766
1767 trace_migration_bitmap_sync_start();
1768 memory_global_dirty_log_sync();
1769
1770 qemu_mutex_lock(&rs->bitmap_mutex);
1771 rcu_read_lock();
1772 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1773 migration_bitmap_sync_range(rs, block, 0, block->used_length);
1774 }
1775 ram_counters.remaining = ram_bytes_remaining();
1776 rcu_read_unlock();
1777 qemu_mutex_unlock(&rs->bitmap_mutex);
1778
1779 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1780
1781 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1782
1783 /* more than 1 second = 1000 millisecons */
1784 if (end_time > rs->time_last_bitmap_sync + 1000) {
1785 bytes_xfer_now = ram_counters.transferred;
1786
1787 /* During block migration the auto-converge logic incorrectly detects
1788 * that ram migration makes no progress. Avoid this by disabling the
1789 * throttling logic during the bulk phase of block migration. */
1790 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
1791 /* The following detection logic can be refined later. For now:
1792 Check to see if the dirtied bytes is 50% more than the approx.
1793 amount of bytes that just got transferred since the last time we
1794 were in this routine. If that happens twice, start or increase
1795 throttling */
1796
1797 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
1798 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
1799 (++rs->dirty_rate_high_cnt >= 2)) {
1800 trace_migration_throttle();
1801 rs->dirty_rate_high_cnt = 0;
1802 mig_throttle_guest_down();
1803 }
1804 }
1805
1806 migration_update_rates(rs, end_time);
1807
1808 rs->target_page_count_prev = rs->target_page_count;
1809
1810 /* reset period counters */
1811 rs->time_last_bitmap_sync = end_time;
1812 rs->num_dirty_pages_period = 0;
1813 rs->bytes_xfer_prev = bytes_xfer_now;
1814 }
1815 if (migrate_use_events()) {
1816 qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
1817 }
1818 }
1819
1820 static void migration_bitmap_sync_precopy(RAMState *rs)
1821 {
1822 Error *local_err = NULL;
1823
1824 /*
1825 * The current notifier usage is just an optimization to migration, so we
1826 * don't stop the normal migration process in the error case.
1827 */
1828 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1829 error_report_err(local_err);
1830 }
1831
1832 migration_bitmap_sync(rs);
1833
1834 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1835 error_report_err(local_err);
1836 }
1837 }
1838
1839 /**
1840 * save_zero_page_to_file: send the zero page to the file
1841 *
1842 * Returns the size of data written to the file, 0 means the page is not
1843 * a zero page
1844 *
1845 * @rs: current RAM state
1846 * @file: the file where the data is saved
1847 * @block: block that contains the page we want to send
1848 * @offset: offset inside the block for the page
1849 */
1850 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1851 RAMBlock *block, ram_addr_t offset)
1852 {
1853 uint8_t *p = block->host + offset;
1854 int len = 0;
1855
1856 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1857 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1858 qemu_put_byte(file, 0);
1859 len += 1;
1860 }
1861 return len;
1862 }
1863
1864 /**
1865 * save_zero_page: send the zero page to the stream
1866 *
1867 * Returns the number of pages written.
1868 *
1869 * @rs: current RAM state
1870 * @block: block that contains the page we want to send
1871 * @offset: offset inside the block for the page
1872 */
1873 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
1874 {
1875 int len = save_zero_page_to_file(rs, rs->f, block, offset);
1876
1877 if (len) {
1878 ram_counters.duplicate++;
1879 ram_counters.transferred += len;
1880 return 1;
1881 }
1882 return -1;
1883 }
1884
1885 static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
1886 {
1887 if (!migrate_release_ram() || !migration_in_postcopy()) {
1888 return;
1889 }
1890
1891 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
1892 }
1893
1894 /*
1895 * @pages: the number of pages written by the control path,
1896 * < 0 - error
1897 * > 0 - number of pages written
1898 *
1899 * Return true if the pages has been saved, otherwise false is returned.
1900 */
1901 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1902 int *pages)
1903 {
1904 uint64_t bytes_xmit = 0;
1905 int ret;
1906
1907 *pages = -1;
1908 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1909 &bytes_xmit);
1910 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1911 return false;
1912 }
1913
1914 if (bytes_xmit) {
1915 ram_counters.transferred += bytes_xmit;
1916 *pages = 1;
1917 }
1918
1919 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1920 return true;
1921 }
1922
1923 if (bytes_xmit > 0) {
1924 ram_counters.normal++;
1925 } else if (bytes_xmit == 0) {
1926 ram_counters.duplicate++;
1927 }
1928
1929 return true;
1930 }
1931
1932 /*
1933 * directly send the page to the stream
1934 *
1935 * Returns the number of pages written.
1936 *
1937 * @rs: current RAM state
1938 * @block: block that contains the page we want to send
1939 * @offset: offset inside the block for the page
1940 * @buf: the page to be sent
1941 * @async: send to page asyncly
1942 */
1943 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1944 uint8_t *buf, bool async)
1945 {
1946 ram_counters.transferred += save_page_header(rs, rs->f, block,
1947 offset | RAM_SAVE_FLAG_PAGE);
1948 if (async) {
1949 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
1950 migrate_release_ram() &
1951 migration_in_postcopy());
1952 } else {
1953 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
1954 }
1955 ram_counters.transferred += TARGET_PAGE_SIZE;
1956 ram_counters.normal++;
1957 return 1;
1958 }
1959
1960 /**
1961 * ram_save_page: send the given page to the stream
1962 *
1963 * Returns the number of pages written.
1964 * < 0 - error
1965 * >=0 - Number of pages written - this might legally be 0
1966 * if xbzrle noticed the page was the same.
1967 *
1968 * @rs: current RAM state
1969 * @block: block that contains the page we want to send
1970 * @offset: offset inside the block for the page
1971 * @last_stage: if we are at the completion stage
1972 */
1973 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
1974 {
1975 int pages = -1;
1976 uint8_t *p;
1977 bool send_async = true;
1978 RAMBlock *block = pss->block;
1979 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
1980 ram_addr_t current_addr = block->offset + offset;
1981
1982 p = block->host + offset;
1983 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1984
1985 XBZRLE_cache_lock();
1986 if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
1987 migrate_use_xbzrle()) {
1988 pages = save_xbzrle_page(rs, &p, current_addr, block,
1989 offset, last_stage);
1990 if (!last_stage) {
1991 /* Can't send this cached data async, since the cache page
1992 * might get updated before it gets to the wire
1993 */
1994 send_async = false;
1995 }
1996 }
1997
1998 /* XBZRLE overflow or normal page */
1999 if (pages == -1) {
2000 pages = save_normal_page(rs, block, offset, p, send_async);
2001 }
2002
2003 XBZRLE_cache_unlock();
2004
2005 return pages;
2006 }
2007
2008 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
2009 ram_addr_t offset)
2010 {
2011 multifd_queue_page(block, offset);
2012 ram_counters.normal++;
2013
2014 return 1;
2015 }
2016
2017 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
2018 ram_addr_t offset, uint8_t *source_buf)
2019 {
2020 RAMState *rs = ram_state;
2021 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
2022 bool zero_page = false;
2023 int ret;
2024
2025 if (save_zero_page_to_file(rs, f, block, offset)) {
2026 zero_page = true;
2027 goto exit;
2028 }
2029
2030 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
2031
2032 /*
2033 * copy it to a internal buffer to avoid it being modified by VM
2034 * so that we can catch up the error during compression and
2035 * decompression
2036 */
2037 memcpy(source_buf, p, TARGET_PAGE_SIZE);
2038 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
2039 if (ret < 0) {
2040 qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
2041 error_report("compressed data failed!");
2042 return false;
2043 }
2044
2045 exit:
2046 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
2047 return zero_page;
2048 }
2049
2050 static void
2051 update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
2052 {
2053 ram_counters.transferred += bytes_xmit;
2054
2055 if (param->zero_page) {
2056 ram_counters.duplicate++;
2057 return;
2058 }
2059
2060 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
2061 compression_counters.compressed_size += bytes_xmit - 8;
2062 compression_counters.pages++;
2063 }
2064
2065 static bool save_page_use_compression(RAMState *rs);
2066
2067 static void flush_compressed_data(RAMState *rs)
2068 {
2069 int idx, len, thread_count;
2070
2071 if (!save_page_use_compression(rs)) {
2072 return;
2073 }
2074 thread_count = migrate_compress_threads();
2075
2076 qemu_mutex_lock(&comp_done_lock);
2077 for (idx = 0; idx < thread_count; idx++) {
2078 while (!comp_param[idx].done) {
2079 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2080 }
2081 }
2082 qemu_mutex_unlock(&comp_done_lock);
2083
2084 for (idx = 0; idx < thread_count; idx++) {
2085 qemu_mutex_lock(&comp_param[idx].mutex);
2086 if (!comp_param[idx].quit) {
2087 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2088 /*
2089 * it's safe to fetch zero_page without holding comp_done_lock
2090 * as there is no further request submitted to the thread,
2091 * i.e, the thread should be waiting for a request at this point.
2092 */
2093 update_compress_thread_counts(&comp_param[idx], len);
2094 }
2095 qemu_mutex_unlock(&comp_param[idx].mutex);
2096 }
2097 }
2098
2099 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
2100 ram_addr_t offset)
2101 {
2102 param->block = block;
2103 param->offset = offset;
2104 }
2105
2106 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
2107 ram_addr_t offset)
2108 {
2109 int idx, thread_count, bytes_xmit = -1, pages = -1;
2110 bool wait = migrate_compress_wait_thread();
2111
2112 thread_count = migrate_compress_threads();
2113 qemu_mutex_lock(&comp_done_lock);
2114 retry:
2115 for (idx = 0; idx < thread_count; idx++) {
2116 if (comp_param[idx].done) {
2117 comp_param[idx].done = false;
2118 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2119 qemu_mutex_lock(&comp_param[idx].mutex);
2120 set_compress_params(&comp_param[idx], block, offset);
2121 qemu_cond_signal(&comp_param[idx].cond);
2122 qemu_mutex_unlock(&comp_param[idx].mutex);
2123 pages = 1;
2124 update_compress_thread_counts(&comp_param[idx], bytes_xmit);
2125 break;
2126 }
2127 }
2128
2129 /*
2130 * wait for the free thread if the user specifies 'compress-wait-thread',
2131 * otherwise we will post the page out in the main thread as normal page.
