]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/hugetlb.c
mm: make compound_head() robust
[mirror_ubuntu-zesty-kernel.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
aa888a74 19#include <linux/bootmem.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
0fe6e20b 22#include <linux/rmap.h>
fd6a03ed
NH
23#include <linux/swap.h>
24#include <linux/swapops.h>
c8721bbb 25#include <linux/page-isolation.h>
8382d914 26#include <linux/jhash.h>
d6606683 27
63551ae0
DG
28#include <asm/page.h>
29#include <asm/pgtable.h>
24669e58 30#include <asm/tlb.h>
63551ae0 31
24669e58 32#include <linux/io.h>
63551ae0 33#include <linux/hugetlb.h>
9dd540e2 34#include <linux/hugetlb_cgroup.h>
9a305230 35#include <linux/node.h>
7835e98b 36#include "internal.h"
1da177e4 37
753162cd 38int hugepages_treat_as_movable;
a5516438 39
c3f38a38 40int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
41unsigned int default_hstate_idx;
42struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
43/*
44 * Minimum page order among possible hugepage sizes, set to a proper value
45 * at boot time.
46 */
47static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 48
53ba51d2
JT
49__initdata LIST_HEAD(huge_boot_pages);
50
e5ff2159
AK
51/* for command line parsing */
52static struct hstate * __initdata parsed_hstate;
53static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 54static unsigned long __initdata default_hstate_size;
e5ff2159 55
3935baa9 56/*
31caf665
NH
57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58 * free_huge_pages, and surplus_huge_pages.
3935baa9 59 */
c3f38a38 60DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 61
8382d914
DB
62/*
63 * Serializes faults on the same logical page. This is used to
64 * prevent spurious OOMs when the hugepage pool is fully utilized.
65 */
66static int num_fault_mutexes;
c672c7f2 67struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 68
7ca02d0a
MK
69/* Forward declaration */
70static int hugetlb_acct_memory(struct hstate *h, long delta);
71
90481622
DG
72static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73{
74 bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76 spin_unlock(&spool->lock);
77
78 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
79 * remain, give up any reservations mased on minimum size and
80 * free the subpool */
81 if (free) {
82 if (spool->min_hpages != -1)
83 hugetlb_acct_memory(spool->hstate,
84 -spool->min_hpages);
90481622 85 kfree(spool);
7ca02d0a 86 }
90481622
DG
87}
88
7ca02d0a
MK
89struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90 long min_hpages)
90481622
DG
91{
92 struct hugepage_subpool *spool;
93
c6a91820 94 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
95 if (!spool)
96 return NULL;
97
98 spin_lock_init(&spool->lock);
99 spool->count = 1;
7ca02d0a
MK
100 spool->max_hpages = max_hpages;
101 spool->hstate = h;
102 spool->min_hpages = min_hpages;
103
104 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105 kfree(spool);
106 return NULL;
107 }
108 spool->rsv_hpages = min_hpages;
90481622
DG
109
110 return spool;
111}
112
113void hugepage_put_subpool(struct hugepage_subpool *spool)
114{
115 spin_lock(&spool->lock);
116 BUG_ON(!spool->count);
117 spool->count--;
118 unlock_or_release_subpool(spool);
119}
120
1c5ecae3
MK
121/*
122 * Subpool accounting for allocating and reserving pages.
123 * Return -ENOMEM if there are not enough resources to satisfy the
124 * the request. Otherwise, return the number of pages by which the
125 * global pools must be adjusted (upward). The returned value may
126 * only be different than the passed value (delta) in the case where
127 * a subpool minimum size must be manitained.
128 */
129static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
130 long delta)
131{
1c5ecae3 132 long ret = delta;
90481622
DG
133
134 if (!spool)
1c5ecae3 135 return ret;
90481622
DG
136
137 spin_lock(&spool->lock);
1c5ecae3
MK
138
139 if (spool->max_hpages != -1) { /* maximum size accounting */
140 if ((spool->used_hpages + delta) <= spool->max_hpages)
141 spool->used_hpages += delta;
142 else {
143 ret = -ENOMEM;
144 goto unlock_ret;
145 }
90481622 146 }
90481622 147
1c5ecae3
MK
148 if (spool->min_hpages != -1) { /* minimum size accounting */
149 if (delta > spool->rsv_hpages) {
150 /*
151 * Asking for more reserves than those already taken on
152 * behalf of subpool. Return difference.
153 */
154 ret = delta - spool->rsv_hpages;
155 spool->rsv_hpages = 0;
156 } else {
157 ret = 0; /* reserves already accounted for */
158 spool->rsv_hpages -= delta;
159 }
160 }
161
162unlock_ret:
163 spin_unlock(&spool->lock);
90481622
DG
164 return ret;
165}
166
1c5ecae3
MK
167/*
168 * Subpool accounting for freeing and unreserving pages.
169 * Return the number of global page reservations that must be dropped.
170 * The return value may only be different than the passed value (delta)
171 * in the case where a subpool minimum size must be maintained.
172 */
173static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
174 long delta)
175{
1c5ecae3
MK
176 long ret = delta;
177
90481622 178 if (!spool)
1c5ecae3 179 return delta;
90481622
DG
180
181 spin_lock(&spool->lock);
1c5ecae3
MK
182
183 if (spool->max_hpages != -1) /* maximum size accounting */
184 spool->used_hpages -= delta;
185
186 if (spool->min_hpages != -1) { /* minimum size accounting */
187 if (spool->rsv_hpages + delta <= spool->min_hpages)
188 ret = 0;
189 else
190 ret = spool->rsv_hpages + delta - spool->min_hpages;
191
192 spool->rsv_hpages += delta;
193 if (spool->rsv_hpages > spool->min_hpages)
194 spool->rsv_hpages = spool->min_hpages;
195 }
196
197 /*
198 * If hugetlbfs_put_super couldn't free spool due to an outstanding
199 * quota reference, free it now.
200 */
90481622 201 unlock_or_release_subpool(spool);
1c5ecae3
MK
202
203 return ret;
90481622
DG
204}
205
206static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
207{
208 return HUGETLBFS_SB(inode->i_sb)->spool;
209}
210
211static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
212{
496ad9aa 213 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
214}
215
96822904
AW
216/*
217 * Region tracking -- allows tracking of reservations and instantiated pages
218 * across the pages in a mapping.
84afd99b 219 *
1dd308a7
MK
220 * The region data structures are embedded into a resv_map and protected
221 * by a resv_map's lock. The set of regions within the resv_map represent
222 * reservations for huge pages, or huge pages that have already been
223 * instantiated within the map. The from and to elements are huge page
224 * indicies into the associated mapping. from indicates the starting index
225 * of the region. to represents the first index past the end of the region.
226 *
227 * For example, a file region structure with from == 0 and to == 4 represents
228 * four huge pages in a mapping. It is important to note that the to element
229 * represents the first element past the end of the region. This is used in
230 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
231 *
232 * Interval notation of the form [from, to) will be used to indicate that
233 * the endpoint from is inclusive and to is exclusive.
96822904
AW
234 */
235struct file_region {
236 struct list_head link;
237 long from;
238 long to;
239};
240
1dd308a7
MK
241/*
242 * Add the huge page range represented by [f, t) to the reserve
5e911373
MK
243 * map. In the normal case, existing regions will be expanded
244 * to accommodate the specified range. Sufficient regions should
245 * exist for expansion due to the previous call to region_chg
246 * with the same range. However, it is possible that region_del
247 * could have been called after region_chg and modifed the map
248 * in such a way that no region exists to be expanded. In this
249 * case, pull a region descriptor from the cache associated with
250 * the map and use that for the new range.
cf3ad20b
MK
251 *
252 * Return the number of new huge pages added to the map. This
253 * number is greater than or equal to zero.
1dd308a7 254 */
1406ec9b 255static long region_add(struct resv_map *resv, long f, long t)
96822904 256{
1406ec9b 257 struct list_head *head = &resv->regions;
96822904 258 struct file_region *rg, *nrg, *trg;
cf3ad20b 259 long add = 0;
96822904 260
7b24d861 261 spin_lock(&resv->lock);
96822904
AW
262 /* Locate the region we are either in or before. */
263 list_for_each_entry(rg, head, link)
264 if (f <= rg->to)
265 break;
266
5e911373
MK
267 /*
268 * If no region exists which can be expanded to include the
269 * specified range, the list must have been modified by an
270 * interleving call to region_del(). Pull a region descriptor
271 * from the cache and use it for this range.
272 */
273 if (&rg->link == head || t < rg->from) {
274 VM_BUG_ON(resv->region_cache_count <= 0);
275
276 resv->region_cache_count--;
277 nrg = list_first_entry(&resv->region_cache, struct file_region,
278 link);
279 list_del(&nrg->link);
280
281 nrg->from = f;
282 nrg->to = t;
283 list_add(&nrg->link, rg->link.prev);
284
285 add += t - f;
286 goto out_locked;
287 }
288
96822904
AW
289 /* Round our left edge to the current segment if it encloses us. */
290 if (f > rg->from)
291 f = rg->from;
292
293 /* Check for and consume any regions we now overlap with. */
294 nrg = rg;
295 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
296 if (&rg->link == head)
297 break;
298 if (rg->from > t)
299 break;
300
301 /* If this area reaches higher then extend our area to
302 * include it completely. If this is not the first area
303 * which we intend to reuse, free it. */
304 if (rg->to > t)
305 t = rg->to;
306 if (rg != nrg) {
cf3ad20b
MK
307 /* Decrement return value by the deleted range.
308 * Another range will span this area so that by
309 * end of routine add will be >= zero
310 */
311 add -= (rg->to - rg->from);
96822904
AW
312 list_del(&rg->link);
313 kfree(rg);
314 }
315 }
cf3ad20b
MK
316
317 add += (nrg->from - f); /* Added to beginning of region */
96822904 318 nrg->from = f;
cf3ad20b 319 add += t - nrg->to; /* Added to end of region */
96822904 320 nrg->to = t;
cf3ad20b 321
5e911373
MK
322out_locked:
323 resv->adds_in_progress--;
7b24d861 324 spin_unlock(&resv->lock);
cf3ad20b
MK
325 VM_BUG_ON(add < 0);
326 return add;
96822904
AW
327}
328
1dd308a7
MK
329/*
330 * Examine the existing reserve map and determine how many
331 * huge pages in the specified range [f, t) are NOT currently
332 * represented. This routine is called before a subsequent
333 * call to region_add that will actually modify the reserve
334 * map to add the specified range [f, t). region_chg does
335 * not change the number of huge pages represented by the
336 * map. However, if the existing regions in the map can not
337 * be expanded to represent the new range, a new file_region
338 * structure is added to the map as a placeholder. This is
339 * so that the subsequent region_add call will have all the
340 * regions it needs and will not fail.
341 *
5e911373
MK
342 * Upon entry, region_chg will also examine the cache of region descriptors
343 * associated with the map. If there are not enough descriptors cached, one
344 * will be allocated for the in progress add operation.
345 *
346 * Returns the number of huge pages that need to be added to the existing
347 * reservation map for the range [f, t). This number is greater or equal to
348 * zero. -ENOMEM is returned if a new file_region structure or cache entry
349 * is needed and can not be allocated.
1dd308a7 350 */
1406ec9b 351static long region_chg(struct resv_map *resv, long f, long t)
96822904 352{
1406ec9b 353 struct list_head *head = &resv->regions;
7b24d861 354 struct file_region *rg, *nrg = NULL;
96822904
AW
355 long chg = 0;
356
7b24d861
DB
357retry:
358 spin_lock(&resv->lock);
5e911373
MK
359retry_locked:
360 resv->adds_in_progress++;
361
362 /*
363 * Check for sufficient descriptors in the cache to accommodate
364 * the number of in progress add operations.
365 */
366 if (resv->adds_in_progress > resv->region_cache_count) {
367 struct file_region *trg;
368
369 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
370 /* Must drop lock to allocate a new descriptor. */
371 resv->adds_in_progress--;
372 spin_unlock(&resv->lock);
373
374 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
375 if (!trg)
376 return -ENOMEM;
377
378 spin_lock(&resv->lock);
379 list_add(&trg->link, &resv->region_cache);
380 resv->region_cache_count++;
381 goto retry_locked;
382 }
383
96822904
AW
384 /* Locate the region we are before or in. */
385 list_for_each_entry(rg, head, link)
386 if (f <= rg->to)
387 break;
388
389 /* If we are below the current region then a new region is required.
390 * Subtle, allocate a new region at the position but make it zero
391 * size such that we can guarantee to record the reservation. */
392 if (&rg->link == head || t < rg->from) {
7b24d861 393 if (!nrg) {
5e911373 394 resv->adds_in_progress--;
7b24d861
DB
395 spin_unlock(&resv->lock);
396 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
397 if (!nrg)
398 return -ENOMEM;
399
400 nrg->from = f;
401 nrg->to = f;
402 INIT_LIST_HEAD(&nrg->link);
403 goto retry;
404 }
96822904 405
7b24d861
DB
406 list_add(&nrg->link, rg->link.prev);
407 chg = t - f;
408 goto out_nrg;
96822904
AW
409 }
410
411 /* Round our left edge to the current segment if it encloses us. */
412 if (f > rg->from)
413 f = rg->from;
414 chg = t - f;
415
416 /* Check for and consume any regions we now overlap with. */
417 list_for_each_entry(rg, rg->link.prev, link) {
418 if (&rg->link == head)
419 break;
420 if (rg->from > t)
7b24d861 421 goto out;
96822904 422
25985edc 423 /* We overlap with this area, if it extends further than
96822904
AW
424 * us then we must extend ourselves. Account for its
425 * existing reservation. */
426 if (rg->to > t) {
427 chg += rg->to - t;
428 t = rg->to;
429 }
430 chg -= rg->to - rg->from;
431 }
7b24d861
DB
432
433out:
434 spin_unlock(&resv->lock);
435 /* We already know we raced and no longer need the new region */
436 kfree(nrg);
437 return chg;
438out_nrg:
439 spin_unlock(&resv->lock);
96822904
AW
440 return chg;
441}
442
5e911373
MK
443/*
444 * Abort the in progress add operation. The adds_in_progress field
445 * of the resv_map keeps track of the operations in progress between
446 * calls to region_chg and region_add. Operations are sometimes
447 * aborted after the call to region_chg. In such cases, region_abort
448 * is called to decrement the adds_in_progress counter.
449 *
450 * NOTE: The range arguments [f, t) are not needed or used in this
451 * routine. They are kept to make reading the calling code easier as
452 * arguments will match the associated region_chg call.
453 */
454static void region_abort(struct resv_map *resv, long f, long t)
455{
456 spin_lock(&resv->lock);
457 VM_BUG_ON(!resv->region_cache_count);
458 resv->adds_in_progress--;
459 spin_unlock(&resv->lock);
460}
461
1dd308a7 462/*
feba16e2
MK
463 * Delete the specified range [f, t) from the reserve map. If the
464 * t parameter is LONG_MAX, this indicates that ALL regions after f
465 * should be deleted. Locate the regions which intersect [f, t)
466 * and either trim, delete or split the existing regions.
467 *
468 * Returns the number of huge pages deleted from the reserve map.
469 * In the normal case, the return value is zero or more. In the
470 * case where a region must be split, a new region descriptor must
471 * be allocated. If the allocation fails, -ENOMEM will be returned.
472 * NOTE: If the parameter t == LONG_MAX, then we will never split
473 * a region and possibly return -ENOMEM. Callers specifying
474 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 475 */
feba16e2 476static long region_del(struct resv_map *resv, long f, long t)
96822904 477{
1406ec9b 478 struct list_head *head = &resv->regions;
96822904 479 struct file_region *rg, *trg;
feba16e2
MK
480 struct file_region *nrg = NULL;
481 long del = 0;
96822904 482
feba16e2 483retry:
7b24d861 484 spin_lock(&resv->lock);
feba16e2
MK
485 list_for_each_entry_safe(rg, trg, head, link) {
486 if (rg->to <= f)
487 continue;
488 if (rg->from >= t)
96822904 489 break;
96822904 490
feba16e2
MK
491 if (f > rg->from && t < rg->to) { /* Must split region */
492 /*
493 * Check for an entry in the cache before dropping
494 * lock and attempting allocation.
495 */
496 if (!nrg &&
497 resv->region_cache_count > resv->adds_in_progress) {
498 nrg = list_first_entry(&resv->region_cache,
499 struct file_region,
500 link);
501 list_del(&nrg->link);
502 resv->region_cache_count--;
503 }
96822904 504
feba16e2
MK
505 if (!nrg) {
506 spin_unlock(&resv->lock);
507 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
508 if (!nrg)
509 return -ENOMEM;
510 goto retry;
511 }
512
513 del += t - f;
514
515 /* New entry for end of split region */
516 nrg->from = t;
517 nrg->to = rg->to;
518 INIT_LIST_HEAD(&nrg->link);
519
520 /* Original entry is trimmed */
521 rg->to = f;
522
523 list_add(&nrg->link, &rg->link);
524 nrg = NULL;
96822904 525 break;
feba16e2
MK
526 }
527
528 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
529 del += rg->to - rg->from;
530 list_del(&rg->link);
531 kfree(rg);
532 continue;
533 }
534
535 if (f <= rg->from) { /* Trim beginning of region */
536 del += t - rg->from;
537 rg->from = t;
538 } else { /* Trim end of region */
539 del += rg->to - f;
540 rg->to = f;
541 }
96822904 542 }
7b24d861 543
7b24d861 544 spin_unlock(&resv->lock);
feba16e2
MK
545 kfree(nrg);
546 return del;
96822904
AW
547}
548
b5cec28d
MK
549/*
550 * A rare out of memory error was encountered which prevented removal of
551 * the reserve map region for a page. The huge page itself was free'ed
552 * and removed from the page cache. This routine will adjust the subpool
553 * usage count, and the global reserve count if needed. By incrementing
554 * these counts, the reserve map entry which could not be deleted will
555 * appear as a "reserved" entry instead of simply dangling with incorrect
556 * counts.
557 */
558void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
559{
560 struct hugepage_subpool *spool = subpool_inode(inode);
561 long rsv_adjust;
562
563 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
564 if (restore_reserve && rsv_adjust) {
565 struct hstate *h = hstate_inode(inode);
566
567 hugetlb_acct_memory(h, 1);
568 }
569}
570
1dd308a7
MK
571/*
572 * Count and return the number of huge pages in the reserve map
573 * that intersect with the range [f, t).
