]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/hugetlb.c
mm/hugetlb: compute/return the number of regions added by region_add()
[mirror_ubuntu-zesty-kernel.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
aa888a74 19#include <linux/bootmem.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
0fe6e20b 22#include <linux/rmap.h>
fd6a03ed
NH
23#include <linux/swap.h>
24#include <linux/swapops.h>
c8721bbb 25#include <linux/page-isolation.h>
8382d914 26#include <linux/jhash.h>
d6606683 27
63551ae0
DG
28#include <asm/page.h>
29#include <asm/pgtable.h>
24669e58 30#include <asm/tlb.h>
63551ae0 31
24669e58 32#include <linux/io.h>
63551ae0 33#include <linux/hugetlb.h>
9dd540e2 34#include <linux/hugetlb_cgroup.h>
9a305230 35#include <linux/node.h>
7835e98b 36#include "internal.h"
1da177e4 37
753162cd 38int hugepages_treat_as_movable;
a5516438 39
c3f38a38 40int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
41unsigned int default_hstate_idx;
42struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
43/*
44 * Minimum page order among possible hugepage sizes, set to a proper value
45 * at boot time.
46 */
47static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 48
53ba51d2
JT
49__initdata LIST_HEAD(huge_boot_pages);
50
e5ff2159
AK
51/* for command line parsing */
52static struct hstate * __initdata parsed_hstate;
53static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 54static unsigned long __initdata default_hstate_size;
e5ff2159 55
3935baa9 56/*
31caf665
NH
57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58 * free_huge_pages, and surplus_huge_pages.
3935baa9 59 */
c3f38a38 60DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 61
8382d914
DB
62/*
63 * Serializes faults on the same logical page. This is used to
64 * prevent spurious OOMs when the hugepage pool is fully utilized.
65 */
66static int num_fault_mutexes;
67static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
68
7ca02d0a
MK
69/* Forward declaration */
70static int hugetlb_acct_memory(struct hstate *h, long delta);
71
90481622
DG
72static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73{
74 bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76 spin_unlock(&spool->lock);
77
78 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
79 * remain, give up any reservations mased on minimum size and
80 * free the subpool */
81 if (free) {
82 if (spool->min_hpages != -1)
83 hugetlb_acct_memory(spool->hstate,
84 -spool->min_hpages);
90481622 85 kfree(spool);
7ca02d0a 86 }
90481622
DG
87}
88
7ca02d0a
MK
89struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90 long min_hpages)
90481622
DG
91{
92 struct hugepage_subpool *spool;
93
c6a91820 94 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
95 if (!spool)
96 return NULL;
97
98 spin_lock_init(&spool->lock);
99 spool->count = 1;
7ca02d0a
MK
100 spool->max_hpages = max_hpages;
101 spool->hstate = h;
102 spool->min_hpages = min_hpages;
103
104 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105 kfree(spool);
106 return NULL;
107 }
108 spool->rsv_hpages = min_hpages;
90481622
DG
109
110 return spool;
111}
112
113void hugepage_put_subpool(struct hugepage_subpool *spool)
114{
115 spin_lock(&spool->lock);
116 BUG_ON(!spool->count);
117 spool->count--;
118 unlock_or_release_subpool(spool);
119}
120
1c5ecae3
MK
121/*
122 * Subpool accounting for allocating and reserving pages.
123 * Return -ENOMEM if there are not enough resources to satisfy the
124 * the request. Otherwise, return the number of pages by which the
125 * global pools must be adjusted (upward). The returned value may
126 * only be different than the passed value (delta) in the case where
127 * a subpool minimum size must be manitained.
128 */
129static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
130 long delta)
131{
1c5ecae3 132 long ret = delta;
90481622
DG
133
134 if (!spool)
1c5ecae3 135 return ret;
90481622
DG
136
137 spin_lock(&spool->lock);
1c5ecae3
MK
138
139 if (spool->max_hpages != -1) { /* maximum size accounting */
140 if ((spool->used_hpages + delta) <= spool->max_hpages)
141 spool->used_hpages += delta;
142 else {
143 ret = -ENOMEM;
144 goto unlock_ret;
145 }
90481622 146 }
90481622 147
1c5ecae3
MK
148 if (spool->min_hpages != -1) { /* minimum size accounting */
149 if (delta > spool->rsv_hpages) {
150 /*
151 * Asking for more reserves than those already taken on
152 * behalf of subpool. Return difference.
153 */
154 ret = delta - spool->rsv_hpages;
155 spool->rsv_hpages = 0;
156 } else {
157 ret = 0; /* reserves already accounted for */
158 spool->rsv_hpages -= delta;
159 }
160 }
161
162unlock_ret:
163 spin_unlock(&spool->lock);
90481622
DG
164 return ret;
165}
166
1c5ecae3
MK
167/*
168 * Subpool accounting for freeing and unreserving pages.
169 * Return the number of global page reservations that must be dropped.
170 * The return value may only be different than the passed value (delta)
171 * in the case where a subpool minimum size must be maintained.
172 */
173static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
174 long delta)
175{
1c5ecae3
MK
176 long ret = delta;
177
90481622 178 if (!spool)
1c5ecae3 179 return delta;
90481622
DG
180
181 spin_lock(&spool->lock);
1c5ecae3
MK
182
183 if (spool->max_hpages != -1) /* maximum size accounting */
184 spool->used_hpages -= delta;
185
186 if (spool->min_hpages != -1) { /* minimum size accounting */
187 if (spool->rsv_hpages + delta <= spool->min_hpages)
188 ret = 0;
189 else
190 ret = spool->rsv_hpages + delta - spool->min_hpages;
191
192 spool->rsv_hpages += delta;
193 if (spool->rsv_hpages > spool->min_hpages)
194 spool->rsv_hpages = spool->min_hpages;
195 }
196
197 /*
198 * If hugetlbfs_put_super couldn't free spool due to an outstanding
199 * quota reference, free it now.
200 */
90481622 201 unlock_or_release_subpool(spool);
1c5ecae3
MK
202
203 return ret;
90481622
DG
204}
205
206static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
207{
208 return HUGETLBFS_SB(inode->i_sb)->spool;
209}
210
211static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
212{
496ad9aa 213 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
214}
215
96822904
AW
216/*
217 * Region tracking -- allows tracking of reservations and instantiated pages
218 * across the pages in a mapping.
84afd99b 219 *
1dd308a7
MK
220 * The region data structures are embedded into a resv_map and protected
221 * by a resv_map's lock. The set of regions within the resv_map represent
222 * reservations for huge pages, or huge pages that have already been
223 * instantiated within the map. The from and to elements are huge page
224 * indicies into the associated mapping. from indicates the starting index
225 * of the region. to represents the first index past the end of the region.
226 *
227 * For example, a file region structure with from == 0 and to == 4 represents
228 * four huge pages in a mapping. It is important to note that the to element
229 * represents the first element past the end of the region. This is used in
230 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
231 *
232 * Interval notation of the form [from, to) will be used to indicate that
233 * the endpoint from is inclusive and to is exclusive.
96822904
AW
234 */
235struct file_region {
236 struct list_head link;
237 long from;
238 long to;
239};
240
1dd308a7
MK
241/*
242 * Add the huge page range represented by [f, t) to the reserve
243 * map. Existing regions will be expanded to accommodate the
244 * specified range. We know only existing regions need to be
245 * expanded, because region_add is only called after region_chg
246 * with the same range. If a new file_region structure must
247 * be allocated, it is done in region_chg.
cf3ad20b
MK
248 *
249 * Return the number of new huge pages added to the map. This
250 * number is greater than or equal to zero.
1dd308a7 251 */
1406ec9b 252static long region_add(struct resv_map *resv, long f, long t)
96822904 253{
1406ec9b 254 struct list_head *head = &resv->regions;
96822904 255 struct file_region *rg, *nrg, *trg;
cf3ad20b 256 long add = 0;
96822904 257
7b24d861 258 spin_lock(&resv->lock);
96822904
AW
259 /* Locate the region we are either in or before. */
260 list_for_each_entry(rg, head, link)
261 if (f <= rg->to)
262 break;
263
264 /* Round our left edge to the current segment if it encloses us. */
265 if (f > rg->from)
266 f = rg->from;
267
268 /* Check for and consume any regions we now overlap with. */
269 nrg = rg;
270 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
271 if (&rg->link == head)
272 break;
273 if (rg->from > t)
274 break;
275
276 /* If this area reaches higher then extend our area to
277 * include it completely. If this is not the first area
278 * which we intend to reuse, free it. */
279 if (rg->to > t)
280 t = rg->to;
281 if (rg != nrg) {
cf3ad20b
MK
282 /* Decrement return value by the deleted range.
283 * Another range will span this area so that by
284 * end of routine add will be >= zero
285 */
286 add -= (rg->to - rg->from);
96822904
AW
287 list_del(&rg->link);
288 kfree(rg);
289 }
290 }
cf3ad20b
MK
291
292 add += (nrg->from - f); /* Added to beginning of region */
96822904 293 nrg->from = f;
cf3ad20b 294 add += t - nrg->to; /* Added to end of region */
96822904 295 nrg->to = t;
cf3ad20b 296
7b24d861 297 spin_unlock(&resv->lock);
cf3ad20b
MK
298 VM_BUG_ON(add < 0);
299 return add;
96822904
AW
300}
301
1dd308a7
MK
302/*
303 * Examine the existing reserve map and determine how many
304 * huge pages in the specified range [f, t) are NOT currently
305 * represented. This routine is called before a subsequent
306 * call to region_add that will actually modify the reserve
307 * map to add the specified range [f, t). region_chg does
308 * not change the number of huge pages represented by the
309 * map. However, if the existing regions in the map can not
310 * be expanded to represent the new range, a new file_region
311 * structure is added to the map as a placeholder. This is
312 * so that the subsequent region_add call will have all the
313 * regions it needs and will not fail.
314 *
315 * Returns the number of huge pages that need to be added
316 * to the existing reservation map for the range [f, t).
317 * This number is greater or equal to zero. -ENOMEM is
318 * returned if a new file_region structure is needed and can
319 * not be allocated.
320 */
1406ec9b 321static long region_chg(struct resv_map *resv, long f, long t)
96822904 322{
1406ec9b 323 struct list_head *head = &resv->regions;
7b24d861 324 struct file_region *rg, *nrg = NULL;
96822904
AW
325 long chg = 0;
326
7b24d861
DB
327retry:
328 spin_lock(&resv->lock);
96822904
AW
329 /* Locate the region we are before or in. */
330 list_for_each_entry(rg, head, link)
331 if (f <= rg->to)
332 break;
333
334 /* If we are below the current region then a new region is required.
335 * Subtle, allocate a new region at the position but make it zero
336 * size such that we can guarantee to record the reservation. */
337 if (&rg->link == head || t < rg->from) {
7b24d861
DB
338 if (!nrg) {
339 spin_unlock(&resv->lock);
340 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
341 if (!nrg)
342 return -ENOMEM;
343
344 nrg->from = f;
345 nrg->to = f;
346 INIT_LIST_HEAD(&nrg->link);
347 goto retry;
348 }
96822904 349
7b24d861
DB
350 list_add(&nrg->link, rg->link.prev);
351 chg = t - f;
352 goto out_nrg;
96822904
AW
353 }
354
355 /* Round our left edge to the current segment if it encloses us. */
356 if (f > rg->from)
357 f = rg->from;
358 chg = t - f;
359
360 /* Check for and consume any regions we now overlap with. */
361 list_for_each_entry(rg, rg->link.prev, link) {
362 if (&rg->link == head)
363 break;
364 if (rg->from > t)
7b24d861 365 goto out;
96822904 366
25985edc 367 /* We overlap with this area, if it extends further than
96822904
AW
368 * us then we must extend ourselves. Account for its
369 * existing reservation. */
370 if (rg->to > t) {
371 chg += rg->to - t;
372 t = rg->to;
373 }
374 chg -= rg->to - rg->from;
375 }
7b24d861
DB
376
377out:
378 spin_unlock(&resv->lock);
379 /* We already know we raced and no longer need the new region */
380 kfree(nrg);
381 return chg;
382out_nrg:
383 spin_unlock(&resv->lock);
96822904
AW
384 return chg;
385}
386
1dd308a7
MK
387/*
388 * Truncate the reserve map at index 'end'. Modify/truncate any
389 * region which contains end. Delete any regions past end.
390 * Return the number of huge pages removed from the map.
391 */
1406ec9b 392static long region_truncate(struct resv_map *resv, long end)
96822904 393{
1406ec9b 394 struct list_head *head = &resv->regions;
96822904
AW
395 struct file_region *rg, *trg;
396 long chg = 0;
397
7b24d861 398 spin_lock(&resv->lock);
96822904
AW
399 /* Locate the region we are either in or before. */
400 list_for_each_entry(rg, head, link)
401 if (end <= rg->to)
402 break;
403 if (&rg->link == head)
7b24d861 404 goto out;
96822904
AW
405
406 /* If we are in the middle of a region then adjust it. */
407 if (end > rg->from) {
408 chg = rg->to - end;
409 rg->to = end;
410 rg = list_entry(rg->link.next, typeof(*rg), link);
411 }
412
413 /* Drop any remaining regions. */
414 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
415 if (&rg->link == head)
416 break;
417 chg += rg->to - rg->from;
418 list_del(&rg->link);
419 kfree(rg);
420 }
7b24d861
DB
421
422out:
423 spin_unlock(&resv->lock);
96822904
AW
424 return chg;
425}
426
1dd308a7
MK
427/*
428 * Count and return the number of huge pages in the reserve map
429 * that intersect with the range [f, t).
430 */
1406ec9b 431static long region_count(struct resv_map *resv, long f, long t)
84afd99b 432{
1406ec9b 433 struct list_head *head = &resv->regions;
84afd99b
AW
434 struct file_region *rg;
435 long chg = 0;
436
7b24d861 437 spin_lock(&resv->lock);
84afd99b
AW
438 /* Locate each segment we overlap with, and count that overlap. */
439 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
440 long seg_from;
441 long seg_to;
84afd99b
AW
442
443 if (rg->to <= f)
444 continue;
445 if (rg->from >= t)
446 break;
447
448 seg_from = max(rg->from, f);
449 seg_to = min(rg->to, t);
450
451 chg += seg_to - seg_from;
452 }
7b24d861 453 spin_unlock(&resv->lock);
84afd99b
AW
454
455 return chg;
456}
457
e7c4b0bf
AW
458/*
459 * Convert the address within this vma to the page offset within
460 * the mapping, in pagecache page units; huge pages here.
461 */
a5516438
AK
462static pgoff_t vma_hugecache_offset(struct hstate *h,
463 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 464{
a5516438
AK
465 return ((address - vma->vm_start) >> huge_page_shift(h)) +
466 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
467}
468
0fe6e20b
NH
469pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
470 unsigned long address)
471{
472 return vma_hugecache_offset(hstate_vma(vma), vma, address);
473}
474
08fba699
MG
475/*
476 * Return the size of the pages allocated when backing a VMA. In the majority
477 * cases this will be same size as used by the page table entries.
478 */
479unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
480{
481 struct hstate *hstate;
482
483 if (!is_vm_hugetlb_page(vma))
484 return PAGE_SIZE;
485
486 hstate = hstate_vma(vma);
487
2415cf12 488 return 1UL << huge_page_shift(hstate);
08fba699 489}
f340ca0f 490EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 491
3340289d
MG
492/*
493 * Return the page size being used by the MMU to back a VMA. In the majority
494 * of cases, the page size used by the kernel matches the MMU size. On
495 * architectures where it differs, an architecture-specific version of this
496 * function is required.
497 */
498#ifndef vma_mmu_pagesize
499unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
500{
501 return vma_kernel_pagesize(vma);
502}
503#endif
504
84afd99b
AW
505/*
506 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
507 * bits of the reservation map pointer, which are always clear due to
508 * alignment.
509 */
510#define HPAGE_RESV_OWNER (1UL << 0)
511#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 512#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 513
a1e78772
MG
514/*
515 * These helpers are used to track how many pages are reserved for
516 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
517 * is guaranteed to have their future faults succeed.
