]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/hugetlb.c
mm: uninline page_mapped()
[mirror_ubuntu-zesty-kernel.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
1da177e4 7#include <linux/mm.h>
e1759c21 8#include <linux/seq_file.h>
1da177e4
LT
9#include <linux/sysctl.h>
10#include <linux/highmem.h>
cddb8a5c 11#include <linux/mmu_notifier.h>
1da177e4 12#include <linux/nodemask.h>
63551ae0 13#include <linux/pagemap.h>
5da7ca86 14#include <linux/mempolicy.h>
3b32123d 15#include <linux/compiler.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
fd6a03ed
NH
22#include <linux/swap.h>
23#include <linux/swapops.h>
c8721bbb 24#include <linux/page-isolation.h>
8382d914 25#include <linux/jhash.h>
d6606683 26
63551ae0
DG
27#include <asm/page.h>
28#include <asm/pgtable.h>
24669e58 29#include <asm/tlb.h>
63551ae0 30
24669e58 31#include <linux/io.h>
63551ae0 32#include <linux/hugetlb.h>
9dd540e2 33#include <linux/hugetlb_cgroup.h>
9a305230 34#include <linux/node.h>
7835e98b 35#include "internal.h"
1da177e4 36
753162cd 37int hugepages_treat_as_movable;
a5516438 38
c3f38a38 39int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
40unsigned int default_hstate_idx;
41struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
42/*
43 * Minimum page order among possible hugepage sizes, set to a proper value
44 * at boot time.
45 */
46static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 47
53ba51d2
JT
48__initdata LIST_HEAD(huge_boot_pages);
49
e5ff2159
AK
50/* for command line parsing */
51static struct hstate * __initdata parsed_hstate;
52static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 53static unsigned long __initdata default_hstate_size;
9fee021d 54static bool __initdata parsed_valid_hugepagesz = true;
e5ff2159 55
3935baa9 56/*
31caf665
NH
57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58 * free_huge_pages, and surplus_huge_pages.
3935baa9 59 */
c3f38a38 60DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 61
8382d914
DB
62/*
63 * Serializes faults on the same logical page. This is used to
64 * prevent spurious OOMs when the hugepage pool is fully utilized.
65 */
66static int num_fault_mutexes;
c672c7f2 67struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 68
7ca02d0a
MK
69/* Forward declaration */
70static int hugetlb_acct_memory(struct hstate *h, long delta);
71
90481622
DG
72static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73{
74 bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76 spin_unlock(&spool->lock);
77
78 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
79 * remain, give up any reservations mased on minimum size and
80 * free the subpool */
81 if (free) {
82 if (spool->min_hpages != -1)
83 hugetlb_acct_memory(spool->hstate,
84 -spool->min_hpages);
90481622 85 kfree(spool);
7ca02d0a 86 }
90481622
DG
87}
88
7ca02d0a
MK
89struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90 long min_hpages)
90481622
DG
91{
92 struct hugepage_subpool *spool;
93
c6a91820 94 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
95 if (!spool)
96 return NULL;
97
98 spin_lock_init(&spool->lock);
99 spool->count = 1;
7ca02d0a
MK
100 spool->max_hpages = max_hpages;
101 spool->hstate = h;
102 spool->min_hpages = min_hpages;
103
104 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105 kfree(spool);
106 return NULL;
107 }
108 spool->rsv_hpages = min_hpages;
90481622
DG
109
110 return spool;
111}
112
113void hugepage_put_subpool(struct hugepage_subpool *spool)
114{
115 spin_lock(&spool->lock);
116 BUG_ON(!spool->count);
117 spool->count--;
118 unlock_or_release_subpool(spool);
119}
120
1c5ecae3
MK
121/*
122 * Subpool accounting for allocating and reserving pages.
123 * Return -ENOMEM if there are not enough resources to satisfy the
124 * the request. Otherwise, return the number of pages by which the
125 * global pools must be adjusted (upward). The returned value may
126 * only be different than the passed value (delta) in the case where
127 * a subpool minimum size must be manitained.
128 */
129static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
130 long delta)
131{
1c5ecae3 132 long ret = delta;
90481622
DG
133
134 if (!spool)
1c5ecae3 135 return ret;
90481622
DG
136
137 spin_lock(&spool->lock);
1c5ecae3
MK
138
139 if (spool->max_hpages != -1) { /* maximum size accounting */
140 if ((spool->used_hpages + delta) <= spool->max_hpages)
141 spool->used_hpages += delta;
142 else {
143 ret = -ENOMEM;
144 goto unlock_ret;
145 }
90481622 146 }
90481622 147
09a95e29
MK
148 /* minimum size accounting */
149 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
150 if (delta > spool->rsv_hpages) {
151 /*
152 * Asking for more reserves than those already taken on
153 * behalf of subpool. Return difference.
154 */
155 ret = delta - spool->rsv_hpages;
156 spool->rsv_hpages = 0;
157 } else {
158 ret = 0; /* reserves already accounted for */
159 spool->rsv_hpages -= delta;
160 }
161 }
162
163unlock_ret:
164 spin_unlock(&spool->lock);
90481622
DG
165 return ret;
166}
167
1c5ecae3
MK
168/*
169 * Subpool accounting for freeing and unreserving pages.
170 * Return the number of global page reservations that must be dropped.
171 * The return value may only be different than the passed value (delta)
172 * in the case where a subpool minimum size must be maintained.
173 */
174static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
175 long delta)
176{
1c5ecae3
MK
177 long ret = delta;
178
90481622 179 if (!spool)
1c5ecae3 180 return delta;
90481622
DG
181
182 spin_lock(&spool->lock);
1c5ecae3
MK
183
184 if (spool->max_hpages != -1) /* maximum size accounting */
185 spool->used_hpages -= delta;
186
09a95e29
MK
187 /* minimum size accounting */
188 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
189 if (spool->rsv_hpages + delta <= spool->min_hpages)
190 ret = 0;
191 else
192 ret = spool->rsv_hpages + delta - spool->min_hpages;
193
194 spool->rsv_hpages += delta;
195 if (spool->rsv_hpages > spool->min_hpages)
196 spool->rsv_hpages = spool->min_hpages;
197 }
198
199 /*
200 * If hugetlbfs_put_super couldn't free spool due to an outstanding
201 * quota reference, free it now.
202 */
90481622 203 unlock_or_release_subpool(spool);
1c5ecae3
MK
204
205 return ret;
90481622
DG
206}
207
208static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
209{
210 return HUGETLBFS_SB(inode->i_sb)->spool;
211}
212
213static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
214{
496ad9aa 215 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
216}
217
96822904
AW
218/*
219 * Region tracking -- allows tracking of reservations and instantiated pages
220 * across the pages in a mapping.
84afd99b 221 *
1dd308a7
MK
222 * The region data structures are embedded into a resv_map and protected
223 * by a resv_map's lock. The set of regions within the resv_map represent
224 * reservations for huge pages, or huge pages that have already been
225 * instantiated within the map. The from and to elements are huge page
226 * indicies into the associated mapping. from indicates the starting index
227 * of the region. to represents the first index past the end of the region.
228 *
229 * For example, a file region structure with from == 0 and to == 4 represents
230 * four huge pages in a mapping. It is important to note that the to element
231 * represents the first element past the end of the region. This is used in
232 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
233 *
234 * Interval notation of the form [from, to) will be used to indicate that
235 * the endpoint from is inclusive and to is exclusive.
96822904
AW
236 */
237struct file_region {
238 struct list_head link;
239 long from;
240 long to;
241};
242
1dd308a7
MK
243/*
244 * Add the huge page range represented by [f, t) to the reserve
5e911373
MK
245 * map. In the normal case, existing regions will be expanded
246 * to accommodate the specified range. Sufficient regions should
247 * exist for expansion due to the previous call to region_chg
248 * with the same range. However, it is possible that region_del
249 * could have been called after region_chg and modifed the map
250 * in such a way that no region exists to be expanded. In this
251 * case, pull a region descriptor from the cache associated with
252 * the map and use that for the new range.
cf3ad20b
MK
253 *
254 * Return the number of new huge pages added to the map. This
255 * number is greater than or equal to zero.
1dd308a7 256 */
1406ec9b 257static long region_add(struct resv_map *resv, long f, long t)
96822904 258{
1406ec9b 259 struct list_head *head = &resv->regions;
96822904 260 struct file_region *rg, *nrg, *trg;
cf3ad20b 261 long add = 0;
96822904 262
7b24d861 263 spin_lock(&resv->lock);
96822904
AW
264 /* Locate the region we are either in or before. */
265 list_for_each_entry(rg, head, link)
266 if (f <= rg->to)
267 break;
268
5e911373
MK
269 /*
270 * If no region exists which can be expanded to include the
271 * specified range, the list must have been modified by an
272 * interleving call to region_del(). Pull a region descriptor
273 * from the cache and use it for this range.
274 */
275 if (&rg->link == head || t < rg->from) {
276 VM_BUG_ON(resv->region_cache_count <= 0);
277
278 resv->region_cache_count--;
279 nrg = list_first_entry(&resv->region_cache, struct file_region,
280 link);
281 list_del(&nrg->link);
282
283 nrg->from = f;
284 nrg->to = t;
285 list_add(&nrg->link, rg->link.prev);
286
287 add += t - f;
288 goto out_locked;
289 }
290
96822904
AW
291 /* Round our left edge to the current segment if it encloses us. */
292 if (f > rg->from)
293 f = rg->from;
294
295 /* Check for and consume any regions we now overlap with. */
296 nrg = rg;
297 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
298 if (&rg->link == head)
299 break;
300 if (rg->from > t)
301 break;
302
303 /* If this area reaches higher then extend our area to
304 * include it completely. If this is not the first area
305 * which we intend to reuse, free it. */
306 if (rg->to > t)
307 t = rg->to;
308 if (rg != nrg) {
cf3ad20b
MK
309 /* Decrement return value by the deleted range.
310 * Another range will span this area so that by
311 * end of routine add will be >= zero
312 */
313 add -= (rg->to - rg->from);
96822904
AW
314 list_del(&rg->link);
315 kfree(rg);
316 }
317 }
cf3ad20b
MK
318
319 add += (nrg->from - f); /* Added to beginning of region */
96822904 320 nrg->from = f;
cf3ad20b 321 add += t - nrg->to; /* Added to end of region */
96822904 322 nrg->to = t;
cf3ad20b 323
5e911373
MK
324out_locked:
325 resv->adds_in_progress--;
7b24d861 326 spin_unlock(&resv->lock);
cf3ad20b
MK
327 VM_BUG_ON(add < 0);
328 return add;
96822904
AW
329}
330
1dd308a7
MK
331/*
332 * Examine the existing reserve map and determine how many
333 * huge pages in the specified range [f, t) are NOT currently
334 * represented. This routine is called before a subsequent
335 * call to region_add that will actually modify the reserve
336 * map to add the specified range [f, t). region_chg does
337 * not change the number of huge pages represented by the
338 * map. However, if the existing regions in the map can not
339 * be expanded to represent the new range, a new file_region
340 * structure is added to the map as a placeholder. This is
341 * so that the subsequent region_add call will have all the
342 * regions it needs and will not fail.
343 *
5e911373
MK
344 * Upon entry, region_chg will also examine the cache of region descriptors
345 * associated with the map. If there are not enough descriptors cached, one
346 * will be allocated for the in progress add operation.
347 *
348 * Returns the number of huge pages that need to be added to the existing
349 * reservation map for the range [f, t). This number is greater or equal to
350 * zero. -ENOMEM is returned if a new file_region structure or cache entry
351 * is needed and can not be allocated.
1dd308a7 352 */
1406ec9b 353static long region_chg(struct resv_map *resv, long f, long t)
96822904 354{
1406ec9b 355 struct list_head *head = &resv->regions;
7b24d861 356 struct file_region *rg, *nrg = NULL;
96822904
AW
357 long chg = 0;
358
7b24d861
DB
359retry:
360 spin_lock(&resv->lock);
5e911373
MK
361retry_locked:
362 resv->adds_in_progress++;
363
364 /*
365 * Check for sufficient descriptors in the cache to accommodate
366 * the number of in progress add operations.
367 */
368 if (resv->adds_in_progress > resv->region_cache_count) {
369 struct file_region *trg;
370
371 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
372 /* Must drop lock to allocate a new descriptor. */
373 resv->adds_in_progress--;
374 spin_unlock(&resv->lock);
375
376 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
dbe409e4
MK
377 if (!trg) {
378 kfree(nrg);
5e911373 379 return -ENOMEM;
dbe409e4 380 }
5e911373
MK
381
382 spin_lock(&resv->lock);
383 list_add(&trg->link, &resv->region_cache);
384 resv->region_cache_count++;
385 goto retry_locked;
386 }
387
96822904
AW
388 /* Locate the region we are before or in. */
389 list_for_each_entry(rg, head, link)
390 if (f <= rg->to)
391 break;
392
393 /* If we are below the current region then a new region is required.
394 * Subtle, allocate a new region at the position but make it zero
395 * size such that we can guarantee to record the reservation. */
396 if (&rg->link == head || t < rg->from) {
7b24d861 397 if (!nrg) {
5e911373 398 resv->adds_in_progress--;
7b24d861
DB
399 spin_unlock(&resv->lock);
400 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
401 if (!nrg)
402 return -ENOMEM;
403
404 nrg->from = f;
405 nrg->to = f;
406 INIT_LIST_HEAD(&nrg->link);
407 goto retry;
408 }
96822904 409
7b24d861
DB
410 list_add(&nrg->link, rg->link.prev);
411 chg = t - f;
412 goto out_nrg;
96822904
AW
413 }
414
415 /* Round our left edge to the current segment if it encloses us. */
416 if (f > rg->from)
417 f = rg->from;
418 chg = t - f;
419
420 /* Check for and consume any regions we now overlap with. */
421 list_for_each_entry(rg, rg->link.prev, link) {
422 if (&rg->link == head)
423 break;
424 if (rg->from > t)
7b24d861 425 goto out;
96822904 426
25985edc 427 /* We overlap with this area, if it extends further than
96822904
AW
428 * us then we must extend ourselves. Account for its
429 * existing reservation. */
430 if (rg->to > t) {
431 chg += rg->to - t;
432 t = rg->to;
433 }
434 chg -= rg->to - rg->from;
435 }
7b24d861
DB
436
437out:
438 spin_unlock(&resv->lock);
439 /* We already know we raced and no longer need the new region */
440 kfree(nrg);
441 return chg;
442out_nrg:
443 spin_unlock(&resv->lock);
96822904
AW
444 return chg;
445}
446
5e911373
MK
447/*
448 * Abort the in progress add operation. The adds_in_progress field
449 * of the resv_map keeps track of the operations in progress between
450 * calls to region_chg and region_add. Operations are sometimes
451 * aborted after the call to region_chg. In such cases, region_abort
452 * is called to decrement the adds_in_progress counter.
453 *
454 * NOTE: The range arguments [f, t) are not needed or used in this
455 * routine. They are kept to make reading the calling code easier as
456 * arguments will match the associated region_chg call.
457 */
458static void region_abort(struct resv_map *resv, long f, long t)
459{
460 spin_lock(&resv->lock);
461 VM_BUG_ON(!resv->region_cache_count);
462 resv->adds_in_progress--;
463 spin_unlock(&resv->lock);
464}
465
1dd308a7 466/*
feba16e2
MK
467 * Delete the specified range [f, t) from the reserve map. If the
468 * t parameter is LONG_MAX, this indicates that ALL regions after f
469 * should be deleted. Locate the regions which intersect [f, t)
470 * and either trim, delete or split the existing regions.
471 *
472 * Returns the number of huge pages deleted from the reserve map.
473 * In the normal case, the return value is zero or more. In the
474 * case where a region must be split, a new region descriptor must
475 * be allocated. If the allocation fails, -ENOMEM will be returned.
476 * NOTE: If the parameter t == LONG_MAX, then we will never split
477 * a region and possibly return -ENOMEM. Callers specifying
478 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 479 */
feba16e2 480static long region_del(struct resv_map *resv, long f, long t)
96822904 481{
1406ec9b 482 struct list_head *head = &resv->regions;
96822904 483 struct file_region *rg, *trg;
feba16e2
MK
484 struct file_region *nrg = NULL;
485 long del = 0;
96822904 486
feba16e2 487retry:
7b24d861 488 spin_lock(&resv->lock);
feba16e2 489 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
490 /*
491 * Skip regions before the range to be deleted. file_region
492 * ranges are normally of the form [from, to). However, there
493 * may be a "placeholder" entry in the map which is of the form
494 * (from, to) with from == to. Check for placeholder entries
495 * at the beginning of the range to be deleted.
496 */
497 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 498 continue;
dbe409e4 499
feba16e2 500 if (rg->from >= t)
96822904 501 break;
96822904 502
feba16e2
MK
503 if (f > rg->from && t < rg->to) { /* Must split region */
504 /*
505 * Check for an entry in the cache before dropping
506 * lock and attempting allocation.
507 */
508 if (!nrg &&
509 resv->region_cache_count > resv->adds_in_progress) {
510 nrg = list_first_entry(&resv->region_cache,
511 struct file_region,
512 link);
513 list_del(&nrg->link);
514 resv->region_cache_count--;
515 }
96822904 516
feba16e2
MK
517 if (!nrg) {
518 spin_unlock(&resv->lock);
519 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
520 if (!nrg)
521 return -ENOMEM;
522 goto retry;
523 }
524
525 del += t - f;
526
527 /* New entry for end of split region */
528 nrg->from = t;
529 nrg->to = rg->to;
530 INIT_LIST_HEAD(&nrg->link);
531
532 /* Original entry is trimmed */
533 rg->to = f;
534
535 list_add(&nrg->link, &rg->link);
536 nrg = NULL;
96822904 537 break;
feba16e2
MK
538 }
539
540 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
541 del += rg->to - rg->from;
542 list_del(&rg->link);
543 kfree(rg);
544 continue;
545 }
546
547 if (f <= rg->from) { /* Trim beginning of region */
548 del += t - rg->from;
549 rg->from = t;
550 } else { /* Trim end of region */
551 del += rg->to - f;
552 rg->to = f;
553 }
96822904 554 }
7b24d861 555
7b24d861 556 spin_unlock(&resv->lock);
feba16e2
MK
557 kfree(nrg);
558 return del;
96822904
AW
559}
560
b5cec28d
MK
561/*
562 * A rare out of memory error was encountered which prevented removal of
563 * the reserve map region for a page. The huge page itself was free'ed
564 * and removed from the page cache. This routine will adjust the subpool
565 * usage count, and the global reserve count if needed. By incrementing
566 * these counts, the reserve map entry which could not be deleted will
567 * appear as a "reserved" entry instead of simply dangling with incorrect
568 * counts.