2132 */
2133 if (pages < 0 && wait) {
2134 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2135 goto retry;
2136 }
2137 qemu_mutex_unlock(&comp_done_lock);
2138
2139 return pages;
2140 }
2141
2142 /**
2143 * find_dirty_block: find the next dirty page and update any state
2144 * associated with the search process.
2145 *
2146 * Returns if a page is found
2147 *
2148 * @rs: current RAM state
2149 * @pss: data about the state of the current dirty page scan
2150 * @again: set to false if the search has scanned the whole of RAM
2151 */
2152 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
2153 {
2154 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
2155 if (pss->complete_round && pss->block == rs->last_seen_block &&
2156 pss->page >= rs->last_page) {
2157 /*
2158 * We've been once around the RAM and haven't found anything.
2159 * Give up.
2160 */
2161 *again = false;
2162 return false;
2163 }
2164 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
2165 /* Didn't find anything in this RAM Block */
2166 pss->page = 0;
2167 pss->block = QLIST_NEXT_RCU(pss->block, next);
2168 if (!pss->block) {
2169 /*
2170 * If memory migration starts over, we will meet a dirtied page
2171 * which may still exists in compression threads's ring, so we
2172 * should flush the compressed data to make sure the new page
2173 * is not overwritten by the old one in the destination.
2174 *
2175 * Also If xbzrle is on, stop using the data compression at this
2176 * point. In theory, xbzrle can do better than compression.
2177 */
2178 flush_compressed_data(rs);
2179
2180 /* Hit the end of the list */
2181 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
2182 /* Flag that we've looped */
2183 pss->complete_round = true;
2184 rs->ram_bulk_stage = false;
2185 }
2186 /* Didn't find anything this time, but try again on the new block */
2187 *again = true;
2188 return false;
2189 } else {
2190 /* Can go around again, but... */
2191 *again = true;
2192 /* We've found something so probably don't need to */
2193 return true;
2194 }
2195 }
2196
2197 /**
2198 * unqueue_page: gets a page of the queue
2199 *
2200 * Helper for 'get_queued_page' - gets a page off the queue
2201 *
2202 * Returns the block of the page (or NULL if none available)
2203 *
2204 * @rs: current RAM state
2205 * @offset: used to return the offset within the RAMBlock
2206 */
2207 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
2208 {
2209 RAMBlock *block = NULL;
2210
2211 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) {
2212 return NULL;
2213 }
2214
2215 qemu_mutex_lock(&rs->src_page_req_mutex);
2216 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
2217 struct RAMSrcPageRequest *entry =
2218 QSIMPLEQ_FIRST(&rs->src_page_requests);
2219 block = entry->rb;
2220 *offset = entry->offset;
2221
2222 if (entry->len > TARGET_PAGE_SIZE) {
2223 entry->len -= TARGET_PAGE_SIZE;
2224 entry->offset += TARGET_PAGE_SIZE;
2225 } else {
2226 memory_region_unref(block->mr);
2227 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2228 g_free(entry);
2229 migration_consume_urgent_request();
2230 }
2231 }
2232 qemu_mutex_unlock(&rs->src_page_req_mutex);
2233
2234 return block;
2235 }
2236
2237 /**
2238 * get_queued_page: unqueue a page from the postocpy requests
2239 *
2240 * Skips pages that are already sent (!dirty)
2241 *
2242 * Returns if a queued page is found
2243 *
2244 * @rs: current RAM state
2245 * @pss: data about the state of the current dirty page scan
2246 */
2247 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
2248 {
2249 RAMBlock *block;
2250 ram_addr_t offset;
2251 bool dirty;
2252
2253 do {
2254 block = unqueue_page(rs, &offset);
2255 /*
2256 * We're sending this page, and since it's postcopy nothing else
2257 * will dirty it, and we must make sure it doesn't get sent again
2258 * even if this queue request was received after the background
2259 * search already sent it.
2260 */
2261 if (block) {
2262 unsigned long page;
2263
2264 page = offset >> TARGET_PAGE_BITS;
2265 dirty = test_bit(page, block->bmap);
2266 if (!dirty) {
2267 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
2268 page, test_bit(page, block->unsentmap));
2269 } else {
2270 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
2271 }
2272 }
2273
2274 } while (block && !dirty);
2275
2276 if (block) {
2277 /*
2278 * As soon as we start servicing pages out of order, then we have
2279 * to kill the bulk stage, since the bulk stage assumes
2280 * in (migration_bitmap_find_and_reset_dirty) that every page is
2281 * dirty, that's no longer true.
2282 */
2283 rs->ram_bulk_stage = false;
2284
2285 /*
2286 * We want the background search to continue from the queued page
2287 * since the guest is likely to want other pages near to the page
2288 * it just requested.
2289 */
2290 pss->block = block;
2291 pss->page = offset >> TARGET_PAGE_BITS;
2292 }
2293
2294 return !!block;
2295 }
2296
2297 /**
2298 * migration_page_queue_free: drop any remaining pages in the ram
2299 * request queue
2300 *
2301 * It should be empty at the end anyway, but in error cases there may
2302 * be some left. in case that there is any page left, we drop it.
2303 *
2304 */
2305 static void migration_page_queue_free(RAMState *rs)
2306 {
2307 struct RAMSrcPageRequest *mspr, *next_mspr;
2308 /* This queue generally should be empty - but in the case of a failed
2309 * migration might have some droppings in.
2310 */
2311 rcu_read_lock();
2312 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
2313 memory_region_unref(mspr->rb->mr);
2314 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2315 g_free(mspr);
2316 }
2317 rcu_read_unlock();
2318 }
2319
2320 /**
2321 * ram_save_queue_pages: queue the page for transmission
2322 *
2323 * A request from postcopy destination for example.
2324 *
2325 * Returns zero on success or negative on error
2326 *
2327 * @rbname: Name of the RAMBLock of the request. NULL means the
2328 * same that last one.
2329 * @start: starting address from the start of the RAMBlock
2330 * @len: length (in bytes) to send
2331 */
2332 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
2333 {
2334 RAMBlock *ramblock;
2335 RAMState *rs = ram_state;
2336
2337 ram_counters.postcopy_requests++;
2338 rcu_read_lock();
2339 if (!rbname) {
2340 /* Reuse last RAMBlock */
2341 ramblock = rs->last_req_rb;
2342
2343 if (!ramblock) {
2344 /*
2345 * Shouldn't happen, we can't reuse the last RAMBlock if
2346 * it's the 1st request.
2347 */
2348 error_report("ram_save_queue_pages no previous block");
2349 goto err;
2350 }
2351 } else {
2352 ramblock = qemu_ram_block_by_name(rbname);
2353
2354 if (!ramblock) {
2355 /* We shouldn't be asked for a non-existent RAMBlock */
2356 error_report("ram_save_queue_pages no block '%s'", rbname);
2357 goto err;
2358 }
2359 rs->last_req_rb = ramblock;
2360 }
2361 trace_ram_save_queue_pages(ramblock->idstr, start, len);
2362 if (start+len > ramblock->used_length) {
2363 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2364 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
2365 __func__, start, len, ramblock->used_length);
2366 goto err;
2367 }
2368
2369 struct RAMSrcPageRequest *new_entry =
2370 g_malloc0(sizeof(struct RAMSrcPageRequest));
2371 new_entry->rb = ramblock;
2372 new_entry->offset = start;
2373 new_entry->len = len;
2374
2375 memory_region_ref(ramblock->mr);
2376 qemu_mutex_lock(&rs->src_page_req_mutex);
2377 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2378 migration_make_urgent_request();
2379 qemu_mutex_unlock(&rs->src_page_req_mutex);
2380 rcu_read_unlock();
2381
2382 return 0;
2383
2384 err:
2385 rcu_read_unlock();
2386 return -1;
2387 }
2388
2389 static bool save_page_use_compression(RAMState *rs)
2390 {
2391 if (!migrate_use_compression()) {
2392 return false;
2393 }
2394
2395 /*
2396 * If xbzrle is on, stop using the data compression after first
2397 * round of migration even if compression is enabled. In theory,
2398 * xbzrle can do better than compression.
2399 */
2400 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
2401 return true;
2402 }
2403
2404 return false;
2405 }
2406
2407 /*
2408 * try to compress the page before posting it out, return true if the page
2409 * has been properly handled by compression, otherwise needs other
2410 * paths to handle it
2411 */
2412 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
2413 {
2414 if (!save_page_use_compression(rs)) {
2415 return false;
2416 }
2417
2418 /*
2419 * When starting the process of a new block, the first page of
2420 * the block should be sent out before other pages in the same
2421 * block, and all the pages in last block should have been sent
2422 * out, keeping this order is important, because the 'cont' flag
2423 * is used to avoid resending the block name.
2424 *
2425 * We post the fist page as normal page as compression will take
2426 * much CPU resource.
2427 */
2428 if (block != rs->last_sent_block) {
2429 flush_compressed_data(rs);
2430 return false;
2431 }
2432
2433 if (compress_page_with_multi_thread(rs, block, offset) > 0) {
2434 return true;
2435 }
2436
2437 compression_counters.busy++;
2438 return false;
2439 }
2440
2441 /**
2442 * ram_save_target_page: save one target page
2443 *
2444 * Returns the number of pages written
2445 *
2446 * @rs: current RAM state
2447 * @pss: data about the page we want to send
2448 * @last_stage: if we are at the completion stage
2449 */
2450 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
2451 bool last_stage)
2452 {
2453 RAMBlock *block = pss->block;
2454 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2455 int res;
2456
2457 if (control_save_page(rs, block, offset, &res)) {
2458 return res;
2459 }
2460
2461 if (save_compress_page(rs, block, offset)) {
2462 return 1;
2463 }
2464
2465 res = save_zero_page(rs, block, offset);
2466 if (res > 0) {
2467 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2468 * page would be stale
2469 */
2470 if (!save_page_use_compression(rs)) {
2471 XBZRLE_cache_lock();
2472 xbzrle_cache_zero_page(rs, block->offset + offset);
2473 XBZRLE_cache_unlock();
2474 }
2475 ram_release_pages(block->idstr, offset, res);
2476 return res;
2477 }
2478
2479 /*
2480 * do not use multifd for compression as the first page in the new
2481 * block should be posted out before sending the compressed page
2482 */
2483 if (!save_page_use_compression(rs) && migrate_use_multifd()) {
2484 return ram_save_multifd_page(rs, block, offset);
2485 }
2486
2487 return ram_save_page(rs, pss, last_stage);
2488 }
2489
2490 /**
2491 * ram_save_host_page: save a whole host page
2492 *
2493 * Starting at *offset send pages up to the end of the current host
2494 * page. It's valid for the initial offset to point into the middle of
2495 * a host page in which case the remainder of the hostpage is sent.