518 *
519 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
520 * the reserve counters are updated with the hugetlb_lock held. It is safe
521 * to reset the VMA at fork() time as it is not in use yet and there is no
522 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
523 *
524 * The private mapping reservation is represented in a subtly different
525 * manner to a shared mapping. A shared mapping has a region map associated
526 * with the underlying file, this region map represents the backing file
527 * pages which have ever had a reservation assigned which this persists even
528 * after the page is instantiated. A private mapping has a region map
529 * associated with the original mmap which is attached to all VMAs which
530 * reference it, this region map represents those offsets which have consumed
531 * reservation ie. where pages have been instantiated.
a1e78772 532 */
e7c4b0bf
AW
533static unsigned long get_vma_private_data(struct vm_area_struct *vma)
534{
535 return (unsigned long)vma->vm_private_data;
536}
537
538static void set_vma_private_data(struct vm_area_struct *vma,
539 unsigned long value)
540{
541 vma->vm_private_data = (void *)value;
542}
543
9119a41e 544struct resv_map *resv_map_alloc(void)
84afd99b
AW
545{
546 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
547 if (!resv_map)
548 return NULL;
549
550 kref_init(&resv_map->refs);
7b24d861 551 spin_lock_init(&resv_map->lock);
84afd99b
AW
552 INIT_LIST_HEAD(&resv_map->regions);
553
554 return resv_map;
555}
556
9119a41e 557void resv_map_release(struct kref *ref)
84afd99b
AW
558{
559 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
560
561 /* Clear out any active regions before we release the map. */
1406ec9b 562 region_truncate(resv_map, 0);
84afd99b
AW
563 kfree(resv_map);
564}
565
4e35f483
JK
566static inline struct resv_map *inode_resv_map(struct inode *inode)
567{
568 return inode->i_mapping->private_data;
569}
570
84afd99b 571static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 572{
81d1b09c 573 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
574 if (vma->vm_flags & VM_MAYSHARE) {
575 struct address_space *mapping = vma->vm_file->f_mapping;
576 struct inode *inode = mapping->host;
577
578 return inode_resv_map(inode);
579
580 } else {
84afd99b
AW
581 return (struct resv_map *)(get_vma_private_data(vma) &
582 ~HPAGE_RESV_MASK);
4e35f483 583 }
a1e78772
MG
584}
585
84afd99b 586static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 587{
81d1b09c
SL
588 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
589 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 590
84afd99b
AW
591 set_vma_private_data(vma, (get_vma_private_data(vma) &
592 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
593}
594
595static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
596{
81d1b09c
SL
597 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
598 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
599
600 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
601}
602
603static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
604{
81d1b09c 605 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
606
607 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
608}
609
04f2cbe3 610/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
611void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
612{
81d1b09c 613 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 614 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
615 vma->vm_private_data = (void *)0;
616}
617
618/* Returns true if the VMA has associated reserve pages */
af0ed73e 619static int vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 620{
af0ed73e
JK
621 if (vma->vm_flags & VM_NORESERVE) {
622 /*
623 * This address is already reserved by other process(chg == 0),
624 * so, we should decrement reserved count. Without decrementing,
625 * reserve count remains after releasing inode, because this
626 * allocated page will go into page cache and is regarded as
627 * coming from reserved pool in releasing step. Currently, we
628 * don't have any other solution to deal with this situation
629 * properly, so add work-around here.
630 */
631 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
632 return 1;
633 else
634 return 0;
635 }
a63884e9
JK
636
637 /* Shared mappings always use reserves */
f83a275d 638 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51 639 return 1;
a63884e9
JK
640
641 /*
642 * Only the process that called mmap() has reserves for
643 * private mappings.
644 */
7f09ca51
MG
645 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
646 return 1;
a63884e9 647
7f09ca51 648 return 0;
a1e78772
MG
649}
650
a5516438 651static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
652{
653 int nid = page_to_nid(page);
0edaecfa 654 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
655 h->free_huge_pages++;
656 h->free_huge_pages_node[nid]++;
1da177e4
LT
657}
658
bf50bab2
NH
659static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
660{
661 struct page *page;
662
c8721bbb
NH
663 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
664 if (!is_migrate_isolate_page(page))
665 break;
666 /*
667 * if 'non-isolated free hugepage' not found on the list,
668 * the allocation fails.
669 */
670 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 671 return NULL;
0edaecfa 672 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 673 set_page_refcounted(page);
bf50bab2
NH
674 h->free_huge_pages--;
675 h->free_huge_pages_node[nid]--;
676 return page;
677}
678
86cdb465
NH
679/* Movability of hugepages depends on migration support. */
680static inline gfp_t htlb_alloc_mask(struct hstate *h)
681{
100873d7 682 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
86cdb465
NH
683 return GFP_HIGHUSER_MOVABLE;
684 else
685 return GFP_HIGHUSER;
686}
687
a5516438
AK
688static struct page *dequeue_huge_page_vma(struct hstate *h,
689 struct vm_area_struct *vma,
af0ed73e
JK
690 unsigned long address, int avoid_reserve,
691 long chg)
1da177e4 692{
b1c12cbc 693 struct page *page = NULL;
480eccf9 694 struct mempolicy *mpol;
19770b32 695 nodemask_t *nodemask;
c0ff7453 696 struct zonelist *zonelist;
dd1a239f
MG
697 struct zone *zone;
698 struct zoneref *z;
cc9a6c87 699 unsigned int cpuset_mems_cookie;
1da177e4 700
a1e78772
MG
701 /*
702 * A child process with MAP_PRIVATE mappings created by their parent
703 * have no page reserves. This check ensures that reservations are
704 * not "stolen". The child may still get SIGKILLed
705 */
af0ed73e 706 if (!vma_has_reserves(vma, chg) &&
a5516438 707 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 708 goto err;
a1e78772 709
04f2cbe3 710 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 711 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 712 goto err;
04f2cbe3 713
9966c4bb 714retry_cpuset:
d26914d1 715 cpuset_mems_cookie = read_mems_allowed_begin();
9966c4bb 716 zonelist = huge_zonelist(vma, address,
86cdb465 717 htlb_alloc_mask(h), &mpol, &nodemask);
9966c4bb 718
19770b32
MG
719 for_each_zone_zonelist_nodemask(zone, z, zonelist,
720 MAX_NR_ZONES - 1, nodemask) {
344736f2 721 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
bf50bab2
NH
722 page = dequeue_huge_page_node(h, zone_to_nid(zone));
723 if (page) {
af0ed73e
JK
724 if (avoid_reserve)
725 break;
726 if (!vma_has_reserves(vma, chg))
727 break;
728
07443a85 729 SetPagePrivate(page);
af0ed73e 730 h->resv_huge_pages--;
bf50bab2
NH
731 break;
732 }
3abf7afd 733 }
1da177e4 734 }
cc9a6c87 735
52cd3b07 736 mpol_cond_put(mpol);
d26914d1 737 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 738 goto retry_cpuset;
1da177e4 739 return page;
cc9a6c87
MG
740
741err:
cc9a6c87 742 return NULL;
1da177e4
LT
743}
744
1cac6f2c
LC
745/*
746 * common helper functions for hstate_next_node_to_{alloc|free}.
747 * We may have allocated or freed a huge page based on a different
748 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
749 * be outside of *nodes_allowed. Ensure that we use an allowed
750 * node for alloc or free.
751 */
752static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
753{
754 nid = next_node(nid, *nodes_allowed);
755 if (nid == MAX_NUMNODES)
756 nid = first_node(*nodes_allowed);
757 VM_BUG_ON(nid >= MAX_NUMNODES);
758
759 return nid;
760}
761
762static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
763{
764 if (!node_isset(nid, *nodes_allowed))
765 nid = next_node_allowed(nid, nodes_allowed);
766 return nid;
767}
768
769/*
770 * returns the previously saved node ["this node"] from which to
771 * allocate a persistent huge page for the pool and advance the
772 * next node from which to allocate, handling wrap at end of node
773 * mask.
774 */
775static int hstate_next_node_to_alloc(struct hstate *h,
776 nodemask_t *nodes_allowed)
777{
778 int nid;
779
780 VM_BUG_ON(!nodes_allowed);
781
782 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
783 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
784
785 return nid;
786}
787
788/*
789 * helper for free_pool_huge_page() - return the previously saved
790 * node ["this node"] from which to free a huge page. Advance the
791 * next node id whether or not we find a free huge page to free so
792 * that the next attempt to free addresses the next node.
793 */
794static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
795{
796 int nid;
797
798 VM_BUG_ON(!nodes_allowed);
799
800 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
801 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
802
803 return nid;
804}
805
806#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
807 for (nr_nodes = nodes_weight(*mask); \
808 nr_nodes > 0 && \
809 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
810 nr_nodes--)
811
812#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
813 for (nr_nodes = nodes_weight(*mask); \
814 nr_nodes > 0 && \
815 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
816 nr_nodes--)
817
944d9fec
LC
818#if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
819static void destroy_compound_gigantic_page(struct page *page,
820 unsigned long order)
821{
822 int i;
823 int nr_pages = 1 << order;
824 struct page *p = page + 1;
825
826 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
827 __ClearPageTail(p);
828 set_page_refcounted(p);
829 p->first_page = NULL;
830 }
831
832 set_compound_order(page, 0);
833 __ClearPageHead(page);
834}
835
836static void free_gigantic_page(struct page *page, unsigned order)
837{
838 free_contig_range(page_to_pfn(page), 1 << order);
839}
840
841static int __alloc_gigantic_page(unsigned long start_pfn,
842 unsigned long nr_pages)
843{
844 unsigned long end_pfn = start_pfn + nr_pages;
845 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
846}
847
848static bool pfn_range_valid_gigantic(unsigned long start_pfn,
849 unsigned long nr_pages)
850{
851 unsigned long i, end_pfn = start_pfn + nr_pages;
852 struct page *page;
853
854 for (i = start_pfn; i < end_pfn; i++) {
855 if (!pfn_valid(i))
856 return false;
857
858 page = pfn_to_page(i);
859
860 if (PageReserved(page))
861 return false;
862
863 if (page_count(page) > 0)
864 return false;
865
866 if (PageHuge(page))
867 return false;
868 }
869
870 return true;
871}
872
873static bool zone_spans_last_pfn(const struct zone *zone,
874 unsigned long start_pfn, unsigned long nr_pages)
875{
876 unsigned long last_pfn = start_pfn + nr_pages - 1;
877 return zone_spans_pfn(zone, last_pfn);
878}
879
880static struct page *alloc_gigantic_page(int nid, unsigned order)
881{
882 unsigned long nr_pages = 1 << order;
883 unsigned long ret, pfn, flags;
884 struct zone *z;
885
886 z = NODE_DATA(nid)->node_zones;
887 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
888 spin_lock_irqsave(&z->lock, flags);
889
890 pfn = ALIGN(z->zone_start_pfn, nr_pages);
891 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
892 if (pfn_range_valid_gigantic(pfn, nr_pages)) {
893 /*
894 * We release the zone lock here because
895 * alloc_contig_range() will also lock the zone
896 * at some point. If there's an allocation
897 * spinning on this lock, it may win the race
898 * and cause alloc_contig_range() to fail...
899 */
900 spin_unlock_irqrestore(&z->lock, flags);
901 ret = __alloc_gigantic_page(pfn, nr_pages);
902 if (!ret)
903 return pfn_to_page(pfn);
904 spin_lock_irqsave(&z->lock, flags);
905 }
906 pfn += nr_pages;
907 }
908
909 spin_unlock_irqrestore(&z->lock, flags);
910 }
911
912 return NULL;
913}
914
915static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
916static void prep_compound_gigantic_page(struct page *page, unsigned long order);
917
918static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
919{
920 struct page *page;
921
922 page = alloc_gigantic_page(nid, huge_page_order(h));
923 if (page) {
924 prep_compound_gigantic_page(page, huge_page_order(h));
925 prep_new_huge_page(h, page, nid);
926 }
927
928 return page;
929}
930
931static int alloc_fresh_gigantic_page(struct hstate *h,
932 nodemask_t *nodes_allowed)
933{
934 struct page *page = NULL;
935 int nr_nodes, node;
936
937 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
938 page = alloc_fresh_gigantic_page_node(h, node);
939 if (page)
940 return 1;
941 }
942
943 return 0;
944}
945
946static inline bool gigantic_page_supported(void) { return true; }
947#else
948static inline bool gigantic_page_supported(void) { return false; }
949static inline void free_gigantic_page(struct page *page, unsigned order) { }
950static inline void destroy_compound_gigantic_page(struct page *page,
951 unsigned long order) { }
952static inline int alloc_fresh_gigantic_page(struct hstate *h,
953 nodemask_t *nodes_allowed) { return 0; }
954#endif
955
a5516438 956static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
957{
958 int i;
a5516438 959
944d9fec
LC
960 if (hstate_is_gigantic(h) && !gigantic_page_supported())
961 return;
18229df5 962
a5516438
AK
963 h->nr_huge_pages--;
964 h->nr_huge_pages_node[page_to_nid(page)]--;
965 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
966 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
967 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
968 1 << PG_active | 1 << PG_private |
969 1 << PG_writeback);
6af2acb6 970 }
309381fe 971 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
6af2acb6
AL
972 set_compound_page_dtor(page, NULL);
973 set_page_refcounted(page);
944d9fec
LC
974 if (hstate_is_gigantic(h)) {
975 destroy_compound_gigantic_page(page, huge_page_order(h));
976 free_gigantic_page(page, huge_page_order(h));
977 } else {
978 arch_release_hugepage(page);
979 __free_pages(page, huge_page_order(h));
980 }
6af2acb6
AL
981}
982
e5ff2159
AK
983struct hstate *size_to_hstate(unsigned long size)
984{
985 struct hstate *h;
986
987 for_each_hstate(h) {
988 if (huge_page_size(h) == size)
989 return h;
990 }
991 return NULL;
992}
993
bcc54222
NH
994/*
995 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
996 * to hstate->hugepage_activelist.)
997 *
998 * This function can be called for tail pages, but never returns true for them.
999 */
1000bool page_huge_active(struct page *page)
1001{
1002 VM_BUG_ON_PAGE(!PageHuge(page), page);
1003 return PageHead(page) && PagePrivate(&page[1]);
1004}
1005
1006/* never called for tail page */
1007static void set_page_huge_active(struct page *page)
1008{
1009 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1010 SetPagePrivate(&page[1]);
1011}
1012
1013static void clear_page_huge_active(struct page *page)
1014{
1015 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1016 ClearPagePrivate(&page[1]);
1017}
1018
8f1d26d0 1019void free_huge_page(struct page *page)
27a85ef1 1020{
a5516438
AK
1021 /*
1022 * Can't pass hstate in here because it is called from the
1023 * compound page destructor.
1024 */
e5ff2159 1025 struct hstate *h = page_hstate(page);
7893d1d5 1026 int nid = page_to_nid(page);
90481622
DG
1027 struct hugepage_subpool *spool =
1028 (struct hugepage_subpool *)page_private(page);
07443a85 1029 bool restore_reserve;
27a85ef1 1030
e5df70ab 1031 set_page_private(page, 0);
23be7468 1032 page->mapping = NULL;
7893d1d5 1033 BUG_ON(page_count(page));
0fe6e20b 1034 BUG_ON(page_mapcount(page));
07443a85 1035 restore_reserve = PagePrivate(page);
16c794b4 1036 ClearPagePrivate(page);
27a85ef1 1037
1c5ecae3
MK
1038 /*
1039 * A return code of zero implies that the subpool will be under its
1040 * minimum size if the reservation is not restored after page is free.
1041 * Therefore, force restore_reserve operation.
1042 */
1043 if (hugepage_subpool_put_pages(spool, 1) == 0)
1044 restore_reserve = true;
1045
27a85ef1 1046 spin_lock(&hugetlb_lock);
bcc54222 1047 clear_page_huge_active(page);
6d76dcf4
AK
1048 hugetlb_cgroup_uncharge_page(hstate_index(h),
1049 pages_per_huge_page(h), page);
07443a85
JK
1050 if (restore_reserve)
1051 h->resv_huge_pages++;
1052
944d9fec 1053 if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1054 /* remove the page from active list */
1055 list_del(&page->lru);
a5516438
AK
1056 update_and_free_page(h, page);
1057 h->surplus_huge_pages--;
1058 h->surplus_huge_pages_node[nid]--;
7893d1d5 1059 } else {
5d3a551c 1060 arch_clear_hugepage_flags(page);
a5516438 1061 enqueue_huge_page(h, page);
7893d1d5 1062 }
27a85ef1
DG
1063 spin_unlock(&hugetlb_lock);
1064}
1065
a5516438 1066static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1067{
0edaecfa 1068 INIT_LIST_HEAD(&page->lru);
b7ba30c6
AK
1069 set_compound_page_dtor(page, free_huge_page);
1070 spin_lock(&hugetlb_lock);
9dd540e2 1071 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1072 h->nr_huge_pages++;
1073 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
1074 spin_unlock(&hugetlb_lock);
1075 put_page(page); /* free it into the hugepage allocator */
1076}
1077
2906dd52 1078static void prep_compound_gigantic_page(struct page *page, unsigned long order)
20a0307c
WF
1079{
1080 int i;
1081 int nr_pages = 1 << order;
1082 struct page *p = page + 1;
1083
1084 /* we rely on prep_new_huge_page to set the destructor */
1085 set_compound_order(page, order);
1086 __SetPageHead(page);
ef5a22be 1087 __ClearPageReserved(page);
20a0307c 1088 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1089 /*
1090 * For gigantic hugepages allocated through bootmem at
1091 * boot, it's safer to be consistent with the not-gigantic
1092 * hugepages and clear the PG_reserved bit from all tail pages
1093 * too. Otherwse drivers using get_user_pages() to access tail
1094 * pages may get the reference counting wrong if they see
1095 * PG_reserved set on a tail page (despite the head page not
1096 * having PG_reserved set). Enforcing this consistency between
1097 * head and tail pages allows drivers to optimize away a check
1098 * on the head page when they need know if put_page() is needed
1099 * after get_user_pages().
