]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/hugetlb.c
mm, hugetlb: remove resv_map_put
[mirror_ubuntu-zesty-kernel.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
fd6a03ed
NH
22#include <linux/swap.h>
23#include <linux/swapops.h>
c8721bbb 24#include <linux/page-isolation.h>
d6606683 25
63551ae0
DG
26#include <asm/page.h>
27#include <asm/pgtable.h>
24669e58 28#include <asm/tlb.h>
63551ae0 29
24669e58 30#include <linux/io.h>
63551ae0 31#include <linux/hugetlb.h>
9dd540e2 32#include <linux/hugetlb_cgroup.h>
9a305230 33#include <linux/node.h>
7835e98b 34#include "internal.h"
1da177e4
LT
35
36const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03 37unsigned long hugepages_treat_as_movable;
a5516438 38
c3f38a38 39int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
40unsigned int default_hstate_idx;
41struct hstate hstates[HUGE_MAX_HSTATE];
42
53ba51d2
JT
43__initdata LIST_HEAD(huge_boot_pages);
44
e5ff2159
AK
45/* for command line parsing */
46static struct hstate * __initdata parsed_hstate;
47static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 48static unsigned long __initdata default_hstate_size;
e5ff2159 49
3935baa9 50/*
31caf665
NH
51 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
52 * free_huge_pages, and surplus_huge_pages.
3935baa9 53 */
c3f38a38 54DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 55
90481622
DG
56static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57{
58 bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60 spin_unlock(&spool->lock);
61
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
64 if (free)
65 kfree(spool);
66}
67
68struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69{
70 struct hugepage_subpool *spool;
71
72 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73 if (!spool)
74 return NULL;
75
76 spin_lock_init(&spool->lock);
77 spool->count = 1;
78 spool->max_hpages = nr_blocks;
79 spool->used_hpages = 0;
80
81 return spool;
82}
83
84void hugepage_put_subpool(struct hugepage_subpool *spool)
85{
86 spin_lock(&spool->lock);
87 BUG_ON(!spool->count);
88 spool->count--;
89 unlock_or_release_subpool(spool);
90}
91
92static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93 long delta)
94{
95 int ret = 0;
96
97 if (!spool)
98 return 0;
99
100 spin_lock(&spool->lock);
101 if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 spool->used_hpages += delta;
103 } else {
104 ret = -ENOMEM;
105 }
106 spin_unlock(&spool->lock);
107
108 return ret;
109}
110
111static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112 long delta)
113{
114 if (!spool)
115 return;
116
117 spin_lock(&spool->lock);
118 spool->used_hpages -= delta;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool);
122}
123
124static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125{
126 return HUGETLBFS_SB(inode->i_sb)->spool;
127}
128
129static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130{
496ad9aa 131 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
132}
133
96822904
AW
134/*
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
84afd99b 137 *
7b24d861
DB
138 * The region data structures are embedded into a resv_map and
139 * protected by a resv_map's lock
96822904
AW
140 */
141struct file_region {
142 struct list_head link;
143 long from;
144 long to;
145};
146
1406ec9b 147static long region_add(struct resv_map *resv, long f, long t)
96822904 148{
1406ec9b 149 struct list_head *head = &resv->regions;
96822904
AW
150 struct file_region *rg, *nrg, *trg;
151
7b24d861 152 spin_lock(&resv->lock);
96822904
AW
153 /* Locate the region we are either in or before. */
154 list_for_each_entry(rg, head, link)
155 if (f <= rg->to)
156 break;
157
158 /* Round our left edge to the current segment if it encloses us. */
159 if (f > rg->from)
160 f = rg->from;
161
162 /* Check for and consume any regions we now overlap with. */
163 nrg = rg;
164 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
165 if (&rg->link == head)
166 break;
167 if (rg->from > t)
168 break;
169
170 /* If this area reaches higher then extend our area to
171 * include it completely. If this is not the first area
172 * which we intend to reuse, free it. */
173 if (rg->to > t)
174 t = rg->to;
175 if (rg != nrg) {
176 list_del(&rg->link);
177 kfree(rg);
178 }
179 }
180 nrg->from = f;
181 nrg->to = t;
7b24d861 182 spin_unlock(&resv->lock);
96822904
AW
183 return 0;
184}
185
1406ec9b 186static long region_chg(struct resv_map *resv, long f, long t)
96822904 187{
1406ec9b 188 struct list_head *head = &resv->regions;
7b24d861 189 struct file_region *rg, *nrg = NULL;
96822904
AW
190 long chg = 0;
191
7b24d861
DB
192retry:
193 spin_lock(&resv->lock);
96822904
AW
194 /* Locate the region we are before or in. */
195 list_for_each_entry(rg, head, link)
196 if (f <= rg->to)
197 break;
198
199 /* If we are below the current region then a new region is required.
200 * Subtle, allocate a new region at the position but make it zero
201 * size such that we can guarantee to record the reservation. */
202 if (&rg->link == head || t < rg->from) {
7b24d861
DB
203 if (!nrg) {
204 spin_unlock(&resv->lock);
205 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
206 if (!nrg)
207 return -ENOMEM;
208
209 nrg->from = f;
210 nrg->to = f;
211 INIT_LIST_HEAD(&nrg->link);
212 goto retry;
213 }
96822904 214
7b24d861
DB
215 list_add(&nrg->link, rg->link.prev);
216 chg = t - f;
217 goto out_nrg;
96822904
AW
218 }
219
220 /* Round our left edge to the current segment if it encloses us. */
221 if (f > rg->from)
222 f = rg->from;
223 chg = t - f;
224
225 /* Check for and consume any regions we now overlap with. */
226 list_for_each_entry(rg, rg->link.prev, link) {
227 if (&rg->link == head)
228 break;
229 if (rg->from > t)
7b24d861 230 goto out;
96822904 231
25985edc 232 /* We overlap with this area, if it extends further than
96822904
AW
233 * us then we must extend ourselves. Account for its
234 * existing reservation. */
235 if (rg->to > t) {
236 chg += rg->to - t;
237 t = rg->to;
238 }
239 chg -= rg->to - rg->from;
240 }
7b24d861
DB
241
242out:
243 spin_unlock(&resv->lock);
244 /* We already know we raced and no longer need the new region */
245 kfree(nrg);
246 return chg;
247out_nrg:
248 spin_unlock(&resv->lock);
96822904
AW
249 return chg;
250}
251
1406ec9b 252static long region_truncate(struct resv_map *resv, long end)
96822904 253{
1406ec9b 254 struct list_head *head = &resv->regions;
96822904
AW
255 struct file_region *rg, *trg;
256 long chg = 0;
257
7b24d861 258 spin_lock(&resv->lock);
96822904
AW
259 /* Locate the region we are either in or before. */
260 list_for_each_entry(rg, head, link)
261 if (end <= rg->to)
262 break;
263 if (&rg->link == head)
7b24d861 264 goto out;
96822904
AW
265
266 /* If we are in the middle of a region then adjust it. */
267 if (end > rg->from) {
268 chg = rg->to - end;
269 rg->to = end;
270 rg = list_entry(rg->link.next, typeof(*rg), link);
271 }
272
273 /* Drop any remaining regions. */
274 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
275 if (&rg->link == head)
276 break;
277 chg += rg->to - rg->from;
278 list_del(&rg->link);
279 kfree(rg);
280 }
7b24d861
DB
281
282out:
283 spin_unlock(&resv->lock);
96822904
AW
284 return chg;
285}
286
1406ec9b 287static long region_count(struct resv_map *resv, long f, long t)
84afd99b 288{
1406ec9b 289 struct list_head *head = &resv->regions;
84afd99b
AW
290 struct file_region *rg;
291 long chg = 0;
292
7b24d861 293 spin_lock(&resv->lock);
84afd99b
AW
294 /* Locate each segment we overlap with, and count that overlap. */
295 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
296 long seg_from;
297 long seg_to;
84afd99b
AW
298
299 if (rg->to <= f)
300 continue;
301 if (rg->from >= t)
302 break;
303
304 seg_from = max(rg->from, f);
305 seg_to = min(rg->to, t);
306
307 chg += seg_to - seg_from;
308 }
7b24d861 309 spin_unlock(&resv->lock);
84afd99b
AW
310
311 return chg;
312}
313
e7c4b0bf
AW
314/*
315 * Convert the address within this vma to the page offset within
316 * the mapping, in pagecache page units; huge pages here.
317 */
a5516438
AK
318static pgoff_t vma_hugecache_offset(struct hstate *h,
319 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 320{
a5516438
AK
321 return ((address - vma->vm_start) >> huge_page_shift(h)) +
322 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
323}
324
0fe6e20b
NH
325pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
326 unsigned long address)
327{
328 return vma_hugecache_offset(hstate_vma(vma), vma, address);
329}
330
08fba699
MG
331/*
332 * Return the size of the pages allocated when backing a VMA. In the majority
333 * cases this will be same size as used by the page table entries.
334 */
335unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
336{
337 struct hstate *hstate;
338
339 if (!is_vm_hugetlb_page(vma))
340 return PAGE_SIZE;
341
342 hstate = hstate_vma(vma);
343
2415cf12 344 return 1UL << huge_page_shift(hstate);
08fba699 345}
f340ca0f 346EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 347
3340289d
MG
348/*
349 * Return the page size being used by the MMU to back a VMA. In the majority
350 * of cases, the page size used by the kernel matches the MMU size. On
351 * architectures where it differs, an architecture-specific version of this
352 * function is required.
353 */
354#ifndef vma_mmu_pagesize
355unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
356{
357 return vma_kernel_pagesize(vma);
358}
359#endif
360
84afd99b
AW
361/*
362 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
363 * bits of the reservation map pointer, which are always clear due to
364 * alignment.
365 */
366#define HPAGE_RESV_OWNER (1UL << 0)
367#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 368#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 369
a1e78772
MG
370/*
371 * These helpers are used to track how many pages are reserved for
372 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
373 * is guaranteed to have their future faults succeed.
374 *
375 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
376 * the reserve counters are updated with the hugetlb_lock held. It is safe
377 * to reset the VMA at fork() time as it is not in use yet and there is no
378 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
379 *
380 * The private mapping reservation is represented in a subtly different
381 * manner to a shared mapping. A shared mapping has a region map associated
382 * with the underlying file, this region map represents the backing file
383 * pages which have ever had a reservation assigned which this persists even
384 * after the page is instantiated. A private mapping has a region map
385 * associated with the original mmap which is attached to all VMAs which
386 * reference it, this region map represents those offsets which have consumed
387 * reservation ie. where pages have been instantiated.
a1e78772 388 */
e7c4b0bf
AW
389static unsigned long get_vma_private_data(struct vm_area_struct *vma)
390{
391 return (unsigned long)vma->vm_private_data;
392}
393
394static void set_vma_private_data(struct vm_area_struct *vma,
395 unsigned long value)
396{
397 vma->vm_private_data = (void *)value;
398}
399
9119a41e 400struct resv_map *resv_map_alloc(void)
84afd99b
AW
401{
402 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
403 if (!resv_map)
404 return NULL;
405
406 kref_init(&resv_map->refs);
7b24d861 407 spin_lock_init(&resv_map->lock);
84afd99b
AW
408 INIT_LIST_HEAD(&resv_map->regions);
409
410 return resv_map;
411}
412
9119a41e 413void resv_map_release(struct kref *ref)
84afd99b
AW
414{
415 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
416
417 /* Clear out any active regions before we release the map. */
1406ec9b 418 region_truncate(resv_map, 0);
84afd99b
AW
419 kfree(resv_map);
420}
421
422static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
423{
424 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 425 if (!(vma->vm_flags & VM_MAYSHARE))
84afd99b
AW
426 return (struct resv_map *)(get_vma_private_data(vma) &
427 ~HPAGE_RESV_MASK);
2a4b3ded 428 return NULL;
a1e78772
MG
429}
430
84afd99b 431static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
432{
433 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 434 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 435
84afd99b
AW
436 set_vma_private_data(vma, (get_vma_private_data(vma) &
437 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
438}
439
440static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
441{
04f2cbe3 442 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 443 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
444
445 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
446}
447
448static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
449{
450 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
451
452 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
453}
454
04f2cbe3 455/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
456void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
457{
458 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 459 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
460 vma->vm_private_data = (void *)0;
461}
462
463/* Returns true if the VMA has associated reserve pages */
af0ed73e 464static int vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 465{
af0ed73e
JK
466 if (vma->vm_flags & VM_NORESERVE) {
467 /*
468 * This address is already reserved by other process(chg == 0),
469 * so, we should decrement reserved count. Without decrementing,
470 * reserve count remains after releasing inode, because this
471 * allocated page will go into page cache and is regarded as
472 * coming from reserved pool in releasing step. Currently, we
473 * don't have any other solution to deal with this situation
474 * properly, so add work-around here.
475 */
476 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
477 return 1;
478 else
479 return 0;
480 }
a63884e9
JK
481
482 /* Shared mappings always use reserves */
f83a275d 483 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51 484 return 1;
a63884e9
JK
485
486 /*
487 * Only the process that called mmap() has reserves for
488 * private mappings.
489 */
7f09ca51
MG
490 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
491 return 1;
a63884e9 492
7f09ca51 493 return 0;
a1e78772
MG
494}
495
a5516438 496static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
497{
498 int nid = page_to_nid(page);
0edaecfa 499 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
500 h->free_huge_pages++;
501 h->free_huge_pages_node[nid]++;
1da177e4
LT
502}
503
bf50bab2
NH
504static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
505{
506 struct page *page;
507
c8721bbb
NH
508 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
509 if (!is_migrate_isolate_page(page))
510 break;
511 /*
512 * if 'non-isolated free hugepage' not found on the list,
513 * the allocation fails.
