]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/hugetlb.c
mm/swap.c: flush lru pvecs on compound page arrival
[mirror_ubuntu-zesty-kernel.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
1da177e4 7#include <linux/mm.h>
e1759c21 8#include <linux/seq_file.h>
1da177e4
LT
9#include <linux/sysctl.h>
10#include <linux/highmem.h>
cddb8a5c 11#include <linux/mmu_notifier.h>
1da177e4 12#include <linux/nodemask.h>
63551ae0 13#include <linux/pagemap.h>
5da7ca86 14#include <linux/mempolicy.h>
3b32123d 15#include <linux/compiler.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
fd6a03ed
NH
22#include <linux/swap.h>
23#include <linux/swapops.h>
c8721bbb 24#include <linux/page-isolation.h>
8382d914 25#include <linux/jhash.h>
d6606683 26
63551ae0
DG
27#include <asm/page.h>
28#include <asm/pgtable.h>
24669e58 29#include <asm/tlb.h>
63551ae0 30
24669e58 31#include <linux/io.h>
63551ae0 32#include <linux/hugetlb.h>
9dd540e2 33#include <linux/hugetlb_cgroup.h>
9a305230 34#include <linux/node.h>
7835e98b 35#include "internal.h"
1da177e4 36
753162cd 37int hugepages_treat_as_movable;
a5516438 38
c3f38a38 39int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
40unsigned int default_hstate_idx;
41struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
42/*
43 * Minimum page order among possible hugepage sizes, set to a proper value
44 * at boot time.
45 */
46static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 47
53ba51d2
JT
48__initdata LIST_HEAD(huge_boot_pages);
49
e5ff2159
AK
50/* for command line parsing */
51static struct hstate * __initdata parsed_hstate;
52static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 53static unsigned long __initdata default_hstate_size;
9fee021d 54static bool __initdata parsed_valid_hugepagesz = true;
e5ff2159 55
3935baa9 56/*
31caf665
NH
57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58 * free_huge_pages, and surplus_huge_pages.
3935baa9 59 */
c3f38a38 60DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 61
8382d914
DB
62/*
63 * Serializes faults on the same logical page. This is used to
64 * prevent spurious OOMs when the hugepage pool is fully utilized.
65 */
66static int num_fault_mutexes;
c672c7f2 67struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 68
7ca02d0a
MK
69/* Forward declaration */
70static int hugetlb_acct_memory(struct hstate *h, long delta);
71
90481622
DG
72static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73{
74 bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76 spin_unlock(&spool->lock);
77
78 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
79 * remain, give up any reservations mased on minimum size and
80 * free the subpool */
81 if (free) {
82 if (spool->min_hpages != -1)
83 hugetlb_acct_memory(spool->hstate,
84 -spool->min_hpages);
90481622 85 kfree(spool);
7ca02d0a 86 }
90481622
DG
87}
88
7ca02d0a
MK
89struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90 long min_hpages)
90481622
DG
91{
92 struct hugepage_subpool *spool;
93
c6a91820 94 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
95 if (!spool)
96 return NULL;
97
98 spin_lock_init(&spool->lock);
99 spool->count = 1;
7ca02d0a
MK
100 spool->max_hpages = max_hpages;
101 spool->hstate = h;
102 spool->min_hpages = min_hpages;
103
104 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105 kfree(spool);
106 return NULL;
107 }
108 spool->rsv_hpages = min_hpages;
90481622
DG
109
110 return spool;
111}
112
113void hugepage_put_subpool(struct hugepage_subpool *spool)
114{
115 spin_lock(&spool->lock);
116 BUG_ON(!spool->count);
117 spool->count--;
118 unlock_or_release_subpool(spool);
119}
120
1c5ecae3
MK
121/*
122 * Subpool accounting for allocating and reserving pages.
123 * Return -ENOMEM if there are not enough resources to satisfy the
124 * the request. Otherwise, return the number of pages by which the
125 * global pools must be adjusted (upward). The returned value may
126 * only be different than the passed value (delta) in the case where
127 * a subpool minimum size must be manitained.
128 */
129static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
130 long delta)
131{
1c5ecae3 132 long ret = delta;
90481622
DG
133
134 if (!spool)
1c5ecae3 135 return ret;
90481622
DG
136
137 spin_lock(&spool->lock);
1c5ecae3
MK
138
139 if (spool->max_hpages != -1) { /* maximum size accounting */
140 if ((spool->used_hpages + delta) <= spool->max_hpages)
141 spool->used_hpages += delta;
142 else {
143 ret = -ENOMEM;
144 goto unlock_ret;
145 }
90481622 146 }
90481622 147
09a95e29
MK
148 /* minimum size accounting */
149 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
150 if (delta > spool->rsv_hpages) {
151 /*
152 * Asking for more reserves than those already taken on
153 * behalf of subpool. Return difference.
154 */
155 ret = delta - spool->rsv_hpages;
156 spool->rsv_hpages = 0;
157 } else {
158 ret = 0; /* reserves already accounted for */
159 spool->rsv_hpages -= delta;
160 }
161 }
162
163unlock_ret:
164 spin_unlock(&spool->lock);
90481622
DG
165 return ret;
166}
167
1c5ecae3
MK
168/*
169 * Subpool accounting for freeing and unreserving pages.
170 * Return the number of global page reservations that must be dropped.
171 * The return value may only be different than the passed value (delta)
172 * in the case where a subpool minimum size must be maintained.
173 */
174static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
175 long delta)
176{
1c5ecae3
MK
177 long ret = delta;
178
90481622 179 if (!spool)
1c5ecae3 180 return delta;
90481622
DG
181
182 spin_lock(&spool->lock);
1c5ecae3
MK
183
184 if (spool->max_hpages != -1) /* maximum size accounting */
185 spool->used_hpages -= delta;
186
09a95e29
MK
187 /* minimum size accounting */
188 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
189 if (spool->rsv_hpages + delta <= spool->min_hpages)
190 ret = 0;
191 else
192 ret = spool->rsv_hpages + delta - spool->min_hpages;
193
194 spool->rsv_hpages += delta;
195 if (spool->rsv_hpages > spool->min_hpages)
196 spool->rsv_hpages = spool->min_hpages;
197 }
198
199 /*
200 * If hugetlbfs_put_super couldn't free spool due to an outstanding
201 * quota reference, free it now.
202 */
90481622 203 unlock_or_release_subpool(spool);
1c5ecae3
MK
204
205 return ret;
90481622
DG
206}
207
208static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
209{
210 return HUGETLBFS_SB(inode->i_sb)->spool;
211}
212
213static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
214{
496ad9aa 215 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
216}
217
96822904
AW
218/*
219 * Region tracking -- allows tracking of reservations and instantiated pages
220 * across the pages in a mapping.
84afd99b 221 *
1dd308a7
MK
222 * The region data structures are embedded into a resv_map and protected
223 * by a resv_map's lock. The set of regions within the resv_map represent
224 * reservations for huge pages, or huge pages that have already been
225 * instantiated within the map. The from and to elements are huge page
226 * indicies into the associated mapping. from indicates the starting index
227 * of the region. to represents the first index past the end of the region.
228 *
229 * For example, a file region structure with from == 0 and to == 4 represents
230 * four huge pages in a mapping. It is important to note that the to element
231 * represents the first element past the end of the region. This is used in
232 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
233 *
234 * Interval notation of the form [from, to) will be used to indicate that
235 * the endpoint from is inclusive and to is exclusive.
96822904
AW
236 */
237struct file_region {
238 struct list_head link;
239 long from;
240 long to;
241};
242
1dd308a7
MK
243/*
244 * Add the huge page range represented by [f, t) to the reserve
5e911373
MK
245 * map. In the normal case, existing regions will be expanded
246 * to accommodate the specified range. Sufficient regions should
247 * exist for expansion due to the previous call to region_chg
248 * with the same range. However, it is possible that region_del
249 * could have been called after region_chg and modifed the map
250 * in such a way that no region exists to be expanded. In this
251 * case, pull a region descriptor from the cache associated with
252 * the map and use that for the new range.
cf3ad20b
MK
253 *
254 * Return the number of new huge pages added to the map. This
255 * number is greater than or equal to zero.
1dd308a7 256 */
1406ec9b 257static long region_add(struct resv_map *resv, long f, long t)
96822904 258{
1406ec9b 259 struct list_head *head = &resv->regions;
96822904 260 struct file_region *rg, *nrg, *trg;
cf3ad20b 261 long add = 0;
96822904 262
7b24d861 263 spin_lock(&resv->lock);
96822904
AW
264 /* Locate the region we are either in or before. */
265 list_for_each_entry(rg, head, link)
266 if (f <= rg->to)
267 break;
268
5e911373
MK
269 /*
270 * If no region exists which can be expanded to include the
271 * specified range, the list must have been modified by an
272 * interleving call to region_del(). Pull a region descriptor
273 * from the cache and use it for this range.
274 */
275 if (&rg->link == head || t < rg->from) {
276 VM_BUG_ON(resv->region_cache_count <= 0);
277
278 resv->region_cache_count--;
279 nrg = list_first_entry(&resv->region_cache, struct file_region,
280 link);
281 list_del(&nrg->link);
282
283 nrg->from = f;
284 nrg->to = t;
285 list_add(&nrg->link, rg->link.prev);
286
287 add += t - f;
288 goto out_locked;
289 }
290
96822904
AW
291 /* Round our left edge to the current segment if it encloses us. */
292 if (f > rg->from)
293 f = rg->from;
294
295 /* Check for and consume any regions we now overlap with. */
296 nrg = rg;
297 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
298 if (&rg->link == head)
299 break;
300 if (rg->from > t)
301 break;
302
303 /* If this area reaches higher then extend our area to
304 * include it completely. If this is not the first area
305 * which we intend to reuse, free it. */
306 if (rg->to > t)
307 t = rg->to;
308 if (rg != nrg) {
cf3ad20b
MK
309 /* Decrement return value by the deleted range.
310 * Another range will span this area so that by
311 * end of routine add will be >= zero
312 */
313 add -= (rg->to - rg->from);
96822904
AW
314 list_del(&rg->link);
315 kfree(rg);
316 }
317 }
cf3ad20b
MK
318
319 add += (nrg->from - f); /* Added to beginning of region */
96822904 320 nrg->from = f;
cf3ad20b 321 add += t - nrg->to; /* Added to end of region */
96822904 322 nrg->to = t;
cf3ad20b 323
5e911373
MK
324out_locked:
325 resv->adds_in_progress--;
7b24d861 326 spin_unlock(&resv->lock);
cf3ad20b
MK
327 VM_BUG_ON(add < 0);
328 return add;
96822904
AW
329}
330
1dd308a7
MK
331/*
332 * Examine the existing reserve map and determine how many
333 * huge pages in the specified range [f, t) are NOT currently
334 * represented. This routine is called before a subsequent
335 * call to region_add that will actually modify the reserve
336 * map to add the specified range [f, t). region_chg does
337 * not change the number of huge pages represented by the
338 * map. However, if the existing regions in the map can not
339 * be expanded to represent the new range, a new file_region
340 * structure is added to the map as a placeholder. This is
341 * so that the subsequent region_add call will have all the
342 * regions it needs and will not fail.
343 *
5e911373
MK
344 * Upon entry, region_chg will also examine the cache of region descriptors
345 * associated with the map. If there are not enough descriptors cached, one
346 * will be allocated for the in progress add operation.
347 *
348 * Returns the number of huge pages that need to be added to the existing
349 * reservation map for the range [f, t). This number is greater or equal to
350 * zero. -ENOMEM is returned if a new file_region structure or cache entry
351 * is needed and can not be allocated.
1dd308a7 352 */
1406ec9b 353static long region_chg(struct resv_map *resv, long f, long t)
96822904 354{
1406ec9b 355 struct list_head *head = &resv->regions;
7b24d861 356 struct file_region *rg, *nrg = NULL;
96822904
AW
357 long chg = 0;
358
7b24d861
DB
359retry:
360 spin_lock(&resv->lock);
5e911373
MK
361retry_locked:
362 resv->adds_in_progress++;
363
364 /*
365 * Check for sufficient descriptors in the cache to accommodate
366 * the number of in progress add operations.
367 */
368 if (resv->adds_in_progress > resv->region_cache_count) {
369 struct file_region *trg;
370
371 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
372 /* Must drop lock to allocate a new descriptor. */
373 resv->adds_in_progress--;
374 spin_unlock(&resv->lock);
375
376 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
dbe409e4
MK
377 if (!trg) {
378 kfree(nrg);
5e911373 379 return -ENOMEM;
dbe409e4 380 }
5e911373
MK
381
382 spin_lock(&resv->lock);
383 list_add(&trg->link, &resv->region_cache);
384 resv->region_cache_count++;
385 goto retry_locked;
386 }
387
96822904
AW
388 /* Locate the region we are before or in. */
389 list_for_each_entry(rg, head, link)
390 if (f <= rg->to)
391 break;
392
393 /* If we are below the current region then a new region is required.
394 * Subtle, allocate a new region at the position but make it zero
395 * size such that we can guarantee to record the reservation. */
396 if (&rg->link == head || t < rg->from) {
7b24d861 397 if (!nrg) {
5e911373 398 resv->adds_in_progress--;
7b24d861
DB
399 spin_unlock(&resv->lock);
400 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
401 if (!nrg)
402 return -ENOMEM;
403
404 nrg->from = f;
405 nrg->to = f;
406 INIT_LIST_HEAD(&nrg->link);
407 goto retry;
408 }
96822904 409
7b24d861
DB
410 list_add(&nrg->link, rg->link.prev);
411 chg = t - f;
412 goto out_nrg;
96822904
AW
413 }
414
415 /* Round our left edge to the current segment if it encloses us. */
416 if (f > rg->from)
417 f = rg->from;
418 chg = t - f;
419
420 /* Check for and consume any regions we now overlap with. */
421 list_for_each_entry(rg, rg->link.prev, link) {
422 if (&rg->link == head)
423 break;
424 if (rg->from > t)
7b24d861 425 goto out;
96822904 426
25985edc 427 /* We overlap with this area, if it extends further than
96822904
AW
428 * us then we must extend ourselves. Account for its
429 * existing reservation. */
430 if (rg->to > t) {
431 chg += rg->to - t;
432 t = rg->to;
433 }
434 chg -= rg->to - rg->from;
435 }
7b24d861
DB
436
437out:
438 spin_unlock(&resv->lock);
439 /* We already know we raced and no longer need the new region */
440 kfree(nrg);
441 return chg;
442out_nrg:
443 spin_unlock(&resv->lock);
96822904
AW
444 return chg;
445}
446
5e911373
MK
447/*
448 * Abort the in progress add operation. The adds_in_progress field
449 * of the resv_map keeps track of the operations in progress between
450 * calls to region_chg and region_add. Operations are sometimes
451 * aborted after the call to region_chg. In such cases, region_abort
452 * is called to decrement the adds_in_progress counter.
453 *
454 * NOTE: The range arguments [f, t) are not needed or used in this
455 * routine. They are kept to make reading the calling code easier as
456 * arguments will match the associated region_chg call.
457 */
458static void region_abort(struct resv_map *resv, long f, long t)
459{
460 spin_lock(&resv->lock);
461 VM_BUG_ON(!resv->region_cache_count);
462 resv->adds_in_progress--;
463 spin_unlock(&resv->lock);
464}
465
1dd308a7 466/*
feba16e2
MK
467 * Delete the specified range [f, t) from the reserve map. If the
468 * t parameter is LONG_MAX, this indicates that ALL regions after f
469 * should be deleted. Locate the regions which intersect [f, t)
470 * and either trim, delete or split the existing regions.
471 *
472 * Returns the number of huge pages deleted from the reserve map.
473 * In the normal case, the return value is zero or more. In the
474 * case where a region must be split, a new region descriptor must
475 * be allocated. If the allocation fails, -ENOMEM will be returned.
476 * NOTE: If the parameter t == LONG_MAX, then we will never split
477 * a region and possibly return -ENOMEM. Callers specifying
478 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 479 */
feba16e2 480static long region_del(struct resv_map *resv, long f, long t)
96822904 481{
1406ec9b 482 struct list_head *head = &resv->regions;
96822904 483 struct file_region *rg, *trg;
feba16e2
MK
484 struct file_region *nrg = NULL;
485 long del = 0;
96822904 486
feba16e2 487retry:
7b24d861 488 spin_lock(&resv->lock);
feba16e2 489 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
490 /*
491 * Skip regions before the range to be deleted. file_region
492 * ranges are normally of the form [from, to). However, there
493 * may be a "placeholder" entry in the map which is of the form
494 * (from, to) with from == to. Check for placeholder entries
495 * at the beginning of the range to be deleted.
496 */
497 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 498 continue;
dbe409e4 499
feba16e2 500 if (rg->from >= t)
96822904 501 break;
96822904 502
feba16e2
MK
503 if (f > rg->from && t < rg->to) { /* Must split region */
504 /*
505 * Check for an entry in the cache before dropping
506 * lock and attempting allocation.
507 */
508 if (!nrg &&
509 resv->region_cache_count > resv->adds_in_progress) {
510 nrg = list_first_entry(&resv->region_cache,
511 struct file_region,
512 link);
513 list_del(&nrg->link);
514 resv->region_cache_count--;
515 }
96822904 516
feba16e2
MK
517 if (!nrg) {
518 spin_unlock(&resv->lock);
519 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
520 if (!nrg)
521 return -ENOMEM;
522 goto retry;
523 }
524
525 del += t - f;
526
527 /* New entry for end of split region */
528 nrg->from = t;
529 nrg->to = rg->to;
530 INIT_LIST_HEAD(&nrg->link);
531
532 /* Original entry is trimmed */
533 rg->to = f;
534
535 list_add(&nrg->link, &rg->link);
536 nrg = NULL;
96822904 537 break;
feba16e2
MK
538 }
539
540 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
541 del += rg->to - rg->from;
542 list_del(&rg->link);
543 kfree(rg);
544 continue;
545 }
546
547 if (f <= rg->from) { /* Trim beginning of region */
548 del += t - rg->from;
549 rg->from = t;
550 } else { /* Trim end of region */
551 del += rg->to - f;
552 rg->to = f;
553 }
96822904 554 }
7b24d861 555
7b24d861 556 spin_unlock(&resv->lock);
feba16e2
MK
557 kfree(nrg);
558 return del;
96822904
AW
559}
560
b5cec28d
MK
561/*
562 * A rare out of memory error was encountered which prevented removal of
563 * the reserve map region for a page. The huge page itself was free'ed
564 * and removed from the page cache. This routine will adjust the subpool
565 * usage count, and the global reserve count if needed. By incrementing
566 * these counts, the reserve map entry which could not be deleted will
567 * appear as a "reserved" entry instead of simply dangling with incorrect
568 * counts.