569 */
570void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
571{
572 struct hugepage_subpool *spool = subpool_inode(inode);
573 long rsv_adjust;
574
575 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
576 if (restore_reserve && rsv_adjust) {
577 struct hstate *h = hstate_inode(inode);
578
579 hugetlb_acct_memory(h, 1);
580 }
581}
582
1dd308a7
MK
583/*
584 * Count and return the number of huge pages in the reserve map
585 * that intersect with the range [f, t).
586 */
1406ec9b 587static long region_count(struct resv_map *resv, long f, long t)
84afd99b 588{
1406ec9b 589 struct list_head *head = &resv->regions;
84afd99b
AW
590 struct file_region *rg;
591 long chg = 0;
592
7b24d861 593 spin_lock(&resv->lock);
84afd99b
AW
594 /* Locate each segment we overlap with, and count that overlap. */
595 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
596 long seg_from;
597 long seg_to;
84afd99b
AW
598
599 if (rg->to <= f)
600 continue;
601 if (rg->from >= t)
602 break;
603
604 seg_from = max(rg->from, f);
605 seg_to = min(rg->to, t);
606
607 chg += seg_to - seg_from;
608 }
7b24d861 609 spin_unlock(&resv->lock);
84afd99b
AW
610
611 return chg;
612}
613
e7c4b0bf
AW
614/*
615 * Convert the address within this vma to the page offset within
616 * the mapping, in pagecache page units; huge pages here.
617 */
a5516438
AK
618static pgoff_t vma_hugecache_offset(struct hstate *h,
619 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 620{
a5516438
AK
621 return ((address - vma->vm_start) >> huge_page_shift(h)) +
622 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
623}
624
0fe6e20b
NH
625pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
626 unsigned long address)
627{
628 return vma_hugecache_offset(hstate_vma(vma), vma, address);
629}
630
08fba699
MG
631/*
632 * Return the size of the pages allocated when backing a VMA. In the majority
633 * cases this will be same size as used by the page table entries.
634 */
635unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
636{
637 struct hstate *hstate;
638
639 if (!is_vm_hugetlb_page(vma))
640 return PAGE_SIZE;
641
642 hstate = hstate_vma(vma);
643
2415cf12 644 return 1UL << huge_page_shift(hstate);
08fba699 645}
f340ca0f 646EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 647
3340289d
MG
648/*
649 * Return the page size being used by the MMU to back a VMA. In the majority
650 * of cases, the page size used by the kernel matches the MMU size. On
651 * architectures where it differs, an architecture-specific version of this
652 * function is required.
653 */
654#ifndef vma_mmu_pagesize
655unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
656{
657 return vma_kernel_pagesize(vma);
658}
659#endif
660
84afd99b
AW
661/*
662 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
663 * bits of the reservation map pointer, which are always clear due to
664 * alignment.
665 */
666#define HPAGE_RESV_OWNER (1UL << 0)
667#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 668#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 669
a1e78772
MG
670/*
671 * These helpers are used to track how many pages are reserved for
672 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
673 * is guaranteed to have their future faults succeed.
674 *
675 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
676 * the reserve counters are updated with the hugetlb_lock held. It is safe
677 * to reset the VMA at fork() time as it is not in use yet and there is no
678 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
679 *
680 * The private mapping reservation is represented in a subtly different
681 * manner to a shared mapping. A shared mapping has a region map associated
682 * with the underlying file, this region map represents the backing file
683 * pages which have ever had a reservation assigned which this persists even
684 * after the page is instantiated. A private mapping has a region map
685 * associated with the original mmap which is attached to all VMAs which
686 * reference it, this region map represents those offsets which have consumed
687 * reservation ie. where pages have been instantiated.
a1e78772 688 */
e7c4b0bf
AW
689static unsigned long get_vma_private_data(struct vm_area_struct *vma)
690{
691 return (unsigned long)vma->vm_private_data;
692}
693
694static void set_vma_private_data(struct vm_area_struct *vma,
695 unsigned long value)
696{
697 vma->vm_private_data = (void *)value;
698}
699
9119a41e 700struct resv_map *resv_map_alloc(void)
84afd99b
AW
701{
702 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
703 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
704
705 if (!resv_map || !rg) {
706 kfree(resv_map);
707 kfree(rg);
84afd99b 708 return NULL;
5e911373 709 }
84afd99b
AW
710
711 kref_init(&resv_map->refs);
7b24d861 712 spin_lock_init(&resv_map->lock);
84afd99b
AW
713 INIT_LIST_HEAD(&resv_map->regions);
714
5e911373
MK
715 resv_map->adds_in_progress = 0;
716
717 INIT_LIST_HEAD(&resv_map->region_cache);
718 list_add(&rg->link, &resv_map->region_cache);
719 resv_map->region_cache_count = 1;
720
84afd99b
AW
721 return resv_map;
722}
723
9119a41e 724void resv_map_release(struct kref *ref)
84afd99b
AW
725{
726 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
727 struct list_head *head = &resv_map->region_cache;
728 struct file_region *rg, *trg;
84afd99b
AW
729
730 /* Clear out any active regions before we release the map. */
feba16e2 731 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
732
733 /* ... and any entries left in the cache */
734 list_for_each_entry_safe(rg, trg, head, link) {
735 list_del(&rg->link);
736 kfree(rg);
737 }
738
739 VM_BUG_ON(resv_map->adds_in_progress);
740
84afd99b
AW
741 kfree(resv_map);
742}
743
4e35f483
JK
744static inline struct resv_map *inode_resv_map(struct inode *inode)
745{
746 return inode->i_mapping->private_data;
747}
748
84afd99b 749static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 750{
81d1b09c 751 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
752 if (vma->vm_flags & VM_MAYSHARE) {
753 struct address_space *mapping = vma->vm_file->f_mapping;
754 struct inode *inode = mapping->host;
755
756 return inode_resv_map(inode);
757
758 } else {
84afd99b
AW
759 return (struct resv_map *)(get_vma_private_data(vma) &
760 ~HPAGE_RESV_MASK);
4e35f483 761 }
a1e78772
MG
762}
763
84afd99b 764static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 765{
81d1b09c
SL
766 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
767 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 768
84afd99b
AW
769 set_vma_private_data(vma, (get_vma_private_data(vma) &
770 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
771}
772
773static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
774{
81d1b09c
SL
775 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
776 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
777
778 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
779}
780
781static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
782{
81d1b09c 783 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
784
785 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
786}
787
04f2cbe3 788/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
789void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
790{
81d1b09c 791 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 792 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
793 vma->vm_private_data = (void *)0;
794}
795
796/* Returns true if the VMA has associated reserve pages */
559ec2f8 797static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 798{
af0ed73e
JK
799 if (vma->vm_flags & VM_NORESERVE) {
800 /*
801 * This address is already reserved by other process(chg == 0),
802 * so, we should decrement reserved count. Without decrementing,
803 * reserve count remains after releasing inode, because this
804 * allocated page will go into page cache and is regarded as
805 * coming from reserved pool in releasing step. Currently, we
806 * don't have any other solution to deal with this situation
807 * properly, so add work-around here.
808 */
809 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 810 return true;
af0ed73e 811 else
559ec2f8 812 return false;
af0ed73e 813 }
a63884e9
JK
814
815 /* Shared mappings always use reserves */
1fb1b0e9
MK
816 if (vma->vm_flags & VM_MAYSHARE) {
817 /*
818 * We know VM_NORESERVE is not set. Therefore, there SHOULD
819 * be a region map for all pages. The only situation where
820 * there is no region map is if a hole was punched via
821 * fallocate. In this case, there really are no reverves to
822 * use. This situation is indicated if chg != 0.
823 */
824 if (chg)
825 return false;
826 else
827 return true;
828 }
a63884e9
JK
829
830 /*
831 * Only the process that called mmap() has reserves for
832 * private mappings.
833 */
7f09ca51 834 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
559ec2f8 835 return true;
a63884e9 836
559ec2f8 837 return false;
a1e78772
MG
838}
839
a5516438 840static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
841{
842 int nid = page_to_nid(page);
0edaecfa 843 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
844 h->free_huge_pages++;
845 h->free_huge_pages_node[nid]++;
1da177e4
LT
846}
847
bf50bab2
NH
848static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
849{
850 struct page *page;
851
c8721bbb
NH
852 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
853 if (!is_migrate_isolate_page(page))
854 break;
855 /*
856 * if 'non-isolated free hugepage' not found on the list,
857 * the allocation fails.
858 */
859 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 860 return NULL;
0edaecfa 861 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 862 set_page_refcounted(page);
bf50bab2
NH
863 h->free_huge_pages--;
864 h->free_huge_pages_node[nid]--;
865 return page;
866}
867
86cdb465
NH
868/* Movability of hugepages depends on migration support. */
869static inline gfp_t htlb_alloc_mask(struct hstate *h)
870{
100873d7 871 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
86cdb465
NH
872 return GFP_HIGHUSER_MOVABLE;
873 else
874 return GFP_HIGHUSER;
875}
876
a5516438
AK
877static struct page *dequeue_huge_page_vma(struct hstate *h,
878 struct vm_area_struct *vma,
af0ed73e
JK
879 unsigned long address, int avoid_reserve,
880 long chg)
1da177e4 881{
b1c12cbc 882 struct page *page = NULL;
480eccf9 883 struct mempolicy *mpol;
19770b32 884 nodemask_t *nodemask;
c0ff7453 885 struct zonelist *zonelist;
dd1a239f
MG
886 struct zone *zone;
887 struct zoneref *z;
cc9a6c87 888 unsigned int cpuset_mems_cookie;
1da177e4 889
a1e78772
MG
890 /*
891 * A child process with MAP_PRIVATE mappings created by their parent
892 * have no page reserves. This check ensures that reservations are
893 * not "stolen". The child may still get SIGKILLed
894 */
af0ed73e 895 if (!vma_has_reserves(vma, chg) &&
a5516438 896 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 897 goto err;
a1e78772 898
04f2cbe3 899 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 900 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 901 goto err;
04f2cbe3 902
9966c4bb 903retry_cpuset:
d26914d1 904 cpuset_mems_cookie = read_mems_allowed_begin();
9966c4bb 905 zonelist = huge_zonelist(vma, address,
86cdb465 906 htlb_alloc_mask(h), &mpol, &nodemask);
9966c4bb 907
19770b32
MG
908 for_each_zone_zonelist_nodemask(zone, z, zonelist,
909 MAX_NR_ZONES - 1, nodemask) {
344736f2 910 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
bf50bab2
NH
911 page = dequeue_huge_page_node(h, zone_to_nid(zone));
912 if (page) {
af0ed73e
JK
913 if (avoid_reserve)
914 break;
915 if (!vma_has_reserves(vma, chg))
916 break;
917
07443a85 918 SetPagePrivate(page);
af0ed73e 919 h->resv_huge_pages--;
bf50bab2
NH
920 break;
921 }
3abf7afd 922 }
1da177e4 923 }
cc9a6c87 924
52cd3b07 925 mpol_cond_put(mpol);
d26914d1 926 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 927 goto retry_cpuset;
1da177e4 928 return page;
cc9a6c87
MG
929
930err:
cc9a6c87 931 return NULL;
1da177e4
LT
932}
933
1cac6f2c
LC
934/*
935 * common helper functions for hstate_next_node_to_{alloc|free}.
936 * We may have allocated or freed a huge page based on a different
937 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
938 * be outside of *nodes_allowed. Ensure that we use an allowed
939 * node for alloc or free.
940 */
941static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
942{
0edaf86c 943 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
944 VM_BUG_ON(nid >= MAX_NUMNODES);
945
946 return nid;
947}
948
949static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
950{
951 if (!node_isset(nid, *nodes_allowed))
952 nid = next_node_allowed(nid, nodes_allowed);
953 return nid;
954}
955
956/*
957 * returns the previously saved node ["this node"] from which to
958 * allocate a persistent huge page for the pool and advance the
959 * next node from which to allocate, handling wrap at end of node
960 * mask.
961 */
962static int hstate_next_node_to_alloc(struct hstate *h,
963 nodemask_t *nodes_allowed)
964{
965 int nid;
966
967 VM_BUG_ON(!nodes_allowed);
968
969 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
970 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
971
972 return nid;
973}
974
975/*
976 * helper for free_pool_huge_page() - return the previously saved
977 * node ["this node"] from which to free a huge page. Advance the
978 * next node id whether or not we find a free huge page to free so
979 * that the next attempt to free addresses the next node.
980 */
981static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
982{
983 int nid;
984
985 VM_BUG_ON(!nodes_allowed);
986
987 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
988 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
989
990 return nid;
991}
992
993#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
994 for (nr_nodes = nodes_weight(*mask); \
995 nr_nodes > 0 && \
996 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
997 nr_nodes--)
998
999#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1000 for (nr_nodes = nodes_weight(*mask); \
1001 nr_nodes > 0 && \
1002 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1003 nr_nodes--)
1004
080fe206 1005#if defined(CONFIG_X86_64) && ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA))
944d9fec 1006static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1007 unsigned int order)
944d9fec
LC
1008{
1009 int i;
1010 int nr_pages = 1 << order;
1011 struct page *p = page + 1;
1012
1013 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1014 clear_compound_head(p);
944d9fec 1015 set_page_refcounted(p);
944d9fec
LC
1016 }
1017
1018 set_compound_order(page, 0);
1019 __ClearPageHead(page);
1020}
1021
d00181b9 1022static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec
LC
1023{
1024 free_contig_range(page_to_pfn(page), 1 << order);
1025}
1026
1027static int __alloc_gigantic_page(unsigned long start_pfn,
1028 unsigned long nr_pages)
1029{
1030 unsigned long end_pfn = start_pfn + nr_pages;
1031 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1032}
1033
1034static bool pfn_range_valid_gigantic(unsigned long start_pfn,
1035 unsigned long nr_pages)
1036{
1037 unsigned long i, end_pfn = start_pfn + nr_pages;
1038 struct page *page;
1039
1040 for (i = start_pfn; i < end_pfn; i++) {
1041 if (!pfn_valid(i))
1042 return false;
1043
1044 page = pfn_to_page(i);
1045
1046 if (PageReserved(page))
1047 return false;
1048
1049 if (page_count(page) > 0)
1050 return false;
1051
1052 if (PageHuge(page))
1053 return false;
1054 }
1055
1056 return true;
1057}
1058
1059static bool zone_spans_last_pfn(const struct zone *zone,
1060 unsigned long start_pfn, unsigned long nr_pages)
1061{
1062 unsigned long last_pfn = start_pfn + nr_pages - 1;
1063 return zone_spans_pfn(zone, last_pfn);
1064}
1065
d00181b9 1066static struct page *alloc_gigantic_page(int nid, unsigned int order)
944d9fec
LC
1067{
1068 unsigned long nr_pages = 1 << order;
1069 unsigned long ret, pfn, flags;
1070 struct zone *z;
1071
1072 z = NODE_DATA(nid)->node_zones;
1073 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1074 spin_lock_irqsave(&z->lock, flags);
1075
1076 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1077 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1078 if (pfn_range_valid_gigantic(pfn, nr_pages)) {
1079 /*
1080 * We release the zone lock here because
1081 * alloc_contig_range() will also lock the zone
1082 * at some point. If there's an allocation
1083 * spinning on this lock, it may win the race
1084 * and cause alloc_contig_range() to fail...
1085 */
1086 spin_unlock_irqrestore(&z->lock, flags);
1087 ret = __alloc_gigantic_page(pfn, nr_pages);
1088 if (!ret)
1089 return pfn_to_page(pfn);
1090 spin_lock_irqsave(&z->lock, flags);
1091 }
1092 pfn += nr_pages;
1093 }
1094
1095 spin_unlock_irqrestore(&z->lock, flags);
1096 }
1097
1098 return NULL;
1099}
1100
1101static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1102static void prep_compound_gigantic_page(struct page *page, unsigned int order);
944d9fec
LC
1103
1104static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1105{
1106 struct page *page;
1107
1108 page = alloc_gigantic_page(nid, huge_page_order(h));
1109 if (page) {
1110 prep_compound_gigantic_page(page, huge_page_order(h));
1111 prep_new_huge_page(h, page, nid);
1112 }
1113
1114 return page;
1115}
1116
1117static int alloc_fresh_gigantic_page(struct hstate *h,
1118 nodemask_t *nodes_allowed)
1119{
1120 struct page *page = NULL;
1121 int nr_nodes, node;
1122
1123 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1124 page = alloc_fresh_gigantic_page_node(h, node);
1125 if (page)
1126 return 1;
1127 }
1128
1129 return 0;
1130}
1131
1132static inline bool gigantic_page_supported(void) { return true; }
1133#else
1134static inline bool gigantic_page_supported(void) { return false; }
d00181b9 1135static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1136static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1137 unsigned int order) { }
944d9fec
LC
1138static inline int alloc_fresh_gigantic_page(struct hstate *h,
1139 nodemask_t *nodes_allowed) { return 0; }
1140#endif
1141
a5516438 1142static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1143{
1144 int i;
a5516438 1145
944d9fec
LC
1146 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1147 return;
18229df5 1148
a5516438
AK
1149 h->nr_huge_pages--;
1150 h->nr_huge_pages_node[page_to_nid(page)]--;
1151 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1152 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1153 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1154 1 << PG_active | 1 << PG_private |
1155 1 << PG_writeback);
6af2acb6 1156 }
309381fe 1157 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
f1e61557 1158 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1159 set_page_refcounted(page);
944d9fec
LC
1160 if (hstate_is_gigantic(h)) {
1161 destroy_compound_gigantic_page(page, huge_page_order(h));
1162 free_gigantic_page(page, huge_page_order(h));
1163 } else {
944d9fec
LC
1164 __free_pages(page, huge_page_order(h));
1165 }
6af2acb6
AL
1166}
1167
e5ff2159
AK
1168struct hstate *size_to_hstate(unsigned long size)
1169{
1170 struct hstate *h;
1171
1172 for_each_hstate(h) {
1173 if (huge_page_size(h) == size)
1174 return h;
1175 }
1176 return NULL;
1177}
1178
bcc54222
NH
1179/*
1180 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1181 * to hstate->hugepage_activelist.)