1100 */
1101 __ClearPageReserved(p);
58a84aa9 1102 set_page_count(p, 0);
20a0307c 1103 p->first_page = page;
44fc8057
DR
1104 /* Make sure p->first_page is always valid for PageTail() */
1105 smp_wmb();
1106 __SetPageTail(p);
20a0307c
WF
1107 }
1108}
1109
7795912c
AM
1110/*
1111 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1112 * transparent huge pages. See the PageTransHuge() documentation for more
1113 * details.
1114 */
20a0307c
WF
1115int PageHuge(struct page *page)
1116{
20a0307c
WF
1117 if (!PageCompound(page))
1118 return 0;
1119
1120 page = compound_head(page);
758f66a2 1121 return get_compound_page_dtor(page) == free_huge_page;
20a0307c 1122}
43131e14
NH
1123EXPORT_SYMBOL_GPL(PageHuge);
1124
27c73ae7
AA
1125/*
1126 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1127 * normal or transparent huge pages.
1128 */
1129int PageHeadHuge(struct page *page_head)
1130{
27c73ae7
AA
1131 if (!PageHead(page_head))
1132 return 0;
1133
758f66a2 1134 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1135}
27c73ae7 1136
13d60f4b
ZY
1137pgoff_t __basepage_index(struct page *page)
1138{
1139 struct page *page_head = compound_head(page);
1140 pgoff_t index = page_index(page_head);
1141 unsigned long compound_idx;
1142
1143 if (!PageHuge(page_head))
1144 return page_index(page);
1145
1146 if (compound_order(page_head) >= MAX_ORDER)
1147 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1148 else
1149 compound_idx = page - page_head;
1150
1151 return (index << compound_order(page_head)) + compound_idx;
1152}
1153
a5516438 1154static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 1155{
1da177e4 1156 struct page *page;
f96efd58 1157
6484eb3e 1158 page = alloc_pages_exact_node(nid,
86cdb465 1159 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
551883ae 1160 __GFP_REPEAT|__GFP_NOWARN,
a5516438 1161 huge_page_order(h));
1da177e4 1162 if (page) {
7f2e9525 1163 if (arch_prepare_hugepage(page)) {
caff3a2c 1164 __free_pages(page, huge_page_order(h));
7b8ee84d 1165 return NULL;
7f2e9525 1166 }
a5516438 1167 prep_new_huge_page(h, page, nid);
1da177e4 1168 }
63b4613c
NA
1169
1170 return page;
1171}
1172
b2261026
JK
1173static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1174{
1175 struct page *page;
1176 int nr_nodes, node;
1177 int ret = 0;
1178
1179 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1180 page = alloc_fresh_huge_page_node(h, node);
1181 if (page) {
1182 ret = 1;
1183 break;
1184 }
1185 }
1186
1187 if (ret)
1188 count_vm_event(HTLB_BUDDY_PGALLOC);
1189 else
1190 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1191
1192 return ret;
1193}
1194
e8c5c824
LS
1195/*
1196 * Free huge page from pool from next node to free.
1197 * Attempt to keep persistent huge pages more or less
1198 * balanced over allowed nodes.
1199 * Called with hugetlb_lock locked.
1200 */
6ae11b27
LS
1201static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1202 bool acct_surplus)
e8c5c824 1203{
b2261026 1204 int nr_nodes, node;
e8c5c824
LS
1205 int ret = 0;
1206
b2261026 1207 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1208 /*
1209 * If we're returning unused surplus pages, only examine
1210 * nodes with surplus pages.
1211 */
b2261026
JK
1212 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1213 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1214 struct page *page =
b2261026 1215 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1216 struct page, lru);
1217 list_del(&page->lru);
1218 h->free_huge_pages--;
b2261026 1219 h->free_huge_pages_node[node]--;
685f3457
LS
1220 if (acct_surplus) {
1221 h->surplus_huge_pages--;
b2261026 1222 h->surplus_huge_pages_node[node]--;
685f3457 1223 }
e8c5c824
LS
1224 update_and_free_page(h, page);
1225 ret = 1;
9a76db09 1226 break;
e8c5c824 1227 }
b2261026 1228 }
e8c5c824
LS
1229
1230 return ret;
1231}
1232
c8721bbb
NH
1233/*
1234 * Dissolve a given free hugepage into free buddy pages. This function does
1235 * nothing for in-use (including surplus) hugepages.
1236 */
1237static void dissolve_free_huge_page(struct page *page)
1238{
1239 spin_lock(&hugetlb_lock);
1240 if (PageHuge(page) && !page_count(page)) {
1241 struct hstate *h = page_hstate(page);
1242 int nid = page_to_nid(page);
1243 list_del(&page->lru);
1244 h->free_huge_pages--;
1245 h->free_huge_pages_node[nid]--;
1246 update_and_free_page(h, page);
1247 }
1248 spin_unlock(&hugetlb_lock);
1249}
1250
1251/*
1252 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1253 * make specified memory blocks removable from the system.
1254 * Note that start_pfn should aligned with (minimum) hugepage size.
1255 */
1256void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1257{
c8721bbb 1258 unsigned long pfn;
c8721bbb 1259
d0177639
LZ
1260 if (!hugepages_supported())
1261 return;
1262
641844f5
NH
1263 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1264 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
c8721bbb
NH
1265 dissolve_free_huge_page(pfn_to_page(pfn));
1266}
1267
bf50bab2 1268static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
1269{
1270 struct page *page;
bf50bab2 1271 unsigned int r_nid;
7893d1d5 1272
bae7f4ae 1273 if (hstate_is_gigantic(h))
aa888a74
AK
1274 return NULL;
1275
d1c3fb1f
NA
1276 /*
1277 * Assume we will successfully allocate the surplus page to
1278 * prevent racing processes from causing the surplus to exceed
1279 * overcommit
1280 *
1281 * This however introduces a different race, where a process B
1282 * tries to grow the static hugepage pool while alloc_pages() is
1283 * called by process A. B will only examine the per-node
1284 * counters in determining if surplus huge pages can be
1285 * converted to normal huge pages in adjust_pool_surplus(). A
1286 * won't be able to increment the per-node counter, until the
1287 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1288 * no more huge pages can be converted from surplus to normal
1289 * state (and doesn't try to convert again). Thus, we have a
1290 * case where a surplus huge page exists, the pool is grown, and
1291 * the surplus huge page still exists after, even though it
1292 * should just have been converted to a normal huge page. This
1293 * does not leak memory, though, as the hugepage will be freed
1294 * once it is out of use. It also does not allow the counters to
1295 * go out of whack in adjust_pool_surplus() as we don't modify
1296 * the node values until we've gotten the hugepage and only the
1297 * per-node value is checked there.
1298 */
1299 spin_lock(&hugetlb_lock);
a5516438 1300 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
1301 spin_unlock(&hugetlb_lock);
1302 return NULL;
1303 } else {
a5516438
AK
1304 h->nr_huge_pages++;
1305 h->surplus_huge_pages++;
d1c3fb1f
NA
1306 }
1307 spin_unlock(&hugetlb_lock);
1308
bf50bab2 1309 if (nid == NUMA_NO_NODE)
86cdb465 1310 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
bf50bab2
NH
1311 __GFP_REPEAT|__GFP_NOWARN,
1312 huge_page_order(h));
1313 else
1314 page = alloc_pages_exact_node(nid,
86cdb465 1315 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
bf50bab2 1316 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f 1317
caff3a2c
GS
1318 if (page && arch_prepare_hugepage(page)) {
1319 __free_pages(page, huge_page_order(h));
ea5768c7 1320 page = NULL;
caff3a2c
GS
1321 }
1322
d1c3fb1f 1323 spin_lock(&hugetlb_lock);
7893d1d5 1324 if (page) {
0edaecfa 1325 INIT_LIST_HEAD(&page->lru);
bf50bab2 1326 r_nid = page_to_nid(page);
7893d1d5 1327 set_compound_page_dtor(page, free_huge_page);
9dd540e2 1328 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
1329 /*
1330 * We incremented the global counters already
1331 */
bf50bab2
NH
1332 h->nr_huge_pages_node[r_nid]++;
1333 h->surplus_huge_pages_node[r_nid]++;
3b116300 1334 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 1335 } else {
a5516438
AK
1336 h->nr_huge_pages--;
1337 h->surplus_huge_pages--;
3b116300 1338 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 1339 }
d1c3fb1f 1340 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1341
1342 return page;
1343}
1344
bf50bab2
NH
1345/*
1346 * This allocation function is useful in the context where vma is irrelevant.
1347 * E.g. soft-offlining uses this function because it only cares physical
1348 * address of error page.
1349 */
1350struct page *alloc_huge_page_node(struct hstate *h, int nid)
1351{
4ef91848 1352 struct page *page = NULL;
bf50bab2
NH
1353
1354 spin_lock(&hugetlb_lock);
4ef91848
JK
1355 if (h->free_huge_pages - h->resv_huge_pages > 0)
1356 page = dequeue_huge_page_node(h, nid);
bf50bab2
NH
1357 spin_unlock(&hugetlb_lock);
1358
94ae8ba7 1359 if (!page)
bf50bab2
NH
1360 page = alloc_buddy_huge_page(h, nid);
1361
1362 return page;
1363}
1364
e4e574b7 1365/*
25985edc 1366 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1367 * of size 'delta'.
1368 */
a5516438 1369static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1370{
1371 struct list_head surplus_list;
1372 struct page *page, *tmp;
1373 int ret, i;
1374 int needed, allocated;
28073b02 1375 bool alloc_ok = true;
e4e574b7 1376
a5516438 1377 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1378 if (needed <= 0) {
a5516438 1379 h->resv_huge_pages += delta;
e4e574b7 1380 return 0;
ac09b3a1 1381 }
e4e574b7
AL
1382
1383 allocated = 0;
1384 INIT_LIST_HEAD(&surplus_list);
1385
1386 ret = -ENOMEM;
1387retry:
1388 spin_unlock(&hugetlb_lock);
1389 for (i = 0; i < needed; i++) {
bf50bab2 1390 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
28073b02
HD
1391 if (!page) {
1392 alloc_ok = false;
1393 break;
1394 }
e4e574b7
AL
1395 list_add(&page->lru, &surplus_list);
1396 }
28073b02 1397 allocated += i;
e4e574b7
AL
1398
1399 /*
1400 * After retaking hugetlb_lock, we need to recalculate 'needed'
1401 * because either resv_huge_pages or free_huge_pages may have changed.
1402 */
1403 spin_lock(&hugetlb_lock);
a5516438
AK
1404 needed = (h->resv_huge_pages + delta) -
1405 (h->free_huge_pages + allocated);
28073b02
HD
1406 if (needed > 0) {
1407 if (alloc_ok)
1408 goto retry;
1409 /*
1410 * We were not able to allocate enough pages to
1411 * satisfy the entire reservation so we free what
1412 * we've allocated so far.
1413 */
1414 goto free;
1415 }
e4e574b7
AL
1416 /*
1417 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1418 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1419 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1420 * allocator. Commit the entire reservation here to prevent another
1421 * process from stealing the pages as they are added to the pool but
1422 * before they are reserved.
e4e574b7
AL
1423 */
1424 needed += allocated;
a5516438 1425 h->resv_huge_pages += delta;
e4e574b7 1426 ret = 0;
a9869b83 1427
19fc3f0a 1428 /* Free the needed pages to the hugetlb pool */
e4e574b7 1429 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1430 if ((--needed) < 0)
1431 break;
a9869b83
NH
1432 /*
1433 * This page is now managed by the hugetlb allocator and has
1434 * no users -- drop the buddy allocator's reference.
1435 */
1436 put_page_testzero(page);
309381fe 1437 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1438 enqueue_huge_page(h, page);
19fc3f0a 1439 }
28073b02 1440free:
b0365c8d 1441 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1442
1443 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1444 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1445 put_page(page);
a9869b83 1446 spin_lock(&hugetlb_lock);
e4e574b7
AL
1447
1448 return ret;
1449}
1450
1451/*
1452 * When releasing a hugetlb pool reservation, any surplus pages that were
1453 * allocated to satisfy the reservation must be explicitly freed if they were
1454 * never used.
685f3457 1455 * Called with hugetlb_lock held.
e4e574b7 1456 */
a5516438
AK
1457static void return_unused_surplus_pages(struct hstate *h,
1458 unsigned long unused_resv_pages)
e4e574b7 1459{
e4e574b7
AL
1460 unsigned long nr_pages;
1461
ac09b3a1 1462 /* Uncommit the reservation */
a5516438 1463 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1464
aa888a74 1465 /* Cannot return gigantic pages currently */
bae7f4ae 1466 if (hstate_is_gigantic(h))
aa888a74
AK
1467 return;
1468
a5516438 1469 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1470
685f3457
LS
1471 /*
1472 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1473 * evenly across all nodes with memory. Iterate across these nodes
1474 * until we can no longer free unreserved surplus pages. This occurs
1475 * when the nodes with surplus pages have no free pages.
1476 * free_pool_huge_page() will balance the the freed pages across the
1477 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1478 */
1479 while (nr_pages--) {
8cebfcd0 1480 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
685f3457 1481 break;
7848a4bf 1482 cond_resched_lock(&hugetlb_lock);
e4e574b7
AL
1483 }
1484}
1485
c37f9fb1 1486/*
cf3ad20b
MK
1487 * vma_needs_reservation and vma_commit_reservation are used by the huge
1488 * page allocation routines to manage reservations.
1489 *
1490 * vma_needs_reservation is called to determine if the huge page at addr
1491 * within the vma has an associated reservation. If a reservation is
1492 * needed, the value 1 is returned. The caller is then responsible for
1493 * managing the global reservation and subpool usage counts. After
1494 * the huge page has been allocated, vma_commit_reservation is called
1495 * to add the page to the reservation map.
1496 *
1497 * In the normal case, vma_commit_reservation returns the same value
1498 * as the preceding vma_needs_reservation call. The only time this
1499 * is not the case is if a reserve map was changed between calls. It
1500 * is the responsibility of the caller to notice the difference and
1501 * take appropriate action.
c37f9fb1 1502 */
cf3ad20b
MK
1503static long __vma_reservation_common(struct hstate *h,
1504 struct vm_area_struct *vma, unsigned long addr,
1505 bool commit)
c37f9fb1 1506{
4e35f483
JK
1507 struct resv_map *resv;
1508 pgoff_t idx;
cf3ad20b 1509 long ret;
c37f9fb1 1510
4e35f483
JK
1511 resv = vma_resv_map(vma);
1512 if (!resv)
84afd99b 1513 return 1;
c37f9fb1 1514
4e35f483 1515 idx = vma_hugecache_offset(h, vma, addr);
cf3ad20b
MK
1516 if (commit)
1517 ret = region_add(resv, idx, idx + 1);
1518 else
1519 ret = region_chg(resv, idx, idx + 1);
84afd99b 1520
4e35f483 1521 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 1522 return ret;
4e35f483 1523 else
cf3ad20b 1524 return ret < 0 ? ret : 0;
c37f9fb1 1525}
cf3ad20b
MK
1526
1527static long vma_needs_reservation(struct hstate *h,
a5516438 1528 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1529{
cf3ad20b
MK
1530 return __vma_reservation_common(h, vma, addr, false);
1531}
84afd99b 1532
cf3ad20b
MK
1533static long vma_commit_reservation(struct hstate *h,
1534 struct vm_area_struct *vma, unsigned long addr)
1535{
1536 return __vma_reservation_common(h, vma, addr, true);
c37f9fb1
AW
1537}
1538
a1e78772 1539static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1540 unsigned long addr, int avoid_reserve)
1da177e4 1541{
90481622 1542 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1543 struct hstate *h = hstate_vma(vma);
348ea204 1544 struct page *page;
e2f17d94 1545 long chg;
6d76dcf4
AK
1546 int ret, idx;
1547 struct hugetlb_cgroup *h_cg;
a1e78772 1548
6d76dcf4 1549 idx = hstate_index(h);
a1e78772 1550 /*
90481622
DG
1551 * Processes that did not create the mapping will have no
1552 * reserves and will not have accounted against subpool
1553 * limit. Check that the subpool limit can be made before
1554 * satisfying the allocation MAP_NORESERVE mappings may also
1555 * need pages and subpool limit allocated allocated if no reserve
1556 * mapping overlaps.
a1e78772 1557 */
a5516438 1558 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1 1559 if (chg < 0)
76dcee75 1560 return ERR_PTR(-ENOMEM);
8bb3f12e 1561 if (chg || avoid_reserve)
1c5ecae3 1562 if (hugepage_subpool_get_pages(spool, 1) < 0)
76dcee75 1563 return ERR_PTR(-ENOSPC);
1da177e4 1564
6d76dcf4 1565 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
1566 if (ret)
1567 goto out_subpool_put;
1568
1da177e4 1569 spin_lock(&hugetlb_lock);
af0ed73e 1570 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
81a6fcae 1571 if (!page) {
94ae8ba7 1572 spin_unlock(&hugetlb_lock);
bf50bab2 1573 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
8f34af6f
JZ
1574 if (!page)
1575 goto out_uncharge_cgroup;
1576
79dbb236
AK
1577 spin_lock(&hugetlb_lock);
1578 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 1579 /* Fall through */
68842c9b 1580 }
81a6fcae
JK
1581 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1582 spin_unlock(&hugetlb_lock);
348ea204 1583
90481622 1584 set_page_private(page, (unsigned long)spool);
90d8b7e6 1585
a5516438 1586 vma_commit_reservation(h, vma, addr);
90d8b7e6 1587 return page;
8f34af6f
JZ
1588
1589out_uncharge_cgroup:
1590 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1591out_subpool_put:
1592 if (chg || avoid_reserve)
1593 hugepage_subpool_put_pages(spool, 1);
1594 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
1595}
1596
74060e4d
NH
1597/*
1598 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1599 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1600 * where no ERR_VALUE is expected to be returned.