2496 * Only dirty target pages are sent. Note that the host page size may
2497 * be a huge page for this block.
2498 * The saving stops at the boundary of the used_length of the block
2499 * if the RAMBlock isn't a multiple of the host page size.
2500 *
2501 * Returns the number of pages written or negative on error
2502 *
2503 * @rs: current RAM state
2504 * @ms: current migration state
2505 * @pss: data about the page we want to send
2506 * @last_stage: if we are at the completion stage
2507 */
2508 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
2509 bool last_stage)
2510 {
2511 int tmppages, pages = 0;
2512 size_t pagesize_bits =
2513 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2514
2515 if (ramblock_is_ignored(pss->block)) {
2516 error_report("block %s should not be migrated !", pss->block->idstr);
2517 return 0;
2518 }
2519
2520 do {
2521 /* Check the pages is dirty and if it is send it */
2522 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2523 pss->page++;
2524 continue;
2525 }
2526
2527 tmppages = ram_save_target_page(rs, pss, last_stage);
2528 if (tmppages < 0) {
2529 return tmppages;
2530 }
2531
2532 pages += tmppages;
2533 if (pss->block->unsentmap) {
2534 clear_bit(pss->page, pss->block->unsentmap);
2535 }
2536
2537 pss->page++;
2538 } while ((pss->page & (pagesize_bits - 1)) &&
2539 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
2540
2541 /* The offset we leave with is the last one we looked at */
2542 pss->page--;
2543 return pages;
2544 }
2545
2546 /**
2547 * ram_find_and_save_block: finds a dirty page and sends it to f
2548 *
2549 * Called within an RCU critical section.
2550 *
2551 * Returns the number of pages written where zero means no dirty pages,
2552 * or negative on error
2553 *
2554 * @rs: current RAM state
2555 * @last_stage: if we are at the completion stage
2556 *
2557 * On systems where host-page-size > target-page-size it will send all the
2558 * pages in a host page that are dirty.
2559 */
2560
2561 static int ram_find_and_save_block(RAMState *rs, bool last_stage)
2562 {
2563 PageSearchStatus pss;
2564 int pages = 0;
2565 bool again, found;
2566
2567 /* No dirty page as there is zero RAM */
2568 if (!ram_bytes_total()) {
2569 return pages;
2570 }
2571
2572 pss.block = rs->last_seen_block;
2573 pss.page = rs->last_page;
2574 pss.complete_round = false;
2575
2576 if (!pss.block) {
2577 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2578 }
2579
2580 do {
2581 again = true;
2582 found = get_queued_page(rs, &pss);
2583
2584 if (!found) {
2585 /* priority queue empty, so just search for something dirty */
2586 found = find_dirty_block(rs, &pss, &again);
2587 }
2588
2589 if (found) {
2590 pages = ram_save_host_page(rs, &pss, last_stage);
2591 }
2592 } while (!pages && again);
2593
2594 rs->last_seen_block = pss.block;
2595 rs->last_page = pss.page;
2596
2597 return pages;
2598 }
2599
2600 void acct_update_position(QEMUFile *f, size_t size, bool zero)
2601 {
2602 uint64_t pages = size / TARGET_PAGE_SIZE;
2603
2604 if (zero) {
2605 ram_counters.duplicate += pages;
2606 } else {
2607 ram_counters.normal += pages;
2608 ram_counters.transferred += size;
2609 qemu_update_position(f, size);
2610 }
2611 }
2612
2613 static uint64_t ram_bytes_total_common(bool count_ignored)
2614 {
2615 RAMBlock *block;
2616 uint64_t total = 0;
2617
2618 rcu_read_lock();
2619 if (count_ignored) {
2620 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2621 total += block->used_length;
2622 }
2623 } else {
2624 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2625 total += block->used_length;
2626 }
2627 }
2628 rcu_read_unlock();
2629 return total;
2630 }
2631
2632 uint64_t ram_bytes_total(void)
2633 {
2634 return ram_bytes_total_common(false);
2635 }
2636
2637 static void xbzrle_load_setup(void)
2638 {
2639 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2640 }
2641
2642 static void xbzrle_load_cleanup(void)
2643 {
2644 g_free(XBZRLE.decoded_buf);
2645 XBZRLE.decoded_buf = NULL;
2646 }
2647
2648 static void ram_state_cleanup(RAMState **rsp)
2649 {
2650 if (*rsp) {
2651 migration_page_queue_free(*rsp);
2652 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2653 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2654 g_free(*rsp);
2655 *rsp = NULL;
2656 }
2657 }
2658
2659 static void xbzrle_cleanup(void)
2660 {
2661 XBZRLE_cache_lock();
2662 if (XBZRLE.cache) {
2663 cache_fini(XBZRLE.cache);
2664 g_free(XBZRLE.encoded_buf);
2665 g_free(XBZRLE.current_buf);
2666 g_free(XBZRLE.zero_target_page);
2667 XBZRLE.cache = NULL;
2668 XBZRLE.encoded_buf = NULL;
2669 XBZRLE.current_buf = NULL;
2670 XBZRLE.zero_target_page = NULL;
2671 }
2672 XBZRLE_cache_unlock();
2673 }
2674
2675 static void ram_save_cleanup(void *opaque)
2676 {
2677 RAMState **rsp = opaque;
2678 RAMBlock *block;
2679
2680 /* caller have hold iothread lock or is in a bh, so there is
2681 * no writing race against this migration_bitmap
2682 */
2683 memory_global_dirty_log_stop();
2684
2685 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2686 g_free(block->bmap);
2687 block->bmap = NULL;
2688 g_free(block->unsentmap);
2689 block->unsentmap = NULL;
2690 }
2691
2692 xbzrle_cleanup();
2693 compress_threads_save_cleanup();
2694 ram_state_cleanup(rsp);
2695 }
2696
2697 static void ram_state_reset(RAMState *rs)
2698 {
2699 rs->last_seen_block = NULL;
2700 rs->last_sent_block = NULL;
2701 rs->last_page = 0;
2702 rs->last_version = ram_list.version;
2703 rs->ram_bulk_stage = true;
2704 rs->fpo_enabled = false;
2705 }
2706
2707 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2708
2709 /*
2710 * 'expected' is the value you expect the bitmap mostly to be full
2711 * of; it won't bother printing lines that are all this value.
2712 * If 'todump' is null the migration bitmap is dumped.
2713 */
2714 void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2715 unsigned long pages)
2716 {
2717 int64_t cur;
2718 int64_t linelen = 128;
2719 char linebuf[129];
2720
2721 for (cur = 0; cur < pages; cur += linelen) {
2722 int64_t curb;
2723 bool found = false;
2724 /*
2725 * Last line; catch the case where the line length
2726 * is longer than remaining ram
2727 */
2728 if (cur + linelen > pages) {
2729 linelen = pages - cur;
2730 }
2731 for (curb = 0; curb < linelen; curb++) {
2732 bool thisbit = test_bit(cur + curb, todump);
2733 linebuf[curb] = thisbit ? '1' : '.';
2734 found = found || (thisbit != expected);
2735 }
2736 if (found) {
2737 linebuf[curb] = '\0';
2738 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
2739 }
2740 }
2741 }
2742
2743 /* **** functions for postcopy ***** */
2744
2745 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2746 {
2747 struct RAMBlock *block;
2748
2749 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2750 unsigned long *bitmap = block->bmap;
2751 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2752 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2753
2754 while (run_start < range) {
2755 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2756 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
2757 (run_end - run_start) << TARGET_PAGE_BITS);
2758 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2759 }
2760 }
2761 }
2762
2763 /**
2764 * postcopy_send_discard_bm_ram: discard a RAMBlock
2765 *
2766 * Returns zero on success
2767 *
2768 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2769 * Note: At this point the 'unsentmap' is the processed bitmap combined
2770 * with the dirtymap; so a '1' means it's either dirty or unsent.
2771 *
2772 * @ms: current migration state
2773 * @pds: state for postcopy
2774 * @start: RAMBlock starting page
2775 * @length: RAMBlock size
2776 */
2777 static int postcopy_send_discard_bm_ram(MigrationState *ms,
2778 PostcopyDiscardState *pds,
2779 RAMBlock *block)
2780 {
2781 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2782 unsigned long current;
2783 unsigned long *unsentmap = block->unsentmap;
2784
2785 for (current = 0; current < end; ) {
2786 unsigned long one = find_next_bit(unsentmap, end, current);
2787
2788 if (one <= end) {
2789 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
2790 unsigned long discard_length;
2791
2792 if (zero >= end) {
2793 discard_length = end - one;
2794 } else {
2795 discard_length = zero - one;
2796 }
2797 if (discard_length) {
2798 postcopy_discard_send_range(ms, pds, one, discard_length);
2799 }
2800 current = one + discard_length;
2801 } else {
2802 current = one;
2803 }
2804 }
2805
2806 return 0;
2807 }
2808
2809 /**
2810 * postcopy_each_ram_send_discard: discard all RAMBlocks
2811 *
2812 * Returns 0 for success or negative for error
2813 *
2814 * Utility for the outgoing postcopy code.
2815 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2816 * passing it bitmap indexes and name.
2817 * (qemu_ram_foreach_block ends up passing unscaled lengths
2818 * which would mean postcopy code would have to deal with target page)
2819 *
2820 * @ms: current migration state
2821 */
2822 static int postcopy_each_ram_send_discard(MigrationState *ms)
2823 {
2824 struct RAMBlock *block;
2825 int ret;
2826
2827 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2828 PostcopyDiscardState *pds =
2829 postcopy_discard_send_init(ms, block->idstr);
2830
2831 /*
2832 * Postcopy sends chunks of bitmap over the wire, but it
2833 * just needs indexes at this point, avoids it having
2834 * target page specific code.
2835 */
2836 ret = postcopy_send_discard_bm_ram(ms, pds, block);
2837 postcopy_discard_send_finish(ms, pds);
2838 if (ret) {
2839 return ret;
2840 }
2841 }
2842
2843 return 0;
2844 }
2845
2846 /**
2847 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
2848 *
2849 * Helper for postcopy_chunk_hostpages; it's called twice to
2850 * canonicalize the two bitmaps, that are similar, but one is
2851 * inverted.