1182 *
1183 * This function can be called for tail pages, but never returns true for them.
1184 */
1185bool page_huge_active(struct page *page)
1186{
1187 VM_BUG_ON_PAGE(!PageHuge(page), page);
1188 return PageHead(page) && PagePrivate(&page[1]);
1189}
1190
1191/* never called for tail page */
1192static void set_page_huge_active(struct page *page)
1193{
1194 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1195 SetPagePrivate(&page[1]);
1196}
1197
1198static void clear_page_huge_active(struct page *page)
1199{
1200 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1201 ClearPagePrivate(&page[1]);
1202}
1203
8f1d26d0 1204void free_huge_page(struct page *page)
27a85ef1 1205{
a5516438
AK
1206 /*
1207 * Can't pass hstate in here because it is called from the
1208 * compound page destructor.
1209 */
e5ff2159 1210 struct hstate *h = page_hstate(page);
7893d1d5 1211 int nid = page_to_nid(page);
90481622
DG
1212 struct hugepage_subpool *spool =
1213 (struct hugepage_subpool *)page_private(page);
07443a85 1214 bool restore_reserve;
27a85ef1 1215
e5df70ab 1216 set_page_private(page, 0);
23be7468 1217 page->mapping = NULL;
b4330afb
MK
1218 VM_BUG_ON_PAGE(page_count(page), page);
1219 VM_BUG_ON_PAGE(page_mapcount(page), page);
07443a85 1220 restore_reserve = PagePrivate(page);
16c794b4 1221 ClearPagePrivate(page);
27a85ef1 1222
1c5ecae3
MK
1223 /*
1224 * A return code of zero implies that the subpool will be under its
1225 * minimum size if the reservation is not restored after page is free.
1226 * Therefore, force restore_reserve operation.
1227 */
1228 if (hugepage_subpool_put_pages(spool, 1) == 0)
1229 restore_reserve = true;
1230
27a85ef1 1231 spin_lock(&hugetlb_lock);
bcc54222 1232 clear_page_huge_active(page);
6d76dcf4
AK
1233 hugetlb_cgroup_uncharge_page(hstate_index(h),
1234 pages_per_huge_page(h), page);
07443a85
JK
1235 if (restore_reserve)
1236 h->resv_huge_pages++;
1237
944d9fec 1238 if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1239 /* remove the page from active list */
1240 list_del(&page->lru);
a5516438
AK
1241 update_and_free_page(h, page);
1242 h->surplus_huge_pages--;
1243 h->surplus_huge_pages_node[nid]--;
7893d1d5 1244 } else {
5d3a551c 1245 arch_clear_hugepage_flags(page);
a5516438 1246 enqueue_huge_page(h, page);
7893d1d5 1247 }
27a85ef1
DG
1248 spin_unlock(&hugetlb_lock);
1249}
1250
a5516438 1251static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1252{
0edaecfa 1253 INIT_LIST_HEAD(&page->lru);
f1e61557 1254 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1255 spin_lock(&hugetlb_lock);
9dd540e2 1256 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1257 h->nr_huge_pages++;
1258 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
1259 spin_unlock(&hugetlb_lock);
1260 put_page(page); /* free it into the hugepage allocator */
1261}
1262
d00181b9 1263static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1264{
1265 int i;
1266 int nr_pages = 1 << order;
1267 struct page *p = page + 1;
1268
1269 /* we rely on prep_new_huge_page to set the destructor */
1270 set_compound_order(page, order);
ef5a22be 1271 __ClearPageReserved(page);
de09d31d 1272 __SetPageHead(page);
20a0307c 1273 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1274 /*
1275 * For gigantic hugepages allocated through bootmem at
1276 * boot, it's safer to be consistent with the not-gigantic
1277 * hugepages and clear the PG_reserved bit from all tail pages
1278 * too. Otherwse drivers using get_user_pages() to access tail
1279 * pages may get the reference counting wrong if they see
1280 * PG_reserved set on a tail page (despite the head page not
1281 * having PG_reserved set). Enforcing this consistency between
1282 * head and tail pages allows drivers to optimize away a check
1283 * on the head page when they need know if put_page() is needed
1284 * after get_user_pages().
1285 */
1286 __ClearPageReserved(p);
58a84aa9 1287 set_page_count(p, 0);
1d798ca3 1288 set_compound_head(p, page);
20a0307c 1289 }
b4330afb 1290 atomic_set(compound_mapcount_ptr(page), -1);
20a0307c
WF
1291}
1292
7795912c
AM
1293/*
1294 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1295 * transparent huge pages. See the PageTransHuge() documentation for more
1296 * details.
1297 */
20a0307c
WF
1298int PageHuge(struct page *page)
1299{
20a0307c
WF
1300 if (!PageCompound(page))
1301 return 0;
1302
1303 page = compound_head(page);
f1e61557 1304 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1305}
43131e14
NH
1306EXPORT_SYMBOL_GPL(PageHuge);
1307
27c73ae7
AA
1308/*
1309 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1310 * normal or transparent huge pages.
1311 */
1312int PageHeadHuge(struct page *page_head)
1313{
27c73ae7
AA
1314 if (!PageHead(page_head))
1315 return 0;
1316
758f66a2 1317 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1318}
27c73ae7 1319
13d60f4b
ZY
1320pgoff_t __basepage_index(struct page *page)
1321{
1322 struct page *page_head = compound_head(page);
1323 pgoff_t index = page_index(page_head);
1324 unsigned long compound_idx;
1325
1326 if (!PageHuge(page_head))
1327 return page_index(page);
1328
1329 if (compound_order(page_head) >= MAX_ORDER)
1330 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1331 else
1332 compound_idx = page - page_head;
1333
1334 return (index << compound_order(page_head)) + compound_idx;
1335}
1336
a5516438 1337static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 1338{
1da177e4 1339 struct page *page;
f96efd58 1340
96db800f 1341 page = __alloc_pages_node(nid,
86cdb465 1342 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
551883ae 1343 __GFP_REPEAT|__GFP_NOWARN,
a5516438 1344 huge_page_order(h));
1da177e4 1345 if (page) {
a5516438 1346 prep_new_huge_page(h, page, nid);
1da177e4 1347 }
63b4613c
NA
1348
1349 return page;
1350}
1351
b2261026
JK
1352static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1353{
1354 struct page *page;
1355 int nr_nodes, node;
1356 int ret = 0;
1357
1358 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1359 page = alloc_fresh_huge_page_node(h, node);
1360 if (page) {
1361 ret = 1;
1362 break;
1363 }
1364 }
1365
1366 if (ret)
1367 count_vm_event(HTLB_BUDDY_PGALLOC);
1368 else
1369 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1370
1371 return ret;
1372}
1373
e8c5c824
LS
1374/*
1375 * Free huge page from pool from next node to free.
1376 * Attempt to keep persistent huge pages more or less
1377 * balanced over allowed nodes.
1378 * Called with hugetlb_lock locked.
1379 */
6ae11b27
LS
1380static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1381 bool acct_surplus)
e8c5c824 1382{
b2261026 1383 int nr_nodes, node;
e8c5c824
LS
1384 int ret = 0;
1385
b2261026 1386 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1387 /*
1388 * If we're returning unused surplus pages, only examine
1389 * nodes with surplus pages.
1390 */
b2261026
JK
1391 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1392 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1393 struct page *page =
b2261026 1394 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1395 struct page, lru);
1396 list_del(&page->lru);
1397 h->free_huge_pages--;
b2261026 1398 h->free_huge_pages_node[node]--;
685f3457
LS
1399 if (acct_surplus) {
1400 h->surplus_huge_pages--;
b2261026 1401 h->surplus_huge_pages_node[node]--;
685f3457 1402 }
e8c5c824
LS
1403 update_and_free_page(h, page);
1404 ret = 1;
9a76db09 1405 break;
e8c5c824 1406 }
b2261026 1407 }
e8c5c824
LS
1408
1409 return ret;
1410}
1411
c8721bbb
NH
1412/*
1413 * Dissolve a given free hugepage into free buddy pages. This function does
1414 * nothing for in-use (including surplus) hugepages.
1415 */
1416static void dissolve_free_huge_page(struct page *page)
1417{
1418 spin_lock(&hugetlb_lock);
1419 if (PageHuge(page) && !page_count(page)) {
1420 struct hstate *h = page_hstate(page);
1421 int nid = page_to_nid(page);
1422 list_del(&page->lru);
1423 h->free_huge_pages--;
1424 h->free_huge_pages_node[nid]--;
1425 update_and_free_page(h, page);
1426 }
1427 spin_unlock(&hugetlb_lock);
1428}
1429
1430/*
1431 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1432 * make specified memory blocks removable from the system.
1433 * Note that start_pfn should aligned with (minimum) hugepage size.
1434 */
1435void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1436{
c8721bbb 1437 unsigned long pfn;
c8721bbb 1438
d0177639
LZ
1439 if (!hugepages_supported())
1440 return;
1441
641844f5
NH
1442 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1443 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
c8721bbb
NH
1444 dissolve_free_huge_page(pfn_to_page(pfn));
1445}
1446
099730d6
DH
1447/*
1448 * There are 3 ways this can get called:
1449 * 1. With vma+addr: we use the VMA's memory policy
1450 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1451 * page from any node, and let the buddy allocator itself figure
1452 * it out.
1453 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1454 * strictly from 'nid'
1455 */
1456static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1457 struct vm_area_struct *vma, unsigned long addr, int nid)
1458{
1459 int order = huge_page_order(h);
1460 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1461 unsigned int cpuset_mems_cookie;
1462
1463 /*
1464 * We need a VMA to get a memory policy. If we do not
e0ec90ee
DH
1465 * have one, we use the 'nid' argument.
1466 *
1467 * The mempolicy stuff below has some non-inlined bits
1468 * and calls ->vm_ops. That makes it hard to optimize at
1469 * compile-time, even when NUMA is off and it does
1470 * nothing. This helps the compiler optimize it out.
099730d6 1471 */
e0ec90ee 1472 if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
099730d6
DH
1473 /*
1474 * If a specific node is requested, make sure to
1475 * get memory from there, but only when a node
1476 * is explicitly specified.
1477 */
1478 if (nid != NUMA_NO_NODE)
1479 gfp |= __GFP_THISNODE;
1480 /*
1481 * Make sure to call something that can handle
1482 * nid=NUMA_NO_NODE
1483 */
1484 return alloc_pages_node(nid, gfp, order);
1485 }
1486
1487 /*
1488 * OK, so we have a VMA. Fetch the mempolicy and try to
e0ec90ee
DH
1489 * allocate a huge page with it. We will only reach this
1490 * when CONFIG_NUMA=y.
099730d6
DH
1491 */
1492 do {
1493 struct page *page;
1494 struct mempolicy *mpol;
1495 struct zonelist *zl;
1496 nodemask_t *nodemask;
1497
1498 cpuset_mems_cookie = read_mems_allowed_begin();
1499 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1500 mpol_cond_put(mpol);
1501 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1502 if (page)
1503 return page;
1504 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1505
1506 return NULL;
1507}
1508
1509/*
1510 * There are two ways to allocate a huge page:
1511 * 1. When you have a VMA and an address (like a fault)
1512 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1513 *
1514 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1515 * this case which signifies that the allocation should be done with
1516 * respect for the VMA's memory policy.
1517 *
1518 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1519 * implies that memory policies will not be taken in to account.
1520 */
1521static struct page *__alloc_buddy_huge_page(struct hstate *h,
1522 struct vm_area_struct *vma, unsigned long addr, int nid)
7893d1d5
AL
1523{
1524 struct page *page;
bf50bab2 1525 unsigned int r_nid;
7893d1d5 1526
bae7f4ae 1527 if (hstate_is_gigantic(h))
aa888a74
AK
1528 return NULL;
1529
099730d6
DH
1530 /*
1531 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1532 * This makes sure the caller is picking _one_ of the modes with which
1533 * we can call this function, not both.
1534 */
1535 if (vma || (addr != -1)) {
e0ec90ee
DH
1536 VM_WARN_ON_ONCE(addr == -1);
1537 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
099730d6 1538 }
d1c3fb1f
NA
1539 /*
1540 * Assume we will successfully allocate the surplus page to
1541 * prevent racing processes from causing the surplus to exceed
1542 * overcommit
1543 *
1544 * This however introduces a different race, where a process B
1545 * tries to grow the static hugepage pool while alloc_pages() is
1546 * called by process A. B will only examine the per-node
1547 * counters in determining if surplus huge pages can be
1548 * converted to normal huge pages in adjust_pool_surplus(). A
1549 * won't be able to increment the per-node counter, until the
1550 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1551 * no more huge pages can be converted from surplus to normal
1552 * state (and doesn't try to convert again). Thus, we have a
1553 * case where a surplus huge page exists, the pool is grown, and
1554 * the surplus huge page still exists after, even though it
1555 * should just have been converted to a normal huge page. This
1556 * does not leak memory, though, as the hugepage will be freed
1557 * once it is out of use. It also does not allow the counters to
1558 * go out of whack in adjust_pool_surplus() as we don't modify
1559 * the node values until we've gotten the hugepage and only the
1560 * per-node value is checked there.
1561 */
1562 spin_lock(&hugetlb_lock);
a5516438 1563 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
1564 spin_unlock(&hugetlb_lock);
1565 return NULL;
1566 } else {
a5516438
AK
1567 h->nr_huge_pages++;
1568 h->surplus_huge_pages++;
d1c3fb1f
NA
1569 }
1570 spin_unlock(&hugetlb_lock);
1571
099730d6 1572 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
d1c3fb1f
NA
1573
1574 spin_lock(&hugetlb_lock);
7893d1d5 1575 if (page) {
0edaecfa 1576 INIT_LIST_HEAD(&page->lru);
bf50bab2 1577 r_nid = page_to_nid(page);
f1e61557 1578 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
9dd540e2 1579 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
1580 /*
1581 * We incremented the global counters already
1582 */
bf50bab2
NH
1583 h->nr_huge_pages_node[r_nid]++;
1584 h->surplus_huge_pages_node[r_nid]++;
3b116300 1585 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 1586 } else {
a5516438
AK
1587 h->nr_huge_pages--;
1588 h->surplus_huge_pages--;
3b116300 1589 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 1590 }
d1c3fb1f 1591 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1592
1593 return page;
1594}
1595
099730d6
DH
1596/*
1597 * Allocate a huge page from 'nid'. Note, 'nid' may be
1598 * NUMA_NO_NODE, which means that it may be allocated
1599 * anywhere.
1600 */
e0ec90ee 1601static
099730d6
DH
1602struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1603{
1604 unsigned long addr = -1;
1605
1606 return __alloc_buddy_huge_page(h, NULL, addr, nid);
1607}
1608
1609/*
1610 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1611 */
e0ec90ee 1612static
099730d6
DH
1613struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1614 struct vm_area_struct *vma, unsigned long addr)
1615{
1616 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1617}
1618
bf50bab2
NH
1619/*
1620 * This allocation function is useful in the context where vma is irrelevant.
1621 * E.g. soft-offlining uses this function because it only cares physical
1622 * address of error page.
1623 */
1624struct page *alloc_huge_page_node(struct hstate *h, int nid)
1625{
4ef91848 1626 struct page *page = NULL;
bf50bab2
NH
1627
1628 spin_lock(&hugetlb_lock);
4ef91848
JK
1629 if (h->free_huge_pages - h->resv_huge_pages > 0)
1630 page = dequeue_huge_page_node(h, nid);
bf50bab2
NH
1631 spin_unlock(&hugetlb_lock);
1632
94ae8ba7 1633 if (!page)
099730d6 1634 page = __alloc_buddy_huge_page_no_mpol(h, nid);
bf50bab2
NH
1635
1636 return page;
1637}
1638
e4e574b7 1639/*
25985edc 1640 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1641 * of size 'delta'.
1642 */
a5516438 1643static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1644{
1645 struct list_head surplus_list;
1646 struct page *page, *tmp;
1647 int ret, i;
1648 int needed, allocated;
28073b02 1649 bool alloc_ok = true;
e4e574b7 1650
a5516438 1651 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1652 if (needed <= 0) {
a5516438 1653 h->resv_huge_pages += delta;
e4e574b7 1654 return 0;
ac09b3a1 1655 }
e4e574b7
AL
1656
1657 allocated = 0;
1658 INIT_LIST_HEAD(&surplus_list);
1659
1660 ret = -ENOMEM;
1661retry:
1662 spin_unlock(&hugetlb_lock);
1663 for (i = 0; i < needed; i++) {
099730d6 1664 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
28073b02
HD
1665 if (!page) {
1666 alloc_ok = false;
1667 break;
1668 }
e4e574b7
AL
1669 list_add(&page->lru, &surplus_list);
1670 }
28073b02 1671 allocated += i;
e4e574b7
AL
1672
1673 /*
1674 * After retaking hugetlb_lock, we need to recalculate 'needed'
1675 * because either resv_huge_pages or free_huge_pages may have changed.
1676 */
1677 spin_lock(&hugetlb_lock);
a5516438
AK
1678 needed = (h->resv_huge_pages + delta) -
1679 (h->free_huge_pages + allocated);
28073b02
HD
1680 if (needed > 0) {
1681 if (alloc_ok)
1682 goto retry;
1683 /*
1684 * We were not able to allocate enough pages to
1685 * satisfy the entire reservation so we free what
1686 * we've allocated so far.
1687 */
1688 goto free;
1689 }
e4e574b7
AL
1690 /*
1691 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1692 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1693 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1694 * allocator. Commit the entire reservation here to prevent another
1695 * process from stealing the pages as they are added to the pool but
1696 * before they are reserved.
e4e574b7
AL
1697 */
1698 needed += allocated;
a5516438 1699 h->resv_huge_pages += delta;
e4e574b7 1700 ret = 0;
a9869b83 1701
19fc3f0a 1702 /* Free the needed pages to the hugetlb pool */
e4e574b7 1703 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1704 if ((--needed) < 0)
1705 break;
a9869b83
NH
1706 /*
1707 * This page is now managed by the hugetlb allocator and has
1708 * no users -- drop the buddy allocator's reference.