574 */
1406ec9b 575static long region_count(struct resv_map *resv, long f, long t)
84afd99b 576{
1406ec9b 577 struct list_head *head = &resv->regions;
84afd99b
AW
578 struct file_region *rg;
579 long chg = 0;
580
7b24d861 581 spin_lock(&resv->lock);
84afd99b
AW
582 /* Locate each segment we overlap with, and count that overlap. */
583 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
584 long seg_from;
585 long seg_to;
84afd99b
AW
586
587 if (rg->to <= f)
588 continue;
589 if (rg->from >= t)
590 break;
591
592 seg_from = max(rg->from, f);
593 seg_to = min(rg->to, t);
594
595 chg += seg_to - seg_from;
596 }
7b24d861 597 spin_unlock(&resv->lock);
84afd99b
AW
598
599 return chg;
600}
601
e7c4b0bf
AW
602/*
603 * Convert the address within this vma to the page offset within
604 * the mapping, in pagecache page units; huge pages here.
605 */
a5516438
AK
606static pgoff_t vma_hugecache_offset(struct hstate *h,
607 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 608{
a5516438
AK
609 return ((address - vma->vm_start) >> huge_page_shift(h)) +
610 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
611}
612
0fe6e20b
NH
613pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
614 unsigned long address)
615{
616 return vma_hugecache_offset(hstate_vma(vma), vma, address);
617}
618
08fba699
MG
619/*
620 * Return the size of the pages allocated when backing a VMA. In the majority
621 * cases this will be same size as used by the page table entries.
622 */
623unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
624{
625 struct hstate *hstate;
626
627 if (!is_vm_hugetlb_page(vma))
628 return PAGE_SIZE;
629
630 hstate = hstate_vma(vma);
631
2415cf12 632 return 1UL << huge_page_shift(hstate);
08fba699 633}
f340ca0f 634EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 635
3340289d
MG
636/*
637 * Return the page size being used by the MMU to back a VMA. In the majority
638 * of cases, the page size used by the kernel matches the MMU size. On
639 * architectures where it differs, an architecture-specific version of this
640 * function is required.
641 */
642#ifndef vma_mmu_pagesize
643unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
644{
645 return vma_kernel_pagesize(vma);
646}
647#endif
648
84afd99b
AW
649/*
650 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
651 * bits of the reservation map pointer, which are always clear due to
652 * alignment.
653 */
654#define HPAGE_RESV_OWNER (1UL << 0)
655#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 656#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 657
a1e78772
MG
658/*
659 * These helpers are used to track how many pages are reserved for
660 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
661 * is guaranteed to have their future faults succeed.
662 *
663 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
664 * the reserve counters are updated with the hugetlb_lock held. It is safe
665 * to reset the VMA at fork() time as it is not in use yet and there is no
666 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
667 *
668 * The private mapping reservation is represented in a subtly different
669 * manner to a shared mapping. A shared mapping has a region map associated
670 * with the underlying file, this region map represents the backing file
671 * pages which have ever had a reservation assigned which this persists even
672 * after the page is instantiated. A private mapping has a region map
673 * associated with the original mmap which is attached to all VMAs which
674 * reference it, this region map represents those offsets which have consumed
675 * reservation ie. where pages have been instantiated.
a1e78772 676 */
e7c4b0bf
AW
677static unsigned long get_vma_private_data(struct vm_area_struct *vma)
678{
679 return (unsigned long)vma->vm_private_data;
680}
681
682static void set_vma_private_data(struct vm_area_struct *vma,
683 unsigned long value)
684{
685 vma->vm_private_data = (void *)value;
686}
687
9119a41e 688struct resv_map *resv_map_alloc(void)
84afd99b
AW
689{
690 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
691 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
692
693 if (!resv_map || !rg) {
694 kfree(resv_map);
695 kfree(rg);
84afd99b 696 return NULL;
5e911373 697 }
84afd99b
AW
698
699 kref_init(&resv_map->refs);
7b24d861 700 spin_lock_init(&resv_map->lock);
84afd99b
AW
701 INIT_LIST_HEAD(&resv_map->regions);
702
5e911373
MK
703 resv_map->adds_in_progress = 0;
704
705 INIT_LIST_HEAD(&resv_map->region_cache);
706 list_add(&rg->link, &resv_map->region_cache);
707 resv_map->region_cache_count = 1;
708
84afd99b
AW
709 return resv_map;
710}
711
9119a41e 712void resv_map_release(struct kref *ref)
84afd99b
AW
713{
714 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
715 struct list_head *head = &resv_map->region_cache;
716 struct file_region *rg, *trg;
84afd99b
AW
717
718 /* Clear out any active regions before we release the map. */
feba16e2 719 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
720
721 /* ... and any entries left in the cache */
722 list_for_each_entry_safe(rg, trg, head, link) {
723 list_del(&rg->link);
724 kfree(rg);
725 }
726
727 VM_BUG_ON(resv_map->adds_in_progress);
728
84afd99b
AW
729 kfree(resv_map);
730}
731
4e35f483
JK
732static inline struct resv_map *inode_resv_map(struct inode *inode)
733{
734 return inode->i_mapping->private_data;
735}
736
84afd99b 737static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 738{
81d1b09c 739 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
740 if (vma->vm_flags & VM_MAYSHARE) {
741 struct address_space *mapping = vma->vm_file->f_mapping;
742 struct inode *inode = mapping->host;
743
744 return inode_resv_map(inode);
745
746 } else {
84afd99b
AW
747 return (struct resv_map *)(get_vma_private_data(vma) &
748 ~HPAGE_RESV_MASK);
4e35f483 749 }
a1e78772
MG
750}
751
84afd99b 752static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 753{
81d1b09c
SL
754 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
755 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 756
84afd99b
AW
757 set_vma_private_data(vma, (get_vma_private_data(vma) &
758 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
759}
760
761static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
762{
81d1b09c
SL
763 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
764 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
765
766 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
767}
768
769static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
770{
81d1b09c 771 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
772
773 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
774}
775
04f2cbe3 776/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
777void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
778{
81d1b09c 779 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 780 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
781 vma->vm_private_data = (void *)0;
782}
783
784/* Returns true if the VMA has associated reserve pages */
559ec2f8 785static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 786{
af0ed73e
JK
787 if (vma->vm_flags & VM_NORESERVE) {
788 /*
789 * This address is already reserved by other process(chg == 0),
790 * so, we should decrement reserved count. Without decrementing,
791 * reserve count remains after releasing inode, because this
792 * allocated page will go into page cache and is regarded as
793 * coming from reserved pool in releasing step. Currently, we
794 * don't have any other solution to deal with this situation
795 * properly, so add work-around here.
796 */
797 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 798 return true;
af0ed73e 799 else
559ec2f8 800 return false;
af0ed73e 801 }
a63884e9
JK
802
803 /* Shared mappings always use reserves */
1fb1b0e9
MK
804 if (vma->vm_flags & VM_MAYSHARE) {
805 /*
806 * We know VM_NORESERVE is not set. Therefore, there SHOULD
807 * be a region map for all pages. The only situation where
808 * there is no region map is if a hole was punched via
809 * fallocate. In this case, there really are no reverves to
810 * use. This situation is indicated if chg != 0.
811 */
812 if (chg)
813 return false;
814 else
815 return true;
816 }
a63884e9
JK
817
818 /*
819 * Only the process that called mmap() has reserves for
820 * private mappings.
821 */
7f09ca51 822 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
559ec2f8 823 return true;
a63884e9 824
559ec2f8 825 return false;
a1e78772
MG
826}
827
a5516438 828static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
829{
830 int nid = page_to_nid(page);
0edaecfa 831 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
832 h->free_huge_pages++;
833 h->free_huge_pages_node[nid]++;
1da177e4
LT
834}
835
bf50bab2
NH
836static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
837{
838 struct page *page;
839
c8721bbb
NH
840 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
841 if (!is_migrate_isolate_page(page))
842 break;
843 /*
844 * if 'non-isolated free hugepage' not found on the list,
845 * the allocation fails.
846 */
847 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 848 return NULL;
0edaecfa 849 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 850 set_page_refcounted(page);
bf50bab2
NH
851 h->free_huge_pages--;
852 h->free_huge_pages_node[nid]--;
853 return page;
854}
855
86cdb465
NH
856/* Movability of hugepages depends on migration support. */
857static inline gfp_t htlb_alloc_mask(struct hstate *h)
858{
100873d7 859 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
86cdb465
NH
860 return GFP_HIGHUSER_MOVABLE;
861 else
862 return GFP_HIGHUSER;
863}
864
a5516438
AK
865static struct page *dequeue_huge_page_vma(struct hstate *h,
866 struct vm_area_struct *vma,
af0ed73e
JK
867 unsigned long address, int avoid_reserve,
868 long chg)
1da177e4 869{
b1c12cbc 870 struct page *page = NULL;
480eccf9 871 struct mempolicy *mpol;
19770b32 872 nodemask_t *nodemask;
c0ff7453 873 struct zonelist *zonelist;
dd1a239f
MG
874 struct zone *zone;
875 struct zoneref *z;
cc9a6c87 876 unsigned int cpuset_mems_cookie;
1da177e4 877
a1e78772
MG
878 /*
879 * A child process with MAP_PRIVATE mappings created by their parent
880 * have no page reserves. This check ensures that reservations are
881 * not "stolen". The child may still get SIGKILLed
882 */
af0ed73e 883 if (!vma_has_reserves(vma, chg) &&
a5516438 884 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 885 goto err;
a1e78772 886
04f2cbe3 887 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 888 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 889 goto err;
04f2cbe3 890
9966c4bb 891retry_cpuset:
d26914d1 892 cpuset_mems_cookie = read_mems_allowed_begin();
9966c4bb 893 zonelist = huge_zonelist(vma, address,
86cdb465 894 htlb_alloc_mask(h), &mpol, &nodemask);
9966c4bb 895
19770b32
MG
896 for_each_zone_zonelist_nodemask(zone, z, zonelist,
897 MAX_NR_ZONES - 1, nodemask) {
344736f2 898 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
bf50bab2
NH
899 page = dequeue_huge_page_node(h, zone_to_nid(zone));
900 if (page) {
af0ed73e
JK
901 if (avoid_reserve)
902 break;
903 if (!vma_has_reserves(vma, chg))
904 break;
905
07443a85 906 SetPagePrivate(page);
af0ed73e 907 h->resv_huge_pages--;
bf50bab2
NH
908 break;
909 }
3abf7afd 910 }
1da177e4 911 }
cc9a6c87 912
52cd3b07 913 mpol_cond_put(mpol);
d26914d1 914 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 915 goto retry_cpuset;
1da177e4 916 return page;
cc9a6c87
MG
917
918err:
cc9a6c87 919 return NULL;
1da177e4
LT
920}
921
1cac6f2c
LC
922/*
923 * common helper functions for hstate_next_node_to_{alloc|free}.
924 * We may have allocated or freed a huge page based on a different
925 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
926 * be outside of *nodes_allowed. Ensure that we use an allowed
927 * node for alloc or free.
928 */
929static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
930{
931 nid = next_node(nid, *nodes_allowed);
932 if (nid == MAX_NUMNODES)
933 nid = first_node(*nodes_allowed);
934 VM_BUG_ON(nid >= MAX_NUMNODES);
935
936 return nid;
937}
938
939static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
940{
941 if (!node_isset(nid, *nodes_allowed))
942 nid = next_node_allowed(nid, nodes_allowed);
943 return nid;
944}
945
946/*
947 * returns the previously saved node ["this node"] from which to
948 * allocate a persistent huge page for the pool and advance the
949 * next node from which to allocate, handling wrap at end of node
950 * mask.
951 */
952static int hstate_next_node_to_alloc(struct hstate *h,
953 nodemask_t *nodes_allowed)
954{
955 int nid;
956
957 VM_BUG_ON(!nodes_allowed);
958
959 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
960 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
961
962 return nid;
963}
964
965/*
966 * helper for free_pool_huge_page() - return the previously saved
967 * node ["this node"] from which to free a huge page. Advance the
968 * next node id whether or not we find a free huge page to free so
969 * that the next attempt to free addresses the next node.
970 */
971static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
972{
973 int nid;
974
975 VM_BUG_ON(!nodes_allowed);
976
977 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
978 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
979
980 return nid;
981}
982
983#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
984 for (nr_nodes = nodes_weight(*mask); \
985 nr_nodes > 0 && \
986 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
987 nr_nodes--)
988
989#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
990 for (nr_nodes = nodes_weight(*mask); \
991 nr_nodes > 0 && \
992 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
993 nr_nodes--)
994
944d9fec
LC
995#if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
996static void destroy_compound_gigantic_page(struct page *page,
997 unsigned long order)
998{
999 int i;
1000 int nr_pages = 1 << order;
1001 struct page *p = page + 1;
1002
1003 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1004 clear_compound_head(p);
944d9fec 1005 set_page_refcounted(p);
944d9fec
LC
1006 }
1007
1008 set_compound_order(page, 0);
1009 __ClearPageHead(page);
1010}
1011
1012static void free_gigantic_page(struct page *page, unsigned order)
1013{
1014 free_contig_range(page_to_pfn(page), 1 << order);
1015}
1016
1017static int __alloc_gigantic_page(unsigned long start_pfn,
1018 unsigned long nr_pages)
1019{
1020 unsigned long end_pfn = start_pfn + nr_pages;
1021 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1022}
1023
1024static bool pfn_range_valid_gigantic(unsigned long start_pfn,
1025 unsigned long nr_pages)
1026{
1027 unsigned long i, end_pfn = start_pfn + nr_pages;
1028 struct page *page;
1029
1030 for (i = start_pfn; i < end_pfn; i++) {
1031 if (!pfn_valid(i))
1032 return false;
1033
1034 page = pfn_to_page(i);
1035
1036 if (PageReserved(page))
1037 return false;
1038
1039 if (page_count(page) > 0)
1040 return false;
1041
1042 if (PageHuge(page))
1043 return false;
1044 }
1045
1046 return true;
1047}
1048
1049static bool zone_spans_last_pfn(const struct zone *zone,
1050 unsigned long start_pfn, unsigned long nr_pages)
1051{
1052 unsigned long last_pfn = start_pfn + nr_pages - 1;
1053 return zone_spans_pfn(zone, last_pfn);
1054}
1055
1056static struct page *alloc_gigantic_page(int nid, unsigned order)
1057{
1058 unsigned long nr_pages = 1 << order;
1059 unsigned long ret, pfn, flags;
1060 struct zone *z;
1061
1062 z = NODE_DATA(nid)->node_zones;
1063 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1064 spin_lock_irqsave(&z->lock, flags);
1065
1066 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1067 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1068 if (pfn_range_valid_gigantic(pfn, nr_pages)) {
1069 /*
1070 * We release the zone lock here because
1071 * alloc_contig_range() will also lock the zone
1072 * at some point. If there's an allocation
1073 * spinning on this lock, it may win the race
1074 * and cause alloc_contig_range() to fail...
1075 */
1076 spin_unlock_irqrestore(&z->lock, flags);
1077 ret = __alloc_gigantic_page(pfn, nr_pages);
1078 if (!ret)
1079 return pfn_to_page(pfn);
1080 spin_lock_irqsave(&z->lock, flags);
1081 }
1082 pfn += nr_pages;
1083 }
1084
1085 spin_unlock_irqrestore(&z->lock, flags);
1086 }
1087
1088 return NULL;
1089}
1090
1091static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1092static void prep_compound_gigantic_page(struct page *page, unsigned long order);
1093
1094static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1095{
1096 struct page *page;
1097
1098 page = alloc_gigantic_page(nid, huge_page_order(h));
1099 if (page) {
1100 prep_compound_gigantic_page(page, huge_page_order(h));
1101 prep_new_huge_page(h, page, nid);
1102 }
1103
1104 return page;
1105}
1106
1107static int alloc_fresh_gigantic_page(struct hstate *h,
1108 nodemask_t *nodes_allowed)
1109{
1110 struct page *page = NULL;
1111 int nr_nodes, node;
1112
1113 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1114 page = alloc_fresh_gigantic_page_node(h, node);
1115 if (page)
1116 return 1;
1117 }
1118
1119 return 0;
1120}
1121
1122static inline bool gigantic_page_supported(void) { return true; }
1123#else
1124static inline bool gigantic_page_supported(void) { return false; }
1125static inline void free_gigantic_page(struct page *page, unsigned order) { }
1126static inline void destroy_compound_gigantic_page(struct page *page,
1127 unsigned long order) { }
1128static inline int alloc_fresh_gigantic_page(struct hstate *h,
1129 nodemask_t *nodes_allowed) { return 0; }
1130#endif
1131
a5516438 1132static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1133{
1134 int i;
a5516438 1135
944d9fec
LC
1136 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1137 return;
18229df5 1138
a5516438
AK
1139 h->nr_huge_pages--;
1140 h->nr_huge_pages_node[page_to_nid(page)]--;
1141 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1142 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1143 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1144 1 << PG_active | 1 << PG_private |
1145 1 << PG_writeback);
6af2acb6 1146 }
309381fe 1147 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
f1e61557 1148 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1149 set_page_refcounted(page);
944d9fec
LC
1150 if (hstate_is_gigantic(h)) {
1151 destroy_compound_gigantic_page(page, huge_page_order(h));
1152 free_gigantic_page(page, huge_page_order(h));
1153 } else {
944d9fec
LC
1154 __free_pages(page, huge_page_order(h));
1155 }
6af2acb6
AL
1156}
1157
e5ff2159
AK
1158struct hstate *size_to_hstate(unsigned long size)
1159{
1160 struct hstate *h;
1161
1162 for_each_hstate(h) {
1163 if (huge_page_size(h) == size)
1164 return h;
1165 }
1166 return NULL;
1167}
1168
bcc54222
NH
1169/*
1170 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1171 * to hstate->hugepage_activelist.)
1172 *
1173 * This function can be called for tail pages, but never returns true for them.