1601 */
1602struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1603 unsigned long addr, int avoid_reserve)
1604{
1605 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1606 if (IS_ERR(page))
1607 page = NULL;
1608 return page;
1609}
1610
91f47662 1611int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1612{
1613 struct huge_bootmem_page *m;
b2261026 1614 int nr_nodes, node;
aa888a74 1615
b2261026 1616 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
1617 void *addr;
1618
8b89a116
GS
1619 addr = memblock_virt_alloc_try_nid_nopanic(
1620 huge_page_size(h), huge_page_size(h),
1621 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
1622 if (addr) {
1623 /*
1624 * Use the beginning of the huge page to store the
1625 * huge_bootmem_page struct (until gather_bootmem
1626 * puts them into the mem_map).
1627 */
1628 m = addr;
91f47662 1629 goto found;
aa888a74 1630 }
aa888a74
AK
1631 }
1632 return 0;
1633
1634found:
df994ead 1635 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74
AK
1636 /* Put them into a private list first because mem_map is not up yet */
1637 list_add(&m->list, &huge_boot_pages);
1638 m->hstate = h;
1639 return 1;
1640}
1641
f412c97a 1642static void __init prep_compound_huge_page(struct page *page, int order)
18229df5
AW
1643{
1644 if (unlikely(order > (MAX_ORDER - 1)))
1645 prep_compound_gigantic_page(page, order);
1646 else
1647 prep_compound_page(page, order);
1648}
1649
aa888a74
AK
1650/* Put bootmem huge pages into the standard lists after mem_map is up */
1651static void __init gather_bootmem_prealloc(void)
1652{
1653 struct huge_bootmem_page *m;
1654
1655 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 1656 struct hstate *h = m->hstate;
ee8f248d
BB
1657 struct page *page;
1658
1659#ifdef CONFIG_HIGHMEM
1660 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
1661 memblock_free_late(__pa(m),
1662 sizeof(struct huge_bootmem_page));
ee8f248d
BB
1663#else
1664 page = virt_to_page(m);
1665#endif
aa888a74 1666 WARN_ON(page_count(page) != 1);
18229df5 1667 prep_compound_huge_page(page, h->order);
ef5a22be 1668 WARN_ON(PageReserved(page));
aa888a74 1669 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
1670 /*
1671 * If we had gigantic hugepages allocated at boot time, we need
1672 * to restore the 'stolen' pages to totalram_pages in order to
1673 * fix confusing memory reports from free(1) and another
1674 * side-effects, like CommitLimit going negative.
1675 */
bae7f4ae 1676 if (hstate_is_gigantic(h))
3dcc0571 1677 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
1678 }
1679}
1680
8faa8b07 1681static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1682{
1683 unsigned long i;
a5516438 1684
e5ff2159 1685 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 1686 if (hstate_is_gigantic(h)) {
aa888a74
AK
1687 if (!alloc_bootmem_huge_page(h))
1688 break;
9b5e5d0f 1689 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 1690 &node_states[N_MEMORY]))
1da177e4 1691 break;
1da177e4 1692 }
8faa8b07 1693 h->max_huge_pages = i;
e5ff2159
AK
1694}
1695
1696static void __init hugetlb_init_hstates(void)
1697{
1698 struct hstate *h;
1699
1700 for_each_hstate(h) {
641844f5
NH
1701 if (minimum_order > huge_page_order(h))
1702 minimum_order = huge_page_order(h);
1703
8faa8b07 1704 /* oversize hugepages were init'ed in early boot */
bae7f4ae 1705 if (!hstate_is_gigantic(h))
8faa8b07 1706 hugetlb_hstate_alloc_pages(h);
e5ff2159 1707 }
641844f5 1708 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
1709}
1710
4abd32db
AK
1711static char * __init memfmt(char *buf, unsigned long n)
1712{
1713 if (n >= (1UL << 30))
1714 sprintf(buf, "%lu GB", n >> 30);
1715 else if (n >= (1UL << 20))
1716 sprintf(buf, "%lu MB", n >> 20);
1717 else
1718 sprintf(buf, "%lu KB", n >> 10);
1719 return buf;
1720}
1721
e5ff2159
AK
1722static void __init report_hugepages(void)
1723{
1724 struct hstate *h;
1725
1726 for_each_hstate(h) {
4abd32db 1727 char buf[32];
ffb22af5 1728 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
1729 memfmt(buf, huge_page_size(h)),
1730 h->free_huge_pages);
e5ff2159
AK
1731 }
1732}
1733
1da177e4 1734#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1735static void try_to_free_low(struct hstate *h, unsigned long count,
1736 nodemask_t *nodes_allowed)
1da177e4 1737{
4415cc8d
CL
1738 int i;
1739
bae7f4ae 1740 if (hstate_is_gigantic(h))
aa888a74
AK
1741 return;
1742
6ae11b27 1743 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1744 struct page *page, *next;
a5516438
AK
1745 struct list_head *freel = &h->hugepage_freelists[i];
1746 list_for_each_entry_safe(page, next, freel, lru) {
1747 if (count >= h->nr_huge_pages)
6b0c880d 1748 return;
1da177e4
LT
1749 if (PageHighMem(page))
1750 continue;
1751 list_del(&page->lru);
e5ff2159 1752 update_and_free_page(h, page);
a5516438
AK
1753 h->free_huge_pages--;
1754 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1755 }
1756 }
1757}
1758#else
6ae11b27
LS
1759static inline void try_to_free_low(struct hstate *h, unsigned long count,
1760 nodemask_t *nodes_allowed)
1da177e4
LT
1761{
1762}
1763#endif
1764
20a0307c
WF
1765/*
1766 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1767 * balanced by operating on them in a round-robin fashion.
1768 * Returns 1 if an adjustment was made.
1769 */
6ae11b27
LS
1770static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1771 int delta)
20a0307c 1772{
b2261026 1773 int nr_nodes, node;
20a0307c
WF
1774
1775 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1776
b2261026
JK
1777 if (delta < 0) {
1778 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1779 if (h->surplus_huge_pages_node[node])
1780 goto found;
e8c5c824 1781 }
b2261026
JK
1782 } else {
1783 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1784 if (h->surplus_huge_pages_node[node] <
1785 h->nr_huge_pages_node[node])
1786 goto found;
e8c5c824 1787 }
b2261026
JK
1788 }
1789 return 0;
20a0307c 1790
b2261026
JK
1791found:
1792 h->surplus_huge_pages += delta;
1793 h->surplus_huge_pages_node[node] += delta;
1794 return 1;
20a0307c
WF
1795}
1796
a5516438 1797#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1798static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1799 nodemask_t *nodes_allowed)
1da177e4 1800{
7893d1d5 1801 unsigned long min_count, ret;
1da177e4 1802
944d9fec 1803 if (hstate_is_gigantic(h) && !gigantic_page_supported())
aa888a74
AK
1804 return h->max_huge_pages;
1805
7893d1d5
AL
1806 /*
1807 * Increase the pool size
1808 * First take pages out of surplus state. Then make up the
1809 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1810 *
1811 * We might race with alloc_buddy_huge_page() here and be unable
1812 * to convert a surplus huge page to a normal huge page. That is
1813 * not critical, though, it just means the overall size of the
1814 * pool might be one hugepage larger than it needs to be, but
1815 * within all the constraints specified by the sysctls.
7893d1d5 1816 */
1da177e4 1817 spin_lock(&hugetlb_lock);
a5516438 1818 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1819 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1820 break;
1821 }
1822
a5516438 1823 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1824 /*
1825 * If this allocation races such that we no longer need the
1826 * page, free_huge_page will handle it by freeing the page
1827 * and reducing the surplus.
1828 */
1829 spin_unlock(&hugetlb_lock);
944d9fec
LC
1830 if (hstate_is_gigantic(h))
1831 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
1832 else
1833 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1834 spin_lock(&hugetlb_lock);
1835 if (!ret)
1836 goto out;
1837
536240f2
MG
1838 /* Bail for signals. Probably ctrl-c from user */
1839 if (signal_pending(current))
1840 goto out;
7893d1d5 1841 }
7893d1d5
AL
1842
1843 /*
1844 * Decrease the pool size
1845 * First return free pages to the buddy allocator (being careful
1846 * to keep enough around to satisfy reservations). Then place
1847 * pages into surplus state as needed so the pool will shrink
1848 * to the desired size as pages become free.
d1c3fb1f
NA
1849 *
1850 * By placing pages into the surplus state independent of the
1851 * overcommit value, we are allowing the surplus pool size to
1852 * exceed overcommit. There are few sane options here. Since
1853 * alloc_buddy_huge_page() is checking the global counter,
1854 * though, we'll note that we're not allowed to exceed surplus
1855 * and won't grow the pool anywhere else. Not until one of the
1856 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1857 */
a5516438 1858 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1859 min_count = max(count, min_count);
6ae11b27 1860 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1861 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1862 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1863 break;
55f67141 1864 cond_resched_lock(&hugetlb_lock);
1da177e4 1865 }
a5516438 1866 while (count < persistent_huge_pages(h)) {
6ae11b27 1867 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1868 break;
1869 }
1870out:
a5516438 1871 ret = persistent_huge_pages(h);
1da177e4 1872 spin_unlock(&hugetlb_lock);
7893d1d5 1873 return ret;
1da177e4
LT
1874}
1875
a3437870
NA
1876#define HSTATE_ATTR_RO(_name) \
1877 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1878
1879#define HSTATE_ATTR(_name) \
1880 static struct kobj_attribute _name##_attr = \
1881 __ATTR(_name, 0644, _name##_show, _name##_store)
1882
1883static struct kobject *hugepages_kobj;
1884static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1885
9a305230
LS
1886static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1887
1888static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1889{
1890 int i;
9a305230 1891
a3437870 1892 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1893 if (hstate_kobjs[i] == kobj) {
1894 if (nidp)
1895 *nidp = NUMA_NO_NODE;
a3437870 1896 return &hstates[i];
9a305230
LS
1897 }
1898
1899 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1900}
1901
06808b08 1902static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1903 struct kobj_attribute *attr, char *buf)
1904{
9a305230
LS
1905 struct hstate *h;
1906 unsigned long nr_huge_pages;
1907 int nid;
1908
1909 h = kobj_to_hstate(kobj, &nid);
1910 if (nid == NUMA_NO_NODE)
1911 nr_huge_pages = h->nr_huge_pages;
1912 else
1913 nr_huge_pages = h->nr_huge_pages_node[nid];
1914
1915 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1916}
adbe8726 1917
238d3c13
DR
1918static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
1919 struct hstate *h, int nid,
1920 unsigned long count, size_t len)
a3437870
NA
1921{
1922 int err;
bad44b5b 1923 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1924
944d9fec 1925 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
adbe8726
EM
1926 err = -EINVAL;
1927 goto out;
1928 }
1929
9a305230
LS
1930 if (nid == NUMA_NO_NODE) {
1931 /*
1932 * global hstate attribute
1933 */
1934 if (!(obey_mempolicy &&
1935 init_nodemask_of_mempolicy(nodes_allowed))) {
1936 NODEMASK_FREE(nodes_allowed);
8cebfcd0 1937 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
1938 }
1939 } else if (nodes_allowed) {
1940 /*
1941 * per node hstate attribute: adjust count to global,
1942 * but restrict alloc/free to the specified node.
1943 */
1944 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1945 init_nodemask_of_node(nodes_allowed, nid);
1946 } else
8cebfcd0 1947 nodes_allowed = &node_states[N_MEMORY];
9a305230 1948
06808b08 1949 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1950
8cebfcd0 1951 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
1952 NODEMASK_FREE(nodes_allowed);
1953
1954 return len;
adbe8726
EM
1955out:
1956 NODEMASK_FREE(nodes_allowed);
1957 return err;
06808b08
LS
1958}
1959
238d3c13
DR
1960static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1961 struct kobject *kobj, const char *buf,
1962 size_t len)
1963{
1964 struct hstate *h;
1965 unsigned long count;
1966 int nid;
1967 int err;
1968
1969 err = kstrtoul(buf, 10, &count);
1970 if (err)
1971 return err;
1972
1973 h = kobj_to_hstate(kobj, &nid);
1974 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
1975}
1976
06808b08
LS
1977static ssize_t nr_hugepages_show(struct kobject *kobj,
1978 struct kobj_attribute *attr, char *buf)
1979{
1980 return nr_hugepages_show_common(kobj, attr, buf);
1981}
1982
1983static ssize_t nr_hugepages_store(struct kobject *kobj,
1984 struct kobj_attribute *attr, const char *buf, size_t len)
1985{
238d3c13 1986 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
1987}
1988HSTATE_ATTR(nr_hugepages);
1989
06808b08
LS
1990#ifdef CONFIG_NUMA
1991
1992/*
1993 * hstate attribute for optionally mempolicy-based constraint on persistent
1994 * huge page alloc/free.
1995 */
1996static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1997 struct kobj_attribute *attr, char *buf)
1998{
1999 return nr_hugepages_show_common(kobj, attr, buf);
2000}
2001
2002static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2003 struct kobj_attribute *attr, const char *buf, size_t len)
2004{
238d3c13 2005 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2006}
2007HSTATE_ATTR(nr_hugepages_mempolicy);
2008#endif
2009
2010
a3437870
NA
2011static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2012 struct kobj_attribute *attr, char *buf)
2013{
9a305230 2014 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2015 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2016}
adbe8726 2017
a3437870
NA
2018static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2019 struct kobj_attribute *attr, const char *buf, size_t count)
2020{
2021 int err;
2022 unsigned long input;
9a305230 2023 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2024
bae7f4ae 2025 if (hstate_is_gigantic(h))
adbe8726
EM
2026 return -EINVAL;
2027
3dbb95f7 2028 err = kstrtoul(buf, 10, &input);
a3437870 2029 if (err)
73ae31e5 2030 return err;
a3437870
NA
2031
2032 spin_lock(&hugetlb_lock);
2033 h->nr_overcommit_huge_pages = input;
2034 spin_unlock(&hugetlb_lock);
2035
2036 return count;
2037}
2038HSTATE_ATTR(nr_overcommit_hugepages);
2039
2040static ssize_t free_hugepages_show(struct kobject *kobj,
2041 struct kobj_attribute *attr, char *buf)
2042{
9a305230
LS
2043 struct hstate *h;
2044 unsigned long free_huge_pages;
2045 int nid;
2046
2047 h = kobj_to_hstate(kobj, &nid);
2048 if (nid == NUMA_NO_NODE)
2049 free_huge_pages = h->free_huge_pages;
2050 else
2051 free_huge_pages = h->free_huge_pages_node[nid];
2052
2053 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2054}
2055HSTATE_ATTR_RO(free_hugepages);
2056
2057static ssize_t resv_hugepages_show(struct kobject *kobj,
2058 struct kobj_attribute *attr, char *buf)
2059{
9a305230 2060 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2061 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2062}
2063HSTATE_ATTR_RO(resv_hugepages);
2064
2065static ssize_t surplus_hugepages_show(struct kobject *kobj,
2066 struct kobj_attribute *attr, char *buf)
2067{
9a305230
LS
2068 struct hstate *h;
2069 unsigned long surplus_huge_pages;
2070 int nid;
2071
2072 h = kobj_to_hstate(kobj, &nid);
2073 if (nid == NUMA_NO_NODE)
2074 surplus_huge_pages = h->surplus_huge_pages;
2075 else
2076 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2077
2078 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2079}
2080HSTATE_ATTR_RO(surplus_hugepages);
2081
2082static struct attribute *hstate_attrs[] = {
2083 &nr_hugepages_attr.attr,
2084 &nr_overcommit_hugepages_attr.attr,
2085 &free_hugepages_attr.attr,
2086 &resv_hugepages_attr.attr,
2087 &surplus_hugepages_attr.attr,
06808b08
LS
2088#ifdef CONFIG_NUMA
2089 &nr_hugepages_mempolicy_attr.attr,
2090#endif
a3437870
NA
2091 NULL,
2092};
2093
2094static struct attribute_group hstate_attr_group = {
2095 .attrs = hstate_attrs,
2096};
2097
094e9539
JM
2098static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2099 struct kobject **hstate_kobjs,
2100 struct attribute_group *hstate_attr_group)
a3437870
NA
2101{
2102 int retval;
972dc4de 2103 int hi = hstate_index(h);
a3437870 2104
9a305230
LS
2105 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2106 if (!hstate_kobjs[hi])
a3437870
NA
2107 return -ENOMEM;
2108
9a305230 2109 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2110 if (retval)
9a305230 2111 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2112
2113 return retval;
2114}
2115
2116static void __init hugetlb_sysfs_init(void)
2117{
2118 struct hstate *h;
2119 int err;
2120
2121 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2122 if (!hugepages_kobj)
2123 return;
2124
2125 for_each_hstate(h) {
9a305230
LS
2126 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2127 hstate_kobjs, &hstate_attr_group);
a3437870 2128 if (err)
ffb22af5 2129 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2130 }
2131}
2132
9a305230
LS
2133#ifdef CONFIG_NUMA
2134
2135/*
2136 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2137 * with node devices in node_devices[] using a parallel array. The array
2138 * index of a node device or _hstate == node id.