1709 */
1710 put_page_testzero(page);
309381fe 1711 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1712 enqueue_huge_page(h, page);
19fc3f0a 1713 }
28073b02 1714free:
b0365c8d 1715 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1716
1717 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1718 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1719 put_page(page);
a9869b83 1720 spin_lock(&hugetlb_lock);
e4e574b7
AL
1721
1722 return ret;
1723}
1724
1725/*
1726 * When releasing a hugetlb pool reservation, any surplus pages that were
1727 * allocated to satisfy the reservation must be explicitly freed if they were
1728 * never used.
685f3457 1729 * Called with hugetlb_lock held.
e4e574b7 1730 */
a5516438
AK
1731static void return_unused_surplus_pages(struct hstate *h,
1732 unsigned long unused_resv_pages)
e4e574b7 1733{
e4e574b7
AL
1734 unsigned long nr_pages;
1735
ac09b3a1 1736 /* Uncommit the reservation */
a5516438 1737 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1738
aa888a74 1739 /* Cannot return gigantic pages currently */
bae7f4ae 1740 if (hstate_is_gigantic(h))
aa888a74
AK
1741 return;
1742
a5516438 1743 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1744
685f3457
LS
1745 /*
1746 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1747 * evenly across all nodes with memory. Iterate across these nodes
1748 * until we can no longer free unreserved surplus pages. This occurs
1749 * when the nodes with surplus pages have no free pages.
1750 * free_pool_huge_page() will balance the the freed pages across the
1751 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1752 */
1753 while (nr_pages--) {
8cebfcd0 1754 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
685f3457 1755 break;
7848a4bf 1756 cond_resched_lock(&hugetlb_lock);
e4e574b7
AL
1757 }
1758}
1759
5e911373 1760
c37f9fb1 1761/*
feba16e2 1762 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 1763 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
1764 *
1765 * vma_needs_reservation is called to determine if the huge page at addr
1766 * within the vma has an associated reservation. If a reservation is
1767 * needed, the value 1 is returned. The caller is then responsible for
1768 * managing the global reservation and subpool usage counts. After
1769 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
1770 * to add the page to the reservation map. If the page allocation fails,
1771 * the reservation must be ended instead of committed. vma_end_reservation
1772 * is called in such cases.
cf3ad20b
MK
1773 *
1774 * In the normal case, vma_commit_reservation returns the same value
1775 * as the preceding vma_needs_reservation call. The only time this
1776 * is not the case is if a reserve map was changed between calls. It
1777 * is the responsibility of the caller to notice the difference and
1778 * take appropriate action.
c37f9fb1 1779 */
5e911373
MK
1780enum vma_resv_mode {
1781 VMA_NEEDS_RESV,
1782 VMA_COMMIT_RESV,
feba16e2 1783 VMA_END_RESV,
5e911373 1784};
cf3ad20b
MK
1785static long __vma_reservation_common(struct hstate *h,
1786 struct vm_area_struct *vma, unsigned long addr,
5e911373 1787 enum vma_resv_mode mode)
c37f9fb1 1788{
4e35f483
JK
1789 struct resv_map *resv;
1790 pgoff_t idx;
cf3ad20b 1791 long ret;
c37f9fb1 1792
4e35f483
JK
1793 resv = vma_resv_map(vma);
1794 if (!resv)
84afd99b 1795 return 1;
c37f9fb1 1796
4e35f483 1797 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
1798 switch (mode) {
1799 case VMA_NEEDS_RESV:
cf3ad20b 1800 ret = region_chg(resv, idx, idx + 1);
5e911373
MK
1801 break;
1802 case VMA_COMMIT_RESV:
1803 ret = region_add(resv, idx, idx + 1);
1804 break;
feba16e2 1805 case VMA_END_RESV:
5e911373
MK
1806 region_abort(resv, idx, idx + 1);
1807 ret = 0;
1808 break;
1809 default:
1810 BUG();
1811 }
84afd99b 1812
4e35f483 1813 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 1814 return ret;
4e35f483 1815 else
cf3ad20b 1816 return ret < 0 ? ret : 0;
c37f9fb1 1817}
cf3ad20b
MK
1818
1819static long vma_needs_reservation(struct hstate *h,
a5516438 1820 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1821{
5e911373 1822 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 1823}
84afd99b 1824
cf3ad20b
MK
1825static long vma_commit_reservation(struct hstate *h,
1826 struct vm_area_struct *vma, unsigned long addr)
1827{
5e911373
MK
1828 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1829}
1830
feba16e2 1831static void vma_end_reservation(struct hstate *h,
5e911373
MK
1832 struct vm_area_struct *vma, unsigned long addr)
1833{
feba16e2 1834 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
1835}
1836
70c3547e 1837struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1838 unsigned long addr, int avoid_reserve)
1da177e4 1839{
90481622 1840 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1841 struct hstate *h = hstate_vma(vma);
348ea204 1842 struct page *page;
d85f69b0
MK
1843 long map_chg, map_commit;
1844 long gbl_chg;
6d76dcf4
AK
1845 int ret, idx;
1846 struct hugetlb_cgroup *h_cg;
a1e78772 1847
6d76dcf4 1848 idx = hstate_index(h);
a1e78772 1849 /*
d85f69b0
MK
1850 * Examine the region/reserve map to determine if the process
1851 * has a reservation for the page to be allocated. A return
1852 * code of zero indicates a reservation exists (no change).
a1e78772 1853 */
d85f69b0
MK
1854 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1855 if (map_chg < 0)
76dcee75 1856 return ERR_PTR(-ENOMEM);
d85f69b0
MK
1857
1858 /*
1859 * Processes that did not create the mapping will have no
1860 * reserves as indicated by the region/reserve map. Check
1861 * that the allocation will not exceed the subpool limit.
1862 * Allocations for MAP_NORESERVE mappings also need to be
1863 * checked against any subpool limit.
1864 */
1865 if (map_chg || avoid_reserve) {
1866 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1867 if (gbl_chg < 0) {
feba16e2 1868 vma_end_reservation(h, vma, addr);
76dcee75 1869 return ERR_PTR(-ENOSPC);
5e911373 1870 }
1da177e4 1871
d85f69b0
MK
1872 /*
1873 * Even though there was no reservation in the region/reserve
1874 * map, there could be reservations associated with the
1875 * subpool that can be used. This would be indicated if the
1876 * return value of hugepage_subpool_get_pages() is zero.
1877 * However, if avoid_reserve is specified we still avoid even
1878 * the subpool reservations.
1879 */
1880 if (avoid_reserve)
1881 gbl_chg = 1;
1882 }
1883
6d76dcf4 1884 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
1885 if (ret)
1886 goto out_subpool_put;
1887
1da177e4 1888 spin_lock(&hugetlb_lock);
d85f69b0
MK
1889 /*
1890 * glb_chg is passed to indicate whether or not a page must be taken
1891 * from the global free pool (global change). gbl_chg == 0 indicates
1892 * a reservation exists for the allocation.
1893 */
1894 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 1895 if (!page) {
94ae8ba7 1896 spin_unlock(&hugetlb_lock);
099730d6 1897 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
1898 if (!page)
1899 goto out_uncharge_cgroup;
a88c7695
NH
1900 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1901 SetPagePrivate(page);
1902 h->resv_huge_pages--;
1903 }
79dbb236
AK
1904 spin_lock(&hugetlb_lock);
1905 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 1906 /* Fall through */
68842c9b 1907 }
81a6fcae
JK
1908 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1909 spin_unlock(&hugetlb_lock);
348ea204 1910
90481622 1911 set_page_private(page, (unsigned long)spool);
90d8b7e6 1912
d85f69b0
MK
1913 map_commit = vma_commit_reservation(h, vma, addr);
1914 if (unlikely(map_chg > map_commit)) {
33039678
MK
1915 /*
1916 * The page was added to the reservation map between
1917 * vma_needs_reservation and vma_commit_reservation.
1918 * This indicates a race with hugetlb_reserve_pages.
1919 * Adjust for the subpool count incremented above AND
1920 * in hugetlb_reserve_pages for the same page. Also,
1921 * the reservation count added in hugetlb_reserve_pages
1922 * no longer applies.
1923 */
1924 long rsv_adjust;
1925
1926 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1927 hugetlb_acct_memory(h, -rsv_adjust);
1928 }
90d8b7e6 1929 return page;
8f34af6f
JZ
1930
1931out_uncharge_cgroup:
1932 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1933out_subpool_put:
d85f69b0 1934 if (map_chg || avoid_reserve)
8f34af6f 1935 hugepage_subpool_put_pages(spool, 1);
feba16e2 1936 vma_end_reservation(h, vma, addr);
8f34af6f 1937 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
1938}
1939
74060e4d
NH
1940/*
1941 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1942 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1943 * where no ERR_VALUE is expected to be returned.
1944 */
1945struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1946 unsigned long addr, int avoid_reserve)
1947{
1948 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1949 if (IS_ERR(page))
1950 page = NULL;
1951 return page;
1952}
1953
91f47662 1954int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1955{
1956 struct huge_bootmem_page *m;
b2261026 1957 int nr_nodes, node;
aa888a74 1958
b2261026 1959 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
1960 void *addr;
1961
8b89a116
GS
1962 addr = memblock_virt_alloc_try_nid_nopanic(
1963 huge_page_size(h), huge_page_size(h),
1964 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
1965 if (addr) {
1966 /*
1967 * Use the beginning of the huge page to store the
1968 * huge_bootmem_page struct (until gather_bootmem
1969 * puts them into the mem_map).
1970 */
1971 m = addr;
91f47662 1972 goto found;
aa888a74 1973 }
aa888a74
AK
1974 }
1975 return 0;
1976
1977found:
df994ead 1978 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74
AK
1979 /* Put them into a private list first because mem_map is not up yet */
1980 list_add(&m->list, &huge_boot_pages);
1981 m->hstate = h;
1982 return 1;
1983}
1984
d00181b9
KS
1985static void __init prep_compound_huge_page(struct page *page,
1986 unsigned int order)
18229df5
AW
1987{
1988 if (unlikely(order > (MAX_ORDER - 1)))
1989 prep_compound_gigantic_page(page, order);
1990 else
1991 prep_compound_page(page, order);
1992}
1993
aa888a74
AK
1994/* Put bootmem huge pages into the standard lists after mem_map is up */
1995static void __init gather_bootmem_prealloc(void)
1996{
1997 struct huge_bootmem_page *m;
1998
1999 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 2000 struct hstate *h = m->hstate;
ee8f248d
BB
2001 struct page *page;
2002
2003#ifdef CONFIG_HIGHMEM
2004 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
2005 memblock_free_late(__pa(m),
2006 sizeof(struct huge_bootmem_page));
ee8f248d
BB
2007#else
2008 page = virt_to_page(m);
2009#endif
aa888a74 2010 WARN_ON(page_count(page) != 1);
18229df5 2011 prep_compound_huge_page(page, h->order);
ef5a22be 2012 WARN_ON(PageReserved(page));
aa888a74 2013 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
2014 /*
2015 * If we had gigantic hugepages allocated at boot time, we need
2016 * to restore the 'stolen' pages to totalram_pages in order to
2017 * fix confusing memory reports from free(1) and another
2018 * side-effects, like CommitLimit going negative.
2019 */
bae7f4ae 2020 if (hstate_is_gigantic(h))
3dcc0571 2021 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
2022 }
2023}
2024
8faa8b07 2025static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2026{
2027 unsigned long i;
a5516438 2028
e5ff2159 2029 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2030 if (hstate_is_gigantic(h)) {
aa888a74
AK
2031 if (!alloc_bootmem_huge_page(h))
2032 break;
9b5e5d0f 2033 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 2034 &node_states[N_MEMORY]))
1da177e4 2035 break;
1da177e4 2036 }
8faa8b07 2037 h->max_huge_pages = i;
e5ff2159
AK
2038}
2039
2040static void __init hugetlb_init_hstates(void)
2041{
2042 struct hstate *h;
2043
2044 for_each_hstate(h) {
641844f5
NH
2045 if (minimum_order > huge_page_order(h))
2046 minimum_order = huge_page_order(h);
2047
8faa8b07 2048 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2049 if (!hstate_is_gigantic(h))
8faa8b07 2050 hugetlb_hstate_alloc_pages(h);
e5ff2159 2051 }
641844f5 2052 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2053}
2054
4abd32db
AK
2055static char * __init memfmt(char *buf, unsigned long n)
2056{
2057 if (n >= (1UL << 30))
2058 sprintf(buf, "%lu GB", n >> 30);
2059 else if (n >= (1UL << 20))
2060 sprintf(buf, "%lu MB", n >> 20);
2061 else
2062 sprintf(buf, "%lu KB", n >> 10);
2063 return buf;
2064}
2065
e5ff2159
AK
2066static void __init report_hugepages(void)
2067{
2068 struct hstate *h;
2069
2070 for_each_hstate(h) {
4abd32db 2071 char buf[32];
ffb22af5 2072 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
2073 memfmt(buf, huge_page_size(h)),
2074 h->free_huge_pages);
e5ff2159
AK
2075 }
2076}
2077
1da177e4 2078#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2079static void try_to_free_low(struct hstate *h, unsigned long count,
2080 nodemask_t *nodes_allowed)
1da177e4 2081{
4415cc8d
CL
2082 int i;
2083
bae7f4ae 2084 if (hstate_is_gigantic(h))
aa888a74
AK
2085 return;
2086
6ae11b27 2087 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2088 struct page *page, *next;
a5516438
AK
2089 struct list_head *freel = &h->hugepage_freelists[i];
2090 list_for_each_entry_safe(page, next, freel, lru) {
2091 if (count >= h->nr_huge_pages)
6b0c880d 2092 return;
1da177e4
LT
2093 if (PageHighMem(page))
2094 continue;
2095 list_del(&page->lru);
e5ff2159 2096 update_and_free_page(h, page);
a5516438
AK
2097 h->free_huge_pages--;
2098 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2099 }
2100 }
2101}
2102#else
6ae11b27
LS
2103static inline void try_to_free_low(struct hstate *h, unsigned long count,
2104 nodemask_t *nodes_allowed)
1da177e4
LT
2105{
2106}
2107#endif
2108
20a0307c
WF
2109/*
2110 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2111 * balanced by operating on them in a round-robin fashion.
2112 * Returns 1 if an adjustment was made.
2113 */
6ae11b27
LS
2114static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2115 int delta)
20a0307c 2116{
b2261026 2117 int nr_nodes, node;
20a0307c
WF
2118
2119 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2120
b2261026
JK
2121 if (delta < 0) {
2122 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2123 if (h->surplus_huge_pages_node[node])
2124 goto found;
e8c5c824 2125 }
b2261026
JK
2126 } else {
2127 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2128 if (h->surplus_huge_pages_node[node] <
2129 h->nr_huge_pages_node[node])
2130 goto found;
e8c5c824 2131 }
b2261026
JK
2132 }
2133 return 0;
20a0307c 2134
b2261026
JK
2135found:
2136 h->surplus_huge_pages += delta;
2137 h->surplus_huge_pages_node[node] += delta;
2138 return 1;
20a0307c
WF
2139}
2140
a5516438 2141#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
2142static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2143 nodemask_t *nodes_allowed)
1da177e4 2144{
7893d1d5 2145 unsigned long min_count, ret;
1da177e4 2146
944d9fec 2147 if (hstate_is_gigantic(h) && !gigantic_page_supported())
aa888a74
AK
2148 return h->max_huge_pages;
2149
7893d1d5
AL
2150 /*
2151 * Increase the pool size
2152 * First take pages out of surplus state. Then make up the
2153 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2154 *
d15c7c09 2155 * We might race with __alloc_buddy_huge_page() here and be unable
d1c3fb1f
NA
2156 * to convert a surplus huge page to a normal huge page. That is
2157 * not critical, though, it just means the overall size of the
2158 * pool might be one hugepage larger than it needs to be, but
2159 * within all the constraints specified by the sysctls.
7893d1d5 2160 */
1da177e4 2161 spin_lock(&hugetlb_lock);
a5516438 2162 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2163 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2164 break;
2165 }
2166
a5516438 2167 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2168 /*
2169 * If this allocation races such that we no longer need the
2170 * page, free_huge_page will handle it by freeing the page
2171 * and reducing the surplus.
2172 */
2173 spin_unlock(&hugetlb_lock);
944d9fec
LC
2174 if (hstate_is_gigantic(h))
2175 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2176 else
2177 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
2178 spin_lock(&hugetlb_lock);
2179 if (!ret)
2180 goto out;
2181
536240f2
MG
2182 /* Bail for signals. Probably ctrl-c from user */
2183 if (signal_pending(current))
2184 goto out;
7893d1d5 2185 }
7893d1d5
AL
2186
2187 /*
2188 * Decrease the pool size
2189 * First return free pages to the buddy allocator (being careful
2190 * to keep enough around to satisfy reservations). Then place
2191 * pages into surplus state as needed so the pool will shrink
2192 * to the desired size as pages become free.
d1c3fb1f
NA
2193 *
2194 * By placing pages into the surplus state independent of the
2195 * overcommit value, we are allowing the surplus pool size to
2196 * exceed overcommit. There are few sane options here. Since
d15c7c09 2197 * __alloc_buddy_huge_page() is checking the global counter,
d1c3fb1f
NA
2198 * though, we'll note that we're not allowed to exceed surplus
2199 * and won't grow the pool anywhere else. Not until one of the
2200 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2201 */
a5516438 2202 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2203 min_count = max(count, min_count);
6ae11b27 2204 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2205 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2206 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2207 break;
55f67141 2208 cond_resched_lock(&hugetlb_lock);
1da177e4 2209 }
a5516438 2210 while (count < persistent_huge_pages(h)) {
6ae11b27 2211 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2212 break;
2213 }
2214out:
a5516438 2215 ret = persistent_huge_pages(h);
1da177e4 2216 spin_unlock(&hugetlb_lock);
7893d1d5 2217 return ret;
1da177e4
LT
2218}
2219
a3437870
NA
2220#define HSTATE_ATTR_RO(_name) \
2221 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2222
2223#define HSTATE_ATTR(_name) \
2224 static struct kobj_attribute _name##_attr = \
2225 __ATTR(_name, 0644, _name##_show, _name##_store)
2226
2227static struct kobject *hugepages_kobj;
2228static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2229
9a305230
LS
2230static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2231
2232static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2233{
2234 int i;
9a305230 2235
a3437870 2236 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2237 if (hstate_kobjs[i] == kobj) {
2238 if (nidp)
2239 *nidp = NUMA_NO_NODE;
a3437870 2240 return &hstates[i];
9a305230
LS
2241 }
2242
2243 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2244}
2245
06808b08 2246static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2247 struct kobj_attribute *attr, char *buf)
2248{
9a305230
LS
2249 struct hstate *h;
2250 unsigned long nr_huge_pages;
2251 int nid;
2252
2253 h = kobj_to_hstate(kobj, &nid);
2254 if (nid == NUMA_NO_NODE)
2255 nr_huge_pages = h->nr_huge_pages;
2256 else
2257 nr_huge_pages = h->nr_huge_pages_node[nid];
2258
2259 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2260}
adbe8726 2261
238d3c13
DR
2262static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2263 struct hstate *h, int nid,
2264 unsigned long count, size_t len)
a3437870
NA
2265{
2266 int err;
bad44b5b 2267 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 2268
944d9fec 2269 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
adbe8726
EM
2270 err = -EINVAL;
2271 goto out;
2272 }
2273
9a305230
LS
2274 if (nid == NUMA_NO_NODE) {
2275 /*
2276 * global hstate attribute
2277 */
2278 if (!(obey_mempolicy &&
2279 init_nodemask_of_mempolicy(nodes_allowed))) {
2280 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2281 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
2282 }
2283 } else if (nodes_allowed) {
2284 /*
2285 * per node hstate attribute: adjust count to global,
2286 * but restrict alloc/free to the specified node.