1174 */
1175bool page_huge_active(struct page *page)
1176{
1177 VM_BUG_ON_PAGE(!PageHuge(page), page);
1178 return PageHead(page) && PagePrivate(&page[1]);
1179}
1180
1181/* never called for tail page */
1182static void set_page_huge_active(struct page *page)
1183{
1184 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1185 SetPagePrivate(&page[1]);
1186}
1187
1188static void clear_page_huge_active(struct page *page)
1189{
1190 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1191 ClearPagePrivate(&page[1]);
1192}
1193
8f1d26d0 1194void free_huge_page(struct page *page)
27a85ef1 1195{
a5516438
AK
1196 /*
1197 * Can't pass hstate in here because it is called from the
1198 * compound page destructor.
1199 */
e5ff2159 1200 struct hstate *h = page_hstate(page);
7893d1d5 1201 int nid = page_to_nid(page);
90481622
DG
1202 struct hugepage_subpool *spool =
1203 (struct hugepage_subpool *)page_private(page);
07443a85 1204 bool restore_reserve;
27a85ef1 1205
e5df70ab 1206 set_page_private(page, 0);
23be7468 1207 page->mapping = NULL;
7893d1d5 1208 BUG_ON(page_count(page));
0fe6e20b 1209 BUG_ON(page_mapcount(page));
07443a85 1210 restore_reserve = PagePrivate(page);
16c794b4 1211 ClearPagePrivate(page);
27a85ef1 1212
1c5ecae3
MK
1213 /*
1214 * A return code of zero implies that the subpool will be under its
1215 * minimum size if the reservation is not restored after page is free.
1216 * Therefore, force restore_reserve operation.
1217 */
1218 if (hugepage_subpool_put_pages(spool, 1) == 0)
1219 restore_reserve = true;
1220
27a85ef1 1221 spin_lock(&hugetlb_lock);
bcc54222 1222 clear_page_huge_active(page);
6d76dcf4
AK
1223 hugetlb_cgroup_uncharge_page(hstate_index(h),
1224 pages_per_huge_page(h), page);
07443a85
JK
1225 if (restore_reserve)
1226 h->resv_huge_pages++;
1227
944d9fec 1228 if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1229 /* remove the page from active list */
1230 list_del(&page->lru);
a5516438
AK
1231 update_and_free_page(h, page);
1232 h->surplus_huge_pages--;
1233 h->surplus_huge_pages_node[nid]--;
7893d1d5 1234 } else {
5d3a551c 1235 arch_clear_hugepage_flags(page);
a5516438 1236 enqueue_huge_page(h, page);
7893d1d5 1237 }
27a85ef1
DG
1238 spin_unlock(&hugetlb_lock);
1239}
1240
a5516438 1241static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1242{
0edaecfa 1243 INIT_LIST_HEAD(&page->lru);
f1e61557 1244 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1245 spin_lock(&hugetlb_lock);
9dd540e2 1246 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1247 h->nr_huge_pages++;
1248 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
1249 spin_unlock(&hugetlb_lock);
1250 put_page(page); /* free it into the hugepage allocator */
1251}
1252
2906dd52 1253static void prep_compound_gigantic_page(struct page *page, unsigned long order)
20a0307c
WF
1254{
1255 int i;
1256 int nr_pages = 1 << order;
1257 struct page *p = page + 1;
1258
1259 /* we rely on prep_new_huge_page to set the destructor */
1260 set_compound_order(page, order);
1261 __SetPageHead(page);
ef5a22be 1262 __ClearPageReserved(page);
20a0307c 1263 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1264 /*
1265 * For gigantic hugepages allocated through bootmem at
1266 * boot, it's safer to be consistent with the not-gigantic
1267 * hugepages and clear the PG_reserved bit from all tail pages
1268 * too. Otherwse drivers using get_user_pages() to access tail
1269 * pages may get the reference counting wrong if they see
1270 * PG_reserved set on a tail page (despite the head page not
1271 * having PG_reserved set). Enforcing this consistency between
1272 * head and tail pages allows drivers to optimize away a check
1273 * on the head page when they need know if put_page() is needed
1274 * after get_user_pages().
1275 */
1276 __ClearPageReserved(p);
58a84aa9 1277 set_page_count(p, 0);
1d798ca3 1278 set_compound_head(p, page);
20a0307c
WF
1279 }
1280}
1281
7795912c
AM
1282/*
1283 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1284 * transparent huge pages. See the PageTransHuge() documentation for more
1285 * details.
1286 */
20a0307c
WF
1287int PageHuge(struct page *page)
1288{
20a0307c
WF
1289 if (!PageCompound(page))
1290 return 0;
1291
1292 page = compound_head(page);
f1e61557 1293 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1294}
43131e14
NH
1295EXPORT_SYMBOL_GPL(PageHuge);
1296
27c73ae7
AA
1297/*
1298 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1299 * normal or transparent huge pages.
1300 */
1301int PageHeadHuge(struct page *page_head)
1302{
27c73ae7
AA
1303 if (!PageHead(page_head))
1304 return 0;
1305
758f66a2 1306 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1307}
27c73ae7 1308
13d60f4b
ZY
1309pgoff_t __basepage_index(struct page *page)
1310{
1311 struct page *page_head = compound_head(page);
1312 pgoff_t index = page_index(page_head);
1313 unsigned long compound_idx;
1314
1315 if (!PageHuge(page_head))
1316 return page_index(page);
1317
1318 if (compound_order(page_head) >= MAX_ORDER)
1319 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1320 else
1321 compound_idx = page - page_head;
1322
1323 return (index << compound_order(page_head)) + compound_idx;
1324}
1325
a5516438 1326static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 1327{
1da177e4 1328 struct page *page;
f96efd58 1329
96db800f 1330 page = __alloc_pages_node(nid,
86cdb465 1331 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
551883ae 1332 __GFP_REPEAT|__GFP_NOWARN,
a5516438 1333 huge_page_order(h));
1da177e4 1334 if (page) {
a5516438 1335 prep_new_huge_page(h, page, nid);
1da177e4 1336 }
63b4613c
NA
1337
1338 return page;
1339}
1340
b2261026
JK
1341static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1342{
1343 struct page *page;
1344 int nr_nodes, node;
1345 int ret = 0;
1346
1347 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1348 page = alloc_fresh_huge_page_node(h, node);
1349 if (page) {
1350 ret = 1;
1351 break;
1352 }
1353 }
1354
1355 if (ret)
1356 count_vm_event(HTLB_BUDDY_PGALLOC);
1357 else
1358 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1359
1360 return ret;
1361}
1362
e8c5c824
LS
1363/*
1364 * Free huge page from pool from next node to free.
1365 * Attempt to keep persistent huge pages more or less
1366 * balanced over allowed nodes.
1367 * Called with hugetlb_lock locked.
1368 */
6ae11b27
LS
1369static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1370 bool acct_surplus)
e8c5c824 1371{
b2261026 1372 int nr_nodes, node;
e8c5c824
LS
1373 int ret = 0;
1374
b2261026 1375 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1376 /*
1377 * If we're returning unused surplus pages, only examine
1378 * nodes with surplus pages.
1379 */
b2261026
JK
1380 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1381 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1382 struct page *page =
b2261026 1383 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1384 struct page, lru);
1385 list_del(&page->lru);
1386 h->free_huge_pages--;
b2261026 1387 h->free_huge_pages_node[node]--;
685f3457
LS
1388 if (acct_surplus) {
1389 h->surplus_huge_pages--;
b2261026 1390 h->surplus_huge_pages_node[node]--;
685f3457 1391 }
e8c5c824
LS
1392 update_and_free_page(h, page);
1393 ret = 1;
9a76db09 1394 break;
e8c5c824 1395 }
b2261026 1396 }
e8c5c824
LS
1397
1398 return ret;
1399}
1400
c8721bbb
NH
1401/*
1402 * Dissolve a given free hugepage into free buddy pages. This function does
1403 * nothing for in-use (including surplus) hugepages.
1404 */
1405static void dissolve_free_huge_page(struct page *page)
1406{
1407 spin_lock(&hugetlb_lock);
1408 if (PageHuge(page) && !page_count(page)) {
1409 struct hstate *h = page_hstate(page);
1410 int nid = page_to_nid(page);
1411 list_del(&page->lru);
1412 h->free_huge_pages--;
1413 h->free_huge_pages_node[nid]--;
1414 update_and_free_page(h, page);
1415 }
1416 spin_unlock(&hugetlb_lock);
1417}
1418
1419/*
1420 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1421 * make specified memory blocks removable from the system.
1422 * Note that start_pfn should aligned with (minimum) hugepage size.
1423 */
1424void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1425{
c8721bbb 1426 unsigned long pfn;
c8721bbb 1427
d0177639
LZ
1428 if (!hugepages_supported())
1429 return;
1430
641844f5
NH
1431 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1432 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
c8721bbb
NH
1433 dissolve_free_huge_page(pfn_to_page(pfn));
1434}
1435
099730d6
DH
1436/*
1437 * There are 3 ways this can get called:
1438 * 1. With vma+addr: we use the VMA's memory policy
1439 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1440 * page from any node, and let the buddy allocator itself figure
1441 * it out.
1442 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1443 * strictly from 'nid'
1444 */
1445static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1446 struct vm_area_struct *vma, unsigned long addr, int nid)
1447{
1448 int order = huge_page_order(h);
1449 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1450 unsigned int cpuset_mems_cookie;
1451
1452 /*
1453 * We need a VMA to get a memory policy. If we do not
e0ec90ee
DH
1454 * have one, we use the 'nid' argument.
1455 *
1456 * The mempolicy stuff below has some non-inlined bits
1457 * and calls ->vm_ops. That makes it hard to optimize at
1458 * compile-time, even when NUMA is off and it does
1459 * nothing. This helps the compiler optimize it out.
099730d6 1460 */
e0ec90ee 1461 if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
099730d6
DH
1462 /*
1463 * If a specific node is requested, make sure to
1464 * get memory from there, but only when a node
1465 * is explicitly specified.
1466 */
1467 if (nid != NUMA_NO_NODE)
1468 gfp |= __GFP_THISNODE;
1469 /*
1470 * Make sure to call something that can handle
1471 * nid=NUMA_NO_NODE
1472 */
1473 return alloc_pages_node(nid, gfp, order);
1474 }
1475
1476 /*
1477 * OK, so we have a VMA. Fetch the mempolicy and try to
e0ec90ee
DH
1478 * allocate a huge page with it. We will only reach this
1479 * when CONFIG_NUMA=y.
099730d6
DH
1480 */
1481 do {
1482 struct page *page;
1483 struct mempolicy *mpol;
1484 struct zonelist *zl;
1485 nodemask_t *nodemask;
1486
1487 cpuset_mems_cookie = read_mems_allowed_begin();
1488 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1489 mpol_cond_put(mpol);
1490 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1491 if (page)
1492 return page;
1493 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1494
1495 return NULL;
1496}
1497
1498/*
1499 * There are two ways to allocate a huge page:
1500 * 1. When you have a VMA and an address (like a fault)
1501 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1502 *
1503 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1504 * this case which signifies that the allocation should be done with
1505 * respect for the VMA's memory policy.
1506 *
1507 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1508 * implies that memory policies will not be taken in to account.
1509 */
1510static struct page *__alloc_buddy_huge_page(struct hstate *h,
1511 struct vm_area_struct *vma, unsigned long addr, int nid)
7893d1d5
AL
1512{
1513 struct page *page;
bf50bab2 1514 unsigned int r_nid;
7893d1d5 1515
bae7f4ae 1516 if (hstate_is_gigantic(h))
aa888a74
AK
1517 return NULL;
1518
099730d6
DH
1519 /*
1520 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1521 * This makes sure the caller is picking _one_ of the modes with which
1522 * we can call this function, not both.
1523 */
1524 if (vma || (addr != -1)) {
e0ec90ee
DH
1525 VM_WARN_ON_ONCE(addr == -1);
1526 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
099730d6 1527 }
d1c3fb1f
NA
1528 /*
1529 * Assume we will successfully allocate the surplus page to
1530 * prevent racing processes from causing the surplus to exceed
1531 * overcommit
1532 *
1533 * This however introduces a different race, where a process B
1534 * tries to grow the static hugepage pool while alloc_pages() is
1535 * called by process A. B will only examine the per-node
1536 * counters in determining if surplus huge pages can be
1537 * converted to normal huge pages in adjust_pool_surplus(). A
1538 * won't be able to increment the per-node counter, until the
1539 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1540 * no more huge pages can be converted from surplus to normal
1541 * state (and doesn't try to convert again). Thus, we have a
1542 * case where a surplus huge page exists, the pool is grown, and
1543 * the surplus huge page still exists after, even though it
1544 * should just have been converted to a normal huge page. This
1545 * does not leak memory, though, as the hugepage will be freed
1546 * once it is out of use. It also does not allow the counters to
1547 * go out of whack in adjust_pool_surplus() as we don't modify
1548 * the node values until we've gotten the hugepage and only the
1549 * per-node value is checked there.
1550 */
1551 spin_lock(&hugetlb_lock);
a5516438 1552 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
1553 spin_unlock(&hugetlb_lock);
1554 return NULL;
1555 } else {
a5516438
AK
1556 h->nr_huge_pages++;
1557 h->surplus_huge_pages++;
d1c3fb1f
NA
1558 }
1559 spin_unlock(&hugetlb_lock);
1560
099730d6 1561 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
d1c3fb1f
NA
1562
1563 spin_lock(&hugetlb_lock);
7893d1d5 1564 if (page) {
0edaecfa 1565 INIT_LIST_HEAD(&page->lru);
bf50bab2 1566 r_nid = page_to_nid(page);
f1e61557 1567 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
9dd540e2 1568 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
1569 /*
1570 * We incremented the global counters already
1571 */
bf50bab2
NH
1572 h->nr_huge_pages_node[r_nid]++;
1573 h->surplus_huge_pages_node[r_nid]++;
3b116300 1574 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 1575 } else {
a5516438
AK
1576 h->nr_huge_pages--;
1577 h->surplus_huge_pages--;
3b116300 1578 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 1579 }
d1c3fb1f 1580 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1581
1582 return page;
1583}
1584
099730d6
DH
1585/*
1586 * Allocate a huge page from 'nid'. Note, 'nid' may be
1587 * NUMA_NO_NODE, which means that it may be allocated
1588 * anywhere.
1589 */
e0ec90ee 1590static
099730d6
DH
1591struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1592{
1593 unsigned long addr = -1;
1594
1595 return __alloc_buddy_huge_page(h, NULL, addr, nid);
1596}
1597
1598/*
1599 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1600 */
e0ec90ee 1601static
099730d6
DH
1602struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1603 struct vm_area_struct *vma, unsigned long addr)
1604{
1605 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1606}
1607
bf50bab2
NH
1608/*
1609 * This allocation function is useful in the context where vma is irrelevant.
1610 * E.g. soft-offlining uses this function because it only cares physical
1611 * address of error page.
1612 */
1613struct page *alloc_huge_page_node(struct hstate *h, int nid)
1614{
4ef91848 1615 struct page *page = NULL;
bf50bab2
NH
1616
1617 spin_lock(&hugetlb_lock);
4ef91848
JK
1618 if (h->free_huge_pages - h->resv_huge_pages > 0)
1619 page = dequeue_huge_page_node(h, nid);
bf50bab2
NH
1620 spin_unlock(&hugetlb_lock);
1621
94ae8ba7 1622 if (!page)
099730d6 1623 page = __alloc_buddy_huge_page_no_mpol(h, nid);
bf50bab2
NH
1624
1625 return page;
1626}
1627
e4e574b7 1628/*
25985edc 1629 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1630 * of size 'delta'.
1631 */
a5516438 1632static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1633{
1634 struct list_head surplus_list;
1635 struct page *page, *tmp;
1636 int ret, i;
1637 int needed, allocated;
28073b02 1638 bool alloc_ok = true;
e4e574b7 1639
a5516438 1640 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1641 if (needed <= 0) {
a5516438 1642 h->resv_huge_pages += delta;
e4e574b7 1643 return 0;
ac09b3a1 1644 }
e4e574b7
AL
1645
1646 allocated = 0;
1647 INIT_LIST_HEAD(&surplus_list);
1648
1649 ret = -ENOMEM;
1650retry:
1651 spin_unlock(&hugetlb_lock);
1652 for (i = 0; i < needed; i++) {
099730d6 1653 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
28073b02
HD
1654 if (!page) {
1655 alloc_ok = false;
1656 break;
1657 }
e4e574b7
AL
1658 list_add(&page->lru, &surplus_list);
1659 }
28073b02 1660 allocated += i;
e4e574b7
AL
1661
1662 /*
1663 * After retaking hugetlb_lock, we need to recalculate 'needed'
1664 * because either resv_huge_pages or free_huge_pages may have changed.
1665 */
1666 spin_lock(&hugetlb_lock);
a5516438
AK
1667 needed = (h->resv_huge_pages + delta) -
1668 (h->free_huge_pages + allocated);
28073b02
HD
1669 if (needed > 0) {
1670 if (alloc_ok)
1671 goto retry;
1672 /*
1673 * We were not able to allocate enough pages to
1674 * satisfy the entire reservation so we free what
1675 * we've allocated so far.
1676 */
1677 goto free;
1678 }
e4e574b7
AL
1679 /*
1680 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1681 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1682 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1683 * allocator. Commit the entire reservation here to prevent another
1684 * process from stealing the pages as they are added to the pool but
1685 * before they are reserved.
e4e574b7
AL
1686 */
1687 needed += allocated;
a5516438 1688 h->resv_huge_pages += delta;
e4e574b7 1689 ret = 0;
a9869b83 1690
19fc3f0a 1691 /* Free the needed pages to the hugetlb pool */
e4e574b7 1692 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1693 if ((--needed) < 0)
1694 break;
a9869b83
NH
1695 /*
1696 * This page is now managed by the hugetlb allocator and has
1697 * no users -- drop the buddy allocator's reference.
1698 */
1699 put_page_testzero(page);
309381fe 1700 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1701 enqueue_huge_page(h, page);
19fc3f0a 1702 }
28073b02 1703free:
b0365c8d 1704 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1705
1706 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1707 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1708 put_page(page);
a9869b83 1709 spin_lock(&hugetlb_lock);
e4e574b7
AL
1710
1711 return ret;
1712}
1713
1714/*
1715 * When releasing a hugetlb pool reservation, any surplus pages that were
1716 * allocated to satisfy the reservation must be explicitly freed if they were
1717 * never used.
