]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/migrate.c
vhost_net: disable zerocopy by default
[mirror_ubuntu-bionic-kernel.git] / mm / migrate.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
b20a3503 2/*
14e0f9bc 3 * Memory Migration functionality - linux/mm/migrate.c
b20a3503
CL
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
cde53535 13 * Christoph Lameter
b20a3503
CL
14 */
15
16#include <linux/migrate.h>
b95f1b31 17#include <linux/export.h>
b20a3503 18#include <linux/swap.h>
0697212a 19#include <linux/swapops.h>
b20a3503 20#include <linux/pagemap.h>
e23ca00b 21#include <linux/buffer_head.h>
b20a3503 22#include <linux/mm_inline.h>
b488893a 23#include <linux/nsproxy.h>
b20a3503 24#include <linux/pagevec.h>
e9995ef9 25#include <linux/ksm.h>
b20a3503
CL
26#include <linux/rmap.h>
27#include <linux/topology.h>
28#include <linux/cpu.h>
29#include <linux/cpuset.h>
04e62a29 30#include <linux/writeback.h>
742755a1
CL
31#include <linux/mempolicy.h>
32#include <linux/vmalloc.h>
86c3a764 33#include <linux/security.h>
42cb14b1 34#include <linux/backing-dev.h>
bda807d4 35#include <linux/compaction.h>
4f5ca265 36#include <linux/syscalls.h>
290408d4 37#include <linux/hugetlb.h>
8e6ac7fa 38#include <linux/hugetlb_cgroup.h>
5a0e3ad6 39#include <linux/gfp.h>
df6ad698 40#include <linux/pfn_t.h>
a5430dda 41#include <linux/memremap.h>
8315ada7 42#include <linux/userfaultfd_k.h>
bf6bddf1 43#include <linux/balloon_compaction.h>
f714f4f2 44#include <linux/mmu_notifier.h>
33c3fc71 45#include <linux/page_idle.h>
d435edca 46#include <linux/page_owner.h>
6e84f315 47#include <linux/sched/mm.h>
197e7e52 48#include <linux/ptrace.h>
b20a3503 49
0d1836c3
MN
50#include <asm/tlbflush.h>
51
7b2a2d4a
MG
52#define CREATE_TRACE_POINTS
53#include <trace/events/migrate.h>
54
b20a3503
CL
55#include "internal.h"
56
b20a3503 57/*
742755a1 58 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
59 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
60 * undesirable, use migrate_prep_local()
b20a3503
CL
61 */
62int migrate_prep(void)
63{
b20a3503
CL
64 /*
65 * Clear the LRU lists so pages can be isolated.
66 * Note that pages may be moved off the LRU after we have
67 * drained them. Those pages will fail to migrate like other
68 * pages that may be busy.
69 */
70 lru_add_drain_all();
71
72 return 0;
73}
74
748446bb
MG
75/* Do the necessary work of migrate_prep but not if it involves other CPUs */
76int migrate_prep_local(void)
77{
78 lru_add_drain();
79
80 return 0;
81}
82
9e5bcd61 83int isolate_movable_page(struct page *page, isolate_mode_t mode)
bda807d4
MK
84{
85 struct address_space *mapping;
86
87 /*
88 * Avoid burning cycles with pages that are yet under __free_pages(),
89 * or just got freed under us.
90 *
91 * In case we 'win' a race for a movable page being freed under us and
92 * raise its refcount preventing __free_pages() from doing its job
93 * the put_page() at the end of this block will take care of
94 * release this page, thus avoiding a nasty leakage.
95 */
96 if (unlikely(!get_page_unless_zero(page)))
97 goto out;
98
99 /*
100 * Check PageMovable before holding a PG_lock because page's owner
101 * assumes anybody doesn't touch PG_lock of newly allocated page
102 * so unconditionally grapping the lock ruins page's owner side.
103 */
104 if (unlikely(!__PageMovable(page)))
105 goto out_putpage;
106 /*
107 * As movable pages are not isolated from LRU lists, concurrent
108 * compaction threads can race against page migration functions
109 * as well as race against the releasing a page.
110 *
111 * In order to avoid having an already isolated movable page
112 * being (wrongly) re-isolated while it is under migration,
113 * or to avoid attempting to isolate pages being released,
114 * lets be sure we have the page lock
115 * before proceeding with the movable page isolation steps.
116 */
117 if (unlikely(!trylock_page(page)))
118 goto out_putpage;
119
120 if (!PageMovable(page) || PageIsolated(page))
121 goto out_no_isolated;
122
123 mapping = page_mapping(page);
124 VM_BUG_ON_PAGE(!mapping, page);
125
126 if (!mapping->a_ops->isolate_page(page, mode))
127 goto out_no_isolated;
128
129 /* Driver shouldn't use PG_isolated bit of page->flags */
130 WARN_ON_ONCE(PageIsolated(page));
131 __SetPageIsolated(page);
132 unlock_page(page);
133
9e5bcd61 134 return 0;
bda807d4
MK
135
136out_no_isolated:
137 unlock_page(page);
138out_putpage:
139 put_page(page);
140out:
9e5bcd61 141 return -EBUSY;
bda807d4
MK
142}
143
144/* It should be called on page which is PG_movable */
145void putback_movable_page(struct page *page)
146{
147 struct address_space *mapping;
148
149 VM_BUG_ON_PAGE(!PageLocked(page), page);
150 VM_BUG_ON_PAGE(!PageMovable(page), page);
151 VM_BUG_ON_PAGE(!PageIsolated(page), page);
152
153 mapping = page_mapping(page);
154 mapping->a_ops->putback_page(page);
155 __ClearPageIsolated(page);
156}
157
5733c7d1
RA
158/*
159 * Put previously isolated pages back onto the appropriate lists
160 * from where they were once taken off for compaction/migration.
161 *
59c82b70
JK
162 * This function shall be used whenever the isolated pageset has been
163 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
164 * and isolate_huge_page().
5733c7d1
RA
165 */
166void putback_movable_pages(struct list_head *l)
167{
168 struct page *page;
169 struct page *page2;
170
b20a3503 171 list_for_each_entry_safe(page, page2, l, lru) {
31caf665
NH
172 if (unlikely(PageHuge(page))) {
173 putback_active_hugepage(page);
174 continue;
175 }
e24f0b8f 176 list_del(&page->lru);
bda807d4
MK
177 /*
178 * We isolated non-lru movable page so here we can use
179 * __PageMovable because LRU page's mapping cannot have
180 * PAGE_MAPPING_MOVABLE.
181 */
b1123ea6 182 if (unlikely(__PageMovable(page))) {
bda807d4
MK
183 VM_BUG_ON_PAGE(!PageIsolated(page), page);
184 lock_page(page);
185 if (PageMovable(page))
186 putback_movable_page(page);
187 else
188 __ClearPageIsolated(page);
189 unlock_page(page);
190 put_page(page);
191 } else {
e8db67eb
NH
192 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
193 page_is_file_cache(page), -hpage_nr_pages(page));
fc280fe8 194 putback_lru_page(page);
bda807d4 195 }
b20a3503 196 }
b20a3503
CL
197}
198
0697212a
CL
199/*
200 * Restore a potential migration pte to a working pte entry
201 */
e4b82222 202static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
e9995ef9 203 unsigned long addr, void *old)
0697212a 204{
3fe87967
KS
205 struct page_vma_mapped_walk pvmw = {
206 .page = old,
207 .vma = vma,
208 .address = addr,
209 .flags = PVMW_SYNC | PVMW_MIGRATION,
210 };
211 struct page *new;
212 pte_t pte;
0697212a 213 swp_entry_t entry;
0697212a 214
3fe87967
KS
215 VM_BUG_ON_PAGE(PageTail(page), page);
216 while (page_vma_mapped_walk(&pvmw)) {
4b0ece6f
NH
217 if (PageKsm(page))
218 new = page;
219 else
220 new = page - pvmw.page->index +
221 linear_page_index(vma, pvmw.address);
0697212a 222
616b8371
ZY
223#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
224 /* PMD-mapped THP migration entry */
225 if (!pvmw.pte) {
226 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
227 remove_migration_pmd(&pvmw, new);
228 continue;
229 }
230#endif
231
3fe87967
KS
232 get_page(new);
233 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
234 if (pte_swp_soft_dirty(*pvmw.pte))
235 pte = pte_mksoft_dirty(pte);
0697212a 236
3fe87967
KS
237 /*
238 * Recheck VMA as permissions can change since migration started
239 */
240 entry = pte_to_swp_entry(*pvmw.pte);
241 if (is_write_migration_entry(entry))
242 pte = maybe_mkwrite(pte, vma);
d3cb8bf6 243
df6ad698
JG
244 if (unlikely(is_zone_device_page(new))) {
245 if (is_device_private_page(new)) {
246 entry = make_device_private_entry(new, pte_write(pte));
247 pte = swp_entry_to_pte(entry);
248 } else if (is_device_public_page(new)) {
249 pte = pte_mkdevmap(pte);
df6ad698 250 }
aaa37bc8 251 }
a5430dda 252
3ef8fd7f 253#ifdef CONFIG_HUGETLB_PAGE
3fe87967
KS
254 if (PageHuge(new)) {
255 pte = pte_mkhuge(pte);
256 pte = arch_make_huge_pte(pte, vma, new, 0);
383321ab 257 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
3fe87967
KS
258 if (PageAnon(new))
259 hugepage_add_anon_rmap(new, vma, pvmw.address);
260 else
261 page_dup_rmap(new, true);
383321ab
AK
262 } else
263#endif
264 {
265 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
04e62a29 266
383321ab
AK
267 if (PageAnon(new))
268 page_add_anon_rmap(new, vma, pvmw.address, false);
269 else
270 page_add_file_rmap(new, false);
271 }
3fe87967
KS
272 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
273 mlock_vma_page(new);
274
0e1e3cac
KS
275 if (PageTransHuge(page) && PageMlocked(page))
276 clear_page_mlock(page);
277
3fe87967
KS
278 /* No need to invalidate - it was non-present before */
279 update_mmu_cache(vma, pvmw.address, pvmw.pte);
280 }
51afb12b 281
e4b82222 282 return true;
0697212a
CL
283}
284
04e62a29
CL
285/*
286 * Get rid of all migration entries and replace them by
287 * references to the indicated page.
288 */
e388466d 289void remove_migration_ptes(struct page *old, struct page *new, bool locked)
04e62a29 290{
051ac83a
JK
291 struct rmap_walk_control rwc = {
292 .rmap_one = remove_migration_pte,
293 .arg = old,
294 };
295
e388466d
KS
296 if (locked)
297 rmap_walk_locked(new, &rwc);
298 else
299 rmap_walk(new, &rwc);
04e62a29
CL
300}
301
0697212a
CL
302/*
303 * Something used the pte of a page under migration. We need to
304 * get to the page and wait until migration is finished.
305 * When we return from this function the fault will be retried.
0697212a 306 */
e66f17ff 307void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
30dad309 308 spinlock_t *ptl)
0697212a 309{
30dad309 310 pte_t pte;
0697212a
CL
311 swp_entry_t entry;
312 struct page *page;
313
30dad309 314 spin_lock(ptl);
0697212a
CL
315 pte = *ptep;
316 if (!is_swap_pte(pte))
317 goto out;
318
319 entry = pte_to_swp_entry(pte);
320 if (!is_migration_entry(entry))
321 goto out;
322
323 page = migration_entry_to_page(entry);
324
e286781d
NP
325 /*
326 * Once radix-tree replacement of page migration started, page_count
327 * *must* be zero. And, we don't want to call wait_on_page_locked()
328 * against a page without get_page().
329 * So, we use get_page_unless_zero(), here. Even failed, page fault
330 * will occur again.
331 */
332 if (!get_page_unless_zero(page))
333 goto out;
0697212a
CL
334 pte_unmap_unlock(ptep, ptl);
335 wait_on_page_locked(page);
336 put_page(page);
337 return;
338out:
339 pte_unmap_unlock(ptep, ptl);
340}
341
30dad309
NH
342void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343 unsigned long address)
344{
345 spinlock_t *ptl = pte_lockptr(mm, pmd);
346 pte_t *ptep = pte_offset_map(pmd, address);
347 __migration_entry_wait(mm, ptep, ptl);
348}
349
cb900f41
KS
350void migration_entry_wait_huge(struct vm_area_struct *vma,
351 struct mm_struct *mm, pte_t *pte)
30dad309 352{
cb900f41 353 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
30dad309
NH
354 __migration_entry_wait(mm, pte, ptl);
355}
356
616b8371
ZY
357#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
359{
360 spinlock_t *ptl;
361 struct page *page;
362
363 ptl = pmd_lock(mm, pmd);
364 if (!is_pmd_migration_entry(*pmd))
365 goto unlock;
366 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367 if (!get_page_unless_zero(page))
368 goto unlock;
369 spin_unlock(ptl);
370 wait_on_page_locked(page);
371 put_page(page);
372 return;
373unlock:
374 spin_unlock(ptl);
375}
376#endif
377
b969c4ab
MG
378#ifdef CONFIG_BLOCK
379/* Returns true if all buffers are successfully locked */
a6bc32b8
MG
380static bool buffer_migrate_lock_buffers(struct buffer_head *head,
381 enum migrate_mode mode)
b969c4ab
MG
382{
383 struct buffer_head *bh = head;
384
385 /* Simple case, sync compaction */
a6bc32b8 386 if (mode != MIGRATE_ASYNC) {
b969c4ab
MG
387 do {
388 get_bh(bh);
389 lock_buffer(bh);
390 bh = bh->b_this_page;
391
392 } while (bh != head);
393
394 return true;
395 }
396
397 /* async case, we cannot block on lock_buffer so use trylock_buffer */
398 do {
399 get_bh(bh);
400 if (!trylock_buffer(bh)) {
401 /*
402 * We failed to lock the buffer and cannot stall in
403 * async migration. Release the taken locks
404 */
405 struct buffer_head *failed_bh = bh;
406 put_bh(failed_bh);
407 bh = head;
408 while (bh != failed_bh) {
409 unlock_buffer(bh);
410 put_bh(bh);
411 bh = bh->b_this_page;
412 }
413 return false;
414 }
415
416 bh = bh->b_this_page;
417 } while (bh != head);
418 return true;
419}
420#else
421static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
a6bc32b8 422 enum migrate_mode mode)
b969c4ab
MG
423{
424 return true;
425}
426#endif /* CONFIG_BLOCK */
427
b20a3503 428/*
c3fcf8a5 429 * Replace the page in the mapping.
