]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
cma: fix counting of isolated pages
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
041d3a8c 59#include <linux/migrate.h>
c0a32fc5 60#include <linux/page-debug-flags.h>
1da177e4
LT
61
62#include <asm/tlbflush.h>
ac924c60 63#include <asm/div64.h>
1da177e4
LT
64#include "internal.h"
65
72812019
LS
66#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67DEFINE_PER_CPU(int, numa_node);
68EXPORT_PER_CPU_SYMBOL(numa_node);
69#endif
70
7aac7898
LS
71#ifdef CONFIG_HAVE_MEMORYLESS_NODES
72/*
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
77 */
78DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80#endif
81
1da177e4 82/*
13808910 83 * Array of node states.
1da177e4 84 */
13808910
CL
85nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88#ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90#ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
92#endif
93 [N_CPU] = { { [0] = 1UL } },
94#endif /* NUMA */
95};
96EXPORT_SYMBOL(node_states);
97
6c231b7b 98unsigned long totalram_pages __read_mostly;
cb45b0e9 99unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
100/*
101 * When calculating the number of globally allowed dirty pages, there
102 * is a certain number of per-zone reserves that should not be
103 * considered dirtyable memory. This is the sum of those reserves
104 * over all existing zones that contribute dirtyable memory.
105 */
106unsigned long dirty_balance_reserve __read_mostly;
107
1b76b02f 108int percpu_pagelist_fraction;
dcce284a 109gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 110
452aa699
RW
111#ifdef CONFIG_PM_SLEEP
112/*
113 * The following functions are used by the suspend/hibernate code to temporarily
114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115 * while devices are suspended. To avoid races with the suspend/hibernate code,
116 * they should always be called with pm_mutex held (gfp_allowed_mask also should
117 * only be modified with pm_mutex held, unless the suspend/hibernate code is
118 * guaranteed not to run in parallel with that modification).
119 */
c9e664f1
RW
120
121static gfp_t saved_gfp_mask;
122
123void pm_restore_gfp_mask(void)
452aa699
RW
124{
125 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
126 if (saved_gfp_mask) {
127 gfp_allowed_mask = saved_gfp_mask;
128 saved_gfp_mask = 0;
129 }
452aa699
RW
130}
131
c9e664f1 132void pm_restrict_gfp_mask(void)
452aa699 133{
452aa699 134 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
135 WARN_ON(saved_gfp_mask);
136 saved_gfp_mask = gfp_allowed_mask;
137 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 138}
f90ac398
MG
139
140bool pm_suspended_storage(void)
141{
142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
143 return false;
144 return true;
145}
452aa699
RW
146#endif /* CONFIG_PM_SLEEP */
147
d9c23400
MG
148#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149int pageblock_order __read_mostly;
150#endif
151
d98c7a09 152static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 153
1da177e4
LT
154/*
155 * results with 256, 32 in the lowmem_reserve sysctl:
156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157 * 1G machine -> (16M dma, 784M normal, 224M high)
158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
161 *
162 * TBD: should special case ZONE_DMA32 machines here - in those we normally
163 * don't need any ZONE_NORMAL reservation
1da177e4 164 */
2f1b6248 165int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 166#ifdef CONFIG_ZONE_DMA
2f1b6248 167 256,
4b51d669 168#endif
fb0e7942 169#ifdef CONFIG_ZONE_DMA32
2f1b6248 170 256,
fb0e7942 171#endif
e53ef38d 172#ifdef CONFIG_HIGHMEM
2a1e274a 173 32,
e53ef38d 174#endif
2a1e274a 175 32,
2f1b6248 176};
1da177e4
LT
177
178EXPORT_SYMBOL(totalram_pages);
1da177e4 179
15ad7cdc 180static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 181#ifdef CONFIG_ZONE_DMA
2f1b6248 182 "DMA",
4b51d669 183#endif
fb0e7942 184#ifdef CONFIG_ZONE_DMA32
2f1b6248 185 "DMA32",
fb0e7942 186#endif
2f1b6248 187 "Normal",
e53ef38d 188#ifdef CONFIG_HIGHMEM
2a1e274a 189 "HighMem",
e53ef38d 190#endif
2a1e274a 191 "Movable",
2f1b6248
CL
192};
193
1da177e4
LT
194int min_free_kbytes = 1024;
195
2c85f51d
JB
196static unsigned long __meminitdata nr_kernel_pages;
197static unsigned long __meminitdata nr_all_pages;
a3142c8e 198static unsigned long __meminitdata dma_reserve;
1da177e4 199
0ee332c1
TH
200#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203static unsigned long __initdata required_kernelcore;
204static unsigned long __initdata required_movablecore;
205static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
206
207/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
208int movable_zone;
209EXPORT_SYMBOL(movable_zone);
210#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 211
418508c1
MS
212#if MAX_NUMNODES > 1
213int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 214int nr_online_nodes __read_mostly = 1;
418508c1 215EXPORT_SYMBOL(nr_node_ids);
62bc62a8 216EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
217#endif
218
9ef9acb0
MG
219int page_group_by_mobility_disabled __read_mostly;
220
702d1a6e
MK
221/*
222 * NOTE:
223 * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
224 * Instead, use {un}set_pageblock_isolate.