2852 *
2853 * Postcopy requires that all target pages in a hostpage are dirty or
2854 * clean, not a mix. This function canonicalizes the bitmaps.
2855 *
2856 * @ms: current migration state
2857 * @unsent_pass: if true we need to canonicalize partially unsent host pages
2858 * otherwise we need to canonicalize partially dirty host pages
2859 * @block: block that contains the page we want to canonicalize
2860 * @pds: state for postcopy
2861 */
2862 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
2863 RAMBlock *block,
2864 PostcopyDiscardState *pds)
2865 {
2866 RAMState *rs = ram_state;
2867 unsigned long *bitmap = block->bmap;
2868 unsigned long *unsentmap = block->unsentmap;
2869 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2870 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2871 unsigned long run_start;
2872
2873 if (block->page_size == TARGET_PAGE_SIZE) {
2874 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2875 return;
2876 }
2877
2878 if (unsent_pass) {
2879 /* Find a sent page */
2880 run_start = find_next_zero_bit(unsentmap, pages, 0);
2881 } else {
2882 /* Find a dirty page */
2883 run_start = find_next_bit(bitmap, pages, 0);
2884 }
2885
2886 while (run_start < pages) {
2887 bool do_fixup = false;
2888 unsigned long fixup_start_addr;
2889 unsigned long host_offset;
2890
2891 /*
2892 * If the start of this run of pages is in the middle of a host
2893 * page, then we need to fixup this host page.
2894 */
2895 host_offset = run_start % host_ratio;
2896 if (host_offset) {
2897 do_fixup = true;
2898 run_start -= host_offset;
2899 fixup_start_addr = run_start;
2900 /* For the next pass */
2901 run_start = run_start + host_ratio;
2902 } else {
2903 /* Find the end of this run */
2904 unsigned long run_end;
2905 if (unsent_pass) {
2906 run_end = find_next_bit(unsentmap, pages, run_start + 1);
2907 } else {
2908 run_end = find_next_zero_bit(bitmap, pages, run_start + 1);
2909 }
2910 /*
2911 * If the end isn't at the start of a host page, then the
2912 * run doesn't finish at the end of a host page
2913 * and we need to discard.
2914 */
2915 host_offset = run_end % host_ratio;
2916 if (host_offset) {
2917 do_fixup = true;
2918 fixup_start_addr = run_end - host_offset;
2919 /*
2920 * This host page has gone, the next loop iteration starts
2921 * from after the fixup
2922 */
2923 run_start = fixup_start_addr + host_ratio;
2924 } else {
2925 /*
2926 * No discards on this iteration, next loop starts from
2927 * next sent/dirty page
2928 */
2929 run_start = run_end + 1;
2930 }
2931 }
2932
2933 if (do_fixup) {
2934 unsigned long page;
2935
2936 /* Tell the destination to discard this page */
2937 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
2938 /* For the unsent_pass we:
2939 * discard partially sent pages
2940 * For the !unsent_pass (dirty) we:
2941 * discard partially dirty pages that were sent
2942 * (any partially sent pages were already discarded
2943 * by the previous unsent_pass)
2944 */
2945 postcopy_discard_send_range(ms, pds, fixup_start_addr,
2946 host_ratio);
2947 }
2948
2949 /* Clean up the bitmap */
2950 for (page = fixup_start_addr;
2951 page < fixup_start_addr + host_ratio; page++) {
2952 /* All pages in this host page are now not sent */
2953 set_bit(page, unsentmap);
2954
2955 /*
2956 * Remark them as dirty, updating the count for any pages
2957 * that weren't previously dirty.
2958 */
2959 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2960 }
2961 }
2962
2963 if (unsent_pass) {
2964 /* Find the next sent page for the next iteration */
2965 run_start = find_next_zero_bit(unsentmap, pages, run_start);
2966 } else {
2967 /* Find the next dirty page for the next iteration */
2968 run_start = find_next_bit(bitmap, pages, run_start);
2969 }
2970 }
2971 }
2972
2973 /**
2974 * postcopy_chuck_hostpages: discrad any partially sent host page
2975 *
2976 * Utility for the outgoing postcopy code.
2977 *
2978 * Discard any partially sent host-page size chunks, mark any partially
2979 * dirty host-page size chunks as all dirty. In this case the host-page
2980 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
2981 *
2982 * Returns zero on success
2983 *
2984 * @ms: current migration state
2985 * @block: block we want to work with
2986 */
2987 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
2988 {
2989 PostcopyDiscardState *pds =
2990 postcopy_discard_send_init(ms, block->idstr);
2991
2992 /* First pass: Discard all partially sent host pages */
2993 postcopy_chunk_hostpages_pass(ms, true, block, pds);
2994 /*
2995 * Second pass: Ensure that all partially dirty host pages are made
2996 * fully dirty.
2997 */
2998 postcopy_chunk_hostpages_pass(ms, false, block, pds);
2999
3000 postcopy_discard_send_finish(ms, pds);
3001 return 0;
3002 }
3003
3004 /**
3005 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
3006 *
3007 * Returns zero on success
3008 *
3009 * Transmit the set of pages to be discarded after precopy to the target
3010 * these are pages that:
3011 * a) Have been previously transmitted but are now dirty again
3012 * b) Pages that have never been transmitted, this ensures that
3013 * any pages on the destination that have been mapped by background
3014 * tasks get discarded (transparent huge pages is the specific concern)
3015 * Hopefully this is pretty sparse
3016 *
3017 * @ms: current migration state
3018 */
3019 int ram_postcopy_send_discard_bitmap(MigrationState *ms)
3020 {
3021 RAMState *rs = ram_state;
3022 RAMBlock *block;
3023 int ret;
3024
3025 rcu_read_lock();
3026
3027 /* This should be our last sync, the src is now paused */
3028 migration_bitmap_sync(rs);
3029
3030 /* Easiest way to make sure we don't resume in the middle of a host-page */
3031 rs->last_seen_block = NULL;
3032 rs->last_sent_block = NULL;
3033 rs->last_page = 0;
3034
3035 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3036 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
3037 unsigned long *bitmap = block->bmap;
3038 unsigned long *unsentmap = block->unsentmap;
3039
3040 if (!unsentmap) {
3041 /* We don't have a safe way to resize the sentmap, so
3042 * if the bitmap was resized it will be NULL at this
3043 * point.
3044 */
3045 error_report("migration ram resized during precopy phase");
3046 rcu_read_unlock();
3047 return -EINVAL;
3048 }
3049 /* Deal with TPS != HPS and huge pages */
3050 ret = postcopy_chunk_hostpages(ms, block);
3051 if (ret) {
3052 rcu_read_unlock();
3053 return ret;
3054 }
3055
3056 /*
3057 * Update the unsentmap to be unsentmap = unsentmap | dirty
3058 */
3059 bitmap_or(unsentmap, unsentmap, bitmap, pages);
3060 #ifdef DEBUG_POSTCOPY
3061 ram_debug_dump_bitmap(unsentmap, true, pages);
3062 #endif
3063 }
3064 trace_ram_postcopy_send_discard_bitmap();
3065
3066 ret = postcopy_each_ram_send_discard(ms);
3067 rcu_read_unlock();
3068
3069 return ret;
3070 }
3071
3072 /**
3073 * ram_discard_range: discard dirtied pages at the beginning of postcopy
3074 *
3075 * Returns zero on success
3076 *
3077 * @rbname: name of the RAMBlock of the request. NULL means the
3078 * same that last one.
3079 * @start: RAMBlock starting page
3080 * @length: RAMBlock size
3081 */
3082 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
3083 {
3084 int ret = -1;
3085
3086 trace_ram_discard_range(rbname, start, length);
3087
3088 rcu_read_lock();
3089 RAMBlock *rb = qemu_ram_block_by_name(rbname);
3090
3091 if (!rb) {
3092 error_report("ram_discard_range: Failed to find block '%s'", rbname);
3093 goto err;
3094 }
3095
3096 /*
3097 * On source VM, we don't need to update the received bitmap since
3098 * we don't even have one.
3099 */
3100 if (rb->receivedmap) {
3101 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
3102 length >> qemu_target_page_bits());
3103 }
3104
3105 ret = ram_block_discard_range(rb, start, length);
3106
3107 err:
3108 rcu_read_unlock();
3109
3110 return ret;
3111 }
3112
3113 /*
3114 * For every allocation, we will try not to crash the VM if the
3115 * allocation failed.
3116 */
3117 static int xbzrle_init(void)
3118 {
3119 Error *local_err = NULL;
3120
3121 if (!migrate_use_xbzrle()) {
3122 return 0;
3123 }
3124
3125 XBZRLE_cache_lock();
3126
3127 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
3128 if (!XBZRLE.zero_target_page) {
3129 error_report("%s: Error allocating zero page", __func__);
3130 goto err_out;
3131 }
3132
3133 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
3134 TARGET_PAGE_SIZE, &local_err);
3135 if (!XBZRLE.cache) {
3136 error_report_err(local_err);
3137 goto free_zero_page;
3138 }
3139
3140 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
3141 if (!XBZRLE.encoded_buf) {
3142 error_report("%s: Error allocating encoded_buf", __func__);
3143 goto free_cache;
3144 }
3145
3146 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
3147 if (!XBZRLE.current_buf) {
3148 error_report("%s: Error allocating current_buf", __func__);
3149 goto free_encoded_buf;
3150 }
3151
3152 /* We are all good */
3153 XBZRLE_cache_unlock();
3154 return 0;
3155
3156 free_encoded_buf:
3157 g_free(XBZRLE.encoded_buf);
3158 XBZRLE.encoded_buf = NULL;
3159 free_cache:
3160 cache_fini(XBZRLE.cache);
3161 XBZRLE.cache = NULL;
3162 free_zero_page:
3163 g_free(XBZRLE.zero_target_page);
3164 XBZRLE.zero_target_page = NULL;
3165 err_out:
3166 XBZRLE_cache_unlock();
3167 return -ENOMEM;
3168 }
3169
3170 static int ram_state_init(RAMState **rsp)
3171 {
3172 *rsp = g_try_new0(RAMState, 1);
3173
3174 if (!*rsp) {
3175 error_report("%s: Init ramstate fail", __func__);
3176 return -1;
3177 }
3178
3179 qemu_mutex_init(&(*rsp)->bitmap_mutex);
3180 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
3181 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
3182
3183 /*
3184 * Count the total number of pages used by ram blocks not including any
3185 * gaps due to alignment or unplugs.