685f3457 1718 * Called with hugetlb_lock held.
e4e574b7 1719 */
a5516438
AK
1720static void return_unused_surplus_pages(struct hstate *h,
1721 unsigned long unused_resv_pages)
e4e574b7 1722{
e4e574b7
AL
1723 unsigned long nr_pages;
1724
ac09b3a1 1725 /* Uncommit the reservation */
a5516438 1726 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1727
aa888a74 1728 /* Cannot return gigantic pages currently */
bae7f4ae 1729 if (hstate_is_gigantic(h))
aa888a74
AK
1730 return;
1731
a5516438 1732 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1733
685f3457
LS
1734 /*
1735 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1736 * evenly across all nodes with memory. Iterate across these nodes
1737 * until we can no longer free unreserved surplus pages. This occurs
1738 * when the nodes with surplus pages have no free pages.
1739 * free_pool_huge_page() will balance the the freed pages across the
1740 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1741 */
1742 while (nr_pages--) {
8cebfcd0 1743 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
685f3457 1744 break;
7848a4bf 1745 cond_resched_lock(&hugetlb_lock);
e4e574b7
AL
1746 }
1747}
1748
5e911373 1749
c37f9fb1 1750/*
feba16e2 1751 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 1752 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
1753 *
1754 * vma_needs_reservation is called to determine if the huge page at addr
1755 * within the vma has an associated reservation. If a reservation is
1756 * needed, the value 1 is returned. The caller is then responsible for
1757 * managing the global reservation and subpool usage counts. After
1758 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
1759 * to add the page to the reservation map. If the page allocation fails,
1760 * the reservation must be ended instead of committed. vma_end_reservation
1761 * is called in such cases.
cf3ad20b
MK
1762 *
1763 * In the normal case, vma_commit_reservation returns the same value
1764 * as the preceding vma_needs_reservation call. The only time this
1765 * is not the case is if a reserve map was changed between calls. It
1766 * is the responsibility of the caller to notice the difference and
1767 * take appropriate action.
c37f9fb1 1768 */
5e911373
MK
1769enum vma_resv_mode {
1770 VMA_NEEDS_RESV,
1771 VMA_COMMIT_RESV,
feba16e2 1772 VMA_END_RESV,
5e911373 1773};
cf3ad20b
MK
1774static long __vma_reservation_common(struct hstate *h,
1775 struct vm_area_struct *vma, unsigned long addr,
5e911373 1776 enum vma_resv_mode mode)
c37f9fb1 1777{
4e35f483
JK
1778 struct resv_map *resv;
1779 pgoff_t idx;
cf3ad20b 1780 long ret;
c37f9fb1 1781
4e35f483
JK
1782 resv = vma_resv_map(vma);
1783 if (!resv)
84afd99b 1784 return 1;
c37f9fb1 1785
4e35f483 1786 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
1787 switch (mode) {
1788 case VMA_NEEDS_RESV:
cf3ad20b 1789 ret = region_chg(resv, idx, idx + 1);
5e911373
MK
1790 break;
1791 case VMA_COMMIT_RESV:
1792 ret = region_add(resv, idx, idx + 1);
1793 break;
feba16e2 1794 case VMA_END_RESV:
5e911373
MK
1795 region_abort(resv, idx, idx + 1);
1796 ret = 0;
1797 break;
1798 default:
1799 BUG();
1800 }
84afd99b 1801
4e35f483 1802 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 1803 return ret;
4e35f483 1804 else
cf3ad20b 1805 return ret < 0 ? ret : 0;
c37f9fb1 1806}
cf3ad20b
MK
1807
1808static long vma_needs_reservation(struct hstate *h,
a5516438 1809 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1810{
5e911373 1811 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 1812}
84afd99b 1813
cf3ad20b
MK
1814static long vma_commit_reservation(struct hstate *h,
1815 struct vm_area_struct *vma, unsigned long addr)
1816{
5e911373
MK
1817 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1818}
1819
feba16e2 1820static void vma_end_reservation(struct hstate *h,
5e911373
MK
1821 struct vm_area_struct *vma, unsigned long addr)
1822{
feba16e2 1823 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
1824}
1825
70c3547e 1826struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1827 unsigned long addr, int avoid_reserve)
1da177e4 1828{
90481622 1829 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1830 struct hstate *h = hstate_vma(vma);
348ea204 1831 struct page *page;
d85f69b0
MK
1832 long map_chg, map_commit;
1833 long gbl_chg;
6d76dcf4
AK
1834 int ret, idx;
1835 struct hugetlb_cgroup *h_cg;
a1e78772 1836
6d76dcf4 1837 idx = hstate_index(h);
a1e78772 1838 /*
d85f69b0
MK
1839 * Examine the region/reserve map to determine if the process
1840 * has a reservation for the page to be allocated. A return
1841 * code of zero indicates a reservation exists (no change).
a1e78772 1842 */
d85f69b0
MK
1843 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1844 if (map_chg < 0)
76dcee75 1845 return ERR_PTR(-ENOMEM);
d85f69b0
MK
1846
1847 /*
1848 * Processes that did not create the mapping will have no
1849 * reserves as indicated by the region/reserve map. Check
1850 * that the allocation will not exceed the subpool limit.
1851 * Allocations for MAP_NORESERVE mappings also need to be
1852 * checked against any subpool limit.
1853 */
1854 if (map_chg || avoid_reserve) {
1855 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1856 if (gbl_chg < 0) {
feba16e2 1857 vma_end_reservation(h, vma, addr);
76dcee75 1858 return ERR_PTR(-ENOSPC);
5e911373 1859 }
1da177e4 1860
d85f69b0
MK
1861 /*
1862 * Even though there was no reservation in the region/reserve
1863 * map, there could be reservations associated with the
1864 * subpool that can be used. This would be indicated if the
1865 * return value of hugepage_subpool_get_pages() is zero.
1866 * However, if avoid_reserve is specified we still avoid even
1867 * the subpool reservations.
1868 */
1869 if (avoid_reserve)
1870 gbl_chg = 1;
1871 }
1872
6d76dcf4 1873 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
1874 if (ret)
1875 goto out_subpool_put;
1876
1da177e4 1877 spin_lock(&hugetlb_lock);
d85f69b0
MK
1878 /*
1879 * glb_chg is passed to indicate whether or not a page must be taken
1880 * from the global free pool (global change). gbl_chg == 0 indicates
1881 * a reservation exists for the allocation.
1882 */
1883 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 1884 if (!page) {
94ae8ba7 1885 spin_unlock(&hugetlb_lock);
099730d6 1886 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
1887 if (!page)
1888 goto out_uncharge_cgroup;
1889
79dbb236
AK
1890 spin_lock(&hugetlb_lock);
1891 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 1892 /* Fall through */
68842c9b 1893 }
81a6fcae
JK
1894 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1895 spin_unlock(&hugetlb_lock);
348ea204 1896
90481622 1897 set_page_private(page, (unsigned long)spool);
90d8b7e6 1898
d85f69b0
MK
1899 map_commit = vma_commit_reservation(h, vma, addr);
1900 if (unlikely(map_chg > map_commit)) {
33039678
MK
1901 /*
1902 * The page was added to the reservation map between
1903 * vma_needs_reservation and vma_commit_reservation.
1904 * This indicates a race with hugetlb_reserve_pages.
1905 * Adjust for the subpool count incremented above AND
1906 * in hugetlb_reserve_pages for the same page. Also,
1907 * the reservation count added in hugetlb_reserve_pages
1908 * no longer applies.
1909 */
1910 long rsv_adjust;
1911
1912 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1913 hugetlb_acct_memory(h, -rsv_adjust);
1914 }
90d8b7e6 1915 return page;
8f34af6f
JZ
1916
1917out_uncharge_cgroup:
1918 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1919out_subpool_put:
d85f69b0 1920 if (map_chg || avoid_reserve)
8f34af6f 1921 hugepage_subpool_put_pages(spool, 1);
feba16e2 1922 vma_end_reservation(h, vma, addr);
8f34af6f 1923 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
1924}
1925
74060e4d
NH
1926/*
1927 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1928 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1929 * where no ERR_VALUE is expected to be returned.
1930 */
1931struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1932 unsigned long addr, int avoid_reserve)
1933{
1934 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1935 if (IS_ERR(page))
1936 page = NULL;
1937 return page;
1938}
1939
91f47662 1940int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1941{
1942 struct huge_bootmem_page *m;
b2261026 1943 int nr_nodes, node;
aa888a74 1944
b2261026 1945 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
1946 void *addr;
1947
8b89a116
GS
1948 addr = memblock_virt_alloc_try_nid_nopanic(
1949 huge_page_size(h), huge_page_size(h),
1950 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
1951 if (addr) {
1952 /*
1953 * Use the beginning of the huge page to store the
1954 * huge_bootmem_page struct (until gather_bootmem
1955 * puts them into the mem_map).
1956 */
1957 m = addr;
91f47662 1958 goto found;
aa888a74 1959 }
aa888a74
AK
1960 }
1961 return 0;
1962
1963found:
df994ead 1964 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74
AK
1965 /* Put them into a private list first because mem_map is not up yet */
1966 list_add(&m->list, &huge_boot_pages);
1967 m->hstate = h;
1968 return 1;
1969}
1970
f412c97a 1971static void __init prep_compound_huge_page(struct page *page, int order)
18229df5
AW
1972{
1973 if (unlikely(order > (MAX_ORDER - 1)))
1974 prep_compound_gigantic_page(page, order);
1975 else
1976 prep_compound_page(page, order);
1977}
1978
aa888a74
AK
1979/* Put bootmem huge pages into the standard lists after mem_map is up */
1980static void __init gather_bootmem_prealloc(void)
1981{
1982 struct huge_bootmem_page *m;
1983
1984 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 1985 struct hstate *h = m->hstate;
ee8f248d
BB
1986 struct page *page;
1987
1988#ifdef CONFIG_HIGHMEM
1989 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
1990 memblock_free_late(__pa(m),
1991 sizeof(struct huge_bootmem_page));
ee8f248d
BB
1992#else
1993 page = virt_to_page(m);
1994#endif
aa888a74 1995 WARN_ON(page_count(page) != 1);
18229df5 1996 prep_compound_huge_page(page, h->order);
ef5a22be 1997 WARN_ON(PageReserved(page));
aa888a74 1998 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
1999 /*
2000 * If we had gigantic hugepages allocated at boot time, we need
2001 * to restore the 'stolen' pages to totalram_pages in order to
2002 * fix confusing memory reports from free(1) and another
2003 * side-effects, like CommitLimit going negative.
2004 */
bae7f4ae 2005 if (hstate_is_gigantic(h))
3dcc0571 2006 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
2007 }
2008}
2009
8faa8b07 2010static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2011{
2012 unsigned long i;
a5516438 2013
e5ff2159 2014 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2015 if (hstate_is_gigantic(h)) {
aa888a74
AK
2016 if (!alloc_bootmem_huge_page(h))
2017 break;
9b5e5d0f 2018 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 2019 &node_states[N_MEMORY]))
1da177e4 2020 break;
1da177e4 2021 }
8faa8b07 2022 h->max_huge_pages = i;
e5ff2159
AK
2023}
2024
2025static void __init hugetlb_init_hstates(void)
2026{
2027 struct hstate *h;
2028
2029 for_each_hstate(h) {
641844f5
NH
2030 if (minimum_order > huge_page_order(h))
2031 minimum_order = huge_page_order(h);
2032
8faa8b07 2033 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2034 if (!hstate_is_gigantic(h))
8faa8b07 2035 hugetlb_hstate_alloc_pages(h);
e5ff2159 2036 }
641844f5 2037 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2038}
2039
4abd32db
AK
2040static char * __init memfmt(char *buf, unsigned long n)
2041{
2042 if (n >= (1UL << 30))
2043 sprintf(buf, "%lu GB", n >> 30);
2044 else if (n >= (1UL << 20))
2045 sprintf(buf, "%lu MB", n >> 20);
2046 else
2047 sprintf(buf, "%lu KB", n >> 10);
2048 return buf;
2049}
2050
e5ff2159
AK
2051static void __init report_hugepages(void)
2052{
2053 struct hstate *h;
2054
2055 for_each_hstate(h) {
4abd32db 2056 char buf[32];
ffb22af5 2057 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
2058 memfmt(buf, huge_page_size(h)),
2059 h->free_huge_pages);
e5ff2159
AK
2060 }
2061}
2062
1da177e4 2063#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2064static void try_to_free_low(struct hstate *h, unsigned long count,
2065 nodemask_t *nodes_allowed)
1da177e4 2066{
4415cc8d
CL
2067 int i;
2068
bae7f4ae 2069 if (hstate_is_gigantic(h))
aa888a74
AK
2070 return;
2071
6ae11b27 2072 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2073 struct page *page, *next;
a5516438
AK
2074 struct list_head *freel = &h->hugepage_freelists[i];
2075 list_for_each_entry_safe(page, next, freel, lru) {
2076 if (count >= h->nr_huge_pages)
6b0c880d 2077 return;
1da177e4
LT
2078 if (PageHighMem(page))
2079 continue;
2080 list_del(&page->lru);
e5ff2159 2081 update_and_free_page(h, page);
a5516438
AK
2082 h->free_huge_pages--;
2083 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2084 }
2085 }
2086}
2087#else
6ae11b27
LS
2088static inline void try_to_free_low(struct hstate *h, unsigned long count,
2089 nodemask_t *nodes_allowed)
1da177e4
LT
2090{
2091}
2092#endif
2093
20a0307c
WF
2094/*
2095 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2096 * balanced by operating on them in a round-robin fashion.
2097 * Returns 1 if an adjustment was made.
2098 */
6ae11b27
LS
2099static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2100 int delta)
20a0307c 2101{
b2261026 2102 int nr_nodes, node;
20a0307c
WF
2103
2104 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2105
b2261026
JK
2106 if (delta < 0) {
2107 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2108 if (h->surplus_huge_pages_node[node])
2109 goto found;
e8c5c824 2110 }
b2261026
JK
2111 } else {
2112 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2113 if (h->surplus_huge_pages_node[node] <
2114 h->nr_huge_pages_node[node])
2115 goto found;
e8c5c824 2116 }
b2261026
JK
2117 }
2118 return 0;
20a0307c 2119
b2261026
JK
2120found:
2121 h->surplus_huge_pages += delta;
2122 h->surplus_huge_pages_node[node] += delta;
2123 return 1;
20a0307c
WF
2124}
2125
a5516438 2126#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
2127static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2128 nodemask_t *nodes_allowed)
1da177e4 2129{
7893d1d5 2130 unsigned long min_count, ret;
1da177e4 2131
944d9fec 2132 if (hstate_is_gigantic(h) && !gigantic_page_supported())
aa888a74
AK
2133 return h->max_huge_pages;
2134
7893d1d5
AL
2135 /*
2136 * Increase the pool size
2137 * First take pages out of surplus state. Then make up the
2138 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
2139 *
2140 * We might race with alloc_buddy_huge_page() here and be unable
2141 * to convert a surplus huge page to a normal huge page. That is
2142 * not critical, though, it just means the overall size of the
2143 * pool might be one hugepage larger than it needs to be, but
2144 * within all the constraints specified by the sysctls.
7893d1d5 2145 */
1da177e4 2146 spin_lock(&hugetlb_lock);
a5516438 2147 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2148 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2149 break;
2150 }
2151
a5516438 2152 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2153 /*
2154 * If this allocation races such that we no longer need the
2155 * page, free_huge_page will handle it by freeing the page
2156 * and reducing the surplus.
2157 */
2158 spin_unlock(&hugetlb_lock);
944d9fec
LC
2159 if (hstate_is_gigantic(h))
2160 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2161 else
2162 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
2163 spin_lock(&hugetlb_lock);
2164 if (!ret)
2165 goto out;
2166
536240f2
MG
2167 /* Bail for signals. Probably ctrl-c from user */
2168 if (signal_pending(current))
2169 goto out;
7893d1d5 2170 }
7893d1d5
AL
2171
2172 /*
2173 * Decrease the pool size
2174 * First return free pages to the buddy allocator (being careful
2175 * to keep enough around to satisfy reservations). Then place
2176 * pages into surplus state as needed so the pool will shrink
2177 * to the desired size as pages become free.
d1c3fb1f
NA
2178 *
2179 * By placing pages into the surplus state independent of the
2180 * overcommit value, we are allowing the surplus pool size to
2181 * exceed overcommit. There are few sane options here. Since
2182 * alloc_buddy_huge_page() is checking the global counter,
2183 * though, we'll note that we're not allowed to exceed surplus
2184 * and won't grow the pool anywhere else. Not until one of the
2185 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2186 */
a5516438 2187 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2188 min_count = max(count, min_count);
6ae11b27 2189 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2190 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2191 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2192 break;
55f67141 2193 cond_resched_lock(&hugetlb_lock);
1da177e4 2194 }
a5516438 2195 while (count < persistent_huge_pages(h)) {
6ae11b27 2196 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2197 break;
2198 }
2199out:
a5516438 2200 ret = persistent_huge_pages(h);
1da177e4 2201 spin_unlock(&hugetlb_lock);
7893d1d5 2202 return ret;
1da177e4
LT
2203}
2204
a3437870
NA
2205#define HSTATE_ATTR_RO(_name) \
2206 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2207
2208#define HSTATE_ATTR(_name) \
2209 static struct kobj_attribute _name##_attr = \
2210 __ATTR(_name, 0644, _name##_show, _name##_store)
2211
2212static struct kobject *hugepages_kobj;
2213static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2214
9a305230
LS
2215static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2216
2217static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2218{
2219 int i;
9a305230 2220
a3437870 2221 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2222 if (hstate_kobjs[i] == kobj) {
2223 if (nidp)
2224 *nidp = NUMA_NO_NODE;
a3437870 2225 return &hstates[i];
9a305230
LS
2226 }
2227
2228 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2229}
2230
06808b08 2231static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2232 struct kobj_attribute *attr, char *buf)
2233{
9a305230
LS
2234 struct hstate *h;
2235 unsigned long nr_huge_pages;
2236 int nid;
2237
2238 h = kobj_to_hstate(kobj, &nid);
2239 if (nid == NUMA_NO_NODE)
2240 nr_huge_pages = h->nr_huge_pages;
2241 else
2242 nr_huge_pages = h->nr_huge_pages_node[nid];
2243
2244 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2245}
adbe8726 2246
238d3c13
DR
2247static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2248 struct hstate *h, int nid,
2249 unsigned long count, size_t len)
a3437870
NA
2250{
2251 int err;
bad44b5b 2252 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 2253
944d9fec 2254 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
adbe8726
EM
2255 err = -EINVAL;
2256 goto out;
2257 }
2258
9a305230
LS
2259 if (nid == NUMA_NO_NODE) {
2260 /*
2261 * global hstate attribute
2262 */
2263 if (!(obey_mempolicy &&
2264 init_nodemask_of_mempolicy(nodes_allowed))) {
2265 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2266 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
2267 }
2268 } else if (nodes_allowed) {
2269 /*
2270 * per node hstate attribute: adjust count to global,
2271 * but restrict alloc/free to the specified node.