2287 */
2288 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2289 init_nodemask_of_node(nodes_allowed, nid);
2290 } else
8cebfcd0 2291 nodes_allowed = &node_states[N_MEMORY];
9a305230 2292
06808b08 2293 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 2294
8cebfcd0 2295 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2296 NODEMASK_FREE(nodes_allowed);
2297
2298 return len;
adbe8726
EM
2299out:
2300 NODEMASK_FREE(nodes_allowed);
2301 return err;
06808b08
LS
2302}
2303
238d3c13
DR
2304static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2305 struct kobject *kobj, const char *buf,
2306 size_t len)
2307{
2308 struct hstate *h;
2309 unsigned long count;
2310 int nid;
2311 int err;
2312
2313 err = kstrtoul(buf, 10, &count);
2314 if (err)
2315 return err;
2316
2317 h = kobj_to_hstate(kobj, &nid);
2318 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2319}
2320
06808b08
LS
2321static ssize_t nr_hugepages_show(struct kobject *kobj,
2322 struct kobj_attribute *attr, char *buf)
2323{
2324 return nr_hugepages_show_common(kobj, attr, buf);
2325}
2326
2327static ssize_t nr_hugepages_store(struct kobject *kobj,
2328 struct kobj_attribute *attr, const char *buf, size_t len)
2329{
238d3c13 2330 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2331}
2332HSTATE_ATTR(nr_hugepages);
2333
06808b08
LS
2334#ifdef CONFIG_NUMA
2335
2336/*
2337 * hstate attribute for optionally mempolicy-based constraint on persistent
2338 * huge page alloc/free.
2339 */
2340static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2341 struct kobj_attribute *attr, char *buf)
2342{
2343 return nr_hugepages_show_common(kobj, attr, buf);
2344}
2345
2346static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2347 struct kobj_attribute *attr, const char *buf, size_t len)
2348{
238d3c13 2349 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2350}
2351HSTATE_ATTR(nr_hugepages_mempolicy);
2352#endif
2353
2354
a3437870
NA
2355static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2356 struct kobj_attribute *attr, char *buf)
2357{
9a305230 2358 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2359 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2360}
adbe8726 2361
a3437870
NA
2362static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2363 struct kobj_attribute *attr, const char *buf, size_t count)
2364{
2365 int err;
2366 unsigned long input;
9a305230 2367 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2368
bae7f4ae 2369 if (hstate_is_gigantic(h))
adbe8726
EM
2370 return -EINVAL;
2371
3dbb95f7 2372 err = kstrtoul(buf, 10, &input);
a3437870 2373 if (err)
73ae31e5 2374 return err;
a3437870
NA
2375
2376 spin_lock(&hugetlb_lock);
2377 h->nr_overcommit_huge_pages = input;
2378 spin_unlock(&hugetlb_lock);
2379
2380 return count;
2381}
2382HSTATE_ATTR(nr_overcommit_hugepages);
2383
2384static ssize_t free_hugepages_show(struct kobject *kobj,
2385 struct kobj_attribute *attr, char *buf)
2386{
9a305230
LS
2387 struct hstate *h;
2388 unsigned long free_huge_pages;
2389 int nid;
2390
2391 h = kobj_to_hstate(kobj, &nid);
2392 if (nid == NUMA_NO_NODE)
2393 free_huge_pages = h->free_huge_pages;
2394 else
2395 free_huge_pages = h->free_huge_pages_node[nid];
2396
2397 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2398}
2399HSTATE_ATTR_RO(free_hugepages);
2400
2401static ssize_t resv_hugepages_show(struct kobject *kobj,
2402 struct kobj_attribute *attr, char *buf)
2403{
9a305230 2404 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2405 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2406}
2407HSTATE_ATTR_RO(resv_hugepages);
2408
2409static ssize_t surplus_hugepages_show(struct kobject *kobj,
2410 struct kobj_attribute *attr, char *buf)
2411{
9a305230
LS
2412 struct hstate *h;
2413 unsigned long surplus_huge_pages;
2414 int nid;
2415
2416 h = kobj_to_hstate(kobj, &nid);
2417 if (nid == NUMA_NO_NODE)
2418 surplus_huge_pages = h->surplus_huge_pages;
2419 else
2420 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2421
2422 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2423}
2424HSTATE_ATTR_RO(surplus_hugepages);
2425
2426static struct attribute *hstate_attrs[] = {
2427 &nr_hugepages_attr.attr,
2428 &nr_overcommit_hugepages_attr.attr,
2429 &free_hugepages_attr.attr,
2430 &resv_hugepages_attr.attr,
2431 &surplus_hugepages_attr.attr,
06808b08
LS
2432#ifdef CONFIG_NUMA
2433 &nr_hugepages_mempolicy_attr.attr,
2434#endif
a3437870
NA
2435 NULL,
2436};
2437
2438static struct attribute_group hstate_attr_group = {
2439 .attrs = hstate_attrs,
2440};
2441
094e9539
JM
2442static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2443 struct kobject **hstate_kobjs,
2444 struct attribute_group *hstate_attr_group)
a3437870
NA
2445{
2446 int retval;
972dc4de 2447 int hi = hstate_index(h);
a3437870 2448
9a305230
LS
2449 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2450 if (!hstate_kobjs[hi])
a3437870
NA
2451 return -ENOMEM;
2452
9a305230 2453 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2454 if (retval)
9a305230 2455 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2456
2457 return retval;
2458}
2459
2460static void __init hugetlb_sysfs_init(void)
2461{
2462 struct hstate *h;
2463 int err;
2464
2465 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2466 if (!hugepages_kobj)
2467 return;
2468
2469 for_each_hstate(h) {
9a305230
LS
2470 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2471 hstate_kobjs, &hstate_attr_group);
a3437870 2472 if (err)
ffb22af5 2473 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2474 }
2475}
2476
9a305230
LS
2477#ifdef CONFIG_NUMA
2478
2479/*
2480 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2481 * with node devices in node_devices[] using a parallel array. The array
2482 * index of a node device or _hstate == node id.
2483 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2484 * the base kernel, on the hugetlb module.
2485 */
2486struct node_hstate {
2487 struct kobject *hugepages_kobj;
2488 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2489};
b4e289a6 2490static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
2491
2492/*
10fbcf4c 2493 * A subset of global hstate attributes for node devices
9a305230
LS
2494 */
2495static struct attribute *per_node_hstate_attrs[] = {
2496 &nr_hugepages_attr.attr,
2497 &free_hugepages_attr.attr,
2498 &surplus_hugepages_attr.attr,
2499 NULL,
2500};
2501
2502static struct attribute_group per_node_hstate_attr_group = {
2503 .attrs = per_node_hstate_attrs,
2504};
2505
2506/*
10fbcf4c 2507 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2508 * Returns node id via non-NULL nidp.
2509 */
2510static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2511{
2512 int nid;
2513
2514 for (nid = 0; nid < nr_node_ids; nid++) {
2515 struct node_hstate *nhs = &node_hstates[nid];
2516 int i;
2517 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2518 if (nhs->hstate_kobjs[i] == kobj) {
2519 if (nidp)
2520 *nidp = nid;
2521 return &hstates[i];
2522 }
2523 }
2524
2525 BUG();
2526 return NULL;
2527}
2528
2529/*
10fbcf4c 2530 * Unregister hstate attributes from a single node device.
9a305230
LS
2531 * No-op if no hstate attributes attached.
2532 */
3cd8b44f 2533static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2534{
2535 struct hstate *h;
10fbcf4c 2536 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2537
2538 if (!nhs->hugepages_kobj)
9b5e5d0f 2539 return; /* no hstate attributes */
9a305230 2540
972dc4de
AK
2541 for_each_hstate(h) {
2542 int idx = hstate_index(h);
2543 if (nhs->hstate_kobjs[idx]) {
2544 kobject_put(nhs->hstate_kobjs[idx]);
2545 nhs->hstate_kobjs[idx] = NULL;
9a305230 2546 }
972dc4de 2547 }
9a305230
LS
2548
2549 kobject_put(nhs->hugepages_kobj);
2550 nhs->hugepages_kobj = NULL;
2551}
2552
9a305230
LS
2553
2554/*
10fbcf4c 2555 * Register hstate attributes for a single node device.
9a305230
LS
2556 * No-op if attributes already registered.
2557 */
3cd8b44f 2558static void hugetlb_register_node(struct node *node)
9a305230
LS
2559{
2560 struct hstate *h;
10fbcf4c 2561 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2562 int err;
2563
2564 if (nhs->hugepages_kobj)
2565 return; /* already allocated */
2566
2567 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2568 &node->dev.kobj);
9a305230
LS
2569 if (!nhs->hugepages_kobj)
2570 return;
2571
2572 for_each_hstate(h) {
2573 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2574 nhs->hstate_kobjs,
2575 &per_node_hstate_attr_group);
2576 if (err) {
ffb22af5
AM
2577 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2578 h->name, node->dev.id);
9a305230
LS
2579 hugetlb_unregister_node(node);
2580 break;
2581 }
2582 }
2583}
2584
2585/*
9b5e5d0f 2586 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2587 * devices of nodes that have memory. All on-line nodes should have
2588 * registered their associated device by this time.
9a305230 2589 */
7d9ca000 2590static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2591{
2592 int nid;
2593
8cebfcd0 2594 for_each_node_state(nid, N_MEMORY) {
8732794b 2595 struct node *node = node_devices[nid];
10fbcf4c 2596 if (node->dev.id == nid)
9a305230
LS
2597 hugetlb_register_node(node);
2598 }
2599
2600 /*
10fbcf4c 2601 * Let the node device driver know we're here so it can
9a305230
LS
2602 * [un]register hstate attributes on node hotplug.
2603 */
2604 register_hugetlbfs_with_node(hugetlb_register_node,
2605 hugetlb_unregister_node);
2606}
2607#else /* !CONFIG_NUMA */
2608
2609static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2610{
2611 BUG();
2612 if (nidp)
2613 *nidp = -1;
2614 return NULL;
2615}
2616
9a305230
LS
2617static void hugetlb_register_all_nodes(void) { }
2618
2619#endif
2620
a3437870
NA
2621static int __init hugetlb_init(void)
2622{
8382d914
DB
2623 int i;
2624
457c1b27 2625 if (!hugepages_supported())
0ef89d25 2626 return 0;
a3437870 2627
e11bfbfc
NP
2628 if (!size_to_hstate(default_hstate_size)) {
2629 default_hstate_size = HPAGE_SIZE;
2630 if (!size_to_hstate(default_hstate_size))
2631 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2632 }
972dc4de 2633 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
f8b74815
VT
2634 if (default_hstate_max_huge_pages) {
2635 if (!default_hstate.max_huge_pages)
2636 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2637 }
a3437870
NA
2638
2639 hugetlb_init_hstates();
aa888a74 2640 gather_bootmem_prealloc();
a3437870
NA
2641 report_hugepages();
2642
2643 hugetlb_sysfs_init();
9a305230 2644 hugetlb_register_all_nodes();
7179e7bf 2645 hugetlb_cgroup_file_init();
9a305230 2646
8382d914
DB
2647#ifdef CONFIG_SMP
2648 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2649#else
2650 num_fault_mutexes = 1;
2651#endif
c672c7f2 2652 hugetlb_fault_mutex_table =
8382d914 2653 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
c672c7f2 2654 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
2655
2656 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 2657 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
2658 return 0;
2659}
3e89e1c5 2660subsys_initcall(hugetlb_init);
a3437870
NA
2661
2662/* Should be called on processing a hugepagesz=... option */
9fee021d
VT
2663void __init hugetlb_bad_size(void)
2664{
2665 parsed_valid_hugepagesz = false;
2666}
2667
d00181b9 2668void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
2669{
2670 struct hstate *h;
8faa8b07
AK
2671 unsigned long i;
2672
a3437870 2673 if (size_to_hstate(PAGE_SIZE << order)) {
598d8091 2674 pr_warn("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2675 return;
2676 }
47d38344 2677 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2678 BUG_ON(order == 0);
47d38344 2679 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2680 h->order = order;
2681 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2682 h->nr_huge_pages = 0;
2683 h->free_huge_pages = 0;
2684 for (i = 0; i < MAX_NUMNODES; ++i)
2685 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2686 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
2687 h->next_nid_to_alloc = first_memory_node;
2688 h->next_nid_to_free = first_memory_node;
a3437870
NA
2689 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2690 huge_page_size(h)/1024);
8faa8b07 2691
a3437870
NA
2692 parsed_hstate = h;
2693}
2694
e11bfbfc 2695static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2696{
2697 unsigned long *mhp;
8faa8b07 2698 static unsigned long *last_mhp;
a3437870 2699
9fee021d
VT
2700 if (!parsed_valid_hugepagesz) {
2701 pr_warn("hugepages = %s preceded by "
2702 "an unsupported hugepagesz, ignoring\n", s);
2703 parsed_valid_hugepagesz = true;
2704 return 1;
2705 }
a3437870 2706 /*
47d38344 2707 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2708 * so this hugepages= parameter goes to the "default hstate".
2709 */
9fee021d 2710 else if (!hugetlb_max_hstate)
a3437870
NA
2711 mhp = &default_hstate_max_huge_pages;
2712 else
2713 mhp = &parsed_hstate->max_huge_pages;
2714
8faa8b07 2715 if (mhp == last_mhp) {
598d8091 2716 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2717 return 1;
2718 }
2719
a3437870
NA
2720 if (sscanf(s, "%lu", mhp) <= 0)
2721 *mhp = 0;
2722
8faa8b07
AK
2723 /*
2724 * Global state is always initialized later in hugetlb_init.
2725 * But we need to allocate >= MAX_ORDER hstates here early to still
2726 * use the bootmem allocator.
2727 */
47d38344 2728 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2729 hugetlb_hstate_alloc_pages(parsed_hstate);
2730
2731 last_mhp = mhp;
2732
a3437870
NA
2733 return 1;
2734}
e11bfbfc
NP
2735__setup("hugepages=", hugetlb_nrpages_setup);
2736
2737static int __init hugetlb_default_setup(char *s)
2738{
2739 default_hstate_size = memparse(s, &s);
2740 return 1;
2741}
2742__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2743
8a213460
NA
2744static unsigned int cpuset_mems_nr(unsigned int *array)
2745{
2746 int node;
2747 unsigned int nr = 0;
2748
2749 for_each_node_mask(node, cpuset_current_mems_allowed)
2750 nr += array[node];
2751
2752 return nr;
2753}
2754
2755#ifdef CONFIG_SYSCTL
06808b08
LS
2756static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2757 struct ctl_table *table, int write,
2758 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2759{
e5ff2159 2760 struct hstate *h = &default_hstate;
238d3c13 2761 unsigned long tmp = h->max_huge_pages;
08d4a246 2762 int ret;
e5ff2159 2763
457c1b27 2764 if (!hugepages_supported())
86613628 2765 return -EOPNOTSUPP;
457c1b27 2766
e5ff2159
AK
2767 table->data = &tmp;
2768 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2769 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2770 if (ret)
2771 goto out;
e5ff2159 2772
238d3c13
DR
2773 if (write)
2774 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2775 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2776out:
2777 return ret;
1da177e4 2778}
396faf03 2779
06808b08
LS
2780int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2781 void __user *buffer, size_t *length, loff_t *ppos)
2782{
2783
2784 return hugetlb_sysctl_handler_common(false, table, write,
2785 buffer, length, ppos);
2786}
2787
2788#ifdef CONFIG_NUMA
2789int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2790 void __user *buffer, size_t *length, loff_t *ppos)
2791{
2792 return hugetlb_sysctl_handler_common(true, table, write,
2793 buffer, length, ppos);
2794}
2795#endif /* CONFIG_NUMA */
2796
a3d0c6aa 2797int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2798 void __user *buffer,
a3d0c6aa
NA
2799 size_t *length, loff_t *ppos)
2800{
a5516438 2801 struct hstate *h = &default_hstate;
e5ff2159 2802 unsigned long tmp;
08d4a246 2803 int ret;
e5ff2159 2804
457c1b27 2805 if (!hugepages_supported())
86613628 2806 return -EOPNOTSUPP;
457c1b27 2807
c033a93c 2808 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2809
bae7f4ae 2810 if (write && hstate_is_gigantic(h))
adbe8726
EM
2811 return -EINVAL;
2812
e5ff2159
AK
2813 table->data = &tmp;
2814 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2815 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2816 if (ret)
2817 goto out;
e5ff2159
AK
2818
2819 if (write) {
2820 spin_lock(&hugetlb_lock);
2821 h->nr_overcommit_huge_pages = tmp;
2822 spin_unlock(&hugetlb_lock);
2823 }
08d4a246
MH
2824out:
2825 return ret;
a3d0c6aa
NA
2826}
2827
1da177e4
LT
2828#endif /* CONFIG_SYSCTL */
2829
e1759c21 2830void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2831{
a5516438 2832 struct hstate *h = &default_hstate;
457c1b27
NA
2833 if (!hugepages_supported())
2834 return;
e1759c21 2835 seq_printf(m,
4f98a2fe
RR
2836 "HugePages_Total: %5lu\n"
2837 "HugePages_Free: %5lu\n"
2838 "HugePages_Rsvd: %5lu\n"
2839 "HugePages_Surp: %5lu\n"
2840 "Hugepagesize: %8lu kB\n",
a5516438
AK
2841 h->nr_huge_pages,
2842 h->free_huge_pages,
2843 h->resv_huge_pages,
2844 h->surplus_huge_pages,
2845 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2846}
2847
2848int hugetlb_report_node_meminfo(int nid, char *buf)
2849{
a5516438 2850 struct hstate *h = &default_hstate;
457c1b27
NA
2851 if (!hugepages_supported())
2852 return 0;
1da177e4
LT
2853 return sprintf(buf,
2854 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2855 "Node %d HugePages_Free: %5u\n"
2856 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2857 nid, h->nr_huge_pages_node[nid],
2858 nid, h->free_huge_pages_node[nid],
2859 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2860}
2861
949f7ec5
DR
2862void hugetlb_show_meminfo(void)
2863{
2864 struct hstate *h;
2865 int nid;
2866
457c1b27
NA
2867 if (!hugepages_supported())
2868 return;
2869
949f7ec5
DR
2870 for_each_node_state(nid, N_MEMORY)
2871 for_each_hstate(h)
2872 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2873 nid,
2874 h->nr_huge_pages_node[nid],
2875 h->free_huge_pages_node[nid],
2876 h->surplus_huge_pages_node[nid],
2877 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2878}
2879
5d317b2b
NH
2880void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2881{
2882 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2883 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2884}
2885
1da177e4
LT
2886/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2887unsigned long hugetlb_total_pages(void)
2888{
d0028588
WL
2889 struct hstate *h;
2890 unsigned long nr_total_pages = 0;
2891
2892 for_each_hstate(h)
2893 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2894 return nr_total_pages;
1da177e4 2895}
1da177e4 2896
a5516438 2897static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2898{
2899 int ret = -ENOMEM;
2900
2901 spin_lock(&hugetlb_lock);
2902 /*
2903 * When cpuset is configured, it breaks the strict hugetlb page
2904 * reservation as the accounting is done on a global variable. Such
2905 * reservation is completely rubbish in the presence of cpuset because
2906 * the reservation is not checked against page availability for the
2907 * current cpuset. Application can still potentially OOM'ed by kernel
2908 * with lack of free htlb page in cpuset that the task is in.