514 */
515 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 516 return NULL;
0edaecfa 517 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 518 set_page_refcounted(page);
bf50bab2
NH
519 h->free_huge_pages--;
520 h->free_huge_pages_node[nid]--;
521 return page;
522}
523
86cdb465
NH
524/* Movability of hugepages depends on migration support. */
525static inline gfp_t htlb_alloc_mask(struct hstate *h)
526{
527 if (hugepages_treat_as_movable || hugepage_migration_support(h))
528 return GFP_HIGHUSER_MOVABLE;
529 else
530 return GFP_HIGHUSER;
531}
532
a5516438
AK
533static struct page *dequeue_huge_page_vma(struct hstate *h,
534 struct vm_area_struct *vma,
af0ed73e
JK
535 unsigned long address, int avoid_reserve,
536 long chg)
1da177e4 537{
b1c12cbc 538 struct page *page = NULL;
480eccf9 539 struct mempolicy *mpol;
19770b32 540 nodemask_t *nodemask;
c0ff7453 541 struct zonelist *zonelist;
dd1a239f
MG
542 struct zone *zone;
543 struct zoneref *z;
cc9a6c87 544 unsigned int cpuset_mems_cookie;
1da177e4 545
a1e78772
MG
546 /*
547 * A child process with MAP_PRIVATE mappings created by their parent
548 * have no page reserves. This check ensures that reservations are
549 * not "stolen". The child may still get SIGKILLed
550 */
af0ed73e 551 if (!vma_has_reserves(vma, chg) &&
a5516438 552 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 553 goto err;
a1e78772 554
04f2cbe3 555 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 556 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 557 goto err;
04f2cbe3 558
9966c4bb 559retry_cpuset:
d26914d1 560 cpuset_mems_cookie = read_mems_allowed_begin();
9966c4bb 561 zonelist = huge_zonelist(vma, address,
86cdb465 562 htlb_alloc_mask(h), &mpol, &nodemask);
9966c4bb 563
19770b32
MG
564 for_each_zone_zonelist_nodemask(zone, z, zonelist,
565 MAX_NR_ZONES - 1, nodemask) {
86cdb465 566 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
bf50bab2
NH
567 page = dequeue_huge_page_node(h, zone_to_nid(zone));
568 if (page) {
af0ed73e
JK
569 if (avoid_reserve)
570 break;
571 if (!vma_has_reserves(vma, chg))
572 break;
573
07443a85 574 SetPagePrivate(page);
af0ed73e 575 h->resv_huge_pages--;
bf50bab2
NH
576 break;
577 }
3abf7afd 578 }
1da177e4 579 }
cc9a6c87 580
52cd3b07 581 mpol_cond_put(mpol);
d26914d1 582 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 583 goto retry_cpuset;
1da177e4 584 return page;
cc9a6c87
MG
585
586err:
cc9a6c87 587 return NULL;
1da177e4
LT
588}
589
a5516438 590static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
591{
592 int i;
a5516438 593
18229df5
AW
594 VM_BUG_ON(h->order >= MAX_ORDER);
595
a5516438
AK
596 h->nr_huge_pages--;
597 h->nr_huge_pages_node[page_to_nid(page)]--;
598 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
599 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
600 1 << PG_referenced | 1 << PG_dirty |
601 1 << PG_active | 1 << PG_reserved |
602 1 << PG_private | 1 << PG_writeback);
6af2acb6 603 }
309381fe 604 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
6af2acb6
AL
605 set_compound_page_dtor(page, NULL);
606 set_page_refcounted(page);
7f2e9525 607 arch_release_hugepage(page);
a5516438 608 __free_pages(page, huge_page_order(h));
6af2acb6
AL
609}
610
e5ff2159
AK
611struct hstate *size_to_hstate(unsigned long size)
612{
613 struct hstate *h;
614
615 for_each_hstate(h) {
616 if (huge_page_size(h) == size)
617 return h;
618 }
619 return NULL;
620}
621
27a85ef1
DG
622static void free_huge_page(struct page *page)
623{
a5516438
AK
624 /*
625 * Can't pass hstate in here because it is called from the
626 * compound page destructor.
627 */
e5ff2159 628 struct hstate *h = page_hstate(page);
7893d1d5 629 int nid = page_to_nid(page);
90481622
DG
630 struct hugepage_subpool *spool =
631 (struct hugepage_subpool *)page_private(page);
07443a85 632 bool restore_reserve;
27a85ef1 633
e5df70ab 634 set_page_private(page, 0);
23be7468 635 page->mapping = NULL;
7893d1d5 636 BUG_ON(page_count(page));
0fe6e20b 637 BUG_ON(page_mapcount(page));
07443a85 638 restore_reserve = PagePrivate(page);
16c794b4 639 ClearPagePrivate(page);
27a85ef1
DG
640
641 spin_lock(&hugetlb_lock);
6d76dcf4
AK
642 hugetlb_cgroup_uncharge_page(hstate_index(h),
643 pages_per_huge_page(h), page);
07443a85
JK
644 if (restore_reserve)
645 h->resv_huge_pages++;
646
aa888a74 647 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
0edaecfa
AK
648 /* remove the page from active list */
649 list_del(&page->lru);
a5516438
AK
650 update_and_free_page(h, page);
651 h->surplus_huge_pages--;
652 h->surplus_huge_pages_node[nid]--;
7893d1d5 653 } else {
5d3a551c 654 arch_clear_hugepage_flags(page);
a5516438 655 enqueue_huge_page(h, page);
7893d1d5 656 }
27a85ef1 657 spin_unlock(&hugetlb_lock);
90481622 658 hugepage_subpool_put_pages(spool, 1);
27a85ef1
DG
659}
660
a5516438 661static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 662{
0edaecfa 663 INIT_LIST_HEAD(&page->lru);
b7ba30c6
AK
664 set_compound_page_dtor(page, free_huge_page);
665 spin_lock(&hugetlb_lock);
9dd540e2 666 set_hugetlb_cgroup(page, NULL);
a5516438
AK
667 h->nr_huge_pages++;
668 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
669 spin_unlock(&hugetlb_lock);
670 put_page(page); /* free it into the hugepage allocator */
671}
672
20a0307c
WF
673static void prep_compound_gigantic_page(struct page *page, unsigned long order)
674{
675 int i;
676 int nr_pages = 1 << order;
677 struct page *p = page + 1;
678
679 /* we rely on prep_new_huge_page to set the destructor */
680 set_compound_order(page, order);
681 __SetPageHead(page);
ef5a22be 682 __ClearPageReserved(page);
20a0307c
WF
683 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
684 __SetPageTail(p);
ef5a22be
AA
685 /*
686 * For gigantic hugepages allocated through bootmem at
687 * boot, it's safer to be consistent with the not-gigantic
688 * hugepages and clear the PG_reserved bit from all tail pages
689 * too. Otherwse drivers using get_user_pages() to access tail
690 * pages may get the reference counting wrong if they see
691 * PG_reserved set on a tail page (despite the head page not
692 * having PG_reserved set). Enforcing this consistency between
693 * head and tail pages allows drivers to optimize away a check
694 * on the head page when they need know if put_page() is needed
695 * after get_user_pages().
696 */
697 __ClearPageReserved(p);
58a84aa9 698 set_page_count(p, 0);
20a0307c
WF
699 p->first_page = page;
700 }
701}
702
7795912c
AM
703/*
704 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
705 * transparent huge pages. See the PageTransHuge() documentation for more
706 * details.
707 */
20a0307c
WF
708int PageHuge(struct page *page)
709{
20a0307c
WF
710 if (!PageCompound(page))
711 return 0;
712
713 page = compound_head(page);
758f66a2 714 return get_compound_page_dtor(page) == free_huge_page;
20a0307c 715}
43131e14
NH
716EXPORT_SYMBOL_GPL(PageHuge);
717
27c73ae7
AA
718/*
719 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
720 * normal or transparent huge pages.
721 */
722int PageHeadHuge(struct page *page_head)
723{
27c73ae7
AA
724 if (!PageHead(page_head))
725 return 0;
726
758f66a2 727 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 728}
27c73ae7 729
13d60f4b
ZY
730pgoff_t __basepage_index(struct page *page)
731{
732 struct page *page_head = compound_head(page);
733 pgoff_t index = page_index(page_head);
734 unsigned long compound_idx;
735
736 if (!PageHuge(page_head))
737 return page_index(page);
738
739 if (compound_order(page_head) >= MAX_ORDER)
740 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
741 else
742 compound_idx = page - page_head;
743
744 return (index << compound_order(page_head)) + compound_idx;
745}
746
a5516438 747static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 748{
1da177e4 749 struct page *page;
f96efd58 750
aa888a74
AK
751 if (h->order >= MAX_ORDER)
752 return NULL;
753
6484eb3e 754 page = alloc_pages_exact_node(nid,
86cdb465 755 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
551883ae 756 __GFP_REPEAT|__GFP_NOWARN,
a5516438 757 huge_page_order(h));
1da177e4 758 if (page) {
7f2e9525 759 if (arch_prepare_hugepage(page)) {
caff3a2c 760 __free_pages(page, huge_page_order(h));
7b8ee84d 761 return NULL;
7f2e9525 762 }
a5516438 763 prep_new_huge_page(h, page, nid);
1da177e4 764 }
63b4613c
NA
765
766 return page;
767}
768
9a76db09 769/*
6ae11b27
LS
770 * common helper functions for hstate_next_node_to_{alloc|free}.
771 * We may have allocated or freed a huge page based on a different
772 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
773 * be outside of *nodes_allowed. Ensure that we use an allowed
774 * node for alloc or free.
9a76db09 775 */
6ae11b27 776static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
9a76db09 777{
6ae11b27 778 nid = next_node(nid, *nodes_allowed);
9a76db09 779 if (nid == MAX_NUMNODES)
6ae11b27 780 nid = first_node(*nodes_allowed);
9a76db09
LS
781 VM_BUG_ON(nid >= MAX_NUMNODES);
782
783 return nid;
784}
785
6ae11b27
LS
786static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
787{
788 if (!node_isset(nid, *nodes_allowed))
789 nid = next_node_allowed(nid, nodes_allowed);
790 return nid;
791}
792
5ced66c9 793/*
6ae11b27
LS
794 * returns the previously saved node ["this node"] from which to
795 * allocate a persistent huge page for the pool and advance the
796 * next node from which to allocate, handling wrap at end of node
797 * mask.
5ced66c9 798 */
6ae11b27
LS
799static int hstate_next_node_to_alloc(struct hstate *h,
800 nodemask_t *nodes_allowed)
5ced66c9 801{
6ae11b27
LS
802 int nid;
803
804 VM_BUG_ON(!nodes_allowed);
805
806 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
807 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
9a76db09 808
9a76db09 809 return nid;
5ced66c9
AK
810}
811
e8c5c824 812/*
6ae11b27
LS
813 * helper for free_pool_huge_page() - return the previously saved
814 * node ["this node"] from which to free a huge page. Advance the
815 * next node id whether or not we find a free huge page to free so
816 * that the next attempt to free addresses the next node.
e8c5c824 817 */
6ae11b27 818static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
e8c5c824 819{
6ae11b27
LS
820 int nid;
821
822 VM_BUG_ON(!nodes_allowed);
823
824 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
825 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
9a76db09 826
9a76db09 827 return nid;
e8c5c824
LS
828}
829
b2261026
JK
830#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
831 for (nr_nodes = nodes_weight(*mask); \
832 nr_nodes > 0 && \
833 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
834 nr_nodes--)
835
836#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
837 for (nr_nodes = nodes_weight(*mask); \
838 nr_nodes > 0 && \
839 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
840 nr_nodes--)
841
842static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
843{
844 struct page *page;
845 int nr_nodes, node;
846 int ret = 0;
847
848 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
849 page = alloc_fresh_huge_page_node(h, node);
850 if (page) {
851 ret = 1;
852 break;
853 }
854 }
855
856 if (ret)
857 count_vm_event(HTLB_BUDDY_PGALLOC);
858 else
859 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
860
861 return ret;
862}
863
e8c5c824
LS
864/*
865 * Free huge page from pool from next node to free.
866 * Attempt to keep persistent huge pages more or less
867 * balanced over allowed nodes.
868 * Called with hugetlb_lock locked.
869 */
6ae11b27
LS
870static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
871 bool acct_surplus)
e8c5c824 872{
b2261026 873 int nr_nodes, node;
e8c5c824
LS
874 int ret = 0;
875
b2261026 876 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
877 /*
878 * If we're returning unused surplus pages, only examine
879 * nodes with surplus pages.
880 */
b2261026
JK
881 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
882 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 883 struct page *page =
b2261026 884 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
885 struct page, lru);
886 list_del(&page->lru);
887 h->free_huge_pages--;
b2261026 888 h->free_huge_pages_node[node]--;
685f3457
LS
889 if (acct_surplus) {
890 h->surplus_huge_pages--;
b2261026 891 h->surplus_huge_pages_node[node]--;
685f3457 892 }
e8c5c824
LS
893 update_and_free_page(h, page);
894 ret = 1;
9a76db09 895 break;
e8c5c824 896 }
b2261026 897 }
e8c5c824
LS
898
899 return ret;
900}
901
c8721bbb
NH
902/*
903 * Dissolve a given free hugepage into free buddy pages. This function does
904 * nothing for in-use (including surplus) hugepages.
905 */
906static void dissolve_free_huge_page(struct page *page)
907{
908 spin_lock(&hugetlb_lock);
909 if (PageHuge(page) && !page_count(page)) {
910 struct hstate *h = page_hstate(page);
911 int nid = page_to_nid(page);
912 list_del(&page->lru);
913 h->free_huge_pages--;
914 h->free_huge_pages_node[nid]--;
915 update_and_free_page(h, page);
916 }
917 spin_unlock(&hugetlb_lock);
918}
919
920/*
921 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
922 * make specified memory blocks removable from the system.
923 * Note that start_pfn should aligned with (minimum) hugepage size.
924 */
925void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
926{
927 unsigned int order = 8 * sizeof(void *);
928 unsigned long pfn;
929 struct hstate *h;
930
931 /* Set scan step to minimum hugepage size */
932 for_each_hstate(h)
933 if (order > huge_page_order(h))
934 order = huge_page_order(h);
935 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
936 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
937 dissolve_free_huge_page(pfn_to_page(pfn));
938}
939
bf50bab2 940static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
941{
942 struct page *page;
bf50bab2 943 unsigned int r_nid;
7893d1d5 944
aa888a74
AK
945 if (h->order >= MAX_ORDER)
946 return NULL;
947
d1c3fb1f
NA
948 /*
949 * Assume we will successfully allocate the surplus page to
950 * prevent racing processes from causing the surplus to exceed
951 * overcommit
952 *
953 * This however introduces a different race, where a process B
954 * tries to grow the static hugepage pool while alloc_pages() is
955 * called by process A. B will only examine the per-node
956 * counters in determining if surplus huge pages can be
957 * converted to normal huge pages in adjust_pool_surplus(). A
958 * won't be able to increment the per-node counter, until the
959 * lock is dropped by B, but B doesn't drop hugetlb_lock until
960 * no more huge pages can be converted from surplus to normal
961 * state (and doesn't try to convert again). Thus, we have a
962 * case where a surplus huge page exists, the pool is grown, and
963 * the surplus huge page still exists after, even though it
964 * should just have been converted to a normal huge page. This
965 * does not leak memory, though, as the hugepage will be freed
966 * once it is out of use. It also does not allow the counters to
967 * go out of whack in adjust_pool_surplus() as we don't modify
968 * the node values until we've gotten the hugepage and only the
969 * per-node value is checked there.