5b5c7120
CL
430 *
431 * The number of remaining references must be:
432 * 1 for anonymous pages without a mapping
433 * 2 for pages with a mapping
266cf658 434 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 435 */
36bc08cc 436int migrate_page_move_mapping(struct address_space *mapping,
b969c4ab 437 struct page *newpage, struct page *page,
8e321fef
BL
438 struct buffer_head *head, enum migrate_mode mode,
439 int extra_count)
b20a3503 440{
42cb14b1
HD
441 struct zone *oldzone, *newzone;
442 int dirty;
8e321fef 443 int expected_count = 1 + extra_count;
7cf9c2c7 444 void **pslot;
b20a3503 445
8763cb45 446 /*
df6ad698
JG
447 * Device public or private pages have an extra refcount as they are
448 * ZONE_DEVICE pages.
8763cb45 449 */
df6ad698
JG
450 expected_count += is_device_private_page(page);
451 expected_count += is_device_public_page(page);
8763cb45 452
6c5240ae 453 if (!mapping) {
0e8c7d0f 454 /* Anonymous page without mapping */
8e321fef 455 if (page_count(page) != expected_count)
6c5240ae 456 return -EAGAIN;
cf4b769a
HD
457
458 /* No turning back from here */
cf4b769a
HD
459 newpage->index = page->index;
460 newpage->mapping = page->mapping;
461 if (PageSwapBacked(page))
fa9949da 462 __SetPageSwapBacked(newpage);
cf4b769a 463
78bd5209 464 return MIGRATEPAGE_SUCCESS;
6c5240ae
CL
465 }
466
42cb14b1
HD
467 oldzone = page_zone(page);
468 newzone = page_zone(newpage);
469
19fd6231 470 spin_lock_irq(&mapping->tree_lock);
b20a3503 471
7cf9c2c7
NP
472 pslot = radix_tree_lookup_slot(&mapping->page_tree,
473 page_index(page));
b20a3503 474
8e321fef 475 expected_count += 1 + page_has_private(page);
e286781d 476 if (page_count(page) != expected_count ||
29c1f677 477 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
19fd6231 478 spin_unlock_irq(&mapping->tree_lock);
e23ca00b 479 return -EAGAIN;
b20a3503
CL
480 }
481
fe896d18 482 if (!page_ref_freeze(page, expected_count)) {
19fd6231 483 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
484 return -EAGAIN;
485 }
486
b969c4ab
MG
487 /*
488 * In the async migration case of moving a page with buffers, lock the
489 * buffers using trylock before the mapping is moved. If the mapping
490 * was moved, we later failed to lock the buffers and could not move
491 * the mapping back due to an elevated page count, we would have to
492 * block waiting on other references to be dropped.
493 */
a6bc32b8
MG
494 if (mode == MIGRATE_ASYNC && head &&
495 !buffer_migrate_lock_buffers(head, mode)) {
fe896d18 496 page_ref_unfreeze(page, expected_count);
b969c4ab
MG
497 spin_unlock_irq(&mapping->tree_lock);
498 return -EAGAIN;
499 }
500
b20a3503 501 /*
cf4b769a
HD
502 * Now we know that no one else is looking at the page:
503 * no turning back from here.
b20a3503 504 */
cf4b769a
HD
505 newpage->index = page->index;
506 newpage->mapping = page->mapping;
7cf9c2c7 507 get_page(newpage); /* add cache reference */
6326fec1
NP
508 if (PageSwapBacked(page)) {
509 __SetPageSwapBacked(newpage);
510 if (PageSwapCache(page)) {
511 SetPageSwapCache(newpage);
512 set_page_private(newpage, page_private(page));
513 }
514 } else {
515 VM_BUG_ON_PAGE(PageSwapCache(page), page);
b20a3503
CL
516 }
517
42cb14b1
HD
518 /* Move dirty while page refs frozen and newpage not yet exposed */
519 dirty = PageDirty(page);
520 if (dirty) {
521 ClearPageDirty(page);
522 SetPageDirty(newpage);
523 }
524
6d75f366 525 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
7cf9c2c7
NP
526
527 /*
937a94c9
JG
528 * Drop cache reference from old page by unfreezing
529 * to one less reference.
7cf9c2c7
NP
530 * We know this isn't the last reference.
531 */
fe896d18 532 page_ref_unfreeze(page, expected_count - 1);
7cf9c2c7 533
42cb14b1
HD
534 spin_unlock(&mapping->tree_lock);
535 /* Leave irq disabled to prevent preemption while updating stats */
536
0e8c7d0f
CL
537 /*
538 * If moved to a different zone then also account
539 * the page for that zone. Other VM counters will be
540 * taken care of when we establish references to the
541 * new page and drop references to the old page.
542 *
543 * Note that anonymous pages are accounted for
4b9d0fab 544 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
0e8c7d0f
CL
545 * are mapped to swap space.
546 */
42cb14b1 547 if (newzone != oldzone) {
11fb9989
MG
548 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
549 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
42cb14b1 550 if (PageSwapBacked(page) && !PageSwapCache(page)) {
11fb9989
MG
551 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
552 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
42cb14b1
HD
553 }
554 if (dirty && mapping_cap_account_dirty(mapping)) {
11fb9989 555 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
5a1c84b4 556 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
11fb9989 557 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
5a1c84b4 558 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
42cb14b1 559 }
4b02108a 560 }
42cb14b1 561 local_irq_enable();
b20a3503 562
78bd5209 563 return MIGRATEPAGE_SUCCESS;
b20a3503 564}
1118dce7 565EXPORT_SYMBOL(migrate_page_move_mapping);
b20a3503 566
290408d4
NH
567/*
568 * The expected number of remaining references is the same as that
569 * of migrate_page_move_mapping().
570 */
571int migrate_huge_page_move_mapping(struct address_space *mapping,
572 struct page *newpage, struct page *page)
573{
574 int expected_count;
575 void **pslot;
576
290408d4
NH
577 spin_lock_irq(&mapping->tree_lock);
578
579 pslot = radix_tree_lookup_slot(&mapping->page_tree,
580 page_index(page));
581
582 expected_count = 2 + page_has_private(page);
583 if (page_count(page) != expected_count ||
29c1f677 584 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
290408d4
NH
585 spin_unlock_irq(&mapping->tree_lock);
586 return -EAGAIN;
587 }
588
fe896d18 589 if (!page_ref_freeze(page, expected_count)) {
290408d4
NH
590 spin_unlock_irq(&mapping->tree_lock);
591 return -EAGAIN;
592 }
593
cf4b769a
HD
594 newpage->index = page->index;
595 newpage->mapping = page->mapping;
6a93ca8f 596
290408d4
NH
597 get_page(newpage);
598
6d75f366 599 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
290408d4 600
fe896d18 601 page_ref_unfreeze(page, expected_count - 1);
290408d4
NH
602
603 spin_unlock_irq(&mapping->tree_lock);
6a93ca8f 604
78bd5209 605 return MIGRATEPAGE_SUCCESS;
290408d4
NH
606}
607
30b0a105
DH
608/*
609 * Gigantic pages are so large that we do not guarantee that page++ pointer
610 * arithmetic will work across the entire page. We need something more
611 * specialized.
612 */
613static void __copy_gigantic_page(struct page *dst, struct page *src,
614 int nr_pages)
615{
616 int i;
617 struct page *dst_base = dst;
618 struct page *src_base = src;
619
620 for (i = 0; i < nr_pages; ) {
621 cond_resched();
622 copy_highpage(dst, src);
623
624 i++;
625 dst = mem_map_next(dst, dst_base, i);
626 src = mem_map_next(src, src_base, i);
627 }
628}
629
630static void copy_huge_page(struct page *dst, struct page *src)
631{
632 int i;
633 int nr_pages;
634
635 if (PageHuge(src)) {
636 /* hugetlbfs page */
637 struct hstate *h = page_hstate(src);
638 nr_pages = pages_per_huge_page(h);
639
640 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
641 __copy_gigantic_page(dst, src, nr_pages);
642 return;
643 }
644 } else {
645 /* thp page */
646 BUG_ON(!PageTransHuge(src));
647 nr_pages = hpage_nr_pages(src);
648 }
649
650 for (i = 0; i < nr_pages; i++) {
651 cond_resched();
652 copy_highpage(dst + i, src + i);
653 }
654}
655
b20a3503
CL
656/*
657 * Copy the page to its new location
658 */
2916ecc0 659void migrate_page_states(struct page *newpage, struct page *page)
b20a3503 660{
7851a45c
RR
661 int cpupid;
662
b20a3503
CL
663 if (PageError(page))
664 SetPageError(newpage);
665 if (PageReferenced(page))
666 SetPageReferenced(newpage);
667 if (PageUptodate(page))
668 SetPageUptodate(newpage);
894bc310 669 if (TestClearPageActive(page)) {
309381fe 670 VM_BUG_ON_PAGE(PageUnevictable(page), page);
b20a3503 671 SetPageActive(newpage);
418b27ef
LS
672 } else if (TestClearPageUnevictable(page))
673 SetPageUnevictable(newpage);
b20a3503
CL
674 if (PageChecked(page))
675 SetPageChecked(newpage);
676 if (PageMappedToDisk(page))
677 SetPageMappedToDisk(newpage);
678
42cb14b1
HD
679 /* Move dirty on pages not done by migrate_page_move_mapping() */
680 if (PageDirty(page))
681 SetPageDirty(newpage);
b20a3503 682
33c3fc71
VD
683 if (page_is_young(page))
684 set_page_young(newpage);
685 if (page_is_idle(page))
686 set_page_idle(newpage);
687
7851a45c
RR
688 /*
689 * Copy NUMA information to the new page, to prevent over-eager
690 * future migrations of this same page.
691 */
692 cpupid = page_cpupid_xchg_last(page, -1);
693 page_cpupid_xchg_last(newpage, cpupid);
694
e9995ef9 695 ksm_migrate_page(newpage, page);
c8d6553b
HD
696 /*
697 * Please do not reorder this without considering how mm/ksm.c's
698 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
699 */
b3b3a99c
NH
700 if (PageSwapCache(page))
701 ClearPageSwapCache(page);
b20a3503
CL
702 ClearPagePrivate(page);
703 set_page_private(page, 0);
b20a3503
CL
704
705 /*
706 * If any waiters have accumulated on the new page then
707 * wake them up.
708 */
709 if (PageWriteback(newpage))
710 end_page_writeback(newpage);
d435edca
VB
711
712 copy_page_owner(page, newpage);
74485cf2
JW
713
714 mem_cgroup_migrate(page, newpage);
b20a3503 715}
2916ecc0
JG
716EXPORT_SYMBOL(migrate_page_states);
717
718void migrate_page_copy(struct page *newpage, struct page *page)
719{
720 if (PageHuge(page) || PageTransHuge(page))
721 copy_huge_page(newpage, page);
722 else
723 copy_highpage(newpage, page);
724
725 migrate_page_states(newpage, page);
726}
1118dce7 727EXPORT_SYMBOL(migrate_page_copy);
b20a3503 728
1d8b85cc
CL
729/************************************************************
730 * Migration functions
731 ***********************************************************/
732
b20a3503 733/*
bda807d4 734 * Common logic to directly migrate a single LRU page suitable for
266cf658 735 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
736 *
737 * Pages are locked upon entry and exit.
738 */
2d1db3b1 739int migrate_page(struct address_space *mapping,
a6bc32b8
MG
740 struct page *newpage, struct page *page,
741 enum migrate_mode mode)
b20a3503
CL
742{
743 int rc;
744
745 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
746
8e321fef 747 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
b20a3503 748
78bd5209 749 if (rc != MIGRATEPAGE_SUCCESS)
b20a3503
CL
750 return rc;
751
2916ecc0
JG
752 if (mode != MIGRATE_SYNC_NO_COPY)
753 migrate_page_copy(newpage, page);
754 else
755 migrate_page_states(newpage, page);
78bd5209 756 return MIGRATEPAGE_SUCCESS;
b20a3503
CL
757}
758EXPORT_SYMBOL(migrate_page);
759
9361401e 760#ifdef CONFIG_BLOCK
1d8b85cc
CL
761/*
762 * Migration function for pages with buffers. This function can only be used
763 * if the underlying filesystem guarantees that no other references to "page"
764 * exist.