569 */
570void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
571{
572 struct hugepage_subpool *spool = subpool_inode(inode);
573 long rsv_adjust;
574
575 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
576 if (restore_reserve && rsv_adjust) {
577 struct hstate *h = hstate_inode(inode);
578
579 hugetlb_acct_memory(h, 1);
580 }
581}
582
1dd308a7
MK
583/*
584 * Count and return the number of huge pages in the reserve map
585 * that intersect with the range [f, t).
586 */
1406ec9b 587static long region_count(struct resv_map *resv, long f, long t)
84afd99b 588{
1406ec9b 589 struct list_head *head = &resv->regions;
84afd99b
AW
590 struct file_region *rg;
591 long chg = 0;
592
7b24d861 593 spin_lock(&resv->lock);
84afd99b
AW
594 /* Locate each segment we overlap with, and count that overlap. */
595 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
596 long seg_from;
597 long seg_to;
84afd99b
AW
598
599 if (rg->to <= f)
600 continue;
601 if (rg->from >= t)
602 break;
603
604 seg_from = max(rg->from, f);
605 seg_to = min(rg->to, t);
606
607 chg += seg_to - seg_from;
608 }
7b24d861 609 spin_unlock(&resv->lock);
84afd99b
AW
610
611 return chg;
612}
613
e7c4b0bf
AW
614/*
615 * Convert the address within this vma to the page offset within
616 * the mapping, in pagecache page units; huge pages here.
617 */
a5516438
AK
618static pgoff_t vma_hugecache_offset(struct hstate *h,
619 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 620{
a5516438
AK
621 return ((address - vma->vm_start) >> huge_page_shift(h)) +
622 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
623}
624
0fe6e20b
NH
625pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
626 unsigned long address)
627{
628 return vma_hugecache_offset(hstate_vma(vma), vma, address);
629}
dee41079 630EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 631
08fba699
MG
632/*
633 * Return the size of the pages allocated when backing a VMA. In the majority
634 * cases this will be same size as used by the page table entries.
635 */
636unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
637{
638 struct hstate *hstate;
639
640 if (!is_vm_hugetlb_page(vma))
641 return PAGE_SIZE;
642
643 hstate = hstate_vma(vma);
644
2415cf12 645 return 1UL << huge_page_shift(hstate);
08fba699 646}
f340ca0f 647EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 648
3340289d
MG
649/*
650 * Return the page size being used by the MMU to back a VMA. In the majority
651 * of cases, the page size used by the kernel matches the MMU size. On
652 * architectures where it differs, an architecture-specific version of this
653 * function is required.
654 */
655#ifndef vma_mmu_pagesize
656unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
657{
658 return vma_kernel_pagesize(vma);
659}
660#endif
661
84afd99b
AW
662/*
663 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
664 * bits of the reservation map pointer, which are always clear due to
665 * alignment.
666 */
667#define HPAGE_RESV_OWNER (1UL << 0)
668#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 669#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 670
a1e78772
MG
671/*
672 * These helpers are used to track how many pages are reserved for
673 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
674 * is guaranteed to have their future faults succeed.
675 *
676 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
677 * the reserve counters are updated with the hugetlb_lock held. It is safe
678 * to reset the VMA at fork() time as it is not in use yet and there is no
679 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
680 *
681 * The private mapping reservation is represented in a subtly different
682 * manner to a shared mapping. A shared mapping has a region map associated
683 * with the underlying file, this region map represents the backing file
684 * pages which have ever had a reservation assigned which this persists even
685 * after the page is instantiated. A private mapping has a region map
686 * associated with the original mmap which is attached to all VMAs which
687 * reference it, this region map represents those offsets which have consumed
688 * reservation ie. where pages have been instantiated.
a1e78772 689 */
e7c4b0bf
AW
690static unsigned long get_vma_private_data(struct vm_area_struct *vma)
691{
692 return (unsigned long)vma->vm_private_data;
693}
694
695static void set_vma_private_data(struct vm_area_struct *vma,
696 unsigned long value)
697{
698 vma->vm_private_data = (void *)value;
699}
700
9119a41e 701struct resv_map *resv_map_alloc(void)
84afd99b
AW
702{
703 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
704 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
705
706 if (!resv_map || !rg) {
707 kfree(resv_map);
708 kfree(rg);
84afd99b 709 return NULL;
5e911373 710 }
84afd99b
AW
711
712 kref_init(&resv_map->refs);
7b24d861 713 spin_lock_init(&resv_map->lock);
84afd99b
AW
714 INIT_LIST_HEAD(&resv_map->regions);
715
5e911373
MK
716 resv_map->adds_in_progress = 0;
717
718 INIT_LIST_HEAD(&resv_map->region_cache);
719 list_add(&rg->link, &resv_map->region_cache);
720 resv_map->region_cache_count = 1;
721
84afd99b
AW
722 return resv_map;
723}
724
9119a41e 725void resv_map_release(struct kref *ref)
84afd99b
AW
726{
727 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
728 struct list_head *head = &resv_map->region_cache;
729 struct file_region *rg, *trg;
84afd99b
AW
730
731 /* Clear out any active regions before we release the map. */
feba16e2 732 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
733
734 /* ... and any entries left in the cache */
735 list_for_each_entry_safe(rg, trg, head, link) {
736 list_del(&rg->link);
737 kfree(rg);
738 }
739
740 VM_BUG_ON(resv_map->adds_in_progress);
741
84afd99b
AW
742 kfree(resv_map);
743}
744
4e35f483
JK
745static inline struct resv_map *inode_resv_map(struct inode *inode)
746{
747 return inode->i_mapping->private_data;
748}
749
84afd99b 750static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 751{
81d1b09c 752 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
753 if (vma->vm_flags & VM_MAYSHARE) {
754 struct address_space *mapping = vma->vm_file->f_mapping;
755 struct inode *inode = mapping->host;
756
757 return inode_resv_map(inode);
758
759 } else {
84afd99b
AW
760 return (struct resv_map *)(get_vma_private_data(vma) &
761 ~HPAGE_RESV_MASK);
4e35f483 762 }
a1e78772
MG
763}
764
84afd99b 765static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 766{
81d1b09c
SL
767 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
768 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 769
84afd99b
AW
770 set_vma_private_data(vma, (get_vma_private_data(vma) &
771 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
772}
773
774static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
775{
81d1b09c
SL
776 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
777 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
778
779 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
780}
781
782static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
783{
81d1b09c 784 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
785
786 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
787}
788
04f2cbe3 789/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
790void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
791{
81d1b09c 792 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 793 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
794 vma->vm_private_data = (void *)0;
795}
796
797/* Returns true if the VMA has associated reserve pages */
559ec2f8 798static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 799{
af0ed73e
JK
800 if (vma->vm_flags & VM_NORESERVE) {
801 /*
802 * This address is already reserved by other process(chg == 0),
803 * so, we should decrement reserved count. Without decrementing,
804 * reserve count remains after releasing inode, because this
805 * allocated page will go into page cache and is regarded as
806 * coming from reserved pool in releasing step. Currently, we
807 * don't have any other solution to deal with this situation
808 * properly, so add work-around here.
809 */
810 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 811 return true;
af0ed73e 812 else
559ec2f8 813 return false;
af0ed73e 814 }
a63884e9
JK
815
816 /* Shared mappings always use reserves */
1fb1b0e9
MK
817 if (vma->vm_flags & VM_MAYSHARE) {
818 /*
819 * We know VM_NORESERVE is not set. Therefore, there SHOULD
820 * be a region map for all pages. The only situation where
821 * there is no region map is if a hole was punched via
822 * fallocate. In this case, there really are no reverves to
823 * use. This situation is indicated if chg != 0.
824 */
825 if (chg)
826 return false;
827 else
828 return true;
829 }
a63884e9
JK
830
831 /*
832 * Only the process that called mmap() has reserves for
833 * private mappings.
834 */
67961f9d
MK
835 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
836 /*
837 * Like the shared case above, a hole punch or truncate
838 * could have been performed on the private mapping.
839 * Examine the value of chg to determine if reserves
840 * actually exist or were previously consumed.
841 * Very Subtle - The value of chg comes from a previous
842 * call to vma_needs_reserves(). The reserve map for
843 * private mappings has different (opposite) semantics
844 * than that of shared mappings. vma_needs_reserves()
845 * has already taken this difference in semantics into
846 * account. Therefore, the meaning of chg is the same
847 * as in the shared case above. Code could easily be
848 * combined, but keeping it separate draws attention to
849 * subtle differences.
850 */
851 if (chg)
852 return false;
853 else
854 return true;
855 }
a63884e9 856
559ec2f8 857 return false;
a1e78772
MG
858}
859
a5516438 860static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
861{
862 int nid = page_to_nid(page);
0edaecfa 863 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
864 h->free_huge_pages++;
865 h->free_huge_pages_node[nid]++;
1da177e4
LT
866}
867
bf50bab2
NH
868static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
869{
870 struct page *page;
871
c8721bbb
NH
872 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
873 if (!is_migrate_isolate_page(page))
874 break;
875 /*
876 * if 'non-isolated free hugepage' not found on the list,
877 * the allocation fails.
878 */
879 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 880 return NULL;
0edaecfa 881 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 882 set_page_refcounted(page);
bf50bab2
NH
883 h->free_huge_pages--;
884 h->free_huge_pages_node[nid]--;
885 return page;
886}
887
86cdb465
NH
888/* Movability of hugepages depends on migration support. */
889static inline gfp_t htlb_alloc_mask(struct hstate *h)
890{
100873d7 891 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
86cdb465
NH
892 return GFP_HIGHUSER_MOVABLE;
893 else
894 return GFP_HIGHUSER;
895}
896
a5516438
AK
897static struct page *dequeue_huge_page_vma(struct hstate *h,
898 struct vm_area_struct *vma,
af0ed73e
JK
899 unsigned long address, int avoid_reserve,
900 long chg)
1da177e4 901{
b1c12cbc 902 struct page *page = NULL;
480eccf9 903 struct mempolicy *mpol;
19770b32 904 nodemask_t *nodemask;
c0ff7453 905 struct zonelist *zonelist;
dd1a239f
MG
906 struct zone *zone;
907 struct zoneref *z;
cc9a6c87 908 unsigned int cpuset_mems_cookie;
1da177e4 909
a1e78772
MG
910 /*
911 * A child process with MAP_PRIVATE mappings created by their parent
912 * have no page reserves. This check ensures that reservations are
913 * not "stolen". The child may still get SIGKILLed
914 */
af0ed73e 915 if (!vma_has_reserves(vma, chg) &&
a5516438 916 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 917 goto err;
a1e78772 918
04f2cbe3 919 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 920 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 921 goto err;
04f2cbe3 922
9966c4bb 923retry_cpuset:
d26914d1 924 cpuset_mems_cookie = read_mems_allowed_begin();
9966c4bb 925 zonelist = huge_zonelist(vma, address,
86cdb465 926 htlb_alloc_mask(h), &mpol, &nodemask);
9966c4bb 927
19770b32
MG
928 for_each_zone_zonelist_nodemask(zone, z, zonelist,
929 MAX_NR_ZONES - 1, nodemask) {
344736f2 930 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
bf50bab2
NH
931 page = dequeue_huge_page_node(h, zone_to_nid(zone));
932 if (page) {
af0ed73e
JK
933 if (avoid_reserve)
934 break;
935 if (!vma_has_reserves(vma, chg))
936 break;
937
07443a85 938 SetPagePrivate(page);
af0ed73e 939 h->resv_huge_pages--;
bf50bab2
NH
940 break;
941 }
3abf7afd 942 }
1da177e4 943 }
cc9a6c87 944
52cd3b07 945 mpol_cond_put(mpol);
d26914d1 946 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 947 goto retry_cpuset;
1da177e4 948 return page;
cc9a6c87
MG
949
950err:
cc9a6c87 951 return NULL;
1da177e4
LT
952}
953
1cac6f2c
LC
954/*
955 * common helper functions for hstate_next_node_to_{alloc|free}.
956 * We may have allocated or freed a huge page based on a different
957 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
958 * be outside of *nodes_allowed. Ensure that we use an allowed
959 * node for alloc or free.
960 */
961static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
962{
0edaf86c 963 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
964 VM_BUG_ON(nid >= MAX_NUMNODES);
965
966 return nid;
967}
968
969static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
970{
971 if (!node_isset(nid, *nodes_allowed))
972 nid = next_node_allowed(nid, nodes_allowed);
973 return nid;
974}
975
976/*
977 * returns the previously saved node ["this node"] from which to
978 * allocate a persistent huge page for the pool and advance the
979 * next node from which to allocate, handling wrap at end of node
980 * mask.
981 */
982static int hstate_next_node_to_alloc(struct hstate *h,
983 nodemask_t *nodes_allowed)
984{
985 int nid;
986
987 VM_BUG_ON(!nodes_allowed);
988
989 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
990 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
991
992 return nid;
993}
994
995/*
996 * helper for free_pool_huge_page() - return the previously saved
997 * node ["this node"] from which to free a huge page. Advance the
998 * next node id whether or not we find a free huge page to free so
999 * that the next attempt to free addresses the next node.
1000 */
1001static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1002{
1003 int nid;
1004
1005 VM_BUG_ON(!nodes_allowed);
1006
1007 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1008 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1009
1010 return nid;
1011}
1012
1013#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1014 for (nr_nodes = nodes_weight(*mask); \
1015 nr_nodes > 0 && \
1016 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1017 nr_nodes--)
1018
1019#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1020 for (nr_nodes = nodes_weight(*mask); \
1021 nr_nodes > 0 && \
1022 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1023 nr_nodes--)
1024
080fe206 1025#if defined(CONFIG_X86_64) && ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA))
944d9fec 1026static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1027 unsigned int order)
944d9fec
LC
1028{
1029 int i;
1030 int nr_pages = 1 << order;
1031 struct page *p = page + 1;
1032
1033 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1034 clear_compound_head(p);
944d9fec 1035 set_page_refcounted(p);
944d9fec
LC
1036 }
1037
1038 set_compound_order(page, 0);
1039 __ClearPageHead(page);
1040}
1041
d00181b9 1042static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec
LC
1043{
1044 free_contig_range(page_to_pfn(page), 1 << order);
1045}
1046
1047static int __alloc_gigantic_page(unsigned long start_pfn,
1048 unsigned long nr_pages)
1049{
1050 unsigned long end_pfn = start_pfn + nr_pages;
1051 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1052}
1053
f44b2dda
JK
1054static bool pfn_range_valid_gigantic(struct zone *z,
1055 unsigned long start_pfn, unsigned long nr_pages)
944d9fec
LC
1056{
1057 unsigned long i, end_pfn = start_pfn + nr_pages;
1058 struct page *page;
1059
1060 for (i = start_pfn; i < end_pfn; i++) {
1061 if (!pfn_valid(i))
1062 return false;
1063
1064 page = pfn_to_page(i);
1065
f44b2dda
JK
1066 if (page_zone(page) != z)
1067 return false;
1068
944d9fec
LC
1069 if (PageReserved(page))
1070 return false;
1071
1072 if (page_count(page) > 0)
1073 return false;
1074
1075 if (PageHuge(page))
1076 return false;
1077 }
1078
1079 return true;
1080}
1081
1082static bool zone_spans_last_pfn(const struct zone *zone,
1083 unsigned long start_pfn, unsigned long nr_pages)
1084{
1085 unsigned long last_pfn = start_pfn + nr_pages - 1;
1086 return zone_spans_pfn(zone, last_pfn);
1087}
1088
d00181b9 1089static struct page *alloc_gigantic_page(int nid, unsigned int order)
944d9fec
LC
1090{
1091 unsigned long nr_pages = 1 << order;
1092 unsigned long ret, pfn, flags;
1093 struct zone *z;
1094
1095 z = NODE_DATA(nid)->node_zones;
1096 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1097 spin_lock_irqsave(&z->lock, flags);
1098
1099 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1100 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
f44b2dda 1101 if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
944d9fec
LC
1102 /*
1103 * We release the zone lock here because
1104 * alloc_contig_range() will also lock the zone
1105 * at some point. If there's an allocation
1106 * spinning on this lock, it may win the race
1107 * and cause alloc_contig_range() to fail...
1108 */
1109 spin_unlock_irqrestore(&z->lock, flags);
1110 ret = __alloc_gigantic_page(pfn, nr_pages);
1111 if (!ret)
1112 return pfn_to_page(pfn);
1113 spin_lock_irqsave(&z->lock, flags);
1114 }
1115 pfn += nr_pages;
1116 }
1117
1118 spin_unlock_irqrestore(&z->lock, flags);
1119 }
1120
1121 return NULL;
1122}
1123
1124static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1125static void prep_compound_gigantic_page(struct page *page, unsigned int order);
944d9fec
LC
1126
1127static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1128{
1129 struct page *page;
1130
1131 page = alloc_gigantic_page(nid, huge_page_order(h));
1132 if (page) {
1133 prep_compound_gigantic_page(page, huge_page_order(h));
1134 prep_new_huge_page(h, page, nid);
1135 }
1136
1137 return page;
1138}
1139
1140static int alloc_fresh_gigantic_page(struct hstate *h,
1141 nodemask_t *nodes_allowed)
1142{
1143 struct page *page = NULL;
1144 int nr_nodes, node;
1145
1146 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1147 page = alloc_fresh_gigantic_page_node(h, node);
1148 if (page)
1149 return 1;
1150 }
1151
1152 return 0;
1153}
1154
1155static inline bool gigantic_page_supported(void) { return true; }
1156#else
1157static inline bool gigantic_page_supported(void) { return false; }
d00181b9 1158static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1159static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1160 unsigned int order) { }
944d9fec
LC
1161static inline int alloc_fresh_gigantic_page(struct hstate *h,
1162 nodemask_t *nodes_allowed) { return 0; }
1163#endif
1164
a5516438 1165static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1166{
1167 int i;
a5516438 1168
944d9fec
LC
1169 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1170 return;
18229df5 1171
a5516438
AK
1172 h->nr_huge_pages--;
1173 h->nr_huge_pages_node[page_to_nid(page)]--;
1174 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1175 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1176 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1177 1 << PG_active | 1 << PG_private |
1178 1 << PG_writeback);
6af2acb6 1179 }
309381fe 1180 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
f1e61557 1181 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1182 set_page_refcounted(page);
944d9fec
LC
1183 if (hstate_is_gigantic(h)) {
1184 destroy_compound_gigantic_page(page, huge_page_order(h));
1185 free_gigantic_page(page, huge_page_order(h));
1186 } else {
944d9fec
LC
1187 __free_pages(page, huge_page_order(h));
1188 }
6af2acb6
AL
1189}
1190
e5ff2159
AK
1191struct hstate *size_to_hstate(unsigned long size)
1192{
1193 struct hstate *h;
1194
1195 for_each_hstate(h) {
1196 if (huge_page_size(h) == size)
1197 return h;
1198 }
1199 return NULL;
1200}
1201
bcc54222
NH
1202/*
1203 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1204 * to hstate->hugepage_activelist.)