2909 * Attempt to enforce strict accounting with cpuset is almost
2910 * impossible (or too ugly) because cpuset is too fluid that
2911 * task or memory node can be dynamically moved between cpusets.
2912 *
2913 * The change of semantics for shared hugetlb mapping with cpuset is
2914 * undesirable. However, in order to preserve some of the semantics,
2915 * we fall back to check against current free page availability as
2916 * a best attempt and hopefully to minimize the impact of changing
2917 * semantics that cpuset has.
2918 */
2919 if (delta > 0) {
a5516438 2920 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2921 goto out;
2922
a5516438
AK
2923 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2924 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2925 goto out;
2926 }
2927 }
2928
2929 ret = 0;
2930 if (delta < 0)
a5516438 2931 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2932
2933out:
2934 spin_unlock(&hugetlb_lock);
2935 return ret;
2936}
2937
84afd99b
AW
2938static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2939{
f522c3ac 2940 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
2941
2942 /*
2943 * This new VMA should share its siblings reservation map if present.
2944 * The VMA will only ever have a valid reservation map pointer where
2945 * it is being copied for another still existing VMA. As that VMA
25985edc 2946 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2947 * after this open call completes. It is therefore safe to take a
2948 * new reference here without additional locking.
2949 */
4e35f483 2950 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 2951 kref_get(&resv->refs);
84afd99b
AW
2952}
2953
a1e78772
MG
2954static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2955{
a5516438 2956 struct hstate *h = hstate_vma(vma);
f522c3ac 2957 struct resv_map *resv = vma_resv_map(vma);
90481622 2958 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 2959 unsigned long reserve, start, end;
1c5ecae3 2960 long gbl_reserve;
84afd99b 2961
4e35f483
JK
2962 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2963 return;
84afd99b 2964
4e35f483
JK
2965 start = vma_hugecache_offset(h, vma, vma->vm_start);
2966 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 2967
4e35f483 2968 reserve = (end - start) - region_count(resv, start, end);
84afd99b 2969
4e35f483
JK
2970 kref_put(&resv->refs, resv_map_release);
2971
2972 if (reserve) {
1c5ecae3
MK
2973 /*
2974 * Decrement reserve counts. The global reserve count may be
2975 * adjusted if the subpool has a minimum size.
2976 */
2977 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2978 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 2979 }
a1e78772
MG
2980}
2981
1da177e4
LT
2982/*
2983 * We cannot handle pagefaults against hugetlb pages at all. They cause
2984 * handle_mm_fault() to try to instantiate regular-sized pages in the
2985 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2986 * this far.
2987 */
d0217ac0 2988static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2989{
2990 BUG();
d0217ac0 2991 return 0;
1da177e4
LT
2992}
2993
f0f37e2f 2994const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2995 .fault = hugetlb_vm_op_fault,
84afd99b 2996 .open = hugetlb_vm_op_open,
a1e78772 2997 .close = hugetlb_vm_op_close,
1da177e4
LT
2998};
2999
1e8f889b
DG
3000static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3001 int writable)
63551ae0
DG
3002{
3003 pte_t entry;
3004
1e8f889b 3005 if (writable) {
106c992a
GS
3006 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3007 vma->vm_page_prot)));
63551ae0 3008 } else {
106c992a
GS
3009 entry = huge_pte_wrprotect(mk_huge_pte(page,
3010 vma->vm_page_prot));
63551ae0
DG
3011 }
3012 entry = pte_mkyoung(entry);
3013 entry = pte_mkhuge(entry);
d9ed9faa 3014 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3015
3016 return entry;
3017}
3018
1e8f889b
DG
3019static void set_huge_ptep_writable(struct vm_area_struct *vma,
3020 unsigned long address, pte_t *ptep)
3021{
3022 pte_t entry;
3023
106c992a 3024 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3025 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3026 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3027}
3028
4a705fef
NH
3029static int is_hugetlb_entry_migration(pte_t pte)
3030{
3031 swp_entry_t swp;
3032
3033 if (huge_pte_none(pte) || pte_present(pte))
3034 return 0;
3035 swp = pte_to_swp_entry(pte);
3036 if (non_swap_entry(swp) && is_migration_entry(swp))
3037 return 1;
3038 else
3039 return 0;
3040}
3041
3042static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3043{
3044 swp_entry_t swp;
3045
3046 if (huge_pte_none(pte) || pte_present(pte))
3047 return 0;
3048 swp = pte_to_swp_entry(pte);
3049 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3050 return 1;
3051 else
3052 return 0;
3053}
1e8f889b 3054
63551ae0
DG
3055int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3056 struct vm_area_struct *vma)
3057{
3058 pte_t *src_pte, *dst_pte, entry;
3059 struct page *ptepage;
1c59827d 3060 unsigned long addr;
1e8f889b 3061 int cow;
a5516438
AK
3062 struct hstate *h = hstate_vma(vma);
3063 unsigned long sz = huge_page_size(h);
e8569dd2
AS
3064 unsigned long mmun_start; /* For mmu_notifiers */
3065 unsigned long mmun_end; /* For mmu_notifiers */
3066 int ret = 0;
1e8f889b
DG
3067
3068 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3069
e8569dd2
AS
3070 mmun_start = vma->vm_start;
3071 mmun_end = vma->vm_end;
3072 if (cow)
3073 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3074
a5516438 3075 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3076 spinlock_t *src_ptl, *dst_ptl;
c74df32c
HD
3077 src_pte = huge_pte_offset(src, addr);
3078 if (!src_pte)
3079 continue;
a5516438 3080 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3081 if (!dst_pte) {
3082 ret = -ENOMEM;
3083 break;
3084 }
c5c99429
LW
3085
3086 /* If the pagetables are shared don't copy or take references */
3087 if (dst_pte == src_pte)
3088 continue;
3089
cb900f41
KS
3090 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3091 src_ptl = huge_pte_lockptr(h, src, src_pte);
3092 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef
NH
3093 entry = huge_ptep_get(src_pte);
3094 if (huge_pte_none(entry)) { /* skip none entry */
3095 ;
3096 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3097 is_hugetlb_entry_hwpoisoned(entry))) {
3098 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3099
3100 if (is_write_migration_entry(swp_entry) && cow) {
3101 /*
3102 * COW mappings require pages in both
3103 * parent and child to be set to read.
3104 */
3105 make_migration_entry_read(&swp_entry);
3106 entry = swp_entry_to_pte(swp_entry);
3107 set_huge_pte_at(src, addr, src_pte, entry);
3108 }
3109 set_huge_pte_at(dst, addr, dst_pte, entry);
3110 } else {
34ee645e 3111 if (cow) {
7f2e9525 3112 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e
JR
3113 mmu_notifier_invalidate_range(src, mmun_start,
3114 mmun_end);
3115 }
0253d634 3116 entry = huge_ptep_get(src_pte);
1c59827d
HD
3117 ptepage = pte_page(entry);
3118 get_page(ptepage);
53f9263b 3119 page_dup_rmap(ptepage, true);
1c59827d 3120 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3121 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3122 }
cb900f41
KS
3123 spin_unlock(src_ptl);
3124 spin_unlock(dst_ptl);
63551ae0 3125 }
63551ae0 3126
e8569dd2
AS
3127 if (cow)
3128 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3129
3130 return ret;
63551ae0
DG
3131}
3132
24669e58
AK
3133void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3134 unsigned long start, unsigned long end,
3135 struct page *ref_page)
63551ae0 3136{
24669e58 3137 int force_flush = 0;
63551ae0
DG
3138 struct mm_struct *mm = vma->vm_mm;
3139 unsigned long address;
c7546f8f 3140 pte_t *ptep;
63551ae0 3141 pte_t pte;
cb900f41 3142 spinlock_t *ptl;
63551ae0 3143 struct page *page;
a5516438
AK
3144 struct hstate *h = hstate_vma(vma);
3145 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
3146 const unsigned long mmun_start = start; /* For mmu_notifiers */
3147 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 3148
63551ae0 3149 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3150 BUG_ON(start & ~huge_page_mask(h));
3151 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3152
24669e58 3153 tlb_start_vma(tlb, vma);
2ec74c3e 3154 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
569f48b8 3155 address = start;
24669e58 3156again:
569f48b8 3157 for (; address < end; address += sz) {
c7546f8f 3158 ptep = huge_pte_offset(mm, address);
4c887265 3159 if (!ptep)
c7546f8f
DG
3160 continue;
3161
cb900f41 3162 ptl = huge_pte_lock(h, mm, ptep);
39dde65c 3163 if (huge_pmd_unshare(mm, &address, ptep))
cb900f41 3164 goto unlock;
39dde65c 3165
6629326b
HD
3166 pte = huge_ptep_get(ptep);
3167 if (huge_pte_none(pte))
cb900f41 3168 goto unlock;
6629326b
HD
3169
3170 /*
9fbc1f63
NH
3171 * Migrating hugepage or HWPoisoned hugepage is already
3172 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3173 */
9fbc1f63 3174 if (unlikely(!pte_present(pte))) {
106c992a 3175 huge_pte_clear(mm, address, ptep);
cb900f41 3176 goto unlock;
8c4894c6 3177 }
6629326b
HD
3178
3179 page = pte_page(pte);
04f2cbe3
MG
3180 /*
3181 * If a reference page is supplied, it is because a specific
3182 * page is being unmapped, not a range. Ensure the page we
3183 * are about to unmap is the actual page of interest.
3184 */
3185 if (ref_page) {
04f2cbe3 3186 if (page != ref_page)
cb900f41 3187 goto unlock;
04f2cbe3
MG
3188
3189 /*
3190 * Mark the VMA as having unmapped its page so that
3191 * future faults in this VMA will fail rather than
3192 * looking like data was lost
3193 */
3194 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3195 }
3196
c7546f8f 3197 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 3198 tlb_remove_tlb_entry(tlb, ptep, address);
106c992a 3199 if (huge_pte_dirty(pte))
6649a386 3200 set_page_dirty(page);
9e81130b 3201
5d317b2b 3202 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3203 page_remove_rmap(page, true);
24669e58 3204 force_flush = !__tlb_remove_page(tlb, page);
cb900f41 3205 if (force_flush) {
569f48b8 3206 address += sz;
cb900f41 3207 spin_unlock(ptl);
24669e58 3208 break;
cb900f41 3209 }
9e81130b 3210 /* Bail out after unmapping reference page if supplied */
cb900f41
KS
3211 if (ref_page) {
3212 spin_unlock(ptl);
9e81130b 3213 break;
cb900f41
KS
3214 }
3215unlock:
3216 spin_unlock(ptl);
63551ae0 3217 }
24669e58
AK
3218 /*
3219 * mmu_gather ran out of room to batch pages, we break out of
3220 * the PTE lock to avoid doing the potential expensive TLB invalidate
3221 * and page-free while holding it.
3222 */
3223 if (force_flush) {
3224 force_flush = 0;
3225 tlb_flush_mmu(tlb);
3226 if (address < end && !ref_page)
3227 goto again;
fe1668ae 3228 }
2ec74c3e 3229 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 3230 tlb_end_vma(tlb, vma);
1da177e4 3231}
63551ae0 3232
d833352a
MG
3233void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3234 struct vm_area_struct *vma, unsigned long start,
3235 unsigned long end, struct page *ref_page)
3236{
3237 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3238
3239 /*
3240 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3241 * test will fail on a vma being torn down, and not grab a page table
3242 * on its way out. We're lucky that the flag has such an appropriate
3243 * name, and can in fact be safely cleared here. We could clear it
3244 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3245 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3246 * because in the context this is called, the VMA is about to be
c8c06efa 3247 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3248 */
3249 vma->vm_flags &= ~VM_MAYSHARE;
3250}
3251
502717f4 3252void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3253 unsigned long end, struct page *ref_page)
502717f4 3254{
24669e58
AK
3255 struct mm_struct *mm;
3256 struct mmu_gather tlb;
3257
3258 mm = vma->vm_mm;
3259
2b047252 3260 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
3261 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3262 tlb_finish_mmu(&tlb, start, end);
502717f4
KC
3263}
3264
04f2cbe3
MG
3265/*
3266 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3267 * mappping it owns the reserve page for. The intention is to unmap the page
3268 * from other VMAs and let the children be SIGKILLed if they are faulting the
3269 * same region.
3270 */
2f4612af
DB
3271static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3272 struct page *page, unsigned long address)
04f2cbe3 3273{
7526674d 3274 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3275 struct vm_area_struct *iter_vma;
3276 struct address_space *mapping;
04f2cbe3
MG
3277 pgoff_t pgoff;
3278
3279 /*
3280 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3281 * from page cache lookup which is in HPAGE_SIZE units.
3282 */
7526674d 3283 address = address & huge_page_mask(h);
36e4f20a
MH
3284 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3285 vma->vm_pgoff;
496ad9aa 3286 mapping = file_inode(vma->vm_file)->i_mapping;
04f2cbe3 3287
4eb2b1dc
MG
3288 /*
3289 * Take the mapping lock for the duration of the table walk. As
3290 * this mapping should be shared between all the VMAs,
3291 * __unmap_hugepage_range() is called as the lock is already held
3292 */
83cde9e8 3293 i_mmap_lock_write(mapping);
6b2dbba8 3294 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3295 /* Do not unmap the current VMA */
3296 if (iter_vma == vma)
3297 continue;
3298
2f84a899
MG
3299 /*
3300 * Shared VMAs have their own reserves and do not affect
3301 * MAP_PRIVATE accounting but it is possible that a shared
3302 * VMA is using the same page so check and skip such VMAs.
3303 */
3304 if (iter_vma->vm_flags & VM_MAYSHARE)
3305 continue;
3306
04f2cbe3
MG
3307 /*
3308 * Unmap the page from other VMAs without their own reserves.
3309 * They get marked to be SIGKILLed if they fault in these
3310 * areas. This is because a future no-page fault on this VMA
3311 * could insert a zeroed page instead of the data existing
3312 * from the time of fork. This would look like data corruption
3313 */
3314 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3315 unmap_hugepage_range(iter_vma, address,
3316 address + huge_page_size(h), page);
04f2cbe3 3317 }
83cde9e8 3318 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3319}
3320
0fe6e20b
NH
3321/*
3322 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3323 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3324 * cannot race with other handlers or page migration.
3325 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3326 */
1e8f889b 3327static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3 3328 unsigned long address, pte_t *ptep, pte_t pte,
cb900f41 3329 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3330{
a5516438 3331 struct hstate *h = hstate_vma(vma);
1e8f889b 3332 struct page *old_page, *new_page;
ad4404a2 3333 int ret = 0, outside_reserve = 0;
2ec74c3e
SG
3334 unsigned long mmun_start; /* For mmu_notifiers */
3335 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b
DG
3336
3337 old_page = pte_page(pte);
3338
04f2cbe3 3339retry_avoidcopy:
1e8f889b
DG
3340 /* If no-one else is actually using this page, avoid the copy
3341 * and just make the page writable */
37a2140d
JK
3342 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3343 page_move_anon_rmap(old_page, vma, address);
1e8f889b 3344 set_huge_ptep_writable(vma, address, ptep);
83c54070 3345 return 0;
1e8f889b
DG
3346 }
3347
04f2cbe3
MG
3348 /*
3349 * If the process that created a MAP_PRIVATE mapping is about to
3350 * perform a COW due to a shared page count, attempt to satisfy
3351 * the allocation without using the existing reserves. The pagecache
3352 * page is used to determine if the reserve at this address was
3353 * consumed or not. If reserves were used, a partial faulted mapping
3354 * at the time of fork() could consume its reserves on COW instead
3355 * of the full address range.
3356 */
5944d011 3357 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3358 old_page != pagecache_page)
3359 outside_reserve = 1;
3360
09cbfeaf 3361 get_page(old_page);
b76c8cfb 3362
ad4404a2
DB
3363 /*
3364 * Drop page table lock as buddy allocator may be called. It will
3365 * be acquired again before returning to the caller, as expected.