2139 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2140 * the base kernel, on the hugetlb module.
2141 */
2142struct node_hstate {
2143 struct kobject *hugepages_kobj;
2144 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2145};
2146struct node_hstate node_hstates[MAX_NUMNODES];
2147
2148/*
10fbcf4c 2149 * A subset of global hstate attributes for node devices
9a305230
LS
2150 */
2151static struct attribute *per_node_hstate_attrs[] = {
2152 &nr_hugepages_attr.attr,
2153 &free_hugepages_attr.attr,
2154 &surplus_hugepages_attr.attr,
2155 NULL,
2156};
2157
2158static struct attribute_group per_node_hstate_attr_group = {
2159 .attrs = per_node_hstate_attrs,
2160};
2161
2162/*
10fbcf4c 2163 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2164 * Returns node id via non-NULL nidp.
2165 */
2166static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2167{
2168 int nid;
2169
2170 for (nid = 0; nid < nr_node_ids; nid++) {
2171 struct node_hstate *nhs = &node_hstates[nid];
2172 int i;
2173 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2174 if (nhs->hstate_kobjs[i] == kobj) {
2175 if (nidp)
2176 *nidp = nid;
2177 return &hstates[i];
2178 }
2179 }
2180
2181 BUG();
2182 return NULL;
2183}
2184
2185/*
10fbcf4c 2186 * Unregister hstate attributes from a single node device.
9a305230
LS
2187 * No-op if no hstate attributes attached.
2188 */
3cd8b44f 2189static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2190{
2191 struct hstate *h;
10fbcf4c 2192 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2193
2194 if (!nhs->hugepages_kobj)
9b5e5d0f 2195 return; /* no hstate attributes */
9a305230 2196
972dc4de
AK
2197 for_each_hstate(h) {
2198 int idx = hstate_index(h);
2199 if (nhs->hstate_kobjs[idx]) {
2200 kobject_put(nhs->hstate_kobjs[idx]);
2201 nhs->hstate_kobjs[idx] = NULL;
9a305230 2202 }
972dc4de 2203 }
9a305230
LS
2204
2205 kobject_put(nhs->hugepages_kobj);
2206 nhs->hugepages_kobj = NULL;
2207}
2208
2209/*
10fbcf4c 2210 * hugetlb module exit: unregister hstate attributes from node devices
9a305230
LS
2211 * that have them.
2212 */
2213static void hugetlb_unregister_all_nodes(void)
2214{
2215 int nid;
2216
2217 /*
10fbcf4c 2218 * disable node device registrations.
9a305230
LS
2219 */
2220 register_hugetlbfs_with_node(NULL, NULL);
2221
2222 /*
2223 * remove hstate attributes from any nodes that have them.
2224 */
2225 for (nid = 0; nid < nr_node_ids; nid++)
8732794b 2226 hugetlb_unregister_node(node_devices[nid]);
9a305230
LS
2227}
2228
2229/*
10fbcf4c 2230 * Register hstate attributes for a single node device.
9a305230
LS
2231 * No-op if attributes already registered.
2232 */
3cd8b44f 2233static void hugetlb_register_node(struct node *node)
9a305230
LS
2234{
2235 struct hstate *h;
10fbcf4c 2236 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2237 int err;
2238
2239 if (nhs->hugepages_kobj)
2240 return; /* already allocated */
2241
2242 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2243 &node->dev.kobj);
9a305230
LS
2244 if (!nhs->hugepages_kobj)
2245 return;
2246
2247 for_each_hstate(h) {
2248 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2249 nhs->hstate_kobjs,
2250 &per_node_hstate_attr_group);
2251 if (err) {
ffb22af5
AM
2252 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2253 h->name, node->dev.id);
9a305230
LS
2254 hugetlb_unregister_node(node);
2255 break;
2256 }
2257 }
2258}
2259
2260/*
9b5e5d0f 2261 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2262 * devices of nodes that have memory. All on-line nodes should have
2263 * registered their associated device by this time.
9a305230 2264 */
7d9ca000 2265static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2266{
2267 int nid;
2268
8cebfcd0 2269 for_each_node_state(nid, N_MEMORY) {
8732794b 2270 struct node *node = node_devices[nid];
10fbcf4c 2271 if (node->dev.id == nid)
9a305230
LS
2272 hugetlb_register_node(node);
2273 }
2274
2275 /*
10fbcf4c 2276 * Let the node device driver know we're here so it can
9a305230
LS
2277 * [un]register hstate attributes on node hotplug.
2278 */
2279 register_hugetlbfs_with_node(hugetlb_register_node,
2280 hugetlb_unregister_node);
2281}
2282#else /* !CONFIG_NUMA */
2283
2284static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2285{
2286 BUG();
2287 if (nidp)
2288 *nidp = -1;
2289 return NULL;
2290}
2291
2292static void hugetlb_unregister_all_nodes(void) { }
2293
2294static void hugetlb_register_all_nodes(void) { }
2295
2296#endif
2297
a3437870
NA
2298static void __exit hugetlb_exit(void)
2299{
2300 struct hstate *h;
2301
9a305230
LS
2302 hugetlb_unregister_all_nodes();
2303
a3437870 2304 for_each_hstate(h) {
972dc4de 2305 kobject_put(hstate_kobjs[hstate_index(h)]);
a3437870
NA
2306 }
2307
2308 kobject_put(hugepages_kobj);
8382d914 2309 kfree(htlb_fault_mutex_table);
a3437870
NA
2310}
2311module_exit(hugetlb_exit);
2312
2313static int __init hugetlb_init(void)
2314{
8382d914
DB
2315 int i;
2316
457c1b27 2317 if (!hugepages_supported())
0ef89d25 2318 return 0;
a3437870 2319
e11bfbfc
NP
2320 if (!size_to_hstate(default_hstate_size)) {
2321 default_hstate_size = HPAGE_SIZE;
2322 if (!size_to_hstate(default_hstate_size))
2323 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2324 }
972dc4de 2325 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
e11bfbfc
NP
2326 if (default_hstate_max_huge_pages)
2327 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
2328
2329 hugetlb_init_hstates();
aa888a74 2330 gather_bootmem_prealloc();
a3437870
NA
2331 report_hugepages();
2332
2333 hugetlb_sysfs_init();
9a305230 2334 hugetlb_register_all_nodes();
7179e7bf 2335 hugetlb_cgroup_file_init();
9a305230 2336
8382d914
DB
2337#ifdef CONFIG_SMP
2338 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2339#else
2340 num_fault_mutexes = 1;
2341#endif
2342 htlb_fault_mutex_table =
2343 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2344 BUG_ON(!htlb_fault_mutex_table);
2345
2346 for (i = 0; i < num_fault_mutexes; i++)
2347 mutex_init(&htlb_fault_mutex_table[i]);
a3437870
NA
2348 return 0;
2349}
2350module_init(hugetlb_init);
2351
2352/* Should be called on processing a hugepagesz=... option */
2353void __init hugetlb_add_hstate(unsigned order)
2354{
2355 struct hstate *h;
8faa8b07
AK
2356 unsigned long i;
2357
a3437870 2358 if (size_to_hstate(PAGE_SIZE << order)) {
ffb22af5 2359 pr_warning("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2360 return;
2361 }
47d38344 2362 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2363 BUG_ON(order == 0);
47d38344 2364 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2365 h->order = order;
2366 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2367 h->nr_huge_pages = 0;
2368 h->free_huge_pages = 0;
2369 for (i = 0; i < MAX_NUMNODES; ++i)
2370 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2371 INIT_LIST_HEAD(&h->hugepage_activelist);
8cebfcd0
LJ
2372 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2373 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
a3437870
NA
2374 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2375 huge_page_size(h)/1024);
8faa8b07 2376
a3437870
NA
2377 parsed_hstate = h;
2378}
2379
e11bfbfc 2380static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2381{
2382 unsigned long *mhp;
8faa8b07 2383 static unsigned long *last_mhp;
a3437870
NA
2384
2385 /*
47d38344 2386 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2387 * so this hugepages= parameter goes to the "default hstate".
2388 */
47d38344 2389 if (!hugetlb_max_hstate)
a3437870
NA
2390 mhp = &default_hstate_max_huge_pages;
2391 else
2392 mhp = &parsed_hstate->max_huge_pages;
2393
8faa8b07 2394 if (mhp == last_mhp) {
ffb22af5
AM
2395 pr_warning("hugepages= specified twice without "
2396 "interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2397 return 1;
2398 }
2399
a3437870
NA
2400 if (sscanf(s, "%lu", mhp) <= 0)
2401 *mhp = 0;
2402
8faa8b07
AK
2403 /*
2404 * Global state is always initialized later in hugetlb_init.
2405 * But we need to allocate >= MAX_ORDER hstates here early to still
2406 * use the bootmem allocator.
2407 */
47d38344 2408 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2409 hugetlb_hstate_alloc_pages(parsed_hstate);
2410
2411 last_mhp = mhp;
2412
a3437870
NA
2413 return 1;
2414}
e11bfbfc
NP
2415__setup("hugepages=", hugetlb_nrpages_setup);
2416
2417static int __init hugetlb_default_setup(char *s)
2418{
2419 default_hstate_size = memparse(s, &s);
2420 return 1;
2421}
2422__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2423
8a213460
NA
2424static unsigned int cpuset_mems_nr(unsigned int *array)
2425{
2426 int node;
2427 unsigned int nr = 0;
2428
2429 for_each_node_mask(node, cpuset_current_mems_allowed)
2430 nr += array[node];
2431
2432 return nr;
2433}
2434
2435#ifdef CONFIG_SYSCTL
06808b08
LS
2436static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2437 struct ctl_table *table, int write,
2438 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2439{
e5ff2159 2440 struct hstate *h = &default_hstate;
238d3c13 2441 unsigned long tmp = h->max_huge_pages;
08d4a246 2442 int ret;
e5ff2159 2443
457c1b27
NA
2444 if (!hugepages_supported())
2445 return -ENOTSUPP;
2446
e5ff2159
AK
2447 table->data = &tmp;
2448 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2449 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2450 if (ret)
2451 goto out;
e5ff2159 2452
238d3c13
DR
2453 if (write)
2454 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2455 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2456out:
2457 return ret;
1da177e4 2458}
396faf03 2459
06808b08
LS
2460int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2461 void __user *buffer, size_t *length, loff_t *ppos)
2462{
2463
2464 return hugetlb_sysctl_handler_common(false, table, write,
2465 buffer, length, ppos);
2466}
2467
2468#ifdef CONFIG_NUMA
2469int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2470 void __user *buffer, size_t *length, loff_t *ppos)
2471{
2472 return hugetlb_sysctl_handler_common(true, table, write,
2473 buffer, length, ppos);
2474}
2475#endif /* CONFIG_NUMA */
2476
a3d0c6aa 2477int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2478 void __user *buffer,
a3d0c6aa
NA
2479 size_t *length, loff_t *ppos)
2480{
a5516438 2481 struct hstate *h = &default_hstate;
e5ff2159 2482 unsigned long tmp;
08d4a246 2483 int ret;
e5ff2159 2484
457c1b27
NA
2485 if (!hugepages_supported())
2486 return -ENOTSUPP;
2487
c033a93c 2488 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2489
bae7f4ae 2490 if (write && hstate_is_gigantic(h))
adbe8726
EM
2491 return -EINVAL;
2492
e5ff2159
AK
2493 table->data = &tmp;
2494 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2495 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2496 if (ret)
2497 goto out;
e5ff2159
AK
2498
2499 if (write) {
2500 spin_lock(&hugetlb_lock);
2501 h->nr_overcommit_huge_pages = tmp;
2502 spin_unlock(&hugetlb_lock);
2503 }
08d4a246
MH
2504out:
2505 return ret;
a3d0c6aa
NA
2506}
2507
1da177e4
LT
2508#endif /* CONFIG_SYSCTL */
2509
e1759c21 2510void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2511{
a5516438 2512 struct hstate *h = &default_hstate;
457c1b27
NA
2513 if (!hugepages_supported())
2514 return;
e1759c21 2515 seq_printf(m,
4f98a2fe
RR
2516 "HugePages_Total: %5lu\n"
2517 "HugePages_Free: %5lu\n"
2518 "HugePages_Rsvd: %5lu\n"
2519 "HugePages_Surp: %5lu\n"
2520 "Hugepagesize: %8lu kB\n",
a5516438
AK
2521 h->nr_huge_pages,
2522 h->free_huge_pages,
2523 h->resv_huge_pages,
2524 h->surplus_huge_pages,
2525 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2526}
2527
2528int hugetlb_report_node_meminfo(int nid, char *buf)
2529{
a5516438 2530 struct hstate *h = &default_hstate;
457c1b27
NA
2531 if (!hugepages_supported())
2532 return 0;
1da177e4
LT
2533 return sprintf(buf,
2534 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2535 "Node %d HugePages_Free: %5u\n"
2536 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2537 nid, h->nr_huge_pages_node[nid],
2538 nid, h->free_huge_pages_node[nid],
2539 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2540}
2541
949f7ec5
DR
2542void hugetlb_show_meminfo(void)
2543{
2544 struct hstate *h;
2545 int nid;
2546
457c1b27
NA
2547 if (!hugepages_supported())
2548 return;
2549
949f7ec5
DR
2550 for_each_node_state(nid, N_MEMORY)
2551 for_each_hstate(h)
2552 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2553 nid,
2554 h->nr_huge_pages_node[nid],
2555 h->free_huge_pages_node[nid],
2556 h->surplus_huge_pages_node[nid],
2557 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2558}
2559
1da177e4
LT
2560/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2561unsigned long hugetlb_total_pages(void)
2562{
d0028588
WL
2563 struct hstate *h;
2564 unsigned long nr_total_pages = 0;
2565
2566 for_each_hstate(h)
2567 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2568 return nr_total_pages;
1da177e4 2569}
1da177e4 2570
a5516438 2571static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2572{
2573 int ret = -ENOMEM;
2574
2575 spin_lock(&hugetlb_lock);
2576 /*
2577 * When cpuset is configured, it breaks the strict hugetlb page
2578 * reservation as the accounting is done on a global variable. Such
2579 * reservation is completely rubbish in the presence of cpuset because
2580 * the reservation is not checked against page availability for the
2581 * current cpuset. Application can still potentially OOM'ed by kernel
2582 * with lack of free htlb page in cpuset that the task is in.
2583 * Attempt to enforce strict accounting with cpuset is almost
2584 * impossible (or too ugly) because cpuset is too fluid that
2585 * task or memory node can be dynamically moved between cpusets.
2586 *
2587 * The change of semantics for shared hugetlb mapping with cpuset is
2588 * undesirable. However, in order to preserve some of the semantics,
2589 * we fall back to check against current free page availability as
2590 * a best attempt and hopefully to minimize the impact of changing
2591 * semantics that cpuset has.
2592 */
2593 if (delta > 0) {
a5516438 2594 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2595 goto out;
2596
a5516438
AK
2597 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2598 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2599 goto out;
2600 }
2601 }
2602
2603 ret = 0;
2604 if (delta < 0)
a5516438 2605 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2606
2607out:
2608 spin_unlock(&hugetlb_lock);
2609 return ret;
2610}
2611
84afd99b
AW
2612static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2613{
f522c3ac 2614 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
2615
2616 /*
2617 * This new VMA should share its siblings reservation map if present.