970 */
971 spin_lock(&hugetlb_lock);
a5516438 972 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
973 spin_unlock(&hugetlb_lock);
974 return NULL;
975 } else {
a5516438
AK
976 h->nr_huge_pages++;
977 h->surplus_huge_pages++;
d1c3fb1f
NA
978 }
979 spin_unlock(&hugetlb_lock);
980
bf50bab2 981 if (nid == NUMA_NO_NODE)
86cdb465 982 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
bf50bab2
NH
983 __GFP_REPEAT|__GFP_NOWARN,
984 huge_page_order(h));
985 else
986 page = alloc_pages_exact_node(nid,
86cdb465 987 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
bf50bab2 988 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f 989
caff3a2c
GS
990 if (page && arch_prepare_hugepage(page)) {
991 __free_pages(page, huge_page_order(h));
ea5768c7 992 page = NULL;
caff3a2c
GS
993 }
994
d1c3fb1f 995 spin_lock(&hugetlb_lock);
7893d1d5 996 if (page) {
0edaecfa 997 INIT_LIST_HEAD(&page->lru);
bf50bab2 998 r_nid = page_to_nid(page);
7893d1d5 999 set_compound_page_dtor(page, free_huge_page);
9dd540e2 1000 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
1001 /*
1002 * We incremented the global counters already
1003 */
bf50bab2
NH
1004 h->nr_huge_pages_node[r_nid]++;
1005 h->surplus_huge_pages_node[r_nid]++;
3b116300 1006 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 1007 } else {
a5516438
AK
1008 h->nr_huge_pages--;
1009 h->surplus_huge_pages--;
3b116300 1010 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 1011 }
d1c3fb1f 1012 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1013
1014 return page;
1015}
1016
bf50bab2
NH
1017/*
1018 * This allocation function is useful in the context where vma is irrelevant.
1019 * E.g. soft-offlining uses this function because it only cares physical
1020 * address of error page.
1021 */
1022struct page *alloc_huge_page_node(struct hstate *h, int nid)
1023{
4ef91848 1024 struct page *page = NULL;
bf50bab2
NH
1025
1026 spin_lock(&hugetlb_lock);
4ef91848
JK
1027 if (h->free_huge_pages - h->resv_huge_pages > 0)
1028 page = dequeue_huge_page_node(h, nid);
bf50bab2
NH
1029 spin_unlock(&hugetlb_lock);
1030
94ae8ba7 1031 if (!page)
bf50bab2
NH
1032 page = alloc_buddy_huge_page(h, nid);
1033
1034 return page;
1035}
1036
e4e574b7 1037/*
25985edc 1038 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1039 * of size 'delta'.
1040 */
a5516438 1041static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1042{
1043 struct list_head surplus_list;
1044 struct page *page, *tmp;
1045 int ret, i;
1046 int needed, allocated;
28073b02 1047 bool alloc_ok = true;
e4e574b7 1048
a5516438 1049 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1050 if (needed <= 0) {
a5516438 1051 h->resv_huge_pages += delta;
e4e574b7 1052 return 0;
ac09b3a1 1053 }
e4e574b7
AL
1054
1055 allocated = 0;
1056 INIT_LIST_HEAD(&surplus_list);
1057
1058 ret = -ENOMEM;
1059retry:
1060 spin_unlock(&hugetlb_lock);
1061 for (i = 0; i < needed; i++) {
bf50bab2 1062 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
28073b02
HD
1063 if (!page) {
1064 alloc_ok = false;
1065 break;
1066 }
e4e574b7
AL
1067 list_add(&page->lru, &surplus_list);
1068 }
28073b02 1069 allocated += i;
e4e574b7
AL
1070
1071 /*
1072 * After retaking hugetlb_lock, we need to recalculate 'needed'
1073 * because either resv_huge_pages or free_huge_pages may have changed.
1074 */
1075 spin_lock(&hugetlb_lock);
a5516438
AK
1076 needed = (h->resv_huge_pages + delta) -
1077 (h->free_huge_pages + allocated);
28073b02
HD
1078 if (needed > 0) {
1079 if (alloc_ok)
1080 goto retry;
1081 /*
1082 * We were not able to allocate enough pages to
1083 * satisfy the entire reservation so we free what
1084 * we've allocated so far.
1085 */
1086 goto free;
1087 }
e4e574b7
AL
1088 /*
1089 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1090 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1091 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1092 * allocator. Commit the entire reservation here to prevent another
1093 * process from stealing the pages as they are added to the pool but
1094 * before they are reserved.
e4e574b7
AL
1095 */
1096 needed += allocated;
a5516438 1097 h->resv_huge_pages += delta;
e4e574b7 1098 ret = 0;
a9869b83 1099
19fc3f0a 1100 /* Free the needed pages to the hugetlb pool */
e4e574b7 1101 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1102 if ((--needed) < 0)
1103 break;
a9869b83
NH
1104 /*
1105 * This page is now managed by the hugetlb allocator and has
1106 * no users -- drop the buddy allocator's reference.
1107 */
1108 put_page_testzero(page);
309381fe 1109 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1110 enqueue_huge_page(h, page);
19fc3f0a 1111 }
28073b02 1112free:
b0365c8d 1113 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1114
1115 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1116 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1117 put_page(page);
a9869b83 1118 spin_lock(&hugetlb_lock);
e4e574b7
AL
1119
1120 return ret;
1121}
1122
1123/*
1124 * When releasing a hugetlb pool reservation, any surplus pages that were
1125 * allocated to satisfy the reservation must be explicitly freed if they were
1126 * never used.
685f3457 1127 * Called with hugetlb_lock held.
e4e574b7 1128 */
a5516438
AK
1129static void return_unused_surplus_pages(struct hstate *h,
1130 unsigned long unused_resv_pages)
e4e574b7 1131{
e4e574b7
AL
1132 unsigned long nr_pages;
1133
ac09b3a1 1134 /* Uncommit the reservation */
a5516438 1135 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1136
aa888a74
AK
1137 /* Cannot return gigantic pages currently */
1138 if (h->order >= MAX_ORDER)
1139 return;
1140
a5516438 1141 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1142
685f3457
LS
1143 /*
1144 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1145 * evenly across all nodes with memory. Iterate across these nodes
1146 * until we can no longer free unreserved surplus pages. This occurs
1147 * when the nodes with surplus pages have no free pages.
1148 * free_pool_huge_page() will balance the the freed pages across the
1149 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1150 */
1151 while (nr_pages--) {
8cebfcd0 1152 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
685f3457 1153 break;
e4e574b7
AL
1154 }
1155}
1156
c37f9fb1
AW
1157/*
1158 * Determine if the huge page at addr within the vma has an associated
1159 * reservation. Where it does not we will need to logically increase
90481622
DG
1160 * reservation and actually increase subpool usage before an allocation
1161 * can occur. Where any new reservation would be required the
1162 * reservation change is prepared, but not committed. Once the page
1163 * has been allocated from the subpool and instantiated the change should
1164 * be committed via vma_commit_reservation. No action is required on
1165 * failure.
c37f9fb1 1166 */
e2f17d94 1167static long vma_needs_reservation(struct hstate *h,
a5516438 1168 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1169{
1170 struct address_space *mapping = vma->vm_file->f_mapping;
1171 struct inode *inode = mapping->host;
1172
f83a275d 1173 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1174 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
9119a41e
JK
1175 struct resv_map *resv = inode->i_mapping->private_data;
1176
1406ec9b 1177 return region_chg(resv, idx, idx + 1);
c37f9fb1 1178
84afd99b
AW
1179 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1180 return 1;
c37f9fb1 1181
84afd99b 1182 } else {
e2f17d94 1183 long err;
a5516438 1184 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
f522c3ac 1185 struct resv_map *resv = vma_resv_map(vma);
84afd99b 1186
1406ec9b 1187 err = region_chg(resv, idx, idx + 1);
84afd99b
AW
1188 if (err < 0)
1189 return err;
1190 return 0;
1191 }
c37f9fb1 1192}
a5516438
AK
1193static void vma_commit_reservation(struct hstate *h,
1194 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1195{
1196 struct address_space *mapping = vma->vm_file->f_mapping;
1197 struct inode *inode = mapping->host;
1198
f83a275d 1199 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1200 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
9119a41e
JK
1201 struct resv_map *resv = inode->i_mapping->private_data;
1202
1406ec9b 1203 region_add(resv, idx, idx + 1);
84afd99b
AW
1204
1205 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a5516438 1206 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
f522c3ac 1207 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
1208
1209 /* Mark this page used in the map. */
1406ec9b 1210 region_add(resv, idx, idx + 1);
c37f9fb1
AW
1211 }
1212}
1213
a1e78772 1214static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1215 unsigned long addr, int avoid_reserve)
1da177e4 1216{
90481622 1217 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1218 struct hstate *h = hstate_vma(vma);
348ea204 1219 struct page *page;
e2f17d94 1220 long chg;
6d76dcf4
AK
1221 int ret, idx;
1222 struct hugetlb_cgroup *h_cg;
a1e78772 1223
6d76dcf4 1224 idx = hstate_index(h);
a1e78772 1225 /*
90481622
DG
1226 * Processes that did not create the mapping will have no
1227 * reserves and will not have accounted against subpool
1228 * limit. Check that the subpool limit can be made before
1229 * satisfying the allocation MAP_NORESERVE mappings may also
1230 * need pages and subpool limit allocated allocated if no reserve
1231 * mapping overlaps.
a1e78772 1232 */
a5516438 1233 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1 1234 if (chg < 0)
76dcee75 1235 return ERR_PTR(-ENOMEM);
8bb3f12e
JK
1236 if (chg || avoid_reserve)
1237 if (hugepage_subpool_get_pages(spool, 1))
76dcee75 1238 return ERR_PTR(-ENOSPC);
1da177e4 1239
6d76dcf4
AK
1240 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1241 if (ret) {
8bb3f12e
JK
1242 if (chg || avoid_reserve)
1243 hugepage_subpool_put_pages(spool, 1);
6d76dcf4
AK
1244 return ERR_PTR(-ENOSPC);
1245 }
1da177e4 1246 spin_lock(&hugetlb_lock);
af0ed73e 1247 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
81a6fcae 1248 if (!page) {
94ae8ba7 1249 spin_unlock(&hugetlb_lock);
bf50bab2 1250 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
68842c9b 1251 if (!page) {
6d76dcf4
AK
1252 hugetlb_cgroup_uncharge_cgroup(idx,
1253 pages_per_huge_page(h),
1254 h_cg);
8bb3f12e
JK
1255 if (chg || avoid_reserve)
1256 hugepage_subpool_put_pages(spool, 1);
76dcee75 1257 return ERR_PTR(-ENOSPC);
68842c9b 1258 }
79dbb236
AK
1259 spin_lock(&hugetlb_lock);
1260 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 1261 /* Fall through */
68842c9b 1262 }
81a6fcae
JK
1263 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1264 spin_unlock(&hugetlb_lock);
348ea204 1265
90481622 1266 set_page_private(page, (unsigned long)spool);
90d8b7e6 1267
a5516438 1268 vma_commit_reservation(h, vma, addr);
90d8b7e6 1269 return page;
b45b5bd6
DG
1270}
1271
74060e4d
NH
1272/*
1273 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1274 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1275 * where no ERR_VALUE is expected to be returned.
1276 */
1277struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1278 unsigned long addr, int avoid_reserve)
1279{
1280 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1281 if (IS_ERR(page))
1282 page = NULL;
1283 return page;
1284}
1285
91f47662 1286int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1287{
1288 struct huge_bootmem_page *m;
b2261026 1289 int nr_nodes, node;
aa888a74 1290
b2261026 1291 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
1292 void *addr;
1293
8b89a116
GS
1294 addr = memblock_virt_alloc_try_nid_nopanic(
1295 huge_page_size(h), huge_page_size(h),
1296 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
1297 if (addr) {
1298 /*
1299 * Use the beginning of the huge page to store the
1300 * huge_bootmem_page struct (until gather_bootmem
1301 * puts them into the mem_map).
1302 */
1303 m = addr;
91f47662 1304 goto found;
aa888a74 1305 }
aa888a74
AK
1306 }
1307 return 0;
1308
1309found:
1310 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1311 /* Put them into a private list first because mem_map is not up yet */
1312 list_add(&m->list, &huge_boot_pages);
1313 m->hstate = h;
1314 return 1;
1315}
1316
18229df5
AW
1317static void prep_compound_huge_page(struct page *page, int order)
1318{
1319 if (unlikely(order > (MAX_ORDER - 1)))
1320 prep_compound_gigantic_page(page, order);
1321 else
1322 prep_compound_page(page, order);
1323}
1324
aa888a74
AK
1325/* Put bootmem huge pages into the standard lists after mem_map is up */
1326static void __init gather_bootmem_prealloc(void)
1327{
1328 struct huge_bootmem_page *m;
1329
1330 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 1331 struct hstate *h = m->hstate;
ee8f248d
BB
1332 struct page *page;
1333
1334#ifdef CONFIG_HIGHMEM
1335 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
1336 memblock_free_late(__pa(m),
1337 sizeof(struct huge_bootmem_page));
ee8f248d
BB
1338#else
1339 page = virt_to_page(m);
1340#endif
aa888a74 1341 WARN_ON(page_count(page) != 1);
18229df5 1342 prep_compound_huge_page(page, h->order);
ef5a22be 1343 WARN_ON(PageReserved(page));
aa888a74 1344 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
1345 /*
1346 * If we had gigantic hugepages allocated at boot time, we need
1347 * to restore the 'stolen' pages to totalram_pages in order to
1348 * fix confusing memory reports from free(1) and another
1349 * side-effects, like CommitLimit going negative.