3186 */
3187 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
3188
3189 ram_state_reset(*rsp);
3190
3191 return 0;
3192 }
3193
3194 static void ram_list_init_bitmaps(void)
3195 {
3196 RAMBlock *block;
3197 unsigned long pages;
3198
3199 /* Skip setting bitmap if there is no RAM */
3200 if (ram_bytes_total()) {
3201 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3202 pages = block->max_length >> TARGET_PAGE_BITS;
3203 block->bmap = bitmap_new(pages);
3204 bitmap_set(block->bmap, 0, pages);
3205 if (migrate_postcopy_ram()) {
3206 block->unsentmap = bitmap_new(pages);
3207 bitmap_set(block->unsentmap, 0, pages);
3208 }
3209 }
3210 }
3211 }
3212
3213 static void ram_init_bitmaps(RAMState *rs)
3214 {
3215 /* For memory_global_dirty_log_start below. */
3216 qemu_mutex_lock_iothread();
3217 qemu_mutex_lock_ramlist();
3218 rcu_read_lock();
3219
3220 ram_list_init_bitmaps();
3221 memory_global_dirty_log_start();
3222 migration_bitmap_sync_precopy(rs);
3223
3224 rcu_read_unlock();
3225 qemu_mutex_unlock_ramlist();
3226 qemu_mutex_unlock_iothread();
3227 }
3228
3229 static int ram_init_all(RAMState **rsp)
3230 {
3231 if (ram_state_init(rsp)) {
3232 return -1;
3233 }
3234
3235 if (xbzrle_init()) {
3236 ram_state_cleanup(rsp);
3237 return -1;
3238 }
3239
3240 ram_init_bitmaps(*rsp);
3241
3242 return 0;
3243 }
3244
3245 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
3246 {
3247 RAMBlock *block;
3248 uint64_t pages = 0;
3249
3250 /*
3251 * Postcopy is not using xbzrle/compression, so no need for that.
3252 * Also, since source are already halted, we don't need to care
3253 * about dirty page logging as well.
3254 */
3255
3256 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3257 pages += bitmap_count_one(block->bmap,
3258 block->used_length >> TARGET_PAGE_BITS);
3259 }
3260
3261 /* This may not be aligned with current bitmaps. Recalculate. */
3262 rs->migration_dirty_pages = pages;
3263
3264 rs->last_seen_block = NULL;
3265 rs->last_sent_block = NULL;
3266 rs->last_page = 0;
3267 rs->last_version = ram_list.version;
3268 /*
3269 * Disable the bulk stage, otherwise we'll resend the whole RAM no
3270 * matter what we have sent.
3271 */
3272 rs->ram_bulk_stage = false;
3273
3274 /* Update RAMState cache of output QEMUFile */
3275 rs->f = out;
3276
3277 trace_ram_state_resume_prepare(pages);
3278 }
3279
3280 /*
3281 * This function clears bits of the free pages reported by the caller from the
3282 * migration dirty bitmap. @addr is the host address corresponding to the
3283 * start of the continuous guest free pages, and @len is the total bytes of
3284 * those pages.
3285 */
3286 void qemu_guest_free_page_hint(void *addr, size_t len)
3287 {
3288 RAMBlock *block;
3289 ram_addr_t offset;
3290 size_t used_len, start, npages;
3291 MigrationState *s = migrate_get_current();
3292
3293 /* This function is currently expected to be used during live migration */
3294 if (!migration_is_setup_or_active(s->state)) {
3295 return;
3296 }
3297
3298 for (; len > 0; len -= used_len, addr += used_len) {
3299 block = qemu_ram_block_from_host(addr, false, &offset);
3300 if (unlikely(!block || offset >= block->used_length)) {
3301 /*
3302 * The implementation might not support RAMBlock resize during
3303 * live migration, but it could happen in theory with future
3304 * updates. So we add a check here to capture that case.
3305 */
3306 error_report_once("%s unexpected error", __func__);
3307 return;
3308 }
3309
3310 if (len <= block->used_length - offset) {
3311 used_len = len;
3312 } else {
3313 used_len = block->used_length - offset;
3314 }
3315
3316 start = offset >> TARGET_PAGE_BITS;
3317 npages = used_len >> TARGET_PAGE_BITS;
3318
3319 qemu_mutex_lock(&ram_state->bitmap_mutex);
3320 ram_state->migration_dirty_pages -=
3321 bitmap_count_one_with_offset(block->bmap, start, npages);
3322 bitmap_clear(block->bmap, start, npages);
3323 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3324 }
3325 }
3326
3327 /*
3328 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3329 * long-running RCU critical section. When rcu-reclaims in the code
3330 * start to become numerous it will be necessary to reduce the
3331 * granularity of these critical sections.
3332 */
3333
3334 /**
3335 * ram_save_setup: Setup RAM for migration
3336 *
3337 * Returns zero to indicate success and negative for error
3338 *
3339 * @f: QEMUFile where to send the data
3340 * @opaque: RAMState pointer
3341 */
3342 static int ram_save_setup(QEMUFile *f, void *opaque)
3343 {
3344 RAMState **rsp = opaque;
3345 RAMBlock *block;
3346
3347 if (compress_threads_save_setup()) {
3348 return -1;
3349 }
3350
3351 /* migration has already setup the bitmap, reuse it. */
3352 if (!migration_in_colo_state()) {
3353 if (ram_init_all(rsp) != 0) {
3354 compress_threads_save_cleanup();
3355 return -1;
3356 }
3357 }
3358 (*rsp)->f = f;
3359
3360 rcu_read_lock();
3361
3362 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
3363
3364 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3365 qemu_put_byte(f, strlen(block->idstr));
3366 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3367 qemu_put_be64(f, block->used_length);
3368 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
3369 qemu_put_be64(f, block->page_size);
3370 }
3371 if (migrate_ignore_shared()) {
3372 qemu_put_be64(f, block->mr->addr);
3373 qemu_put_byte(f, ramblock_is_ignored(block) ? 1 : 0);
3374 }
3375 }
3376
3377 rcu_read_unlock();
3378
3379 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3380 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3381
3382 multifd_send_sync_main();
3383 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3384 qemu_fflush(f);
3385
3386 return 0;
3387 }
3388
3389 /**
3390 * ram_save_iterate: iterative stage for migration
3391 *
3392 * Returns zero to indicate success and negative for error
3393 *
3394 * @f: QEMUFile where to send the data
3395 * @opaque: RAMState pointer
3396 */
3397 static int ram_save_iterate(QEMUFile *f, void *opaque)
3398 {
3399 RAMState **temp = opaque;
3400 RAMState *rs = *temp;
3401 int ret;
3402 int i;
3403 int64_t t0;
3404 int done = 0;
3405
3406 if (blk_mig_bulk_active()) {
3407 /* Avoid transferring ram during bulk phase of block migration as
3408 * the bulk phase will usually take a long time and transferring
3409 * ram updates during that time is pointless. */
3410 goto out;
3411 }
3412
3413 rcu_read_lock();
3414 if (ram_list.version != rs->last_version) {
3415 ram_state_reset(rs);
3416 }
3417
3418 /* Read version before ram_list.blocks */
3419 smp_rmb();
3420
3421 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3422
3423 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3424 i = 0;
3425 while ((ret = qemu_file_rate_limit(f)) == 0 ||
3426 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
3427 int pages;
3428
3429 if (qemu_file_get_error(f)) {
3430 break;
3431 }
3432
3433 pages = ram_find_and_save_block(rs, false);
3434 /* no more pages to sent */
3435 if (pages == 0) {
3436 done = 1;
3437 break;
3438 }
3439
3440 if (pages < 0) {
3441 qemu_file_set_error(f, pages);
3442 break;
3443 }
3444
3445 rs->target_page_count += pages;
3446
3447 /* we want to check in the 1st loop, just in case it was the 1st time
3448 and we had to sync the dirty bitmap.
3449 qemu_get_clock_ns() is a bit expensive, so we only check each some
3450 iterations
3451 */
3452 if ((i & 63) == 0) {
3453 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
3454 if (t1 > MAX_WAIT) {
3455 trace_ram_save_iterate_big_wait(t1, i);
3456 break;
3457 }
3458 }
3459 i++;
3460 }
3461 rcu_read_unlock();
3462
3463 /*
3464 * Must occur before EOS (or any QEMUFile operation)
3465 * because of RDMA protocol.
3466 */
3467 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3468
3469 multifd_send_sync_main();
3470 out:
3471 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3472 qemu_fflush(f);
3473 ram_counters.transferred += 8;
3474
3475 ret = qemu_file_get_error(f);
3476 if (ret < 0) {
3477 return ret;
3478 }
3479
3480 return done;
3481 }
3482
3483 /**
3484 * ram_save_complete: function called to send the remaining amount of ram
3485 *
3486 * Returns zero to indicate success or negative on error
3487 *
3488 * Called with iothread lock
3489 *
3490 * @f: QEMUFile where to send the data
3491 * @opaque: RAMState pointer
3492 */
3493 static int ram_save_complete(QEMUFile *f, void *opaque)
3494 {
3495 RAMState **temp = opaque;
3496 RAMState *rs = *temp;
3497 int ret = 0;
3498
3499 rcu_read_lock();
3500
3501 if (!migration_in_postcopy()) {
3502 migration_bitmap_sync_precopy(rs);
3503 }
3504
3505 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3506
3507 /* try transferring iterative blocks of memory */
3508
3509 /* flush all remaining blocks regardless of rate limiting */
3510 while (true) {
3511 int pages;
3512
3513 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
3514 /* no more blocks to sent */
3515 if (pages == 0) {
3516 break;
3517 }
3518 if (pages < 0) {
3519 ret = pages;
3520 break;
3521 }
3522 }
3523
3524 flush_compressed_data(rs);
3525 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
3526
3527 rcu_read_unlock();
3528
3529 multifd_send_sync_main();
3530 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3531 qemu_fflush(f);
3532
3533 return ret;
3534 }
3535
3536 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
3537 uint64_t *res_precopy_only,
3538 uint64_t *res_compatible,
3539 uint64_t *res_postcopy_only)
3540 {
3541 RAMState **temp = opaque;
3542 RAMState *rs = *temp;
3543 uint64_t remaining_size;
3544
3545 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3546
3547 if (!migration_in_postcopy() &&
3548 remaining_size < max_size) {
3549 qemu_mutex_lock_iothread();
3550 rcu_read_lock();
3551 migration_bitmap_sync_precopy(rs);
3552 rcu_read_unlock();
3553 qemu_mutex_unlock_iothread();
3554 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3555 }
3556
3557 if (migrate_postcopy_ram()) {
3558 /* We can do postcopy, and all the data is postcopiable */
3559 *res_compatible += remaining_size;
3560 } else {
3561 *res_precopy_only += remaining_size;
3562 }
3563 }
3564
3565 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3566 {
3567 unsigned int xh_len;
3568 int xh_flags;
3569 uint8_t *loaded_data;
3570
3571 /* extract RLE header */
3572 xh_flags = qemu_get_byte(f);
3573 xh_len = qemu_get_be16(f);
3574
3575 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3576 error_report("Failed to load XBZRLE page - wrong compression!");
3577 return -1;
3578 }
3579
3580 if (xh_len > TARGET_PAGE_SIZE) {
3581 error_report("Failed to load XBZRLE page - len overflow!");
3582 return -1;
3583 }
3584 loaded_data = XBZRLE.decoded_buf;
3585 /* load data and decode */
3586 /* it can change loaded_data to point to an internal buffer */
3587 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3588
3589 /* decode RLE */
3590 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3591 TARGET_PAGE_SIZE) == -1) {
3592 error_report("Failed to load XBZRLE page - decode error!");
3593 return -1;
3594 }
3595
3596 return 0;
3597 }
3598
3599 /**
3600 * ram_block_from_stream: read a RAMBlock id from the migration stream
3601 *
3602 * Must be called from within a rcu critical section.