225 */
ee6f509c 226void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 227{
49255c61
MG
228
229 if (unlikely(page_group_by_mobility_disabled))
230 migratetype = MIGRATE_UNMOVABLE;
231
b2a0ac88
MG
232 set_pageblock_flags_group(page, (unsigned long)migratetype,
233 PB_migrate, PB_migrate_end);
234}
235
7f33d49a
RW
236bool oom_killer_disabled __read_mostly;
237
13e7444b 238#ifdef CONFIG_DEBUG_VM
c6a57e19 239static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 240{
bdc8cb98
DH
241 int ret = 0;
242 unsigned seq;
243 unsigned long pfn = page_to_pfn(page);
c6a57e19 244
bdc8cb98
DH
245 do {
246 seq = zone_span_seqbegin(zone);
247 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
248 ret = 1;
249 else if (pfn < zone->zone_start_pfn)
250 ret = 1;
251 } while (zone_span_seqretry(zone, seq));
252
253 return ret;
c6a57e19
DH
254}
255
256static int page_is_consistent(struct zone *zone, struct page *page)
257{
14e07298 258 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 259 return 0;
1da177e4 260 if (zone != page_zone(page))
c6a57e19
DH
261 return 0;
262
263 return 1;
264}
265/*
266 * Temporary debugging check for pages not lying within a given zone.
267 */
268static int bad_range(struct zone *zone, struct page *page)
269{
270 if (page_outside_zone_boundaries(zone, page))
1da177e4 271 return 1;
c6a57e19
DH
272 if (!page_is_consistent(zone, page))
273 return 1;
274
1da177e4
LT
275 return 0;
276}
13e7444b
NP
277#else
278static inline int bad_range(struct zone *zone, struct page *page)
279{
280 return 0;
281}
282#endif
283
224abf92 284static void bad_page(struct page *page)
1da177e4 285{
d936cf9b
HD
286 static unsigned long resume;
287 static unsigned long nr_shown;
288 static unsigned long nr_unshown;
289
2a7684a2
WF
290 /* Don't complain about poisoned pages */
291 if (PageHWPoison(page)) {
ef2b4b95 292 reset_page_mapcount(page); /* remove PageBuddy */
2a7684a2
WF
293 return;
294 }
295
d936cf9b
HD
296 /*
297 * Allow a burst of 60 reports, then keep quiet for that minute;
298 * or allow a steady drip of one report per second.
299 */
300 if (nr_shown == 60) {
301 if (time_before(jiffies, resume)) {
302 nr_unshown++;
303 goto out;
304 }
305 if (nr_unshown) {
1e9e6365
HD
306 printk(KERN_ALERT
307 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
308 nr_unshown);
309 nr_unshown = 0;
310 }
311 nr_shown = 0;
312 }
313 if (nr_shown++ == 0)
314 resume = jiffies + 60 * HZ;
315
1e9e6365 316 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 317 current->comm, page_to_pfn(page));
718a3821 318 dump_page(page);
3dc14741 319
4f31888c 320 print_modules();
1da177e4 321 dump_stack();
d936cf9b 322out:
8cc3b392 323 /* Leave bad fields for debug, except PageBuddy could make trouble */
ef2b4b95 324 reset_page_mapcount(page); /* remove PageBuddy */
9f158333 325 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
326}
327
1da177e4
LT
328/*
329 * Higher-order pages are called "compound pages". They are structured thusly:
330 *
331 * The first PAGE_SIZE page is called the "head page".
332 *
333 * The remaining PAGE_SIZE pages are called "tail pages".
334 *
6416b9fa
WSH
335 * All pages have PG_compound set. All tail pages have their ->first_page
336 * pointing at the head page.
1da177e4 337 *
41d78ba5
HD
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
1da177e4 341 */
d98c7a09
HD
342
343static void free_compound_page(struct page *page)
344{
d85f3385 345 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
346}
347
01ad1c08 348void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
349{
350 int i;
351 int nr_pages = 1 << order;
352
353 set_compound_page_dtor(page, free_compound_page);
354 set_compound_order(page, order);
355 __SetPageHead(page);
356 for (i = 1; i < nr_pages; i++) {
357 struct page *p = page + i;
18229df5 358 __SetPageTail(p);
58a84aa9 359 set_page_count(p, 0);
18229df5
AW
360 p->first_page = page;
361 }
362}
363
59ff4216 364/* update __split_huge_page_refcount if you change this function */
8cc3b392 365static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
366{
367 int i;
368 int nr_pages = 1 << order;
8cc3b392 369 int bad = 0;
1da177e4 370
8cc3b392
HD
371 if (unlikely(compound_order(page) != order) ||
372 unlikely(!PageHead(page))) {
224abf92 373 bad_page(page);
8cc3b392
HD
374 bad++;
375 }
1da177e4 376
6d777953 377 __ClearPageHead(page);
8cc3b392 378
18229df5
AW
379 for (i = 1; i < nr_pages; i++) {
380 struct page *p = page + i;
1da177e4 381
e713a21d 382 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 383 bad_page(page);
8cc3b392
HD
384 bad++;
385 }
d85f3385 386 __ClearPageTail(p);
1da177e4 387 }
8cc3b392
HD
388
389 return bad;
1da177e4 390}
1da177e4 391
17cf4406
NP
392static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
393{
394 int i;
395
6626c5d5
AM
396 /*
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
399 */
725d704e 400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
401 for (i = 0; i < (1 << order); i++)
402 clear_highpage(page + i);
403}
404
c0a32fc5
SG
405#ifdef CONFIG_DEBUG_PAGEALLOC
406unsigned int _debug_guardpage_minorder;
407
408static int __init debug_guardpage_minorder_setup(char *buf)
409{
410 unsigned long res;
411
412 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
413 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
414 return 0;
415 }
416 _debug_guardpage_minorder = res;
417 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
418 return 0;
419}
420__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
421
422static inline void set_page_guard_flag(struct page *page)
423{
424 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
425}
426
427static inline void clear_page_guard_flag(struct page *page)
428{
429 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
430}
431#else
432static inline void set_page_guard_flag(struct page *page) { }
433static inline void clear_page_guard_flag(struct page *page) { }
434#endif
435
6aa3001b
AM
436static inline void set_page_order(struct page *page, int order)
437{
4c21e2f2 438 set_page_private(page, order);
676165a8 439 __SetPageBuddy(page);
1da177e4
LT
440}
441
442static inline void rmv_page_order(struct page *page)
443{
676165a8 444 __ClearPageBuddy(page);
4c21e2f2 445 set_page_private(page, 0);
1da177e4
LT
446}
447
448/*
449 * Locate the struct page for both the matching buddy in our
450 * pair (buddy1) and the combined O(n+1) page they form (page).