1350 */
1351 if (h->order > (MAX_ORDER - 1))
3dcc0571 1352 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
1353 }
1354}
1355
8faa8b07 1356static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1357{
1358 unsigned long i;
a5516438 1359
e5ff2159 1360 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1361 if (h->order >= MAX_ORDER) {
1362 if (!alloc_bootmem_huge_page(h))
1363 break;
9b5e5d0f 1364 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 1365 &node_states[N_MEMORY]))
1da177e4 1366 break;
1da177e4 1367 }
8faa8b07 1368 h->max_huge_pages = i;
e5ff2159
AK
1369}
1370
1371static void __init hugetlb_init_hstates(void)
1372{
1373 struct hstate *h;
1374
1375 for_each_hstate(h) {
8faa8b07
AK
1376 /* oversize hugepages were init'ed in early boot */
1377 if (h->order < MAX_ORDER)
1378 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1379 }
1380}
1381
4abd32db
AK
1382static char * __init memfmt(char *buf, unsigned long n)
1383{
1384 if (n >= (1UL << 30))
1385 sprintf(buf, "%lu GB", n >> 30);
1386 else if (n >= (1UL << 20))
1387 sprintf(buf, "%lu MB", n >> 20);
1388 else
1389 sprintf(buf, "%lu KB", n >> 10);
1390 return buf;
1391}
1392
e5ff2159
AK
1393static void __init report_hugepages(void)
1394{
1395 struct hstate *h;
1396
1397 for_each_hstate(h) {
4abd32db 1398 char buf[32];
ffb22af5 1399 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
1400 memfmt(buf, huge_page_size(h)),
1401 h->free_huge_pages);
e5ff2159
AK
1402 }
1403}
1404
1da177e4 1405#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1406static void try_to_free_low(struct hstate *h, unsigned long count,
1407 nodemask_t *nodes_allowed)
1da177e4 1408{
4415cc8d
CL
1409 int i;
1410
aa888a74
AK
1411 if (h->order >= MAX_ORDER)
1412 return;
1413
6ae11b27 1414 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1415 struct page *page, *next;
a5516438
AK
1416 struct list_head *freel = &h->hugepage_freelists[i];
1417 list_for_each_entry_safe(page, next, freel, lru) {
1418 if (count >= h->nr_huge_pages)
6b0c880d 1419 return;
1da177e4
LT
1420 if (PageHighMem(page))
1421 continue;
1422 list_del(&page->lru);
e5ff2159 1423 update_and_free_page(h, page);
a5516438
AK
1424 h->free_huge_pages--;
1425 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1426 }
1427 }
1428}
1429#else
6ae11b27
LS
1430static inline void try_to_free_low(struct hstate *h, unsigned long count,
1431 nodemask_t *nodes_allowed)
1da177e4
LT
1432{
1433}
1434#endif
1435
20a0307c
WF
1436/*
1437 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1438 * balanced by operating on them in a round-robin fashion.
1439 * Returns 1 if an adjustment was made.
1440 */
6ae11b27
LS
1441static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1442 int delta)
20a0307c 1443{
b2261026 1444 int nr_nodes, node;
20a0307c
WF
1445
1446 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1447
b2261026
JK
1448 if (delta < 0) {
1449 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1450 if (h->surplus_huge_pages_node[node])
1451 goto found;
e8c5c824 1452 }
b2261026
JK
1453 } else {
1454 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1455 if (h->surplus_huge_pages_node[node] <
1456 h->nr_huge_pages_node[node])
1457 goto found;
e8c5c824 1458 }
b2261026
JK
1459 }
1460 return 0;
20a0307c 1461
b2261026
JK
1462found:
1463 h->surplus_huge_pages += delta;
1464 h->surplus_huge_pages_node[node] += delta;
1465 return 1;
20a0307c
WF
1466}
1467
a5516438 1468#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1469static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1470 nodemask_t *nodes_allowed)
1da177e4 1471{
7893d1d5 1472 unsigned long min_count, ret;
1da177e4 1473
aa888a74
AK
1474 if (h->order >= MAX_ORDER)
1475 return h->max_huge_pages;
1476
7893d1d5
AL
1477 /*
1478 * Increase the pool size
1479 * First take pages out of surplus state. Then make up the
1480 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1481 *
1482 * We might race with alloc_buddy_huge_page() here and be unable
1483 * to convert a surplus huge page to a normal huge page. That is
1484 * not critical, though, it just means the overall size of the
1485 * pool might be one hugepage larger than it needs to be, but
1486 * within all the constraints specified by the sysctls.
7893d1d5 1487 */
1da177e4 1488 spin_lock(&hugetlb_lock);
a5516438 1489 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1490 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1491 break;
1492 }
1493
a5516438 1494 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1495 /*
1496 * If this allocation races such that we no longer need the
1497 * page, free_huge_page will handle it by freeing the page
1498 * and reducing the surplus.
1499 */
1500 spin_unlock(&hugetlb_lock);
6ae11b27 1501 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1502 spin_lock(&hugetlb_lock);
1503 if (!ret)
1504 goto out;
1505
536240f2
MG
1506 /* Bail for signals. Probably ctrl-c from user */
1507 if (signal_pending(current))
1508 goto out;
7893d1d5 1509 }
7893d1d5
AL
1510
1511 /*
1512 * Decrease the pool size
1513 * First return free pages to the buddy allocator (being careful
1514 * to keep enough around to satisfy reservations). Then place
1515 * pages into surplus state as needed so the pool will shrink
1516 * to the desired size as pages become free.
d1c3fb1f
NA
1517 *
1518 * By placing pages into the surplus state independent of the
1519 * overcommit value, we are allowing the surplus pool size to
1520 * exceed overcommit. There are few sane options here. Since
1521 * alloc_buddy_huge_page() is checking the global counter,
1522 * though, we'll note that we're not allowed to exceed surplus
1523 * and won't grow the pool anywhere else. Not until one of the
1524 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1525 */
a5516438 1526 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1527 min_count = max(count, min_count);
6ae11b27 1528 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1529 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1530 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1531 break;
1da177e4 1532 }
a5516438 1533 while (count < persistent_huge_pages(h)) {
6ae11b27 1534 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1535 break;
1536 }
1537out:
a5516438 1538 ret = persistent_huge_pages(h);
1da177e4 1539 spin_unlock(&hugetlb_lock);
7893d1d5 1540 return ret;
1da177e4
LT
1541}
1542
a3437870
NA
1543#define HSTATE_ATTR_RO(_name) \
1544 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1545
1546#define HSTATE_ATTR(_name) \
1547 static struct kobj_attribute _name##_attr = \
1548 __ATTR(_name, 0644, _name##_show, _name##_store)
1549
1550static struct kobject *hugepages_kobj;
1551static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1552
9a305230
LS
1553static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1554
1555static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1556{
1557 int i;
9a305230 1558
a3437870 1559 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1560 if (hstate_kobjs[i] == kobj) {
1561 if (nidp)
1562 *nidp = NUMA_NO_NODE;
a3437870 1563 return &hstates[i];
9a305230
LS
1564 }
1565
1566 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1567}
1568
06808b08 1569static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1570 struct kobj_attribute *attr, char *buf)
1571{
9a305230
LS
1572 struct hstate *h;
1573 unsigned long nr_huge_pages;
1574 int nid;
1575
1576 h = kobj_to_hstate(kobj, &nid);
1577 if (nid == NUMA_NO_NODE)
1578 nr_huge_pages = h->nr_huge_pages;
1579 else
1580 nr_huge_pages = h->nr_huge_pages_node[nid];
1581
1582 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1583}
adbe8726 1584
06808b08
LS
1585static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1586 struct kobject *kobj, struct kobj_attribute *attr,
1587 const char *buf, size_t len)
a3437870
NA
1588{
1589 int err;
9a305230 1590 int nid;
06808b08 1591 unsigned long count;
9a305230 1592 struct hstate *h;
bad44b5b 1593 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1594
3dbb95f7 1595 err = kstrtoul(buf, 10, &count);
73ae31e5 1596 if (err)
adbe8726 1597 goto out;
a3437870 1598
9a305230 1599 h = kobj_to_hstate(kobj, &nid);
adbe8726
EM
1600 if (h->order >= MAX_ORDER) {
1601 err = -EINVAL;
1602 goto out;
1603 }
1604
9a305230
LS
1605 if (nid == NUMA_NO_NODE) {
1606 /*
1607 * global hstate attribute
1608 */
1609 if (!(obey_mempolicy &&
1610 init_nodemask_of_mempolicy(nodes_allowed))) {
1611 NODEMASK_FREE(nodes_allowed);
8cebfcd0 1612 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
1613 }
1614 } else if (nodes_allowed) {
1615 /*
1616 * per node hstate attribute: adjust count to global,
1617 * but restrict alloc/free to the specified node.
1618 */
1619 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1620 init_nodemask_of_node(nodes_allowed, nid);
1621 } else
8cebfcd0 1622 nodes_allowed = &node_states[N_MEMORY];
9a305230 1623
06808b08 1624 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1625
8cebfcd0 1626 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
1627 NODEMASK_FREE(nodes_allowed);
1628
1629 return len;
adbe8726
EM
1630out:
1631 NODEMASK_FREE(nodes_allowed);
1632 return err;
06808b08
LS
1633}
1634
1635static ssize_t nr_hugepages_show(struct kobject *kobj,
1636 struct kobj_attribute *attr, char *buf)
1637{
1638 return nr_hugepages_show_common(kobj, attr, buf);
1639}
1640
1641static ssize_t nr_hugepages_store(struct kobject *kobj,
1642 struct kobj_attribute *attr, const char *buf, size_t len)
1643{
1644 return nr_hugepages_store_common(false, kobj, attr, buf, len);
a3437870
NA
1645}
1646HSTATE_ATTR(nr_hugepages);
1647
06808b08
LS
1648#ifdef CONFIG_NUMA
1649
1650/*
1651 * hstate attribute for optionally mempolicy-based constraint on persistent
1652 * huge page alloc/free.
1653 */
1654static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1655 struct kobj_attribute *attr, char *buf)
1656{
1657 return nr_hugepages_show_common(kobj, attr, buf);
1658}
1659
1660static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1661 struct kobj_attribute *attr, const char *buf, size_t len)
1662{
1663 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1664}
1665HSTATE_ATTR(nr_hugepages_mempolicy);
1666#endif
1667
1668
a3437870
NA
1669static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1670 struct kobj_attribute *attr, char *buf)
1671{
9a305230 1672 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1673 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1674}
adbe8726 1675
a3437870
NA
1676static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1677 struct kobj_attribute *attr, const char *buf, size_t count)
1678{
1679 int err;
1680 unsigned long input;
9a305230 1681 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 1682
adbe8726
EM
1683 if (h->order >= MAX_ORDER)
1684 return -EINVAL;
1685
3dbb95f7 1686 err = kstrtoul(buf, 10, &input);
a3437870 1687 if (err)
73ae31e5 1688 return err;
a3437870
NA
1689
1690 spin_lock(&hugetlb_lock);
1691 h->nr_overcommit_huge_pages = input;
1692 spin_unlock(&hugetlb_lock);
1693
1694 return count;
1695}
1696HSTATE_ATTR(nr_overcommit_hugepages);
1697
1698static ssize_t free_hugepages_show(struct kobject *kobj,
1699 struct kobj_attribute *attr, char *buf)
1700{
9a305230
LS
1701 struct hstate *h;
1702 unsigned long free_huge_pages;
1703 int nid;
1704
1705 h = kobj_to_hstate(kobj, &nid);
1706 if (nid == NUMA_NO_NODE)
1707 free_huge_pages = h->free_huge_pages;
1708 else
1709 free_huge_pages = h->free_huge_pages_node[nid];
1710
1711 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1712}
1713HSTATE_ATTR_RO(free_hugepages);
1714
1715static ssize_t resv_hugepages_show(struct kobject *kobj,
1716 struct kobj_attribute *attr, char *buf)
1717{
9a305230 1718 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1719 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1720}
1721HSTATE_ATTR_RO(resv_hugepages);
1722
1723static ssize_t surplus_hugepages_show(struct kobject *kobj,
1724 struct kobj_attribute *attr, char *buf)
1725{
9a305230
LS
1726 struct hstate *h;
1727 unsigned long surplus_huge_pages;
1728 int nid;
1729
1730 h = kobj_to_hstate(kobj, &nid);
1731 if (nid == NUMA_NO_NODE)
1732 surplus_huge_pages = h->surplus_huge_pages;
1733 else
1734 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1735
1736 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1737}
1738HSTATE_ATTR_RO(surplus_hugepages);
1739
1740static struct attribute *hstate_attrs[] = {
1741 &nr_hugepages_attr.attr,
1742 &nr_overcommit_hugepages_attr.attr,
1743 &free_hugepages_attr.attr,
1744 &resv_hugepages_attr.attr,
1745 &surplus_hugepages_attr.attr,
06808b08
LS
1746#ifdef CONFIG_NUMA
1747 &nr_hugepages_mempolicy_attr.attr,
1748#endif
a3437870
NA
1749 NULL,
1750};
1751
1752static struct attribute_group hstate_attr_group = {
1753 .attrs = hstate_attrs,
1754};
1755
094e9539
JM
1756static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1757 struct kobject **hstate_kobjs,
1758 struct attribute_group *hstate_attr_group)
a3437870
NA
1759{
1760 int retval;
972dc4de 1761 int hi = hstate_index(h);
a3437870 1762
9a305230
LS
1763 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1764 if (!hstate_kobjs[hi])
a3437870
NA
1765 return -ENOMEM;
1766
9a305230 1767 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1768 if (retval)
9a305230 1769 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1770
1771 return retval;
1772}
1773
1774static void __init hugetlb_sysfs_init(void)
1775{
1776 struct hstate *h;
1777 int err;
1778
1779 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1780 if (!hugepages_kobj)
1781 return;
1782
1783 for_each_hstate(h) {
9a305230
LS
1784 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1785 hstate_kobjs, &hstate_attr_group);
a3437870 1786 if (err)
ffb22af5 1787 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
1788 }
1789}
1790
9a305230
LS
1791#ifdef CONFIG_NUMA
1792
1793/*
1794 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
1795 * with node devices in node_devices[] using a parallel array. The array
1796 * index of a node device or _hstate == node id.
1797 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
1798 * the base kernel, on the hugetlb module.
1799 */
1800struct node_hstate {
1801 struct kobject *hugepages_kobj;
1802 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1803};
1804struct node_hstate node_hstates[MAX_NUMNODES];
1805
1806/*
10fbcf4c 1807 * A subset of global hstate attributes for node devices
9a305230
LS
1808 */
1809static struct attribute *per_node_hstate_attrs[] = {
1810 &nr_hugepages_attr.attr,
1811 &free_hugepages_attr.attr,
1812 &surplus_hugepages_attr.attr,
1813 NULL,
1814};
1815
1816static struct attribute_group per_node_hstate_attr_group = {
1817 .attrs = per_node_hstate_attrs,
1818};
1819
1820/*
10fbcf4c 1821 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
1822 * Returns node id via non-NULL nidp.
1823 */
1824static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1825{
1826 int nid;
1827
1828 for (nid = 0; nid < nr_node_ids; nid++) {
1829 struct node_hstate *nhs = &node_hstates[nid];
1830 int i;
1831 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1832 if (nhs->hstate_kobjs[i] == kobj) {
1833 if (nidp)
1834 *nidp = nid;
1835 return &hstates[i];
1836 }
1837 }
1838
1839 BUG();
1840 return NULL;
1841}
1842
1843/*
10fbcf4c 1844 * Unregister hstate attributes from a single node device.
9a305230
LS
1845 * No-op if no hstate attributes attached.
1846 */
3cd8b44f 1847static void hugetlb_unregister_node(struct node *node)
9a305230
LS
1848{
1849 struct hstate *h;
10fbcf4c 1850 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1851
1852 if (!nhs->hugepages_kobj)
9b5e5d0f 1853 return; /* no hstate attributes */
9a305230 1854
972dc4de
AK
1855 for_each_hstate(h) {
1856 int idx = hstate_index(h);
1857 if (nhs->hstate_kobjs[idx]) {
1858 kobject_put(nhs->hstate_kobjs[idx]);
1859 nhs->hstate_kobjs[idx] = NULL;
9a305230 1860 }
972dc4de 1861 }
9a305230
LS
1862
1863 kobject_put(nhs->hugepages_kobj);
1864 nhs->hugepages_kobj = NULL;
1865}
1866
1867/*
10fbcf4c 1868 * hugetlb module exit: unregister hstate attributes from node devices
9a305230
LS
1869 * that have them.