2618 * The VMA will only ever have a valid reservation map pointer where
2619 * it is being copied for another still existing VMA. As that VMA
25985edc 2620 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2621 * after this open call completes. It is therefore safe to take a
2622 * new reference here without additional locking.
2623 */
4e35f483 2624 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 2625 kref_get(&resv->refs);
84afd99b
AW
2626}
2627
a1e78772
MG
2628static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2629{
a5516438 2630 struct hstate *h = hstate_vma(vma);
f522c3ac 2631 struct resv_map *resv = vma_resv_map(vma);
90481622 2632 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 2633 unsigned long reserve, start, end;
1c5ecae3 2634 long gbl_reserve;
84afd99b 2635
4e35f483
JK
2636 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2637 return;
84afd99b 2638
4e35f483
JK
2639 start = vma_hugecache_offset(h, vma, vma->vm_start);
2640 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 2641
4e35f483 2642 reserve = (end - start) - region_count(resv, start, end);
84afd99b 2643
4e35f483
JK
2644 kref_put(&resv->refs, resv_map_release);
2645
2646 if (reserve) {
1c5ecae3
MK
2647 /*
2648 * Decrement reserve counts. The global reserve count may be
2649 * adjusted if the subpool has a minimum size.
2650 */
2651 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2652 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 2653 }
a1e78772
MG
2654}
2655
1da177e4
LT
2656/*
2657 * We cannot handle pagefaults against hugetlb pages at all. They cause
2658 * handle_mm_fault() to try to instantiate regular-sized pages in the
2659 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2660 * this far.
2661 */
d0217ac0 2662static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2663{
2664 BUG();
d0217ac0 2665 return 0;
1da177e4
LT
2666}
2667
f0f37e2f 2668const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2669 .fault = hugetlb_vm_op_fault,
84afd99b 2670 .open = hugetlb_vm_op_open,
a1e78772 2671 .close = hugetlb_vm_op_close,
1da177e4
LT
2672};
2673
1e8f889b
DG
2674static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2675 int writable)
63551ae0
DG
2676{
2677 pte_t entry;
2678
1e8f889b 2679 if (writable) {
106c992a
GS
2680 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2681 vma->vm_page_prot)));
63551ae0 2682 } else {
106c992a
GS
2683 entry = huge_pte_wrprotect(mk_huge_pte(page,
2684 vma->vm_page_prot));
63551ae0
DG
2685 }
2686 entry = pte_mkyoung(entry);
2687 entry = pte_mkhuge(entry);
d9ed9faa 2688 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
2689
2690 return entry;
2691}
2692
1e8f889b
DG
2693static void set_huge_ptep_writable(struct vm_area_struct *vma,
2694 unsigned long address, pte_t *ptep)
2695{
2696 pte_t entry;
2697
106c992a 2698 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 2699 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 2700 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
2701}
2702
4a705fef
NH
2703static int is_hugetlb_entry_migration(pte_t pte)
2704{
2705 swp_entry_t swp;
2706
2707 if (huge_pte_none(pte) || pte_present(pte))
2708 return 0;
2709 swp = pte_to_swp_entry(pte);
2710 if (non_swap_entry(swp) && is_migration_entry(swp))
2711 return 1;
2712 else
2713 return 0;
2714}
2715
2716static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2717{
2718 swp_entry_t swp;
2719
2720 if (huge_pte_none(pte) || pte_present(pte))
2721 return 0;
2722 swp = pte_to_swp_entry(pte);
2723 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2724 return 1;
2725 else
2726 return 0;
2727}
1e8f889b 2728
63551ae0
DG
2729int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2730 struct vm_area_struct *vma)
2731{
2732 pte_t *src_pte, *dst_pte, entry;
2733 struct page *ptepage;
1c59827d 2734 unsigned long addr;
1e8f889b 2735 int cow;
a5516438
AK
2736 struct hstate *h = hstate_vma(vma);
2737 unsigned long sz = huge_page_size(h);
e8569dd2
AS
2738 unsigned long mmun_start; /* For mmu_notifiers */
2739 unsigned long mmun_end; /* For mmu_notifiers */
2740 int ret = 0;
1e8f889b
DG
2741
2742 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2743
e8569dd2
AS
2744 mmun_start = vma->vm_start;
2745 mmun_end = vma->vm_end;
2746 if (cow)
2747 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2748
a5516438 2749 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 2750 spinlock_t *src_ptl, *dst_ptl;
c74df32c
HD
2751 src_pte = huge_pte_offset(src, addr);
2752 if (!src_pte)
2753 continue;
a5516438 2754 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
2755 if (!dst_pte) {
2756 ret = -ENOMEM;
2757 break;
2758 }
c5c99429
LW
2759
2760 /* If the pagetables are shared don't copy or take references */
2761 if (dst_pte == src_pte)
2762 continue;
2763
cb900f41
KS
2764 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2765 src_ptl = huge_pte_lockptr(h, src, src_pte);
2766 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef
NH
2767 entry = huge_ptep_get(src_pte);
2768 if (huge_pte_none(entry)) { /* skip none entry */
2769 ;
2770 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2771 is_hugetlb_entry_hwpoisoned(entry))) {
2772 swp_entry_t swp_entry = pte_to_swp_entry(entry);
2773
2774 if (is_write_migration_entry(swp_entry) && cow) {
2775 /*
2776 * COW mappings require pages in both
2777 * parent and child to be set to read.
2778 */
2779 make_migration_entry_read(&swp_entry);
2780 entry = swp_entry_to_pte(swp_entry);
2781 set_huge_pte_at(src, addr, src_pte, entry);
2782 }
2783 set_huge_pte_at(dst, addr, dst_pte, entry);
2784 } else {
34ee645e 2785 if (cow) {
7f2e9525 2786 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e
JR
2787 mmu_notifier_invalidate_range(src, mmun_start,
2788 mmun_end);
2789 }
0253d634 2790 entry = huge_ptep_get(src_pte);
1c59827d
HD
2791 ptepage = pte_page(entry);
2792 get_page(ptepage);
0fe6e20b 2793 page_dup_rmap(ptepage);
1c59827d
HD
2794 set_huge_pte_at(dst, addr, dst_pte, entry);
2795 }
cb900f41
KS
2796 spin_unlock(src_ptl);
2797 spin_unlock(dst_ptl);
63551ae0 2798 }
63551ae0 2799
e8569dd2
AS
2800 if (cow)
2801 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2802
2803 return ret;
63551ae0
DG
2804}
2805
24669e58
AK
2806void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2807 unsigned long start, unsigned long end,
2808 struct page *ref_page)
63551ae0 2809{
24669e58 2810 int force_flush = 0;
63551ae0
DG
2811 struct mm_struct *mm = vma->vm_mm;
2812 unsigned long address;
c7546f8f 2813 pte_t *ptep;
63551ae0 2814 pte_t pte;
cb900f41 2815 spinlock_t *ptl;
63551ae0 2816 struct page *page;
a5516438
AK
2817 struct hstate *h = hstate_vma(vma);
2818 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
2819 const unsigned long mmun_start = start; /* For mmu_notifiers */
2820 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 2821
63551ae0 2822 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2823 BUG_ON(start & ~huge_page_mask(h));
2824 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2825
24669e58 2826 tlb_start_vma(tlb, vma);
2ec74c3e 2827 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
569f48b8 2828 address = start;
24669e58 2829again:
569f48b8 2830 for (; address < end; address += sz) {
c7546f8f 2831 ptep = huge_pte_offset(mm, address);
4c887265 2832 if (!ptep)
c7546f8f
DG
2833 continue;
2834
cb900f41 2835 ptl = huge_pte_lock(h, mm, ptep);
39dde65c 2836 if (huge_pmd_unshare(mm, &address, ptep))
cb900f41 2837 goto unlock;
39dde65c 2838
6629326b
HD
2839 pte = huge_ptep_get(ptep);
2840 if (huge_pte_none(pte))
cb900f41 2841 goto unlock;
6629326b
HD
2842
2843 /*
9fbc1f63
NH
2844 * Migrating hugepage or HWPoisoned hugepage is already
2845 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 2846 */
9fbc1f63 2847 if (unlikely(!pte_present(pte))) {
106c992a 2848 huge_pte_clear(mm, address, ptep);
cb900f41 2849 goto unlock;
8c4894c6 2850 }
6629326b
HD
2851
2852 page = pte_page(pte);
04f2cbe3
MG
2853 /*
2854 * If a reference page is supplied, it is because a specific
2855 * page is being unmapped, not a range. Ensure the page we
2856 * are about to unmap is the actual page of interest.
2857 */
2858 if (ref_page) {
04f2cbe3 2859 if (page != ref_page)
cb900f41 2860 goto unlock;
04f2cbe3
MG
2861
2862 /*
2863 * Mark the VMA as having unmapped its page so that
2864 * future faults in this VMA will fail rather than
2865 * looking like data was lost
2866 */
2867 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2868 }
2869
c7546f8f 2870 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 2871 tlb_remove_tlb_entry(tlb, ptep, address);
106c992a 2872 if (huge_pte_dirty(pte))
6649a386 2873 set_page_dirty(page);
9e81130b 2874
24669e58
AK
2875 page_remove_rmap(page);
2876 force_flush = !__tlb_remove_page(tlb, page);
cb900f41 2877 if (force_flush) {
569f48b8 2878 address += sz;
cb900f41 2879 spin_unlock(ptl);
24669e58 2880 break;
cb900f41 2881 }
9e81130b 2882 /* Bail out after unmapping reference page if supplied */
cb900f41
KS
2883 if (ref_page) {
2884 spin_unlock(ptl);
9e81130b 2885 break;
cb900f41
KS
2886 }
2887unlock:
2888 spin_unlock(ptl);
63551ae0 2889 }
24669e58
AK
2890 /*
2891 * mmu_gather ran out of room to batch pages, we break out of
2892 * the PTE lock to avoid doing the potential expensive TLB invalidate
2893 * and page-free while holding it.
2894 */
2895 if (force_flush) {
2896 force_flush = 0;
2897 tlb_flush_mmu(tlb);
2898 if (address < end && !ref_page)
2899 goto again;
fe1668ae 2900 }
2ec74c3e 2901 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 2902 tlb_end_vma(tlb, vma);
1da177e4 2903}
63551ae0 2904
d833352a
MG
2905void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2906 struct vm_area_struct *vma, unsigned long start,
2907 unsigned long end, struct page *ref_page)
2908{
2909 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2910
2911 /*
2912 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2913 * test will fail on a vma being torn down, and not grab a page table
2914 * on its way out. We're lucky that the flag has such an appropriate
2915 * name, and can in fact be safely cleared here. We could clear it
2916 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 2917 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 2918 * because in the context this is called, the VMA is about to be
c8c06efa 2919 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
2920 */
2921 vma->vm_flags &= ~VM_MAYSHARE;
2922}
2923
502717f4 2924void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2925 unsigned long end, struct page *ref_page)
502717f4 2926{
24669e58
AK
2927 struct mm_struct *mm;
2928 struct mmu_gather tlb;
2929
2930 mm = vma->vm_mm;
2931
2b047252 2932 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
2933 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2934 tlb_finish_mmu(&tlb, start, end);
502717f4
KC
2935}
2936
04f2cbe3
MG
2937/*
2938 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2939 * mappping it owns the reserve page for. The intention is to unmap the page
2940 * from other VMAs and let the children be SIGKILLed if they are faulting the
2941 * same region.
2942 */
2f4612af
DB
2943static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2944 struct page *page, unsigned long address)
04f2cbe3 2945{
7526674d 2946 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2947 struct vm_area_struct *iter_vma;
2948 struct address_space *mapping;
04f2cbe3
MG
2949 pgoff_t pgoff;
2950
2951 /*
2952 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2953 * from page cache lookup which is in HPAGE_SIZE units.
2954 */
7526674d 2955 address = address & huge_page_mask(h);
36e4f20a
MH
2956 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2957 vma->vm_pgoff;
496ad9aa 2958 mapping = file_inode(vma->vm_file)->i_mapping;
04f2cbe3 2959
4eb2b1dc
MG
2960 /*
2961 * Take the mapping lock for the duration of the table walk. As
2962 * this mapping should be shared between all the VMAs,
2963 * __unmap_hugepage_range() is called as the lock is already held
2964 */
83cde9e8 2965 i_mmap_lock_write(mapping);
6b2dbba8 2966 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
2967 /* Do not unmap the current VMA */
2968 if (iter_vma == vma)
2969 continue;
2970
2971 /*
2972 * Unmap the page from other VMAs without their own reserves.
2973 * They get marked to be SIGKILLed if they fault in these
2974 * areas. This is because a future no-page fault on this VMA
2975 * could insert a zeroed page instead of the data existing
2976 * from the time of fork. This would look like data corruption
2977 */
2978 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
2979 unmap_hugepage_range(iter_vma, address,
2980 address + huge_page_size(h), page);
04f2cbe3 2981 }
83cde9e8 2982 i_mmap_unlock_write(mapping);
04f2cbe3
MG
2983}
2984
0fe6e20b
NH
2985/*
2986 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
2987 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2988 * cannot race with other handlers or page migration.
2989 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 2990 */
1e8f889b 2991static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3 2992 unsigned long address, pte_t *ptep, pte_t pte,
cb900f41 2993 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 2994{
a5516438 2995 struct hstate *h = hstate_vma(vma);
1e8f889b 2996 struct page *old_page, *new_page;
ad4404a2 2997 int ret = 0, outside_reserve = 0;
2ec74c3e
SG
2998 unsigned long mmun_start; /* For mmu_notifiers */
2999 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b
DG
3000
3001 old_page = pte_page(pte);
3002
04f2cbe3 3003retry_avoidcopy:
1e8f889b
DG
3004 /* If no-one else is actually using this page, avoid the copy
3005 * and just make the page writable */
37a2140d
JK
3006 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3007 page_move_anon_rmap(old_page, vma, address);
1e8f889b 3008 set_huge_ptep_writable(vma, address, ptep);
83c54070 3009 return 0;
1e8f889b
DG
3010 }
3011
04f2cbe3
MG
3012 /*
3013 * If the process that created a MAP_PRIVATE mapping is about to
3014 * perform a COW due to a shared page count, attempt to satisfy
3015 * the allocation without using the existing reserves. The pagecache
3016 * page is used to determine if the reserve at this address was
3017 * consumed or not. If reserves were used, a partial faulted mapping
3018 * at the time of fork() could consume its reserves on COW instead
3019 * of the full address range.
3020 */
5944d011 3021 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3022 old_page != pagecache_page)
3023 outside_reserve = 1;
3024
1e8f889b 3025 page_cache_get(old_page);
b76c8cfb 3026
ad4404a2
DB
3027 /*
3028 * Drop page table lock as buddy allocator may be called. It will
3029 * be acquired again before returning to the caller, as expected.
3030 */
cb900f41 3031 spin_unlock(ptl);
04f2cbe3 3032 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 3033
2fc39cec 3034 if (IS_ERR(new_page)) {
04f2cbe3
MG
3035 /*
3036 * If a process owning a MAP_PRIVATE mapping fails to COW,
3037 * it is due to references held by a child and an insufficient
3038 * huge page pool. To guarantee the original mappers
3039 * reliability, unmap the page from child processes. The child
3040 * may get SIGKILLed if it later faults.
3041 */
3042 if (outside_reserve) {
ad4404a2 3043 page_cache_release(old_page);
04f2cbe3 3044 BUG_ON(huge_pte_none(pte));
2f4612af
DB
3045 unmap_ref_private(mm, vma, old_page, address);
3046 BUG_ON(huge_pte_none(pte));
3047 spin_lock(ptl);
3048 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3049 if (likely(ptep &&
3050 pte_same(huge_ptep_get(ptep), pte)))
3051 goto retry_avoidcopy;
3052 /*
3053 * race occurs while re-acquiring page table
3054 * lock, and our job is done.
3055 */
3056 return 0;
04f2cbe3
MG
3057 }
3058
ad4404a2
DB
3059 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3060 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3061 goto out_release_old;
1e8f889b
DG
3062 }
3063
0fe6e20b
NH
3064 /*
3065 * When the original hugepage is shared one, it does not have
3066 * anon_vma prepared.