451 *
452 * 1) Any buddy B1 will have an order O twin B2 which satisfies
453 * the following equation:
454 * B2 = B1 ^ (1 << O)
455 * For example, if the starting buddy (buddy2) is #8 its order
456 * 1 buddy is #10:
457 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
458 *
459 * 2) Any buddy B will have an order O+1 parent P which
460 * satisfies the following equation:
461 * P = B & ~(1 << O)
462 *
d6e05edc 463 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 464 */
1da177e4 465static inline unsigned long
43506fad 466__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 467{
43506fad 468 return page_idx ^ (1 << order);
1da177e4
LT
469}
470
471/*
472 * This function checks whether a page is free && is the buddy
473 * we can do coalesce a page and its buddy if
13e7444b 474 * (a) the buddy is not in a hole &&
676165a8 475 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
476 * (c) a page and its buddy have the same order &&
477 * (d) a page and its buddy are in the same zone.
676165a8 478 *
5f24ce5f
AA
479 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
480 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 481 *
676165a8 482 * For recording page's order, we use page_private(page).
1da177e4 483 */
cb2b95e1
AW
484static inline int page_is_buddy(struct page *page, struct page *buddy,
485 int order)
1da177e4 486{
14e07298 487 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 488 return 0;
13e7444b 489
cb2b95e1
AW
490 if (page_zone_id(page) != page_zone_id(buddy))
491 return 0;
492
c0a32fc5
SG
493 if (page_is_guard(buddy) && page_order(buddy) == order) {
494 VM_BUG_ON(page_count(buddy) != 0);
495 return 1;
496 }
497
cb2b95e1 498 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 499 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 500 return 1;
676165a8 501 }
6aa3001b 502 return 0;
1da177e4
LT
503}
504
505/*
506 * Freeing function for a buddy system allocator.
507 *
508 * The concept of a buddy system is to maintain direct-mapped table
509 * (containing bit values) for memory blocks of various "orders".
510 * The bottom level table contains the map for the smallest allocatable
511 * units of memory (here, pages), and each level above it describes
512 * pairs of units from the levels below, hence, "buddies".
513 * At a high level, all that happens here is marking the table entry
514 * at the bottom level available, and propagating the changes upward
515 * as necessary, plus some accounting needed to play nicely with other
516 * parts of the VM system.
517 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 518 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 519 * order is recorded in page_private(page) field.
1da177e4 520 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
521 * other. That is, if we allocate a small block, and both were
522 * free, the remainder of the region must be split into blocks.
1da177e4 523 * If a block is freed, and its buddy is also free, then this
5f63b720 524 * triggers coalescing into a block of larger size.
1da177e4
LT
525 *
526 * -- wli
527 */
528
48db57f8 529static inline void __free_one_page(struct page *page,
ed0ae21d
MG
530 struct zone *zone, unsigned int order,
531 int migratetype)
1da177e4
LT
532{
533 unsigned long page_idx;
6dda9d55 534 unsigned long combined_idx;
43506fad 535 unsigned long uninitialized_var(buddy_idx);
6dda9d55 536 struct page *buddy;
1da177e4 537
224abf92 538 if (unlikely(PageCompound(page)))
8cc3b392
HD
539 if (unlikely(destroy_compound_page(page, order)))
540 return;
1da177e4 541
ed0ae21d
MG
542 VM_BUG_ON(migratetype == -1);
543
1da177e4
LT
544 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
545
f2260e6b 546 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 547 VM_BUG_ON(bad_range(zone, page));
1da177e4 548
1da177e4 549 while (order < MAX_ORDER-1) {
43506fad
KC
550 buddy_idx = __find_buddy_index(page_idx, order);
551 buddy = page + (buddy_idx - page_idx);
cb2b95e1 552 if (!page_is_buddy(page, buddy, order))
3c82d0ce 553 break;
c0a32fc5
SG
554 /*
555 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
556 * merge with it and move up one order.