1870 */
1871static void hugetlb_unregister_all_nodes(void)
1872{
1873 int nid;
1874
1875 /*
10fbcf4c 1876 * disable node device registrations.
9a305230
LS
1877 */
1878 register_hugetlbfs_with_node(NULL, NULL);
1879
1880 /*
1881 * remove hstate attributes from any nodes that have them.
1882 */
1883 for (nid = 0; nid < nr_node_ids; nid++)
8732794b 1884 hugetlb_unregister_node(node_devices[nid]);
9a305230
LS
1885}
1886
1887/*
10fbcf4c 1888 * Register hstate attributes for a single node device.
9a305230
LS
1889 * No-op if attributes already registered.
1890 */
3cd8b44f 1891static void hugetlb_register_node(struct node *node)
9a305230
LS
1892{
1893 struct hstate *h;
10fbcf4c 1894 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1895 int err;
1896
1897 if (nhs->hugepages_kobj)
1898 return; /* already allocated */
1899
1900 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 1901 &node->dev.kobj);
9a305230
LS
1902 if (!nhs->hugepages_kobj)
1903 return;
1904
1905 for_each_hstate(h) {
1906 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1907 nhs->hstate_kobjs,
1908 &per_node_hstate_attr_group);
1909 if (err) {
ffb22af5
AM
1910 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1911 h->name, node->dev.id);
9a305230
LS
1912 hugetlb_unregister_node(node);
1913 break;
1914 }
1915 }
1916}
1917
1918/*
9b5e5d0f 1919 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
1920 * devices of nodes that have memory. All on-line nodes should have
1921 * registered their associated device by this time.
9a305230
LS
1922 */
1923static void hugetlb_register_all_nodes(void)
1924{
1925 int nid;
1926
8cebfcd0 1927 for_each_node_state(nid, N_MEMORY) {
8732794b 1928 struct node *node = node_devices[nid];
10fbcf4c 1929 if (node->dev.id == nid)
9a305230
LS
1930 hugetlb_register_node(node);
1931 }
1932
1933 /*
10fbcf4c 1934 * Let the node device driver know we're here so it can
9a305230
LS
1935 * [un]register hstate attributes on node hotplug.
1936 */
1937 register_hugetlbfs_with_node(hugetlb_register_node,
1938 hugetlb_unregister_node);
1939}
1940#else /* !CONFIG_NUMA */
1941
1942static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1943{
1944 BUG();
1945 if (nidp)
1946 *nidp = -1;
1947 return NULL;
1948}
1949
1950static void hugetlb_unregister_all_nodes(void) { }
1951
1952static void hugetlb_register_all_nodes(void) { }
1953
1954#endif
1955
a3437870
NA
1956static void __exit hugetlb_exit(void)
1957{
1958 struct hstate *h;
1959
9a305230
LS
1960 hugetlb_unregister_all_nodes();
1961
a3437870 1962 for_each_hstate(h) {
972dc4de 1963 kobject_put(hstate_kobjs[hstate_index(h)]);
a3437870
NA
1964 }
1965
1966 kobject_put(hugepages_kobj);
1967}
1968module_exit(hugetlb_exit);
1969
1970static int __init hugetlb_init(void)
1971{
0ef89d25
BH
1972 /* Some platform decide whether they support huge pages at boot
1973 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1974 * there is no such support
1975 */
1976 if (HPAGE_SHIFT == 0)
1977 return 0;
a3437870 1978
e11bfbfc
NP
1979 if (!size_to_hstate(default_hstate_size)) {
1980 default_hstate_size = HPAGE_SIZE;
1981 if (!size_to_hstate(default_hstate_size))
1982 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1983 }
972dc4de 1984 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
e11bfbfc
NP
1985 if (default_hstate_max_huge_pages)
1986 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1987
1988 hugetlb_init_hstates();
aa888a74 1989 gather_bootmem_prealloc();
a3437870
NA
1990 report_hugepages();
1991
1992 hugetlb_sysfs_init();
9a305230 1993 hugetlb_register_all_nodes();
7179e7bf 1994 hugetlb_cgroup_file_init();
9a305230 1995
a3437870
NA
1996 return 0;
1997}
1998module_init(hugetlb_init);
1999
2000/* Should be called on processing a hugepagesz=... option */
2001void __init hugetlb_add_hstate(unsigned order)
2002{
2003 struct hstate *h;
8faa8b07
AK
2004 unsigned long i;
2005
a3437870 2006 if (size_to_hstate(PAGE_SIZE << order)) {
ffb22af5 2007 pr_warning("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2008 return;
2009 }
47d38344 2010 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2011 BUG_ON(order == 0);
47d38344 2012 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2013 h->order = order;
2014 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2015 h->nr_huge_pages = 0;
2016 h->free_huge_pages = 0;
2017 for (i = 0; i < MAX_NUMNODES; ++i)
2018 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2019 INIT_LIST_HEAD(&h->hugepage_activelist);
8cebfcd0
LJ
2020 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2021 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
a3437870
NA
2022 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2023 huge_page_size(h)/1024);
8faa8b07 2024
a3437870
NA
2025 parsed_hstate = h;
2026}
2027
e11bfbfc 2028static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2029{
2030 unsigned long *mhp;
8faa8b07 2031 static unsigned long *last_mhp;
a3437870
NA
2032
2033 /*
47d38344 2034 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2035 * so this hugepages= parameter goes to the "default hstate".
2036 */
47d38344 2037 if (!hugetlb_max_hstate)
a3437870
NA
2038 mhp = &default_hstate_max_huge_pages;
2039 else
2040 mhp = &parsed_hstate->max_huge_pages;
2041
8faa8b07 2042 if (mhp == last_mhp) {
ffb22af5
AM
2043 pr_warning("hugepages= specified twice without "
2044 "interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2045 return 1;
2046 }
2047
a3437870
NA
2048 if (sscanf(s, "%lu", mhp) <= 0)
2049 *mhp = 0;
2050
8faa8b07
AK
2051 /*
2052 * Global state is always initialized later in hugetlb_init.
2053 * But we need to allocate >= MAX_ORDER hstates here early to still
2054 * use the bootmem allocator.
2055 */
47d38344 2056 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2057 hugetlb_hstate_alloc_pages(parsed_hstate);
2058
2059 last_mhp = mhp;
2060
a3437870
NA
2061 return 1;
2062}
e11bfbfc
NP
2063__setup("hugepages=", hugetlb_nrpages_setup);
2064
2065static int __init hugetlb_default_setup(char *s)
2066{
2067 default_hstate_size = memparse(s, &s);
2068 return 1;
2069}
2070__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2071
8a213460
NA
2072static unsigned int cpuset_mems_nr(unsigned int *array)
2073{
2074 int node;
2075 unsigned int nr = 0;
2076
2077 for_each_node_mask(node, cpuset_current_mems_allowed)
2078 nr += array[node];
2079
2080 return nr;
2081}
2082
2083#ifdef CONFIG_SYSCTL
06808b08
LS
2084static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2085 struct ctl_table *table, int write,
2086 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2087{
e5ff2159
AK
2088 struct hstate *h = &default_hstate;
2089 unsigned long tmp;
08d4a246 2090 int ret;
e5ff2159 2091
c033a93c 2092 tmp = h->max_huge_pages;
e5ff2159 2093
adbe8726
EM
2094 if (write && h->order >= MAX_ORDER)
2095 return -EINVAL;
2096
e5ff2159
AK
2097 table->data = &tmp;
2098 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2099 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2100 if (ret)
2101 goto out;
e5ff2159 2102
06808b08 2103 if (write) {
bad44b5b
DR
2104 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2105 GFP_KERNEL | __GFP_NORETRY);
06808b08
LS
2106 if (!(obey_mempolicy &&
2107 init_nodemask_of_mempolicy(nodes_allowed))) {
2108 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2109 nodes_allowed = &node_states[N_MEMORY];
06808b08
LS
2110 }
2111 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2112
8cebfcd0 2113 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2114 NODEMASK_FREE(nodes_allowed);
2115 }
08d4a246
MH
2116out:
2117 return ret;
1da177e4 2118}
396faf03 2119
06808b08
LS
2120int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2121 void __user *buffer, size_t *length, loff_t *ppos)
2122{
2123
2124 return hugetlb_sysctl_handler_common(false, table, write,
2125 buffer, length, ppos);
2126}
2127
2128#ifdef CONFIG_NUMA
2129int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2130 void __user *buffer, size_t *length, loff_t *ppos)
2131{
2132 return hugetlb_sysctl_handler_common(true, table, write,
2133 buffer, length, ppos);
2134}
2135#endif /* CONFIG_NUMA */
2136
a3d0c6aa 2137int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2138 void __user *buffer,
a3d0c6aa
NA
2139 size_t *length, loff_t *ppos)
2140{
a5516438 2141 struct hstate *h = &default_hstate;
e5ff2159 2142 unsigned long tmp;
08d4a246 2143 int ret;
e5ff2159 2144
c033a93c 2145 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2146
adbe8726
EM
2147 if (write && h->order >= MAX_ORDER)
2148 return -EINVAL;
2149
e5ff2159
AK
2150 table->data = &tmp;
2151 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2152 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2153 if (ret)
2154 goto out;
e5ff2159
AK
2155
2156 if (write) {
2157 spin_lock(&hugetlb_lock);
2158 h->nr_overcommit_huge_pages = tmp;
2159 spin_unlock(&hugetlb_lock);
2160 }
08d4a246
MH
2161out:
2162 return ret;
a3d0c6aa
NA
2163}
2164
1da177e4
LT
2165#endif /* CONFIG_SYSCTL */
2166
e1759c21 2167void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2168{
a5516438 2169 struct hstate *h = &default_hstate;
e1759c21 2170 seq_printf(m,
4f98a2fe
RR
2171 "HugePages_Total: %5lu\n"
2172 "HugePages_Free: %5lu\n"
2173 "HugePages_Rsvd: %5lu\n"
2174 "HugePages_Surp: %5lu\n"
2175 "Hugepagesize: %8lu kB\n",
a5516438
AK
2176 h->nr_huge_pages,
2177 h->free_huge_pages,
2178 h->resv_huge_pages,
2179 h->surplus_huge_pages,
2180 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2181}
2182
2183int hugetlb_report_node_meminfo(int nid, char *buf)
2184{
a5516438 2185 struct hstate *h = &default_hstate;
1da177e4
LT
2186 return sprintf(buf,
2187 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2188 "Node %d HugePages_Free: %5u\n"
2189 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2190 nid, h->nr_huge_pages_node[nid],
2191 nid, h->free_huge_pages_node[nid],
2192 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2193}
2194
949f7ec5
DR
2195void hugetlb_show_meminfo(void)
2196{
2197 struct hstate *h;
2198 int nid;
2199
2200 for_each_node_state(nid, N_MEMORY)
2201 for_each_hstate(h)
2202 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2203 nid,
2204 h->nr_huge_pages_node[nid],
2205 h->free_huge_pages_node[nid],
2206 h->surplus_huge_pages_node[nid],
2207 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2208}
2209
1da177e4
LT
2210/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2211unsigned long hugetlb_total_pages(void)
2212{
d0028588
WL
2213 struct hstate *h;
2214 unsigned long nr_total_pages = 0;
2215
2216 for_each_hstate(h)
2217 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2218 return nr_total_pages;
1da177e4 2219}
1da177e4 2220
a5516438 2221static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2222{
2223 int ret = -ENOMEM;
2224
2225 spin_lock(&hugetlb_lock);
2226 /*
2227 * When cpuset is configured, it breaks the strict hugetlb page
2228 * reservation as the accounting is done on a global variable. Such
2229 * reservation is completely rubbish in the presence of cpuset because
2230 * the reservation is not checked against page availability for the
2231 * current cpuset. Application can still potentially OOM'ed by kernel
2232 * with lack of free htlb page in cpuset that the task is in.
2233 * Attempt to enforce strict accounting with cpuset is almost
2234 * impossible (or too ugly) because cpuset is too fluid that
2235 * task or memory node can be dynamically moved between cpusets.
2236 *
2237 * The change of semantics for shared hugetlb mapping with cpuset is
2238 * undesirable. However, in order to preserve some of the semantics,
2239 * we fall back to check against current free page availability as
2240 * a best attempt and hopefully to minimize the impact of changing
2241 * semantics that cpuset has.
2242 */
2243 if (delta > 0) {
a5516438 2244 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2245 goto out;
2246
a5516438
AK
2247 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2248 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2249 goto out;
2250 }
2251 }
2252
2253 ret = 0;
2254 if (delta < 0)
a5516438 2255 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2256
2257out:
2258 spin_unlock(&hugetlb_lock);
2259 return ret;
2260}
2261
84afd99b
AW
2262static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2263{
f522c3ac 2264 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
2265
2266 /*
2267 * This new VMA should share its siblings reservation map if present.
2268 * The VMA will only ever have a valid reservation map pointer where
2269 * it is being copied for another still existing VMA. As that VMA
25985edc 2270 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2271 * after this open call completes. It is therefore safe to take a
2272 * new reference here without additional locking.
2273 */
f522c3ac
JK
2274 if (resv)
2275 kref_get(&resv->refs);
84afd99b
AW
2276}
2277
a1e78772
MG
2278static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2279{
a5516438 2280 struct hstate *h = hstate_vma(vma);
f522c3ac 2281 struct resv_map *resv = vma_resv_map(vma);
90481622 2282 struct hugepage_subpool *spool = subpool_vma(vma);
84afd99b
AW
2283 unsigned long reserve;
2284 unsigned long start;
2285 unsigned long end;
2286
f522c3ac 2287 if (resv) {
a5516438
AK
2288 start = vma_hugecache_offset(h, vma, vma->vm_start);
2289 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b
AW
2290
2291 reserve = (end - start) -
1406ec9b 2292 region_count(resv, start, end);
84afd99b 2293
f031dd27 2294 kref_put(&resv->refs, resv_map_release);
84afd99b 2295
7251ff78 2296 if (reserve) {
a5516438 2297 hugetlb_acct_memory(h, -reserve);
90481622 2298 hugepage_subpool_put_pages(spool, reserve);
7251ff78 2299 }
84afd99b 2300 }
a1e78772
MG
2301}
2302
1da177e4
LT
2303/*
2304 * We cannot handle pagefaults against hugetlb pages at all. They cause
2305 * handle_mm_fault() to try to instantiate regular-sized pages in the
2306 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2307 * this far.