1205 *
1206 * This function can be called for tail pages, but never returns true for them.
1207 */
1208bool page_huge_active(struct page *page)
1209{
1210 VM_BUG_ON_PAGE(!PageHuge(page), page);
1211 return PageHead(page) && PagePrivate(&page[1]);
1212}
1213
1214/* never called for tail page */
1215static void set_page_huge_active(struct page *page)
1216{
1217 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1218 SetPagePrivate(&page[1]);
1219}
1220
1221static void clear_page_huge_active(struct page *page)
1222{
1223 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1224 ClearPagePrivate(&page[1]);
1225}
1226
8f1d26d0 1227void free_huge_page(struct page *page)
27a85ef1 1228{
a5516438
AK
1229 /*
1230 * Can't pass hstate in here because it is called from the
1231 * compound page destructor.
1232 */
e5ff2159 1233 struct hstate *h = page_hstate(page);
7893d1d5 1234 int nid = page_to_nid(page);
90481622
DG
1235 struct hugepage_subpool *spool =
1236 (struct hugepage_subpool *)page_private(page);
07443a85 1237 bool restore_reserve;
27a85ef1 1238
e5df70ab 1239 set_page_private(page, 0);
23be7468 1240 page->mapping = NULL;
b4330afb
MK
1241 VM_BUG_ON_PAGE(page_count(page), page);
1242 VM_BUG_ON_PAGE(page_mapcount(page), page);
07443a85 1243 restore_reserve = PagePrivate(page);
16c794b4 1244 ClearPagePrivate(page);
27a85ef1 1245
1c5ecae3
MK
1246 /*
1247 * A return code of zero implies that the subpool will be under its
1248 * minimum size if the reservation is not restored after page is free.
1249 * Therefore, force restore_reserve operation.
1250 */
1251 if (hugepage_subpool_put_pages(spool, 1) == 0)
1252 restore_reserve = true;
1253
27a85ef1 1254 spin_lock(&hugetlb_lock);
bcc54222 1255 clear_page_huge_active(page);
6d76dcf4
AK
1256 hugetlb_cgroup_uncharge_page(hstate_index(h),
1257 pages_per_huge_page(h), page);
07443a85
JK
1258 if (restore_reserve)
1259 h->resv_huge_pages++;
1260
944d9fec 1261 if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1262 /* remove the page from active list */
1263 list_del(&page->lru);
a5516438
AK
1264 update_and_free_page(h, page);
1265 h->surplus_huge_pages--;
1266 h->surplus_huge_pages_node[nid]--;
7893d1d5 1267 } else {
5d3a551c 1268 arch_clear_hugepage_flags(page);
a5516438 1269 enqueue_huge_page(h, page);
7893d1d5 1270 }
27a85ef1
DG
1271 spin_unlock(&hugetlb_lock);
1272}
1273
a5516438 1274static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1275{
0edaecfa 1276 INIT_LIST_HEAD(&page->lru);
f1e61557 1277 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1278 spin_lock(&hugetlb_lock);
9dd540e2 1279 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1280 h->nr_huge_pages++;
1281 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
1282 spin_unlock(&hugetlb_lock);
1283 put_page(page); /* free it into the hugepage allocator */
1284}
1285
d00181b9 1286static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1287{
1288 int i;
1289 int nr_pages = 1 << order;
1290 struct page *p = page + 1;
1291
1292 /* we rely on prep_new_huge_page to set the destructor */
1293 set_compound_order(page, order);
ef5a22be 1294 __ClearPageReserved(page);
de09d31d 1295 __SetPageHead(page);
20a0307c 1296 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1297 /*
1298 * For gigantic hugepages allocated through bootmem at
1299 * boot, it's safer to be consistent with the not-gigantic
1300 * hugepages and clear the PG_reserved bit from all tail pages
1301 * too. Otherwse drivers using get_user_pages() to access tail
1302 * pages may get the reference counting wrong if they see
1303 * PG_reserved set on a tail page (despite the head page not
1304 * having PG_reserved set). Enforcing this consistency between
1305 * head and tail pages allows drivers to optimize away a check
1306 * on the head page when they need know if put_page() is needed
1307 * after get_user_pages().
1308 */
1309 __ClearPageReserved(p);
58a84aa9 1310 set_page_count(p, 0);
1d798ca3 1311 set_compound_head(p, page);
20a0307c 1312 }
b4330afb 1313 atomic_set(compound_mapcount_ptr(page), -1);
20a0307c
WF
1314}
1315
7795912c
AM
1316/*
1317 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1318 * transparent huge pages. See the PageTransHuge() documentation for more
1319 * details.
1320 */
20a0307c
WF
1321int PageHuge(struct page *page)
1322{
20a0307c
WF
1323 if (!PageCompound(page))
1324 return 0;
1325
1326 page = compound_head(page);
f1e61557 1327 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1328}
43131e14
NH
1329EXPORT_SYMBOL_GPL(PageHuge);
1330
27c73ae7
AA
1331/*
1332 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1333 * normal or transparent huge pages.
1334 */
1335int PageHeadHuge(struct page *page_head)
1336{
27c73ae7
AA
1337 if (!PageHead(page_head))
1338 return 0;
1339
758f66a2 1340 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1341}
27c73ae7 1342
13d60f4b
ZY
1343pgoff_t __basepage_index(struct page *page)
1344{
1345 struct page *page_head = compound_head(page);
1346 pgoff_t index = page_index(page_head);
1347 unsigned long compound_idx;
1348
1349 if (!PageHuge(page_head))
1350 return page_index(page);
1351
1352 if (compound_order(page_head) >= MAX_ORDER)
1353 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1354 else
1355 compound_idx = page - page_head;
1356
1357 return (index << compound_order(page_head)) + compound_idx;
1358}
1359
a5516438 1360static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 1361{
1da177e4 1362 struct page *page;
f96efd58 1363
96db800f 1364 page = __alloc_pages_node(nid,
86cdb465 1365 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
551883ae 1366 __GFP_REPEAT|__GFP_NOWARN,
a5516438 1367 huge_page_order(h));
1da177e4 1368 if (page) {
a5516438 1369 prep_new_huge_page(h, page, nid);
1da177e4 1370 }
63b4613c
NA
1371
1372 return page;
1373}
1374
b2261026
JK
1375static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1376{
1377 struct page *page;
1378 int nr_nodes, node;
1379 int ret = 0;
1380
1381 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1382 page = alloc_fresh_huge_page_node(h, node);
1383 if (page) {
1384 ret = 1;
1385 break;
1386 }
1387 }
1388
1389 if (ret)
1390 count_vm_event(HTLB_BUDDY_PGALLOC);
1391 else
1392 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1393
1394 return ret;
1395}
1396
e8c5c824
LS
1397/*
1398 * Free huge page from pool from next node to free.
1399 * Attempt to keep persistent huge pages more or less
1400 * balanced over allowed nodes.
1401 * Called with hugetlb_lock locked.
1402 */
6ae11b27
LS
1403static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1404 bool acct_surplus)
e8c5c824 1405{
b2261026 1406 int nr_nodes, node;
e8c5c824
LS
1407 int ret = 0;
1408
b2261026 1409 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1410 /*
1411 * If we're returning unused surplus pages, only examine
1412 * nodes with surplus pages.
1413 */
b2261026
JK
1414 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1415 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1416 struct page *page =
b2261026 1417 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1418 struct page, lru);
1419 list_del(&page->lru);
1420 h->free_huge_pages--;
b2261026 1421 h->free_huge_pages_node[node]--;
685f3457
LS
1422 if (acct_surplus) {
1423 h->surplus_huge_pages--;
b2261026 1424 h->surplus_huge_pages_node[node]--;
685f3457 1425 }
e8c5c824
LS
1426 update_and_free_page(h, page);
1427 ret = 1;
9a76db09 1428 break;
e8c5c824 1429 }
b2261026 1430 }
e8c5c824
LS
1431
1432 return ret;
1433}
1434
c8721bbb
NH
1435/*
1436 * Dissolve a given free hugepage into free buddy pages. This function does
1437 * nothing for in-use (including surplus) hugepages.
1438 */
1439static void dissolve_free_huge_page(struct page *page)
1440{
1441 spin_lock(&hugetlb_lock);
1442 if (PageHuge(page) && !page_count(page)) {
1443 struct hstate *h = page_hstate(page);
1444 int nid = page_to_nid(page);
1445 list_del(&page->lru);
1446 h->free_huge_pages--;
1447 h->free_huge_pages_node[nid]--;
1448 update_and_free_page(h, page);
1449 }
1450 spin_unlock(&hugetlb_lock);
1451}
1452
1453/*
1454 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1455 * make specified memory blocks removable from the system.
1456 * Note that start_pfn should aligned with (minimum) hugepage size.
1457 */
1458void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1459{
c8721bbb 1460 unsigned long pfn;
c8721bbb 1461
d0177639
LZ
1462 if (!hugepages_supported())
1463 return;
1464
641844f5
NH
1465 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1466 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
c8721bbb
NH
1467 dissolve_free_huge_page(pfn_to_page(pfn));
1468}
1469
099730d6
DH
1470/*
1471 * There are 3 ways this can get called:
1472 * 1. With vma+addr: we use the VMA's memory policy
1473 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1474 * page from any node, and let the buddy allocator itself figure
1475 * it out.
1476 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1477 * strictly from 'nid'
1478 */
1479static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1480 struct vm_area_struct *vma, unsigned long addr, int nid)
1481{
1482 int order = huge_page_order(h);
1483 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1484 unsigned int cpuset_mems_cookie;
1485
1486 /*
1487 * We need a VMA to get a memory policy. If we do not
e0ec90ee
DH
1488 * have one, we use the 'nid' argument.
1489 *
1490 * The mempolicy stuff below has some non-inlined bits
1491 * and calls ->vm_ops. That makes it hard to optimize at
1492 * compile-time, even when NUMA is off and it does
1493 * nothing. This helps the compiler optimize it out.
099730d6 1494 */
e0ec90ee 1495 if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
099730d6
DH
1496 /*
1497 * If a specific node is requested, make sure to
1498 * get memory from there, but only when a node
1499 * is explicitly specified.
1500 */
1501 if (nid != NUMA_NO_NODE)
1502 gfp |= __GFP_THISNODE;
1503 /*
1504 * Make sure to call something that can handle
1505 * nid=NUMA_NO_NODE
1506 */
1507 return alloc_pages_node(nid, gfp, order);
1508 }
1509
1510 /*
1511 * OK, so we have a VMA. Fetch the mempolicy and try to
e0ec90ee
DH
1512 * allocate a huge page with it. We will only reach this
1513 * when CONFIG_NUMA=y.
099730d6
DH
1514 */
1515 do {
1516 struct page *page;
1517 struct mempolicy *mpol;
1518 struct zonelist *zl;
1519 nodemask_t *nodemask;
1520
1521 cpuset_mems_cookie = read_mems_allowed_begin();
1522 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1523 mpol_cond_put(mpol);
1524 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1525 if (page)
1526 return page;
1527 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1528
1529 return NULL;
1530}
1531
1532/*
1533 * There are two ways to allocate a huge page:
1534 * 1. When you have a VMA and an address (like a fault)
1535 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1536 *
1537 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1538 * this case which signifies that the allocation should be done with
1539 * respect for the VMA's memory policy.
1540 *
1541 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1542 * implies that memory policies will not be taken in to account.
1543 */
1544static struct page *__alloc_buddy_huge_page(struct hstate *h,
1545 struct vm_area_struct *vma, unsigned long addr, int nid)
7893d1d5
AL
1546{
1547 struct page *page;
bf50bab2 1548 unsigned int r_nid;
7893d1d5 1549
bae7f4ae 1550 if (hstate_is_gigantic(h))
aa888a74
AK
1551 return NULL;
1552
099730d6
DH
1553 /*
1554 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1555 * This makes sure the caller is picking _one_ of the modes with which
1556 * we can call this function, not both.
1557 */
1558 if (vma || (addr != -1)) {
e0ec90ee
DH
1559 VM_WARN_ON_ONCE(addr == -1);
1560 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
099730d6 1561 }
d1c3fb1f
NA
1562 /*
1563 * Assume we will successfully allocate the surplus page to
1564 * prevent racing processes from causing the surplus to exceed
1565 * overcommit
1566 *
1567 * This however introduces a different race, where a process B
1568 * tries to grow the static hugepage pool while alloc_pages() is
1569 * called by process A. B will only examine the per-node
1570 * counters in determining if surplus huge pages can be
1571 * converted to normal huge pages in adjust_pool_surplus(). A
1572 * won't be able to increment the per-node counter, until the
1573 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1574 * no more huge pages can be converted from surplus to normal
1575 * state (and doesn't try to convert again). Thus, we have a
1576 * case where a surplus huge page exists, the pool is grown, and
1577 * the surplus huge page still exists after, even though it
1578 * should just have been converted to a normal huge page. This
1579 * does not leak memory, though, as the hugepage will be freed
1580 * once it is out of use. It also does not allow the counters to
1581 * go out of whack in adjust_pool_surplus() as we don't modify
1582 * the node values until we've gotten the hugepage and only the
1583 * per-node value is checked there.
1584 */
1585 spin_lock(&hugetlb_lock);
a5516438 1586 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
1587 spin_unlock(&hugetlb_lock);
1588 return NULL;
1589 } else {
a5516438
AK
1590 h->nr_huge_pages++;
1591 h->surplus_huge_pages++;
d1c3fb1f
NA
1592 }
1593 spin_unlock(&hugetlb_lock);
1594
099730d6 1595 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
d1c3fb1f
NA
1596
1597 spin_lock(&hugetlb_lock);
7893d1d5 1598 if (page) {
0edaecfa 1599 INIT_LIST_HEAD(&page->lru);
bf50bab2 1600 r_nid = page_to_nid(page);
f1e61557 1601 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
9dd540e2 1602 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
1603 /*
1604 * We incremented the global counters already
1605 */
bf50bab2
NH
1606 h->nr_huge_pages_node[r_nid]++;
1607 h->surplus_huge_pages_node[r_nid]++;
3b116300 1608 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 1609 } else {
a5516438
AK
1610 h->nr_huge_pages--;
1611 h->surplus_huge_pages--;
3b116300 1612 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 1613 }
d1c3fb1f 1614 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1615
1616 return page;
1617}
1618
099730d6
DH
1619/*
1620 * Allocate a huge page from 'nid'. Note, 'nid' may be
1621 * NUMA_NO_NODE, which means that it may be allocated
1622 * anywhere.
1623 */
e0ec90ee 1624static
099730d6
DH
1625struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1626{
1627 unsigned long addr = -1;
1628
1629 return __alloc_buddy_huge_page(h, NULL, addr, nid);
1630}
1631
1632/*
1633 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1634 */
e0ec90ee 1635static
099730d6
DH
1636struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1637 struct vm_area_struct *vma, unsigned long addr)
1638{
1639 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1640}
1641
bf50bab2
NH
1642/*
1643 * This allocation function is useful in the context where vma is irrelevant.
1644 * E.g. soft-offlining uses this function because it only cares physical
1645 * address of error page.
1646 */
1647struct page *alloc_huge_page_node(struct hstate *h, int nid)
1648{
4ef91848 1649 struct page *page = NULL;
bf50bab2
NH
1650
1651 spin_lock(&hugetlb_lock);
4ef91848
JK
1652 if (h->free_huge_pages - h->resv_huge_pages > 0)
1653 page = dequeue_huge_page_node(h, nid);
bf50bab2
NH
1654 spin_unlock(&hugetlb_lock);
1655
94ae8ba7 1656 if (!page)
099730d6 1657 page = __alloc_buddy_huge_page_no_mpol(h, nid);
bf50bab2
NH
1658
1659 return page;
1660}
1661
e4e574b7 1662/*
25985edc 1663 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1664 * of size 'delta'.
1665 */
a5516438 1666static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1667{
1668 struct list_head surplus_list;
1669 struct page *page, *tmp;
1670 int ret, i;
1671 int needed, allocated;
28073b02 1672 bool alloc_ok = true;
e4e574b7 1673
a5516438 1674 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1675 if (needed <= 0) {
a5516438 1676 h->resv_huge_pages += delta;
e4e574b7 1677 return 0;
ac09b3a1 1678 }
e4e574b7
AL
1679
1680 allocated = 0;
1681 INIT_LIST_HEAD(&surplus_list);
1682
1683 ret = -ENOMEM;
1684retry:
1685 spin_unlock(&hugetlb_lock);
1686 for (i = 0; i < needed; i++) {
099730d6 1687 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
28073b02
HD
1688 if (!page) {
1689 alloc_ok = false;
1690 break;
1691 }
e4e574b7
AL
1692 list_add(&page->lru, &surplus_list);
1693 }
28073b02 1694 allocated += i;
e4e574b7
AL
1695
1696 /*
1697 * After retaking hugetlb_lock, we need to recalculate 'needed'
1698 * because either resv_huge_pages or free_huge_pages may have changed.
1699 */
1700 spin_lock(&hugetlb_lock);
a5516438
AK
1701 needed = (h->resv_huge_pages + delta) -
1702 (h->free_huge_pages + allocated);
28073b02
HD
1703 if (needed > 0) {
1704 if (alloc_ok)
1705 goto retry;
1706 /*
1707 * We were not able to allocate enough pages to
1708 * satisfy the entire reservation so we free what
1709 * we've allocated so far.
1710 */
1711 goto free;
1712 }
e4e574b7
AL
1713 /*
1714 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1715 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1716 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1717 * allocator. Commit the entire reservation here to prevent another
1718 * process from stealing the pages as they are added to the pool but
1719 * before they are reserved.
e4e574b7
AL
1720 */
1721 needed += allocated;
a5516438 1722 h->resv_huge_pages += delta;
e4e574b7 1723 ret = 0;
a9869b83 1724
19fc3f0a 1725 /* Free the needed pages to the hugetlb pool */
e4e574b7 1726 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1727 if ((--needed) < 0)
1728 break;
a9869b83
NH
1729 /*
1730 * This page is now managed by the hugetlb allocator and has
1731 * no users -- drop the buddy allocator's reference.