557 */
558 if (page_is_guard(buddy)) {
559 clear_page_guard_flag(buddy);
560 set_page_private(page, 0);
561 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
562 } else {
563 list_del(&buddy->lru);
564 zone->free_area[order].nr_free--;
565 rmv_page_order(buddy);
566 }
43506fad 567 combined_idx = buddy_idx & page_idx;
1da177e4
LT
568 page = page + (combined_idx - page_idx);
569 page_idx = combined_idx;
570 order++;
571 }
572 set_page_order(page, order);
6dda9d55
CZ
573
574 /*
575 * If this is not the largest possible page, check if the buddy
576 * of the next-highest order is free. If it is, it's possible
577 * that pages are being freed that will coalesce soon. In case,
578 * that is happening, add the free page to the tail of the list
579 * so it's less likely to be used soon and more likely to be merged
580 * as a higher order page
581 */
b7f50cfa 582 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 583 struct page *higher_page, *higher_buddy;
43506fad
KC
584 combined_idx = buddy_idx & page_idx;
585 higher_page = page + (combined_idx - page_idx);
586 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 587 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
588 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
589 list_add_tail(&page->lru,
590 &zone->free_area[order].free_list[migratetype]);
591 goto out;
592 }
593 }
594
595 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
596out:
1da177e4
LT
597 zone->free_area[order].nr_free++;
598}
599
092cead6
KM
600/*
601 * free_page_mlock() -- clean up attempts to free and mlocked() page.
602 * Page should not be on lru, so no need to fix that up.
603 * free_pages_check() will verify...
604 */
605static inline void free_page_mlock(struct page *page)
606{
092cead6
KM
607 __dec_zone_page_state(page, NR_MLOCK);
608 __count_vm_event(UNEVICTABLE_MLOCKFREED);
609}
092cead6 610
224abf92 611static inline int free_pages_check(struct page *page)
1da177e4 612{
92be2e33
NP
613 if (unlikely(page_mapcount(page) |
614 (page->mapping != NULL) |
a3af9c38 615 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
616 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
617 (mem_cgroup_bad_page_check(page)))) {
224abf92 618 bad_page(page);
79f4b7bf 619 return 1;
8cc3b392 620 }
79f4b7bf
HD
621 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
622 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
623 return 0;
1da177e4
LT
624}
625
626/*
5f8dcc21 627 * Frees a number of pages from the PCP lists
1da177e4 628 * Assumes all pages on list are in same zone, and of same order.
207f36ee 629 * count is the number of pages to free.
1da177e4
LT
630 *
631 * If the zone was previously in an "all pages pinned" state then look to
632 * see if this freeing clears that state.
633 *
634 * And clear the zone's pages_scanned counter, to hold off the "all pages are
635 * pinned" detection logic.
636 */
5f8dcc21
MG
637static void free_pcppages_bulk(struct zone *zone, int count,
638 struct per_cpu_pages *pcp)
1da177e4 639{
5f8dcc21 640 int migratetype = 0;
a6f9edd6 641 int batch_free = 0;
72853e29 642 int to_free = count;
5f8dcc21 643
c54ad30c 644 spin_lock(&zone->lock);
93e4a89a 645 zone->all_unreclaimable = 0;
1da177e4 646 zone->pages_scanned = 0;
f2260e6b 647
72853e29 648 while (to_free) {
48db57f8 649 struct page *page;
5f8dcc21
MG
650 struct list_head *list;
651
652 /*
a6f9edd6
MG
653 * Remove pages from lists in a round-robin fashion. A
654 * batch_free count is maintained that is incremented when an
655 * empty list is encountered. This is so more pages are freed
656 * off fuller lists instead of spinning excessively around empty
657 * lists
5f8dcc21
MG
658 */
659 do {
a6f9edd6 660 batch_free++;
5f8dcc21
MG
661 if (++migratetype == MIGRATE_PCPTYPES)
662 migratetype = 0;
663 list = &pcp->lists[migratetype];
664 } while (list_empty(list));
48db57f8 665
1d16871d
NK
666 /* This is the only non-empty list. Free them all. */
667 if (batch_free == MIGRATE_PCPTYPES)
668 batch_free = to_free;
669
a6f9edd6 670 do {
770c8aaa
BZ
671 int mt; /* migratetype of the to-be-freed page */
672
a6f9edd6
MG
673 page = list_entry(list->prev, struct page, lru);
674 /* must delete as __free_one_page list manipulates */
675 list_del(&page->lru);
770c8aaa 676 mt = page_private(page);
a7016235 677 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
770c8aaa
BZ