2272 */
2273 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2274 init_nodemask_of_node(nodes_allowed, nid);
2275 } else
8cebfcd0 2276 nodes_allowed = &node_states[N_MEMORY];
9a305230 2277
06808b08 2278 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 2279
8cebfcd0 2280 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2281 NODEMASK_FREE(nodes_allowed);
2282
2283 return len;
adbe8726
EM
2284out:
2285 NODEMASK_FREE(nodes_allowed);
2286 return err;
06808b08
LS
2287}
2288
238d3c13
DR
2289static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2290 struct kobject *kobj, const char *buf,
2291 size_t len)
2292{
2293 struct hstate *h;
2294 unsigned long count;
2295 int nid;
2296 int err;
2297
2298 err = kstrtoul(buf, 10, &count);
2299 if (err)
2300 return err;
2301
2302 h = kobj_to_hstate(kobj, &nid);
2303 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2304}
2305
06808b08
LS
2306static ssize_t nr_hugepages_show(struct kobject *kobj,
2307 struct kobj_attribute *attr, char *buf)
2308{
2309 return nr_hugepages_show_common(kobj, attr, buf);
2310}
2311
2312static ssize_t nr_hugepages_store(struct kobject *kobj,
2313 struct kobj_attribute *attr, const char *buf, size_t len)
2314{
238d3c13 2315 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2316}
2317HSTATE_ATTR(nr_hugepages);
2318
06808b08
LS
2319#ifdef CONFIG_NUMA
2320
2321/*
2322 * hstate attribute for optionally mempolicy-based constraint on persistent
2323 * huge page alloc/free.
2324 */
2325static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2326 struct kobj_attribute *attr, char *buf)
2327{
2328 return nr_hugepages_show_common(kobj, attr, buf);
2329}
2330
2331static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2332 struct kobj_attribute *attr, const char *buf, size_t len)
2333{
238d3c13 2334 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2335}
2336HSTATE_ATTR(nr_hugepages_mempolicy);
2337#endif
2338
2339
a3437870
NA
2340static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2341 struct kobj_attribute *attr, char *buf)
2342{
9a305230 2343 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2344 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2345}
adbe8726 2346
a3437870
NA
2347static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2348 struct kobj_attribute *attr, const char *buf, size_t count)
2349{
2350 int err;
2351 unsigned long input;
9a305230 2352 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2353
bae7f4ae 2354 if (hstate_is_gigantic(h))
adbe8726
EM
2355 return -EINVAL;
2356
3dbb95f7 2357 err = kstrtoul(buf, 10, &input);
a3437870 2358 if (err)
73ae31e5 2359 return err;
a3437870
NA
2360
2361 spin_lock(&hugetlb_lock);
2362 h->nr_overcommit_huge_pages = input;
2363 spin_unlock(&hugetlb_lock);
2364
2365 return count;
2366}
2367HSTATE_ATTR(nr_overcommit_hugepages);
2368
2369static ssize_t free_hugepages_show(struct kobject *kobj,
2370 struct kobj_attribute *attr, char *buf)
2371{
9a305230
LS
2372 struct hstate *h;
2373 unsigned long free_huge_pages;
2374 int nid;
2375
2376 h = kobj_to_hstate(kobj, &nid);
2377 if (nid == NUMA_NO_NODE)
2378 free_huge_pages = h->free_huge_pages;
2379 else
2380 free_huge_pages = h->free_huge_pages_node[nid];
2381
2382 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2383}
2384HSTATE_ATTR_RO(free_hugepages);
2385
2386static ssize_t resv_hugepages_show(struct kobject *kobj,
2387 struct kobj_attribute *attr, char *buf)
2388{
9a305230 2389 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2390 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2391}
2392HSTATE_ATTR_RO(resv_hugepages);
2393
2394static ssize_t surplus_hugepages_show(struct kobject *kobj,
2395 struct kobj_attribute *attr, char *buf)
2396{
9a305230
LS
2397 struct hstate *h;
2398 unsigned long surplus_huge_pages;
2399 int nid;
2400
2401 h = kobj_to_hstate(kobj, &nid);
2402 if (nid == NUMA_NO_NODE)
2403 surplus_huge_pages = h->surplus_huge_pages;
2404 else
2405 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2406
2407 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2408}
2409HSTATE_ATTR_RO(surplus_hugepages);
2410
2411static struct attribute *hstate_attrs[] = {
2412 &nr_hugepages_attr.attr,
2413 &nr_overcommit_hugepages_attr.attr,
2414 &free_hugepages_attr.attr,
2415 &resv_hugepages_attr.attr,
2416 &surplus_hugepages_attr.attr,
06808b08
LS
2417#ifdef CONFIG_NUMA
2418 &nr_hugepages_mempolicy_attr.attr,
2419#endif
a3437870
NA
2420 NULL,
2421};
2422
2423static struct attribute_group hstate_attr_group = {
2424 .attrs = hstate_attrs,
2425};
2426
094e9539
JM
2427static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2428 struct kobject **hstate_kobjs,
2429 struct attribute_group *hstate_attr_group)
a3437870
NA
2430{
2431 int retval;
972dc4de 2432 int hi = hstate_index(h);
a3437870 2433
9a305230
LS
2434 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2435 if (!hstate_kobjs[hi])
a3437870
NA
2436 return -ENOMEM;
2437
9a305230 2438 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2439 if (retval)
9a305230 2440 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2441
2442 return retval;
2443}
2444
2445static void __init hugetlb_sysfs_init(void)
2446{
2447 struct hstate *h;
2448 int err;
2449
2450 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2451 if (!hugepages_kobj)
2452 return;
2453
2454 for_each_hstate(h) {
9a305230
LS
2455 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2456 hstate_kobjs, &hstate_attr_group);
a3437870 2457 if (err)
ffb22af5 2458 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2459 }
2460}
2461
9a305230
LS
2462#ifdef CONFIG_NUMA
2463
2464/*
2465 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2466 * with node devices in node_devices[] using a parallel array. The array
2467 * index of a node device or _hstate == node id.
2468 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2469 * the base kernel, on the hugetlb module.
2470 */
2471struct node_hstate {
2472 struct kobject *hugepages_kobj;
2473 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2474};
b4e289a6 2475static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
2476
2477/*
10fbcf4c 2478 * A subset of global hstate attributes for node devices
9a305230
LS
2479 */
2480static struct attribute *per_node_hstate_attrs[] = {
2481 &nr_hugepages_attr.attr,
2482 &free_hugepages_attr.attr,
2483 &surplus_hugepages_attr.attr,
2484 NULL,
2485};
2486
2487static struct attribute_group per_node_hstate_attr_group = {
2488 .attrs = per_node_hstate_attrs,
2489};
2490
2491/*
10fbcf4c 2492 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2493 * Returns node id via non-NULL nidp.
2494 */
2495static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2496{
2497 int nid;
2498
2499 for (nid = 0; nid < nr_node_ids; nid++) {
2500 struct node_hstate *nhs = &node_hstates[nid];
2501 int i;
2502 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2503 if (nhs->hstate_kobjs[i] == kobj) {
2504 if (nidp)
2505 *nidp = nid;
2506 return &hstates[i];
2507 }
2508 }
2509
2510 BUG();
2511 return NULL;
2512}
2513
2514/*
10fbcf4c 2515 * Unregister hstate attributes from a single node device.
9a305230
LS
2516 * No-op if no hstate attributes attached.
2517 */
3cd8b44f 2518static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2519{
2520 struct hstate *h;
10fbcf4c 2521 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2522
2523 if (!nhs->hugepages_kobj)
9b5e5d0f 2524 return; /* no hstate attributes */
9a305230 2525
972dc4de
AK
2526 for_each_hstate(h) {
2527 int idx = hstate_index(h);
2528 if (nhs->hstate_kobjs[idx]) {
2529 kobject_put(nhs->hstate_kobjs[idx]);
2530 nhs->hstate_kobjs[idx] = NULL;
9a305230 2531 }
972dc4de 2532 }
9a305230
LS
2533
2534 kobject_put(nhs->hugepages_kobj);
2535 nhs->hugepages_kobj = NULL;
2536}
2537
2538/*
10fbcf4c 2539 * hugetlb module exit: unregister hstate attributes from node devices
9a305230
LS
2540 * that have them.
2541 */
2542static void hugetlb_unregister_all_nodes(void)
2543{
2544 int nid;
2545
2546 /*
10fbcf4c 2547 * disable node device registrations.
9a305230
LS
2548 */
2549 register_hugetlbfs_with_node(NULL, NULL);
2550
2551 /*
2552 * remove hstate attributes from any nodes that have them.
2553 */
2554 for (nid = 0; nid < nr_node_ids; nid++)
8732794b 2555 hugetlb_unregister_node(node_devices[nid]);
9a305230
LS
2556}
2557
2558/*
10fbcf4c 2559 * Register hstate attributes for a single node device.
9a305230
LS
2560 * No-op if attributes already registered.
2561 */
3cd8b44f 2562static void hugetlb_register_node(struct node *node)
9a305230
LS
2563{
2564 struct hstate *h;
10fbcf4c 2565 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2566 int err;
2567
2568 if (nhs->hugepages_kobj)
2569 return; /* already allocated */
2570
2571 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2572 &node->dev.kobj);
9a305230
LS
2573 if (!nhs->hugepages_kobj)
2574 return;
2575
2576 for_each_hstate(h) {
2577 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2578 nhs->hstate_kobjs,
2579 &per_node_hstate_attr_group);
2580 if (err) {
ffb22af5
AM
2581 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2582 h->name, node->dev.id);
9a305230
LS
2583 hugetlb_unregister_node(node);
2584 break;
2585 }
2586 }
2587}
2588
2589/*
9b5e5d0f 2590 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2591 * devices of nodes that have memory. All on-line nodes should have
2592 * registered their associated device by this time.
9a305230 2593 */
7d9ca000 2594static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2595{
2596 int nid;
2597
8cebfcd0 2598 for_each_node_state(nid, N_MEMORY) {
8732794b 2599 struct node *node = node_devices[nid];
10fbcf4c 2600 if (node->dev.id == nid)
9a305230
LS
2601 hugetlb_register_node(node);
2602 }
2603
2604 /*
10fbcf4c 2605 * Let the node device driver know we're here so it can
9a305230
LS
2606 * [un]register hstate attributes on node hotplug.
2607 */
2608 register_hugetlbfs_with_node(hugetlb_register_node,
2609 hugetlb_unregister_node);
2610}
2611#else /* !CONFIG_NUMA */
2612
2613static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2614{
2615 BUG();
2616 if (nidp)
2617 *nidp = -1;
2618 return NULL;
2619}
2620
2621static void hugetlb_unregister_all_nodes(void) { }
2622
2623static void hugetlb_register_all_nodes(void) { }
2624
2625#endif
2626
a3437870
NA
2627static void __exit hugetlb_exit(void)
2628{
2629 struct hstate *h;
2630
9a305230
LS
2631 hugetlb_unregister_all_nodes();
2632
a3437870 2633 for_each_hstate(h) {
972dc4de 2634 kobject_put(hstate_kobjs[hstate_index(h)]);
a3437870
NA
2635 }
2636
2637 kobject_put(hugepages_kobj);
c672c7f2 2638 kfree(hugetlb_fault_mutex_table);
a3437870
NA
2639}
2640module_exit(hugetlb_exit);
2641
2642static int __init hugetlb_init(void)
2643{
8382d914
DB
2644 int i;
2645
457c1b27 2646 if (!hugepages_supported())
0ef89d25 2647 return 0;
a3437870 2648
e11bfbfc
NP
2649 if (!size_to_hstate(default_hstate_size)) {
2650 default_hstate_size = HPAGE_SIZE;
2651 if (!size_to_hstate(default_hstate_size))
2652 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2653 }
972dc4de 2654 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
e11bfbfc
NP
2655 if (default_hstate_max_huge_pages)
2656 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
2657
2658 hugetlb_init_hstates();
aa888a74 2659 gather_bootmem_prealloc();
a3437870
NA
2660 report_hugepages();
2661
2662 hugetlb_sysfs_init();
9a305230 2663 hugetlb_register_all_nodes();
7179e7bf 2664 hugetlb_cgroup_file_init();
9a305230 2665
8382d914
DB
2666#ifdef CONFIG_SMP
2667 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2668#else
2669 num_fault_mutexes = 1;
2670#endif
c672c7f2 2671 hugetlb_fault_mutex_table =
8382d914 2672 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
c672c7f2 2673 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
2674
2675 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 2676 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
2677 return 0;
2678}
2679module_init(hugetlb_init);
2680
2681/* Should be called on processing a hugepagesz=... option */
2682void __init hugetlb_add_hstate(unsigned order)
2683{
2684 struct hstate *h;
8faa8b07
AK
2685 unsigned long i;
2686
a3437870 2687 if (size_to_hstate(PAGE_SIZE << order)) {
ffb22af5 2688 pr_warning("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2689 return;
2690 }
47d38344 2691 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2692 BUG_ON(order == 0);
47d38344 2693 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2694 h->order = order;
2695 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2696 h->nr_huge_pages = 0;
2697 h->free_huge_pages = 0;
2698 for (i = 0; i < MAX_NUMNODES; ++i)
2699 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2700 INIT_LIST_HEAD(&h->hugepage_activelist);
8cebfcd0
LJ
2701 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2702 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
a3437870
NA
2703 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2704 huge_page_size(h)/1024);
8faa8b07 2705
a3437870
NA
2706 parsed_hstate = h;
2707}
2708
e11bfbfc 2709static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2710{
2711 unsigned long *mhp;
8faa8b07 2712 static unsigned long *last_mhp;
a3437870
NA
2713
2714 /*
47d38344 2715 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2716 * so this hugepages= parameter goes to the "default hstate".
2717 */
47d38344 2718 if (!hugetlb_max_hstate)
a3437870
NA
2719 mhp = &default_hstate_max_huge_pages;
2720 else
2721 mhp = &parsed_hstate->max_huge_pages;
2722
8faa8b07 2723 if (mhp == last_mhp) {
ffb22af5
AM
2724 pr_warning("hugepages= specified twice without "
2725 "interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2726 return 1;
2727 }
2728
a3437870
NA
2729 if (sscanf(s, "%lu", mhp) <= 0)
2730 *mhp = 0;
2731
8faa8b07
AK
2732 /*
2733 * Global state is always initialized later in hugetlb_init.
2734 * But we need to allocate >= MAX_ORDER hstates here early to still
2735 * use the bootmem allocator.
2736 */
47d38344 2737 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2738 hugetlb_hstate_alloc_pages(parsed_hstate);
2739
2740 last_mhp = mhp;
2741
a3437870
NA
2742 return 1;
2743}
e11bfbfc
NP
2744__setup("hugepages=", hugetlb_nrpages_setup);
2745
2746static int __init hugetlb_default_setup(char *s)
2747{
2748 default_hstate_size = memparse(s, &s);
2749 return 1;
2750}
2751__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2752
8a213460
NA
2753static unsigned int cpuset_mems_nr(unsigned int *array)
2754{
2755 int node;
2756 unsigned int nr = 0;
2757
2758 for_each_node_mask(node, cpuset_current_mems_allowed)
2759 nr += array[node];
2760
2761 return nr;
2762}
2763
2764#ifdef CONFIG_SYSCTL
06808b08
LS
2765static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2766 struct ctl_table *table, int write,
2767 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2768{
e5ff2159 2769 struct hstate *h = &default_hstate;
238d3c13 2770 unsigned long tmp = h->max_huge_pages;
08d4a246 2771 int ret;
e5ff2159 2772
457c1b27
NA
2773 if (!hugepages_supported())
2774 return -ENOTSUPP;
2775
e5ff2159
AK
2776 table->data = &tmp;
2777 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2778 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2779 if (ret)
2780 goto out;
e5ff2159 2781
238d3c13
DR
2782 if (write)
2783 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2784 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2785out:
2786 return ret;
1da177e4 2787}
396faf03 2788
06808b08
LS
2789int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2790 void __user *buffer, size_t *length, loff_t *ppos)
2791{
2792
2793 return hugetlb_sysctl_handler_common(false, table, write,
2794 buffer, length, ppos);
2795}
2796
2797#ifdef CONFIG_NUMA
2798int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2799 void __user *buffer, size_t *length, loff_t *ppos)
2800{
2801 return hugetlb_sysctl_handler_common(true, table, write,
2802 buffer, length, ppos);
2803}
2804#endif /* CONFIG_NUMA */
2805
a3d0c6aa 2806int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2807 void __user *buffer,
a3d0c6aa
NA
2808 size_t *length, loff_t *ppos)
2809{
a5516438 2810 struct hstate *h = &default_hstate;
e5ff2159 2811 unsigned long tmp;
08d4a246 2812 int ret;
e5ff2159 2813
457c1b27
NA
2814 if (!hugepages_supported())
2815 return -ENOTSUPP;
2816
c033a93c 2817 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2818
bae7f4ae 2819 if (write && hstate_is_gigantic(h))
adbe8726
EM
2820 return -EINVAL;
2821
e5ff2159
AK
2822 table->data = &tmp;
2823 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2824 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2825 if (ret)
2826 goto out;
e5ff2159
AK
2827
2828 if (write) {
2829 spin_lock(&hugetlb_lock);
2830 h->nr_overcommit_huge_pages = tmp;
2831 spin_unlock(&hugetlb_lock);
2832 }
08d4a246
MH
2833out:
2834 return ret;
a3d0c6aa
NA
2835}
2836
1da177e4
LT
2837#endif /* CONFIG_SYSCTL */
2838
e1759c21 2839void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2840{
a5516438 2841 struct hstate *h = &default_hstate;
457c1b27
NA
2842 if (!hugepages_supported())
2843 return;
e1759c21 2844 seq_printf(m,
4f98a2fe
RR
2845 "HugePages_Total: %5lu\n"
2846 "HugePages_Free: %5lu\n"
2847 "HugePages_Rsvd: %5lu\n"
2848 "HugePages_Surp: %5lu\n"
2849 "Hugepagesize: %8lu kB\n",
a5516438
AK
2850 h->nr_huge_pages,
2851 h->free_huge_pages,
2852 h->resv_huge_pages,
2853 h->surplus_huge_pages,
2854 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2855}
2856
2857int hugetlb_report_node_meminfo(int nid, char *buf)
2858{
a5516438 2859 struct hstate *h = &default_hstate;
457c1b27
NA
2860 if (!hugepages_supported())
2861 return 0;
1da177e4
LT
2862 return sprintf(buf,
2863 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2864 "Node %d HugePages_Free: %5u\n"
2865 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2866 nid, h->nr_huge_pages_node[nid],
2867 nid, h->free_huge_pages_node[nid],
2868 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2869}
2870
949f7ec5
DR
2871void hugetlb_show_meminfo(void)
2872{
2873 struct hstate *h;
2874 int nid;
2875
457c1b27
NA
2876 if (!hugepages_supported())
2877 return;
2878
949f7ec5
DR
2879 for_each_node_state(nid, N_MEMORY)
2880 for_each_hstate(h)
2881 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2882 nid,
2883 h->nr_huge_pages_node[nid],
2884 h->free_huge_pages_node[nid],
2885 h->surplus_huge_pages_node[nid],
2886 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2887}
2888
5d317b2b
NH
2889void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2890{
2891 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2892 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2893}
2894
1da177e4
LT
2895/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2896unsigned long hugetlb_total_pages(void)
2897{
d0028588
WL
2898 struct hstate *h;
2899 unsigned long nr_total_pages = 0;
2900
2901 for_each_hstate(h)
2902 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2903 return nr_total_pages;
1da177e4 2904}
1da177e4 2905
a5516438 2906static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2907{
2908 int ret = -ENOMEM;
2909
2910 spin_lock(&hugetlb_lock);
2911 /*
2912 * When cpuset is configured, it breaks the strict hugetlb page
2913 * reservation as the accounting is done on a global variable. Such
2914 * reservation is completely rubbish in the presence of cpuset because
2915 * the reservation is not checked against page availability for the
2916 * current cpuset. Application can still potentially OOM'ed by kernel
2917 * with lack of free htlb page in cpuset that the task is in.