765 */
2d1db3b1 766int buffer_migrate_page(struct address_space *mapping,
a6bc32b8 767 struct page *newpage, struct page *page, enum migrate_mode mode)
1d8b85cc 768{
1d8b85cc
CL
769 struct buffer_head *bh, *head;
770 int rc;
771
1d8b85cc 772 if (!page_has_buffers(page))
a6bc32b8 773 return migrate_page(mapping, newpage, page, mode);
1d8b85cc
CL
774
775 head = page_buffers(page);
776
8e321fef 777 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
1d8b85cc 778
78bd5209 779 if (rc != MIGRATEPAGE_SUCCESS)
1d8b85cc
CL
780 return rc;
781
b969c4ab
MG
782 /*
783 * In the async case, migrate_page_move_mapping locked the buffers
784 * with an IRQ-safe spinlock held. In the sync case, the buffers
785 * need to be locked now
786 */
a6bc32b8
MG
787 if (mode != MIGRATE_ASYNC)
788 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
1d8b85cc
CL
789
790 ClearPagePrivate(page);
791 set_page_private(newpage, page_private(page));
792 set_page_private(page, 0);
793 put_page(page);
794 get_page(newpage);
795
796 bh = head;
797 do {
798 set_bh_page(bh, newpage, bh_offset(bh));
799 bh = bh->b_this_page;
800
801 } while (bh != head);
802
803 SetPagePrivate(newpage);
804
2916ecc0
JG
805 if (mode != MIGRATE_SYNC_NO_COPY)
806 migrate_page_copy(newpage, page);
807 else
808 migrate_page_states(newpage, page);
1d8b85cc
CL
809
810 bh = head;
811 do {
812 unlock_buffer(bh);
2916ecc0 813 put_bh(bh);
1d8b85cc
CL
814 bh = bh->b_this_page;
815
816 } while (bh != head);
817
78bd5209 818 return MIGRATEPAGE_SUCCESS;
1d8b85cc
CL
819}
820EXPORT_SYMBOL(buffer_migrate_page);
9361401e 821#endif
1d8b85cc 822
04e62a29
CL
823/*
824 * Writeback a page to clean the dirty state
825 */
826static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 827{
04e62a29
CL
828 struct writeback_control wbc = {
829 .sync_mode = WB_SYNC_NONE,
830 .nr_to_write = 1,
831 .range_start = 0,
832 .range_end = LLONG_MAX,
04e62a29
CL
833 .for_reclaim = 1
834 };
835 int rc;
836
837 if (!mapping->a_ops->writepage)
838 /* No write method for the address space */
839 return -EINVAL;
840
841 if (!clear_page_dirty_for_io(page))
842 /* Someone else already triggered a write */
843 return -EAGAIN;
844
8351a6e4 845 /*
04e62a29
CL
846 * A dirty page may imply that the underlying filesystem has
847 * the page on some queue. So the page must be clean for
848 * migration. Writeout may mean we loose the lock and the
849 * page state is no longer what we checked for earlier.
850 * At this point we know that the migration attempt cannot
851 * be successful.
8351a6e4 852 */
e388466d 853 remove_migration_ptes(page, page, false);
8351a6e4 854
04e62a29 855 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 856
04e62a29
CL
857 if (rc != AOP_WRITEPAGE_ACTIVATE)
858 /* unlocked. Relock */
859 lock_page(page);
860
bda8550d 861 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
862}
863
864/*
865 * Default handling if a filesystem does not provide a migration function.
866 */
867static int fallback_migrate_page(struct address_space *mapping,
a6bc32b8 868 struct page *newpage, struct page *page, enum migrate_mode mode)
04e62a29 869{
b969c4ab 870 if (PageDirty(page)) {
a6bc32b8 871 /* Only writeback pages in full synchronous migration */
2916ecc0
JG
872 switch (mode) {
873 case MIGRATE_SYNC:
874 case MIGRATE_SYNC_NO_COPY:
875 break;
876 default:
b969c4ab 877 return -EBUSY;
2916ecc0 878 }
04e62a29 879 return writeout(mapping, page);
b969c4ab 880 }
8351a6e4
CL
881
882 /*
883 * Buffers may be managed in a filesystem specific way.
884 * We must have no buffers or drop them.
885 */
266cf658 886 if (page_has_private(page) &&
8351a6e4
CL
887 !try_to_release_page(page, GFP_KERNEL))
888 return -EAGAIN;
889
a6bc32b8 890 return migrate_page(mapping, newpage, page, mode);
8351a6e4
CL
891}
892
e24f0b8f
CL
893/*
894 * Move a page to a newly allocated page
895 * The page is locked and all ptes have been successfully removed.
896 *
897 * The new page will have replaced the old page if this function
898 * is successful.
894bc310
LS
899 *
900 * Return value:
901 * < 0 - error code
78bd5209 902 * MIGRATEPAGE_SUCCESS - success
e24f0b8f 903 */
3fe2011f 904static int move_to_new_page(struct page *newpage, struct page *page,
5c3f9a67 905 enum migrate_mode mode)
e24f0b8f
CL
906{
907 struct address_space *mapping;
bda807d4
MK
908 int rc = -EAGAIN;
909 bool is_lru = !__PageMovable(page);
e24f0b8f 910
7db7671f
HD
911 VM_BUG_ON_PAGE(!PageLocked(page), page);
912 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
e24f0b8f 913
e24f0b8f 914 mapping = page_mapping(page);
bda807d4
MK
915
916 if (likely(is_lru)) {
917 if (!mapping)
918 rc = migrate_page(mapping, newpage, page, mode);
919 else if (mapping->a_ops->migratepage)
920 /*
921 * Most pages have a mapping and most filesystems
922 * provide a migratepage callback. Anonymous pages
923 * are part of swap space which also has its own
924 * migratepage callback. This is the most common path
925 * for page migration.
926 */
927 rc = mapping->a_ops->migratepage(mapping, newpage,
928 page, mode);
929 else
930 rc = fallback_migrate_page(mapping, newpage,
931 page, mode);
932 } else {
e24f0b8f 933 /*
bda807d4
MK
934 * In case of non-lru page, it could be released after
935 * isolation step. In that case, we shouldn't try migration.
e24f0b8f 936 */
bda807d4
MK
937 VM_BUG_ON_PAGE(!PageIsolated(page), page);
938 if (!PageMovable(page)) {
939 rc = MIGRATEPAGE_SUCCESS;
940 __ClearPageIsolated(page);
941 goto out;
942 }
943
944 rc = mapping->a_ops->migratepage(mapping, newpage,
945 page, mode);
946 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
947 !PageIsolated(page));
948 }
e24f0b8f 949
5c3f9a67
HD
950 /*
951 * When successful, old pagecache page->mapping must be cleared before
952 * page is freed; but stats require that PageAnon be left as PageAnon.
953 */
954 if (rc == MIGRATEPAGE_SUCCESS) {
bda807d4
MK
955 if (__PageMovable(page)) {
956 VM_BUG_ON_PAGE(!PageIsolated(page), page);
957
958 /*
959 * We clear PG_movable under page_lock so any compactor
960 * cannot try to migrate this page.
961 */
962 __ClearPageIsolated(page);
963 }
964
965 /*
966 * Anonymous and movable page->mapping will be cleard by
967 * free_pages_prepare so don't reset it here for keeping
968 * the type to work PageAnon, for example.
969 */
970 if (!PageMappingFlags(page))
5c3f9a67 971 page->mapping = NULL;
aaa37bc8
LP
972
973 if (unlikely(is_zone_device_page(newpage))) {
974 if (is_device_public_page(newpage))
975 flush_dcache_page(newpage);
976 } else
977 flush_dcache_page(newpage);
978
3fe2011f 979 }
bda807d4 980out:
e24f0b8f
CL
981 return rc;
982}
983
0dabec93 984static int __unmap_and_move(struct page *page, struct page *newpage,
9c620e2b 985 int force, enum migrate_mode mode)
e24f0b8f 986{
0dabec93 987 int rc = -EAGAIN;
2ebba6b7 988 int page_was_mapped = 0;
3f6c8272 989 struct anon_vma *anon_vma = NULL;
bda807d4 990 bool is_lru = !__PageMovable(page);
95a402c3 991
529ae9aa 992 if (!trylock_page(page)) {
a6bc32b8 993 if (!force || mode == MIGRATE_ASYNC)
0dabec93 994 goto out;
3e7d3449
MG
995
996 /*
997 * It's not safe for direct compaction to call lock_page.
998 * For example, during page readahead pages are added locked
999 * to the LRU. Later, when the IO completes the pages are
1000 * marked uptodate and unlocked. However, the queueing
1001 * could be merging multiple pages for one bio (e.g.
1002 * mpage_readpages). If an allocation happens for the
1003 * second or third page, the process can end up locking
1004 * the same page twice and deadlocking. Rather than
1005 * trying to be clever about what pages can be locked,
1006 * avoid the use of lock_page for direct compaction
1007 * altogether.
1008 */
1009 if (current->flags & PF_MEMALLOC)
0dabec93 1010 goto out;
3e7d3449 1011
e24f0b8f
CL
1012 lock_page(page);
1013 }
1014
1015 if (PageWriteback(page)) {
11bc82d6 1016 /*
fed5b64a 1017 * Only in the case of a full synchronous migration is it
a6bc32b8
MG
1018 * necessary to wait for PageWriteback. In the async case,
1019 * the retry loop is too short and in the sync-light case,
1020 * the overhead of stalling is too much
11bc82d6 1021 */
2916ecc0
JG
1022 switch (mode) {
1023 case MIGRATE_SYNC:
1024 case MIGRATE_SYNC_NO_COPY:
1025 break;
1026 default:
11bc82d6 1027 rc = -EBUSY;
0a31bc97 1028 goto out_unlock;
11bc82d6
AA
1029 }
1030 if (!force)
0a31bc97 1031 goto out_unlock;
e24f0b8f
CL
1032 wait_on_page_writeback(page);
1033 }
03f15c86 1034
e24f0b8f 1035 /*
dc386d4d
KH
1036 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1037 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 1038 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 1039 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
1040 * File Caches may use write_page() or lock_page() in migration, then,
1041 * just care Anon page here.
03f15c86
HD
1042 *
1043 * Only page_get_anon_vma() understands the subtleties of
1044 * getting a hold on an anon_vma from outside one of its mms.
1045 * But if we cannot get anon_vma, then we won't need it anyway,
1046 * because that implies that the anon page is no longer mapped
1047 * (and cannot be remapped so long as we hold the page lock).
dc386d4d 1048 */
03f15c86 1049 if (PageAnon(page) && !PageKsm(page))
746b18d4 1050 anon_vma = page_get_anon_vma(page);
62e1c553 1051
7db7671f
HD
1052 /*
1053 * Block others from accessing the new page when we get around to
1054 * establishing additional references. We are usually the only one
1055 * holding a reference to newpage at this point. We used to have a BUG
1056 * here if trylock_page(newpage) fails, but would like to allow for
1057 * cases where there might be a race with the previous use of newpage.
1058 * This is much like races on refcount of oldpage: just don't BUG().
1059 */
1060 if (unlikely(!trylock_page(newpage)))
1061 goto out_unlock;
1062
bda807d4
MK
1063 if (unlikely(!is_lru)) {
1064 rc = move_to_new_page(newpage, page, mode);
1065 goto out_unlock_both;
1066 }
1067
dc386d4d 1068 /*
62e1c553
SL
1069 * Corner case handling:
1070 * 1. When a new swap-cache page is read into, it is added to the LRU
1071 * and treated as swapcache but it has no rmap yet.
1072 * Calling try_to_unmap() against a page->mapping==NULL page will
1073 * trigger a BUG. So handle it here.
1074 * 2. An orphaned page (see truncate_complete_page) might have
1075 * fs-private metadata. The page can be picked up due to memory
1076 * offlining. Everywhere else except page reclaim, the page is
1077 * invisible to the vm, so the page can not be migrated. So try to
1078 * free the metadata, so the page can be freed.
e24f0b8f 1079 */
62e1c553 1080 if (!page->mapping) {
309381fe 1081 VM_BUG_ON_PAGE(PageAnon(page), page);
1ce82b69 1082 if (page_has_private(page)) {
62e1c553 1083 try_to_free_buffers(page);
7db7671f 1084 goto out_unlock_both;
62e1c553 1085 }
7db7671f
HD
1086 } else if (page_mapped(page)) {
1087 /* Establish migration ptes */
03f15c86
HD
1088 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1089 page);
2ebba6b7 1090 try_to_unmap(page,
da1b13cc 1091 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
2ebba6b7
HD
1092 page_was_mapped = 1;
1093 }
dc386d4d 1094
e6a1530d 1095 if (!page_mapped(page))
5c3f9a67 1096 rc = move_to_new_page(newpage, page, mode);
e24f0b8f 1097
5c3f9a67
HD
1098 if (page_was_mapped)
1099 remove_migration_ptes(page,
e388466d 1100 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
3f6c8272 1101
7db7671f
HD
1102out_unlock_both:
1103 unlock_page(newpage);
1104out_unlock:
3f6c8272 1105 /* Drop an anon_vma reference if we took one */
76545066 1106 if (anon_vma)
9e60109f 1107 put_anon_vma(anon_vma);
e24f0b8f 1108 unlock_page(page);
0dabec93 1109out:
c6c919eb
MK
1110 /*
1111 * If migration is successful, decrease refcount of the newpage
1112 * which will not free the page because new page owner increased
1113 * refcounter. As well, if it is LRU page, add the page to LRU
2eb39e8e
DH
1114 * list in here. Use the old state of the isolated source page to
1115 * determine if we migrated a LRU page. newpage was already unlocked
1116 * and possibly modified by its owner - don't rely on the page
1117 * state.
c6c919eb
MK
1118 */
1119 if (rc == MIGRATEPAGE_SUCCESS) {
2eb39e8e 1120 if (unlikely(!is_lru))
c6c919eb
MK
1121 put_page(newpage);
1122 else
1123 putback_lru_page(newpage);
1124 }
1125
0dabec93
MK
1126 return rc;
1127}
95a402c3 1128
ef2a5153
GU
1129/*
1130 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1131 * around it.