678 __free_one_page(page, zone, 0, mt);
679 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 680 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 681 }
72853e29 682 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
c54ad30c 683 spin_unlock(&zone->lock);
1da177e4
LT
684}
685
ed0ae21d
MG
686static void free_one_page(struct zone *zone, struct page *page, int order,
687 int migratetype)
1da177e4 688{
006d22d9 689 spin_lock(&zone->lock);
93e4a89a 690 zone->all_unreclaimable = 0;
006d22d9 691 zone->pages_scanned = 0;
f2260e6b 692
ed0ae21d 693 __free_one_page(page, zone, order, migratetype);
2139cbe6
BZ
694 if (unlikely(migratetype != MIGRATE_ISOLATE))
695 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
006d22d9 696 spin_unlock(&zone->lock);
48db57f8
NP
697}
698
ec95f53a 699static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 700{
1da177e4 701 int i;
8cc3b392 702 int bad = 0;
1da177e4 703
b413d48a 704 trace_mm_page_free(page, order);
b1eeab67
VN
705 kmemcheck_free_shadow(page, order);
706
8dd60a3a
AA
707 if (PageAnon(page))
708 page->mapping = NULL;
709 for (i = 0; i < (1 << order); i++)
710 bad += free_pages_check(page + i);
8cc3b392 711 if (bad)
ec95f53a 712 return false;
689bcebf 713
3ac7fe5a 714 if (!PageHighMem(page)) {
9858db50 715 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
716 debug_check_no_obj_freed(page_address(page),
717 PAGE_SIZE << order);
718 }
dafb1367 719 arch_free_page(page, order);
48db57f8 720 kernel_map_pages(page, 1 << order, 0);
dafb1367 721
ec95f53a
KM
722 return true;
723}
724
725static void __free_pages_ok(struct page *page, unsigned int order)
726{
727 unsigned long flags;
728 int wasMlocked = __TestClearPageMlocked(page);
729
730 if (!free_pages_prepare(page, order))
731 return;
732
c54ad30c 733 local_irq_save(flags);
c277331d 734 if (unlikely(wasMlocked))
da456f14 735 free_page_mlock(page);
f8891e5e 736 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
737 free_one_page(page_zone(page), page, order,
738 get_pageblock_migratetype(page));
c54ad30c 739 local_irq_restore(flags);
1da177e4
LT
740}
741
af370fb8 742void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 743{
c3993076
JW
744 unsigned int nr_pages = 1 << order;
745 unsigned int loop;
a226f6c8 746
c3993076
JW
747 prefetchw(page);
748 for (loop = 0; loop < nr_pages; loop++) {
749 struct page *p = &page[loop];
750
751 if (loop + 1 < nr_pages)
752 prefetchw(p + 1);
753 __ClearPageReserved(p);
754 set_page_count(p, 0);
a226f6c8 755 }
c3993076
JW
756
757 set_page_refcounted(page);
758 __free_pages(page, order);
a226f6c8
DH
759}
760
47118af0
MN
761#ifdef CONFIG_CMA
762/* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
763void __init init_cma_reserved_pageblock(struct page *page)
764{
765 unsigned i = pageblock_nr_pages;
766 struct page *p = page;
767
768 do {
769 __ClearPageReserved(p);
770 set_page_count(p, 0);
771 } while (++p, --i);
772
773 set_page_refcounted(page);
774 set_pageblock_migratetype(page, MIGRATE_CMA);
775 __free_pages(page, pageblock_order);
776 totalram_pages += pageblock_nr_pages;
777}
778#endif
1da177e4
LT
779
780/*
781 * The order of subdivision here is critical for the IO subsystem.
782 * Please do not alter this order without good reasons and regression
783 * testing. Specifically, as large blocks of memory are subdivided,
784 * the order in which smaller blocks are delivered depends on the order
785 * they're subdivided in this function. This is the primary factor
786 * influencing the order in which pages are delivered to the IO
787 * subsystem according to empirical testing, and this is also justified
788 * by considering the behavior of a buddy system containing a single
789 * large block of memory acted on by a series of small allocations.
790 * This behavior is a critical factor in sglist merging's success.
791 *
792 * -- wli
793 */
085cc7d5 794static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
795 int low, int high, struct free_area *area,
796 int migratetype)
1da177e4
LT
797{
798 unsigned long size = 1 << high;
799
800 while (high > low) {
801 area--;
802 high--;
803 size >>= 1;
725d704e 804 VM_BUG_ON(bad_range(zone, &page[size]));
c0a32fc5
SG
805
806#ifdef CONFIG_DEBUG_PAGEALLOC
807 if (high < debug_guardpage_minorder()) {
808 /*
809 * Mark as guard pages (or page), that will allow to
810 * merge back to allocator when buddy will be freed.