3603 *
3604 * Returns a pointer from within the RCU-protected ram_list.
3605 *
3606 * @f: QEMUFile where to read the data from
3607 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3608 */
3609 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
3610 {
3611 static RAMBlock *block = NULL;
3612 char id[256];
3613 uint8_t len;
3614
3615 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3616 if (!block) {
3617 error_report("Ack, bad migration stream!");
3618 return NULL;
3619 }
3620 return block;
3621 }
3622
3623 len = qemu_get_byte(f);
3624 qemu_get_buffer(f, (uint8_t *)id, len);
3625 id[len] = 0;
3626
3627 block = qemu_ram_block_by_name(id);
3628 if (!block) {
3629 error_report("Can't find block %s", id);
3630 return NULL;
3631 }
3632
3633 if (ramblock_is_ignored(block)) {
3634 error_report("block %s should not be migrated !", id);
3635 return NULL;
3636 }
3637
3638 return block;
3639 }
3640
3641 static inline void *host_from_ram_block_offset(RAMBlock *block,
3642 ram_addr_t offset)
3643 {
3644 if (!offset_in_ramblock(block, offset)) {
3645 return NULL;
3646 }
3647
3648 return block->host + offset;
3649 }
3650
3651 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3652 ram_addr_t offset)
3653 {
3654 if (!offset_in_ramblock(block, offset)) {
3655 return NULL;
3656 }
3657 if (!block->colo_cache) {
3658 error_report("%s: colo_cache is NULL in block :%s",
3659 __func__, block->idstr);
3660 return NULL;
3661 }
3662
3663 /*
3664 * During colo checkpoint, we need bitmap of these migrated pages.
3665 * It help us to decide which pages in ram cache should be flushed
3666 * into VM's RAM later.
3667 */
3668 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
3669 ram_state->migration_dirty_pages++;
3670 }
3671 return block->colo_cache + offset;
3672 }
3673
3674 /**
3675 * ram_handle_compressed: handle the zero page case
3676 *
3677 * If a page (or a whole RDMA chunk) has been
3678 * determined to be zero, then zap it.
3679 *
3680 * @host: host address for the zero page
3681 * @ch: what the page is filled from. We only support zero
3682 * @size: size of the zero page
3683 */
3684 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3685 {
3686 if (ch != 0 || !is_zero_range(host, size)) {
3687 memset(host, ch, size);
3688 }
3689 }
3690
3691 /* return the size after decompression, or negative value on error */
3692 static int
3693 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3694 const uint8_t *source, size_t source_len)
3695 {
3696 int err;
3697
3698 err = inflateReset(stream);
3699 if (err != Z_OK) {
3700 return -1;
3701 }
3702
3703 stream->avail_in = source_len;
3704 stream->next_in = (uint8_t *)source;
3705 stream->avail_out = dest_len;
3706 stream->next_out = dest;
3707
3708 err = inflate(stream, Z_NO_FLUSH);
3709 if (err != Z_STREAM_END) {
3710 return -1;
3711 }
3712
3713 return stream->total_out;
3714 }
3715
3716 static void *do_data_decompress(void *opaque)
3717 {
3718 DecompressParam *param = opaque;
3719 unsigned long pagesize;
3720 uint8_t *des;
3721 int len, ret;
3722
3723 qemu_mutex_lock(&param->mutex);
3724 while (!param->quit) {
3725 if (param->des) {
3726 des = param->des;
3727 len = param->len;
3728 param->des = 0;
3729 qemu_mutex_unlock(&param->mutex);
3730
3731 pagesize = TARGET_PAGE_SIZE;
3732
3733 ret = qemu_uncompress_data(&param->stream, des, pagesize,
3734 param->compbuf, len);
3735 if (ret < 0 && migrate_get_current()->decompress_error_check) {
3736 error_report("decompress data failed");
3737 qemu_file_set_error(decomp_file, ret);
3738 }
3739
3740 qemu_mutex_lock(&decomp_done_lock);
3741 param->done = true;
3742 qemu_cond_signal(&decomp_done_cond);
3743 qemu_mutex_unlock(&decomp_done_lock);
3744
3745 qemu_mutex_lock(&param->mutex);
3746 } else {
3747 qemu_cond_wait(&param->cond, &param->mutex);
3748 }
3749 }
3750 qemu_mutex_unlock(&param->mutex);
3751
3752 return NULL;
3753 }
3754
3755 static int wait_for_decompress_done(void)
3756 {
3757 int idx, thread_count;
3758
3759 if (!migrate_use_compression()) {
3760 return 0;
3761 }
3762
3763 thread_count = migrate_decompress_threads();
3764 qemu_mutex_lock(&decomp_done_lock);
3765 for (idx = 0; idx < thread_count; idx++) {
3766 while (!decomp_param[idx].done) {
3767 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3768 }
3769 }
3770 qemu_mutex_unlock(&decomp_done_lock);
3771 return qemu_file_get_error(decomp_file);
3772 }
3773
3774 static void compress_threads_load_cleanup(void)
3775 {
3776 int i, thread_count;
3777
3778 if (!migrate_use_compression()) {
3779 return;
3780 }
3781 thread_count = migrate_decompress_threads();
3782 for (i = 0; i < thread_count; i++) {
3783 /*
3784 * we use it as a indicator which shows if the thread is
3785 * properly init'd or not
3786 */
3787 if (!decomp_param[i].compbuf) {
3788 break;
3789 }
3790
3791 qemu_mutex_lock(&decomp_param[i].mutex);
3792 decomp_param[i].quit = true;
3793 qemu_cond_signal(&decomp_param[i].cond);
3794 qemu_mutex_unlock(&decomp_param[i].mutex);
3795 }
3796 for (i = 0; i < thread_count; i++) {
3797 if (!decomp_param[i].compbuf) {
3798 break;
3799 }
3800
3801 qemu_thread_join(decompress_threads + i);
3802 qemu_mutex_destroy(&decomp_param[i].mutex);
3803 qemu_cond_destroy(&decomp_param[i].cond);
3804 inflateEnd(&decomp_param[i].stream);
3805 g_free(decomp_param[i].compbuf);
3806 decomp_param[i].compbuf = NULL;
3807 }
3808 g_free(decompress_threads);
3809 g_free(decomp_param);
3810 decompress_threads = NULL;
3811 decomp_param = NULL;
3812 decomp_file = NULL;
3813 }
3814
3815 static int compress_threads_load_setup(QEMUFile *f)
3816 {
3817 int i, thread_count;
3818
3819 if (!migrate_use_compression()) {
3820 return 0;
3821 }
3822
3823 thread_count = migrate_decompress_threads();
3824 decompress_threads = g_new0(QemuThread, thread_count);
3825 decomp_param = g_new0(DecompressParam, thread_count);
3826 qemu_mutex_init(&decomp_done_lock);
3827 qemu_cond_init(&decomp_done_cond);
3828 decomp_file = f;
3829 for (i = 0; i < thread_count; i++) {
3830 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3831 goto exit;
3832 }
3833
3834 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3835 qemu_mutex_init(&decomp_param[i].mutex);
3836 qemu_cond_init(&decomp_param[i].cond);
3837 decomp_param[i].done = true;
3838 decomp_param[i].quit = false;
3839 qemu_thread_create(decompress_threads + i, "decompress",
3840 do_data_decompress, decomp_param + i,
3841 QEMU_THREAD_JOINABLE);
3842 }
3843 return 0;
3844 exit:
3845 compress_threads_load_cleanup();
3846 return -1;
3847 }
3848
3849 static void decompress_data_with_multi_threads(QEMUFile *f,
3850 void *host, int len)
3851 {
3852 int idx, thread_count;
3853
3854 thread_count = migrate_decompress_threads();
3855 qemu_mutex_lock(&decomp_done_lock);
3856 while (true) {
3857 for (idx = 0; idx < thread_count; idx++) {
3858 if (decomp_param[idx].done) {
3859 decomp_param[idx].done = false;
3860 qemu_mutex_lock(&decomp_param[idx].mutex);
3861 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
3862 decomp_param[idx].des = host;
3863 decomp_param[idx].len = len;
3864 qemu_cond_signal(&decomp_param[idx].cond);
3865 qemu_mutex_unlock(&decomp_param[idx].mutex);
3866 break;
3867 }
3868 }
3869 if (idx < thread_count) {
3870 break;
3871 } else {
3872 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3873 }
3874 }
3875 qemu_mutex_unlock(&decomp_done_lock);
3876 }
3877
3878 /*
3879 * colo cache: this is for secondary VM, we cache the whole
3880 * memory of the secondary VM, it is need to hold the global lock
3881 * to call this helper.