3366 */
cb900f41 3367 spin_unlock(ptl);
04f2cbe3 3368 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 3369
2fc39cec 3370 if (IS_ERR(new_page)) {
04f2cbe3
MG
3371 /*
3372 * If a process owning a MAP_PRIVATE mapping fails to COW,
3373 * it is due to references held by a child and an insufficient
3374 * huge page pool. To guarantee the original mappers
3375 * reliability, unmap the page from child processes. The child
3376 * may get SIGKILLed if it later faults.
3377 */
3378 if (outside_reserve) {
09cbfeaf 3379 put_page(old_page);
04f2cbe3 3380 BUG_ON(huge_pte_none(pte));
2f4612af
DB
3381 unmap_ref_private(mm, vma, old_page, address);
3382 BUG_ON(huge_pte_none(pte));
3383 spin_lock(ptl);
3384 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3385 if (likely(ptep &&
3386 pte_same(huge_ptep_get(ptep), pte)))
3387 goto retry_avoidcopy;
3388 /*
3389 * race occurs while re-acquiring page table
3390 * lock, and our job is done.
3391 */
3392 return 0;
04f2cbe3
MG
3393 }
3394
ad4404a2
DB
3395 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3396 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3397 goto out_release_old;
1e8f889b
DG
3398 }
3399
0fe6e20b
NH
3400 /*
3401 * When the original hugepage is shared one, it does not have
3402 * anon_vma prepared.
3403 */
44e2aa93 3404 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3405 ret = VM_FAULT_OOM;
3406 goto out_release_all;
44e2aa93 3407 }
0fe6e20b 3408
47ad8475
AA
3409 copy_user_huge_page(new_page, old_page, address, vma,
3410 pages_per_huge_page(h));
0ed361de 3411 __SetPageUptodate(new_page);
bcc54222 3412 set_page_huge_active(new_page);
1e8f889b 3413
2ec74c3e
SG
3414 mmun_start = address & huge_page_mask(h);
3415 mmun_end = mmun_start + huge_page_size(h);
3416 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ad4404a2 3417
b76c8cfb 3418 /*
cb900f41 3419 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3420 * before the page tables are altered
3421 */
cb900f41 3422 spin_lock(ptl);
a5516438 3423 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
a9af0c5d 3424 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3425 ClearPagePrivate(new_page);
3426
1e8f889b 3427 /* Break COW */
8fe627ec 3428 huge_ptep_clear_flush(vma, address, ptep);
34ee645e 3429 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1e8f889b
DG
3430 set_huge_pte_at(mm, address, ptep,
3431 make_huge_pte(vma, new_page, 1));
d281ee61 3432 page_remove_rmap(old_page, true);
cd67f0d2 3433 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
3434 /* Make the old page be freed below */
3435 new_page = old_page;
3436 }
cb900f41 3437 spin_unlock(ptl);
2ec74c3e 3438 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ad4404a2 3439out_release_all:
09cbfeaf 3440 put_page(new_page);
ad4404a2 3441out_release_old:
09cbfeaf 3442 put_page(old_page);
8312034f 3443
ad4404a2
DB
3444 spin_lock(ptl); /* Caller expects lock to be held */
3445 return ret;
1e8f889b
DG
3446}
3447
04f2cbe3 3448/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3449static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3450 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3451{
3452 struct address_space *mapping;
e7c4b0bf 3453 pgoff_t idx;
04f2cbe3
MG
3454
3455 mapping = vma->vm_file->f_mapping;
a5516438 3456 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3457
3458 return find_lock_page(mapping, idx);
3459}
3460
3ae77f43
HD
3461/*
3462 * Return whether there is a pagecache page to back given address within VMA.
3463 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3464 */
3465static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3466 struct vm_area_struct *vma, unsigned long address)
3467{
3468 struct address_space *mapping;
3469 pgoff_t idx;
3470 struct page *page;
3471
3472 mapping = vma->vm_file->f_mapping;
3473 idx = vma_hugecache_offset(h, vma, address);
3474
3475 page = find_get_page(mapping, idx);
3476 if (page)
3477 put_page(page);
3478 return page != NULL;
3479}
3480
ab76ad54
MK
3481int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3482 pgoff_t idx)
3483{
3484 struct inode *inode = mapping->host;
3485 struct hstate *h = hstate_inode(inode);
3486 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3487
3488 if (err)
3489 return err;
3490 ClearPagePrivate(page);
3491
3492 spin_lock(&inode->i_lock);
3493 inode->i_blocks += blocks_per_huge_page(h);
3494 spin_unlock(&inode->i_lock);
3495 return 0;
3496}
3497
a1ed3dda 3498static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
8382d914
DB
3499 struct address_space *mapping, pgoff_t idx,
3500 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3501{
a5516438 3502 struct hstate *h = hstate_vma(vma);
ac9b9c66 3503 int ret = VM_FAULT_SIGBUS;
409eb8c2 3504 int anon_rmap = 0;
4c887265 3505 unsigned long size;
4c887265 3506 struct page *page;
1e8f889b 3507 pte_t new_pte;
cb900f41 3508 spinlock_t *ptl;
4c887265 3509
04f2cbe3
MG
3510 /*
3511 * Currently, we are forced to kill the process in the event the
3512 * original mapper has unmapped pages from the child due to a failed
25985edc 3513 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3514 */
3515 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 3516 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 3517 current->pid);
04f2cbe3
MG
3518 return ret;
3519 }
3520
4c887265
AL
3521 /*
3522 * Use page lock to guard against racing truncation
3523 * before we get page_table_lock.
3524 */
6bda666a
CL
3525retry:
3526 page = find_lock_page(mapping, idx);
3527 if (!page) {
a5516438 3528 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
3529 if (idx >= size)
3530 goto out;
04f2cbe3 3531 page = alloc_huge_page(vma, address, 0);
2fc39cec 3532 if (IS_ERR(page)) {
76dcee75
AK
3533 ret = PTR_ERR(page);
3534 if (ret == -ENOMEM)
3535 ret = VM_FAULT_OOM;
3536 else
3537 ret = VM_FAULT_SIGBUS;
6bda666a
CL
3538 goto out;
3539 }
47ad8475 3540 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3541 __SetPageUptodate(page);
bcc54222 3542 set_page_huge_active(page);
ac9b9c66 3543
f83a275d 3544 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 3545 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
3546 if (err) {
3547 put_page(page);
6bda666a
CL
3548 if (err == -EEXIST)
3549 goto retry;
3550 goto out;
3551 }
23be7468 3552 } else {
6bda666a 3553 lock_page(page);
0fe6e20b
NH
3554 if (unlikely(anon_vma_prepare(vma))) {
3555 ret = VM_FAULT_OOM;
3556 goto backout_unlocked;
3557 }
409eb8c2 3558 anon_rmap = 1;
23be7468 3559 }
0fe6e20b 3560 } else {
998b4382
NH
3561 /*
3562 * If memory error occurs between mmap() and fault, some process
3563 * don't have hwpoisoned swap entry for errored virtual address.
3564 * So we need to block hugepage fault by PG_hwpoison bit check.
3565 */
3566 if (unlikely(PageHWPoison(page))) {
32f84528 3567 ret = VM_FAULT_HWPOISON |
972dc4de 3568 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3569 goto backout_unlocked;
3570 }
6bda666a 3571 }
1e8f889b 3572
57303d80
AW
3573 /*
3574 * If we are going to COW a private mapping later, we examine the
3575 * pending reservations for this page now. This will ensure that
3576 * any allocations necessary to record that reservation occur outside
3577 * the spinlock.
3578 */
5e911373 3579 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2b26736c
AW
3580 if (vma_needs_reservation(h, vma, address) < 0) {
3581 ret = VM_FAULT_OOM;
3582 goto backout_unlocked;
3583 }
5e911373 3584 /* Just decrements count, does not deallocate */
feba16e2 3585 vma_end_reservation(h, vma, address);
5e911373 3586 }
57303d80 3587
cb900f41
KS
3588 ptl = huge_pte_lockptr(h, mm, ptep);
3589 spin_lock(ptl);
a5516438 3590 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
3591 if (idx >= size)
3592 goto backout;
3593
83c54070 3594 ret = 0;
7f2e9525 3595 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3596 goto backout;
3597
07443a85
JK
3598 if (anon_rmap) {
3599 ClearPagePrivate(page);
409eb8c2 3600 hugepage_add_new_anon_rmap(page, vma, address);
ac714904 3601 } else
53f9263b 3602 page_dup_rmap(page, true);
1e8f889b
DG
3603 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3604 && (vma->vm_flags & VM_SHARED)));
3605 set_huge_pte_at(mm, address, ptep, new_pte);
3606
5d317b2b 3607 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 3608 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3609 /* Optimization, do the COW without a second fault */
cb900f41 3610 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
1e8f889b
DG
3611 }
3612
cb900f41 3613 spin_unlock(ptl);
4c887265
AL
3614 unlock_page(page);
3615out:
ac9b9c66 3616 return ret;
4c887265
AL
3617
3618backout:
cb900f41 3619 spin_unlock(ptl);
2b26736c 3620backout_unlocked:
4c887265
AL
3621 unlock_page(page);
3622 put_page(page);
3623 goto out;
ac9b9c66
HD
3624}
3625
8382d914 3626#ifdef CONFIG_SMP
c672c7f2 3627u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3628 struct vm_area_struct *vma,
3629 struct address_space *mapping,
3630 pgoff_t idx, unsigned long address)
3631{
3632 unsigned long key[2];
3633 u32 hash;
3634
3635 if (vma->vm_flags & VM_SHARED) {
3636 key[0] = (unsigned long) mapping;
3637 key[1] = idx;
3638 } else {
3639 key[0] = (unsigned long) mm;
3640 key[1] = address >> huge_page_shift(h);
3641 }
3642
3643 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3644
3645 return hash & (num_fault_mutexes - 1);
3646}
3647#else
3648/*
3649 * For uniprocesor systems we always use a single mutex, so just
3650 * return 0 and avoid the hashing overhead.
3651 */
c672c7f2 3652u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3653 struct vm_area_struct *vma,
3654 struct address_space *mapping,
3655 pgoff_t idx, unsigned long address)
3656{
3657 return 0;
3658}
3659#endif
3660
86e5216f 3661int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3662 unsigned long address, unsigned int flags)
86e5216f 3663{
8382d914 3664 pte_t *ptep, entry;
cb900f41 3665 spinlock_t *ptl;
1e8f889b 3666 int ret;
8382d914
DB
3667 u32 hash;
3668 pgoff_t idx;
0fe6e20b 3669 struct page *page = NULL;
57303d80 3670 struct page *pagecache_page = NULL;
a5516438 3671 struct hstate *h = hstate_vma(vma);
8382d914 3672 struct address_space *mapping;
0f792cf9 3673 int need_wait_lock = 0;
86e5216f 3674
1e16a539
KH
3675 address &= huge_page_mask(h);
3676
fd6a03ed
NH
3677 ptep = huge_pte_offset(mm, address);
3678 if (ptep) {
3679 entry = huge_ptep_get(ptep);
290408d4 3680 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 3681 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
3682 return 0;
3683 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 3684 return VM_FAULT_HWPOISON_LARGE |
972dc4de 3685 VM_FAULT_SET_HINDEX(hstate_index(h));
0d777df5
NH
3686 } else {
3687 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3688 if (!ptep)
3689 return VM_FAULT_OOM;
fd6a03ed
NH
3690 }
3691
8382d914
DB
3692 mapping = vma->vm_file->f_mapping;
3693 idx = vma_hugecache_offset(h, vma, address);
3694
3935baa9
DG
3695 /*
3696 * Serialize hugepage allocation and instantiation, so that we don't
3697 * get spurious allocation failures if two CPUs race to instantiate
3698 * the same page in the page cache.
3699 */
c672c7f2
MK
3700 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3701 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 3702
7f2e9525
GS
3703 entry = huge_ptep_get(ptep);
3704 if (huge_pte_none(entry)) {
8382d914 3705 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3706 goto out_mutex;
3935baa9 3707 }
86e5216f 3708
83c54070 3709 ret = 0;
1e8f889b 3710
0f792cf9
NH
3711 /*
3712 * entry could be a migration/hwpoison entry at this point, so this
3713 * check prevents the kernel from going below assuming that we have
3714 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3715 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3716 * handle it.
3717 */
3718 if (!pte_present(entry))
3719 goto out_mutex;
3720
57303d80
AW
3721 /*
3722 * If we are going to COW the mapping later, we examine the pending
3723 * reservations for this page now. This will ensure that any
3724 * allocations necessary to record that reservation occur outside the
3725 * spinlock. For private mappings, we also lookup the pagecache
3726 * page now as it is used to determine if a reservation has been
3727 * consumed.
3728 */
106c992a 3729 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
3730 if (vma_needs_reservation(h, vma, address) < 0) {
3731 ret = VM_FAULT_OOM;
b4d1d99f 3732 goto out_mutex;
2b26736c 3733 }
5e911373 3734 /* Just decrements count, does not deallocate */
feba16e2 3735 vma_end_reservation(h, vma, address);
57303d80 3736
f83a275d 3737 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
3738 pagecache_page = hugetlbfs_pagecache_page(h,
3739 vma, address);
3740 }
3741
0f792cf9
NH
3742 ptl = huge_pte_lock(h, mm, ptep);
3743
3744 /* Check for a racing update before calling hugetlb_cow */
3745 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3746 goto out_ptl;
3747
56c9cfb1
NH
3748 /*
3749 * hugetlb_cow() requires page locks of pte_page(entry) and
3750 * pagecache_page, so here we need take the former one
3751 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
3752 */
3753 page = pte_page(entry);
3754 if (page != pagecache_page)
0f792cf9
NH
3755 if (!trylock_page(page)) {
3756 need_wait_lock = 1;
3757 goto out_ptl;
3758 }
b4d1d99f 3759
0f792cf9 3760 get_page(page);
b4d1d99f 3761
788c7df4 3762 if (flags & FAULT_FLAG_WRITE) {
106c992a 3763 if (!huge_pte_write(entry)) {
57303d80 3764 ret = hugetlb_cow(mm, vma, address, ptep, entry,
cb900f41 3765 pagecache_page, ptl);
0f792cf9 3766 goto out_put_page;
b4d1d99f 3767 }
106c992a 3768 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
3769 }
3770 entry = pte_mkyoung(entry);
788c7df4
HD
3771 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3772 flags & FAULT_FLAG_WRITE))
4b3073e1 3773 update_mmu_cache(vma, address, ptep);
0f792cf9
NH
3774out_put_page:
3775 if (page != pagecache_page)
3776 unlock_page(page);
3777 put_page(page);
cb900f41
KS
3778out_ptl:
3779 spin_unlock(ptl);
57303d80
AW
3780
3781 if (pagecache_page) {
3782 unlock_page(pagecache_page);
3783 put_page(pagecache_page);
3784 }
b4d1d99f 3785out_mutex:
c672c7f2 3786 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
3787 /*
3788 * Generally it's safe to hold refcount during waiting page lock. But
3789 * here we just wait to defer the next page fault to avoid busy loop and
3790 * the page is not used after unlocked before returning from the current
3791 * page fault. So we are safe from accessing freed page, even if we wait
3792 * here without taking refcount.
3793 */
3794 if (need_wait_lock)
3795 wait_on_page_locked(page);
1e8f889b 3796 return ret;
86e5216f
AL
3797}
3798
28a35716
ML
3799long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3800 struct page **pages, struct vm_area_struct **vmas,
3801 unsigned long *position, unsigned long *nr_pages,
3802 long i, unsigned int flags)
63551ae0 3803{
d5d4b0aa
KC
3804 unsigned long pfn_offset;
3805 unsigned long vaddr = *position;
28a35716 3806 unsigned long remainder = *nr_pages;
a5516438 3807 struct hstate *h = hstate_vma(vma);
63551ae0 3808
63551ae0 3809 while (vaddr < vma->vm_end && remainder) {
4c887265 3810 pte_t *pte;
cb900f41 3811 spinlock_t *ptl = NULL;
2a15efc9 3812 int absent;
4c887265 3813 struct page *page;
63551ae0 3814
02057967
DR
3815 /*
3816 * If we have a pending SIGKILL, don't keep faulting pages and
3817 * potentially allocating memory.
3818 */
3819 if (unlikely(fatal_signal_pending(current))) {
3820 remainder = 0;
3821 break;
3822 }
3823
4c887265
AL
3824 /*
3825 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 3826 * each hugepage. We have to make sure we get the
4c887265 3827 * first, for the page indexing below to work.
cb900f41
KS
3828 *
3829 * Note that page table lock is not held when pte is null.
4c887265 3830 */
a5516438 3831 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
cb900f41
KS
3832 if (pte)
3833 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
3834 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3835
3836 /*
3837 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
3838 * an error where there's an empty slot with no huge pagecache
3839 * to back it. This way, we avoid allocating a hugepage, and
3840 * the sparse dumpfile avoids allocating disk blocks, but its
3841 * huge holes still show up with zeroes where they need to be.
2a15efc9 3842 */
3ae77f43
HD
3843 if (absent && (flags & FOLL_DUMP) &&
3844 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
3845 if (pte)
3846 spin_unlock(ptl);
2a15efc9
HD
3847 remainder = 0;
3848 break;
3849 }
63551ae0 3850
9cc3a5bd
NH
3851 /*
3852 * We need call hugetlb_fault for both hugepages under migration
3853 * (in which case hugetlb_fault waits for the migration,) and
3854 * hwpoisoned hugepages (in which case we need to prevent the
3855 * caller from accessing to them.) In order to do this, we use
3856 * here is_swap_pte instead of is_hugetlb_entry_migration and
3857 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3858 * both cases, and because we can't follow correct pages
3859 * directly from any kind of swap entries.