811 * Corresponding page table entries will not be touched,
812 * pages will stay not present in virtual address space
813 */
814 INIT_LIST_HEAD(&page[size].lru);
815 set_page_guard_flag(&page[size]);
816 set_page_private(&page[size], high);
817 /* Guard pages are not available for any usage */
818 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high));
819 continue;
820 }
821#endif
b2a0ac88 822 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
823 area->nr_free++;
824 set_page_order(&page[size], high);
825 }
1da177e4
LT
826}
827
1da177e4
LT
828/*
829 * This page is about to be returned from the page allocator
830 */
2a7684a2 831static inline int check_new_page(struct page *page)
1da177e4 832{
92be2e33
NP
833 if (unlikely(page_mapcount(page) |
834 (page->mapping != NULL) |
a3af9c38 835 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
836 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
837 (mem_cgroup_bad_page_check(page)))) {
224abf92 838 bad_page(page);
689bcebf 839 return 1;
8cc3b392 840 }
2a7684a2
WF
841 return 0;
842}
843
844static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
845{
846 int i;
847
848 for (i = 0; i < (1 << order); i++) {
849 struct page *p = page + i;
850 if (unlikely(check_new_page(p)))
851 return 1;
852 }
689bcebf 853
4c21e2f2 854 set_page_private(page, 0);
7835e98b 855 set_page_refcounted(page);
cc102509
NP
856
857 arch_alloc_page(page, order);
1da177e4 858 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
859
860 if (gfp_flags & __GFP_ZERO)
861 prep_zero_page(page, order, gfp_flags);
862
863 if (order && (gfp_flags & __GFP_COMP))
864 prep_compound_page(page, order);
865
689bcebf 866 return 0;
1da177e4
LT
867}
868
56fd56b8
MG
869/*
870 * Go through the free lists for the given migratetype and remove
871 * the smallest available page from the freelists
872 */
728ec980
MG
873static inline
874struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
875 int migratetype)
876{
877 unsigned int current_order;
878 struct free_area * area;
879 struct page *page;
880
881 /* Find a page of the appropriate size in the preferred list */
882 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
883 area = &(zone->free_area[current_order]);
884 if (list_empty(&area->free_list[migratetype]))
885 continue;
886
887 page = list_entry(area->free_list[migratetype].next,
888 struct page, lru);
889 list_del(&page->lru);
890 rmv_page_order(page);
891 area->nr_free--;
56fd56b8
MG
892 expand(zone, page, order, current_order, area, migratetype);
893 return page;
894 }
895
896 return NULL;
897}
898
899
b2a0ac88
MG
900/*
901 * This array describes the order lists are fallen back to when
902 * the free lists for the desirable migrate type are depleted
903 */
47118af0
MN
904static int fallbacks[MIGRATE_TYPES][4] = {
905 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
906 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
907#ifdef CONFIG_CMA
908 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
909 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
910#else
911 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
912#endif
6d4a4916
MN
913 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
914 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
915};
916
c361be55
MG
917/*
918 * Move the free pages in a range to the free lists of the requested type.
d9c23400 919 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
920 * boundary. If alignment is required, use move_freepages_block()
921 */
b69a7288
AB
922static int move_freepages(struct zone *zone,
923 struct page *start_page, struct page *end_page,
924 int migratetype)
c361be55
MG
925{
926 struct page *page;
927 unsigned long order;
d100313f 928 int pages_moved = 0;
c361be55
MG
929
930#ifndef CONFIG_HOLES_IN_ZONE
931 /*
932 * page_zone is not safe to call in this context when
933 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
934 * anyway as we check zone boundaries in move_freepages_block().
935 * Remove at a later date when no bug reports exist related to
ac0e5b7a 936 * grouping pages by mobility
c361be55
MG
937 */
938 BUG_ON(page_zone(start_page) != page_zone(end_page));
939#endif
940
941 for (page = start_page; page <= end_page;) {
344c790e
AL
942 /* Make sure we are not inadvertently changing nodes */
943 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
944
c361be55
MG
945 if (!pfn_valid_within(page_to_pfn(page))) {
946 page++;
947 continue;
948 }
949
950 if (!PageBuddy(page)) {
951 page++;
952 continue;
953 }
954
955 order = page_order(page);
84be48d8
KS
956 list_move(&page->lru,
957 &zone->free_area[order].free_list[migratetype]);
c361be55 958 page += 1 << order;
d100313f 959 pages_moved += 1 << order;
c361be55
MG
960 }
961
d100313f 962 return pages_moved;
c361be55
MG
963}
964
ee6f509c 965int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 966 int migratetype)
c361be55
MG
967{
968 unsigned long start_pfn, end_pfn;
969 struct page *start_page, *end_page;
970
971 start_pfn = page_to_pfn(page);
d9c23400 972 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 973 start_page = pfn_to_page(start_pfn);
d9c23400
MG
974 end_page = start_page + pageblock_nr_pages - 1;
975 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
976
977 /* Do not cross zone boundaries */
978 if (start_pfn < zone->zone_start_pfn)
979 start_page = page;
980 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
981 return 0;
982
983 return move_freepages(zone, start_page, end_page, migratetype);
984}
985
2f66a68f
MG
986static void change_pageblock_range(struct page *pageblock_page,
987 int start_order, int migratetype)
988{
989 int nr_pageblocks = 1 << (start_order - pageblock_order);
990
991 while (nr_pageblocks--) {
992 set_pageblock_migratetype(pageblock_page, migratetype);
993 pageblock_page += pageblock_nr_pages;
994 }
995}
996
b2a0ac88 997/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
998static inline struct page *
999__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
1000{
1001 struct free_area * area;
1002 int current_order;
1003 struct page *page;
1004 int migratetype, i;
1005
1006 /* Find the largest possible block of pages in the other list */
1007 for (current_order = MAX_ORDER-1; current_order >= order;
1008 --current_order) {
6d4a4916 1009 for (i = 0;; i++) {
b2a0ac88
MG
1010 migratetype = fallbacks[start_migratetype][i];
1011
56fd56b8
MG
1012 /* MIGRATE_RESERVE handled later if necessary */
1013 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1014 break;
e010487d 1015
b2a0ac88
MG
1016 area = &(zone->free_area[current_order]);
1017 if (list_empty(&area->free_list[migratetype]))
1018 continue;
1019
1020 page = list_entry(area->free_list[migratetype].next,
1021 struct page, lru);
1022 area->nr_free--;
1023
1024 /*
c361be55 1025 * If breaking a large block of pages, move all free
46dafbca
MG
1026 * pages to the preferred allocation list. If falling
1027 * back for a reclaimable kernel allocation, be more
25985edc 1028 * aggressive about taking ownership of free pages
47118af0
MN
1029 *
1030 * On the other hand, never change migration
1031 * type of MIGRATE_CMA pageblocks nor move CMA
1032 * pages on different free lists. We don't
1033 * want unmovable pages to be allocated from
1034 * MIGRATE_CMA areas.