1132 */
1133#if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1134#define ICE_noinline noinline
1135#else
1136#define ICE_noinline
1137#endif
1138
0dabec93
MK
1139/*
1140 * Obtain the lock on page, remove all ptes and migrate the page
1141 * to the newly allocated page in newpage.
1142 */
ef2a5153
GU
1143static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1144 free_page_t put_new_page,
1145 unsigned long private, struct page *page,
add05cec
NH
1146 int force, enum migrate_mode mode,
1147 enum migrate_reason reason)
0dabec93 1148{
2def7424 1149 int rc = MIGRATEPAGE_SUCCESS;
0dabec93 1150 int *result = NULL;
2def7424 1151 struct page *newpage;
0dabec93 1152
2def7424 1153 newpage = get_new_page(page, private, &result);
0dabec93
MK
1154 if (!newpage)
1155 return -ENOMEM;
1156
1157 if (page_count(page) == 1) {
1158 /* page was freed from under us. So we are done. */
c6c919eb
MK
1159 ClearPageActive(page);
1160 ClearPageUnevictable(page);
bda807d4
MK
1161 if (unlikely(__PageMovable(page))) {
1162 lock_page(page);
1163 if (!PageMovable(page))
1164 __ClearPageIsolated(page);
1165 unlock_page(page);
1166 }
c6c919eb
MK
1167 if (put_new_page)
1168 put_new_page(newpage, private);
1169 else
1170 put_page(newpage);
0dabec93
MK
1171 goto out;
1172 }
1173
616b8371 1174 if (unlikely(PageTransHuge(page) && !PageTransHuge(newpage))) {
4d2fa965
KS
1175 lock_page(page);
1176 rc = split_huge_page(page);
1177 unlock_page(page);
1178 if (rc)
0dabec93 1179 goto out;
4d2fa965 1180 }
0dabec93 1181
9c620e2b 1182 rc = __unmap_and_move(page, newpage, force, mode);
c6c919eb 1183 if (rc == MIGRATEPAGE_SUCCESS)
7cd12b4a 1184 set_page_owner_migrate_reason(newpage, reason);
bf6bddf1 1185
0dabec93 1186out:
e24f0b8f 1187 if (rc != -EAGAIN) {
0dabec93
MK
1188 /*
1189 * A page that has been migrated has all references
1190 * removed and will be freed. A page that has not been
1191 * migrated will have kepts its references and be
1192 * restored.
1193 */
1194 list_del(&page->lru);
6afcf8ef
ML
1195
1196 /*
1197 * Compaction can migrate also non-LRU pages which are
1198 * not accounted to NR_ISOLATED_*. They can be recognized
1199 * as __PageMovable
1200 */
1201 if (likely(!__PageMovable(page)))
e8db67eb
NH
1202 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1203 page_is_file_cache(page), -hpage_nr_pages(page));
c6c919eb
MK
1204 }
1205
1206 /*
1207 * If migration is successful, releases reference grabbed during
1208 * isolation. Otherwise, restore the page to right list unless
1209 * we want to retry.
1210 */
1211 if (rc == MIGRATEPAGE_SUCCESS) {
1212 put_page(page);
1213 if (reason == MR_MEMORY_FAILURE) {
d7e69488 1214 /*
c6c919eb
MK
1215 * Set PG_HWPoison on just freed page
1216 * intentionally. Although it's rather weird,
1217 * it's how HWPoison flag works at the moment.
d7e69488 1218 */
da1b13cc
WL
1219 if (!test_set_page_hwpoison(page))
1220 num_poisoned_pages_inc();
c6c919eb
MK
1221 }
1222 } else {
bda807d4
MK
1223 if (rc != -EAGAIN) {
1224 if (likely(!__PageMovable(page))) {
1225 putback_lru_page(page);
1226 goto put_new;
1227 }
1228
1229 lock_page(page);
1230 if (PageMovable(page))
1231 putback_movable_page(page);
1232 else
1233 __ClearPageIsolated(page);
1234 unlock_page(page);
1235 put_page(page);
1236 }
1237put_new:
c6c919eb
MK
1238 if (put_new_page)
1239 put_new_page(newpage, private);
1240 else
1241 put_page(newpage);
e24f0b8f 1242 }
68711a74 1243
742755a1
CL
1244 if (result) {
1245 if (rc)
1246 *result = rc;
1247 else
1248 *result = page_to_nid(newpage);
1249 }
e24f0b8f
CL
1250 return rc;
1251}
1252
290408d4
NH
1253/*
1254 * Counterpart of unmap_and_move_page() for hugepage migration.
1255 *
1256 * This function doesn't wait the completion of hugepage I/O
1257 * because there is no race between I/O and migration for hugepage.
1258 * Note that currently hugepage I/O occurs only in direct I/O
1259 * where no lock is held and PG_writeback is irrelevant,
1260 * and writeback status of all subpages are counted in the reference
1261 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1262 * under direct I/O, the reference of the head page is 512 and a bit more.)
1263 * This means that when we try to migrate hugepage whose subpages are
1264 * doing direct I/O, some references remain after try_to_unmap() and
1265 * hugepage migration fails without data corruption.
1266 *
1267 * There is also no race when direct I/O is issued on the page under migration,
1268 * because then pte is replaced with migration swap entry and direct I/O code
1269 * will wait in the page fault for migration to complete.
1270 */
1271static int unmap_and_move_huge_page(new_page_t get_new_page,
68711a74
DR
1272 free_page_t put_new_page, unsigned long private,
1273 struct page *hpage, int force,
7cd12b4a 1274 enum migrate_mode mode, int reason)
290408d4 1275{
2def7424 1276 int rc = -EAGAIN;
290408d4 1277 int *result = NULL;
2ebba6b7 1278 int page_was_mapped = 0;
32665f2b 1279 struct page *new_hpage;
290408d4
NH
1280 struct anon_vma *anon_vma = NULL;
1281
83467efb
NH
1282 /*
1283 * Movability of hugepages depends on architectures and hugepage size.
1284 * This check is necessary because some callers of hugepage migration
1285 * like soft offline and memory hotremove don't walk through page
1286 * tables or check whether the hugepage is pmd-based or not before
1287 * kicking migration.
1288 */
100873d7 1289 if (!hugepage_migration_supported(page_hstate(hpage))) {
32665f2b 1290 putback_active_hugepage(hpage);
83467efb 1291 return -ENOSYS;
32665f2b 1292 }
83467efb 1293
32665f2b 1294 new_hpage = get_new_page(hpage, private, &result);
290408d4
NH
1295 if (!new_hpage)
1296 return -ENOMEM;
1297
290408d4 1298 if (!trylock_page(hpage)) {
2916ecc0 1299 if (!force)
290408d4 1300 goto out;
2916ecc0
JG
1301 switch (mode) {
1302 case MIGRATE_SYNC:
1303 case MIGRATE_SYNC_NO_COPY:
1304 break;
1305 default:
1306 goto out;
1307 }
290408d4
NH
1308 lock_page(hpage);
1309 }
1310
dfc12c73
MK
1311 /*
1312 * Check for pages which are in the process of being freed. Without
1313 * page_mapping() set, hugetlbfs specific move page routine will not
1314 * be called and we could leak usage counts for subpools.
1315 */
1316 if (page_private(hpage) && !page_mapping(hpage)) {
1317 rc = -EBUSY;
1318 goto out_unlock;
1319 }
1320
746b18d4
PZ
1321 if (PageAnon(hpage))
1322 anon_vma = page_get_anon_vma(hpage);
290408d4 1323
7db7671f
HD
1324 if (unlikely(!trylock_page(new_hpage)))
1325 goto put_anon;
1326
2ebba6b7
HD
1327 if (page_mapped(hpage)) {
1328 try_to_unmap(hpage,
1329 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1330 page_was_mapped = 1;
1331 }
290408d4
NH
1332
1333 if (!page_mapped(hpage))
5c3f9a67 1334 rc = move_to_new_page(new_hpage, hpage, mode);
290408d4 1335
5c3f9a67
HD
1336 if (page_was_mapped)
1337 remove_migration_ptes(hpage,
e388466d 1338 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
290408d4 1339
7db7671f
HD
1340 unlock_page(new_hpage);
1341
1342put_anon:
fd4a4663 1343 if (anon_vma)
9e60109f 1344 put_anon_vma(anon_vma);
8e6ac7fa 1345
2def7424 1346 if (rc == MIGRATEPAGE_SUCCESS) {
8e6ac7fa 1347 hugetlb_cgroup_migrate(hpage, new_hpage);
2def7424 1348 put_new_page = NULL;
7cd12b4a 1349 set_page_owner_migrate_reason(new_hpage, reason);
2def7424 1350 }
8e6ac7fa 1351
dfc12c73 1352out_unlock:
290408d4 1353 unlock_page(hpage);
09761333 1354out:
b8ec1cee
NH
1355 if (rc != -EAGAIN)
1356 putback_active_hugepage(hpage);
c3114a84
AK
1357 if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
1358 num_poisoned_pages_inc();
68711a74
DR
1359
1360 /*
1361 * If migration was not successful and there's a freeing callback, use
1362 * it. Otherwise, put_page() will drop the reference grabbed during
1363 * isolation.
1364 */
2def7424 1365 if (put_new_page)
68711a74
DR
1366 put_new_page(new_hpage, private);
1367 else
3aaa76e1 1368 putback_active_hugepage(new_hpage);
68711a74 1369
290408d4
NH
1370 if (result) {
1371 if (rc)
1372 *result = rc;
1373 else
1374 *result = page_to_nid(new_hpage);
1375 }
1376 return rc;
1377}
1378
b20a3503 1379/*
c73e5c9c
SB
1380 * migrate_pages - migrate the pages specified in a list, to the free pages
1381 * supplied as the target for the page migration
b20a3503 1382 *
c73e5c9c
SB
1383 * @from: The list of pages to be migrated.
1384 * @get_new_page: The function used to allocate free pages to be used
1385 * as the target of the page migration.
68711a74
DR
1386 * @put_new_page: The function used to free target pages if migration
1387 * fails, or NULL if no special handling is necessary.
c73e5c9c
SB
1388 * @private: Private data to be passed on to get_new_page()
1389 * @mode: The migration mode that specifies the constraints for
1390 * page migration, if any.
1391 * @reason: The reason for page migration.
b20a3503 1392 *
c73e5c9c
SB
1393 * The function returns after 10 attempts or if no pages are movable any more
1394 * because the list has become empty or no retryable pages exist any more.
14e0f9bc 1395 * The caller should call putback_movable_pages() to return pages to the LRU
28bd6578 1396 * or free list only if ret != 0.
b20a3503 1397 *
c73e5c9c 1398 * Returns the number of pages that were not migrated, or an error code.
b20a3503 1399 */
9c620e2b 1400int migrate_pages(struct list_head *from, new_page_t get_new_page,
68711a74
DR
1401 free_page_t put_new_page, unsigned long private,
1402 enum migrate_mode mode, int reason)
b20a3503 1403{
e24f0b8f 1404 int retry = 1;
b20a3503 1405 int nr_failed = 0;
5647bc29 1406 int nr_succeeded = 0;
b20a3503
CL
1407 int pass = 0;
1408 struct page *page;
1409 struct page *page2;
1410 int swapwrite = current->flags & PF_SWAPWRITE;
1411 int rc;
1412
1413 if (!swapwrite)
1414 current->flags |= PF_SWAPWRITE;
1415
e24f0b8f
CL
1416 for(pass = 0; pass < 10 && retry; pass++) {
1417 retry = 0;
b20a3503 1418
e24f0b8f 1419 list_for_each_entry_safe(page, page2, from, lru) {
e24f0b8f 1420 cond_resched();
2d1db3b1 1421
31caf665
NH
1422 if (PageHuge(page))
1423 rc = unmap_and_move_huge_page(get_new_page,
68711a74 1424 put_new_page, private, page,
7cd12b4a 1425 pass > 2, mode, reason);
31caf665 1426 else
68711a74 1427 rc = unmap_and_move(get_new_page, put_new_page,
add05cec
NH
1428 private, page, pass > 2, mode,
1429 reason);
2d1db3b1 1430
e24f0b8f 1431 switch(rc) {
95a402c3 1432 case -ENOMEM:
dfef2ef4 1433 nr_failed++;
95a402c3 1434 goto out;
e24f0b8f 1435 case -EAGAIN:
2d1db3b1 1436 retry++;
e24f0b8f 1437 break;
78bd5209 1438 case MIGRATEPAGE_SUCCESS:
5647bc29 1439 nr_succeeded++;
e24f0b8f
CL
1440 break;
1441 default:
354a3363
NH
1442 /*
1443 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1444 * unlike -EAGAIN case, the failed page is
1445 * removed from migration page list and not
1446 * retried in the next outer loop.