1732 */
1733 put_page_testzero(page);
309381fe 1734 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1735 enqueue_huge_page(h, page);
19fc3f0a 1736 }
28073b02 1737free:
b0365c8d 1738 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1739
1740 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1741 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1742 put_page(page);
a9869b83 1743 spin_lock(&hugetlb_lock);
e4e574b7
AL
1744
1745 return ret;
1746}
1747
1748/*
1749 * When releasing a hugetlb pool reservation, any surplus pages that were
1750 * allocated to satisfy the reservation must be explicitly freed if they were
1751 * never used.
685f3457 1752 * Called with hugetlb_lock held.
e4e574b7 1753 */
a5516438
AK
1754static void return_unused_surplus_pages(struct hstate *h,
1755 unsigned long unused_resv_pages)
e4e574b7 1756{
e4e574b7
AL
1757 unsigned long nr_pages;
1758
ac09b3a1 1759 /* Uncommit the reservation */
a5516438 1760 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1761
aa888a74 1762 /* Cannot return gigantic pages currently */
bae7f4ae 1763 if (hstate_is_gigantic(h))
aa888a74
AK
1764 return;
1765
a5516438 1766 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1767
685f3457
LS
1768 /*
1769 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1770 * evenly across all nodes with memory. Iterate across these nodes
1771 * until we can no longer free unreserved surplus pages. This occurs
1772 * when the nodes with surplus pages have no free pages.
1773 * free_pool_huge_page() will balance the the freed pages across the
1774 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1775 */
1776 while (nr_pages--) {
8cebfcd0 1777 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
685f3457 1778 break;
7848a4bf 1779 cond_resched_lock(&hugetlb_lock);
e4e574b7
AL
1780 }
1781}
1782
5e911373 1783
c37f9fb1 1784/*
feba16e2 1785 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 1786 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
1787 *
1788 * vma_needs_reservation is called to determine if the huge page at addr
1789 * within the vma has an associated reservation. If a reservation is
1790 * needed, the value 1 is returned. The caller is then responsible for
1791 * managing the global reservation and subpool usage counts. After
1792 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
1793 * to add the page to the reservation map. If the page allocation fails,
1794 * the reservation must be ended instead of committed. vma_end_reservation
1795 * is called in such cases.
cf3ad20b
MK
1796 *
1797 * In the normal case, vma_commit_reservation returns the same value
1798 * as the preceding vma_needs_reservation call. The only time this
1799 * is not the case is if a reserve map was changed between calls. It
1800 * is the responsibility of the caller to notice the difference and
1801 * take appropriate action.
c37f9fb1 1802 */
5e911373
MK
1803enum vma_resv_mode {
1804 VMA_NEEDS_RESV,
1805 VMA_COMMIT_RESV,
feba16e2 1806 VMA_END_RESV,
5e911373 1807};
cf3ad20b
MK
1808static long __vma_reservation_common(struct hstate *h,
1809 struct vm_area_struct *vma, unsigned long addr,
5e911373 1810 enum vma_resv_mode mode)
c37f9fb1 1811{
4e35f483
JK
1812 struct resv_map *resv;
1813 pgoff_t idx;
cf3ad20b 1814 long ret;
c37f9fb1 1815
4e35f483
JK
1816 resv = vma_resv_map(vma);
1817 if (!resv)
84afd99b 1818 return 1;
c37f9fb1 1819
4e35f483 1820 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
1821 switch (mode) {
1822 case VMA_NEEDS_RESV:
cf3ad20b 1823 ret = region_chg(resv, idx, idx + 1);
5e911373
MK
1824 break;
1825 case VMA_COMMIT_RESV:
1826 ret = region_add(resv, idx, idx + 1);
1827 break;
feba16e2 1828 case VMA_END_RESV:
5e911373
MK
1829 region_abort(resv, idx, idx + 1);
1830 ret = 0;
1831 break;
1832 default:
1833 BUG();
1834 }
84afd99b 1835
4e35f483 1836 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 1837 return ret;
67961f9d
MK
1838 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1839 /*
1840 * In most cases, reserves always exist for private mappings.
1841 * However, a file associated with mapping could have been
1842 * hole punched or truncated after reserves were consumed.
1843 * As subsequent fault on such a range will not use reserves.
1844 * Subtle - The reserve map for private mappings has the
1845 * opposite meaning than that of shared mappings. If NO
1846 * entry is in the reserve map, it means a reservation exists.
1847 * If an entry exists in the reserve map, it means the
1848 * reservation has already been consumed. As a result, the
1849 * return value of this routine is the opposite of the
1850 * value returned from reserve map manipulation routines above.
1851 */
1852 if (ret)
1853 return 0;
1854 else
1855 return 1;
1856 }
4e35f483 1857 else
cf3ad20b 1858 return ret < 0 ? ret : 0;
c37f9fb1 1859}
cf3ad20b
MK
1860
1861static long vma_needs_reservation(struct hstate *h,
a5516438 1862 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1863{
5e911373 1864 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 1865}
84afd99b 1866
cf3ad20b
MK
1867static long vma_commit_reservation(struct hstate *h,
1868 struct vm_area_struct *vma, unsigned long addr)
1869{
5e911373
MK
1870 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1871}
1872
feba16e2 1873static void vma_end_reservation(struct hstate *h,
5e911373
MK
1874 struct vm_area_struct *vma, unsigned long addr)
1875{
feba16e2 1876 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
1877}
1878
70c3547e 1879struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1880 unsigned long addr, int avoid_reserve)
1da177e4 1881{
90481622 1882 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1883 struct hstate *h = hstate_vma(vma);
348ea204 1884 struct page *page;
d85f69b0
MK
1885 long map_chg, map_commit;
1886 long gbl_chg;
6d76dcf4
AK
1887 int ret, idx;
1888 struct hugetlb_cgroup *h_cg;
a1e78772 1889
6d76dcf4 1890 idx = hstate_index(h);
a1e78772 1891 /*
d85f69b0
MK
1892 * Examine the region/reserve map to determine if the process
1893 * has a reservation for the page to be allocated. A return
1894 * code of zero indicates a reservation exists (no change).
a1e78772 1895 */
d85f69b0
MK
1896 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1897 if (map_chg < 0)
76dcee75 1898 return ERR_PTR(-ENOMEM);
d85f69b0
MK
1899
1900 /*
1901 * Processes that did not create the mapping will have no
1902 * reserves as indicated by the region/reserve map. Check
1903 * that the allocation will not exceed the subpool limit.
1904 * Allocations for MAP_NORESERVE mappings also need to be
1905 * checked against any subpool limit.
1906 */
1907 if (map_chg || avoid_reserve) {
1908 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1909 if (gbl_chg < 0) {
feba16e2 1910 vma_end_reservation(h, vma, addr);
76dcee75 1911 return ERR_PTR(-ENOSPC);
5e911373 1912 }
1da177e4 1913
d85f69b0
MK
1914 /*
1915 * Even though there was no reservation in the region/reserve
1916 * map, there could be reservations associated with the
1917 * subpool that can be used. This would be indicated if the
1918 * return value of hugepage_subpool_get_pages() is zero.
1919 * However, if avoid_reserve is specified we still avoid even
1920 * the subpool reservations.
1921 */
1922 if (avoid_reserve)
1923 gbl_chg = 1;
1924 }
1925
6d76dcf4 1926 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
1927 if (ret)
1928 goto out_subpool_put;
1929
1da177e4 1930 spin_lock(&hugetlb_lock);
d85f69b0
MK
1931 /*
1932 * glb_chg is passed to indicate whether or not a page must be taken
1933 * from the global free pool (global change). gbl_chg == 0 indicates
1934 * a reservation exists for the allocation.
1935 */
1936 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 1937 if (!page) {
94ae8ba7 1938 spin_unlock(&hugetlb_lock);
099730d6 1939 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
1940 if (!page)
1941 goto out_uncharge_cgroup;
a88c7695
NH
1942 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1943 SetPagePrivate(page);
1944 h->resv_huge_pages--;
1945 }
79dbb236
AK
1946 spin_lock(&hugetlb_lock);
1947 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 1948 /* Fall through */
68842c9b 1949 }
81a6fcae
JK
1950 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1951 spin_unlock(&hugetlb_lock);
348ea204 1952
90481622 1953 set_page_private(page, (unsigned long)spool);
90d8b7e6 1954
d85f69b0
MK
1955 map_commit = vma_commit_reservation(h, vma, addr);
1956 if (unlikely(map_chg > map_commit)) {
33039678
MK
1957 /*
1958 * The page was added to the reservation map between
1959 * vma_needs_reservation and vma_commit_reservation.
1960 * This indicates a race with hugetlb_reserve_pages.
1961 * Adjust for the subpool count incremented above AND
1962 * in hugetlb_reserve_pages for the same page. Also,
1963 * the reservation count added in hugetlb_reserve_pages
1964 * no longer applies.
1965 */
1966 long rsv_adjust;
1967
1968 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1969 hugetlb_acct_memory(h, -rsv_adjust);
1970 }
90d8b7e6 1971 return page;
8f34af6f
JZ
1972
1973out_uncharge_cgroup:
1974 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1975out_subpool_put:
d85f69b0 1976 if (map_chg || avoid_reserve)
8f34af6f 1977 hugepage_subpool_put_pages(spool, 1);
feba16e2 1978 vma_end_reservation(h, vma, addr);
8f34af6f 1979 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
1980}
1981
74060e4d
NH
1982/*
1983 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1984 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1985 * where no ERR_VALUE is expected to be returned.
1986 */
1987struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1988 unsigned long addr, int avoid_reserve)
1989{
1990 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1991 if (IS_ERR(page))
1992 page = NULL;
1993 return page;
1994}
1995
91f47662 1996int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1997{
1998 struct huge_bootmem_page *m;
b2261026 1999 int nr_nodes, node;
aa888a74 2000
b2261026 2001 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2002 void *addr;
2003
8b89a116
GS
2004 addr = memblock_virt_alloc_try_nid_nopanic(
2005 huge_page_size(h), huge_page_size(h),
2006 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2007 if (addr) {
2008 /*
2009 * Use the beginning of the huge page to store the
2010 * huge_bootmem_page struct (until gather_bootmem
2011 * puts them into the mem_map).
2012 */
2013 m = addr;
91f47662 2014 goto found;
aa888a74 2015 }
aa888a74
AK
2016 }
2017 return 0;
2018
2019found:
df994ead 2020 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74
AK
2021 /* Put them into a private list first because mem_map is not up yet */
2022 list_add(&m->list, &huge_boot_pages);
2023 m->hstate = h;
2024 return 1;
2025}
2026
d00181b9
KS
2027static void __init prep_compound_huge_page(struct page *page,
2028 unsigned int order)
18229df5
AW
2029{
2030 if (unlikely(order > (MAX_ORDER - 1)))
2031 prep_compound_gigantic_page(page, order);
2032 else
2033 prep_compound_page(page, order);
2034}
2035
aa888a74
AK
2036/* Put bootmem huge pages into the standard lists after mem_map is up */
2037static void __init gather_bootmem_prealloc(void)
2038{
2039 struct huge_bootmem_page *m;
2040
2041 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 2042 struct hstate *h = m->hstate;
ee8f248d
BB
2043 struct page *page;
2044
2045#ifdef CONFIG_HIGHMEM
2046 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
2047 memblock_free_late(__pa(m),
2048 sizeof(struct huge_bootmem_page));
ee8f248d
BB
2049#else
2050 page = virt_to_page(m);
2051#endif
aa888a74 2052 WARN_ON(page_count(page) != 1);
18229df5 2053 prep_compound_huge_page(page, h->order);
ef5a22be 2054 WARN_ON(PageReserved(page));
aa888a74 2055 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
2056 /*
2057 * If we had gigantic hugepages allocated at boot time, we need
2058 * to restore the 'stolen' pages to totalram_pages in order to
2059 * fix confusing memory reports from free(1) and another
2060 * side-effects, like CommitLimit going negative.
2061 */
bae7f4ae 2062 if (hstate_is_gigantic(h))
3dcc0571 2063 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
2064 }
2065}
2066
8faa8b07 2067static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2068{
2069 unsigned long i;
a5516438 2070
e5ff2159 2071 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2072 if (hstate_is_gigantic(h)) {
aa888a74
AK
2073 if (!alloc_bootmem_huge_page(h))
2074 break;
9b5e5d0f 2075 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 2076 &node_states[N_MEMORY]))
1da177e4 2077 break;
1da177e4 2078 }
8faa8b07 2079 h->max_huge_pages = i;
e5ff2159
AK
2080}
2081
2082static void __init hugetlb_init_hstates(void)
2083{
2084 struct hstate *h;
2085
2086 for_each_hstate(h) {
641844f5
NH
2087 if (minimum_order > huge_page_order(h))
2088 minimum_order = huge_page_order(h);
2089
8faa8b07 2090 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2091 if (!hstate_is_gigantic(h))
8faa8b07 2092 hugetlb_hstate_alloc_pages(h);
e5ff2159 2093 }
641844f5 2094 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2095}
2096
4abd32db
AK
2097static char * __init memfmt(char *buf, unsigned long n)
2098{
2099 if (n >= (1UL << 30))
2100 sprintf(buf, "%lu GB", n >> 30);
2101 else if (n >= (1UL << 20))
2102 sprintf(buf, "%lu MB", n >> 20);
2103 else
2104 sprintf(buf, "%lu KB", n >> 10);
2105 return buf;
2106}
2107
e5ff2159
AK
2108static void __init report_hugepages(void)
2109{
2110 struct hstate *h;
2111
2112 for_each_hstate(h) {
4abd32db 2113 char buf[32];
ffb22af5 2114 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
2115 memfmt(buf, huge_page_size(h)),
2116 h->free_huge_pages);
e5ff2159
AK
2117 }
2118}
2119
1da177e4 2120#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2121static void try_to_free_low(struct hstate *h, unsigned long count,
2122 nodemask_t *nodes_allowed)
1da177e4 2123{
4415cc8d
CL
2124 int i;
2125
bae7f4ae 2126 if (hstate_is_gigantic(h))
aa888a74
AK
2127 return;
2128
6ae11b27 2129 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2130 struct page *page, *next;
a5516438
AK
2131 struct list_head *freel = &h->hugepage_freelists[i];
2132 list_for_each_entry_safe(page, next, freel, lru) {
2133 if (count >= h->nr_huge_pages)
6b0c880d 2134 return;
1da177e4
LT
2135 if (PageHighMem(page))
2136 continue;
2137 list_del(&page->lru);
e5ff2159 2138 update_and_free_page(h, page);
a5516438
AK
2139 h->free_huge_pages--;
2140 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2141 }
2142 }
2143}
2144#else
6ae11b27
LS
2145static inline void try_to_free_low(struct hstate *h, unsigned long count,
2146 nodemask_t *nodes_allowed)
1da177e4
LT
2147{
2148}
2149#endif
2150
20a0307c
WF
2151/*
2152 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2153 * balanced by operating on them in a round-robin fashion.
2154 * Returns 1 if an adjustment was made.
2155 */
6ae11b27
LS
2156static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2157 int delta)
20a0307c 2158{
b2261026 2159 int nr_nodes, node;
20a0307c
WF
2160
2161 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2162
b2261026
JK
2163 if (delta < 0) {
2164 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2165 if (h->surplus_huge_pages_node[node])
2166 goto found;
e8c5c824 2167 }
b2261026
JK
2168 } else {
2169 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2170 if (h->surplus_huge_pages_node[node] <
2171 h->nr_huge_pages_node[node])
2172 goto found;
e8c5c824 2173 }
b2261026
JK
2174 }
2175 return 0;
20a0307c 2176
b2261026
JK
2177found:
2178 h->surplus_huge_pages += delta;
2179 h->surplus_huge_pages_node[node] += delta;
2180 return 1;
20a0307c
WF
2181}
2182
a5516438 2183#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
2184static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2185 nodemask_t *nodes_allowed)
1da177e4 2186{
7893d1d5 2187 unsigned long min_count, ret;
1da177e4 2188
944d9fec 2189 if (hstate_is_gigantic(h) && !gigantic_page_supported())
aa888a74
AK
2190 return h->max_huge_pages;
2191
7893d1d5
AL
2192 /*
2193 * Increase the pool size
2194 * First take pages out of surplus state. Then make up the
2195 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2196 *
d15c7c09 2197 * We might race with __alloc_buddy_huge_page() here and be unable
d1c3fb1f
NA
2198 * to convert a surplus huge page to a normal huge page. That is
2199 * not critical, though, it just means the overall size of the
2200 * pool might be one hugepage larger than it needs to be, but
2201 * within all the constraints specified by the sysctls.
7893d1d5 2202 */
1da177e4 2203 spin_lock(&hugetlb_lock);
a5516438 2204 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2205 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2206 break;
2207 }
2208
a5516438 2209 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2210 /*
2211 * If this allocation races such that we no longer need the
2212 * page, free_huge_page will handle it by freeing the page
2213 * and reducing the surplus.