2918 * Attempt to enforce strict accounting with cpuset is almost
2919 * impossible (or too ugly) because cpuset is too fluid that
2920 * task or memory node can be dynamically moved between cpusets.
2921 *
2922 * The change of semantics for shared hugetlb mapping with cpuset is
2923 * undesirable. However, in order to preserve some of the semantics,
2924 * we fall back to check against current free page availability as
2925 * a best attempt and hopefully to minimize the impact of changing
2926 * semantics that cpuset has.
2927 */
2928 if (delta > 0) {
a5516438 2929 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2930 goto out;
2931
a5516438
AK
2932 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2933 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2934 goto out;
2935 }
2936 }
2937
2938 ret = 0;
2939 if (delta < 0)
a5516438 2940 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2941
2942out:
2943 spin_unlock(&hugetlb_lock);
2944 return ret;
2945}
2946
84afd99b
AW
2947static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2948{
f522c3ac 2949 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
2950
2951 /*
2952 * This new VMA should share its siblings reservation map if present.
2953 * The VMA will only ever have a valid reservation map pointer where
2954 * it is being copied for another still existing VMA. As that VMA
25985edc 2955 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2956 * after this open call completes. It is therefore safe to take a
2957 * new reference here without additional locking.
2958 */
4e35f483 2959 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 2960 kref_get(&resv->refs);
84afd99b
AW
2961}
2962
a1e78772
MG
2963static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2964{
a5516438 2965 struct hstate *h = hstate_vma(vma);
f522c3ac 2966 struct resv_map *resv = vma_resv_map(vma);
90481622 2967 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 2968 unsigned long reserve, start, end;
1c5ecae3 2969 long gbl_reserve;
84afd99b 2970
4e35f483
JK
2971 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2972 return;
84afd99b 2973
4e35f483
JK
2974 start = vma_hugecache_offset(h, vma, vma->vm_start);
2975 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 2976
4e35f483 2977 reserve = (end - start) - region_count(resv, start, end);
84afd99b 2978
4e35f483
JK
2979 kref_put(&resv->refs, resv_map_release);
2980
2981 if (reserve) {
1c5ecae3
MK
2982 /*
2983 * Decrement reserve counts. The global reserve count may be
2984 * adjusted if the subpool has a minimum size.
2985 */
2986 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2987 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 2988 }
a1e78772
MG
2989}
2990
1da177e4
LT
2991/*
2992 * We cannot handle pagefaults against hugetlb pages at all. They cause
2993 * handle_mm_fault() to try to instantiate regular-sized pages in the
2994 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2995 * this far.
2996 */
d0217ac0 2997static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2998{
2999 BUG();
d0217ac0 3000 return 0;
1da177e4
LT
3001}
3002
f0f37e2f 3003const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3004 .fault = hugetlb_vm_op_fault,
84afd99b 3005 .open = hugetlb_vm_op_open,
a1e78772 3006 .close = hugetlb_vm_op_close,
1da177e4
LT
3007};
3008
1e8f889b
DG
3009static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3010 int writable)
63551ae0
DG
3011{
3012 pte_t entry;
3013
1e8f889b 3014 if (writable) {
106c992a
GS
3015 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3016 vma->vm_page_prot)));
63551ae0 3017 } else {
106c992a
GS
3018 entry = huge_pte_wrprotect(mk_huge_pte(page,
3019 vma->vm_page_prot));
63551ae0
DG
3020 }
3021 entry = pte_mkyoung(entry);
3022 entry = pte_mkhuge(entry);
d9ed9faa 3023 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3024
3025 return entry;
3026}
3027
1e8f889b
DG
3028static void set_huge_ptep_writable(struct vm_area_struct *vma,
3029 unsigned long address, pte_t *ptep)
3030{
3031 pte_t entry;
3032
106c992a 3033 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3034 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3035 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3036}
3037
4a705fef
NH
3038static int is_hugetlb_entry_migration(pte_t pte)
3039{
3040 swp_entry_t swp;
3041
3042 if (huge_pte_none(pte) || pte_present(pte))
3043 return 0;
3044 swp = pte_to_swp_entry(pte);
3045 if (non_swap_entry(swp) && is_migration_entry(swp))
3046 return 1;
3047 else
3048 return 0;
3049}
3050
3051static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3052{
3053 swp_entry_t swp;
3054
3055 if (huge_pte_none(pte) || pte_present(pte))
3056 return 0;
3057 swp = pte_to_swp_entry(pte);
3058 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3059 return 1;
3060 else
3061 return 0;
3062}
1e8f889b 3063
63551ae0
DG
3064int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3065 struct vm_area_struct *vma)
3066{
3067 pte_t *src_pte, *dst_pte, entry;
3068 struct page *ptepage;
1c59827d 3069 unsigned long addr;
1e8f889b 3070 int cow;
a5516438
AK
3071 struct hstate *h = hstate_vma(vma);
3072 unsigned long sz = huge_page_size(h);
e8569dd2
AS
3073 unsigned long mmun_start; /* For mmu_notifiers */
3074 unsigned long mmun_end; /* For mmu_notifiers */
3075 int ret = 0;
1e8f889b
DG
3076
3077 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3078
e8569dd2
AS
3079 mmun_start = vma->vm_start;
3080 mmun_end = vma->vm_end;
3081 if (cow)
3082 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3083
a5516438 3084 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3085 spinlock_t *src_ptl, *dst_ptl;
c74df32c
HD
3086 src_pte = huge_pte_offset(src, addr);
3087 if (!src_pte)
3088 continue;
a5516438 3089 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3090 if (!dst_pte) {
3091 ret = -ENOMEM;
3092 break;
3093 }
c5c99429
LW
3094
3095 /* If the pagetables are shared don't copy or take references */
3096 if (dst_pte == src_pte)
3097 continue;
3098
cb900f41
KS
3099 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3100 src_ptl = huge_pte_lockptr(h, src, src_pte);
3101 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef
NH
3102 entry = huge_ptep_get(src_pte);
3103 if (huge_pte_none(entry)) { /* skip none entry */
3104 ;
3105 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3106 is_hugetlb_entry_hwpoisoned(entry))) {
3107 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3108
3109 if (is_write_migration_entry(swp_entry) && cow) {
3110 /*
3111 * COW mappings require pages in both
3112 * parent and child to be set to read.
3113 */
3114 make_migration_entry_read(&swp_entry);
3115 entry = swp_entry_to_pte(swp_entry);
3116 set_huge_pte_at(src, addr, src_pte, entry);
3117 }
3118 set_huge_pte_at(dst, addr, dst_pte, entry);
3119 } else {
34ee645e 3120 if (cow) {
7f2e9525 3121 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e
JR
3122 mmu_notifier_invalidate_range(src, mmun_start,
3123 mmun_end);
3124 }
0253d634 3125 entry = huge_ptep_get(src_pte);
1c59827d
HD
3126 ptepage = pte_page(entry);
3127 get_page(ptepage);
0fe6e20b 3128 page_dup_rmap(ptepage);
1c59827d 3129 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3130 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3131 }
cb900f41
KS
3132 spin_unlock(src_ptl);
3133 spin_unlock(dst_ptl);
63551ae0 3134 }
63551ae0 3135
e8569dd2
AS
3136 if (cow)
3137 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3138
3139 return ret;
63551ae0
DG
3140}
3141
24669e58
AK
3142void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3143 unsigned long start, unsigned long end,
3144 struct page *ref_page)
63551ae0 3145{
24669e58 3146 int force_flush = 0;
63551ae0
DG
3147 struct mm_struct *mm = vma->vm_mm;
3148 unsigned long address;
c7546f8f 3149 pte_t *ptep;
63551ae0 3150 pte_t pte;
cb900f41 3151 spinlock_t *ptl;
63551ae0 3152 struct page *page;
a5516438
AK
3153 struct hstate *h = hstate_vma(vma);
3154 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
3155 const unsigned long mmun_start = start; /* For mmu_notifiers */
3156 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 3157
63551ae0 3158 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3159 BUG_ON(start & ~huge_page_mask(h));
3160 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3161
24669e58 3162 tlb_start_vma(tlb, vma);
2ec74c3e 3163 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
569f48b8 3164 address = start;
24669e58 3165again:
569f48b8 3166 for (; address < end; address += sz) {
c7546f8f 3167 ptep = huge_pte_offset(mm, address);
4c887265 3168 if (!ptep)
c7546f8f
DG
3169 continue;
3170
cb900f41 3171 ptl = huge_pte_lock(h, mm, ptep);
39dde65c 3172 if (huge_pmd_unshare(mm, &address, ptep))
cb900f41 3173 goto unlock;
39dde65c 3174
6629326b
HD
3175 pte = huge_ptep_get(ptep);
3176 if (huge_pte_none(pte))
cb900f41 3177 goto unlock;
6629326b
HD
3178
3179 /*
9fbc1f63
NH
3180 * Migrating hugepage or HWPoisoned hugepage is already
3181 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3182 */
9fbc1f63 3183 if (unlikely(!pte_present(pte))) {
106c992a 3184 huge_pte_clear(mm, address, ptep);
cb900f41 3185 goto unlock;
8c4894c6 3186 }
6629326b
HD
3187
3188 page = pte_page(pte);
04f2cbe3
MG
3189 /*
3190 * If a reference page is supplied, it is because a specific
3191 * page is being unmapped, not a range. Ensure the page we
3192 * are about to unmap is the actual page of interest.
3193 */
3194 if (ref_page) {
04f2cbe3 3195 if (page != ref_page)
cb900f41 3196 goto unlock;
04f2cbe3
MG
3197
3198 /*
3199 * Mark the VMA as having unmapped its page so that
3200 * future faults in this VMA will fail rather than
3201 * looking like data was lost
3202 */
3203 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3204 }
3205
c7546f8f 3206 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 3207 tlb_remove_tlb_entry(tlb, ptep, address);
106c992a 3208 if (huge_pte_dirty(pte))
6649a386 3209 set_page_dirty(page);
9e81130b 3210
5d317b2b 3211 hugetlb_count_sub(pages_per_huge_page(h), mm);
24669e58
AK
3212 page_remove_rmap(page);
3213 force_flush = !__tlb_remove_page(tlb, page);
cb900f41 3214 if (force_flush) {
569f48b8 3215 address += sz;
cb900f41 3216 spin_unlock(ptl);
24669e58 3217 break;
cb900f41 3218 }
9e81130b 3219 /* Bail out after unmapping reference page if supplied */
cb900f41
KS
3220 if (ref_page) {
3221 spin_unlock(ptl);
9e81130b 3222 break;
cb900f41
KS
3223 }
3224unlock:
3225 spin_unlock(ptl);
63551ae0 3226 }
24669e58
AK
3227 /*
3228 * mmu_gather ran out of room to batch pages, we break out of
3229 * the PTE lock to avoid doing the potential expensive TLB invalidate
3230 * and page-free while holding it.
3231 */
3232 if (force_flush) {
3233 force_flush = 0;
3234 tlb_flush_mmu(tlb);
3235 if (address < end && !ref_page)
3236 goto again;
fe1668ae 3237 }
2ec74c3e 3238 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 3239 tlb_end_vma(tlb, vma);
1da177e4 3240}
63551ae0 3241
d833352a
MG
3242void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3243 struct vm_area_struct *vma, unsigned long start,
3244 unsigned long end, struct page *ref_page)
3245{
3246 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3247
3248 /*
3249 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3250 * test will fail on a vma being torn down, and not grab a page table
3251 * on its way out. We're lucky that the flag has such an appropriate
3252 * name, and can in fact be safely cleared here. We could clear it
3253 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3254 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3255 * because in the context this is called, the VMA is about to be
c8c06efa 3256 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3257 */
3258 vma->vm_flags &= ~VM_MAYSHARE;
3259}
3260
502717f4 3261void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3262 unsigned long end, struct page *ref_page)
502717f4 3263{
24669e58
AK
3264 struct mm_struct *mm;
3265 struct mmu_gather tlb;
3266
3267 mm = vma->vm_mm;
3268
2b047252 3269 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
3270 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3271 tlb_finish_mmu(&tlb, start, end);
502717f4
KC
3272}
3273
04f2cbe3
MG
3274/*
3275 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3276 * mappping it owns the reserve page for. The intention is to unmap the page
3277 * from other VMAs and let the children be SIGKILLed if they are faulting the
3278 * same region.
3279 */
2f4612af
DB
3280static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3281 struct page *page, unsigned long address)
04f2cbe3 3282{
7526674d 3283 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3284 struct vm_area_struct *iter_vma;
3285 struct address_space *mapping;
04f2cbe3
MG
3286 pgoff_t pgoff;
3287
3288 /*
3289 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3290 * from page cache lookup which is in HPAGE_SIZE units.
3291 */
7526674d 3292 address = address & huge_page_mask(h);
36e4f20a
MH
3293 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3294 vma->vm_pgoff;
496ad9aa 3295 mapping = file_inode(vma->vm_file)->i_mapping;
04f2cbe3 3296
4eb2b1dc
MG
3297 /*
3298 * Take the mapping lock for the duration of the table walk. As
3299 * this mapping should be shared between all the VMAs,
3300 * __unmap_hugepage_range() is called as the lock is already held
3301 */
83cde9e8 3302 i_mmap_lock_write(mapping);
6b2dbba8 3303 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3304 /* Do not unmap the current VMA */
3305 if (iter_vma == vma)
3306 continue;
3307
2f84a899
MG
3308 /*
3309 * Shared VMAs have their own reserves and do not affect
3310 * MAP_PRIVATE accounting but it is possible that a shared
3311 * VMA is using the same page so check and skip such VMAs.
3312 */
3313 if (iter_vma->vm_flags & VM_MAYSHARE)
3314 continue;
3315
04f2cbe3
MG
3316 /*
3317 * Unmap the page from other VMAs without their own reserves.
3318 * They get marked to be SIGKILLed if they fault in these
3319 * areas. This is because a future no-page fault on this VMA
3320 * could insert a zeroed page instead of the data existing
3321 * from the time of fork. This would look like data corruption
3322 */
3323 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3324 unmap_hugepage_range(iter_vma, address,
3325 address + huge_page_size(h), page);
04f2cbe3 3326 }
83cde9e8 3327 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3328}
3329
0fe6e20b
NH
3330/*
3331 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3332 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3333 * cannot race with other handlers or page migration.
3334 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3335 */
1e8f889b 3336static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3 3337 unsigned long address, pte_t *ptep, pte_t pte,
cb900f41 3338 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3339{
a5516438 3340 struct hstate *h = hstate_vma(vma);
1e8f889b 3341 struct page *old_page, *new_page;
ad4404a2 3342 int ret = 0, outside_reserve = 0;
2ec74c3e
SG
3343 unsigned long mmun_start; /* For mmu_notifiers */
3344 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b
DG
3345
3346 old_page = pte_page(pte);
3347
04f2cbe3 3348retry_avoidcopy:
1e8f889b
DG
3349 /* If no-one else is actually using this page, avoid the copy
3350 * and just make the page writable */
37a2140d
JK
3351 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3352 page_move_anon_rmap(old_page, vma, address);
1e8f889b 3353 set_huge_ptep_writable(vma, address, ptep);
83c54070 3354 return 0;
1e8f889b
DG
3355 }
3356
04f2cbe3
MG
3357 /*
3358 * If the process that created a MAP_PRIVATE mapping is about to
3359 * perform a COW due to a shared page count, attempt to satisfy
3360 * the allocation without using the existing reserves. The pagecache
3361 * page is used to determine if the reserve at this address was
3362 * consumed or not. If reserves were used, a partial faulted mapping
3363 * at the time of fork() could consume its reserves on COW instead
3364 * of the full address range.
3365 */
5944d011 3366 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3367 old_page != pagecache_page)
3368 outside_reserve = 1;
3369
1e8f889b 3370 page_cache_get(old_page);
b76c8cfb 3371
ad4404a2
DB
3372 /*
3373 * Drop page table lock as buddy allocator may be called. It will
3374 * be acquired again before returning to the caller, as expected.