3882 */
3883 int colo_init_ram_cache(void)
3884 {
3885 RAMBlock *block;
3886
3887 rcu_read_lock();
3888 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3889 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3890 NULL,
3891 false);
3892 if (!block->colo_cache) {
3893 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3894 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3895 block->used_length);
3896 goto out_locked;
3897 }
3898 memcpy(block->colo_cache, block->host, block->used_length);
3899 }
3900 rcu_read_unlock();
3901 /*
3902 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3903 * with to decide which page in cache should be flushed into SVM's RAM. Here
3904 * we use the same name 'ram_bitmap' as for migration.
3905 */
3906 if (ram_bytes_total()) {
3907 RAMBlock *block;
3908
3909 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3910 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3911
3912 block->bmap = bitmap_new(pages);
3913 bitmap_set(block->bmap, 0, pages);
3914 }
3915 }
3916 ram_state = g_new0(RAMState, 1);
3917 ram_state->migration_dirty_pages = 0;
3918 memory_global_dirty_log_start();
3919
3920 return 0;
3921
3922 out_locked:
3923
3924 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3925 if (block->colo_cache) {
3926 qemu_anon_ram_free(block->colo_cache, block->used_length);
3927 block->colo_cache = NULL;
3928 }
3929 }
3930
3931 rcu_read_unlock();
3932 return -errno;
3933 }
3934
3935 /* It is need to hold the global lock to call this helper */
3936 void colo_release_ram_cache(void)
3937 {
3938 RAMBlock *block;
3939
3940 memory_global_dirty_log_stop();
3941 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3942 g_free(block->bmap);
3943 block->bmap = NULL;
3944 }
3945
3946 rcu_read_lock();
3947
3948 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3949 if (block->colo_cache) {
3950 qemu_anon_ram_free(block->colo_cache, block->used_length);
3951 block->colo_cache = NULL;
3952 }
3953 }
3954
3955 rcu_read_unlock();
3956 g_free(ram_state);
3957 ram_state = NULL;
3958 }
3959
3960 /**
3961 * ram_load_setup: Setup RAM for migration incoming side
3962 *
3963 * Returns zero to indicate success and negative for error
3964 *
3965 * @f: QEMUFile where to receive the data
3966 * @opaque: RAMState pointer
3967 */
3968 static int ram_load_setup(QEMUFile *f, void *opaque)
3969 {
3970 if (compress_threads_load_setup(f)) {
3971 return -1;
3972 }
3973
3974 xbzrle_load_setup();
3975 ramblock_recv_map_init();
3976
3977 return 0;
3978 }
3979
3980 static int ram_load_cleanup(void *opaque)
3981 {
3982 RAMBlock *rb;
3983
3984 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3985 if (ramblock_is_pmem(rb)) {
3986 pmem_persist(rb->host, rb->used_length);
3987 }
3988 }
3989
3990 xbzrle_load_cleanup();
3991 compress_threads_load_cleanup();
3992
3993 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3994 g_free(rb->receivedmap);
3995 rb->receivedmap = NULL;
3996 }
3997
3998 return 0;
3999 }
4000
4001 /**
4002 * ram_postcopy_incoming_init: allocate postcopy data structures
4003 *
4004 * Returns 0 for success and negative if there was one error
4005 *
4006 * @mis: current migration incoming state
4007 *
4008 * Allocate data structures etc needed by incoming migration with
4009 * postcopy-ram. postcopy-ram's similarly names
4010 * postcopy_ram_incoming_init does the work.
4011 */
4012 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
4013 {
4014 return postcopy_ram_incoming_init(mis);
4015 }
4016
4017 /**
4018 * ram_load_postcopy: load a page in postcopy case
4019 *
4020 * Returns 0 for success or -errno in case of error
4021 *
4022 * Called in postcopy mode by ram_load().
4023 * rcu_read_lock is taken prior to this being called.
4024 *
4025 * @f: QEMUFile where to send the data
4026 */
4027 static int ram_load_postcopy(QEMUFile *f)
4028 {
4029 int flags = 0, ret = 0;
4030 bool place_needed = false;
4031 bool matches_target_page_size = false;
4032 MigrationIncomingState *mis = migration_incoming_get_current();
4033 /* Temporary page that is later 'placed' */
4034 void *postcopy_host_page = postcopy_get_tmp_page(mis);
4035 void *last_host = NULL;
4036 bool all_zero = false;
4037
4038 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4039 ram_addr_t addr;
4040 void *host = NULL;
4041 void *page_buffer = NULL;
4042 void *place_source = NULL;
4043 RAMBlock *block = NULL;
4044 uint8_t ch;
4045
4046 addr = qemu_get_be64(f);
4047
4048 /*
4049 * If qemu file error, we should stop here, and then "addr"
4050 * may be invalid
4051 */
4052 ret = qemu_file_get_error(f);
4053 if (ret) {
4054 break;
4055 }
4056
4057 flags = addr & ~TARGET_PAGE_MASK;
4058 addr &= TARGET_PAGE_MASK;
4059
4060 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
4061 place_needed = false;
4062 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
4063 block = ram_block_from_stream(f, flags);
4064
4065 host = host_from_ram_block_offset(block, addr);
4066 if (!host) {
4067 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4068 ret = -EINVAL;
4069 break;
4070 }
4071 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
4072 /*
4073 * Postcopy requires that we place whole host pages atomically;
4074 * these may be huge pages for RAMBlocks that are backed by
4075 * hugetlbfs.
4076 * To make it atomic, the data is read into a temporary page
4077 * that's moved into place later.
4078 * The migration protocol uses, possibly smaller, target-pages
4079 * however the source ensures it always sends all the components
4080 * of a host page in order.
4081 */
4082 page_buffer = postcopy_host_page +
4083 ((uintptr_t)host & (block->page_size - 1));
4084 /* If all TP are zero then we can optimise the place */
4085 if (!((uintptr_t)host & (block->page_size - 1))) {
4086 all_zero = true;
4087 } else {
4088 /* not the 1st TP within the HP */
4089 if (host != (last_host + TARGET_PAGE_SIZE)) {
4090 error_report("Non-sequential target page %p/%p",
4091 host, last_host);
4092 ret = -EINVAL;
4093 break;
4094 }
4095 }
4096
4097
4098 /*
4099 * If it's the last part of a host page then we place the host
4100 * page
4101 */
4102 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
4103 (block->page_size - 1)) == 0;
4104 place_source = postcopy_host_page;
4105 }
4106 last_host = host;
4107
4108 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4109 case RAM_SAVE_FLAG_ZERO:
4110 ch = qemu_get_byte(f);
4111 memset(page_buffer, ch, TARGET_PAGE_SIZE);
4112 if (ch) {
4113 all_zero = false;
4114 }
4115 break;
4116
4117 case RAM_SAVE_FLAG_PAGE:
4118 all_zero = false;
4119 if (!matches_target_page_size) {
4120 /* For huge pages, we always use temporary buffer */
4121 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
4122 } else {
4123 /*
4124 * For small pages that matches target page size, we
4125 * avoid the qemu_file copy. Instead we directly use
4126 * the buffer of QEMUFile to place the page. Note: we
4127 * cannot do any QEMUFile operation before using that
4128 * buffer to make sure the buffer is valid when
4129 * placing the page.
4130 */
4131 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
4132 TARGET_PAGE_SIZE);
4133 }
4134 break;
4135 case RAM_SAVE_FLAG_EOS:
4136 /* normal exit */
4137 multifd_recv_sync_main();
4138 break;
4139 default:
4140 error_report("Unknown combination of migration flags: %#x"
4141 " (postcopy mode)", flags);
4142 ret = -EINVAL;
4143 break;
4144 }
4145
4146 /* Detect for any possible file errors */
4147 if (!ret && qemu_file_get_error(f)) {
4148 ret = qemu_file_get_error(f);
4149 }
4150
4151 if (!ret && place_needed) {
4152 /* This gets called at the last target page in the host page */
4153 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
4154
4155 if (all_zero) {
4156 ret = postcopy_place_page_zero(mis, place_dest,
4157 block);
4158 } else {
4159 ret = postcopy_place_page(mis, place_dest,
4160 place_source, block);
4161 }
4162 }
4163 }
4164
4165 return ret;
4166 }
4167
4168 static bool postcopy_is_advised(void)
4169 {
4170 PostcopyState ps = postcopy_state_get();
4171 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
4172 }
4173
4174 static bool postcopy_is_running(void)
4175 {
4176 PostcopyState ps = postcopy_state_get();
4177 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
4178 }
4179
4180 /*
4181 * Flush content of RAM cache into SVM's memory.
4182 * Only flush the pages that be dirtied by PVM or SVM or both.
4183 */
4184 static void colo_flush_ram_cache(void)
4185 {
4186 RAMBlock *block = NULL;
4187 void *dst_host;
4188 void *src_host;
4189 unsigned long offset = 0;
4190
4191 memory_global_dirty_log_sync();
4192 rcu_read_lock();
4193 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4194 migration_bitmap_sync_range(ram_state, block, 0, block->used_length);
4195 }
4196 rcu_read_unlock();
4197
4198 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
4199 rcu_read_lock();
4200 block = QLIST_FIRST_RCU(&ram_list.blocks);
4201
4202 while (block) {
4203 offset = migration_bitmap_find_dirty(ram_state, block, offset);
4204
4205 if (offset << TARGET_PAGE_BITS >= block->used_length) {
4206 offset = 0;
4207 block = QLIST_NEXT_RCU(block, next);
4208 } else {
4209 migration_bitmap_clear_dirty(ram_state, block, offset);
4210 dst_host = block->host + (offset << TARGET_PAGE_BITS);
4211 src_host = block->colo_cache + (offset << TARGET_PAGE_BITS);
4212 memcpy(dst_host, src_host, TARGET_PAGE_SIZE);
4213 }
4214 }
4215
4216 rcu_read_unlock();
4217 trace_colo_flush_ram_cache_end();
4218 }
4219
4220 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4221 {
4222 int flags = 0, ret = 0, invalid_flags = 0;
4223 static uint64_t seq_iter;
4224 int len = 0;
4225 /*
4226 * If system is running in postcopy mode, page inserts to host memory must
4227 * be atomic
4228 */
4229 bool postcopy_running = postcopy_is_running();
4230 /* ADVISE is earlier, it shows the source has the postcopy capability on */
4231 bool postcopy_advised = postcopy_is_advised();
4232
4233 seq_iter++;
4234
4235 if (version_id != 4) {
4236 ret = -EINVAL;
4237 }
4238
4239 if (!migrate_use_compression()) {
4240 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4241 }
4242 /* This RCU critical section can be very long running.
4243 * When RCU reclaims in the code start to become numerous,
4244 * it will be necessary to reduce the granularity of this
4245 * critical section.