2214 */
2215 spin_unlock(&hugetlb_lock);
944d9fec
LC
2216 if (hstate_is_gigantic(h))
2217 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2218 else
2219 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
2220 spin_lock(&hugetlb_lock);
2221 if (!ret)
2222 goto out;
2223
536240f2
MG
2224 /* Bail for signals. Probably ctrl-c from user */
2225 if (signal_pending(current))
2226 goto out;
7893d1d5 2227 }
7893d1d5
AL
2228
2229 /*
2230 * Decrease the pool size
2231 * First return free pages to the buddy allocator (being careful
2232 * to keep enough around to satisfy reservations). Then place
2233 * pages into surplus state as needed so the pool will shrink
2234 * to the desired size as pages become free.
d1c3fb1f
NA
2235 *
2236 * By placing pages into the surplus state independent of the
2237 * overcommit value, we are allowing the surplus pool size to
2238 * exceed overcommit. There are few sane options here. Since
d15c7c09 2239 * __alloc_buddy_huge_page() is checking the global counter,
d1c3fb1f
NA
2240 * though, we'll note that we're not allowed to exceed surplus
2241 * and won't grow the pool anywhere else. Not until one of the
2242 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2243 */
a5516438 2244 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2245 min_count = max(count, min_count);
6ae11b27 2246 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2247 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2248 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2249 break;
55f67141 2250 cond_resched_lock(&hugetlb_lock);
1da177e4 2251 }
a5516438 2252 while (count < persistent_huge_pages(h)) {
6ae11b27 2253 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2254 break;
2255 }
2256out:
a5516438 2257 ret = persistent_huge_pages(h);
1da177e4 2258 spin_unlock(&hugetlb_lock);
7893d1d5 2259 return ret;
1da177e4
LT
2260}
2261
a3437870
NA
2262#define HSTATE_ATTR_RO(_name) \
2263 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2264
2265#define HSTATE_ATTR(_name) \
2266 static struct kobj_attribute _name##_attr = \
2267 __ATTR(_name, 0644, _name##_show, _name##_store)
2268
2269static struct kobject *hugepages_kobj;
2270static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2271
9a305230
LS
2272static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2273
2274static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2275{
2276 int i;
9a305230 2277
a3437870 2278 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2279 if (hstate_kobjs[i] == kobj) {
2280 if (nidp)
2281 *nidp = NUMA_NO_NODE;
a3437870 2282 return &hstates[i];
9a305230
LS
2283 }
2284
2285 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2286}
2287
06808b08 2288static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2289 struct kobj_attribute *attr, char *buf)
2290{
9a305230
LS
2291 struct hstate *h;
2292 unsigned long nr_huge_pages;
2293 int nid;
2294
2295 h = kobj_to_hstate(kobj, &nid);
2296 if (nid == NUMA_NO_NODE)
2297 nr_huge_pages = h->nr_huge_pages;
2298 else
2299 nr_huge_pages = h->nr_huge_pages_node[nid];
2300
2301 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2302}
adbe8726 2303
238d3c13
DR
2304static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2305 struct hstate *h, int nid,
2306 unsigned long count, size_t len)
a3437870
NA
2307{
2308 int err;
bad44b5b 2309 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 2310
944d9fec 2311 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
adbe8726
EM
2312 err = -EINVAL;
2313 goto out;
2314 }
2315
9a305230
LS
2316 if (nid == NUMA_NO_NODE) {
2317 /*
2318 * global hstate attribute
2319 */
2320 if (!(obey_mempolicy &&
2321 init_nodemask_of_mempolicy(nodes_allowed))) {
2322 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2323 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
2324 }
2325 } else if (nodes_allowed) {
2326 /*
2327 * per node hstate attribute: adjust count to global,
2328 * but restrict alloc/free to the specified node.
2329 */
2330 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2331 init_nodemask_of_node(nodes_allowed, nid);
2332 } else
8cebfcd0 2333 nodes_allowed = &node_states[N_MEMORY];
9a305230 2334
06808b08 2335 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 2336
8cebfcd0 2337 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2338 NODEMASK_FREE(nodes_allowed);
2339
2340 return len;
adbe8726
EM
2341out:
2342 NODEMASK_FREE(nodes_allowed);
2343 return err;
06808b08
LS
2344}
2345
238d3c13
DR
2346static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2347 struct kobject *kobj, const char *buf,
2348 size_t len)
2349{
2350 struct hstate *h;
2351 unsigned long count;
2352 int nid;
2353 int err;
2354
2355 err = kstrtoul(buf, 10, &count);
2356 if (err)
2357 return err;
2358
2359 h = kobj_to_hstate(kobj, &nid);
2360 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2361}
2362
06808b08
LS
2363static ssize_t nr_hugepages_show(struct kobject *kobj,
2364 struct kobj_attribute *attr, char *buf)
2365{
2366 return nr_hugepages_show_common(kobj, attr, buf);
2367}
2368
2369static ssize_t nr_hugepages_store(struct kobject *kobj,
2370 struct kobj_attribute *attr, const char *buf, size_t len)
2371{
238d3c13 2372 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2373}
2374HSTATE_ATTR(nr_hugepages);
2375
06808b08
LS
2376#ifdef CONFIG_NUMA
2377
2378/*
2379 * hstate attribute for optionally mempolicy-based constraint on persistent
2380 * huge page alloc/free.
2381 */
2382static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2383 struct kobj_attribute *attr, char *buf)
2384{
2385 return nr_hugepages_show_common(kobj, attr, buf);
2386}
2387
2388static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2389 struct kobj_attribute *attr, const char *buf, size_t len)
2390{
238d3c13 2391 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2392}
2393HSTATE_ATTR(nr_hugepages_mempolicy);
2394#endif
2395
2396
a3437870
NA
2397static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2398 struct kobj_attribute *attr, char *buf)
2399{
9a305230 2400 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2401 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2402}
adbe8726 2403
a3437870
NA
2404static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2405 struct kobj_attribute *attr, const char *buf, size_t count)
2406{
2407 int err;
2408 unsigned long input;
9a305230 2409 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2410
bae7f4ae 2411 if (hstate_is_gigantic(h))
adbe8726
EM
2412 return -EINVAL;
2413
3dbb95f7 2414 err = kstrtoul(buf, 10, &input);
a3437870 2415 if (err)
73ae31e5 2416 return err;
a3437870
NA
2417
2418 spin_lock(&hugetlb_lock);
2419 h->nr_overcommit_huge_pages = input;
2420 spin_unlock(&hugetlb_lock);
2421
2422 return count;
2423}
2424HSTATE_ATTR(nr_overcommit_hugepages);
2425
2426static ssize_t free_hugepages_show(struct kobject *kobj,
2427 struct kobj_attribute *attr, char *buf)
2428{
9a305230
LS
2429 struct hstate *h;
2430 unsigned long free_huge_pages;
2431 int nid;
2432
2433 h = kobj_to_hstate(kobj, &nid);
2434 if (nid == NUMA_NO_NODE)
2435 free_huge_pages = h->free_huge_pages;
2436 else
2437 free_huge_pages = h->free_huge_pages_node[nid];
2438
2439 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2440}
2441HSTATE_ATTR_RO(free_hugepages);
2442
2443static ssize_t resv_hugepages_show(struct kobject *kobj,
2444 struct kobj_attribute *attr, char *buf)
2445{
9a305230 2446 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2447 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2448}
2449HSTATE_ATTR_RO(resv_hugepages);
2450
2451static ssize_t surplus_hugepages_show(struct kobject *kobj,
2452 struct kobj_attribute *attr, char *buf)
2453{
9a305230
LS
2454 struct hstate *h;
2455 unsigned long surplus_huge_pages;
2456 int nid;
2457
2458 h = kobj_to_hstate(kobj, &nid);
2459 if (nid == NUMA_NO_NODE)
2460 surplus_huge_pages = h->surplus_huge_pages;
2461 else
2462 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2463
2464 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2465}
2466HSTATE_ATTR_RO(surplus_hugepages);
2467
2468static struct attribute *hstate_attrs[] = {
2469 &nr_hugepages_attr.attr,
2470 &nr_overcommit_hugepages_attr.attr,
2471 &free_hugepages_attr.attr,
2472 &resv_hugepages_attr.attr,
2473 &surplus_hugepages_attr.attr,
06808b08
LS
2474#ifdef CONFIG_NUMA
2475 &nr_hugepages_mempolicy_attr.attr,
2476#endif
a3437870
NA
2477 NULL,
2478};
2479
2480static struct attribute_group hstate_attr_group = {
2481 .attrs = hstate_attrs,
2482};
2483
094e9539
JM
2484static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2485 struct kobject **hstate_kobjs,
2486 struct attribute_group *hstate_attr_group)
a3437870
NA
2487{
2488 int retval;
972dc4de 2489 int hi = hstate_index(h);
a3437870 2490
9a305230
LS
2491 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2492 if (!hstate_kobjs[hi])
a3437870
NA
2493 return -ENOMEM;
2494
9a305230 2495 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2496 if (retval)
9a305230 2497 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2498
2499 return retval;
2500}
2501
2502static void __init hugetlb_sysfs_init(void)
2503{
2504 struct hstate *h;
2505 int err;
2506
2507 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2508 if (!hugepages_kobj)
2509 return;
2510
2511 for_each_hstate(h) {
9a305230
LS
2512 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2513 hstate_kobjs, &hstate_attr_group);
a3437870 2514 if (err)
ffb22af5 2515 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2516 }
2517}
2518
9a305230
LS
2519#ifdef CONFIG_NUMA
2520
2521/*
2522 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2523 * with node devices in node_devices[] using a parallel array. The array
2524 * index of a node device or _hstate == node id.
2525 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2526 * the base kernel, on the hugetlb module.
2527 */
2528struct node_hstate {
2529 struct kobject *hugepages_kobj;
2530 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2531};
b4e289a6 2532static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
2533
2534/*
10fbcf4c 2535 * A subset of global hstate attributes for node devices
9a305230
LS
2536 */
2537static struct attribute *per_node_hstate_attrs[] = {
2538 &nr_hugepages_attr.attr,
2539 &free_hugepages_attr.attr,
2540 &surplus_hugepages_attr.attr,
2541 NULL,
2542};
2543
2544static struct attribute_group per_node_hstate_attr_group = {
2545 .attrs = per_node_hstate_attrs,
2546};
2547
2548/*
10fbcf4c 2549 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2550 * Returns node id via non-NULL nidp.
2551 */
2552static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2553{
2554 int nid;
2555
2556 for (nid = 0; nid < nr_node_ids; nid++) {
2557 struct node_hstate *nhs = &node_hstates[nid];
2558 int i;
2559 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2560 if (nhs->hstate_kobjs[i] == kobj) {
2561 if (nidp)
2562 *nidp = nid;
2563 return &hstates[i];
2564 }
2565 }
2566
2567 BUG();
2568 return NULL;
2569}
2570
2571/*
10fbcf4c 2572 * Unregister hstate attributes from a single node device.
9a305230
LS
2573 * No-op if no hstate attributes attached.
2574 */
3cd8b44f 2575static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2576{
2577 struct hstate *h;
10fbcf4c 2578 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2579
2580 if (!nhs->hugepages_kobj)
9b5e5d0f 2581 return; /* no hstate attributes */
9a305230 2582
972dc4de
AK
2583 for_each_hstate(h) {
2584 int idx = hstate_index(h);
2585 if (nhs->hstate_kobjs[idx]) {
2586 kobject_put(nhs->hstate_kobjs[idx]);
2587 nhs->hstate_kobjs[idx] = NULL;
9a305230 2588 }
972dc4de 2589 }
9a305230
LS
2590
2591 kobject_put(nhs->hugepages_kobj);
2592 nhs->hugepages_kobj = NULL;
2593}
2594
9a305230
LS
2595
2596/*
10fbcf4c 2597 * Register hstate attributes for a single node device.
9a305230
LS
2598 * No-op if attributes already registered.
2599 */
3cd8b44f 2600static void hugetlb_register_node(struct node *node)
9a305230
LS
2601{
2602 struct hstate *h;
10fbcf4c 2603 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2604 int err;
2605
2606 if (nhs->hugepages_kobj)
2607 return; /* already allocated */
2608
2609 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2610 &node->dev.kobj);
9a305230
LS
2611 if (!nhs->hugepages_kobj)
2612 return;
2613
2614 for_each_hstate(h) {
2615 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2616 nhs->hstate_kobjs,
2617 &per_node_hstate_attr_group);
2618 if (err) {
ffb22af5
AM
2619 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2620 h->name, node->dev.id);
9a305230
LS
2621 hugetlb_unregister_node(node);
2622 break;
2623 }
2624 }
2625}
2626
2627/*
9b5e5d0f 2628 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2629 * devices of nodes that have memory. All on-line nodes should have
2630 * registered their associated device by this time.
9a305230 2631 */
7d9ca000 2632static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2633{
2634 int nid;
2635
8cebfcd0 2636 for_each_node_state(nid, N_MEMORY) {
8732794b 2637 struct node *node = node_devices[nid];
10fbcf4c 2638 if (node->dev.id == nid)
9a305230
LS
2639 hugetlb_register_node(node);
2640 }
2641
2642 /*
10fbcf4c 2643 * Let the node device driver know we're here so it can
9a305230
LS
2644 * [un]register hstate attributes on node hotplug.
2645 */
2646 register_hugetlbfs_with_node(hugetlb_register_node,
2647 hugetlb_unregister_node);
2648}
2649#else /* !CONFIG_NUMA */
2650
2651static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2652{
2653 BUG();
2654 if (nidp)
2655 *nidp = -1;
2656 return NULL;
2657}
2658
9a305230
LS
2659static void hugetlb_register_all_nodes(void) { }
2660
2661#endif
2662
a3437870
NA
2663static int __init hugetlb_init(void)
2664{
8382d914
DB
2665 int i;
2666
457c1b27 2667 if (!hugepages_supported())
0ef89d25 2668 return 0;
a3437870 2669
e11bfbfc
NP
2670 if (!size_to_hstate(default_hstate_size)) {
2671 default_hstate_size = HPAGE_SIZE;
2672 if (!size_to_hstate(default_hstate_size))
2673 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2674 }
972dc4de 2675 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
f8b74815
VT
2676 if (default_hstate_max_huge_pages) {
2677 if (!default_hstate.max_huge_pages)
2678 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2679 }
a3437870
NA
2680
2681 hugetlb_init_hstates();
aa888a74 2682 gather_bootmem_prealloc();
a3437870
NA
2683 report_hugepages();
2684
2685 hugetlb_sysfs_init();
9a305230 2686 hugetlb_register_all_nodes();
7179e7bf 2687 hugetlb_cgroup_file_init();
9a305230 2688
8382d914
DB
2689#ifdef CONFIG_SMP
2690 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2691#else
2692 num_fault_mutexes = 1;
2693#endif
c672c7f2 2694 hugetlb_fault_mutex_table =
8382d914 2695 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
c672c7f2 2696 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
2697
2698 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 2699 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
2700 return 0;
2701}
3e89e1c5 2702subsys_initcall(hugetlb_init);
a3437870
NA
2703
2704/* Should be called on processing a hugepagesz=... option */
9fee021d
VT
2705void __init hugetlb_bad_size(void)
2706{
2707 parsed_valid_hugepagesz = false;
2708}
2709
d00181b9 2710void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
2711{
2712 struct hstate *h;
8faa8b07
AK
2713 unsigned long i;
2714
a3437870 2715 if (size_to_hstate(PAGE_SIZE << order)) {
598d8091 2716 pr_warn("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2717 return;
2718 }
47d38344 2719 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2720 BUG_ON(order == 0);
47d38344 2721 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2722 h->order = order;
2723 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2724 h->nr_huge_pages = 0;
2725 h->free_huge_pages = 0;
2726 for (i = 0; i < MAX_NUMNODES; ++i)
2727 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2728 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
2729 h->next_nid_to_alloc = first_memory_node;
2730 h->next_nid_to_free = first_memory_node;
a3437870
NA
2731 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2732 huge_page_size(h)/1024);
8faa8b07 2733
a3437870
NA
2734 parsed_hstate = h;
2735}
2736
e11bfbfc 2737static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2738{
2739 unsigned long *mhp;
8faa8b07 2740 static unsigned long *last_mhp;
a3437870 2741
9fee021d
VT
2742 if (!parsed_valid_hugepagesz) {
2743 pr_warn("hugepages = %s preceded by "
2744 "an unsupported hugepagesz, ignoring\n", s);
2745 parsed_valid_hugepagesz = true;
2746 return 1;
2747 }
a3437870 2748 /*
47d38344 2749 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2750 * so this hugepages= parameter goes to the "default hstate".
2751 */
9fee021d 2752 else if (!hugetlb_max_hstate)
a3437870
NA
2753 mhp = &default_hstate_max_huge_pages;
2754 else
2755 mhp = &parsed_hstate->max_huge_pages;
2756
8faa8b07 2757 if (mhp == last_mhp) {
598d8091 2758 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2759 return 1;
2760 }
2761
a3437870
NA
2762 if (sscanf(s, "%lu", mhp) <= 0)
2763 *mhp = 0;
2764
8faa8b07
AK
2765 /*
2766 * Global state is always initialized later in hugetlb_init.
2767 * But we need to allocate >= MAX_ORDER hstates here early to still
2768 * use the bootmem allocator.