3375 */
cb900f41 3376 spin_unlock(ptl);
04f2cbe3 3377 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 3378
2fc39cec 3379 if (IS_ERR(new_page)) {
04f2cbe3
MG
3380 /*
3381 * If a process owning a MAP_PRIVATE mapping fails to COW,
3382 * it is due to references held by a child and an insufficient
3383 * huge page pool. To guarantee the original mappers
3384 * reliability, unmap the page from child processes. The child
3385 * may get SIGKILLed if it later faults.
3386 */
3387 if (outside_reserve) {
ad4404a2 3388 page_cache_release(old_page);
04f2cbe3 3389 BUG_ON(huge_pte_none(pte));
2f4612af
DB
3390 unmap_ref_private(mm, vma, old_page, address);
3391 BUG_ON(huge_pte_none(pte));
3392 spin_lock(ptl);
3393 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3394 if (likely(ptep &&
3395 pte_same(huge_ptep_get(ptep), pte)))
3396 goto retry_avoidcopy;
3397 /*
3398 * race occurs while re-acquiring page table
3399 * lock, and our job is done.
3400 */
3401 return 0;
04f2cbe3
MG
3402 }
3403
ad4404a2
DB
3404 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3405 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3406 goto out_release_old;
1e8f889b
DG
3407 }
3408
0fe6e20b
NH
3409 /*
3410 * When the original hugepage is shared one, it does not have
3411 * anon_vma prepared.
3412 */
44e2aa93 3413 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3414 ret = VM_FAULT_OOM;
3415 goto out_release_all;
44e2aa93 3416 }
0fe6e20b 3417
47ad8475
AA
3418 copy_user_huge_page(new_page, old_page, address, vma,
3419 pages_per_huge_page(h));
0ed361de 3420 __SetPageUptodate(new_page);
bcc54222 3421 set_page_huge_active(new_page);
1e8f889b 3422
2ec74c3e
SG
3423 mmun_start = address & huge_page_mask(h);
3424 mmun_end = mmun_start + huge_page_size(h);
3425 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ad4404a2 3426
b76c8cfb 3427 /*
cb900f41 3428 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3429 * before the page tables are altered
3430 */
cb900f41 3431 spin_lock(ptl);
a5516438 3432 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
a9af0c5d 3433 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3434 ClearPagePrivate(new_page);
3435
1e8f889b 3436 /* Break COW */
8fe627ec 3437 huge_ptep_clear_flush(vma, address, ptep);
34ee645e 3438 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1e8f889b
DG
3439 set_huge_pte_at(mm, address, ptep,
3440 make_huge_pte(vma, new_page, 1));
0fe6e20b 3441 page_remove_rmap(old_page);
cd67f0d2 3442 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
3443 /* Make the old page be freed below */
3444 new_page = old_page;
3445 }
cb900f41 3446 spin_unlock(ptl);
2ec74c3e 3447 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ad4404a2 3448out_release_all:
1e8f889b 3449 page_cache_release(new_page);
ad4404a2 3450out_release_old:
1e8f889b 3451 page_cache_release(old_page);
8312034f 3452
ad4404a2
DB
3453 spin_lock(ptl); /* Caller expects lock to be held */
3454 return ret;
1e8f889b
DG
3455}
3456
04f2cbe3 3457/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3458static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3459 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3460{
3461 struct address_space *mapping;
e7c4b0bf 3462 pgoff_t idx;
04f2cbe3
MG
3463
3464 mapping = vma->vm_file->f_mapping;
a5516438 3465 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3466
3467 return find_lock_page(mapping, idx);
3468}
3469
3ae77f43
HD
3470/*
3471 * Return whether there is a pagecache page to back given address within VMA.
3472 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3473 */
3474static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3475 struct vm_area_struct *vma, unsigned long address)
3476{
3477 struct address_space *mapping;
3478 pgoff_t idx;
3479 struct page *page;
3480
3481 mapping = vma->vm_file->f_mapping;
3482 idx = vma_hugecache_offset(h, vma, address);
3483
3484 page = find_get_page(mapping, idx);
3485 if (page)
3486 put_page(page);
3487 return page != NULL;
3488}
3489
ab76ad54
MK
3490int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3491 pgoff_t idx)
3492{
3493 struct inode *inode = mapping->host;
3494 struct hstate *h = hstate_inode(inode);
3495 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3496
3497 if (err)
3498 return err;
3499 ClearPagePrivate(page);
3500
3501 spin_lock(&inode->i_lock);
3502 inode->i_blocks += blocks_per_huge_page(h);
3503 spin_unlock(&inode->i_lock);
3504 return 0;
3505}
3506
a1ed3dda 3507static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
8382d914
DB
3508 struct address_space *mapping, pgoff_t idx,
3509 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3510{
a5516438 3511 struct hstate *h = hstate_vma(vma);
ac9b9c66 3512 int ret = VM_FAULT_SIGBUS;
409eb8c2 3513 int anon_rmap = 0;
4c887265 3514 unsigned long size;
4c887265 3515 struct page *page;
1e8f889b 3516 pte_t new_pte;
cb900f41 3517 spinlock_t *ptl;
4c887265 3518
04f2cbe3
MG
3519 /*
3520 * Currently, we are forced to kill the process in the event the
3521 * original mapper has unmapped pages from the child due to a failed
25985edc 3522 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3523 */
3524 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
ffb22af5
AM
3525 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3526 current->pid);
04f2cbe3
MG
3527 return ret;
3528 }
3529
4c887265
AL
3530 /*
3531 * Use page lock to guard against racing truncation
3532 * before we get page_table_lock.
3533 */
6bda666a
CL
3534retry:
3535 page = find_lock_page(mapping, idx);
3536 if (!page) {
a5516438 3537 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
3538 if (idx >= size)
3539 goto out;
04f2cbe3 3540 page = alloc_huge_page(vma, address, 0);
2fc39cec 3541 if (IS_ERR(page)) {
76dcee75
AK
3542 ret = PTR_ERR(page);
3543 if (ret == -ENOMEM)
3544 ret = VM_FAULT_OOM;
3545 else
3546 ret = VM_FAULT_SIGBUS;
6bda666a
CL
3547 goto out;
3548 }
47ad8475 3549 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3550 __SetPageUptodate(page);
bcc54222 3551 set_page_huge_active(page);
ac9b9c66 3552
f83a275d 3553 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 3554 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
3555 if (err) {
3556 put_page(page);
6bda666a
CL
3557 if (err == -EEXIST)
3558 goto retry;
3559 goto out;
3560 }
23be7468 3561 } else {
6bda666a 3562 lock_page(page);
0fe6e20b
NH
3563 if (unlikely(anon_vma_prepare(vma))) {
3564 ret = VM_FAULT_OOM;
3565 goto backout_unlocked;
3566 }
409eb8c2 3567 anon_rmap = 1;
23be7468 3568 }
0fe6e20b 3569 } else {
998b4382
NH
3570 /*
3571 * If memory error occurs between mmap() and fault, some process
3572 * don't have hwpoisoned swap entry for errored virtual address.
3573 * So we need to block hugepage fault by PG_hwpoison bit check.
3574 */
3575 if (unlikely(PageHWPoison(page))) {
32f84528 3576 ret = VM_FAULT_HWPOISON |
972dc4de 3577 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3578 goto backout_unlocked;
3579 }
6bda666a 3580 }
1e8f889b 3581
57303d80
AW
3582 /*
3583 * If we are going to COW a private mapping later, we examine the
3584 * pending reservations for this page now. This will ensure that
3585 * any allocations necessary to record that reservation occur outside
3586 * the spinlock.
3587 */
5e911373 3588 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2b26736c
AW
3589 if (vma_needs_reservation(h, vma, address) < 0) {
3590 ret = VM_FAULT_OOM;
3591 goto backout_unlocked;
3592 }
5e911373 3593 /* Just decrements count, does not deallocate */
feba16e2 3594 vma_end_reservation(h, vma, address);
5e911373 3595 }
57303d80 3596
cb900f41
KS
3597 ptl = huge_pte_lockptr(h, mm, ptep);
3598 spin_lock(ptl);
a5516438 3599 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
3600 if (idx >= size)
3601 goto backout;
3602
83c54070 3603 ret = 0;
7f2e9525 3604 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3605 goto backout;
3606
07443a85
JK
3607 if (anon_rmap) {
3608 ClearPagePrivate(page);
409eb8c2 3609 hugepage_add_new_anon_rmap(page, vma, address);
ac714904 3610 } else
409eb8c2 3611 page_dup_rmap(page);
1e8f889b
DG
3612 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3613 && (vma->vm_flags & VM_SHARED)));
3614 set_huge_pte_at(mm, address, ptep, new_pte);
3615
5d317b2b 3616 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 3617 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3618 /* Optimization, do the COW without a second fault */
cb900f41 3619 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
1e8f889b
DG
3620 }
3621
cb900f41 3622 spin_unlock(ptl);
4c887265
AL
3623 unlock_page(page);
3624out:
ac9b9c66 3625 return ret;
4c887265
AL
3626
3627backout:
cb900f41 3628 spin_unlock(ptl);
2b26736c 3629backout_unlocked:
4c887265
AL
3630 unlock_page(page);
3631 put_page(page);
3632 goto out;
ac9b9c66
HD
3633}
3634
8382d914 3635#ifdef CONFIG_SMP
c672c7f2 3636u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3637 struct vm_area_struct *vma,
3638 struct address_space *mapping,
3639 pgoff_t idx, unsigned long address)
3640{
3641 unsigned long key[2];
3642 u32 hash;
3643
3644 if (vma->vm_flags & VM_SHARED) {
3645 key[0] = (unsigned long) mapping;
3646 key[1] = idx;
3647 } else {
3648 key[0] = (unsigned long) mm;
3649 key[1] = address >> huge_page_shift(h);
3650 }
3651
3652 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3653
3654 return hash & (num_fault_mutexes - 1);
3655}
3656#else
3657/*
3658 * For uniprocesor systems we always use a single mutex, so just
3659 * return 0 and avoid the hashing overhead.
3660 */
c672c7f2 3661u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3662 struct vm_area_struct *vma,
3663 struct address_space *mapping,
3664 pgoff_t idx, unsigned long address)
3665{
3666 return 0;
3667}
3668#endif
3669
86e5216f 3670int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3671 unsigned long address, unsigned int flags)
86e5216f 3672{
8382d914 3673 pte_t *ptep, entry;
cb900f41 3674 spinlock_t *ptl;
1e8f889b 3675 int ret;
8382d914
DB
3676 u32 hash;
3677 pgoff_t idx;
0fe6e20b 3678 struct page *page = NULL;
57303d80 3679 struct page *pagecache_page = NULL;
a5516438 3680 struct hstate *h = hstate_vma(vma);
8382d914 3681 struct address_space *mapping;
0f792cf9 3682 int need_wait_lock = 0;
86e5216f 3683
1e16a539
KH
3684 address &= huge_page_mask(h);
3685
fd6a03ed
NH
3686 ptep = huge_pte_offset(mm, address);
3687 if (ptep) {
3688 entry = huge_ptep_get(ptep);
290408d4 3689 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 3690 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
3691 return 0;
3692 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 3693 return VM_FAULT_HWPOISON_LARGE |
972dc4de 3694 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
3695 }
3696
a5516438 3697 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
3698 if (!ptep)
3699 return VM_FAULT_OOM;
3700
8382d914
DB
3701 mapping = vma->vm_file->f_mapping;
3702 idx = vma_hugecache_offset(h, vma, address);
3703
3935baa9
DG
3704 /*
3705 * Serialize hugepage allocation and instantiation, so that we don't
3706 * get spurious allocation failures if two CPUs race to instantiate
3707 * the same page in the page cache.
3708 */
c672c7f2
MK
3709 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3710 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 3711
7f2e9525
GS
3712 entry = huge_ptep_get(ptep);
3713 if (huge_pte_none(entry)) {
8382d914 3714 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3715 goto out_mutex;
3935baa9 3716 }
86e5216f 3717
83c54070 3718 ret = 0;
1e8f889b 3719
0f792cf9
NH
3720 /*
3721 * entry could be a migration/hwpoison entry at this point, so this
3722 * check prevents the kernel from going below assuming that we have
3723 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3724 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3725 * handle it.
3726 */
3727 if (!pte_present(entry))
3728 goto out_mutex;
3729
57303d80
AW
3730 /*
3731 * If we are going to COW the mapping later, we examine the pending
3732 * reservations for this page now. This will ensure that any
3733 * allocations necessary to record that reservation occur outside the
3734 * spinlock. For private mappings, we also lookup the pagecache
3735 * page now as it is used to determine if a reservation has been
3736 * consumed.
3737 */
106c992a 3738 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
3739 if (vma_needs_reservation(h, vma, address) < 0) {
3740 ret = VM_FAULT_OOM;
b4d1d99f 3741 goto out_mutex;
2b26736c 3742 }
5e911373 3743 /* Just decrements count, does not deallocate */
feba16e2 3744 vma_end_reservation(h, vma, address);
57303d80 3745
f83a275d 3746 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
3747 pagecache_page = hugetlbfs_pagecache_page(h,
3748 vma, address);
3749 }
3750
0f792cf9
NH
3751 ptl = huge_pte_lock(h, mm, ptep);
3752
3753 /* Check for a racing update before calling hugetlb_cow */
3754 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3755 goto out_ptl;
3756
56c9cfb1
NH
3757 /*
3758 * hugetlb_cow() requires page locks of pte_page(entry) and
3759 * pagecache_page, so here we need take the former one
3760 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
3761 */
3762 page = pte_page(entry);
3763 if (page != pagecache_page)
0f792cf9
NH
3764 if (!trylock_page(page)) {
3765 need_wait_lock = 1;
3766 goto out_ptl;
3767 }
b4d1d99f 3768
0f792cf9 3769 get_page(page);
b4d1d99f 3770
788c7df4 3771 if (flags & FAULT_FLAG_WRITE) {
106c992a 3772 if (!huge_pte_write(entry)) {
57303d80 3773 ret = hugetlb_cow(mm, vma, address, ptep, entry,
cb900f41 3774 pagecache_page, ptl);
0f792cf9 3775 goto out_put_page;
b4d1d99f 3776 }
106c992a 3777 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
3778 }
3779 entry = pte_mkyoung(entry);
788c7df4
HD
3780 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3781 flags & FAULT_FLAG_WRITE))
4b3073e1 3782 update_mmu_cache(vma, address, ptep);
0f792cf9
NH
3783out_put_page:
3784 if (page != pagecache_page)
3785 unlock_page(page);
3786 put_page(page);
cb900f41
KS
3787out_ptl:
3788 spin_unlock(ptl);
57303d80
AW
3789
3790 if (pagecache_page) {
3791 unlock_page(pagecache_page);
3792 put_page(pagecache_page);
3793 }
b4d1d99f 3794out_mutex:
c672c7f2 3795 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
3796 /*
3797 * Generally it's safe to hold refcount during waiting page lock. But
3798 * here we just wait to defer the next page fault to avoid busy loop and
3799 * the page is not used after unlocked before returning from the current
3800 * page fault. So we are safe from accessing freed page, even if we wait
3801 * here without taking refcount.
3802 */
3803 if (need_wait_lock)
3804 wait_on_page_locked(page);
1e8f889b 3805 return ret;
86e5216f
AL
3806}
3807
28a35716
ML
3808long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3809 struct page **pages, struct vm_area_struct **vmas,
3810 unsigned long *position, unsigned long *nr_pages,
3811 long i, unsigned int flags)
63551ae0 3812{
d5d4b0aa
KC
3813 unsigned long pfn_offset;
3814 unsigned long vaddr = *position;
28a35716 3815 unsigned long remainder = *nr_pages;
a5516438 3816 struct hstate *h = hstate_vma(vma);
63551ae0 3817
63551ae0 3818 while (vaddr < vma->vm_end && remainder) {
4c887265 3819 pte_t *pte;
cb900f41 3820 spinlock_t *ptl = NULL;
2a15efc9 3821 int absent;
4c887265 3822 struct page *page;
63551ae0 3823
02057967
DR
3824 /*
3825 * If we have a pending SIGKILL, don't keep faulting pages and
3826 * potentially allocating memory.
3827 */
3828 if (unlikely(fatal_signal_pending(current))) {
3829 remainder = 0;
3830 break;
3831 }
3832
4c887265
AL
3833 /*
3834 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 3835 * each hugepage. We have to make sure we get the
4c887265 3836 * first, for the page indexing below to work.
cb900f41
KS
3837 *
3838 * Note that page table lock is not held when pte is null.
4c887265 3839 */
a5516438 3840 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
cb900f41
KS
3841 if (pte)
3842 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
3843 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3844
3845 /*
3846 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
3847 * an error where there's an empty slot with no huge pagecache
3848 * to back it. This way, we avoid allocating a hugepage, and
3849 * the sparse dumpfile avoids allocating disk blocks, but its
3850 * huge holes still show up with zeroes where they need to be.
2a15efc9 3851 */
3ae77f43
HD
3852 if (absent && (flags & FOLL_DUMP) &&
3853 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
3854 if (pte)
3855 spin_unlock(ptl);
2a15efc9
HD
3856 remainder = 0;
3857 break;
3858 }
63551ae0 3859
9cc3a5bd
NH
3860 /*
3861 * We need call hugetlb_fault for both hugepages under migration
3862 * (in which case hugetlb_fault waits for the migration,) and
3863 * hwpoisoned hugepages (in which case we need to prevent the
3864 * caller from accessing to them.) In order to do this, we use
3865 * here is_swap_pte instead of is_hugetlb_entry_migration and
3866 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3867 * both cases, and because we can't follow correct pages
3868 * directly from any kind of swap entries.
3869 */
3870 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
3871 ((flags & FOLL_WRITE) &&
3872 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 3873 int ret;
63551ae0 3874
cb900f41
KS
3875 if (pte)
3876 spin_unlock(ptl);
2a15efc9
HD
3877 ret = hugetlb_fault(mm, vma, vaddr,
3878 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
a89182c7 3879 if (!(ret & VM_FAULT_ERROR))
4c887265 3880 continue;
63551ae0 3881
4c887265 3882 remainder = 0;
4c887265
AL
3883 break;
3884 }
3885
a5516438 3886 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 3887 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 3888same_page:
d6692183 3889 if (pages) {
2a15efc9 3890 pages[i] = mem_map_offset(page, pfn_offset);
a0368d4e 3891 get_page_foll(pages[i]);
d6692183 3892 }
63551ae0
DG
3893
3894 if (vmas)
3895 vmas[i] = vma;
3896
3897 vaddr += PAGE_SIZE;
d5d4b0aa 3898 ++pfn_offset;
63551ae0
DG
3899 --remainder;
3900 ++i;
d5d4b0aa 3901 if (vaddr < vma->vm_end && remainder &&
a5516438 3902 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
3903 /*
3904 * We use pfn_offset to avoid touching the pageframes
3905 * of this compound page.