4246 */
4247 rcu_read_lock();
4248
4249 if (postcopy_running) {
4250 ret = ram_load_postcopy(f);
4251 }
4252
4253 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4254 ram_addr_t addr, total_ram_bytes;
4255 void *host = NULL;
4256 uint8_t ch;
4257
4258 addr = qemu_get_be64(f);
4259 flags = addr & ~TARGET_PAGE_MASK;
4260 addr &= TARGET_PAGE_MASK;
4261
4262 if (flags & invalid_flags) {
4263 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4264 error_report("Received an unexpected compressed page");
4265 }
4266
4267 ret = -EINVAL;
4268 break;
4269 }
4270
4271 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4272 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4273 RAMBlock *block = ram_block_from_stream(f, flags);
4274
4275 /*
4276 * After going into COLO, we should load the Page into colo_cache.
4277 */
4278 if (migration_incoming_in_colo_state()) {
4279 host = colo_cache_from_block_offset(block, addr);
4280 } else {
4281 host = host_from_ram_block_offset(block, addr);
4282 }
4283 if (!host) {
4284 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4285 ret = -EINVAL;
4286 break;
4287 }
4288
4289 if (!migration_incoming_in_colo_state()) {
4290 ramblock_recv_bitmap_set(block, host);
4291 }
4292
4293 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4294 }
4295
4296 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4297 case RAM_SAVE_FLAG_MEM_SIZE:
4298 /* Synchronize RAM block list */
4299 total_ram_bytes = addr;
4300 while (!ret && total_ram_bytes) {
4301 RAMBlock *block;
4302 char id[256];
4303 ram_addr_t length;
4304
4305 len = qemu_get_byte(f);
4306 qemu_get_buffer(f, (uint8_t *)id, len);
4307 id[len] = 0;
4308 length = qemu_get_be64(f);
4309
4310 block = qemu_ram_block_by_name(id);
4311 if (block && !qemu_ram_is_migratable(block)) {
4312 error_report("block %s should not be migrated !", id);
4313 ret = -EINVAL;
4314 } else if (block) {
4315 if (length != block->used_length) {
4316 Error *local_err = NULL;
4317
4318 ret = qemu_ram_resize(block, length,
4319 &local_err);
4320 if (local_err) {
4321 error_report_err(local_err);
4322 }
4323 }
4324 /* For postcopy we need to check hugepage sizes match */
4325 if (postcopy_advised &&
4326 block->page_size != qemu_host_page_size) {
4327 uint64_t remote_page_size = qemu_get_be64(f);
4328 if (remote_page_size != block->page_size) {
4329 error_report("Mismatched RAM page size %s "
4330 "(local) %zd != %" PRId64,
4331 id, block->page_size,
4332 remote_page_size);
4333 ret = -EINVAL;
4334 }
4335 }
4336 if (migrate_ignore_shared()) {
4337 hwaddr addr = qemu_get_be64(f);
4338 bool ignored = qemu_get_byte(f);
4339 if (ignored != ramblock_is_ignored(block)) {
4340 error_report("RAM block %s should %s be migrated",
4341 id, ignored ? "" : "not");
4342 ret = -EINVAL;
4343 }
4344 if (ramblock_is_ignored(block) &&
4345 block->mr->addr != addr) {
4346 error_report("Mismatched GPAs for block %s "
4347 "%" PRId64 "!= %" PRId64,
4348 id, (uint64_t)addr,
4349 (uint64_t)block->mr->addr);
4350 ret = -EINVAL;
4351 }
4352 }
4353 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
4354 block->idstr);
4355 } else {
4356 error_report("Unknown ramblock \"%s\", cannot "
4357 "accept migration", id);
4358 ret = -EINVAL;
4359 }
4360
4361 total_ram_bytes -= length;
4362 }
4363 break;
4364
4365 case RAM_SAVE_FLAG_ZERO:
4366 ch = qemu_get_byte(f);
4367 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4368 break;
4369
4370 case RAM_SAVE_FLAG_PAGE:
4371 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4372 break;
4373
4374 case RAM_SAVE_FLAG_COMPRESS_PAGE:
4375 len = qemu_get_be32(f);
4376 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4377 error_report("Invalid compressed data length: %d", len);
4378 ret = -EINVAL;
4379 break;
4380 }
4381 decompress_data_with_multi_threads(f, host, len);
4382 break;
4383
4384 case RAM_SAVE_FLAG_XBZRLE:
4385 if (load_xbzrle(f, addr, host) < 0) {
4386 error_report("Failed to decompress XBZRLE page at "
4387 RAM_ADDR_FMT, addr);
4388 ret = -EINVAL;
4389 break;
4390 }
4391 break;
4392 case RAM_SAVE_FLAG_EOS:
4393 /* normal exit */
4394 multifd_recv_sync_main();
4395 break;
4396 default:
4397 if (flags & RAM_SAVE_FLAG_HOOK) {
4398 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
4399 } else {
4400 error_report("Unknown combination of migration flags: %#x",
4401 flags);
4402 ret = -EINVAL;
4403 }
4404 }
4405 if (!ret) {
4406 ret = qemu_file_get_error(f);
4407 }
4408 }
4409
4410 ret |= wait_for_decompress_done();
4411 rcu_read_unlock();
4412 trace_ram_load_complete(ret, seq_iter);
4413
4414 if (!ret && migration_incoming_in_colo_state()) {
4415 colo_flush_ram_cache();
4416 }
4417 return ret;
4418 }
4419
4420 static bool ram_has_postcopy(void *opaque)
4421 {
4422 RAMBlock *rb;
4423 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4424 if (ramblock_is_pmem(rb)) {
4425 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4426 "is not supported now!", rb->idstr, rb->host);
4427 return false;
4428 }
4429 }
4430
4431 return migrate_postcopy_ram();
4432 }
4433
4434 /* Sync all the dirty bitmap with destination VM. */
4435 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4436 {
4437 RAMBlock *block;
4438 QEMUFile *file = s->to_dst_file;
4439 int ramblock_count = 0;
4440
4441 trace_ram_dirty_bitmap_sync_start();
4442
4443 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4444 qemu_savevm_send_recv_bitmap(file, block->idstr);
4445 trace_ram_dirty_bitmap_request(block->idstr);
4446 ramblock_count++;
4447 }
4448
4449 trace_ram_dirty_bitmap_sync_wait();
4450
4451 /* Wait until all the ramblocks' dirty bitmap synced */
4452 while (ramblock_count--) {
4453 qemu_sem_wait(&s->rp_state.rp_sem);
4454 }
4455
4456 trace_ram_dirty_bitmap_sync_complete();
4457
4458 return 0;
4459 }
4460
4461 static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4462 {
4463 qemu_sem_post(&s->rp_state.rp_sem);
4464 }
4465
4466 /*
4467 * Read the received bitmap, revert it as the initial dirty bitmap.
4468 * This is only used when the postcopy migration is paused but wants
4469 * to resume from a middle point.
4470 */
4471 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4472 {
4473 int ret = -EINVAL;
4474 QEMUFile *file = s->rp_state.from_dst_file;
4475 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
4476 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4477 uint64_t size, end_mark;
4478
4479 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4480
4481 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4482 error_report("%s: incorrect state %s", __func__,
4483 MigrationStatus_str(s->state));
4484 return -EINVAL;
4485 }
4486
4487 /*
4488 * Note: see comments in ramblock_recv_bitmap_send() on why we
4489 * need the endianess convertion, and the paddings.
4490 */
4491 local_size = ROUND_UP(local_size, 8);
4492
4493 /* Add paddings */
4494 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4495
4496 size = qemu_get_be64(file);
4497
4498 /* The size of the bitmap should match with our ramblock */
4499 if (size != local_size) {
4500 error_report("%s: ramblock '%s' bitmap size mismatch "
4501 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4502 block->idstr, size, local_size);
4503 ret = -EINVAL;
4504 goto out;
4505 }
4506
4507 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4508 end_mark = qemu_get_be64(file);
4509
4510 ret = qemu_file_get_error(file);
4511 if (ret || size != local_size) {
4512 error_report("%s: read bitmap failed for ramblock '%s': %d"
4513 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4514 __func__, block->idstr, ret, local_size, size);
4515 ret = -EIO;
4516 goto out;
4517 }
4518
4519 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4520 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64,
4521 __func__, block->idstr, end_mark);
4522 ret = -EINVAL;
4523 goto out;
4524 }
4525
4526 /*
4527 * Endianess convertion. We are during postcopy (though paused).
4528 * The dirty bitmap won't change. We can directly modify it.
4529 */
4530 bitmap_from_le(block->bmap, le_bitmap, nbits);
4531
4532 /*
4533 * What we received is "received bitmap". Revert it as the initial
4534 * dirty bitmap for this ramblock.
4535 */
4536 bitmap_complement(block->bmap, block->bmap, nbits);
4537
4538 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4539
4540 /*
4541 * We succeeded to sync bitmap for current ramblock. If this is
4542 * the last one to sync, we need to notify the main send thread.
4543 */
4544 ram_dirty_bitmap_reload_notify(s);
4545
4546 ret = 0;
4547 out:
4548 g_free(le_bitmap);
4549 return ret;
4550 }
4551
4552 static int ram_resume_prepare(MigrationState *s, void *opaque)
4553 {
4554 RAMState *rs = *(RAMState **)opaque;
4555 int ret;
4556
4557 ret = ram_dirty_bitmap_sync_all(s, rs);
4558 if (ret) {
4559 return ret;
4560 }
4561
4562 ram_state_resume_prepare(rs, s->to_dst_file);
4563
4564 return 0;
4565 }
4566
4567 static SaveVMHandlers savevm_ram_handlers = {
4568 .save_setup = ram_save_setup,
4569 .save_live_iterate = ram_save_iterate,
4570 .save_live_complete_postcopy = ram_save_complete,
4571 .save_live_complete_precopy = ram_save_complete,
4572 .has_postcopy = ram_has_postcopy,
4573 .save_live_pending = ram_save_pending,
4574 .load_state = ram_load,
4575 .save_cleanup = ram_save_cleanup,
4576 .load_setup = ram_load_setup,
4577 .load_cleanup = ram_load_cleanup,
4578 .resume_prepare = ram_resume_prepare,
4579 };
4580
4581 void ram_mig_init(void)
4582 {
4583 qemu_mutex_init(&XBZRLE.lock);
4584 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state);
4585 }