3067 */
44e2aa93 3068 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3069 ret = VM_FAULT_OOM;
3070 goto out_release_all;
44e2aa93 3071 }
0fe6e20b 3072
47ad8475
AA
3073 copy_user_huge_page(new_page, old_page, address, vma,
3074 pages_per_huge_page(h));
0ed361de 3075 __SetPageUptodate(new_page);
bcc54222 3076 set_page_huge_active(new_page);
1e8f889b 3077
2ec74c3e
SG
3078 mmun_start = address & huge_page_mask(h);
3079 mmun_end = mmun_start + huge_page_size(h);
3080 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ad4404a2 3081
b76c8cfb 3082 /*
cb900f41 3083 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3084 * before the page tables are altered
3085 */
cb900f41 3086 spin_lock(ptl);
a5516438 3087 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
a9af0c5d 3088 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3089 ClearPagePrivate(new_page);
3090
1e8f889b 3091 /* Break COW */
8fe627ec 3092 huge_ptep_clear_flush(vma, address, ptep);
34ee645e 3093 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1e8f889b
DG
3094 set_huge_pte_at(mm, address, ptep,
3095 make_huge_pte(vma, new_page, 1));
0fe6e20b 3096 page_remove_rmap(old_page);
cd67f0d2 3097 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
3098 /* Make the old page be freed below */
3099 new_page = old_page;
3100 }
cb900f41 3101 spin_unlock(ptl);
2ec74c3e 3102 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ad4404a2 3103out_release_all:
1e8f889b 3104 page_cache_release(new_page);
ad4404a2 3105out_release_old:
1e8f889b 3106 page_cache_release(old_page);
8312034f 3107
ad4404a2
DB
3108 spin_lock(ptl); /* Caller expects lock to be held */
3109 return ret;
1e8f889b
DG
3110}
3111
04f2cbe3 3112/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3113static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3114 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3115{
3116 struct address_space *mapping;
e7c4b0bf 3117 pgoff_t idx;
04f2cbe3
MG
3118
3119 mapping = vma->vm_file->f_mapping;
a5516438 3120 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3121
3122 return find_lock_page(mapping, idx);
3123}
3124
3ae77f43
HD
3125/*
3126 * Return whether there is a pagecache page to back given address within VMA.
3127 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3128 */
3129static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3130 struct vm_area_struct *vma, unsigned long address)
3131{
3132 struct address_space *mapping;
3133 pgoff_t idx;
3134 struct page *page;
3135
3136 mapping = vma->vm_file->f_mapping;
3137 idx = vma_hugecache_offset(h, vma, address);
3138
3139 page = find_get_page(mapping, idx);
3140 if (page)
3141 put_page(page);
3142 return page != NULL;
3143}
3144
a1ed3dda 3145static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
8382d914
DB
3146 struct address_space *mapping, pgoff_t idx,
3147 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3148{
a5516438 3149 struct hstate *h = hstate_vma(vma);
ac9b9c66 3150 int ret = VM_FAULT_SIGBUS;
409eb8c2 3151 int anon_rmap = 0;
4c887265 3152 unsigned long size;
4c887265 3153 struct page *page;
1e8f889b 3154 pte_t new_pte;
cb900f41 3155 spinlock_t *ptl;
4c887265 3156
04f2cbe3
MG
3157 /*
3158 * Currently, we are forced to kill the process in the event the
3159 * original mapper has unmapped pages from the child due to a failed
25985edc 3160 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3161 */
3162 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
ffb22af5
AM
3163 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3164 current->pid);
04f2cbe3
MG
3165 return ret;
3166 }
3167
4c887265
AL
3168 /*
3169 * Use page lock to guard against racing truncation
3170 * before we get page_table_lock.
3171 */
6bda666a
CL
3172retry:
3173 page = find_lock_page(mapping, idx);
3174 if (!page) {
a5516438 3175 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
3176 if (idx >= size)
3177 goto out;
04f2cbe3 3178 page = alloc_huge_page(vma, address, 0);
2fc39cec 3179 if (IS_ERR(page)) {
76dcee75
AK
3180 ret = PTR_ERR(page);
3181 if (ret == -ENOMEM)
3182 ret = VM_FAULT_OOM;
3183 else
3184 ret = VM_FAULT_SIGBUS;
6bda666a
CL
3185 goto out;
3186 }
47ad8475 3187 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3188 __SetPageUptodate(page);
bcc54222 3189 set_page_huge_active(page);
ac9b9c66 3190
f83a275d 3191 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 3192 int err;
45c682a6 3193 struct inode *inode = mapping->host;
6bda666a
CL
3194
3195 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3196 if (err) {
3197 put_page(page);
6bda666a
CL
3198 if (err == -EEXIST)
3199 goto retry;
3200 goto out;
3201 }
07443a85 3202 ClearPagePrivate(page);
45c682a6
KC
3203
3204 spin_lock(&inode->i_lock);
a5516438 3205 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 3206 spin_unlock(&inode->i_lock);
23be7468 3207 } else {
6bda666a 3208 lock_page(page);
0fe6e20b
NH
3209 if (unlikely(anon_vma_prepare(vma))) {
3210 ret = VM_FAULT_OOM;
3211 goto backout_unlocked;
3212 }
409eb8c2 3213 anon_rmap = 1;
23be7468 3214 }
0fe6e20b 3215 } else {
998b4382
NH
3216 /*
3217 * If memory error occurs between mmap() and fault, some process
3218 * don't have hwpoisoned swap entry for errored virtual address.
3219 * So we need to block hugepage fault by PG_hwpoison bit check.
3220 */
3221 if (unlikely(PageHWPoison(page))) {
32f84528 3222 ret = VM_FAULT_HWPOISON |
972dc4de 3223 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3224 goto backout_unlocked;
3225 }
6bda666a 3226 }
1e8f889b 3227
57303d80
AW
3228 /*
3229 * If we are going to COW a private mapping later, we examine the
3230 * pending reservations for this page now. This will ensure that
3231 * any allocations necessary to record that reservation occur outside
3232 * the spinlock.
3233 */
788c7df4 3234 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
3235 if (vma_needs_reservation(h, vma, address) < 0) {
3236 ret = VM_FAULT_OOM;
3237 goto backout_unlocked;
3238 }
57303d80 3239
cb900f41
KS
3240 ptl = huge_pte_lockptr(h, mm, ptep);
3241 spin_lock(ptl);
a5516438 3242 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
3243 if (idx >= size)
3244 goto backout;
3245
83c54070 3246 ret = 0;
7f2e9525 3247 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3248 goto backout;
3249
07443a85
JK
3250 if (anon_rmap) {
3251 ClearPagePrivate(page);
409eb8c2 3252 hugepage_add_new_anon_rmap(page, vma, address);
ac714904 3253 } else
409eb8c2 3254 page_dup_rmap(page);
1e8f889b
DG
3255 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3256 && (vma->vm_flags & VM_SHARED)));
3257 set_huge_pte_at(mm, address, ptep, new_pte);
3258
788c7df4 3259 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3260 /* Optimization, do the COW without a second fault */
cb900f41 3261 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
1e8f889b
DG
3262 }
3263
cb900f41 3264 spin_unlock(ptl);
4c887265
AL
3265 unlock_page(page);
3266out:
ac9b9c66 3267 return ret;
4c887265
AL
3268
3269backout:
cb900f41 3270 spin_unlock(ptl);
2b26736c 3271backout_unlocked:
4c887265
AL
3272 unlock_page(page);
3273 put_page(page);
3274 goto out;
ac9b9c66
HD
3275}
3276
8382d914
DB
3277#ifdef CONFIG_SMP
3278static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3279 struct vm_area_struct *vma,
3280 struct address_space *mapping,
3281 pgoff_t idx, unsigned long address)
3282{
3283 unsigned long key[2];
3284 u32 hash;
3285
3286 if (vma->vm_flags & VM_SHARED) {
3287 key[0] = (unsigned long) mapping;
3288 key[1] = idx;
3289 } else {
3290 key[0] = (unsigned long) mm;
3291 key[1] = address >> huge_page_shift(h);
3292 }
3293
3294 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3295
3296 return hash & (num_fault_mutexes - 1);
3297}
3298#else
3299/*
3300 * For uniprocesor systems we always use a single mutex, so just
3301 * return 0 and avoid the hashing overhead.
3302 */
3303static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3304 struct vm_area_struct *vma,
3305 struct address_space *mapping,
3306 pgoff_t idx, unsigned long address)
3307{
3308 return 0;
3309}
3310#endif
3311
86e5216f 3312int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3313 unsigned long address, unsigned int flags)
86e5216f 3314{
8382d914 3315 pte_t *ptep, entry;
cb900f41 3316 spinlock_t *ptl;
1e8f889b 3317 int ret;
8382d914
DB
3318 u32 hash;
3319 pgoff_t idx;
0fe6e20b 3320 struct page *page = NULL;
57303d80 3321 struct page *pagecache_page = NULL;
a5516438 3322 struct hstate *h = hstate_vma(vma);
8382d914 3323 struct address_space *mapping;
0f792cf9 3324 int need_wait_lock = 0;
86e5216f 3325
1e16a539
KH
3326 address &= huge_page_mask(h);
3327
fd6a03ed
NH
3328 ptep = huge_pte_offset(mm, address);
3329 if (ptep) {
3330 entry = huge_ptep_get(ptep);
290408d4 3331 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 3332 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
3333 return 0;
3334 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 3335 return VM_FAULT_HWPOISON_LARGE |
972dc4de 3336 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
3337 }
3338
a5516438 3339 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
3340 if (!ptep)
3341 return VM_FAULT_OOM;
3342
8382d914
DB
3343 mapping = vma->vm_file->f_mapping;
3344 idx = vma_hugecache_offset(h, vma, address);
3345
3935baa9
DG
3346 /*
3347 * Serialize hugepage allocation and instantiation, so that we don't
3348 * get spurious allocation failures if two CPUs race to instantiate
3349 * the same page in the page cache.
3350 */
8382d914
DB
3351 hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3352 mutex_lock(&htlb_fault_mutex_table[hash]);
3353
7f2e9525
GS
3354 entry = huge_ptep_get(ptep);
3355 if (huge_pte_none(entry)) {
8382d914 3356 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3357 goto out_mutex;
3935baa9 3358 }
86e5216f 3359
83c54070 3360 ret = 0;
1e8f889b 3361
0f792cf9
NH
3362 /*
3363 * entry could be a migration/hwpoison entry at this point, so this
3364 * check prevents the kernel from going below assuming that we have
3365 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3366 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3367 * handle it.
3368 */
3369 if (!pte_present(entry))
3370 goto out_mutex;
3371
57303d80
AW
3372 /*
3373 * If we are going to COW the mapping later, we examine the pending
3374 * reservations for this page now. This will ensure that any
3375 * allocations necessary to record that reservation occur outside the
3376 * spinlock. For private mappings, we also lookup the pagecache
3377 * page now as it is used to determine if a reservation has been
3378 * consumed.
3379 */
106c992a 3380 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
3381 if (vma_needs_reservation(h, vma, address) < 0) {
3382 ret = VM_FAULT_OOM;
b4d1d99f 3383 goto out_mutex;
2b26736c 3384 }
57303d80 3385
f83a275d 3386 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
3387 pagecache_page = hugetlbfs_pagecache_page(h,
3388 vma, address);
3389 }
3390
0f792cf9
NH
3391 ptl = huge_pte_lock(h, mm, ptep);
3392
3393 /* Check for a racing update before calling hugetlb_cow */
3394 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3395 goto out_ptl;
3396
56c9cfb1
NH
3397 /*
3398 * hugetlb_cow() requires page locks of pte_page(entry) and
3399 * pagecache_page, so here we need take the former one
3400 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
3401 */
3402 page = pte_page(entry);
3403 if (page != pagecache_page)
0f792cf9
NH
3404 if (!trylock_page(page)) {
3405 need_wait_lock = 1;
3406 goto out_ptl;
3407 }
b4d1d99f 3408
0f792cf9 3409 get_page(page);
b4d1d99f 3410
788c7df4 3411 if (flags & FAULT_FLAG_WRITE) {
106c992a 3412 if (!huge_pte_write(entry)) {
57303d80 3413 ret = hugetlb_cow(mm, vma, address, ptep, entry,
cb900f41 3414 pagecache_page, ptl);
0f792cf9 3415 goto out_put_page;
b4d1d99f 3416 }
106c992a 3417 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
3418 }
3419 entry = pte_mkyoung(entry);
788c7df4
HD
3420 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3421 flags & FAULT_FLAG_WRITE))
4b3073e1 3422 update_mmu_cache(vma, address, ptep);
0f792cf9
NH
3423out_put_page:
3424 if (page != pagecache_page)
3425 unlock_page(page);
3426 put_page(page);
cb900f41
KS
3427out_ptl:
3428 spin_unlock(ptl);
57303d80
AW
3429
3430 if (pagecache_page) {
3431 unlock_page(pagecache_page);
3432 put_page(pagecache_page);
3433 }
b4d1d99f 3434out_mutex:
8382d914 3435 mutex_unlock(&htlb_fault_mutex_table[hash]);
0f792cf9
NH
3436 /*
3437 * Generally it's safe to hold refcount during waiting page lock. But
3438 * here we just wait to defer the next page fault to avoid busy loop and
3439 * the page is not used after unlocked before returning from the current
3440 * page fault. So we are safe from accessing freed page, even if we wait
3441 * here without taking refcount.
3442 */
3443 if (need_wait_lock)
3444 wait_on_page_locked(page);
1e8f889b 3445 return ret;
86e5216f
AL
3446}
3447
28a35716
ML
3448long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3449 struct page **pages, struct vm_area_struct **vmas,
3450 unsigned long *position, unsigned long *nr_pages,
3451 long i, unsigned int flags)
63551ae0 3452{
d5d4b0aa
KC
3453 unsigned long pfn_offset;
3454 unsigned long vaddr = *position;
28a35716 3455 unsigned long remainder = *nr_pages;
a5516438 3456 struct hstate *h = hstate_vma(vma);
63551ae0 3457
63551ae0 3458 while (vaddr < vma->vm_end && remainder) {
4c887265 3459 pte_t *pte;
cb900f41 3460 spinlock_t *ptl = NULL;
2a15efc9 3461 int absent;
4c887265 3462 struct page *page;
63551ae0 3463
02057967
DR
3464 /*
3465 * If we have a pending SIGKILL, don't keep faulting pages and
3466 * potentially allocating memory.
3467 */
3468 if (unlikely(fatal_signal_pending(current))) {
3469 remainder = 0;
3470 break;
3471 }
3472
4c887265
AL
3473 /*
3474 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 3475 * each hugepage. We have to make sure we get the
4c887265 3476 * first, for the page indexing below to work.
cb900f41
KS
3477 *
3478 * Note that page table lock is not held when pte is null.
4c887265 3479 */
a5516438 3480 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
cb900f41
KS
3481 if (pte)
3482 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
3483 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3484
3485 /*
3486 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
3487 * an error where there's an empty slot with no huge pagecache
3488 * to back it. This way, we avoid allocating a hugepage, and
3489 * the sparse dumpfile avoids allocating disk blocks, but its
3490 * huge holes still show up with zeroes where they need to be.
2a15efc9 3491 */
3ae77f43
HD
3492 if (absent && (flags & FOLL_DUMP) &&
3493 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
3494 if (pte)
3495 spin_unlock(ptl);
2a15efc9
HD
3496 remainder = 0;
3497 break;
3498 }
63551ae0 3499
9cc3a5bd
NH
3500 /*
3501 * We need call hugetlb_fault for both hugepages under migration
3502 * (in which case hugetlb_fault waits for the migration,) and
3503 * hwpoisoned hugepages (in which case we need to prevent the
3504 * caller from accessing to them.) In order to do this, we use
3505 * here is_swap_pte instead of is_hugetlb_entry_migration and
3506 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3507 * both cases, and because we can't follow correct pages
3508 * directly from any kind of swap entries.
3509 */
3510 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
3511 ((flags & FOLL_WRITE) &&
3512 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 3513 int ret;
63551ae0 3514
cb900f41
KS
3515 if (pte)
3516 spin_unlock(ptl);
2a15efc9
HD
3517 ret = hugetlb_fault(mm, vma, vaddr,
3518 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
a89182c7 3519 if (!(ret & VM_FAULT_ERROR))
4c887265 3520 continue;
63551ae0 3521
4c887265 3522 remainder = 0;
4c887265
AL
3523 break;
3524 }
3525
a5516438 3526 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 3527 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 3528same_page:
d6692183 3529 if (pages) {
2a15efc9 3530 pages[i] = mem_map_offset(page, pfn_offset);
a0368d4e 3531 get_page_foll(pages[i]);
d6692183 3532 }
63551ae0
DG
3533
3534 if (vmas)
3535 vmas[i] = vma;
3536
3537 vaddr += PAGE_SIZE;
d5d4b0aa 3538 ++pfn_offset;
63551ae0
DG
3539 --remainder;
3540 ++i;
d5d4b0aa 3541 if (vaddr < vma->vm_end && remainder &&
a5516438 3542 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
3543 /*
3544 * We use pfn_offset to avoid touching the pageframes
3545 * of this compound page.