1447 */
2d1db3b1 1448 nr_failed++;
e24f0b8f 1449 break;
2d1db3b1 1450 }
b20a3503
CL
1451 }
1452 }
f2f81fb2
VB
1453 nr_failed += retry;
1454 rc = nr_failed;
95a402c3 1455out:
5647bc29
MG
1456 if (nr_succeeded)
1457 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1458 if (nr_failed)
1459 count_vm_events(PGMIGRATE_FAIL, nr_failed);
7b2a2d4a
MG
1460 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1461
b20a3503
CL
1462 if (!swapwrite)
1463 current->flags &= ~PF_SWAPWRITE;
1464
78bd5209 1465 return rc;
b20a3503 1466}
95a402c3 1467
742755a1
CL
1468#ifdef CONFIG_NUMA
1469/*
1470 * Move a list of individual pages
1471 */
1472struct page_to_node {
1473 unsigned long addr;
1474 struct page *page;
1475 int node;
1476 int status;
1477};
1478
1479static struct page *new_page_node(struct page *p, unsigned long private,
1480 int **result)
1481{
1482 struct page_to_node *pm = (struct page_to_node *)private;
1483
1484 while (pm->node != MAX_NUMNODES && pm->page != p)
1485 pm++;
1486
1487 if (pm->node == MAX_NUMNODES)
1488 return NULL;
1489
1490 *result = &pm->status;
1491
e632a938
NH
1492 if (PageHuge(p))
1493 return alloc_huge_page_node(page_hstate(compound_head(p)),
1494 pm->node);
e8db67eb
NH
1495 else if (thp_migration_supported() && PageTransHuge(p)) {
1496 struct page *thp;
1497
1498 thp = alloc_pages_node(pm->node,
1499 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
1500 HPAGE_PMD_ORDER);
1501 if (!thp)
1502 return NULL;
1503 prep_transhuge_page(thp);
1504 return thp;
1505 } else
96db800f 1506 return __alloc_pages_node(pm->node,
e97ca8e5 1507 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
742755a1
CL
1508}
1509
1510/*
1511 * Move a set of pages as indicated in the pm array. The addr
1512 * field must be set to the virtual address of the page to be moved
1513 * and the node number must contain a valid target node.
5e9a0f02 1514 * The pm array ends with node = MAX_NUMNODES.
742755a1 1515 */
5e9a0f02
BG
1516static int do_move_page_to_node_array(struct mm_struct *mm,
1517 struct page_to_node *pm,
1518 int migrate_all)
742755a1
CL
1519{
1520 int err;
1521 struct page_to_node *pp;
1522 LIST_HEAD(pagelist);
1523
1524 down_read(&mm->mmap_sem);
1525
1526 /*
1527 * Build a list of pages to migrate
1528 */
742755a1
CL
1529 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1530 struct vm_area_struct *vma;
1531 struct page *page;
e8db67eb
NH
1532 struct page *head;
1533 unsigned int follflags;
742755a1 1534
742755a1
CL
1535 err = -EFAULT;
1536 vma = find_vma(mm, pp->addr);
70384dc6 1537 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
742755a1
CL
1538 goto set_status;
1539
d899844e 1540 /* FOLL_DUMP to ignore special (like zero) pages */
e8db67eb
NH
1541 follflags = FOLL_GET | FOLL_DUMP;
1542 if (!thp_migration_supported())
1543 follflags |= FOLL_SPLIT;
1544 page = follow_page(vma, pp->addr, follflags);
89f5b7da
LT
1545
1546 err = PTR_ERR(page);
1547 if (IS_ERR(page))
1548 goto set_status;
1549
742755a1
CL
1550 err = -ENOENT;
1551 if (!page)
1552 goto set_status;
1553
742755a1
CL
1554 err = page_to_nid(page);
1555
1556 if (err == pp->node)
1557 /*
1558 * Node already in the right place
1559 */
1560 goto put_and_set;
1561
1562 err = -EACCES;
1563 if (page_mapcount(page) > 1 &&
1564 !migrate_all)
1565 goto put_and_set;
1566
e632a938 1567 if (PageHuge(page)) {
e8db67eb 1568 if (PageHead(page)) {
e66f17ff 1569 isolate_huge_page(page, &pagelist);
e8db67eb
NH
1570 err = 0;
1571 pp->page = page;
1572 }
e632a938
NH
1573 goto put_and_set;
1574 }
1575
e8db67eb
NH
1576 pp->page = compound_head(page);
1577 head = compound_head(page);
1578 err = isolate_lru_page(head);
6d9c285a 1579 if (!err) {
e8db67eb
NH
1580 list_add_tail(&head->lru, &pagelist);
1581 mod_node_page_state(page_pgdat(head),
1582 NR_ISOLATED_ANON + page_is_file_cache(head),
1583 hpage_nr_pages(head));
6d9c285a 1584 }
742755a1
CL
1585put_and_set:
1586 /*
1587 * Either remove the duplicate refcount from
1588 * isolate_lru_page() or drop the page ref if it was
1589 * not isolated.
1590 */
1591 put_page(page);
1592set_status:
1593 pp->status = err;
1594 }
1595
e78bbfa8 1596 err = 0;
cf608ac1 1597 if (!list_empty(&pagelist)) {
68711a74 1598 err = migrate_pages(&pagelist, new_page_node, NULL,
9c620e2b 1599 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
cf608ac1 1600 if (err)
e632a938 1601 putback_movable_pages(&pagelist);
cf608ac1 1602 }
742755a1
CL
1603
1604 up_read(&mm->mmap_sem);
1605 return err;
1606}
1607
5e9a0f02
BG
1608/*
1609 * Migrate an array of page address onto an array of nodes and fill
1610 * the corresponding array of status.
1611 */
3268c63e 1612static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
5e9a0f02
BG
1613 unsigned long nr_pages,
1614 const void __user * __user *pages,
1615 const int __user *nodes,
1616 int __user *status, int flags)
1617{
3140a227 1618 struct page_to_node *pm;
3140a227
BG
1619 unsigned long chunk_nr_pages;
1620 unsigned long chunk_start;
1621 int err;
5e9a0f02 1622
3140a227
BG
1623 err = -ENOMEM;
1624 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1625 if (!pm)
5e9a0f02 1626 goto out;
35282a2d
BG
1627
1628 migrate_prep();
1629
5e9a0f02 1630 /*
3140a227
BG
1631 * Store a chunk of page_to_node array in a page,
1632 * but keep the last one as a marker
5e9a0f02 1633 */
3140a227 1634 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
5e9a0f02 1635
3140a227
BG
1636 for (chunk_start = 0;
1637 chunk_start < nr_pages;
1638 chunk_start += chunk_nr_pages) {
1639 int j;
5e9a0f02 1640
3140a227
BG
1641 if (chunk_start + chunk_nr_pages > nr_pages)
1642 chunk_nr_pages = nr_pages - chunk_start;
1643
1644 /* fill the chunk pm with addrs and nodes from user-space */
1645 for (j = 0; j < chunk_nr_pages; j++) {
1646 const void __user *p;
5e9a0f02
BG
1647 int node;
1648
3140a227
BG
1649 err = -EFAULT;
1650 if (get_user(p, pages + j + chunk_start))
1651 goto out_pm;
1652 pm[j].addr = (unsigned long) p;
1653
1654 if (get_user(node, nodes + j + chunk_start))
5e9a0f02
BG
1655 goto out_pm;
1656
1657 err = -ENODEV;
6f5a55f1
LT
1658 if (node < 0 || node >= MAX_NUMNODES)
1659 goto out_pm;
1660
389162c2 1661 if (!node_state(node, N_MEMORY))
5e9a0f02
BG
1662 goto out_pm;
1663
1664 err = -EACCES;
1665 if (!node_isset(node, task_nodes))
1666 goto out_pm;
1667
3140a227
BG
1668 pm[j].node = node;
1669 }
1670
1671 /* End marker for this chunk */
1672 pm[chunk_nr_pages].node = MAX_NUMNODES;
1673
1674 /* Migrate this chunk */
1675 err = do_move_page_to_node_array(mm, pm,
1676 flags & MPOL_MF_MOVE_ALL);
1677 if (err < 0)
1678 goto out_pm;
5e9a0f02 1679
5e9a0f02 1680 /* Return status information */
3140a227
BG
1681 for (j = 0; j < chunk_nr_pages; j++)
1682 if (put_user(pm[j].status, status + j + chunk_start)) {
5e9a0f02 1683 err = -EFAULT;
3140a227
BG
1684 goto out_pm;
1685 }
1686 }
1687 err = 0;
5e9a0f02
BG
1688
1689out_pm:
3140a227 1690 free_page((unsigned long)pm);
5e9a0f02
BG
1691out:
1692 return err;
1693}
1694
742755a1 1695/*
2f007e74 1696 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1697 */
80bba129
BG
1698static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1699 const void __user **pages, int *status)
742755a1 1700{
2f007e74 1701 unsigned long i;
2f007e74 1702
742755a1
CL
1703 down_read(&mm->mmap_sem);
1704
2f007e74 1705 for (i = 0; i < nr_pages; i++) {
80bba129 1706 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1707 struct vm_area_struct *vma;
1708 struct page *page;
c095adbc 1709 int err = -EFAULT;
2f007e74
BG
1710
1711 vma = find_vma(mm, addr);
70384dc6 1712 if (!vma || addr < vma->vm_start)
742755a1
CL
1713 goto set_status;
1714
d899844e
KS
1715 /* FOLL_DUMP to ignore special (like zero) pages */
1716 page = follow_page(vma, addr, FOLL_DUMP);
89f5b7da
LT
1717
1718 err = PTR_ERR(page);
1719 if (IS_ERR(page))
1720 goto set_status;
1721
d899844e 1722 err = page ? page_to_nid(page) : -ENOENT;
742755a1 1723set_status:
80bba129
BG
1724 *status = err;
1725
1726 pages++;
1727 status++;
1728 }
1729
1730 up_read(&mm->mmap_sem);
1731}
1732
1733/*
1734 * Determine the nodes of a user array of pages and store it in
1735 * a user array of status.
1736 */
1737static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1738 const void __user * __user *pages,
1739 int __user *status)
1740{
1741#define DO_PAGES_STAT_CHUNK_NR 16
1742 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1743 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1744
87b8d1ad
PA
1745 while (nr_pages) {
1746 unsigned long chunk_nr;
80bba129 1747
87b8d1ad
PA
1748 chunk_nr = nr_pages;
1749 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1750 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1751
1752 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1753 break;
80bba129
BG
1754
1755 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1756
87b8d1ad
PA
1757 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1758 break;
742755a1 1759
87b8d1ad
PA
1760 pages += chunk_nr;
1761 status += chunk_nr;
1762 nr_pages -= chunk_nr;
1763 }
1764 return nr_pages ? -EFAULT : 0;
742755a1
CL
1765}
1766
1767/*
1768 * Move a list of pages in the address space of the currently executing
1769 * process.
1770 */
938bb9f5
HC
1771SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1772 const void __user * __user *, pages,
1773 const int __user *, nodes,
1774 int __user *, status, int, flags)
742755a1 1775{
742755a1 1776 struct task_struct *task;
742755a1 1777 struct mm_struct *mm;
5e9a0f02 1778 int err;
3268c63e 1779 nodemask_t task_nodes;
742755a1
CL
1780
1781 /* Check flags */
1782 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1783 return -EINVAL;
1784
1785 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1786 return -EPERM;
1787
1788 /* Find the mm_struct */
a879bf58 1789 rcu_read_lock();
228ebcbe 1790 task = pid ? find_task_by_vpid(pid) : current;
742755a1 1791 if (!task) {
a879bf58 1792 rcu_read_unlock();
742755a1
CL
1793 return -ESRCH;
1794 }
3268c63e 1795 get_task_struct(task);
742755a1
CL
1796
1797 /*
1798 * Check if this process has the right to modify the specified
197e7e52 1799 * process. Use the regular "ptrace_may_access()" checks.
742755a1 1800 */
197e7e52 1801 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
c69e8d9c 1802 rcu_read_unlock();
742755a1 1803 err = -EPERM;
5e9a0f02 1804 goto out;
742755a1 1805 }
c69e8d9c 1806 rcu_read_unlock();
742755a1 1807
86c3a764
DQ
1808 err = security_task_movememory(task);
1809 if (err)
5e9a0f02 1810 goto out;
86c3a764 1811
3268c63e
CL
1812 task_nodes = cpuset_mems_allowed(task);
1813 mm = get_task_mm(task);
1814 put_task_struct(task);
1815
6e8b09ea
SL
1816 if (!mm)
1817 return -EINVAL;
1818
1819 if (nodes)
1820 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1821 nodes, status, flags);
1822 else
1823 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1 1824
742755a1
CL
1825 mmput(mm);
1826 return err;
3268c63e
CL
1827
1828out:
1829 put_task_struct(task);
1830 return err;
742755a1 1831}
742755a1 1832
7039e1db
PZ
1833#ifdef CONFIG_NUMA_BALANCING
1834/*
1835 * Returns true if this is a safe migration target node for misplaced NUMA
1836 * pages. Currently it only checks the watermarks which crude
1837 */
1838static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
3abef4e6 1839 unsigned long nr_migrate_pages)
7039e1db
PZ
1840{
1841 int z;
599d0c95 1842
7039e1db
PZ
1843 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1844 struct zone *zone = pgdat->node_zones + z;
1845
1846 if (!populated_zone(zone))
1847 continue;
1848
7039e1db
PZ
1849 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1850 if (!zone_watermark_ok(zone, 0,
1851 high_wmark_pages(zone) +
1852 nr_migrate_pages,
1853 0, 0))
1854 continue;
1855 return true;
1856 }
1857 return false;
1858}
1859
1860static struct page *alloc_misplaced_dst_page(struct page *page,
1861 unsigned long data,
1862 int **result)
1863{
1864 int nid = (int) data;
1865 struct page *newpage;
1866
96db800f 1867 newpage = __alloc_pages_node(nid,
e97ca8e5
JW
1868 (GFP_HIGHUSER_MOVABLE |
1869 __GFP_THISNODE | __GFP_NOMEMALLOC |
1870 __GFP_NORETRY | __GFP_NOWARN) &
8479eba7 1871 ~__GFP_RECLAIM, 0);
bac0382c 1872
7039e1db
PZ
1873 return newpage;
1874}
1875
a8f60772
MG
1876/*
1877 * page migration rate limiting control.