b2a0ac88 1035 */
47118af0
MN
1036 if (!is_migrate_cma(migratetype) &&
1037 (unlikely(current_order >= pageblock_order / 2) ||
1038 start_migratetype == MIGRATE_RECLAIMABLE ||
1039 page_group_by_mobility_disabled)) {
1040 int pages;
46dafbca
MG
1041 pages = move_freepages_block(zone, page,
1042 start_migratetype);
1043
1044 /* Claim the whole block if over half of it is free */
dd5d241e
MG
1045 if (pages >= (1 << (pageblock_order-1)) ||
1046 page_group_by_mobility_disabled)
46dafbca
MG
1047 set_pageblock_migratetype(page,
1048 start_migratetype);
1049
b2a0ac88 1050 migratetype = start_migratetype;
c361be55 1051 }
b2a0ac88
MG
1052
1053 /* Remove the page from the freelists */
1054 list_del(&page->lru);
1055 rmv_page_order(page);
b2a0ac88 1056
2f66a68f 1057 /* Take ownership for orders >= pageblock_order */
47118af0
MN
1058 if (current_order >= pageblock_order &&
1059 !is_migrate_cma(migratetype))
2f66a68f 1060 change_pageblock_range(page, current_order,
b2a0ac88
MG
1061 start_migratetype);
1062
47118af0
MN
1063 expand(zone, page, order, current_order, area,
1064 is_migrate_cma(migratetype)
1065 ? migratetype : start_migratetype);
e0fff1bd
MG
1066
1067 trace_mm_page_alloc_extfrag(page, order, current_order,
1068 start_migratetype, migratetype);
1069
b2a0ac88
MG
1070 return page;
1071 }
1072 }
1073
728ec980 1074 return NULL;
b2a0ac88
MG
1075}
1076
56fd56b8 1077/*
1da177e4
LT
1078 * Do the hard work of removing an element from the buddy allocator.
1079 * Call me with the zone->lock already held.
1080 */
b2a0ac88
MG
1081static struct page *__rmqueue(struct zone *zone, unsigned int order,
1082 int migratetype)
1da177e4 1083{
1da177e4
LT
1084 struct page *page;
1085
728ec980 1086retry_reserve:
56fd56b8 1087 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1088
728ec980 1089 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1090 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1091
728ec980
MG
1092 /*
1093 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1094 * is used because __rmqueue_smallest is an inline function
1095 * and we want just one call site
1096 */
1097 if (!page) {
1098 migratetype = MIGRATE_RESERVE;
1099 goto retry_reserve;
1100 }
1101 }
1102
0d3d062a 1103 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1104 return page;
1da177e4
LT
1105}
1106
5f63b720 1107/*
1da177e4
LT
1108 * Obtain a specified number of elements from the buddy allocator, all under
1109 * a single hold of the lock, for efficiency. Add them to the supplied list.
1110 * Returns the number of new pages which were placed at *list.
1111 */
5f63b720 1112static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1113 unsigned long count, struct list_head *list,
e084b2d9 1114 int migratetype, int cold)
1da177e4 1115{
47118af0 1116 int mt = migratetype, i;
5f63b720 1117
c54ad30c 1118 spin_lock(&zone->lock);
1da177e4 1119 for (i = 0; i < count; ++i) {
b2a0ac88 1120 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1121 if (unlikely(page == NULL))
1da177e4 1122 break;
81eabcbe
MG
1123
1124 /*
1125 * Split buddy pages returned by expand() are received here
1126 * in physical page order. The page is added to the callers and
1127 * list and the list head then moves forward. From the callers
1128 * perspective, the linked list is ordered by page number in
1129 * some conditions. This is useful for IO devices that can
1130 * merge IO requests if the physical pages are ordered
1131 * properly.
1132 */
e084b2d9
MG
1133 if (likely(cold == 0))
1134 list_add(&page->lru, list);
1135 else
1136 list_add_tail(&page->lru, list);
47118af0
MN
1137 if (IS_ENABLED(CONFIG_CMA)) {
1138 mt = get_pageblock_migratetype(page);
1139 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1140 mt = migratetype;
1141 }
1142 set_page_private(page, mt);
81eabcbe 1143 list = &page->lru;
1da177e4 1144 }
f2260e6b 1145 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1146 spin_unlock(&zone->lock);
085cc7d5 1147 return i;
1da177e4
LT
1148}
1149
4ae7c039 1150#ifdef CONFIG_NUMA
8fce4d8e 1151/*
4037d452
CL
1152 * Called from the vmstat counter updater to drain pagesets of this
1153 * currently executing processor on remote nodes after they have
1154 * expired.