2769 */
47d38344 2770 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2771 hugetlb_hstate_alloc_pages(parsed_hstate);
2772
2773 last_mhp = mhp;
2774
a3437870
NA
2775 return 1;
2776}
e11bfbfc
NP
2777__setup("hugepages=", hugetlb_nrpages_setup);
2778
2779static int __init hugetlb_default_setup(char *s)
2780{
2781 default_hstate_size = memparse(s, &s);
2782 return 1;
2783}
2784__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2785
8a213460
NA
2786static unsigned int cpuset_mems_nr(unsigned int *array)
2787{
2788 int node;
2789 unsigned int nr = 0;
2790
2791 for_each_node_mask(node, cpuset_current_mems_allowed)
2792 nr += array[node];
2793
2794 return nr;
2795}
2796
2797#ifdef CONFIG_SYSCTL
06808b08
LS
2798static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2799 struct ctl_table *table, int write,
2800 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2801{
e5ff2159 2802 struct hstate *h = &default_hstate;
238d3c13 2803 unsigned long tmp = h->max_huge_pages;
08d4a246 2804 int ret;
e5ff2159 2805
457c1b27 2806 if (!hugepages_supported())
86613628 2807 return -EOPNOTSUPP;
457c1b27 2808
e5ff2159
AK
2809 table->data = &tmp;
2810 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2811 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2812 if (ret)
2813 goto out;
e5ff2159 2814
238d3c13
DR
2815 if (write)
2816 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2817 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2818out:
2819 return ret;
1da177e4 2820}
396faf03 2821
06808b08
LS
2822int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2823 void __user *buffer, size_t *length, loff_t *ppos)
2824{
2825
2826 return hugetlb_sysctl_handler_common(false, table, write,
2827 buffer, length, ppos);
2828}
2829
2830#ifdef CONFIG_NUMA
2831int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2832 void __user *buffer, size_t *length, loff_t *ppos)
2833{
2834 return hugetlb_sysctl_handler_common(true, table, write,
2835 buffer, length, ppos);
2836}
2837#endif /* CONFIG_NUMA */
2838
a3d0c6aa 2839int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2840 void __user *buffer,
a3d0c6aa
NA
2841 size_t *length, loff_t *ppos)
2842{
a5516438 2843 struct hstate *h = &default_hstate;
e5ff2159 2844 unsigned long tmp;
08d4a246 2845 int ret;
e5ff2159 2846
457c1b27 2847 if (!hugepages_supported())
86613628 2848 return -EOPNOTSUPP;
457c1b27 2849
c033a93c 2850 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2851
bae7f4ae 2852 if (write && hstate_is_gigantic(h))
adbe8726
EM
2853 return -EINVAL;
2854
e5ff2159
AK
2855 table->data = &tmp;
2856 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2857 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2858 if (ret)
2859 goto out;
e5ff2159
AK
2860
2861 if (write) {
2862 spin_lock(&hugetlb_lock);
2863 h->nr_overcommit_huge_pages = tmp;
2864 spin_unlock(&hugetlb_lock);
2865 }
08d4a246
MH
2866out:
2867 return ret;
a3d0c6aa
NA
2868}
2869
1da177e4
LT
2870#endif /* CONFIG_SYSCTL */
2871
e1759c21 2872void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2873{
a5516438 2874 struct hstate *h = &default_hstate;
457c1b27
NA
2875 if (!hugepages_supported())
2876 return;
e1759c21 2877 seq_printf(m,
4f98a2fe
RR
2878 "HugePages_Total: %5lu\n"
2879 "HugePages_Free: %5lu\n"
2880 "HugePages_Rsvd: %5lu\n"
2881 "HugePages_Surp: %5lu\n"
2882 "Hugepagesize: %8lu kB\n",
a5516438
AK
2883 h->nr_huge_pages,
2884 h->free_huge_pages,
2885 h->resv_huge_pages,
2886 h->surplus_huge_pages,
2887 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2888}
2889
2890int hugetlb_report_node_meminfo(int nid, char *buf)
2891{
a5516438 2892 struct hstate *h = &default_hstate;
457c1b27
NA
2893 if (!hugepages_supported())
2894 return 0;
1da177e4
LT
2895 return sprintf(buf,
2896 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2897 "Node %d HugePages_Free: %5u\n"
2898 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2899 nid, h->nr_huge_pages_node[nid],
2900 nid, h->free_huge_pages_node[nid],
2901 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2902}
2903
949f7ec5
DR
2904void hugetlb_show_meminfo(void)
2905{
2906 struct hstate *h;
2907 int nid;
2908
457c1b27
NA
2909 if (!hugepages_supported())
2910 return;
2911
949f7ec5
DR
2912 for_each_node_state(nid, N_MEMORY)
2913 for_each_hstate(h)
2914 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2915 nid,
2916 h->nr_huge_pages_node[nid],
2917 h->free_huge_pages_node[nid],
2918 h->surplus_huge_pages_node[nid],
2919 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2920}
2921
5d317b2b
NH
2922void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2923{
2924 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2925 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2926}
2927
1da177e4
LT
2928/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2929unsigned long hugetlb_total_pages(void)
2930{
d0028588
WL
2931 struct hstate *h;
2932 unsigned long nr_total_pages = 0;
2933
2934 for_each_hstate(h)
2935 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2936 return nr_total_pages;
1da177e4 2937}
1da177e4 2938
a5516438 2939static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2940{
2941 int ret = -ENOMEM;
2942
2943 spin_lock(&hugetlb_lock);
2944 /*
2945 * When cpuset is configured, it breaks the strict hugetlb page
2946 * reservation as the accounting is done on a global variable. Such
2947 * reservation is completely rubbish in the presence of cpuset because
2948 * the reservation is not checked against page availability for the
2949 * current cpuset. Application can still potentially OOM'ed by kernel
2950 * with lack of free htlb page in cpuset that the task is in.
2951 * Attempt to enforce strict accounting with cpuset is almost
2952 * impossible (or too ugly) because cpuset is too fluid that
2953 * task or memory node can be dynamically moved between cpusets.
2954 *
2955 * The change of semantics for shared hugetlb mapping with cpuset is
2956 * undesirable. However, in order to preserve some of the semantics,
2957 * we fall back to check against current free page availability as
2958 * a best attempt and hopefully to minimize the impact of changing
2959 * semantics that cpuset has.
2960 */
2961 if (delta > 0) {
a5516438 2962 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2963 goto out;
2964
a5516438
AK
2965 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2966 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2967 goto out;
2968 }
2969 }
2970
2971 ret = 0;
2972 if (delta < 0)
a5516438 2973 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2974
2975out:
2976 spin_unlock(&hugetlb_lock);
2977 return ret;
2978}
2979
84afd99b
AW
2980static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2981{
f522c3ac 2982 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
2983
2984 /*
2985 * This new VMA should share its siblings reservation map if present.
2986 * The VMA will only ever have a valid reservation map pointer where
2987 * it is being copied for another still existing VMA. As that VMA
25985edc 2988 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2989 * after this open call completes. It is therefore safe to take a
2990 * new reference here without additional locking.
2991 */
4e35f483 2992 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 2993 kref_get(&resv->refs);
84afd99b
AW
2994}
2995
a1e78772
MG
2996static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2997{
a5516438 2998 struct hstate *h = hstate_vma(vma);
f522c3ac 2999 struct resv_map *resv = vma_resv_map(vma);
90481622 3000 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3001 unsigned long reserve, start, end;
1c5ecae3 3002 long gbl_reserve;
84afd99b 3003
4e35f483
JK
3004 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3005 return;
84afd99b 3006
4e35f483
JK
3007 start = vma_hugecache_offset(h, vma, vma->vm_start);
3008 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3009
4e35f483 3010 reserve = (end - start) - region_count(resv, start, end);
84afd99b 3011
4e35f483
JK
3012 kref_put(&resv->refs, resv_map_release);
3013
3014 if (reserve) {
1c5ecae3
MK
3015 /*
3016 * Decrement reserve counts. The global reserve count may be
3017 * adjusted if the subpool has a minimum size.
3018 */
3019 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3020 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3021 }
a1e78772
MG
3022}
3023
1da177e4
LT
3024/*
3025 * We cannot handle pagefaults against hugetlb pages at all. They cause
3026 * handle_mm_fault() to try to instantiate regular-sized pages in the
3027 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3028 * this far.
3029 */
d0217ac0 3030static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
3031{
3032 BUG();
d0217ac0 3033 return 0;
1da177e4
LT
3034}
3035
f0f37e2f 3036const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3037 .fault = hugetlb_vm_op_fault,
84afd99b 3038 .open = hugetlb_vm_op_open,
a1e78772 3039 .close = hugetlb_vm_op_close,
1da177e4
LT
3040};
3041
1e8f889b
DG
3042static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3043 int writable)
63551ae0
DG
3044{
3045 pte_t entry;
3046
1e8f889b 3047 if (writable) {
106c992a
GS
3048 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3049 vma->vm_page_prot)));
63551ae0 3050 } else {
106c992a
GS
3051 entry = huge_pte_wrprotect(mk_huge_pte(page,
3052 vma->vm_page_prot));
63551ae0
DG
3053 }
3054 entry = pte_mkyoung(entry);
3055 entry = pte_mkhuge(entry);
d9ed9faa 3056 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3057
3058 return entry;
3059}
3060
1e8f889b
DG
3061static void set_huge_ptep_writable(struct vm_area_struct *vma,
3062 unsigned long address, pte_t *ptep)
3063{
3064 pte_t entry;
3065
106c992a 3066 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3067 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3068 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3069}
3070
4a705fef
NH
3071static int is_hugetlb_entry_migration(pte_t pte)
3072{
3073 swp_entry_t swp;
3074
3075 if (huge_pte_none(pte) || pte_present(pte))
3076 return 0;
3077 swp = pte_to_swp_entry(pte);
3078 if (non_swap_entry(swp) && is_migration_entry(swp))
3079 return 1;
3080 else
3081 return 0;
3082}
3083
3084static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3085{
3086 swp_entry_t swp;
3087
3088 if (huge_pte_none(pte) || pte_present(pte))
3089 return 0;
3090 swp = pte_to_swp_entry(pte);
3091 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3092 return 1;
3093 else
3094 return 0;
3095}
1e8f889b 3096
63551ae0
DG
3097int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3098 struct vm_area_struct *vma)
3099{
3100 pte_t *src_pte, *dst_pte, entry;
3101 struct page *ptepage;
1c59827d 3102 unsigned long addr;
1e8f889b 3103 int cow;
a5516438
AK
3104 struct hstate *h = hstate_vma(vma);
3105 unsigned long sz = huge_page_size(h);
e8569dd2
AS
3106 unsigned long mmun_start; /* For mmu_notifiers */
3107 unsigned long mmun_end; /* For mmu_notifiers */
3108 int ret = 0;
1e8f889b
DG
3109
3110 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3111
e8569dd2
AS
3112 mmun_start = vma->vm_start;
3113 mmun_end = vma->vm_end;
3114 if (cow)
3115 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3116
a5516438 3117 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3118 spinlock_t *src_ptl, *dst_ptl;
c74df32c
HD
3119 src_pte = huge_pte_offset(src, addr);
3120 if (!src_pte)
3121 continue;
a5516438 3122 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3123 if (!dst_pte) {
3124 ret = -ENOMEM;
3125 break;
3126 }
c5c99429
LW
3127
3128 /* If the pagetables are shared don't copy or take references */
3129 if (dst_pte == src_pte)
3130 continue;
3131
cb900f41
KS
3132 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3133 src_ptl = huge_pte_lockptr(h, src, src_pte);
3134 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef
NH
3135 entry = huge_ptep_get(src_pte);
3136 if (huge_pte_none(entry)) { /* skip none entry */
3137 ;
3138 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3139 is_hugetlb_entry_hwpoisoned(entry))) {
3140 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3141
3142 if (is_write_migration_entry(swp_entry) && cow) {
3143 /*
3144 * COW mappings require pages in both
3145 * parent and child to be set to read.
3146 */
3147 make_migration_entry_read(&swp_entry);
3148 entry = swp_entry_to_pte(swp_entry);
3149 set_huge_pte_at(src, addr, src_pte, entry);
3150 }
3151 set_huge_pte_at(dst, addr, dst_pte, entry);
3152 } else {
34ee645e 3153 if (cow) {
7f2e9525 3154 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e
JR
3155 mmu_notifier_invalidate_range(src, mmun_start,
3156 mmun_end);
3157 }
0253d634 3158 entry = huge_ptep_get(src_pte);
1c59827d
HD
3159 ptepage = pte_page(entry);
3160 get_page(ptepage);
53f9263b 3161 page_dup_rmap(ptepage, true);
1c59827d 3162 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3163 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3164 }
cb900f41
KS
3165 spin_unlock(src_ptl);
3166 spin_unlock(dst_ptl);
63551ae0 3167 }
63551ae0 3168
e8569dd2
AS
3169 if (cow)
3170 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3171
3172 return ret;
63551ae0
DG
3173}
3174
24669e58
AK
3175void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3176 unsigned long start, unsigned long end,
3177 struct page *ref_page)
63551ae0 3178{
24669e58 3179 int force_flush = 0;
63551ae0
DG
3180 struct mm_struct *mm = vma->vm_mm;
3181 unsigned long address;
c7546f8f 3182 pte_t *ptep;
63551ae0 3183 pte_t pte;
cb900f41 3184 spinlock_t *ptl;
63551ae0 3185 struct page *page;
a5516438
AK
3186 struct hstate *h = hstate_vma(vma);
3187 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
3188 const unsigned long mmun_start = start; /* For mmu_notifiers */
3189 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 3190
63551ae0 3191 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3192 BUG_ON(start & ~huge_page_mask(h));
3193 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3194
24669e58 3195 tlb_start_vma(tlb, vma);
2ec74c3e 3196 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
569f48b8 3197 address = start;
24669e58 3198again:
569f48b8 3199 for (; address < end; address += sz) {
c7546f8f 3200 ptep = huge_pte_offset(mm, address);
4c887265 3201 if (!ptep)
c7546f8f
DG
3202 continue;
3203
cb900f41 3204 ptl = huge_pte_lock(h, mm, ptep);
39dde65c 3205 if (huge_pmd_unshare(mm, &address, ptep))
cb900f41 3206 goto unlock;
39dde65c 3207
6629326b
HD
3208 pte = huge_ptep_get(ptep);
3209 if (huge_pte_none(pte))
cb900f41 3210 goto unlock;
6629326b
HD
3211
3212 /*
9fbc1f63
NH
3213 * Migrating hugepage or HWPoisoned hugepage is already
3214 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3215 */
9fbc1f63 3216 if (unlikely(!pte_present(pte))) {
106c992a 3217 huge_pte_clear(mm, address, ptep);
cb900f41 3218 goto unlock;
8c4894c6 3219 }
6629326b
HD
3220
3221 page = pte_page(pte);
04f2cbe3
MG
3222 /*
3223 * If a reference page is supplied, it is because a specific
3224 * page is being unmapped, not a range. Ensure the page we
3225 * are about to unmap is the actual page of interest.
3226 */
3227 if (ref_page) {
04f2cbe3 3228 if (page != ref_page)
cb900f41 3229 goto unlock;
04f2cbe3
MG
3230
3231 /*
3232 * Mark the VMA as having unmapped its page so that
3233 * future faults in this VMA will fail rather than
3234 * looking like data was lost
3235 */
3236 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3237 }
3238
c7546f8f 3239 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 3240 tlb_remove_tlb_entry(tlb, ptep, address);
106c992a 3241 if (huge_pte_dirty(pte))
6649a386 3242 set_page_dirty(page);
9e81130b 3243
5d317b2b 3244 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3245 page_remove_rmap(page, true);
24669e58 3246 force_flush = !__tlb_remove_page(tlb, page);
cb900f41 3247 if (force_flush) {
569f48b8 3248 address += sz;
cb900f41 3249 spin_unlock(ptl);
24669e58 3250 break;
cb900f41 3251 }
9e81130b 3252 /* Bail out after unmapping reference page if supplied */
cb900f41
KS
3253 if (ref_page) {
3254 spin_unlock(ptl);
9e81130b 3255 break;
cb900f41
KS
3256 }
3257unlock:
3258 spin_unlock(ptl);
63551ae0 3259 }
24669e58
AK
3260 /*
3261 * mmu_gather ran out of room to batch pages, we break out of
3262 * the PTE lock to avoid doing the potential expensive TLB invalidate
3263 * and page-free while holding it.
3264 */
3265 if (force_flush) {
3266 force_flush = 0;
3267 tlb_flush_mmu(tlb);
3268 if (address < end && !ref_page)
3269 goto again;
fe1668ae 3270 }
2ec74c3e 3271 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 3272 tlb_end_vma(tlb, vma);
1da177e4 3273}
63551ae0 3274
d833352a
MG
3275void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3276 struct vm_area_struct *vma, unsigned long start,
3277 unsigned long end, struct page *ref_page)
3278{
3279 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3280
3281 /*
3282 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3283 * test will fail on a vma being torn down, and not grab a page table
3284 * on its way out. We're lucky that the flag has such an appropriate
3285 * name, and can in fact be safely cleared here. We could clear it
3286 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3287 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3288 * because in the context this is called, the VMA is about to be
c8c06efa 3289 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3290 */
3291 vma->vm_flags &= ~VM_MAYSHARE;
3292}
3293
502717f4 3294void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3295 unsigned long end, struct page *ref_page)
502717f4 3296{
24669e58
AK
3297 struct mm_struct *mm;
3298 struct mmu_gather tlb;
3299
3300 mm = vma->vm_mm;
3301
2b047252 3302 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
3303 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3304 tlb_finish_mmu(&tlb, start, end);
502717f4
KC
3305}
3306
04f2cbe3
MG
3307/*
3308 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3309 * mappping it owns the reserve page for. The intention is to unmap the page
3310 * from other VMAs and let the children be SIGKILLed if they are faulting the
3311 * same region.
3312 */
2f4612af
DB
3313static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3314 struct page *page, unsigned long address)
04f2cbe3 3315{
7526674d 3316 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3317 struct vm_area_struct *iter_vma;
3318 struct address_space *mapping;
04f2cbe3
MG
3319 pgoff_t pgoff;
3320
3321 /*
3322 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3323 * from page cache lookup which is in HPAGE_SIZE units.
3324 */
7526674d 3325 address = address & huge_page_mask(h);
36e4f20a
MH
3326 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3327 vma->vm_pgoff;
496ad9aa 3328 mapping = file_inode(vma->vm_file)->i_mapping;
04f2cbe3 3329
4eb2b1dc
MG
3330 /*
3331 * Take the mapping lock for the duration of the table walk. As
3332 * this mapping should be shared between all the VMAs,
3333 * __unmap_hugepage_range() is called as the lock is already held
3334 */
83cde9e8 3335 i_mmap_lock_write(mapping);
6b2dbba8 3336 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3337 /* Do not unmap the current VMA */
3338 if (iter_vma == vma)
3339 continue;
3340
2f84a899
MG
3341 /*
3342 * Shared VMAs have their own reserves and do not affect
3343 * MAP_PRIVATE accounting but it is possible that a shared
3344 * VMA is using the same page so check and skip such VMAs.
3345 */
3346 if (iter_vma->vm_flags & VM_MAYSHARE)
3347 continue;
3348
04f2cbe3
MG
3349 /*
3350 * Unmap the page from other VMAs without their own reserves.
3351 * They get marked to be SIGKILLed if they fault in these
3352 * areas. This is because a future no-page fault on this VMA
3353 * could insert a zeroed page instead of the data existing
3354 * from the time of fork. This would look like data corruption
3355 */
3356 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3357 unmap_hugepage_range(iter_vma, address,
3358 address + huge_page_size(h), page);
04f2cbe3 3359 }
83cde9e8 3360 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3361}
3362
0fe6e20b
NH
3363/*
3364 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3365 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3366 * cannot race with other handlers or page migration.
3367 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3368 */
1e8f889b 3369static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3 3370 unsigned long address, pte_t *ptep, pte_t pte,
cb900f41 3371 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3372{
a5516438 3373 struct hstate *h = hstate_vma(vma);
1e8f889b 3374 struct page *old_page, *new_page;
ad4404a2 3375 int ret = 0, outside_reserve = 0;
2ec74c3e
SG
3376 unsigned long mmun_start; /* For mmu_notifiers */
3377 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b
DG
3378
3379 old_page = pte_page(pte);
3380
04f2cbe3 3381retry_avoidcopy:
1e8f889b
DG
3382 /* If no-one else is actually using this page, avoid the copy
3383 * and just make the page writable */
37a2140d
JK
3384 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3385 page_move_anon_rmap(old_page, vma, address);
1e8f889b 3386 set_huge_ptep_writable(vma, address, ptep);
83c54070 3387 return 0;
1e8f889b
DG
3388 }
3389
04f2cbe3
MG
3390 /*
3391 * If the process that created a MAP_PRIVATE mapping is about to
3392 * perform a COW due to a shared page count, attempt to satisfy
3393 * the allocation without using the existing reserves. The pagecache
3394 * page is used to determine if the reserve at this address was
3395 * consumed or not. If reserves were used, a partial faulted mapping
3396 * at the time of fork() could consume its reserves on COW instead
3397 * of the full address range.