1878 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1879 * window of time. Default here says do not migrate more than 1280M per second.
1880 */
1881static unsigned int migrate_interval_millisecs __read_mostly = 100;
1882static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1883
b32967ff 1884/* Returns true if the node is migrate rate-limited after the update */
1c30e017
MG
1885static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1886 unsigned long nr_pages)
7039e1db 1887{
a8f60772
MG
1888 /*
1889 * Rate-limit the amount of data that is being migrated to a node.
1890 * Optimal placement is no good if the memory bus is saturated and
1891 * all the time is being spent migrating!
1892 */
a8f60772 1893 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1c5e9c27 1894 spin_lock(&pgdat->numabalancing_migrate_lock);
a8f60772
MG
1895 pgdat->numabalancing_migrate_nr_pages = 0;
1896 pgdat->numabalancing_migrate_next_window = jiffies +
1897 msecs_to_jiffies(migrate_interval_millisecs);
1c5e9c27 1898 spin_unlock(&pgdat->numabalancing_migrate_lock);
a8f60772 1899 }
af1839d7
MG
1900 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1901 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1902 nr_pages);
1c5e9c27 1903 return true;
af1839d7 1904 }
1c5e9c27
MG
1905
1906 /*
1907 * This is an unlocked non-atomic update so errors are possible.
1908 * The consequences are failing to migrate when we potentiall should
1909 * have which is not severe enough to warrant locking. If it is ever
1910 * a problem, it can be converted to a per-cpu counter.
1911 */
1912 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1913 return false;
b32967ff
MG
1914}
1915
1c30e017 1916static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
b32967ff 1917{
340ef390 1918 int page_lru;
a8f60772 1919
309381fe 1920 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
3abef4e6 1921
7039e1db 1922 /* Avoid migrating to a node that is nearly full */
340ef390
HD
1923 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1924 return 0;
7039e1db 1925
340ef390
HD
1926 if (isolate_lru_page(page))
1927 return 0;
7039e1db 1928
340ef390
HD
1929 /*
1930 * migrate_misplaced_transhuge_page() skips page migration's usual
1931 * check on page_count(), so we must do it here, now that the page
1932 * has been isolated: a GUP pin, or any other pin, prevents migration.
1933 * The expected page count is 3: 1 for page's mapcount and 1 for the
1934 * caller's pin and 1 for the reference taken by isolate_lru_page().
1935 */
1936 if (PageTransHuge(page) && page_count(page) != 3) {
1937 putback_lru_page(page);
1938 return 0;
7039e1db
PZ
1939 }
1940
340ef390 1941 page_lru = page_is_file_cache(page);
599d0c95 1942 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
340ef390
HD
1943 hpage_nr_pages(page));
1944
149c33e1 1945 /*
340ef390
HD
1946 * Isolating the page has taken another reference, so the
1947 * caller's reference can be safely dropped without the page
1948 * disappearing underneath us during migration.
149c33e1
MG
1949 */
1950 put_page(page);
340ef390 1951 return 1;
b32967ff
MG
1952}
1953
de466bd6
MG
1954bool pmd_trans_migrating(pmd_t pmd)
1955{
1956 struct page *page = pmd_page(pmd);
1957 return PageLocked(page);
1958}
1959
b32967ff
MG
1960/*
1961 * Attempt to migrate a misplaced page to the specified destination
1962 * node. Caller is expected to have an elevated reference count on
1963 * the page that will be dropped by this function before returning.
1964 */
1bc115d8
MG
1965int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1966 int node)
b32967ff
MG
1967{
1968 pg_data_t *pgdat = NODE_DATA(node);
340ef390 1969 int isolated;
b32967ff
MG
1970 int nr_remaining;
1971 LIST_HEAD(migratepages);
1972
1973 /*
1bc115d8
MG
1974 * Don't migrate file pages that are mapped in multiple processes
1975 * with execute permissions as they are probably shared libraries.
b32967ff 1976 */
1bc115d8
MG
1977 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1978 (vma->vm_flags & VM_EXEC))
b32967ff 1979 goto out;
b32967ff
MG
1980
1981 /*
1982 * Rate-limit the amount of data that is being migrated to a node.
1983 * Optimal placement is no good if the memory bus is saturated and
1984 * all the time is being spent migrating!
1985 */
340ef390 1986 if (numamigrate_update_ratelimit(pgdat, 1))
b32967ff 1987 goto out;
b32967ff
MG
1988
1989 isolated = numamigrate_isolate_page(pgdat, page);
1990 if (!isolated)
1991 goto out;
1992
1993 list_add(&page->lru, &migratepages);
9c620e2b 1994 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
68711a74
DR
1995 NULL, node, MIGRATE_ASYNC,
1996 MR_NUMA_MISPLACED);
b32967ff 1997 if (nr_remaining) {
59c82b70
JK
1998 if (!list_empty(&migratepages)) {
1999 list_del(&page->lru);
599d0c95 2000 dec_node_page_state(page, NR_ISOLATED_ANON +
59c82b70
JK
2001 page_is_file_cache(page));
2002 putback_lru_page(page);
2003 }
b32967ff
MG
2004 isolated = 0;
2005 } else
2006 count_vm_numa_event(NUMA_PAGE_MIGRATE);
7039e1db 2007 BUG_ON(!list_empty(&migratepages));
7039e1db 2008 return isolated;
340ef390
HD
2009
2010out:
2011 put_page(page);
2012 return 0;
7039e1db 2013}
220018d3 2014#endif /* CONFIG_NUMA_BALANCING */
b32967ff 2015
220018d3 2016#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
340ef390
HD
2017/*
2018 * Migrates a THP to a given target node. page must be locked and is unlocked
2019 * before returning.
2020 */
b32967ff
MG
2021int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2022 struct vm_area_struct *vma,
2023 pmd_t *pmd, pmd_t entry,
2024 unsigned long address,
2025 struct page *page, int node)
2026{
c4088ebd 2027 spinlock_t *ptl;
b32967ff
MG
2028 pg_data_t *pgdat = NODE_DATA(node);
2029 int isolated = 0;
2030 struct page *new_page = NULL;
b32967ff 2031 int page_lru = page_is_file_cache(page);
f714f4f2
MG
2032 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2033 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
b32967ff 2034
b32967ff
MG
2035 /*
2036 * Rate-limit the amount of data that is being migrated to a node.
2037 * Optimal placement is no good if the memory bus is saturated and
2038 * all the time is being spent migrating!
2039 */
d28d4335 2040 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
b32967ff
MG
2041 goto out_dropref;
2042
2043 new_page = alloc_pages_node(node,
25160354 2044 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
e97ca8e5 2045 HPAGE_PMD_ORDER);
340ef390
HD
2046 if (!new_page)
2047 goto out_fail;
9a982250 2048 prep_transhuge_page(new_page);
340ef390 2049
b32967ff 2050 isolated = numamigrate_isolate_page(pgdat, page);
340ef390 2051 if (!isolated) {
b32967ff 2052 put_page(new_page);
340ef390 2053 goto out_fail;
b32967ff 2054 }
b0943d61 2055
b32967ff 2056 /* Prepare a page as a migration target */
48c935ad 2057 __SetPageLocked(new_page);
d44d363f
SL
2058 if (PageSwapBacked(page))
2059 __SetPageSwapBacked(new_page);
b32967ff
MG
2060
2061 /* anon mapping, we can simply copy page->mapping to the new page: */
2062 new_page->mapping = page->mapping;
2063 new_page->index = page->index;
2064 migrate_page_copy(new_page, page);
2065 WARN_ON(PageLRU(new_page));
2066
2067 /* Recheck the target PMD */
f714f4f2 2068 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2069 ptl = pmd_lock(mm, pmd);
f4e177d1 2070 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
c4088ebd 2071 spin_unlock(ptl);
f714f4f2 2072 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b32967ff
MG
2073
2074 /* Reverse changes made by migrate_page_copy() */
2075 if (TestClearPageActive(new_page))
2076 SetPageActive(page);
2077 if (TestClearPageUnevictable(new_page))
2078 SetPageUnevictable(page);
b32967ff
MG
2079
2080 unlock_page(new_page);
2081 put_page(new_page); /* Free it */
2082
a54a407f
MG
2083 /* Retake the callers reference and putback on LRU */
2084 get_page(page);
b32967ff 2085 putback_lru_page(page);
599d0c95 2086 mod_node_page_state(page_pgdat(page),
a54a407f 2087 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
eb4489f6
MG
2088
2089 goto out_unlock;
b32967ff
MG
2090 }
2091
10102459 2092 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 2093 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
b32967ff 2094
2b4847e7
MG
2095 /*
2096 * Clear the old entry under pagetable lock and establish the new PTE.
2097 * Any parallel GUP will either observe the old page blocking on the
2098 * page lock, block on the page table lock or observe the new page.
2099 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2100 * guarantee the copy is visible before the pagetable update.
2101 */
f714f4f2 2102 flush_cache_range(vma, mmun_start, mmun_end);
d281ee61 2103 page_add_anon_rmap(new_page, vma, mmun_start, true);
8809aa2d 2104 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
f714f4f2 2105 set_pmd_at(mm, mmun_start, pmd, entry);
ce4a9cc5 2106 update_mmu_cache_pmd(vma, address, &entry);
2b4847e7 2107
f4e177d1 2108 page_ref_unfreeze(page, 2);
51afb12b 2109 mlock_migrate_page(new_page, page);
d281ee61 2110 page_remove_rmap(page, true);
7cd12b4a 2111 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2b4847e7 2112
c4088ebd 2113 spin_unlock(ptl);
4645b9fe
JG
2114 /*
2115 * No need to double call mmu_notifier->invalidate_range() callback as
2116 * the above pmdp_huge_clear_flush_notify() did already call it.
2117 */
2118 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
b32967ff 2119
11de9927
MG
2120 /* Take an "isolate" reference and put new page on the LRU. */
2121 get_page(new_page);
2122 putback_lru_page(new_page);
2123
b32967ff
MG
2124 unlock_page(new_page);
2125 unlock_page(page);
2126 put_page(page); /* Drop the rmap reference */
2127 put_page(page); /* Drop the LRU isolation reference */
2128
2129 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2130 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2131
599d0c95 2132 mod_node_page_state(page_pgdat(page),
b32967ff
MG
2133 NR_ISOLATED_ANON + page_lru,
2134 -HPAGE_PMD_NR);
2135 return isolated;
2136
340ef390
HD
2137out_fail:
2138 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
b32967ff 2139out_dropref:
2b4847e7
MG
2140 ptl = pmd_lock(mm, pmd);
2141 if (pmd_same(*pmd, entry)) {
4d942466 2142 entry = pmd_modify(entry, vma->vm_page_prot);
f714f4f2 2143 set_pmd_at(mm, mmun_start, pmd, entry);
2b4847e7
MG
2144 update_mmu_cache_pmd(vma, address, &entry);
2145 }
2146 spin_unlock(ptl);
a54a407f 2147
eb4489f6 2148out_unlock:
340ef390 2149 unlock_page(page);
b32967ff 2150 put_page(page);
b32967ff
MG
2151 return 0;
2152}
7039e1db
PZ
2153#endif /* CONFIG_NUMA_BALANCING */
2154
2155#endif /* CONFIG_NUMA */
8763cb45 2156
6b368cd4 2157#if defined(CONFIG_MIGRATE_VMA_HELPER)
8763cb45
JG
2158struct migrate_vma {
2159 struct vm_area_struct *vma;
2160 unsigned long *dst;
2161 unsigned long *src;
2162 unsigned long cpages;
2163 unsigned long npages;
2164 unsigned long start;
2165 unsigned long end;
2166};
2167
2168static int migrate_vma_collect_hole(unsigned long start,
2169 unsigned long end,
2170 struct mm_walk *walk)
2171{
2172 struct migrate_vma *migrate = walk->private;
2173 unsigned long addr;
2174
8315ada7 2175 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
e20d103b 2176 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
8315ada7 2177 migrate->dst[migrate->npages] = 0;
e20d103b 2178 migrate->npages++;
8315ada7
JG
2179 migrate->cpages++;
2180 }
2181
2182 return 0;
2183}
2184
2185static int migrate_vma_collect_skip(unsigned long start,
2186 unsigned long end,
2187 struct mm_walk *walk)
2188{
2189 struct migrate_vma *migrate = walk->private;
2190 unsigned long addr;
2191
8763cb45
JG
2192 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2193 migrate->dst[migrate->npages] = 0;
2194 migrate->src[migrate->npages++] = 0;
2195 }
2196
2197 return 0;
2198}
2199
2200static int migrate_vma_collect_pmd(pmd_t *pmdp,
2201 unsigned long start,
2202 unsigned long end,
2203 struct mm_walk *walk)
2204{
2205 struct migrate_vma *migrate = walk->private;
2206 struct vm_area_struct *vma = walk->vma;
2207 struct mm_struct *mm = vma->vm_mm;
8c3328f1 2208 unsigned long addr = start, unmapped = 0;
8763cb45
JG
2209 spinlock_t *ptl;
2210 pte_t *ptep;
2211
2212again:
2213 if (pmd_none(*pmdp))
2214 return migrate_vma_collect_hole(start, end, walk);
2215
2216 if (pmd_trans_huge(*pmdp)) {
2217 struct page *page;
2218
2219 ptl = pmd_lock(mm, pmdp);
2220 if (unlikely(!pmd_trans_huge(*pmdp))) {
2221 spin_unlock(ptl);
2222 goto again;
2223 }
2224
2225 page = pmd_page(*pmdp);
2226 if (is_huge_zero_page(page)) {
2227 spin_unlock(ptl);
2228 split_huge_pmd(vma, pmdp, addr);
2229 if (pmd_trans_unstable(pmdp))
8315ada7 2230 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2231 walk);
2232 } else {
2233 int ret;
2234
2235 get_page(page);
2236 spin_unlock(ptl);
2237 if (unlikely(!trylock_page(page)))
8315ada7 2238 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2239 walk);
2240 ret = split_huge_page(page);
2241 unlock_page(page);
2242 put_page(page);
8315ada7
JG
2243 if (ret)
2244 return migrate_vma_collect_skip(start, end,
2245 walk);
2246 if (pmd_none(*pmdp))
8763cb45
JG
2247 return migrate_vma_collect_hole(start, end,
2248 walk);
2249 }
2250 }
2251
2252 if (unlikely(pmd_bad(*pmdp)))
8315ada7 2253 return migrate_vma_collect_skip(start, end, walk);
8763cb45
JG
2254
2255 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
8c3328f1
JG
2256 arch_enter_lazy_mmu_mode();
2257
8763cb45
JG
2258 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2259 unsigned long mpfn, pfn;
2260 struct page *page;
8c3328f1 2261 swp_entry_t entry;
8763cb45
JG
2262 pte_t pte;
2263
2264 pte = *ptep;
2265 pfn = pte_pfn(pte);
2266
a5430dda 2267 if (pte_none(pte)) {
8315ada7
JG
2268 mpfn = MIGRATE_PFN_MIGRATE;
2269 migrate->cpages++;
2270 pfn = 0;
8763cb45
JG
2271 goto next;
2272 }
2273
a5430dda
JG
2274 if (!pte_present(pte)) {
2275 mpfn = pfn = 0;
2276
2277 /*
2278 * Only care about unaddressable device page special
2279 * page table entry. Other special swap entries are not
2280 * migratable, and we ignore regular swapped page.