3546 */
3547 goto same_page;
3548 }
cb900f41 3549 spin_unlock(ptl);
63551ae0 3550 }
28a35716 3551 *nr_pages = remainder;
63551ae0
DG
3552 *position = vaddr;
3553
2a15efc9 3554 return i ? i : -EFAULT;
63551ae0 3555}
8f860591 3556
7da4d641 3557unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
3558 unsigned long address, unsigned long end, pgprot_t newprot)
3559{
3560 struct mm_struct *mm = vma->vm_mm;
3561 unsigned long start = address;
3562 pte_t *ptep;
3563 pte_t pte;
a5516438 3564 struct hstate *h = hstate_vma(vma);
7da4d641 3565 unsigned long pages = 0;
8f860591
ZY
3566
3567 BUG_ON(address >= end);
3568 flush_cache_range(vma, address, end);
3569
a5338093 3570 mmu_notifier_invalidate_range_start(mm, start, end);
83cde9e8 3571 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 3572 for (; address < end; address += huge_page_size(h)) {
cb900f41 3573 spinlock_t *ptl;
8f860591
ZY
3574 ptep = huge_pte_offset(mm, address);
3575 if (!ptep)
3576 continue;
cb900f41 3577 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
3578 if (huge_pmd_unshare(mm, &address, ptep)) {
3579 pages++;
cb900f41 3580 spin_unlock(ptl);
39dde65c 3581 continue;
7da4d641 3582 }
a8bda28d
NH
3583 pte = huge_ptep_get(ptep);
3584 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3585 spin_unlock(ptl);
3586 continue;
3587 }
3588 if (unlikely(is_hugetlb_entry_migration(pte))) {
3589 swp_entry_t entry = pte_to_swp_entry(pte);
3590
3591 if (is_write_migration_entry(entry)) {
3592 pte_t newpte;
3593
3594 make_migration_entry_read(&entry);
3595 newpte = swp_entry_to_pte(entry);
3596 set_huge_pte_at(mm, address, ptep, newpte);
3597 pages++;
3598 }
3599 spin_unlock(ptl);
3600 continue;
3601 }
3602 if (!huge_pte_none(pte)) {
8f860591 3603 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 3604 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 3605 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 3606 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 3607 pages++;
8f860591 3608 }
cb900f41 3609 spin_unlock(ptl);
8f860591 3610 }
d833352a 3611 /*
c8c06efa 3612 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 3613 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 3614 * once we release i_mmap_rwsem, another task can do the final put_page
d833352a
MG
3615 * and that page table be reused and filled with junk.
3616 */
8f860591 3617 flush_tlb_range(vma, start, end);
34ee645e 3618 mmu_notifier_invalidate_range(mm, start, end);
83cde9e8 3619 i_mmap_unlock_write(vma->vm_file->f_mapping);
a5338093 3620 mmu_notifier_invalidate_range_end(mm, start, end);
7da4d641
PZ
3621
3622 return pages << h->order;
8f860591
ZY
3623}
3624
a1e78772
MG
3625int hugetlb_reserve_pages(struct inode *inode,
3626 long from, long to,
5a6fe125 3627 struct vm_area_struct *vma,
ca16d140 3628 vm_flags_t vm_flags)
e4e574b7 3629{
17c9d12e 3630 long ret, chg;
a5516438 3631 struct hstate *h = hstate_inode(inode);
90481622 3632 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 3633 struct resv_map *resv_map;
1c5ecae3 3634 long gbl_reserve;
e4e574b7 3635
17c9d12e
MG
3636 /*
3637 * Only apply hugepage reservation if asked. At fault time, an
3638 * attempt will be made for VM_NORESERVE to allocate a page
90481622 3639 * without using reserves
17c9d12e 3640 */
ca16d140 3641 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
3642 return 0;
3643
a1e78772
MG
3644 /*
3645 * Shared mappings base their reservation on the number of pages that
3646 * are already allocated on behalf of the file. Private mappings need
3647 * to reserve the full area even if read-only as mprotect() may be
3648 * called to make the mapping read-write. Assume !vma is a shm mapping
3649 */
9119a41e 3650 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 3651 resv_map = inode_resv_map(inode);
9119a41e 3652
1406ec9b 3653 chg = region_chg(resv_map, from, to);
9119a41e
JK
3654
3655 } else {
3656 resv_map = resv_map_alloc();
17c9d12e
MG
3657 if (!resv_map)
3658 return -ENOMEM;
3659
a1e78772 3660 chg = to - from;
84afd99b 3661
17c9d12e
MG
3662 set_vma_resv_map(vma, resv_map);
3663 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3664 }
3665
c50ac050
DH
3666 if (chg < 0) {
3667 ret = chg;
3668 goto out_err;
3669 }
8a630112 3670
1c5ecae3
MK
3671 /*
3672 * There must be enough pages in the subpool for the mapping. If
3673 * the subpool has a minimum size, there may be some global
3674 * reservations already in place (gbl_reserve).
3675 */
3676 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
3677 if (gbl_reserve < 0) {
c50ac050
DH
3678 ret = -ENOSPC;
3679 goto out_err;
3680 }
5a6fe125
MG
3681
3682 /*
17c9d12e 3683 * Check enough hugepages are available for the reservation.
90481622 3684 * Hand the pages back to the subpool if there are not
5a6fe125 3685 */
1c5ecae3 3686 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 3687 if (ret < 0) {
1c5ecae3
MK
3688 /* put back original number of pages, chg */
3689 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 3690 goto out_err;
68842c9b 3691 }
17c9d12e
MG
3692
3693 /*
3694 * Account for the reservations made. Shared mappings record regions
3695 * that have reservations as they are shared by multiple VMAs.
3696 * When the last VMA disappears, the region map says how much
3697 * the reservation was and the page cache tells how much of
3698 * the reservation was consumed. Private mappings are per-VMA and
3699 * only the consumed reservations are tracked. When the VMA
3700 * disappears, the original reservation is the VMA size and the
3701 * consumed reservations are stored in the map. Hence, nothing
3702 * else has to be done for private mappings here
3703 */
f83a275d 3704 if (!vma || vma->vm_flags & VM_MAYSHARE)
1406ec9b 3705 region_add(resv_map, from, to);
a43a8c39 3706 return 0;
c50ac050 3707out_err:
f031dd27
JK
3708 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3709 kref_put(&resv_map->refs, resv_map_release);
c50ac050 3710 return ret;
a43a8c39
KC
3711}
3712
3713void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3714{
a5516438 3715 struct hstate *h = hstate_inode(inode);
4e35f483 3716 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 3717 long chg = 0;
90481622 3718 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 3719 long gbl_reserve;
45c682a6 3720
9119a41e 3721 if (resv_map)
1406ec9b 3722 chg = region_truncate(resv_map, offset);
45c682a6 3723 spin_lock(&inode->i_lock);
e4c6f8be 3724 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
3725 spin_unlock(&inode->i_lock);
3726
1c5ecae3
MK
3727 /*
3728 * If the subpool has a minimum size, the number of global
3729 * reservations to be released may be adjusted.
3730 */
3731 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
3732 hugetlb_acct_memory(h, -gbl_reserve);
a43a8c39 3733}
93f70f90 3734
3212b535
SC
3735#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3736static unsigned long page_table_shareable(struct vm_area_struct *svma,
3737 struct vm_area_struct *vma,
3738 unsigned long addr, pgoff_t idx)
3739{
3740 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3741 svma->vm_start;
3742 unsigned long sbase = saddr & PUD_MASK;
3743 unsigned long s_end = sbase + PUD_SIZE;
3744
3745 /* Allow segments to share if only one is marked locked */
3746 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3747 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3748
3749 /*
3750 * match the virtual addresses, permission and the alignment of the
3751 * page table page.
3752 */
3753 if (pmd_index(addr) != pmd_index(saddr) ||
3754 vm_flags != svm_flags ||
3755 sbase < svma->vm_start || svma->vm_end < s_end)
3756 return 0;
3757
3758 return saddr;
3759}
3760
3761static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3762{
3763 unsigned long base = addr & PUD_MASK;
3764 unsigned long end = base + PUD_SIZE;
3765
3766 /*
3767 * check on proper vm_flags and page table alignment
3768 */
3769 if (vma->vm_flags & VM_MAYSHARE &&
3770 vma->vm_start <= base && end <= vma->vm_end)
3771 return 1;
3772 return 0;
3773}
3774
3775/*
3776 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3777 * and returns the corresponding pte. While this is not necessary for the
3778 * !shared pmd case because we can allocate the pmd later as well, it makes the
3779 * code much cleaner. pmd allocation is essential for the shared case because
c8c06efa 3780 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3212b535
SC
3781 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3782 * bad pmd for sharing.
3783 */
3784pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3785{
3786 struct vm_area_struct *vma = find_vma(mm, addr);
3787 struct address_space *mapping = vma->vm_file->f_mapping;
3788 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3789 vma->vm_pgoff;
3790 struct vm_area_struct *svma;
3791 unsigned long saddr;
3792 pte_t *spte = NULL;
3793 pte_t *pte;
cb900f41 3794 spinlock_t *ptl;
3212b535
SC
3795
3796 if (!vma_shareable(vma, addr))
3797 return (pte_t *)pmd_alloc(mm, pud, addr);
3798
83cde9e8 3799 i_mmap_lock_write(mapping);
3212b535
SC
3800 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3801 if (svma == vma)
3802 continue;
3803
3804 saddr = page_table_shareable(svma, vma, addr, idx);
3805 if (saddr) {
3806 spte = huge_pte_offset(svma->vm_mm, saddr);
3807 if (spte) {
dc6c9a35 3808 mm_inc_nr_pmds(mm);
3212b535
SC
3809 get_page(virt_to_page(spte));
3810 break;
3811 }
3812 }
3813 }
3814
3815 if (!spte)
3816 goto out;
3817
cb900f41
KS
3818 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3819 spin_lock(ptl);
dc6c9a35 3820 if (pud_none(*pud)) {
3212b535
SC
3821 pud_populate(mm, pud,
3822 (pmd_t *)((unsigned long)spte & PAGE_MASK));
dc6c9a35 3823 } else {
3212b535 3824 put_page(virt_to_page(spte));
dc6c9a35
KS
3825 mm_inc_nr_pmds(mm);
3826 }
cb900f41 3827 spin_unlock(ptl);
3212b535
SC
3828out:
3829 pte = (pte_t *)pmd_alloc(mm, pud, addr);
83cde9e8 3830 i_mmap_unlock_write(mapping);
3212b535
SC
3831 return pte;
3832}
3833
3834/*
3835 * unmap huge page backed by shared pte.
3836 *
3837 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3838 * indicated by page_count > 1, unmap is achieved by clearing pud and
3839 * decrementing the ref count. If count == 1, the pte page is not shared.
3840 *
cb900f41 3841 * called with page table lock held.
3212b535
SC
3842 *
3843 * returns: 1 successfully unmapped a shared pte page
3844 * 0 the underlying pte page is not shared, or it is the last user
3845 */
3846int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3847{
3848 pgd_t *pgd = pgd_offset(mm, *addr);
3849 pud_t *pud = pud_offset(pgd, *addr);
3850
3851 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3852 if (page_count(virt_to_page(ptep)) == 1)
3853 return 0;
3854
3855 pud_clear(pud);
3856 put_page(virt_to_page(ptep));
dc6c9a35 3857 mm_dec_nr_pmds(mm);
3212b535
SC
3858 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3859 return 1;
3860}
9e5fc74c
SC
3861#define want_pmd_share() (1)
3862#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3863pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3864{
3865 return NULL;
3866}
e81f2d22
ZZ
3867
3868int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3869{
3870 return 0;
3871}
9e5fc74c 3872#define want_pmd_share() (0)
3212b535
SC
3873#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3874
9e5fc74c
SC
3875#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3876pte_t *huge_pte_alloc(struct mm_struct *mm,
3877 unsigned long addr, unsigned long sz)
3878{
3879 pgd_t *pgd;
3880 pud_t *pud;
3881 pte_t *pte = NULL;
3882
3883 pgd = pgd_offset(mm, addr);
3884 pud = pud_alloc(mm, pgd, addr);
3885 if (pud) {
3886 if (sz == PUD_SIZE) {
3887 pte = (pte_t *)pud;
3888 } else {
3889 BUG_ON(sz != PMD_SIZE);
3890 if (want_pmd_share() && pud_none(*pud))
3891 pte = huge_pmd_share(mm, addr, pud);
3892 else
3893 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3894 }
3895 }
3896 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3897
3898 return pte;
3899}
3900
3901pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3902{
3903 pgd_t *pgd;
3904 pud_t *pud;
3905 pmd_t *pmd = NULL;
3906
3907 pgd = pgd_offset(mm, addr);
3908 if (pgd_present(*pgd)) {
3909 pud = pud_offset(pgd, addr);
3910 if (pud_present(*pud)) {
3911 if (pud_huge(*pud))
3912 return (pte_t *)pud;
3913 pmd = pmd_offset(pud, addr);
3914 }
3915 }
3916 return (pte_t *) pmd;
3917}
3918
61f77eda
NH
3919#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3920
3921/*
3922 * These functions are overwritable if your architecture needs its own
3923 * behavior.
3924 */
3925struct page * __weak
3926follow_huge_addr(struct mm_struct *mm, unsigned long address,
3927 int write)
3928{
3929 return ERR_PTR(-EINVAL);
3930}
3931
3932struct page * __weak
9e5fc74c 3933follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 3934 pmd_t *pmd, int flags)
9e5fc74c 3935{
e66f17ff
NH
3936 struct page *page = NULL;
3937 spinlock_t *ptl;
3938retry:
3939 ptl = pmd_lockptr(mm, pmd);
3940 spin_lock(ptl);
3941 /*
3942 * make sure that the address range covered by this pmd is not
3943 * unmapped from other threads.
3944 */
3945 if (!pmd_huge(*pmd))
3946 goto out;
3947 if (pmd_present(*pmd)) {
97534127 3948 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
3949 if (flags & FOLL_GET)
3950 get_page(page);
3951 } else {
3952 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
3953 spin_unlock(ptl);
3954 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
3955 goto retry;
3956 }
3957 /*
3958 * hwpoisoned entry is treated as no_page_table in
3959 * follow_page_mask().
3960 */
3961 }
3962out:
3963 spin_unlock(ptl);
9e5fc74c
SC
3964 return page;
3965}
3966
61f77eda 3967struct page * __weak
9e5fc74c 3968follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 3969 pud_t *pud, int flags)
9e5fc74c 3970{
e66f17ff
NH
3971 if (flags & FOLL_GET)
3972 return NULL;
9e5fc74c 3973
e66f17ff 3974 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
3975}
3976
d5bd9106
AK
3977#ifdef CONFIG_MEMORY_FAILURE
3978
93f70f90
NH
3979/*
3980 * This function is called from memory failure code.
3981 * Assume the caller holds page lock of the head page.
3982 */
6de2b1aa 3983int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
3984{
3985 struct hstate *h = page_hstate(hpage);
3986 int nid = page_to_nid(hpage);
6de2b1aa 3987 int ret = -EBUSY;
93f70f90
NH
3988
3989 spin_lock(&hugetlb_lock);
7e1f049e
NH
3990 /*
3991 * Just checking !page_huge_active is not enough, because that could be
3992 * an isolated/hwpoisoned hugepage (which have >0 refcount).
3993 */
3994 if (!page_huge_active(hpage) && !page_count(hpage)) {
56f2fb14
NH
3995 /*
3996 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3997 * but dangling hpage->lru can trigger list-debug warnings
3998 * (this happens when we call unpoison_memory() on it),
3999 * so let it point to itself with list_del_init().
4000 */
4001 list_del_init(&hpage->lru);
8c6c2ecb 4002 set_page_refcounted(hpage);
6de2b1aa
NH
4003 h->free_huge_pages--;
4004 h->free_huge_pages_node[nid]--;
4005 ret = 0;
4006 }
93f70f90 4007 spin_unlock(&hugetlb_lock);
6de2b1aa 4008 return ret;
93f70f90 4009}
6de2b1aa 4010#endif
31caf665
NH
4011
4012bool isolate_huge_page(struct page *page, struct list_head *list)
4013{
bcc54222
NH
4014 bool ret = true;
4015
309381fe 4016 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4017 spin_lock(&hugetlb_lock);
bcc54222
NH
4018 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4019 ret = false;
4020 goto unlock;
4021 }
4022 clear_page_huge_active(page);
31caf665 4023 list_move_tail(&page->lru, list);
bcc54222 4024unlock:
31caf665 4025 spin_unlock(&hugetlb_lock);
bcc54222 4026 return ret;
31caf665
NH
4027}
4028
4029void putback_active_hugepage(struct page *page)
4030{
309381fe 4031 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4032 spin_lock(&hugetlb_lock);
bcc54222 4033 set_page_huge_active(page);
31caf665
NH
4034 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4035 spin_unlock(&hugetlb_lock);
4036 put_page(page);
4037}