3906 */
3907 goto same_page;
3908 }
cb900f41 3909 spin_unlock(ptl);
63551ae0 3910 }
28a35716 3911 *nr_pages = remainder;
63551ae0
DG
3912 *position = vaddr;
3913
2a15efc9 3914 return i ? i : -EFAULT;
63551ae0 3915}
8f860591 3916
7da4d641 3917unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
3918 unsigned long address, unsigned long end, pgprot_t newprot)
3919{
3920 struct mm_struct *mm = vma->vm_mm;
3921 unsigned long start = address;
3922 pte_t *ptep;
3923 pte_t pte;
a5516438 3924 struct hstate *h = hstate_vma(vma);
7da4d641 3925 unsigned long pages = 0;
8f860591
ZY
3926
3927 BUG_ON(address >= end);
3928 flush_cache_range(vma, address, end);
3929
a5338093 3930 mmu_notifier_invalidate_range_start(mm, start, end);
83cde9e8 3931 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 3932 for (; address < end; address += huge_page_size(h)) {
cb900f41 3933 spinlock_t *ptl;
8f860591
ZY
3934 ptep = huge_pte_offset(mm, address);
3935 if (!ptep)
3936 continue;
cb900f41 3937 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
3938 if (huge_pmd_unshare(mm, &address, ptep)) {
3939 pages++;
cb900f41 3940 spin_unlock(ptl);
39dde65c 3941 continue;
7da4d641 3942 }
a8bda28d
NH
3943 pte = huge_ptep_get(ptep);
3944 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3945 spin_unlock(ptl);
3946 continue;
3947 }
3948 if (unlikely(is_hugetlb_entry_migration(pte))) {
3949 swp_entry_t entry = pte_to_swp_entry(pte);
3950
3951 if (is_write_migration_entry(entry)) {
3952 pte_t newpte;
3953
3954 make_migration_entry_read(&entry);
3955 newpte = swp_entry_to_pte(entry);
3956 set_huge_pte_at(mm, address, ptep, newpte);
3957 pages++;
3958 }
3959 spin_unlock(ptl);
3960 continue;
3961 }
3962 if (!huge_pte_none(pte)) {
8f860591 3963 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 3964 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 3965 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 3966 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 3967 pages++;
8f860591 3968 }
cb900f41 3969 spin_unlock(ptl);
8f860591 3970 }
d833352a 3971 /*
c8c06efa 3972 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 3973 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 3974 * once we release i_mmap_rwsem, another task can do the final put_page
d833352a
MG
3975 * and that page table be reused and filled with junk.
3976 */
8f860591 3977 flush_tlb_range(vma, start, end);
34ee645e 3978 mmu_notifier_invalidate_range(mm, start, end);
83cde9e8 3979 i_mmap_unlock_write(vma->vm_file->f_mapping);
a5338093 3980 mmu_notifier_invalidate_range_end(mm, start, end);
7da4d641
PZ
3981
3982 return pages << h->order;
8f860591
ZY
3983}
3984
a1e78772
MG
3985int hugetlb_reserve_pages(struct inode *inode,
3986 long from, long to,
5a6fe125 3987 struct vm_area_struct *vma,
ca16d140 3988 vm_flags_t vm_flags)
e4e574b7 3989{
17c9d12e 3990 long ret, chg;
a5516438 3991 struct hstate *h = hstate_inode(inode);
90481622 3992 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 3993 struct resv_map *resv_map;
1c5ecae3 3994 long gbl_reserve;
e4e574b7 3995
17c9d12e
MG
3996 /*
3997 * Only apply hugepage reservation if asked. At fault time, an
3998 * attempt will be made for VM_NORESERVE to allocate a page
90481622 3999 * without using reserves
17c9d12e 4000 */
ca16d140 4001 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
4002 return 0;
4003
a1e78772
MG
4004 /*
4005 * Shared mappings base their reservation on the number of pages that
4006 * are already allocated on behalf of the file. Private mappings need
4007 * to reserve the full area even if read-only as mprotect() may be
4008 * called to make the mapping read-write. Assume !vma is a shm mapping
4009 */
9119a41e 4010 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 4011 resv_map = inode_resv_map(inode);
9119a41e 4012
1406ec9b 4013 chg = region_chg(resv_map, from, to);
9119a41e
JK
4014
4015 } else {
4016 resv_map = resv_map_alloc();
17c9d12e
MG
4017 if (!resv_map)
4018 return -ENOMEM;
4019
a1e78772 4020 chg = to - from;
84afd99b 4021
17c9d12e
MG
4022 set_vma_resv_map(vma, resv_map);
4023 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4024 }
4025
c50ac050
DH
4026 if (chg < 0) {
4027 ret = chg;
4028 goto out_err;
4029 }
8a630112 4030
1c5ecae3
MK
4031 /*
4032 * There must be enough pages in the subpool for the mapping. If
4033 * the subpool has a minimum size, there may be some global
4034 * reservations already in place (gbl_reserve).
4035 */
4036 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4037 if (gbl_reserve < 0) {
c50ac050
DH
4038 ret = -ENOSPC;
4039 goto out_err;
4040 }
5a6fe125
MG
4041
4042 /*
17c9d12e 4043 * Check enough hugepages are available for the reservation.
90481622 4044 * Hand the pages back to the subpool if there are not
5a6fe125 4045 */
1c5ecae3 4046 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 4047 if (ret < 0) {
1c5ecae3
MK
4048 /* put back original number of pages, chg */
4049 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 4050 goto out_err;
68842c9b 4051 }
17c9d12e
MG
4052
4053 /*
4054 * Account for the reservations made. Shared mappings record regions
4055 * that have reservations as they are shared by multiple VMAs.
4056 * When the last VMA disappears, the region map says how much
4057 * the reservation was and the page cache tells how much of
4058 * the reservation was consumed. Private mappings are per-VMA and
4059 * only the consumed reservations are tracked. When the VMA
4060 * disappears, the original reservation is the VMA size and the
4061 * consumed reservations are stored in the map. Hence, nothing
4062 * else has to be done for private mappings here
4063 */
33039678
MK
4064 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4065 long add = region_add(resv_map, from, to);
4066
4067 if (unlikely(chg > add)) {
4068 /*
4069 * pages in this range were added to the reserve
4070 * map between region_chg and region_add. This
4071 * indicates a race with alloc_huge_page. Adjust
4072 * the subpool and reserve counts modified above
4073 * based on the difference.
4074 */
4075 long rsv_adjust;
4076
4077 rsv_adjust = hugepage_subpool_put_pages(spool,
4078 chg - add);
4079 hugetlb_acct_memory(h, -rsv_adjust);
4080 }
4081 }
a43a8c39 4082 return 0;
c50ac050 4083out_err:
5e911373
MK
4084 if (!vma || vma->vm_flags & VM_MAYSHARE)
4085 region_abort(resv_map, from, to);
f031dd27
JK
4086 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4087 kref_put(&resv_map->refs, resv_map_release);
c50ac050 4088 return ret;
a43a8c39
KC
4089}
4090
b5cec28d
MK
4091long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4092 long freed)
a43a8c39 4093{
a5516438 4094 struct hstate *h = hstate_inode(inode);
4e35f483 4095 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 4096 long chg = 0;
90481622 4097 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 4098 long gbl_reserve;
45c682a6 4099
b5cec28d
MK
4100 if (resv_map) {
4101 chg = region_del(resv_map, start, end);
4102 /*
4103 * region_del() can fail in the rare case where a region
4104 * must be split and another region descriptor can not be
4105 * allocated. If end == LONG_MAX, it will not fail.
4106 */
4107 if (chg < 0)
4108 return chg;
4109 }
4110
45c682a6 4111 spin_lock(&inode->i_lock);
e4c6f8be 4112 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
4113 spin_unlock(&inode->i_lock);
4114
1c5ecae3
MK
4115 /*
4116 * If the subpool has a minimum size, the number of global
4117 * reservations to be released may be adjusted.
4118 */
4119 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4120 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
4121
4122 return 0;
a43a8c39 4123}
93f70f90 4124
3212b535
SC
4125#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4126static unsigned long page_table_shareable(struct vm_area_struct *svma,
4127 struct vm_area_struct *vma,
4128 unsigned long addr, pgoff_t idx)
4129{
4130 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4131 svma->vm_start;
4132 unsigned long sbase = saddr & PUD_MASK;
4133 unsigned long s_end = sbase + PUD_SIZE;
4134
4135 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
4136 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4137 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
4138
4139 /*
4140 * match the virtual addresses, permission and the alignment of the
4141 * page table page.
4142 */
4143 if (pmd_index(addr) != pmd_index(saddr) ||
4144 vm_flags != svm_flags ||
4145 sbase < svma->vm_start || svma->vm_end < s_end)
4146 return 0;
4147
4148 return saddr;
4149}
4150
31aafb45 4151static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
4152{
4153 unsigned long base = addr & PUD_MASK;
4154 unsigned long end = base + PUD_SIZE;
4155
4156 /*
4157 * check on proper vm_flags and page table alignment
4158 */
4159 if (vma->vm_flags & VM_MAYSHARE &&
4160 vma->vm_start <= base && end <= vma->vm_end)
31aafb45
NK
4161 return true;
4162 return false;
3212b535
SC
4163}
4164
4165/*
4166 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4167 * and returns the corresponding pte. While this is not necessary for the
4168 * !shared pmd case because we can allocate the pmd later as well, it makes the
4169 * code much cleaner. pmd allocation is essential for the shared case because
c8c06efa 4170 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3212b535
SC
4171 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4172 * bad pmd for sharing.
4173 */
4174pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4175{
4176 struct vm_area_struct *vma = find_vma(mm, addr);
4177 struct address_space *mapping = vma->vm_file->f_mapping;
4178 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4179 vma->vm_pgoff;
4180 struct vm_area_struct *svma;
4181 unsigned long saddr;
4182 pte_t *spte = NULL;
4183 pte_t *pte;
cb900f41 4184 spinlock_t *ptl;
3212b535
SC
4185
4186 if (!vma_shareable(vma, addr))
4187 return (pte_t *)pmd_alloc(mm, pud, addr);
4188
83cde9e8 4189 i_mmap_lock_write(mapping);
3212b535
SC
4190 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4191 if (svma == vma)
4192 continue;
4193
4194 saddr = page_table_shareable(svma, vma, addr, idx);
4195 if (saddr) {
4196 spte = huge_pte_offset(svma->vm_mm, saddr);
4197 if (spte) {
dc6c9a35 4198 mm_inc_nr_pmds(mm);
3212b535
SC
4199 get_page(virt_to_page(spte));
4200 break;
4201 }
4202 }
4203 }
4204
4205 if (!spte)
4206 goto out;
4207
cb900f41
KS
4208 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4209 spin_lock(ptl);
dc6c9a35 4210 if (pud_none(*pud)) {
3212b535
SC
4211 pud_populate(mm, pud,
4212 (pmd_t *)((unsigned long)spte & PAGE_MASK));
dc6c9a35 4213 } else {
3212b535 4214 put_page(virt_to_page(spte));
dc6c9a35
KS
4215 mm_inc_nr_pmds(mm);
4216 }
cb900f41 4217 spin_unlock(ptl);
3212b535
SC
4218out:
4219 pte = (pte_t *)pmd_alloc(mm, pud, addr);
83cde9e8 4220 i_mmap_unlock_write(mapping);
3212b535
SC
4221 return pte;
4222}
4223
4224/*
4225 * unmap huge page backed by shared pte.
4226 *
4227 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4228 * indicated by page_count > 1, unmap is achieved by clearing pud and
4229 * decrementing the ref count. If count == 1, the pte page is not shared.
4230 *
cb900f41 4231 * called with page table lock held.
3212b535
SC
4232 *
4233 * returns: 1 successfully unmapped a shared pte page
4234 * 0 the underlying pte page is not shared, or it is the last user
4235 */
4236int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4237{
4238 pgd_t *pgd = pgd_offset(mm, *addr);
4239 pud_t *pud = pud_offset(pgd, *addr);
4240
4241 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4242 if (page_count(virt_to_page(ptep)) == 1)
4243 return 0;
4244
4245 pud_clear(pud);
4246 put_page(virt_to_page(ptep));
dc6c9a35 4247 mm_dec_nr_pmds(mm);
3212b535
SC
4248 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4249 return 1;
4250}
9e5fc74c
SC
4251#define want_pmd_share() (1)
4252#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4253pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4254{
4255 return NULL;
4256}
e81f2d22
ZZ
4257
4258int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4259{
4260 return 0;
4261}
9e5fc74c 4262#define want_pmd_share() (0)
3212b535
SC
4263#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4264
9e5fc74c
SC
4265#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4266pte_t *huge_pte_alloc(struct mm_struct *mm,
4267 unsigned long addr, unsigned long sz)
4268{
4269 pgd_t *pgd;
4270 pud_t *pud;
4271 pte_t *pte = NULL;
4272
4273 pgd = pgd_offset(mm, addr);
4274 pud = pud_alloc(mm, pgd, addr);
4275 if (pud) {
4276 if (sz == PUD_SIZE) {
4277 pte = (pte_t *)pud;
4278 } else {
4279 BUG_ON(sz != PMD_SIZE);
4280 if (want_pmd_share() && pud_none(*pud))
4281 pte = huge_pmd_share(mm, addr, pud);
4282 else
4283 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4284 }
4285 }
4286 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4287
4288 return pte;
4289}
4290
4291pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4292{
4293 pgd_t *pgd;
4294 pud_t *pud;
4295 pmd_t *pmd = NULL;
4296
4297 pgd = pgd_offset(mm, addr);
4298 if (pgd_present(*pgd)) {
4299 pud = pud_offset(pgd, addr);
4300 if (pud_present(*pud)) {
4301 if (pud_huge(*pud))
4302 return (pte_t *)pud;
4303 pmd = pmd_offset(pud, addr);
4304 }
4305 }
4306 return (pte_t *) pmd;
4307}
4308
61f77eda
NH
4309#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4310
4311/*
4312 * These functions are overwritable if your architecture needs its own
4313 * behavior.
4314 */
4315struct page * __weak
4316follow_huge_addr(struct mm_struct *mm, unsigned long address,
4317 int write)
4318{
4319 return ERR_PTR(-EINVAL);
4320}
4321
4322struct page * __weak
9e5fc74c 4323follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 4324 pmd_t *pmd, int flags)
9e5fc74c 4325{
e66f17ff
NH
4326 struct page *page = NULL;
4327 spinlock_t *ptl;
4328retry:
4329 ptl = pmd_lockptr(mm, pmd);
4330 spin_lock(ptl);
4331 /*
4332 * make sure that the address range covered by this pmd is not
4333 * unmapped from other threads.
4334 */
4335 if (!pmd_huge(*pmd))
4336 goto out;
4337 if (pmd_present(*pmd)) {
97534127 4338 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
4339 if (flags & FOLL_GET)
4340 get_page(page);
4341 } else {
4342 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4343 spin_unlock(ptl);
4344 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4345 goto retry;
4346 }
4347 /*
4348 * hwpoisoned entry is treated as no_page_table in
4349 * follow_page_mask().
4350 */
4351 }
4352out:
4353 spin_unlock(ptl);
9e5fc74c
SC
4354 return page;
4355}
4356
61f77eda 4357struct page * __weak
9e5fc74c 4358follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 4359 pud_t *pud, int flags)
9e5fc74c 4360{
e66f17ff
NH
4361 if (flags & FOLL_GET)
4362 return NULL;
9e5fc74c 4363
e66f17ff 4364 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
4365}
4366
d5bd9106
AK
4367#ifdef CONFIG_MEMORY_FAILURE
4368
93f70f90
NH
4369/*
4370 * This function is called from memory failure code.
4371 * Assume the caller holds page lock of the head page.
4372 */
6de2b1aa 4373int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
4374{
4375 struct hstate *h = page_hstate(hpage);
4376 int nid = page_to_nid(hpage);
6de2b1aa 4377 int ret = -EBUSY;
93f70f90
NH
4378
4379 spin_lock(&hugetlb_lock);
7e1f049e
NH
4380 /*
4381 * Just checking !page_huge_active is not enough, because that could be
4382 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4383 */
4384 if (!page_huge_active(hpage) && !page_count(hpage)) {
56f2fb14
NH
4385 /*
4386 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4387 * but dangling hpage->lru can trigger list-debug warnings
4388 * (this happens when we call unpoison_memory() on it),
4389 * so let it point to itself with list_del_init().
4390 */
4391 list_del_init(&hpage->lru);
8c6c2ecb 4392 set_page_refcounted(hpage);
6de2b1aa
NH
4393 h->free_huge_pages--;
4394 h->free_huge_pages_node[nid]--;
4395 ret = 0;
4396 }
93f70f90 4397 spin_unlock(&hugetlb_lock);
6de2b1aa 4398 return ret;
93f70f90 4399}
6de2b1aa 4400#endif
31caf665
NH
4401
4402bool isolate_huge_page(struct page *page, struct list_head *list)
4403{
bcc54222
NH
4404 bool ret = true;
4405
309381fe 4406 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4407 spin_lock(&hugetlb_lock);
bcc54222
NH
4408 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4409 ret = false;
4410 goto unlock;
4411 }
4412 clear_page_huge_active(page);
31caf665 4413 list_move_tail(&page->lru, list);
bcc54222 4414unlock:
31caf665 4415 spin_unlock(&hugetlb_lock);
bcc54222 4416 return ret;
31caf665
NH
4417}
4418
4419void putback_active_hugepage(struct page *page)
4420{
309381fe 4421 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4422 spin_lock(&hugetlb_lock);
bcc54222 4423 set_page_huge_active(page);
31caf665
NH
4424 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4425 spin_unlock(&hugetlb_lock);
4426 put_page(page);
4427}