2281 */
2282 entry = pte_to_swp_entry(pte);
2283 if (!is_device_private_entry(entry))
2284 goto next;
2285
2286 page = device_private_entry_to_page(entry);
2287 mpfn = migrate_pfn(page_to_pfn(page))|
2288 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2289 if (is_write_device_private_entry(entry))
2290 mpfn |= MIGRATE_PFN_WRITE;
2291 } else {
8315ada7
JG
2292 if (is_zero_pfn(pfn)) {
2293 mpfn = MIGRATE_PFN_MIGRATE;
2294 migrate->cpages++;
2295 pfn = 0;
2296 goto next;
2297 }
df6ad698 2298 page = _vm_normal_page(migrate->vma, addr, pte, true);
a5430dda
JG
2299 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2300 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2301 }
2302
8763cb45 2303 /* FIXME support THP */
8763cb45
JG
2304 if (!page || !page->mapping || PageTransCompound(page)) {
2305 mpfn = pfn = 0;
2306 goto next;
2307 }
a5430dda 2308 pfn = page_to_pfn(page);
8763cb45
JG
2309
2310 /*
2311 * By getting a reference on the page we pin it and that blocks
2312 * any kind of migration. Side effect is that it "freezes" the
2313 * pte.
2314 *
2315 * We drop this reference after isolating the page from the lru
2316 * for non device page (device page are not on the lru and thus
2317 * can't be dropped from it).
2318 */
2319 get_page(page);
2320 migrate->cpages++;
8763cb45 2321
8c3328f1
JG
2322 /*
2323 * Optimize for the common case where page is only mapped once
2324 * in one process. If we can lock the page, then we can safely
2325 * set up a special migration page table entry now.
2326 */
2327 if (trylock_page(page)) {
2328 pte_t swp_pte;
2329
2330 mpfn |= MIGRATE_PFN_LOCKED;
2331 ptep_get_and_clear(mm, addr, ptep);
2332
2333 /* Setup special migration page table entry */
2334 entry = make_migration_entry(page, pte_write(pte));
2335 swp_pte = swp_entry_to_pte(entry);
2336 if (pte_soft_dirty(pte))
2337 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2338 set_pte_at(mm, addr, ptep, swp_pte);
2339
2340 /*
2341 * This is like regular unmap: we remove the rmap and
2342 * drop page refcount. Page won't be freed, as we took
2343 * a reference just above.
2344 */
2345 page_remove_rmap(page, false);
2346 put_page(page);
a5430dda
JG
2347
2348 if (pte_present(pte))
2349 unmapped++;
8c3328f1
JG
2350 }
2351
8763cb45 2352next:
a5430dda 2353 migrate->dst[migrate->npages] = 0;
8763cb45
JG
2354 migrate->src[migrate->npages++] = mpfn;
2355 }
8c3328f1 2356 arch_leave_lazy_mmu_mode();
8763cb45
JG
2357 pte_unmap_unlock(ptep - 1, ptl);
2358
8c3328f1
JG
2359 /* Only flush the TLB if we actually modified any entries */
2360 if (unmapped)
2361 flush_tlb_range(walk->vma, start, end);
2362
8763cb45
JG
2363 return 0;
2364}
2365
2366/*
2367 * migrate_vma_collect() - collect pages over a range of virtual addresses
2368 * @migrate: migrate struct containing all migration information
2369 *
2370 * This will walk the CPU page table. For each virtual address backed by a
2371 * valid page, it updates the src array and takes a reference on the page, in
2372 * order to pin the page until we lock it and unmap it.
2373 */
2374static void migrate_vma_collect(struct migrate_vma *migrate)
2375{
2376 struct mm_walk mm_walk;
2377
2378 mm_walk.pmd_entry = migrate_vma_collect_pmd;
2379 mm_walk.pte_entry = NULL;
2380 mm_walk.pte_hole = migrate_vma_collect_hole;
2381 mm_walk.hugetlb_entry = NULL;
2382 mm_walk.test_walk = NULL;
2383 mm_walk.vma = migrate->vma;
2384 mm_walk.mm = migrate->vma->vm_mm;
2385 mm_walk.private = migrate;
2386
8c3328f1
JG
2387 mmu_notifier_invalidate_range_start(mm_walk.mm,
2388 migrate->start,
2389 migrate->end);
8763cb45 2390 walk_page_range(migrate->start, migrate->end, &mm_walk);
8c3328f1
JG
2391 mmu_notifier_invalidate_range_end(mm_walk.mm,
2392 migrate->start,
2393 migrate->end);
8763cb45
JG
2394
2395 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2396}
2397
2398/*
2399 * migrate_vma_check_page() - check if page is pinned or not
2400 * @page: struct page to check
2401 *
2402 * Pinned pages cannot be migrated. This is the same test as in
2403 * migrate_page_move_mapping(), except that here we allow migration of a
2404 * ZONE_DEVICE page.
2405 */
2406static bool migrate_vma_check_page(struct page *page)
2407{
2408 /*
2409 * One extra ref because caller holds an extra reference, either from
2410 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2411 * a device page.
2412 */
2413 int extra = 1;
2414
2415 /*
2416 * FIXME support THP (transparent huge page), it is bit more complex to
2417 * check them than regular pages, because they can be mapped with a pmd
2418 * or with a pte (split pte mapping).
2419 */
2420 if (PageCompound(page))
2421 return false;
2422
a5430dda
JG
2423 /* Page from ZONE_DEVICE have one extra reference */
2424 if (is_zone_device_page(page)) {
2425 /*
2426 * Private page can never be pin as they have no valid pte and
2427 * GUP will fail for those. Yet if there is a pending migration
2428 * a thread might try to wait on the pte migration entry and
2429 * will bump the page reference count. Sadly there is no way to
2430 * differentiate a regular pin from migration wait. Hence to
2431 * avoid 2 racing thread trying to migrate back to CPU to enter
2432 * infinite loop (one stoping migration because the other is
2433 * waiting on pte migration entry). We always return true here.
2434 *
2435 * FIXME proper solution is to rework migration_entry_wait() so
2436 * it does not need to take a reference on page.
2437 */
2438 if (is_device_private_page(page))
2439 return true;
2440
df6ad698
JG
2441 /*
2442 * Only allow device public page to be migrated and account for
2443 * the extra reference count imply by ZONE_DEVICE pages.
2444 */
2445 if (!is_device_public_page(page))
2446 return false;
2447 extra++;
a5430dda
JG
2448 }
2449
df6ad698
JG
2450 /* For file back page */
2451 if (page_mapping(page))
2452 extra += 1 + page_has_private(page);
2453
8763cb45
JG
2454 if ((page_count(page) - extra) > page_mapcount(page))
2455 return false;
2456
2457 return true;
2458}
2459
2460/*
2461 * migrate_vma_prepare() - lock pages and isolate them from the lru
2462 * @migrate: migrate struct containing all migration information
2463 *
2464 * This locks pages that have been collected by migrate_vma_collect(). Once each
2465 * page is locked it is isolated from the lru (for non-device pages). Finally,
2466 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2467 * migrated by concurrent kernel threads.
2468 */
2469static void migrate_vma_prepare(struct migrate_vma *migrate)
2470{
2471 const unsigned long npages = migrate->npages;
8c3328f1
JG
2472 const unsigned long start = migrate->start;
2473 unsigned long addr, i, restore = 0;
8763cb45 2474 bool allow_drain = true;
8763cb45
JG
2475
2476 lru_add_drain();
2477
2478 for (i = 0; (i < npages) && migrate->cpages; i++) {
2479 struct page *page = migrate_pfn_to_page(migrate->src[i]);
8c3328f1 2480 bool remap = true;
8763cb45
JG
2481
2482 if (!page)
2483 continue;
2484
8c3328f1
JG
2485 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2486 /*
2487 * Because we are migrating several pages there can be
2488 * a deadlock between 2 concurrent migration where each
2489 * are waiting on each other page lock.
2490 *
2491 * Make migrate_vma() a best effort thing and backoff
2492 * for any page we can not lock right away.
2493 */
2494 if (!trylock_page(page)) {
2495 migrate->src[i] = 0;
2496 migrate->cpages--;
2497 put_page(page);
2498 continue;
2499 }
2500 remap = false;
2501 migrate->src[i] |= MIGRATE_PFN_LOCKED;
8763cb45 2502 }
8763cb45 2503
a5430dda
JG
2504 /* ZONE_DEVICE pages are not on LRU */
2505 if (!is_zone_device_page(page)) {
2506 if (!PageLRU(page) && allow_drain) {
2507 /* Drain CPU's pagevec */
2508 lru_add_drain_all();
2509 allow_drain = false;
2510 }
8763cb45 2511
a5430dda
JG
2512 if (isolate_lru_page(page)) {
2513 if (remap) {
2514 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2515 migrate->cpages--;
2516 restore++;
2517 } else {
2518 migrate->src[i] = 0;
2519 unlock_page(page);
2520 migrate->cpages--;
2521 put_page(page);
2522 }
2523 continue;
8c3328f1 2524 }
a5430dda
JG
2525
2526 /* Drop the reference we took in collect */
2527 put_page(page);
8763cb45
JG
2528 }
2529
2530 if (!migrate_vma_check_page(page)) {
8c3328f1
JG
2531 if (remap) {
2532 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2533 migrate->cpages--;
2534 restore++;
8763cb45 2535
a5430dda
JG
2536 if (!is_zone_device_page(page)) {
2537 get_page(page);
2538 putback_lru_page(page);
2539 }
8c3328f1
JG
2540 } else {
2541 migrate->src[i] = 0;
2542 unlock_page(page);
2543 migrate->cpages--;
2544
a5430dda
JG
2545 if (!is_zone_device_page(page))
2546 putback_lru_page(page);
2547 else
2548 put_page(page);
8c3328f1 2549 }
8763cb45
JG
2550 }
2551 }
8c3328f1
JG
2552
2553 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2554 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2555
2556 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2557 continue;
2558
2559 remove_migration_pte(page, migrate->vma, addr, page);
2560
2561 migrate->src[i] = 0;
2562 unlock_page(page);
2563 put_page(page);
2564 restore--;
2565 }
8763cb45
JG
2566}
2567
2568/*
2569 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2570 * @migrate: migrate struct containing all migration information
2571 *
2572 * Replace page mapping (CPU page table pte) with a special migration pte entry
2573 * and check again if it has been pinned. Pinned pages are restored because we
2574 * cannot migrate them.
2575 *
2576 * This is the last step before we call the device driver callback to allocate
2577 * destination memory and copy contents of original page over to new page.