2308 */
d0217ac0 2309static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2310{
2311 BUG();
d0217ac0 2312 return 0;
1da177e4
LT
2313}
2314
f0f37e2f 2315const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2316 .fault = hugetlb_vm_op_fault,
84afd99b 2317 .open = hugetlb_vm_op_open,
a1e78772 2318 .close = hugetlb_vm_op_close,
1da177e4
LT
2319};
2320
1e8f889b
DG
2321static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2322 int writable)
63551ae0
DG
2323{
2324 pte_t entry;
2325
1e8f889b 2326 if (writable) {
106c992a
GS
2327 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2328 vma->vm_page_prot)));
63551ae0 2329 } else {
106c992a
GS
2330 entry = huge_pte_wrprotect(mk_huge_pte(page,
2331 vma->vm_page_prot));
63551ae0
DG
2332 }
2333 entry = pte_mkyoung(entry);
2334 entry = pte_mkhuge(entry);
d9ed9faa 2335 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
2336
2337 return entry;
2338}
2339
1e8f889b
DG
2340static void set_huge_ptep_writable(struct vm_area_struct *vma,
2341 unsigned long address, pte_t *ptep)
2342{
2343 pte_t entry;
2344
106c992a 2345 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 2346 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 2347 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
2348}
2349
2350
63551ae0
DG
2351int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2352 struct vm_area_struct *vma)
2353{
2354 pte_t *src_pte, *dst_pte, entry;
2355 struct page *ptepage;
1c59827d 2356 unsigned long addr;
1e8f889b 2357 int cow;
a5516438
AK
2358 struct hstate *h = hstate_vma(vma);
2359 unsigned long sz = huge_page_size(h);
e8569dd2
AS
2360 unsigned long mmun_start; /* For mmu_notifiers */
2361 unsigned long mmun_end; /* For mmu_notifiers */
2362 int ret = 0;
1e8f889b
DG
2363
2364 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2365
e8569dd2
AS
2366 mmun_start = vma->vm_start;
2367 mmun_end = vma->vm_end;
2368 if (cow)
2369 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2370
a5516438 2371 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 2372 spinlock_t *src_ptl, *dst_ptl;
c74df32c
HD
2373 src_pte = huge_pte_offset(src, addr);
2374 if (!src_pte)
2375 continue;
a5516438 2376 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
2377 if (!dst_pte) {
2378 ret = -ENOMEM;
2379 break;
2380 }
c5c99429
LW
2381
2382 /* If the pagetables are shared don't copy or take references */
2383 if (dst_pte == src_pte)
2384 continue;
2385
cb900f41
KS
2386 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2387 src_ptl = huge_pte_lockptr(h, src, src_pte);
2388 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
7f2e9525 2389 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 2390 if (cow)
7f2e9525
GS
2391 huge_ptep_set_wrprotect(src, addr, src_pte);
2392 entry = huge_ptep_get(src_pte);
1c59827d
HD
2393 ptepage = pte_page(entry);
2394 get_page(ptepage);
0fe6e20b 2395 page_dup_rmap(ptepage);
1c59827d
HD
2396 set_huge_pte_at(dst, addr, dst_pte, entry);
2397 }
cb900f41
KS
2398 spin_unlock(src_ptl);
2399 spin_unlock(dst_ptl);
63551ae0 2400 }
63551ae0 2401
e8569dd2
AS
2402 if (cow)
2403 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2404
2405 return ret;
63551ae0
DG
2406}
2407
290408d4
NH
2408static int is_hugetlb_entry_migration(pte_t pte)
2409{
2410 swp_entry_t swp;
2411
2412 if (huge_pte_none(pte) || pte_present(pte))
2413 return 0;
2414 swp = pte_to_swp_entry(pte);
32f84528 2415 if (non_swap_entry(swp) && is_migration_entry(swp))
290408d4 2416 return 1;
32f84528 2417 else
290408d4
NH
2418 return 0;
2419}
2420
fd6a03ed
NH
2421static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2422{
2423 swp_entry_t swp;
2424
2425 if (huge_pte_none(pte) || pte_present(pte))
2426 return 0;
2427 swp = pte_to_swp_entry(pte);
32f84528 2428 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
fd6a03ed 2429 return 1;
32f84528 2430 else
fd6a03ed
NH
2431 return 0;
2432}
2433
24669e58
AK
2434void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2435 unsigned long start, unsigned long end,
2436 struct page *ref_page)
63551ae0 2437{
24669e58 2438 int force_flush = 0;
63551ae0
DG
2439 struct mm_struct *mm = vma->vm_mm;
2440 unsigned long address;
c7546f8f 2441 pte_t *ptep;
63551ae0 2442 pte_t pte;
cb900f41 2443 spinlock_t *ptl;
63551ae0 2444 struct page *page;
a5516438
AK
2445 struct hstate *h = hstate_vma(vma);
2446 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
2447 const unsigned long mmun_start = start; /* For mmu_notifiers */
2448 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 2449
63551ae0 2450 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2451 BUG_ON(start & ~huge_page_mask(h));
2452 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2453
24669e58 2454 tlb_start_vma(tlb, vma);
2ec74c3e 2455 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
24669e58 2456again:
a5516438 2457 for (address = start; address < end; address += sz) {
c7546f8f 2458 ptep = huge_pte_offset(mm, address);
4c887265 2459 if (!ptep)
c7546f8f
DG
2460 continue;
2461
cb900f41 2462 ptl = huge_pte_lock(h, mm, ptep);
39dde65c 2463 if (huge_pmd_unshare(mm, &address, ptep))
cb900f41 2464 goto unlock;
39dde65c 2465
6629326b
HD
2466 pte = huge_ptep_get(ptep);
2467 if (huge_pte_none(pte))
cb900f41 2468 goto unlock;
6629326b
HD
2469
2470 /*
2471 * HWPoisoned hugepage is already unmapped and dropped reference
2472 */
8c4894c6 2473 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
106c992a 2474 huge_pte_clear(mm, address, ptep);
cb900f41 2475 goto unlock;
8c4894c6 2476 }
6629326b
HD
2477
2478 page = pte_page(pte);
04f2cbe3
MG
2479 /*
2480 * If a reference page is supplied, it is because a specific
2481 * page is being unmapped, not a range. Ensure the page we
2482 * are about to unmap is the actual page of interest.
2483 */
2484 if (ref_page) {
04f2cbe3 2485 if (page != ref_page)
cb900f41 2486 goto unlock;
04f2cbe3
MG
2487
2488 /*
2489 * Mark the VMA as having unmapped its page so that
2490 * future faults in this VMA will fail rather than
2491 * looking like data was lost
2492 */
2493 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2494 }
2495
c7546f8f 2496 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 2497 tlb_remove_tlb_entry(tlb, ptep, address);
106c992a 2498 if (huge_pte_dirty(pte))
6649a386 2499 set_page_dirty(page);
9e81130b 2500
24669e58
AK
2501 page_remove_rmap(page);
2502 force_flush = !__tlb_remove_page(tlb, page);
cb900f41
KS
2503 if (force_flush) {
2504 spin_unlock(ptl);
24669e58 2505 break;
cb900f41 2506 }
9e81130b 2507 /* Bail out after unmapping reference page if supplied */
cb900f41
KS
2508 if (ref_page) {
2509 spin_unlock(ptl);
9e81130b 2510 break;
cb900f41
KS
2511 }
2512unlock:
2513 spin_unlock(ptl);
63551ae0 2514 }
24669e58
AK
2515 /*
2516 * mmu_gather ran out of room to batch pages, we break out of
2517 * the PTE lock to avoid doing the potential expensive TLB invalidate
2518 * and page-free while holding it.
2519 */
2520 if (force_flush) {
2521 force_flush = 0;
2522 tlb_flush_mmu(tlb);
2523 if (address < end && !ref_page)
2524 goto again;
fe1668ae 2525 }
2ec74c3e 2526 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 2527 tlb_end_vma(tlb, vma);
1da177e4 2528}
63551ae0 2529
d833352a
MG
2530void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2531 struct vm_area_struct *vma, unsigned long start,
2532 unsigned long end, struct page *ref_page)
2533{
2534 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2535
2536 /*
2537 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2538 * test will fail on a vma being torn down, and not grab a page table
2539 * on its way out. We're lucky that the flag has such an appropriate
2540 * name, and can in fact be safely cleared here. We could clear it
2541 * before the __unmap_hugepage_range above, but all that's necessary
2542 * is to clear it before releasing the i_mmap_mutex. This works
2543 * because in the context this is called, the VMA is about to be
2544 * destroyed and the i_mmap_mutex is held.
2545 */
2546 vma->vm_flags &= ~VM_MAYSHARE;
2547}
2548
502717f4 2549void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2550 unsigned long end, struct page *ref_page)
502717f4 2551{
24669e58
AK
2552 struct mm_struct *mm;
2553 struct mmu_gather tlb;
2554
2555 mm = vma->vm_mm;
2556
2b047252 2557 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
2558 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2559 tlb_finish_mmu(&tlb, start, end);
502717f4
KC
2560}
2561
04f2cbe3
MG
2562/*
2563 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2564 * mappping it owns the reserve page for. The intention is to unmap the page
2565 * from other VMAs and let the children be SIGKILLed if they are faulting the
2566 * same region.
2567 */
2a4b3ded
HH
2568static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2569 struct page *page, unsigned long address)
04f2cbe3 2570{
7526674d 2571 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2572 struct vm_area_struct *iter_vma;
2573 struct address_space *mapping;
04f2cbe3
MG
2574 pgoff_t pgoff;
2575
2576 /*
2577 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2578 * from page cache lookup which is in HPAGE_SIZE units.
2579 */
7526674d 2580 address = address & huge_page_mask(h);
36e4f20a
MH
2581 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2582 vma->vm_pgoff;
496ad9aa 2583 mapping = file_inode(vma->vm_file)->i_mapping;
04f2cbe3 2584
4eb2b1dc
MG
2585 /*
2586 * Take the mapping lock for the duration of the table walk. As
2587 * this mapping should be shared between all the VMAs,
2588 * __unmap_hugepage_range() is called as the lock is already held
2589 */
3d48ae45 2590 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 2591 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
2592 /* Do not unmap the current VMA */
2593 if (iter_vma == vma)
2594 continue;
2595
2596 /*
2597 * Unmap the page from other VMAs without their own reserves.
2598 * They get marked to be SIGKILLed if they fault in these
2599 * areas. This is because a future no-page fault on this VMA
2600 * could insert a zeroed page instead of the data existing
2601 * from the time of fork. This would look like data corruption
2602 */
2603 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
2604 unmap_hugepage_range(iter_vma, address,
2605 address + huge_page_size(h), page);
04f2cbe3 2606 }
3d48ae45 2607 mutex_unlock(&mapping->i_mmap_mutex);
04f2cbe3
MG
2608
2609 return 1;
2610}
2611
0fe6e20b
NH
2612/*
2613 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
2614 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2615 * cannot race with other handlers or page migration.
2616 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 2617 */
1e8f889b 2618static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3 2619 unsigned long address, pte_t *ptep, pte_t pte,
cb900f41 2620 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 2621{
a5516438 2622 struct hstate *h = hstate_vma(vma);
1e8f889b 2623 struct page *old_page, *new_page;
04f2cbe3 2624 int outside_reserve = 0;
2ec74c3e
SG
2625 unsigned long mmun_start; /* For mmu_notifiers */
2626 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b
DG
2627
2628 old_page = pte_page(pte);
2629
04f2cbe3 2630retry_avoidcopy:
1e8f889b
DG
2631 /* If no-one else is actually using this page, avoid the copy
2632 * and just make the page writable */
37a2140d
JK
2633 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2634 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2635 set_huge_ptep_writable(vma, address, ptep);
83c54070 2636 return 0;
1e8f889b
DG
2637 }
2638
04f2cbe3
MG
2639 /*
2640 * If the process that created a MAP_PRIVATE mapping is about to
2641 * perform a COW due to a shared page count, attempt to satisfy
2642 * the allocation without using the existing reserves. The pagecache
2643 * page is used to determine if the reserve at this address was
2644 * consumed or not. If reserves were used, a partial faulted mapping
2645 * at the time of fork() could consume its reserves on COW instead
2646 * of the full address range.
2647 */
5944d011 2648 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
2649 old_page != pagecache_page)
2650 outside_reserve = 1;
2651
1e8f889b 2652 page_cache_get(old_page);
b76c8cfb 2653
cb900f41
KS
2654 /* Drop page table lock as buddy allocator may be called */
2655 spin_unlock(ptl);
04f2cbe3 2656 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2657
2fc39cec 2658 if (IS_ERR(new_page)) {
76dcee75 2659 long err = PTR_ERR(new_page);
1e8f889b 2660 page_cache_release(old_page);
04f2cbe3
MG
2661
2662 /*
2663 * If a process owning a MAP_PRIVATE mapping fails to COW,
2664 * it is due to references held by a child and an insufficient
2665 * huge page pool. To guarantee the original mappers
2666 * reliability, unmap the page from child processes. The child
2667 * may get SIGKILLed if it later faults.
2668 */
2669 if (outside_reserve) {
2670 BUG_ON(huge_pte_none(pte));
2671 if (unmap_ref_private(mm, vma, old_page, address)) {
04f2cbe3 2672 BUG_ON(huge_pte_none(pte));
cb900f41 2673 spin_lock(ptl);
a734bcc8
HD
2674 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2675 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2676 goto retry_avoidcopy;
2677 /*
cb900f41
KS
2678 * race occurs while re-acquiring page table
2679 * lock, and our job is done.
a734bcc8
HD
2680 */
2681 return 0;
04f2cbe3
MG
2682 }
2683 WARN_ON_ONCE(1);
2684 }
2685
b76c8cfb 2686 /* Caller expects lock to be held */
cb900f41 2687 spin_lock(ptl);
76dcee75
AK
2688 if (err == -ENOMEM)
2689 return VM_FAULT_OOM;
2690 else
2691 return VM_FAULT_SIGBUS;
1e8f889b
DG
2692 }
2693
0fe6e20b
NH
2694 /*
2695 * When the original hugepage is shared one, it does not have
2696 * anon_vma prepared.