3860 */
3861 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
3862 ((flags & FOLL_WRITE) &&
3863 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 3864 int ret;
63551ae0 3865
cb900f41
KS
3866 if (pte)
3867 spin_unlock(ptl);
2a15efc9
HD
3868 ret = hugetlb_fault(mm, vma, vaddr,
3869 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
a89182c7 3870 if (!(ret & VM_FAULT_ERROR))
4c887265 3871 continue;
63551ae0 3872
4c887265 3873 remainder = 0;
4c887265
AL
3874 break;
3875 }
3876
a5516438 3877 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 3878 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 3879same_page:
d6692183 3880 if (pages) {
2a15efc9 3881 pages[i] = mem_map_offset(page, pfn_offset);
ddc58f27 3882 get_page(pages[i]);
d6692183 3883 }
63551ae0
DG
3884
3885 if (vmas)
3886 vmas[i] = vma;
3887
3888 vaddr += PAGE_SIZE;
d5d4b0aa 3889 ++pfn_offset;
63551ae0
DG
3890 --remainder;
3891 ++i;
d5d4b0aa 3892 if (vaddr < vma->vm_end && remainder &&
a5516438 3893 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
3894 /*
3895 * We use pfn_offset to avoid touching the pageframes
3896 * of this compound page.
3897 */
3898 goto same_page;
3899 }
cb900f41 3900 spin_unlock(ptl);
63551ae0 3901 }
28a35716 3902 *nr_pages = remainder;
63551ae0
DG
3903 *position = vaddr;
3904
2a15efc9 3905 return i ? i : -EFAULT;
63551ae0 3906}
8f860591 3907
7da4d641 3908unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
3909 unsigned long address, unsigned long end, pgprot_t newprot)
3910{
3911 struct mm_struct *mm = vma->vm_mm;
3912 unsigned long start = address;
3913 pte_t *ptep;
3914 pte_t pte;
a5516438 3915 struct hstate *h = hstate_vma(vma);
7da4d641 3916 unsigned long pages = 0;
8f860591
ZY
3917
3918 BUG_ON(address >= end);
3919 flush_cache_range(vma, address, end);
3920
a5338093 3921 mmu_notifier_invalidate_range_start(mm, start, end);
83cde9e8 3922 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 3923 for (; address < end; address += huge_page_size(h)) {
cb900f41 3924 spinlock_t *ptl;
8f860591
ZY
3925 ptep = huge_pte_offset(mm, address);
3926 if (!ptep)
3927 continue;
cb900f41 3928 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
3929 if (huge_pmd_unshare(mm, &address, ptep)) {
3930 pages++;
cb900f41 3931 spin_unlock(ptl);
39dde65c 3932 continue;
7da4d641 3933 }
a8bda28d
NH
3934 pte = huge_ptep_get(ptep);
3935 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3936 spin_unlock(ptl);
3937 continue;
3938 }
3939 if (unlikely(is_hugetlb_entry_migration(pte))) {
3940 swp_entry_t entry = pte_to_swp_entry(pte);
3941
3942 if (is_write_migration_entry(entry)) {
3943 pte_t newpte;
3944
3945 make_migration_entry_read(&entry);
3946 newpte = swp_entry_to_pte(entry);
3947 set_huge_pte_at(mm, address, ptep, newpte);
3948 pages++;
3949 }
3950 spin_unlock(ptl);
3951 continue;
3952 }
3953 if (!huge_pte_none(pte)) {
8f860591 3954 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 3955 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 3956 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 3957 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 3958 pages++;
8f860591 3959 }
cb900f41 3960 spin_unlock(ptl);
8f860591 3961 }
d833352a 3962 /*
c8c06efa 3963 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 3964 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 3965 * once we release i_mmap_rwsem, another task can do the final put_page
d833352a
MG
3966 * and that page table be reused and filled with junk.
3967 */
8f860591 3968 flush_tlb_range(vma, start, end);
34ee645e 3969 mmu_notifier_invalidate_range(mm, start, end);
83cde9e8 3970 i_mmap_unlock_write(vma->vm_file->f_mapping);
a5338093 3971 mmu_notifier_invalidate_range_end(mm, start, end);
7da4d641
PZ
3972
3973 return pages << h->order;
8f860591
ZY
3974}
3975
a1e78772
MG
3976int hugetlb_reserve_pages(struct inode *inode,
3977 long from, long to,
5a6fe125 3978 struct vm_area_struct *vma,
ca16d140 3979 vm_flags_t vm_flags)
e4e574b7 3980{
17c9d12e 3981 long ret, chg;
a5516438 3982 struct hstate *h = hstate_inode(inode);
90481622 3983 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 3984 struct resv_map *resv_map;
1c5ecae3 3985 long gbl_reserve;
e4e574b7 3986
17c9d12e
MG
3987 /*
3988 * Only apply hugepage reservation if asked. At fault time, an
3989 * attempt will be made for VM_NORESERVE to allocate a page
90481622 3990 * without using reserves
17c9d12e 3991 */
ca16d140 3992 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
3993 return 0;
3994
a1e78772
MG
3995 /*
3996 * Shared mappings base their reservation on the number of pages that
3997 * are already allocated on behalf of the file. Private mappings need
3998 * to reserve the full area even if read-only as mprotect() may be
3999 * called to make the mapping read-write. Assume !vma is a shm mapping
4000 */
9119a41e 4001 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 4002 resv_map = inode_resv_map(inode);
9119a41e 4003
1406ec9b 4004 chg = region_chg(resv_map, from, to);
9119a41e
JK
4005
4006 } else {
4007 resv_map = resv_map_alloc();
17c9d12e
MG
4008 if (!resv_map)
4009 return -ENOMEM;
4010
a1e78772 4011 chg = to - from;
84afd99b 4012
17c9d12e
MG
4013 set_vma_resv_map(vma, resv_map);
4014 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4015 }
4016
c50ac050
DH
4017 if (chg < 0) {
4018 ret = chg;
4019 goto out_err;
4020 }
8a630112 4021
1c5ecae3
MK
4022 /*
4023 * There must be enough pages in the subpool for the mapping. If
4024 * the subpool has a minimum size, there may be some global
4025 * reservations already in place (gbl_reserve).
4026 */
4027 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4028 if (gbl_reserve < 0) {
c50ac050
DH
4029 ret = -ENOSPC;
4030 goto out_err;
4031 }
5a6fe125
MG
4032
4033 /*
17c9d12e 4034 * Check enough hugepages are available for the reservation.
90481622 4035 * Hand the pages back to the subpool if there are not
5a6fe125 4036 */
1c5ecae3 4037 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 4038 if (ret < 0) {
1c5ecae3
MK
4039 /* put back original number of pages, chg */
4040 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 4041 goto out_err;
68842c9b 4042 }
17c9d12e
MG
4043
4044 /*
4045 * Account for the reservations made. Shared mappings record regions
4046 * that have reservations as they are shared by multiple VMAs.
4047 * When the last VMA disappears, the region map says how much
4048 * the reservation was and the page cache tells how much of
4049 * the reservation was consumed. Private mappings are per-VMA and
4050 * only the consumed reservations are tracked. When the VMA
4051 * disappears, the original reservation is the VMA size and the
4052 * consumed reservations are stored in the map. Hence, nothing
4053 * else has to be done for private mappings here
4054 */
33039678
MK
4055 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4056 long add = region_add(resv_map, from, to);
4057
4058 if (unlikely(chg > add)) {
4059 /*
4060 * pages in this range were added to the reserve
4061 * map between region_chg and region_add. This
4062 * indicates a race with alloc_huge_page. Adjust
4063 * the subpool and reserve counts modified above
4064 * based on the difference.
4065 */
4066 long rsv_adjust;
4067
4068 rsv_adjust = hugepage_subpool_put_pages(spool,
4069 chg - add);
4070 hugetlb_acct_memory(h, -rsv_adjust);
4071 }
4072 }
a43a8c39 4073 return 0;
c50ac050 4074out_err:
5e911373
MK
4075 if (!vma || vma->vm_flags & VM_MAYSHARE)
4076 region_abort(resv_map, from, to);
f031dd27
JK
4077 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4078 kref_put(&resv_map->refs, resv_map_release);
c50ac050 4079 return ret;
a43a8c39
KC
4080}
4081
b5cec28d
MK
4082long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4083 long freed)
a43a8c39 4084{
a5516438 4085 struct hstate *h = hstate_inode(inode);
4e35f483 4086 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 4087 long chg = 0;
90481622 4088 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 4089 long gbl_reserve;
45c682a6 4090
b5cec28d
MK
4091 if (resv_map) {
4092 chg = region_del(resv_map, start, end);
4093 /*
4094 * region_del() can fail in the rare case where a region
4095 * must be split and another region descriptor can not be
4096 * allocated. If end == LONG_MAX, it will not fail.
4097 */
4098 if (chg < 0)
4099 return chg;
4100 }
4101
45c682a6 4102 spin_lock(&inode->i_lock);
e4c6f8be 4103 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
4104 spin_unlock(&inode->i_lock);
4105
1c5ecae3
MK
4106 /*
4107 * If the subpool has a minimum size, the number of global
4108 * reservations to be released may be adjusted.
4109 */
4110 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4111 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
4112
4113 return 0;
a43a8c39 4114}
93f70f90 4115
3212b535
SC
4116#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4117static unsigned long page_table_shareable(struct vm_area_struct *svma,
4118 struct vm_area_struct *vma,
4119 unsigned long addr, pgoff_t idx)
4120{
4121 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4122 svma->vm_start;
4123 unsigned long sbase = saddr & PUD_MASK;
4124 unsigned long s_end = sbase + PUD_SIZE;
4125
4126 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
4127 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4128 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
4129
4130 /*
4131 * match the virtual addresses, permission and the alignment of the
4132 * page table page.
4133 */
4134 if (pmd_index(addr) != pmd_index(saddr) ||
4135 vm_flags != svm_flags ||
4136 sbase < svma->vm_start || svma->vm_end < s_end)
4137 return 0;
4138
4139 return saddr;
4140}
4141
31aafb45 4142static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
4143{
4144 unsigned long base = addr & PUD_MASK;
4145 unsigned long end = base + PUD_SIZE;
4146
4147 /*
4148 * check on proper vm_flags and page table alignment
4149 */
4150 if (vma->vm_flags & VM_MAYSHARE &&
4151 vma->vm_start <= base && end <= vma->vm_end)
31aafb45
NK
4152 return true;
4153 return false;
3212b535
SC
4154}
4155
4156/*
4157 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4158 * and returns the corresponding pte. While this is not necessary for the
4159 * !shared pmd case because we can allocate the pmd later as well, it makes the
4160 * code much cleaner. pmd allocation is essential for the shared case because
c8c06efa 4161 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3212b535
SC
4162 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4163 * bad pmd for sharing.
4164 */
4165pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4166{
4167 struct vm_area_struct *vma = find_vma(mm, addr);
4168 struct address_space *mapping = vma->vm_file->f_mapping;
4169 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4170 vma->vm_pgoff;
4171 struct vm_area_struct *svma;
4172 unsigned long saddr;
4173 pte_t *spte = NULL;
4174 pte_t *pte;
cb900f41 4175 spinlock_t *ptl;
3212b535
SC
4176
4177 if (!vma_shareable(vma, addr))
4178 return (pte_t *)pmd_alloc(mm, pud, addr);
4179
83cde9e8 4180 i_mmap_lock_write(mapping);
3212b535
SC
4181 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4182 if (svma == vma)
4183 continue;
4184
4185 saddr = page_table_shareable(svma, vma, addr, idx);
4186 if (saddr) {
4187 spte = huge_pte_offset(svma->vm_mm, saddr);
4188 if (spte) {
dc6c9a35 4189 mm_inc_nr_pmds(mm);
3212b535
SC
4190 get_page(virt_to_page(spte));
4191 break;
4192 }
4193 }
4194 }
4195
4196 if (!spte)
4197 goto out;
4198
cb900f41
KS
4199 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4200 spin_lock(ptl);
dc6c9a35 4201 if (pud_none(*pud)) {
3212b535
SC
4202 pud_populate(mm, pud,
4203 (pmd_t *)((unsigned long)spte & PAGE_MASK));
dc6c9a35 4204 } else {
3212b535 4205 put_page(virt_to_page(spte));
dc6c9a35
KS
4206 mm_inc_nr_pmds(mm);
4207 }
cb900f41 4208 spin_unlock(ptl);
3212b535
SC
4209out:
4210 pte = (pte_t *)pmd_alloc(mm, pud, addr);
83cde9e8 4211 i_mmap_unlock_write(mapping);
3212b535
SC
4212 return pte;
4213}
4214
4215/*
4216 * unmap huge page backed by shared pte.
4217 *
4218 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4219 * indicated by page_count > 1, unmap is achieved by clearing pud and
4220 * decrementing the ref count. If count == 1, the pte page is not shared.
4221 *
cb900f41 4222 * called with page table lock held.
3212b535
SC
4223 *
4224 * returns: 1 successfully unmapped a shared pte page
4225 * 0 the underlying pte page is not shared, or it is the last user
4226 */
4227int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4228{
4229 pgd_t *pgd = pgd_offset(mm, *addr);
4230 pud_t *pud = pud_offset(pgd, *addr);
4231
4232 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4233 if (page_count(virt_to_page(ptep)) == 1)
4234 return 0;
4235
4236 pud_clear(pud);
4237 put_page(virt_to_page(ptep));
dc6c9a35 4238 mm_dec_nr_pmds(mm);
3212b535
SC
4239 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4240 return 1;
4241}
9e5fc74c
SC
4242#define want_pmd_share() (1)
4243#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4244pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4245{
4246 return NULL;
4247}
e81f2d22
ZZ
4248
4249int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4250{
4251 return 0;
4252}
9e5fc74c 4253#define want_pmd_share() (0)
3212b535
SC
4254#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4255
9e5fc74c
SC
4256#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4257pte_t *huge_pte_alloc(struct mm_struct *mm,
4258 unsigned long addr, unsigned long sz)
4259{
4260 pgd_t *pgd;
4261 pud_t *pud;
4262 pte_t *pte = NULL;
4263
4264 pgd = pgd_offset(mm, addr);
4265 pud = pud_alloc(mm, pgd, addr);
4266 if (pud) {
4267 if (sz == PUD_SIZE) {
4268 pte = (pte_t *)pud;
4269 } else {
4270 BUG_ON(sz != PMD_SIZE);
4271 if (want_pmd_share() && pud_none(*pud))
4272 pte = huge_pmd_share(mm, addr, pud);
4273 else
4274 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4275 }
4276 }
4277 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4278
4279 return pte;
4280}
4281
4282pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4283{
4284 pgd_t *pgd;
4285 pud_t *pud;
4286 pmd_t *pmd = NULL;
4287
4288 pgd = pgd_offset(mm, addr);
4289 if (pgd_present(*pgd)) {
4290 pud = pud_offset(pgd, addr);
4291 if (pud_present(*pud)) {
4292 if (pud_huge(*pud))
4293 return (pte_t *)pud;
4294 pmd = pmd_offset(pud, addr);
4295 }
4296 }
4297 return (pte_t *) pmd;
4298}
4299
61f77eda
NH
4300#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4301
4302/*
4303 * These functions are overwritable if your architecture needs its own
4304 * behavior.
4305 */
4306struct page * __weak
4307follow_huge_addr(struct mm_struct *mm, unsigned long address,
4308 int write)
4309{
4310 return ERR_PTR(-EINVAL);
4311}
4312
4313struct page * __weak
9e5fc74c 4314follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 4315 pmd_t *pmd, int flags)
9e5fc74c 4316{
e66f17ff
NH
4317 struct page *page = NULL;
4318 spinlock_t *ptl;
4319retry:
4320 ptl = pmd_lockptr(mm, pmd);
4321 spin_lock(ptl);
4322 /*
4323 * make sure that the address range covered by this pmd is not
4324 * unmapped from other threads.
4325 */
4326 if (!pmd_huge(*pmd))
4327 goto out;
4328 if (pmd_present(*pmd)) {
97534127 4329 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
4330 if (flags & FOLL_GET)
4331 get_page(page);
4332 } else {
4333 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4334 spin_unlock(ptl);
4335 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4336 goto retry;
4337 }
4338 /*
4339 * hwpoisoned entry is treated as no_page_table in
4340 * follow_page_mask().
4341 */
4342 }
4343out:
4344 spin_unlock(ptl);
9e5fc74c
SC
4345 return page;
4346}
4347
61f77eda 4348struct page * __weak
9e5fc74c 4349follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 4350 pud_t *pud, int flags)
9e5fc74c 4351{
e66f17ff
NH
4352 if (flags & FOLL_GET)
4353 return NULL;
9e5fc74c 4354
e66f17ff 4355 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
4356}
4357
d5bd9106
AK
4358#ifdef CONFIG_MEMORY_FAILURE
4359
93f70f90
NH
4360/*
4361 * This function is called from memory failure code.
4362 * Assume the caller holds page lock of the head page.
4363 */
6de2b1aa 4364int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
4365{
4366 struct hstate *h = page_hstate(hpage);
4367 int nid = page_to_nid(hpage);
6de2b1aa 4368 int ret = -EBUSY;
93f70f90
NH
4369
4370 spin_lock(&hugetlb_lock);
7e1f049e
NH
4371 /*
4372 * Just checking !page_huge_active is not enough, because that could be
4373 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4374 */
4375 if (!page_huge_active(hpage) && !page_count(hpage)) {
56f2fb14
NH
4376 /*
4377 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4378 * but dangling hpage->lru can trigger list-debug warnings
4379 * (this happens when we call unpoison_memory() on it),
4380 * so let it point to itself with list_del_init().
4381 */
4382 list_del_init(&hpage->lru);
8c6c2ecb 4383 set_page_refcounted(hpage);
6de2b1aa
NH
4384 h->free_huge_pages--;
4385 h->free_huge_pages_node[nid]--;
4386 ret = 0;
4387 }
93f70f90 4388 spin_unlock(&hugetlb_lock);
6de2b1aa 4389 return ret;
93f70f90 4390}
6de2b1aa 4391#endif
31caf665
NH
4392
4393bool isolate_huge_page(struct page *page, struct list_head *list)
4394{
bcc54222
NH
4395 bool ret = true;
4396
309381fe 4397 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4398 spin_lock(&hugetlb_lock);
bcc54222
NH
4399 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4400 ret = false;
4401 goto unlock;
4402 }
4403 clear_page_huge_active(page);
31caf665 4404 list_move_tail(&page->lru, list);
bcc54222 4405unlock:
31caf665 4406 spin_unlock(&hugetlb_lock);
bcc54222 4407 return ret;
31caf665
NH
4408}
4409
4410void putback_active_hugepage(struct page *page)
4411{
309381fe 4412 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4413 spin_lock(&hugetlb_lock);
bcc54222 4414 set_page_huge_active(page);
31caf665
NH
4415 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4416 spin_unlock(&hugetlb_lock);
4417 put_page(page);
4418}