2578 */
2579static void migrate_vma_unmap(struct migrate_vma *migrate)
2580{
2581 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2582 const unsigned long npages = migrate->npages;
2583 const unsigned long start = migrate->start;
2584 unsigned long addr, i, restore = 0;
2585
2586 for (i = 0; i < npages; i++) {
2587 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2588
2589 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2590 continue;
2591
8c3328f1
JG
2592 if (page_mapped(page)) {
2593 try_to_unmap(page, flags);
2594 if (page_mapped(page))
2595 goto restore;
8763cb45 2596 }
8c3328f1
JG
2597
2598 if (migrate_vma_check_page(page))
2599 continue;
2600
2601restore:
2602 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2603 migrate->cpages--;
2604 restore++;
8763cb45
JG
2605 }
2606
2607 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2608 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2609
2610 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2611 continue;
2612
2613 remove_migration_ptes(page, page, false);
2614
2615 migrate->src[i] = 0;
2616 unlock_page(page);
2617 restore--;
2618
a5430dda
JG
2619 if (is_zone_device_page(page))
2620 put_page(page);
2621 else
2622 putback_lru_page(page);
8763cb45
JG
2623 }
2624}
2625
8315ada7
JG
2626static void migrate_vma_insert_page(struct migrate_vma *migrate,
2627 unsigned long addr,
2628 struct page *page,
2629 unsigned long *src,
2630 unsigned long *dst)
2631{
2632 struct vm_area_struct *vma = migrate->vma;
2633 struct mm_struct *mm = vma->vm_mm;
2634 struct mem_cgroup *memcg;
2635 bool flush = false;
2636 spinlock_t *ptl;
2637 pte_t entry;
2638 pgd_t *pgdp;
2639 p4d_t *p4dp;
2640 pud_t *pudp;
2641 pmd_t *pmdp;
2642 pte_t *ptep;
2643
2644 /* Only allow populating anonymous memory */
2645 if (!vma_is_anonymous(vma))
2646 goto abort;
2647
2648 pgdp = pgd_offset(mm, addr);
2649 p4dp = p4d_alloc(mm, pgdp, addr);
2650 if (!p4dp)
2651 goto abort;
2652 pudp = pud_alloc(mm, p4dp, addr);
2653 if (!pudp)
2654 goto abort;
2655 pmdp = pmd_alloc(mm, pudp, addr);
2656 if (!pmdp)
2657 goto abort;
2658
2659 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2660 goto abort;
2661
2662 /*
2663 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2664 * pte_offset_map() on pmds where a huge pmd might be created
2665 * from a different thread.
2666 *
2667 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2668 * parallel threads are excluded by other means.
2669 *
2670 * Here we only have down_read(mmap_sem).
2671 */
2672 if (pte_alloc(mm, pmdp, addr))
2673 goto abort;
2674
2675 /* See the comment in pte_alloc_one_map() */
2676 if (unlikely(pmd_trans_unstable(pmdp)))
2677 goto abort;
2678
2679 if (unlikely(anon_vma_prepare(vma)))
2680 goto abort;
2681 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2682 goto abort;
2683
2684 /*
2685 * The memory barrier inside __SetPageUptodate makes sure that
2686 * preceding stores to the page contents become visible before
2687 * the set_pte_at() write.
2688 */
2689 __SetPageUptodate(page);
2690
df6ad698
JG
2691 if (is_zone_device_page(page)) {
2692 if (is_device_private_page(page)) {
2693 swp_entry_t swp_entry;
2694
2695 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2696 entry = swp_entry_to_pte(swp_entry);
2697 } else if (is_device_public_page(page)) {
2698 entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2699 if (vma->vm_flags & VM_WRITE)
2700 entry = pte_mkwrite(pte_mkdirty(entry));
2701 entry = pte_mkdevmap(entry);
2702 }
8315ada7
JG
2703 } else {
2704 entry = mk_pte(page, vma->vm_page_prot);
2705 if (vma->vm_flags & VM_WRITE)
2706 entry = pte_mkwrite(pte_mkdirty(entry));
2707 }
2708
2709 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2710
2711 if (pte_present(*ptep)) {
2712 unsigned long pfn = pte_pfn(*ptep);
2713
2714 if (!is_zero_pfn(pfn)) {
2715 pte_unmap_unlock(ptep, ptl);
2716 mem_cgroup_cancel_charge(page, memcg, false);
2717 goto abort;
2718 }
2719 flush = true;
2720 } else if (!pte_none(*ptep)) {
2721 pte_unmap_unlock(ptep, ptl);
2722 mem_cgroup_cancel_charge(page, memcg, false);
2723 goto abort;
2724 }
2725
2726 /*
2727 * Check for usefaultfd but do not deliver the fault. Instead,
2728 * just back off.
2729 */
2730 if (userfaultfd_missing(vma)) {
2731 pte_unmap_unlock(ptep, ptl);
2732 mem_cgroup_cancel_charge(page, memcg, false);
2733 goto abort;
2734 }
2735
2736 inc_mm_counter(mm, MM_ANONPAGES);
2737 page_add_new_anon_rmap(page, vma, addr, false);
2738 mem_cgroup_commit_charge(page, memcg, false, false);
2739 if (!is_zone_device_page(page))
2740 lru_cache_add_active_or_unevictable(page, vma);
2741 get_page(page);
2742
2743 if (flush) {
2744 flush_cache_page(vma, addr, pte_pfn(*ptep));
2745 ptep_clear_flush_notify(vma, addr, ptep);
2746 set_pte_at_notify(mm, addr, ptep, entry);
2747 update_mmu_cache(vma, addr, ptep);
2748 } else {
2749 /* No need to invalidate - it was non-present before */
2750 set_pte_at(mm, addr, ptep, entry);
2751 update_mmu_cache(vma, addr, ptep);
2752 }
2753
2754 pte_unmap_unlock(ptep, ptl);
2755 *src = MIGRATE_PFN_MIGRATE;
2756 return;
2757
2758abort:
2759 *src &= ~MIGRATE_PFN_MIGRATE;
2760}
2761
8763cb45
JG
2762/*
2763 * migrate_vma_pages() - migrate meta-data from src page to dst page
2764 * @migrate: migrate struct containing all migration information
2765 *
2766 * This migrates struct page meta-data from source struct page to destination
2767 * struct page. This effectively finishes the migration from source page to the
2768 * destination page.
2769 */
2770static void migrate_vma_pages(struct migrate_vma *migrate)
2771{
2772 const unsigned long npages = migrate->npages;
2773 const unsigned long start = migrate->start;
8315ada7
JG
2774 struct vm_area_struct *vma = migrate->vma;
2775 struct mm_struct *mm = vma->vm_mm;
2776 unsigned long addr, i, mmu_start;
2777 bool notified = false;
8763cb45
JG
2778
2779 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2780 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2781 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2782 struct address_space *mapping;
2783 int r;
2784
8315ada7
JG
2785 if (!newpage) {
2786 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
8763cb45 2787 continue;
8315ada7
JG
2788 }
2789
2790 if (!page) {
2791 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2792 continue;
2793 }
2794 if (!notified) {
2795 mmu_start = addr;
2796 notified = true;
2797 mmu_notifier_invalidate_range_start(mm,
2798 mmu_start,
2799 migrate->end);
2800 }
2801 migrate_vma_insert_page(migrate, addr, newpage,
2802 &migrate->src[i],
2803 &migrate->dst[i]);
8763cb45 2804 continue;
8315ada7 2805 }
8763cb45
JG
2806
2807 mapping = page_mapping(page);
2808
a5430dda
JG
2809 if (is_zone_device_page(newpage)) {
2810 if (is_device_private_page(newpage)) {
2811 /*
2812 * For now only support private anonymous when
2813 * migrating to un-addressable device memory.
2814 */
2815 if (mapping) {
2816 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2817 continue;
2818 }
df6ad698 2819 } else if (!is_device_public_page(newpage)) {
a5430dda
JG
2820 /*
2821 * Other types of ZONE_DEVICE page are not
2822 * supported.
2823 */
2824 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2825 continue;
2826 }
2827 }
2828
8763cb45
JG
2829 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2830 if (r != MIGRATEPAGE_SUCCESS)
2831 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2832 }
8315ada7 2833
4645b9fe
JG
2834 /*
2835 * No need to double call mmu_notifier->invalidate_range() callback as
2836 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2837 * did already call it.
2838 */
8315ada7 2839 if (notified)
4645b9fe
JG
2840 mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2841 migrate->end);
8763cb45
JG
2842}
2843
2844/*
2845 * migrate_vma_finalize() - restore CPU page table entry
2846 * @migrate: migrate struct containing all migration information
2847 *
2848 * This replaces the special migration pte entry with either a mapping to the
2849 * new page if migration was successful for that page, or to the original page
2850 * otherwise.
2851 *
2852 * This also unlocks the pages and puts them back on the lru, or drops the extra
2853 * refcount, for device pages.
2854 */
2855static void migrate_vma_finalize(struct migrate_vma *migrate)
2856{
2857 const unsigned long npages = migrate->npages;
2858 unsigned long i;
2859
2860 for (i = 0; i < npages; i++) {
2861 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2862 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2863
8315ada7
JG
2864 if (!page) {
2865 if (newpage) {
2866 unlock_page(newpage);
2867 put_page(newpage);
2868 }
8763cb45 2869 continue;
8315ada7
JG
2870 }
2871
8763cb45
JG
2872 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2873 if (newpage) {
2874 unlock_page(newpage);
2875 put_page(newpage);
2876 }
2877 newpage = page;
2878 }
2879
2880 remove_migration_ptes(page, newpage, false);
2881 unlock_page(page);
2882 migrate->cpages--;
2883
a5430dda
JG
2884 if (is_zone_device_page(page))
2885 put_page(page);
2886 else
2887 putback_lru_page(page);
8763cb45
JG
2888
2889 if (newpage != page) {
2890 unlock_page(newpage);
a5430dda
JG
2891 if (is_zone_device_page(newpage))
2892 put_page(newpage);
2893 else
2894 putback_lru_page(newpage);
8763cb45
JG
2895 }
2896 }
2897}
2898
2899/*
2900 * migrate_vma() - migrate a range of memory inside vma
2901 *
2902 * @ops: migration callback for allocating destination memory and copying
2903 * @vma: virtual memory area containing the range to be migrated
2904 * @start: start address of the range to migrate (inclusive)
2905 * @end: end address of the range to migrate (exclusive)
2906 * @src: array of hmm_pfn_t containing source pfns
2907 * @dst: array of hmm_pfn_t containing destination pfns
2908 * @private: pointer passed back to each of the callback
2909 * Returns: 0 on success, error code otherwise
2910 *
2911 * This function tries to migrate a range of memory virtual address range, using
2912 * callbacks to allocate and copy memory from source to destination. First it
2913 * collects all the pages backing each virtual address in the range, saving this
2914 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2915 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2916 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2917 * in the corresponding src array entry. It then restores any pages that are
2918 * pinned, by remapping and unlocking those pages.
2919 *
2920 * At this point it calls the alloc_and_copy() callback. For documentation on
2921 * what is expected from that callback, see struct migrate_vma_ops comments in
2922 * include/linux/migrate.h
2923 *
2924 * After the alloc_and_copy() callback, this function goes over each entry in
2925 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2926 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2927 * then the function tries to migrate struct page information from the source
2928 * struct page to the destination struct page. If it fails to migrate the struct
2929 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2930 * array.
2931 *
2932 * At this point all successfully migrated pages have an entry in the src
2933 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2934 * array entry with MIGRATE_PFN_VALID flag set.
2935 *
2936 * It then calls the finalize_and_map() callback. See comments for "struct
2937 * migrate_vma_ops", in include/linux/migrate.h for details about
2938 * finalize_and_map() behavior.
2939 *
2940 * After the finalize_and_map() callback, for successfully migrated pages, this
2941 * function updates the CPU page table to point to new pages, otherwise it
2942 * restores the CPU page table to point to the original source pages.
2943 *
2944 * Function returns 0 after the above steps, even if no pages were migrated
2945 * (The function only returns an error if any of the arguments are invalid.)
2946 *
2947 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2948 * unsigned long entries.
2949 */
2950int migrate_vma(const struct migrate_vma_ops *ops,
2951 struct vm_area_struct *vma,
2952 unsigned long start,
2953 unsigned long end,
2954 unsigned long *src,
2955 unsigned long *dst,
2956 void *private)
2957{
2958 struct migrate_vma migrate;
2959
2960 /* Sanity check the arguments */
2961 start &= PAGE_MASK;
2962 end &= PAGE_MASK;
2963 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL))
2964 return -EINVAL;
2965 if (start < vma->vm_start || start >= vma->vm_end)
2966 return -EINVAL;
2967 if (end <= vma->vm_start || end > vma->vm_end)
2968 return -EINVAL;
2969 if (!ops || !src || !dst || start >= end)
2970 return -EINVAL;
2971
2972 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2973 migrate.src = src;
2974 migrate.dst = dst;
2975 migrate.start = start;
2976 migrate.npages = 0;
2977 migrate.cpages = 0;
2978 migrate.end = end;
2979 migrate.vma = vma;
2980
2981 /* Collect, and try to unmap source pages */
2982 migrate_vma_collect(&migrate);
2983 if (!migrate.cpages)
2984 return 0;
2985
2986 /* Lock and isolate page */
2987 migrate_vma_prepare(&migrate);
2988 if (!migrate.cpages)
2989 return 0;
2990
2991 /* Unmap pages */
2992 migrate_vma_unmap(&migrate);
2993 if (!migrate.cpages)
2994 return 0;
2995
2996 /*
2997 * At this point pages are locked and unmapped, and thus they have
2998 * stable content and can safely be copied to destination memory that
2999 * is allocated by the callback.
3000 *
3001 * Note that migration can fail in migrate_vma_struct_page() for each
3002 * individual page.
3003 */
3004 ops->alloc_and_copy(vma, src, dst, start, end, private);
3005
3006 /* This does the real migration of struct page */
3007 migrate_vma_pages(&migrate);
3008
3009 ops->finalize_and_map(vma, src, dst, start, end, private);
3010
3011 /* Unlock and remap pages */
3012 migrate_vma_finalize(&migrate);
3013
3014 return 0;
3015}
3016EXPORT_SYMBOL(migrate_vma);
6b368cd4 3017#endif /* defined(MIGRATE_VMA_HELPER) */