2697 */
44e2aa93 2698 if (unlikely(anon_vma_prepare(vma))) {
ea4039a3
HD
2699 page_cache_release(new_page);
2700 page_cache_release(old_page);
44e2aa93 2701 /* Caller expects lock to be held */
cb900f41 2702 spin_lock(ptl);
0fe6e20b 2703 return VM_FAULT_OOM;
44e2aa93 2704 }
0fe6e20b 2705
47ad8475
AA
2706 copy_user_huge_page(new_page, old_page, address, vma,
2707 pages_per_huge_page(h));
0ed361de 2708 __SetPageUptodate(new_page);
1e8f889b 2709
2ec74c3e
SG
2710 mmun_start = address & huge_page_mask(h);
2711 mmun_end = mmun_start + huge_page_size(h);
2712 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
b76c8cfb 2713 /*
cb900f41 2714 * Retake the page table lock to check for racing updates
b76c8cfb
LW
2715 * before the page tables are altered
2716 */
cb900f41 2717 spin_lock(ptl);
a5516438 2718 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 2719 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
2720 ClearPagePrivate(new_page);
2721
1e8f889b 2722 /* Break COW */
8fe627ec 2723 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2724 set_huge_pte_at(mm, address, ptep,
2725 make_huge_pte(vma, new_page, 1));
0fe6e20b 2726 page_remove_rmap(old_page);
cd67f0d2 2727 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
2728 /* Make the old page be freed below */
2729 new_page = old_page;
2730 }
cb900f41 2731 spin_unlock(ptl);
2ec74c3e 2732 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1e8f889b
DG
2733 page_cache_release(new_page);
2734 page_cache_release(old_page);
8312034f
JK
2735
2736 /* Caller expects lock to be held */
cb900f41 2737 spin_lock(ptl);
83c54070 2738 return 0;
1e8f889b
DG
2739}
2740
04f2cbe3 2741/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2742static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2743 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2744{
2745 struct address_space *mapping;
e7c4b0bf 2746 pgoff_t idx;
04f2cbe3
MG
2747
2748 mapping = vma->vm_file->f_mapping;
a5516438 2749 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2750
2751 return find_lock_page(mapping, idx);
2752}
2753
3ae77f43
HD
2754/*
2755 * Return whether there is a pagecache page to back given address within VMA.
2756 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2757 */
2758static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2759 struct vm_area_struct *vma, unsigned long address)
2760{
2761 struct address_space *mapping;
2762 pgoff_t idx;
2763 struct page *page;
2764
2765 mapping = vma->vm_file->f_mapping;
2766 idx = vma_hugecache_offset(h, vma, address);
2767
2768 page = find_get_page(mapping, idx);
2769 if (page)
2770 put_page(page);
2771 return page != NULL;
2772}
2773
a1ed3dda 2774static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2775 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2776{
a5516438 2777 struct hstate *h = hstate_vma(vma);
ac9b9c66 2778 int ret = VM_FAULT_SIGBUS;
409eb8c2 2779 int anon_rmap = 0;
e7c4b0bf 2780 pgoff_t idx;
4c887265 2781 unsigned long size;
4c887265
AL
2782 struct page *page;
2783 struct address_space *mapping;
1e8f889b 2784 pte_t new_pte;
cb900f41 2785 spinlock_t *ptl;
4c887265 2786
04f2cbe3
MG
2787 /*
2788 * Currently, we are forced to kill the process in the event the
2789 * original mapper has unmapped pages from the child due to a failed
25985edc 2790 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
2791 */
2792 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
ffb22af5
AM
2793 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2794 current->pid);
04f2cbe3
MG
2795 return ret;
2796 }
2797
4c887265 2798 mapping = vma->vm_file->f_mapping;
a5516438 2799 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
2800
2801 /*
2802 * Use page lock to guard against racing truncation
2803 * before we get page_table_lock.
2804 */
6bda666a
CL
2805retry:
2806 page = find_lock_page(mapping, idx);
2807 if (!page) {
a5516438 2808 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2809 if (idx >= size)
2810 goto out;
04f2cbe3 2811 page = alloc_huge_page(vma, address, 0);
2fc39cec 2812 if (IS_ERR(page)) {
76dcee75
AK
2813 ret = PTR_ERR(page);
2814 if (ret == -ENOMEM)
2815 ret = VM_FAULT_OOM;
2816 else
2817 ret = VM_FAULT_SIGBUS;
6bda666a
CL
2818 goto out;
2819 }
47ad8475 2820 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 2821 __SetPageUptodate(page);
ac9b9c66 2822
f83a275d 2823 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2824 int err;
45c682a6 2825 struct inode *inode = mapping->host;
6bda666a
CL
2826
2827 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2828 if (err) {
2829 put_page(page);
6bda666a
CL
2830 if (err == -EEXIST)
2831 goto retry;
2832 goto out;
2833 }
07443a85 2834 ClearPagePrivate(page);
45c682a6
KC
2835
2836 spin_lock(&inode->i_lock);
a5516438 2837 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2838 spin_unlock(&inode->i_lock);
23be7468 2839 } else {
6bda666a 2840 lock_page(page);
0fe6e20b
NH
2841 if (unlikely(anon_vma_prepare(vma))) {
2842 ret = VM_FAULT_OOM;
2843 goto backout_unlocked;
2844 }
409eb8c2 2845 anon_rmap = 1;
23be7468 2846 }
0fe6e20b 2847 } else {
998b4382
NH
2848 /*
2849 * If memory error occurs between mmap() and fault, some process
2850 * don't have hwpoisoned swap entry for errored virtual address.
2851 * So we need to block hugepage fault by PG_hwpoison bit check.
2852 */
2853 if (unlikely(PageHWPoison(page))) {
32f84528 2854 ret = VM_FAULT_HWPOISON |
972dc4de 2855 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
2856 goto backout_unlocked;
2857 }
6bda666a 2858 }
1e8f889b 2859
57303d80
AW
2860 /*
2861 * If we are going to COW a private mapping later, we examine the
2862 * pending reservations for this page now. This will ensure that
2863 * any allocations necessary to record that reservation occur outside
2864 * the spinlock.
2865 */
788c7df4 2866 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2867 if (vma_needs_reservation(h, vma, address) < 0) {
2868 ret = VM_FAULT_OOM;
2869 goto backout_unlocked;
2870 }
57303d80 2871
cb900f41
KS
2872 ptl = huge_pte_lockptr(h, mm, ptep);
2873 spin_lock(ptl);
a5516438 2874 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2875 if (idx >= size)
2876 goto backout;
2877
83c54070 2878 ret = 0;
7f2e9525 2879 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2880 goto backout;
2881
07443a85
JK
2882 if (anon_rmap) {
2883 ClearPagePrivate(page);
409eb8c2 2884 hugepage_add_new_anon_rmap(page, vma, address);
07443a85 2885 }
409eb8c2
HD
2886 else
2887 page_dup_rmap(page);
1e8f889b
DG
2888 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2889 && (vma->vm_flags & VM_SHARED)));
2890 set_huge_pte_at(mm, address, ptep, new_pte);
2891
788c7df4 2892 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 2893 /* Optimization, do the COW without a second fault */
cb900f41 2894 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
1e8f889b
DG
2895 }
2896
cb900f41 2897 spin_unlock(ptl);
4c887265
AL
2898 unlock_page(page);
2899out:
ac9b9c66 2900 return ret;
4c887265
AL
2901
2902backout:
cb900f41 2903 spin_unlock(ptl);
2b26736c 2904backout_unlocked:
4c887265
AL
2905 unlock_page(page);
2906 put_page(page);
2907 goto out;
ac9b9c66
HD
2908}
2909
86e5216f 2910int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2911 unsigned long address, unsigned int flags)
86e5216f
AL
2912{
2913 pte_t *ptep;
2914 pte_t entry;
cb900f41 2915 spinlock_t *ptl;
1e8f889b 2916 int ret;
0fe6e20b 2917 struct page *page = NULL;
57303d80 2918 struct page *pagecache_page = NULL;
3935baa9 2919 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2920 struct hstate *h = hstate_vma(vma);
86e5216f 2921
1e16a539
KH
2922 address &= huge_page_mask(h);
2923
fd6a03ed
NH
2924 ptep = huge_pte_offset(mm, address);
2925 if (ptep) {
2926 entry = huge_ptep_get(ptep);
290408d4 2927 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 2928 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
2929 return 0;
2930 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 2931 return VM_FAULT_HWPOISON_LARGE |
972dc4de 2932 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
2933 }
2934
a5516438 2935 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2936 if (!ptep)
2937 return VM_FAULT_OOM;
2938
3935baa9
DG
2939 /*
2940 * Serialize hugepage allocation and instantiation, so that we don't
2941 * get spurious allocation failures if two CPUs race to instantiate
2942 * the same page in the page cache.
2943 */
2944 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2945 entry = huge_ptep_get(ptep);
2946 if (huge_pte_none(entry)) {
788c7df4 2947 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
b4d1d99f 2948 goto out_mutex;
3935baa9 2949 }
86e5216f 2950
83c54070 2951 ret = 0;
1e8f889b 2952
57303d80
AW
2953 /*
2954 * If we are going to COW the mapping later, we examine the pending
2955 * reservations for this page now. This will ensure that any
2956 * allocations necessary to record that reservation occur outside the
2957 * spinlock. For private mappings, we also lookup the pagecache
2958 * page now as it is used to determine if a reservation has been
2959 * consumed.
2960 */
106c992a 2961 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
2962 if (vma_needs_reservation(h, vma, address) < 0) {
2963 ret = VM_FAULT_OOM;
b4d1d99f 2964 goto out_mutex;
2b26736c 2965 }
57303d80 2966
f83a275d 2967 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
2968 pagecache_page = hugetlbfs_pagecache_page(h,
2969 vma, address);
2970 }
2971
56c9cfb1
NH
2972 /*
2973 * hugetlb_cow() requires page locks of pte_page(entry) and
2974 * pagecache_page, so here we need take the former one
2975 * when page != pagecache_page or !pagecache_page.
2976 * Note that locking order is always pagecache_page -> page,
2977 * so no worry about deadlock.
2978 */
2979 page = pte_page(entry);
66aebce7 2980 get_page(page);
56c9cfb1 2981 if (page != pagecache_page)
0fe6e20b 2982 lock_page(page);
0fe6e20b 2983
cb900f41
KS
2984 ptl = huge_pte_lockptr(h, mm, ptep);
2985 spin_lock(ptl);
1e8f889b 2986 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f 2987 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
cb900f41 2988 goto out_ptl;
b4d1d99f
DG
2989
2990
788c7df4 2991 if (flags & FAULT_FLAG_WRITE) {
106c992a 2992 if (!huge_pte_write(entry)) {
57303d80 2993 ret = hugetlb_cow(mm, vma, address, ptep, entry,
cb900f41
KS
2994 pagecache_page, ptl);
2995 goto out_ptl;
b4d1d99f 2996 }
106c992a 2997 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
2998 }
2999 entry = pte_mkyoung(entry);
788c7df4
HD
3000 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3001 flags & FAULT_FLAG_WRITE))
4b3073e1 3002 update_mmu_cache(vma, address, ptep);
b4d1d99f 3003
cb900f41
KS
3004out_ptl:
3005 spin_unlock(ptl);
57303d80
AW
3006
3007 if (pagecache_page) {
3008 unlock_page(pagecache_page);
3009 put_page(pagecache_page);
3010 }
1f64d69c
DN
3011 if (page != pagecache_page)
3012 unlock_page(page);
66aebce7 3013 put_page(page);
57303d80 3014
b4d1d99f 3015out_mutex:
3935baa9 3016 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
3017
3018 return ret;
86e5216f
AL
3019}
3020
28a35716
ML
3021long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3022 struct page **pages, struct vm_area_struct **vmas,
3023 unsigned long *position, unsigned long *nr_pages,
3024 long i, unsigned int flags)
63551ae0 3025{
d5d4b0aa
KC
3026 unsigned long pfn_offset;
3027 unsigned long vaddr = *position;
28a35716 3028 unsigned long remainder = *nr_pages;
a5516438 3029 struct hstate *h = hstate_vma(vma);
63551ae0 3030
63551ae0 3031 while (vaddr < vma->vm_end && remainder) {
4c887265 3032 pte_t *pte;
cb900f41 3033 spinlock_t *ptl = NULL;
2a15efc9 3034 int absent;
4c887265 3035 struct page *page;
63551ae0 3036
4c887265
AL
3037 /*
3038 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 3039 * each hugepage. We have to make sure we get the
4c887265 3040 * first, for the page indexing below to work.
cb900f41
KS
3041 *
3042 * Note that page table lock is not held when pte is null.
4c887265 3043 */
a5516438 3044 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
cb900f41
KS
3045 if (pte)
3046 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
3047 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3048
3049 /*
3050 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
3051 * an error where there's an empty slot with no huge pagecache
3052 * to back it. This way, we avoid allocating a hugepage, and
3053 * the sparse dumpfile avoids allocating disk blocks, but its
3054 * huge holes still show up with zeroes where they need to be.
2a15efc9 3055 */
3ae77f43
HD
3056 if (absent && (flags & FOLL_DUMP) &&
3057 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
3058 if (pte)
3059 spin_unlock(ptl);
2a15efc9
HD
3060 remainder = 0;
3061 break;
3062 }
63551ae0 3063
9cc3a5bd
NH
3064 /*
3065 * We need call hugetlb_fault for both hugepages under migration
3066 * (in which case hugetlb_fault waits for the migration,) and
3067 * hwpoisoned hugepages (in which case we need to prevent the
3068 * caller from accessing to them.) In order to do this, we use
3069 * here is_swap_pte instead of is_hugetlb_entry_migration and
3070 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3071 * both cases, and because we can't follow correct pages
3072 * directly from any kind of swap entries.
3073 */
3074 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
3075 ((flags & FOLL_WRITE) &&
3076 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 3077 int ret;
63551ae0 3078
cb900f41
KS
3079 if (pte)
3080 spin_unlock(ptl);
2a15efc9
HD
3081 ret = hugetlb_fault(mm, vma, vaddr,
3082 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
a89182c7 3083 if (!(ret & VM_FAULT_ERROR))
4c887265 3084 continue;
63551ae0 3085
4c887265 3086 remainder = 0;
4c887265
AL
3087 break;
3088 }
3089
a5516438 3090 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 3091 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 3092same_page:
d6692183 3093 if (pages) {
2a15efc9 3094 pages[i] = mem_map_offset(page, pfn_offset);
a0368d4e 3095 get_page_foll(pages[i]);
d6692183 3096 }
63551ae0
DG
3097
3098 if (vmas)
3099 vmas[i] = vma;
3100
3101 vaddr += PAGE_SIZE;
d5d4b0aa 3102 ++pfn_offset;
63551ae0
DG
3103 --remainder;
3104 ++i;
d5d4b0aa 3105 if (vaddr < vma->vm_end && remainder &&
a5516438 3106 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
3107 /*
3108 * We use pfn_offset to avoid touching the pageframes
3109 * of this compound page.