3398 */
5944d011 3399 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3400 old_page != pagecache_page)
3401 outside_reserve = 1;
3402
09cbfeaf 3403 get_page(old_page);
b76c8cfb 3404
ad4404a2
DB
3405 /*
3406 * Drop page table lock as buddy allocator may be called. It will
3407 * be acquired again before returning to the caller, as expected.
3408 */
cb900f41 3409 spin_unlock(ptl);
04f2cbe3 3410 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 3411
2fc39cec 3412 if (IS_ERR(new_page)) {
04f2cbe3
MG
3413 /*
3414 * If a process owning a MAP_PRIVATE mapping fails to COW,
3415 * it is due to references held by a child and an insufficient
3416 * huge page pool. To guarantee the original mappers
3417 * reliability, unmap the page from child processes. The child
3418 * may get SIGKILLed if it later faults.
3419 */
3420 if (outside_reserve) {
09cbfeaf 3421 put_page(old_page);
04f2cbe3 3422 BUG_ON(huge_pte_none(pte));
2f4612af
DB
3423 unmap_ref_private(mm, vma, old_page, address);
3424 BUG_ON(huge_pte_none(pte));
3425 spin_lock(ptl);
3426 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3427 if (likely(ptep &&
3428 pte_same(huge_ptep_get(ptep), pte)))
3429 goto retry_avoidcopy;
3430 /*
3431 * race occurs while re-acquiring page table
3432 * lock, and our job is done.
3433 */
3434 return 0;
04f2cbe3
MG
3435 }
3436
ad4404a2
DB
3437 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3438 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3439 goto out_release_old;
1e8f889b
DG
3440 }
3441
0fe6e20b
NH
3442 /*
3443 * When the original hugepage is shared one, it does not have
3444 * anon_vma prepared.
3445 */
44e2aa93 3446 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3447 ret = VM_FAULT_OOM;
3448 goto out_release_all;
44e2aa93 3449 }
0fe6e20b 3450
47ad8475
AA
3451 copy_user_huge_page(new_page, old_page, address, vma,
3452 pages_per_huge_page(h));
0ed361de 3453 __SetPageUptodate(new_page);
bcc54222 3454 set_page_huge_active(new_page);
1e8f889b 3455
2ec74c3e
SG
3456 mmun_start = address & huge_page_mask(h);
3457 mmun_end = mmun_start + huge_page_size(h);
3458 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ad4404a2 3459
b76c8cfb 3460 /*
cb900f41 3461 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3462 * before the page tables are altered
3463 */
cb900f41 3464 spin_lock(ptl);
a5516438 3465 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
a9af0c5d 3466 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3467 ClearPagePrivate(new_page);
3468
1e8f889b 3469 /* Break COW */
8fe627ec 3470 huge_ptep_clear_flush(vma, address, ptep);
34ee645e 3471 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1e8f889b
DG
3472 set_huge_pte_at(mm, address, ptep,
3473 make_huge_pte(vma, new_page, 1));
d281ee61 3474 page_remove_rmap(old_page, true);
cd67f0d2 3475 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
3476 /* Make the old page be freed below */
3477 new_page = old_page;
3478 }
cb900f41 3479 spin_unlock(ptl);
2ec74c3e 3480 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ad4404a2 3481out_release_all:
09cbfeaf 3482 put_page(new_page);
ad4404a2 3483out_release_old:
09cbfeaf 3484 put_page(old_page);
8312034f 3485
ad4404a2
DB
3486 spin_lock(ptl); /* Caller expects lock to be held */
3487 return ret;
1e8f889b
DG
3488}
3489
04f2cbe3 3490/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3491static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3492 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3493{
3494 struct address_space *mapping;
e7c4b0bf 3495 pgoff_t idx;
04f2cbe3
MG
3496
3497 mapping = vma->vm_file->f_mapping;
a5516438 3498 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3499
3500 return find_lock_page(mapping, idx);
3501}
3502
3ae77f43
HD
3503/*
3504 * Return whether there is a pagecache page to back given address within VMA.
3505 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3506 */
3507static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3508 struct vm_area_struct *vma, unsigned long address)
3509{
3510 struct address_space *mapping;
3511 pgoff_t idx;
3512 struct page *page;
3513
3514 mapping = vma->vm_file->f_mapping;
3515 idx = vma_hugecache_offset(h, vma, address);
3516
3517 page = find_get_page(mapping, idx);
3518 if (page)
3519 put_page(page);
3520 return page != NULL;
3521}
3522
ab76ad54
MK
3523int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3524 pgoff_t idx)
3525{
3526 struct inode *inode = mapping->host;
3527 struct hstate *h = hstate_inode(inode);
3528 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3529
3530 if (err)
3531 return err;
3532 ClearPagePrivate(page);
3533
3534 spin_lock(&inode->i_lock);
3535 inode->i_blocks += blocks_per_huge_page(h);
3536 spin_unlock(&inode->i_lock);
3537 return 0;
3538}
3539
a1ed3dda 3540static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
8382d914
DB
3541 struct address_space *mapping, pgoff_t idx,
3542 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3543{
a5516438 3544 struct hstate *h = hstate_vma(vma);
ac9b9c66 3545 int ret = VM_FAULT_SIGBUS;
409eb8c2 3546 int anon_rmap = 0;
4c887265 3547 unsigned long size;
4c887265 3548 struct page *page;
1e8f889b 3549 pte_t new_pte;
cb900f41 3550 spinlock_t *ptl;
4c887265 3551
04f2cbe3
MG
3552 /*
3553 * Currently, we are forced to kill the process in the event the
3554 * original mapper has unmapped pages from the child due to a failed
25985edc 3555 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3556 */
3557 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 3558 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 3559 current->pid);
04f2cbe3
MG
3560 return ret;
3561 }
3562
4c887265
AL
3563 /*
3564 * Use page lock to guard against racing truncation
3565 * before we get page_table_lock.
3566 */
6bda666a
CL
3567retry:
3568 page = find_lock_page(mapping, idx);
3569 if (!page) {
a5516438 3570 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
3571 if (idx >= size)
3572 goto out;
04f2cbe3 3573 page = alloc_huge_page(vma, address, 0);
2fc39cec 3574 if (IS_ERR(page)) {
76dcee75
AK
3575 ret = PTR_ERR(page);
3576 if (ret == -ENOMEM)
3577 ret = VM_FAULT_OOM;
3578 else
3579 ret = VM_FAULT_SIGBUS;
6bda666a
CL
3580 goto out;
3581 }
47ad8475 3582 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3583 __SetPageUptodate(page);
bcc54222 3584 set_page_huge_active(page);
ac9b9c66 3585
f83a275d 3586 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 3587 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
3588 if (err) {
3589 put_page(page);
6bda666a
CL
3590 if (err == -EEXIST)
3591 goto retry;
3592 goto out;
3593 }
23be7468 3594 } else {
6bda666a 3595 lock_page(page);
0fe6e20b
NH
3596 if (unlikely(anon_vma_prepare(vma))) {
3597 ret = VM_FAULT_OOM;
3598 goto backout_unlocked;
3599 }
409eb8c2 3600 anon_rmap = 1;
23be7468 3601 }
0fe6e20b 3602 } else {
998b4382
NH
3603 /*
3604 * If memory error occurs between mmap() and fault, some process
3605 * don't have hwpoisoned swap entry for errored virtual address.
3606 * So we need to block hugepage fault by PG_hwpoison bit check.
3607 */
3608 if (unlikely(PageHWPoison(page))) {
32f84528 3609 ret = VM_FAULT_HWPOISON |
972dc4de 3610 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3611 goto backout_unlocked;
3612 }
6bda666a 3613 }
1e8f889b 3614
57303d80
AW
3615 /*
3616 * If we are going to COW a private mapping later, we examine the
3617 * pending reservations for this page now. This will ensure that
3618 * any allocations necessary to record that reservation occur outside
3619 * the spinlock.
3620 */
5e911373 3621 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2b26736c
AW
3622 if (vma_needs_reservation(h, vma, address) < 0) {
3623 ret = VM_FAULT_OOM;
3624 goto backout_unlocked;
3625 }
5e911373 3626 /* Just decrements count, does not deallocate */
feba16e2 3627 vma_end_reservation(h, vma, address);
5e911373 3628 }
57303d80 3629
cb900f41
KS
3630 ptl = huge_pte_lockptr(h, mm, ptep);
3631 spin_lock(ptl);
a5516438 3632 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
3633 if (idx >= size)
3634 goto backout;
3635
83c54070 3636 ret = 0;
7f2e9525 3637 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3638 goto backout;
3639
07443a85
JK
3640 if (anon_rmap) {
3641 ClearPagePrivate(page);
409eb8c2 3642 hugepage_add_new_anon_rmap(page, vma, address);
ac714904 3643 } else
53f9263b 3644 page_dup_rmap(page, true);
1e8f889b
DG
3645 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3646 && (vma->vm_flags & VM_SHARED)));
3647 set_huge_pte_at(mm, address, ptep, new_pte);
3648
5d317b2b 3649 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 3650 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3651 /* Optimization, do the COW without a second fault */
cb900f41 3652 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
1e8f889b
DG
3653 }
3654
cb900f41 3655 spin_unlock(ptl);
4c887265
AL
3656 unlock_page(page);
3657out:
ac9b9c66 3658 return ret;
4c887265
AL
3659
3660backout:
cb900f41 3661 spin_unlock(ptl);
2b26736c 3662backout_unlocked:
4c887265
AL
3663 unlock_page(page);
3664 put_page(page);
3665 goto out;
ac9b9c66
HD
3666}
3667
8382d914 3668#ifdef CONFIG_SMP
c672c7f2 3669u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3670 struct vm_area_struct *vma,
3671 struct address_space *mapping,
3672 pgoff_t idx, unsigned long address)
3673{
3674 unsigned long key[2];
3675 u32 hash;
3676
3677 if (vma->vm_flags & VM_SHARED) {
3678 key[0] = (unsigned long) mapping;
3679 key[1] = idx;
3680 } else {
3681 key[0] = (unsigned long) mm;
3682 key[1] = address >> huge_page_shift(h);
3683 }
3684
3685 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3686
3687 return hash & (num_fault_mutexes - 1);
3688}
3689#else
3690/*
3691 * For uniprocesor systems we always use a single mutex, so just
3692 * return 0 and avoid the hashing overhead.
3693 */
c672c7f2 3694u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3695 struct vm_area_struct *vma,
3696 struct address_space *mapping,
3697 pgoff_t idx, unsigned long address)
3698{
3699 return 0;
3700}
3701#endif
3702
86e5216f 3703int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3704 unsigned long address, unsigned int flags)
86e5216f 3705{
8382d914 3706 pte_t *ptep, entry;
cb900f41 3707 spinlock_t *ptl;
1e8f889b 3708 int ret;
8382d914
DB
3709 u32 hash;
3710 pgoff_t idx;
0fe6e20b 3711 struct page *page = NULL;
57303d80 3712 struct page *pagecache_page = NULL;
a5516438 3713 struct hstate *h = hstate_vma(vma);
8382d914 3714 struct address_space *mapping;
0f792cf9 3715 int need_wait_lock = 0;
86e5216f 3716
1e16a539
KH
3717 address &= huge_page_mask(h);
3718
fd6a03ed
NH
3719 ptep = huge_pte_offset(mm, address);
3720 if (ptep) {
3721 entry = huge_ptep_get(ptep);
290408d4 3722 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 3723 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
3724 return 0;
3725 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 3726 return VM_FAULT_HWPOISON_LARGE |
972dc4de 3727 VM_FAULT_SET_HINDEX(hstate_index(h));
0d777df5
NH
3728 } else {
3729 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3730 if (!ptep)
3731 return VM_FAULT_OOM;
fd6a03ed
NH
3732 }
3733
8382d914
DB
3734 mapping = vma->vm_file->f_mapping;
3735 idx = vma_hugecache_offset(h, vma, address);
3736
3935baa9
DG
3737 /*
3738 * Serialize hugepage allocation and instantiation, so that we don't
3739 * get spurious allocation failures if two CPUs race to instantiate
3740 * the same page in the page cache.
3741 */
c672c7f2
MK
3742 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3743 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 3744
7f2e9525
GS
3745 entry = huge_ptep_get(ptep);
3746 if (huge_pte_none(entry)) {
8382d914 3747 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3748 goto out_mutex;
3935baa9 3749 }
86e5216f 3750
83c54070 3751 ret = 0;
1e8f889b 3752
0f792cf9
NH
3753 /*
3754 * entry could be a migration/hwpoison entry at this point, so this
3755 * check prevents the kernel from going below assuming that we have
3756 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3757 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3758 * handle it.
3759 */
3760 if (!pte_present(entry))
3761 goto out_mutex;
3762
57303d80
AW
3763 /*
3764 * If we are going to COW the mapping later, we examine the pending
3765 * reservations for this page now. This will ensure that any
3766 * allocations necessary to record that reservation occur outside the
3767 * spinlock. For private mappings, we also lookup the pagecache
3768 * page now as it is used to determine if a reservation has been
3769 * consumed.
3770 */
106c992a 3771 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
3772 if (vma_needs_reservation(h, vma, address) < 0) {
3773 ret = VM_FAULT_OOM;
b4d1d99f 3774 goto out_mutex;
2b26736c 3775 }
5e911373 3776 /* Just decrements count, does not deallocate */
feba16e2 3777 vma_end_reservation(h, vma, address);
57303d80 3778
f83a275d 3779 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
3780 pagecache_page = hugetlbfs_pagecache_page(h,
3781 vma, address);
3782 }
3783
0f792cf9
NH
3784 ptl = huge_pte_lock(h, mm, ptep);
3785
3786 /* Check for a racing update before calling hugetlb_cow */
3787 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3788 goto out_ptl;
3789
56c9cfb1
NH
3790 /*
3791 * hugetlb_cow() requires page locks of pte_page(entry) and
3792 * pagecache_page, so here we need take the former one
3793 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
3794 */
3795 page = pte_page(entry);
3796 if (page != pagecache_page)
0f792cf9
NH
3797 if (!trylock_page(page)) {
3798 need_wait_lock = 1;
3799 goto out_ptl;
3800 }
b4d1d99f 3801
0f792cf9 3802 get_page(page);
b4d1d99f 3803
788c7df4 3804 if (flags & FAULT_FLAG_WRITE) {
106c992a 3805 if (!huge_pte_write(entry)) {
57303d80 3806 ret = hugetlb_cow(mm, vma, address, ptep, entry,
cb900f41 3807 pagecache_page, ptl);
0f792cf9 3808 goto out_put_page;
b4d1d99f 3809 }
106c992a 3810 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
3811 }
3812 entry = pte_mkyoung(entry);
788c7df4
HD
3813 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3814 flags & FAULT_FLAG_WRITE))
4b3073e1 3815 update_mmu_cache(vma, address, ptep);
0f792cf9
NH
3816out_put_page:
3817 if (page != pagecache_page)
3818 unlock_page(page);
3819 put_page(page);
cb900f41
KS
3820out_ptl:
3821 spin_unlock(ptl);
57303d80
AW
3822
3823 if (pagecache_page) {
3824 unlock_page(pagecache_page);
3825 put_page(pagecache_page);
3826 }
b4d1d99f 3827out_mutex:
c672c7f2 3828 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
3829 /*
3830 * Generally it's safe to hold refcount during waiting page lock. But
3831 * here we just wait to defer the next page fault to avoid busy loop and
3832 * the page is not used after unlocked before returning from the current
3833 * page fault. So we are safe from accessing freed page, even if we wait
3834 * here without taking refcount.
3835 */
3836 if (need_wait_lock)
3837 wait_on_page_locked(page);
1e8f889b 3838 return ret;
86e5216f
AL
3839}
3840
28a35716
ML
3841long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3842 struct page **pages, struct vm_area_struct **vmas,
3843 unsigned long *position, unsigned long *nr_pages,
3844 long i, unsigned int flags)
63551ae0 3845{
d5d4b0aa
KC
3846 unsigned long pfn_offset;
3847 unsigned long vaddr = *position;
28a35716 3848 unsigned long remainder = *nr_pages;
a5516438 3849 struct hstate *h = hstate_vma(vma);
63551ae0 3850
63551ae0 3851 while (vaddr < vma->vm_end && remainder) {
4c887265 3852 pte_t *pte;
cb900f41 3853 spinlock_t *ptl = NULL;
2a15efc9 3854 int absent;
4c887265 3855 struct page *page;
63551ae0 3856
02057967
DR
3857 /*
3858 * If we have a pending SIGKILL, don't keep faulting pages and
3859 * potentially allocating memory.
3860 */
3861 if (unlikely(fatal_signal_pending(current))) {
3862 remainder = 0;
3863 break;
3864 }
3865
4c887265
AL
3866 /*
3867 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 3868 * each hugepage. We have to make sure we get the
4c887265 3869 * first, for the page indexing below to work.
cb900f41
KS
3870 *
3871 * Note that page table lock is not held when pte is null.
4c887265 3872 */
a5516438 3873 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
cb900f41
KS
3874 if (pte)
3875 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
3876 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3877
3878 /*
3879 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
3880 * an error where there's an empty slot with no huge pagecache
3881 * to back it. This way, we avoid allocating a hugepage, and
3882 * the sparse dumpfile avoids allocating disk blocks, but its
3883 * huge holes still show up with zeroes where they need to be.
2a15efc9 3884 */
3ae77f43
HD
3885 if (absent && (flags & FOLL_DUMP) &&
3886 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
3887 if (pte)
3888 spin_unlock(ptl);
2a15efc9
HD
3889 remainder = 0;
3890 break;
3891 }
63551ae0 3892
9cc3a5bd
NH
3893 /*
3894 * We need call hugetlb_fault for both hugepages under migration
3895 * (in which case hugetlb_fault waits for the migration,) and
3896 * hwpoisoned hugepages (in which case we need to prevent the
3897 * caller from accessing to them.) In order to do this, we use
3898 * here is_swap_pte instead of is_hugetlb_entry_migration and
3899 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3900 * both cases, and because we can't follow correct pages
3901 * directly from any kind of swap entries.