3110 */
3111 goto same_page;
3112 }
cb900f41 3113 spin_unlock(ptl);
63551ae0 3114 }
28a35716 3115 *nr_pages = remainder;
63551ae0
DG
3116 *position = vaddr;
3117
2a15efc9 3118 return i ? i : -EFAULT;
63551ae0 3119}
8f860591 3120
7da4d641 3121unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
3122 unsigned long address, unsigned long end, pgprot_t newprot)
3123{
3124 struct mm_struct *mm = vma->vm_mm;
3125 unsigned long start = address;
3126 pte_t *ptep;
3127 pte_t pte;
a5516438 3128 struct hstate *h = hstate_vma(vma);
7da4d641 3129 unsigned long pages = 0;
8f860591
ZY
3130
3131 BUG_ON(address >= end);
3132 flush_cache_range(vma, address, end);
3133
3d48ae45 3134 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
a5516438 3135 for (; address < end; address += huge_page_size(h)) {
cb900f41 3136 spinlock_t *ptl;
8f860591
ZY
3137 ptep = huge_pte_offset(mm, address);
3138 if (!ptep)
3139 continue;
cb900f41 3140 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
3141 if (huge_pmd_unshare(mm, &address, ptep)) {
3142 pages++;
cb900f41 3143 spin_unlock(ptl);
39dde65c 3144 continue;
7da4d641 3145 }
7f2e9525 3146 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591 3147 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 3148 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 3149 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 3150 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 3151 pages++;
8f860591 3152 }
cb900f41 3153 spin_unlock(ptl);
8f860591 3154 }
d833352a
MG
3155 /*
3156 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3157 * may have cleared our pud entry and done put_page on the page table:
3158 * once we release i_mmap_mutex, another task can do the final put_page
3159 * and that page table be reused and filled with junk.
3160 */
8f860591 3161 flush_tlb_range(vma, start, end);
d833352a 3162 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
7da4d641
PZ
3163
3164 return pages << h->order;
8f860591
ZY
3165}
3166
a1e78772
MG
3167int hugetlb_reserve_pages(struct inode *inode,
3168 long from, long to,
5a6fe125 3169 struct vm_area_struct *vma,
ca16d140 3170 vm_flags_t vm_flags)
e4e574b7 3171{
17c9d12e 3172 long ret, chg;
a5516438 3173 struct hstate *h = hstate_inode(inode);
90481622 3174 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 3175 struct resv_map *resv_map;
e4e574b7 3176
17c9d12e
MG
3177 /*
3178 * Only apply hugepage reservation if asked. At fault time, an
3179 * attempt will be made for VM_NORESERVE to allocate a page
90481622 3180 * without using reserves
17c9d12e 3181 */
ca16d140 3182 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
3183 return 0;
3184
a1e78772
MG
3185 /*
3186 * Shared mappings base their reservation on the number of pages that
3187 * are already allocated on behalf of the file. Private mappings need
3188 * to reserve the full area even if read-only as mprotect() may be
3189 * called to make the mapping read-write. Assume !vma is a shm mapping
3190 */
9119a41e
JK
3191 if (!vma || vma->vm_flags & VM_MAYSHARE) {
3192 resv_map = inode->i_mapping->private_data;
3193
1406ec9b 3194 chg = region_chg(resv_map, from, to);
9119a41e
JK
3195
3196 } else {
3197 resv_map = resv_map_alloc();
17c9d12e
MG
3198 if (!resv_map)
3199 return -ENOMEM;
3200
a1e78772 3201 chg = to - from;
84afd99b 3202
17c9d12e
MG
3203 set_vma_resv_map(vma, resv_map);
3204 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3205 }
3206
c50ac050
DH
3207 if (chg < 0) {
3208 ret = chg;
3209 goto out_err;
3210 }
8a630112 3211
90481622 3212 /* There must be enough pages in the subpool for the mapping */
c50ac050
DH
3213 if (hugepage_subpool_get_pages(spool, chg)) {
3214 ret = -ENOSPC;
3215 goto out_err;
3216 }
5a6fe125
MG
3217
3218 /*
17c9d12e 3219 * Check enough hugepages are available for the reservation.
90481622 3220 * Hand the pages back to the subpool if there are not
5a6fe125 3221 */
a5516438 3222 ret = hugetlb_acct_memory(h, chg);
68842c9b 3223 if (ret < 0) {
90481622 3224 hugepage_subpool_put_pages(spool, chg);
c50ac050 3225 goto out_err;
68842c9b 3226 }
17c9d12e
MG
3227
3228 /*
3229 * Account for the reservations made. Shared mappings record regions
3230 * that have reservations as they are shared by multiple VMAs.
3231 * When the last VMA disappears, the region map says how much
3232 * the reservation was and the page cache tells how much of
3233 * the reservation was consumed. Private mappings are per-VMA and
3234 * only the consumed reservations are tracked. When the VMA
3235 * disappears, the original reservation is the VMA size and the
3236 * consumed reservations are stored in the map. Hence, nothing
3237 * else has to be done for private mappings here
3238 */
f83a275d 3239 if (!vma || vma->vm_flags & VM_MAYSHARE)
1406ec9b 3240 region_add(resv_map, from, to);
a43a8c39 3241 return 0;
c50ac050 3242out_err:
f031dd27
JK
3243 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3244 kref_put(&resv_map->refs, resv_map_release);
c50ac050 3245 return ret;
a43a8c39
KC
3246}
3247
3248void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3249{
a5516438 3250 struct hstate *h = hstate_inode(inode);
9119a41e
JK
3251 struct resv_map *resv_map = inode->i_mapping->private_data;
3252 long chg = 0;
90481622 3253 struct hugepage_subpool *spool = subpool_inode(inode);
45c682a6 3254
9119a41e 3255 if (resv_map)
1406ec9b 3256 chg = region_truncate(resv_map, offset);
45c682a6 3257 spin_lock(&inode->i_lock);
e4c6f8be 3258 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
3259 spin_unlock(&inode->i_lock);
3260
90481622 3261 hugepage_subpool_put_pages(spool, (chg - freed));
a5516438 3262 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 3263}
93f70f90 3264
3212b535
SC
3265#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3266static unsigned long page_table_shareable(struct vm_area_struct *svma,
3267 struct vm_area_struct *vma,
3268 unsigned long addr, pgoff_t idx)
3269{
3270 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3271 svma->vm_start;
3272 unsigned long sbase = saddr & PUD_MASK;
3273 unsigned long s_end = sbase + PUD_SIZE;
3274
3275 /* Allow segments to share if only one is marked locked */
3276 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3277 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3278
3279 /*
3280 * match the virtual addresses, permission and the alignment of the
3281 * page table page.
3282 */
3283 if (pmd_index(addr) != pmd_index(saddr) ||
3284 vm_flags != svm_flags ||
3285 sbase < svma->vm_start || svma->vm_end < s_end)
3286 return 0;
3287
3288 return saddr;
3289}
3290
3291static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3292{
3293 unsigned long base = addr & PUD_MASK;
3294 unsigned long end = base + PUD_SIZE;
3295
3296 /*
3297 * check on proper vm_flags and page table alignment
3298 */
3299 if (vma->vm_flags & VM_MAYSHARE &&
3300 vma->vm_start <= base && end <= vma->vm_end)
3301 return 1;
3302 return 0;
3303}
3304
3305/*
3306 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3307 * and returns the corresponding pte. While this is not necessary for the
3308 * !shared pmd case because we can allocate the pmd later as well, it makes the
3309 * code much cleaner. pmd allocation is essential for the shared case because
3310 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3311 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3312 * bad pmd for sharing.
3313 */
3314pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3315{
3316 struct vm_area_struct *vma = find_vma(mm, addr);
3317 struct address_space *mapping = vma->vm_file->f_mapping;
3318 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3319 vma->vm_pgoff;
3320 struct vm_area_struct *svma;
3321 unsigned long saddr;
3322 pte_t *spte = NULL;
3323 pte_t *pte;
cb900f41 3324 spinlock_t *ptl;
3212b535
SC
3325
3326 if (!vma_shareable(vma, addr))
3327 return (pte_t *)pmd_alloc(mm, pud, addr);
3328
3329 mutex_lock(&mapping->i_mmap_mutex);
3330 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3331 if (svma == vma)
3332 continue;
3333
3334 saddr = page_table_shareable(svma, vma, addr, idx);
3335 if (saddr) {
3336 spte = huge_pte_offset(svma->vm_mm, saddr);
3337 if (spte) {
3338 get_page(virt_to_page(spte));
3339 break;
3340 }
3341 }
3342 }
3343
3344 if (!spte)
3345 goto out;
3346
cb900f41
KS
3347 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3348 spin_lock(ptl);
3212b535
SC
3349 if (pud_none(*pud))
3350 pud_populate(mm, pud,
3351 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3352 else
3353 put_page(virt_to_page(spte));
cb900f41 3354 spin_unlock(ptl);
3212b535
SC
3355out:
3356 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3357 mutex_unlock(&mapping->i_mmap_mutex);
3358 return pte;
3359}
3360
3361/*
3362 * unmap huge page backed by shared pte.
3363 *
3364 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3365 * indicated by page_count > 1, unmap is achieved by clearing pud and
3366 * decrementing the ref count. If count == 1, the pte page is not shared.
3367 *
cb900f41 3368 * called with page table lock held.
3212b535
SC
3369 *
3370 * returns: 1 successfully unmapped a shared pte page
3371 * 0 the underlying pte page is not shared, or it is the last user
3372 */
3373int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3374{
3375 pgd_t *pgd = pgd_offset(mm, *addr);
3376 pud_t *pud = pud_offset(pgd, *addr);
3377
3378 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3379 if (page_count(virt_to_page(ptep)) == 1)
3380 return 0;
3381
3382 pud_clear(pud);
3383 put_page(virt_to_page(ptep));
3384 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3385 return 1;
3386}
9e5fc74c
SC
3387#define want_pmd_share() (1)
3388#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3389pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3390{
3391 return NULL;
3392}
3393#define want_pmd_share() (0)
3212b535
SC
3394#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3395
9e5fc74c
SC
3396#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3397pte_t *huge_pte_alloc(struct mm_struct *mm,
3398 unsigned long addr, unsigned long sz)
3399{
3400 pgd_t *pgd;
3401 pud_t *pud;
3402 pte_t *pte = NULL;
3403
3404 pgd = pgd_offset(mm, addr);
3405 pud = pud_alloc(mm, pgd, addr);
3406 if (pud) {
3407 if (sz == PUD_SIZE) {
3408 pte = (pte_t *)pud;
3409 } else {
3410 BUG_ON(sz != PMD_SIZE);
3411 if (want_pmd_share() && pud_none(*pud))
3412 pte = huge_pmd_share(mm, addr, pud);
3413 else
3414 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3415 }
3416 }
3417 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3418
3419 return pte;
3420}
3421
3422pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3423{
3424 pgd_t *pgd;
3425 pud_t *pud;
3426 pmd_t *pmd = NULL;
3427
3428 pgd = pgd_offset(mm, addr);
3429 if (pgd_present(*pgd)) {
3430 pud = pud_offset(pgd, addr);
3431 if (pud_present(*pud)) {
3432 if (pud_huge(*pud))
3433 return (pte_t *)pud;
3434 pmd = pmd_offset(pud, addr);
3435 }
3436 }
3437 return (pte_t *) pmd;
3438}
3439
3440struct page *
3441follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3442 pmd_t *pmd, int write)
3443{
3444 struct page *page;
3445
3446 page = pte_page(*(pte_t *)pmd);
3447 if (page)
3448 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3449 return page;
3450}
3451
3452struct page *
3453follow_huge_pud(struct mm_struct *mm, unsigned long address,
3454 pud_t *pud, int write)
3455{
3456 struct page *page;
3457
3458 page = pte_page(*(pte_t *)pud);
3459 if (page)
3460 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3461 return page;
3462}
3463
3464#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3465
3466/* Can be overriden by architectures */
3467__attribute__((weak)) struct page *
3468follow_huge_pud(struct mm_struct *mm, unsigned long address,
3469 pud_t *pud, int write)
3470{
3471 BUG();
3472 return NULL;
3473}
3474
3475#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3476
d5bd9106
AK
3477#ifdef CONFIG_MEMORY_FAILURE
3478
6de2b1aa
NH
3479/* Should be called in hugetlb_lock */
3480static int is_hugepage_on_freelist(struct page *hpage)
3481{
3482 struct page *page;
3483 struct page *tmp;
3484 struct hstate *h = page_hstate(hpage);
3485 int nid = page_to_nid(hpage);
3486
3487 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3488 if (page == hpage)
3489 return 1;
3490 return 0;
3491}
3492
93f70f90
NH
3493/*
3494 * This function is called from memory failure code.
3495 * Assume the caller holds page lock of the head page.
3496 */
6de2b1aa 3497int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
3498{
3499 struct hstate *h = page_hstate(hpage);
3500 int nid = page_to_nid(hpage);
6de2b1aa 3501 int ret = -EBUSY;
93f70f90
NH
3502
3503 spin_lock(&hugetlb_lock);
6de2b1aa 3504 if (is_hugepage_on_freelist(hpage)) {
56f2fb14
NH
3505 /*
3506 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3507 * but dangling hpage->lru can trigger list-debug warnings
3508 * (this happens when we call unpoison_memory() on it),
3509 * so let it point to itself with list_del_init().
3510 */
3511 list_del_init(&hpage->lru);
8c6c2ecb 3512 set_page_refcounted(hpage);
6de2b1aa
NH
3513 h->free_huge_pages--;
3514 h->free_huge_pages_node[nid]--;
3515 ret = 0;
3516 }
93f70f90 3517 spin_unlock(&hugetlb_lock);
6de2b1aa 3518 return ret;
93f70f90 3519}
6de2b1aa 3520#endif
31caf665
NH
3521
3522bool isolate_huge_page(struct page *page, struct list_head *list)
3523{
309381fe 3524 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665
NH
3525 if (!get_page_unless_zero(page))
3526 return false;
3527 spin_lock(&hugetlb_lock);
3528 list_move_tail(&page->lru, list);
3529 spin_unlock(&hugetlb_lock);
3530 return true;
3531}
3532
3533void putback_active_hugepage(struct page *page)
3534{
309381fe 3535 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665
NH
3536 spin_lock(&hugetlb_lock);
3537 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3538 spin_unlock(&hugetlb_lock);
3539 put_page(page);
3540}
c8721bbb
NH
3541
3542bool is_hugepage_active(struct page *page)
3543{
309381fe 3544 VM_BUG_ON_PAGE(!PageHuge(page), page);
c8721bbb
NH
3545 /*
3546 * This function can be called for a tail page because the caller,
3547 * scan_movable_pages, scans through a given pfn-range which typically
3548 * covers one memory block. In systems using gigantic hugepage (1GB
3549 * for x86_64,) a hugepage is larger than a memory block, and we don't
3550 * support migrating such large hugepages for now, so return false
3551 * when called for tail pages.
3552 */
3553 if (PageTail(page))
3554 return false;
3555 /*
3556 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3557 * so we should return false for them.
3558 */
3559 if (unlikely(PageHWPoison(page)))
3560 return false;
3561 return page_count(page) > 0;
3562}