3902 */
3903 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
3904 ((flags & FOLL_WRITE) &&
3905 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 3906 int ret;
63551ae0 3907
cb900f41
KS
3908 if (pte)
3909 spin_unlock(ptl);
2a15efc9
HD
3910 ret = hugetlb_fault(mm, vma, vaddr,
3911 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
a89182c7 3912 if (!(ret & VM_FAULT_ERROR))
4c887265 3913 continue;
63551ae0 3914
4c887265 3915 remainder = 0;
4c887265
AL
3916 break;
3917 }
3918
a5516438 3919 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 3920 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 3921same_page:
d6692183 3922 if (pages) {
2a15efc9 3923 pages[i] = mem_map_offset(page, pfn_offset);
ddc58f27 3924 get_page(pages[i]);
d6692183 3925 }
63551ae0
DG
3926
3927 if (vmas)
3928 vmas[i] = vma;
3929
3930 vaddr += PAGE_SIZE;
d5d4b0aa 3931 ++pfn_offset;
63551ae0
DG
3932 --remainder;
3933 ++i;
d5d4b0aa 3934 if (vaddr < vma->vm_end && remainder &&
a5516438 3935 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
3936 /*
3937 * We use pfn_offset to avoid touching the pageframes
3938 * of this compound page.
3939 */
3940 goto same_page;
3941 }
cb900f41 3942 spin_unlock(ptl);
63551ae0 3943 }
28a35716 3944 *nr_pages = remainder;
63551ae0
DG
3945 *position = vaddr;
3946
2a15efc9 3947 return i ? i : -EFAULT;
63551ae0 3948}
8f860591 3949
7da4d641 3950unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
3951 unsigned long address, unsigned long end, pgprot_t newprot)
3952{
3953 struct mm_struct *mm = vma->vm_mm;
3954 unsigned long start = address;
3955 pte_t *ptep;
3956 pte_t pte;
a5516438 3957 struct hstate *h = hstate_vma(vma);
7da4d641 3958 unsigned long pages = 0;
8f860591
ZY
3959
3960 BUG_ON(address >= end);
3961 flush_cache_range(vma, address, end);
3962
a5338093 3963 mmu_notifier_invalidate_range_start(mm, start, end);
83cde9e8 3964 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 3965 for (; address < end; address += huge_page_size(h)) {
cb900f41 3966 spinlock_t *ptl;
8f860591
ZY
3967 ptep = huge_pte_offset(mm, address);
3968 if (!ptep)
3969 continue;
cb900f41 3970 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
3971 if (huge_pmd_unshare(mm, &address, ptep)) {
3972 pages++;
cb900f41 3973 spin_unlock(ptl);
39dde65c 3974 continue;
7da4d641 3975 }
a8bda28d
NH
3976 pte = huge_ptep_get(ptep);
3977 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3978 spin_unlock(ptl);
3979 continue;
3980 }
3981 if (unlikely(is_hugetlb_entry_migration(pte))) {
3982 swp_entry_t entry = pte_to_swp_entry(pte);
3983
3984 if (is_write_migration_entry(entry)) {
3985 pte_t newpte;
3986
3987 make_migration_entry_read(&entry);
3988 newpte = swp_entry_to_pte(entry);
3989 set_huge_pte_at(mm, address, ptep, newpte);
3990 pages++;
3991 }
3992 spin_unlock(ptl);
3993 continue;
3994 }
3995 if (!huge_pte_none(pte)) {
8f860591 3996 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 3997 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 3998 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 3999 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 4000 pages++;
8f860591 4001 }
cb900f41 4002 spin_unlock(ptl);
8f860591 4003 }
d833352a 4004 /*
c8c06efa 4005 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 4006 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 4007 * once we release i_mmap_rwsem, another task can do the final put_page
d833352a
MG
4008 * and that page table be reused and filled with junk.
4009 */
8f860591 4010 flush_tlb_range(vma, start, end);
34ee645e 4011 mmu_notifier_invalidate_range(mm, start, end);
83cde9e8 4012 i_mmap_unlock_write(vma->vm_file->f_mapping);
a5338093 4013 mmu_notifier_invalidate_range_end(mm, start, end);
7da4d641
PZ
4014
4015 return pages << h->order;
8f860591
ZY
4016}
4017
a1e78772
MG
4018int hugetlb_reserve_pages(struct inode *inode,
4019 long from, long to,
5a6fe125 4020 struct vm_area_struct *vma,
ca16d140 4021 vm_flags_t vm_flags)
e4e574b7 4022{
17c9d12e 4023 long ret, chg;
a5516438 4024 struct hstate *h = hstate_inode(inode);
90481622 4025 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 4026 struct resv_map *resv_map;
1c5ecae3 4027 long gbl_reserve;
e4e574b7 4028
17c9d12e
MG
4029 /*
4030 * Only apply hugepage reservation if asked. At fault time, an
4031 * attempt will be made for VM_NORESERVE to allocate a page
90481622 4032 * without using reserves
17c9d12e 4033 */
ca16d140 4034 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
4035 return 0;
4036
a1e78772
MG
4037 /*
4038 * Shared mappings base their reservation on the number of pages that
4039 * are already allocated on behalf of the file. Private mappings need
4040 * to reserve the full area even if read-only as mprotect() may be
4041 * called to make the mapping read-write. Assume !vma is a shm mapping
4042 */
9119a41e 4043 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 4044 resv_map = inode_resv_map(inode);
9119a41e 4045
1406ec9b 4046 chg = region_chg(resv_map, from, to);
9119a41e
JK
4047
4048 } else {
4049 resv_map = resv_map_alloc();
17c9d12e
MG
4050 if (!resv_map)
4051 return -ENOMEM;
4052
a1e78772 4053 chg = to - from;
84afd99b 4054
17c9d12e
MG
4055 set_vma_resv_map(vma, resv_map);
4056 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4057 }
4058
c50ac050
DH
4059 if (chg < 0) {
4060 ret = chg;
4061 goto out_err;
4062 }
8a630112 4063
1c5ecae3
MK
4064 /*
4065 * There must be enough pages in the subpool for the mapping. If
4066 * the subpool has a minimum size, there may be some global
4067 * reservations already in place (gbl_reserve).
4068 */
4069 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4070 if (gbl_reserve < 0) {
c50ac050
DH
4071 ret = -ENOSPC;
4072 goto out_err;
4073 }
5a6fe125
MG
4074
4075 /*
17c9d12e 4076 * Check enough hugepages are available for the reservation.
90481622 4077 * Hand the pages back to the subpool if there are not
5a6fe125 4078 */
1c5ecae3 4079 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 4080 if (ret < 0) {
1c5ecae3
MK
4081 /* put back original number of pages, chg */
4082 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 4083 goto out_err;
68842c9b 4084 }
17c9d12e
MG
4085
4086 /*
4087 * Account for the reservations made. Shared mappings record regions
4088 * that have reservations as they are shared by multiple VMAs.
4089 * When the last VMA disappears, the region map says how much
4090 * the reservation was and the page cache tells how much of
4091 * the reservation was consumed. Private mappings are per-VMA and
4092 * only the consumed reservations are tracked. When the VMA
4093 * disappears, the original reservation is the VMA size and the
4094 * consumed reservations are stored in the map. Hence, nothing
4095 * else has to be done for private mappings here
4096 */
33039678
MK
4097 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4098 long add = region_add(resv_map, from, to);
4099
4100 if (unlikely(chg > add)) {
4101 /*
4102 * pages in this range were added to the reserve
4103 * map between region_chg and region_add. This
4104 * indicates a race with alloc_huge_page. Adjust
4105 * the subpool and reserve counts modified above
4106 * based on the difference.
4107 */
4108 long rsv_adjust;
4109
4110 rsv_adjust = hugepage_subpool_put_pages(spool,
4111 chg - add);
4112 hugetlb_acct_memory(h, -rsv_adjust);
4113 }
4114 }
a43a8c39 4115 return 0;
c50ac050 4116out_err:
5e911373
MK
4117 if (!vma || vma->vm_flags & VM_MAYSHARE)
4118 region_abort(resv_map, from, to);
f031dd27
JK
4119 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4120 kref_put(&resv_map->refs, resv_map_release);
c50ac050 4121 return ret;
a43a8c39
KC
4122}
4123
b5cec28d
MK
4124long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4125 long freed)
a43a8c39 4126{
a5516438 4127 struct hstate *h = hstate_inode(inode);
4e35f483 4128 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 4129 long chg = 0;
90481622 4130 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 4131 long gbl_reserve;
45c682a6 4132
b5cec28d
MK
4133 if (resv_map) {
4134 chg = region_del(resv_map, start, end);
4135 /*
4136 * region_del() can fail in the rare case where a region
4137 * must be split and another region descriptor can not be
4138 * allocated. If end == LONG_MAX, it will not fail.
4139 */
4140 if (chg < 0)
4141 return chg;
4142 }
4143
45c682a6 4144 spin_lock(&inode->i_lock);
e4c6f8be 4145 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
4146 spin_unlock(&inode->i_lock);
4147
1c5ecae3
MK
4148 /*
4149 * If the subpool has a minimum size, the number of global
4150 * reservations to be released may be adjusted.
4151 */
4152 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4153 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
4154
4155 return 0;
a43a8c39 4156}
93f70f90 4157
3212b535
SC
4158#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4159static unsigned long page_table_shareable(struct vm_area_struct *svma,
4160 struct vm_area_struct *vma,
4161 unsigned long addr, pgoff_t idx)
4162{
4163 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4164 svma->vm_start;
4165 unsigned long sbase = saddr & PUD_MASK;
4166 unsigned long s_end = sbase + PUD_SIZE;
4167
4168 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
4169 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4170 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
4171
4172 /*
4173 * match the virtual addresses, permission and the alignment of the
4174 * page table page.
4175 */
4176 if (pmd_index(addr) != pmd_index(saddr) ||
4177 vm_flags != svm_flags ||
4178 sbase < svma->vm_start || svma->vm_end < s_end)
4179 return 0;
4180
4181 return saddr;
4182}
4183
31aafb45 4184static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
4185{
4186 unsigned long base = addr & PUD_MASK;
4187 unsigned long end = base + PUD_SIZE;
4188
4189 /*
4190 * check on proper vm_flags and page table alignment
4191 */
4192 if (vma->vm_flags & VM_MAYSHARE &&
4193 vma->vm_start <= base && end <= vma->vm_end)
31aafb45
NK
4194 return true;
4195 return false;
3212b535
SC
4196}
4197
4198/*
4199 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4200 * and returns the corresponding pte. While this is not necessary for the
4201 * !shared pmd case because we can allocate the pmd later as well, it makes the
4202 * code much cleaner. pmd allocation is essential for the shared case because
c8c06efa 4203 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3212b535
SC
4204 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4205 * bad pmd for sharing.
4206 */
4207pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4208{
4209 struct vm_area_struct *vma = find_vma(mm, addr);
4210 struct address_space *mapping = vma->vm_file->f_mapping;
4211 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4212 vma->vm_pgoff;
4213 struct vm_area_struct *svma;
4214 unsigned long saddr;
4215 pte_t *spte = NULL;
4216 pte_t *pte;
cb900f41 4217 spinlock_t *ptl;
3212b535
SC
4218
4219 if (!vma_shareable(vma, addr))
4220 return (pte_t *)pmd_alloc(mm, pud, addr);
4221
83cde9e8 4222 i_mmap_lock_write(mapping);
3212b535
SC
4223 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4224 if (svma == vma)
4225 continue;
4226
4227 saddr = page_table_shareable(svma, vma, addr, idx);
4228 if (saddr) {
4229 spte = huge_pte_offset(svma->vm_mm, saddr);
4230 if (spte) {
4231 get_page(virt_to_page(spte));
4232 break;
4233 }
4234 }
4235 }
4236
4237 if (!spte)
4238 goto out;
4239
cb900f41
KS
4240 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4241 spin_lock(ptl);
dc6c9a35 4242 if (pud_none(*pud)) {
3212b535
SC
4243 pud_populate(mm, pud,
4244 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 4245 mm_inc_nr_pmds(mm);
dc6c9a35 4246 } else {
3212b535 4247 put_page(virt_to_page(spte));
dc6c9a35 4248 }
cb900f41 4249 spin_unlock(ptl);
3212b535
SC
4250out:
4251 pte = (pte_t *)pmd_alloc(mm, pud, addr);
83cde9e8 4252 i_mmap_unlock_write(mapping);
3212b535
SC
4253 return pte;
4254}
4255
4256/*
4257 * unmap huge page backed by shared pte.
4258 *
4259 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4260 * indicated by page_count > 1, unmap is achieved by clearing pud and
4261 * decrementing the ref count. If count == 1, the pte page is not shared.
4262 *
cb900f41 4263 * called with page table lock held.
3212b535
SC
4264 *
4265 * returns: 1 successfully unmapped a shared pte page
4266 * 0 the underlying pte page is not shared, or it is the last user
4267 */
4268int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4269{
4270 pgd_t *pgd = pgd_offset(mm, *addr);
4271 pud_t *pud = pud_offset(pgd, *addr);
4272
4273 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4274 if (page_count(virt_to_page(ptep)) == 1)
4275 return 0;
4276
4277 pud_clear(pud);
4278 put_page(virt_to_page(ptep));
dc6c9a35 4279 mm_dec_nr_pmds(mm);
3212b535
SC
4280 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4281 return 1;
4282}
9e5fc74c
SC
4283#define want_pmd_share() (1)
4284#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4285pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4286{
4287 return NULL;
4288}
e81f2d22
ZZ
4289
4290int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4291{
4292 return 0;
4293}
9e5fc74c 4294#define want_pmd_share() (0)
3212b535
SC
4295#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4296
9e5fc74c
SC
4297#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4298pte_t *huge_pte_alloc(struct mm_struct *mm,
4299 unsigned long addr, unsigned long sz)
4300{
4301 pgd_t *pgd;
4302 pud_t *pud;
4303 pte_t *pte = NULL;
4304
4305 pgd = pgd_offset(mm, addr);
4306 pud = pud_alloc(mm, pgd, addr);
4307 if (pud) {
4308 if (sz == PUD_SIZE) {
4309 pte = (pte_t *)pud;
4310 } else {
4311 BUG_ON(sz != PMD_SIZE);
4312 if (want_pmd_share() && pud_none(*pud))
4313 pte = huge_pmd_share(mm, addr, pud);
4314 else
4315 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4316 }
4317 }
4318 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4319
4320 return pte;
4321}
4322
4323pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4324{
4325 pgd_t *pgd;
4326 pud_t *pud;
4327 pmd_t *pmd = NULL;
4328
4329 pgd = pgd_offset(mm, addr);
4330 if (pgd_present(*pgd)) {
4331 pud = pud_offset(pgd, addr);
4332 if (pud_present(*pud)) {
4333 if (pud_huge(*pud))
4334 return (pte_t *)pud;
4335 pmd = pmd_offset(pud, addr);
4336 }
4337 }
4338 return (pte_t *) pmd;
4339}
4340
61f77eda
NH
4341#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4342
4343/*
4344 * These functions are overwritable if your architecture needs its own
4345 * behavior.
4346 */
4347struct page * __weak
4348follow_huge_addr(struct mm_struct *mm, unsigned long address,
4349 int write)
4350{
4351 return ERR_PTR(-EINVAL);
4352}
4353
4354struct page * __weak
9e5fc74c 4355follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 4356 pmd_t *pmd, int flags)
9e5fc74c 4357{
e66f17ff
NH
4358 struct page *page = NULL;
4359 spinlock_t *ptl;
4360retry:
4361 ptl = pmd_lockptr(mm, pmd);
4362 spin_lock(ptl);
4363 /*
4364 * make sure that the address range covered by this pmd is not
4365 * unmapped from other threads.
4366 */
4367 if (!pmd_huge(*pmd))
4368 goto out;
4369 if (pmd_present(*pmd)) {
97534127 4370 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
4371 if (flags & FOLL_GET)
4372 get_page(page);
4373 } else {
4374 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4375 spin_unlock(ptl);
4376 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4377 goto retry;
4378 }
4379 /*
4380 * hwpoisoned entry is treated as no_page_table in
4381 * follow_page_mask().
4382 */
4383 }
4384out:
4385 spin_unlock(ptl);
9e5fc74c
SC
4386 return page;
4387}
4388
61f77eda 4389struct page * __weak
9e5fc74c 4390follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 4391 pud_t *pud, int flags)
9e5fc74c 4392{
e66f17ff
NH
4393 if (flags & FOLL_GET)
4394 return NULL;
9e5fc74c 4395
e66f17ff 4396 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
4397}
4398
d5bd9106
AK
4399#ifdef CONFIG_MEMORY_FAILURE
4400
93f70f90
NH
4401/*
4402 * This function is called from memory failure code.
4403 * Assume the caller holds page lock of the head page.
4404 */
6de2b1aa 4405int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
4406{
4407 struct hstate *h = page_hstate(hpage);
4408 int nid = page_to_nid(hpage);
6de2b1aa 4409 int ret = -EBUSY;
93f70f90
NH
4410
4411 spin_lock(&hugetlb_lock);
7e1f049e
NH
4412 /*
4413 * Just checking !page_huge_active is not enough, because that could be
4414 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4415 */
4416 if (!page_huge_active(hpage) && !page_count(hpage)) {
56f2fb14
NH
4417 /*
4418 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4419 * but dangling hpage->lru can trigger list-debug warnings
4420 * (this happens when we call unpoison_memory() on it),
4421 * so let it point to itself with list_del_init().
4422 */
4423 list_del_init(&hpage->lru);
8c6c2ecb 4424 set_page_refcounted(hpage);
6de2b1aa
NH
4425 h->free_huge_pages--;
4426 h->free_huge_pages_node[nid]--;
4427 ret = 0;
4428 }
93f70f90 4429 spin_unlock(&hugetlb_lock);
6de2b1aa 4430 return ret;
93f70f90 4431}
6de2b1aa 4432#endif
31caf665
NH
4433
4434bool isolate_huge_page(struct page *page, struct list_head *list)
4435{
bcc54222
NH
4436 bool ret = true;
4437
309381fe 4438 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4439 spin_lock(&hugetlb_lock);
bcc54222
NH
4440 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4441 ret = false;
4442 goto unlock;
4443 }
4444 clear_page_huge_active(page);
31caf665 4445 list_move_tail(&page->lru, list);
bcc54222 4446unlock:
31caf665 4447 spin_unlock(&hugetlb_lock);
bcc54222 4448 return ret;
31caf665
NH
4449}
4450
4451void putback_active_hugepage(struct page *page)
4452{
309381fe 4453 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4454 spin_lock(&hugetlb_lock);
bcc54222 4455 set_page_huge_active(page);
31caf665
NH
4456 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4457 spin_unlock(&hugetlb_lock);
4458 put_page(page);
4459}