1155 *
879336c3
CL
1156 * Note that this function must be called with the thread pinned to
1157 * a single processor.
8fce4d8e 1158 */
4037d452 1159void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1160{
4ae7c039 1161 unsigned long flags;
4037d452 1162 int to_drain;
4ae7c039 1163
4037d452
CL
1164 local_irq_save(flags);
1165 if (pcp->count >= pcp->batch)
1166 to_drain = pcp->batch;
1167 else
1168 to_drain = pcp->count;
2a13515c
KM
1169 if (to_drain > 0) {
1170 free_pcppages_bulk(zone, to_drain, pcp);
1171 pcp->count -= to_drain;
1172 }
4037d452 1173 local_irq_restore(flags);
4ae7c039
CL
1174}
1175#endif
1176
9f8f2172
CL
1177/*
1178 * Drain pages of the indicated processor.
1179 *
1180 * The processor must either be the current processor and the
1181 * thread pinned to the current processor or a processor that
1182 * is not online.
1183 */
1184static void drain_pages(unsigned int cpu)
1da177e4 1185{
c54ad30c 1186 unsigned long flags;
1da177e4 1187 struct zone *zone;
1da177e4 1188
ee99c71c 1189 for_each_populated_zone(zone) {
1da177e4 1190 struct per_cpu_pageset *pset;
3dfa5721 1191 struct per_cpu_pages *pcp;
1da177e4 1192
99dcc3e5
CL
1193 local_irq_save(flags);
1194 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1195
1196 pcp = &pset->pcp;
2ff754fa
DR
1197 if (pcp->count) {
1198 free_pcppages_bulk(zone, pcp->count, pcp);
1199 pcp->count = 0;
1200 }
3dfa5721 1201 local_irq_restore(flags);
1da177e4
LT
1202 }
1203}
1da177e4 1204
9f8f2172
CL
1205/*
1206 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1207 */
1208void drain_local_pages(void *arg)
1209{
1210 drain_pages(smp_processor_id());
1211}
1212
1213/*
74046494
GBY
1214 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1215 *
1216 * Note that this code is protected against sending an IPI to an offline
1217 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1218 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1219 * nothing keeps CPUs from showing up after we populated the cpumask and
1220 * before the call to on_each_cpu_mask().
9f8f2172
CL
1221 */
1222void drain_all_pages(void)
1223{
74046494
GBY
1224 int cpu;
1225 struct per_cpu_pageset *pcp;
1226 struct zone *zone;
1227
1228 /*
1229 * Allocate in the BSS so we wont require allocation in
1230 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1231 */
1232 static cpumask_t cpus_with_pcps;
1233
1234 /*
1235 * We don't care about racing with CPU hotplug event
1236 * as offline notification will cause the notified
1237 * cpu to drain that CPU pcps and on_each_cpu_mask
1238 * disables preemption as part of its processing
1239 */
1240 for_each_online_cpu(cpu) {
1241 bool has_pcps = false;
1242 for_each_populated_zone(zone) {
1243 pcp = per_cpu_ptr(zone->pageset, cpu);
1244 if (pcp->pcp.count) {
1245 has_pcps = true;
1246 break;
1247 }
1248 }
1249 if (has_pcps)
1250 cpumask_set_cpu(cpu, &cpus_with_pcps);
1251 else
1252 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1253 }
1254 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1255}
1256
296699de 1257#ifdef CONFIG_HIBERNATION
1da177e4
LT
1258
1259void mark_free_pages(struct zone *zone)
1260{
f623f0db
RW
1261 unsigned long pfn, max_zone_pfn;
1262 unsigned long flags;
b2a0ac88 1263 int order, t;
1da177e4
LT
1264 struct list_head *curr;
1265
1266 if (!zone->spanned_pages)
1267 return;
1268
1269 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1270
1271 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1272 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1273 if (pfn_valid(pfn)) {
1274 struct page *page = pfn_to_page(pfn);
1275
7be98234
RW
1276 if (!swsusp_page_is_forbidden(page))
1277 swsusp_unset_page_free(page);
f623f0db 1278 }
1da177e4 1279
b2a0ac88
MG
1280 for_each_migratetype_order(order, t) {
1281 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1282 unsigned long i;
1da177e4 1283
f623f0db
RW
1284 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1285 for (i = 0; i < (1UL << order); i++)
7be98234 1286 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1287 }
b2a0ac88 1288 }
1da177e4
LT
1289 spin_unlock_irqrestore(&zone->lock, flags);
1290}
e2c55dc8 1291#endif /* CONFIG_PM */
1da177e4 1292
1da177e4
LT
1293/*
1294 * Free a 0-order page
fc91668e 1295 * cold == 1 ? free a cold page : free a hot page
1da177e4 1296 */
fc91668e 1297void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1298{
1299 struct zone *zone = page_zone(page);
1300 struct per_cpu_pages *pcp;
1301 unsigned long flags;
5f8dcc21 1302 int migratetype;
451ea25d 1303 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1304
ec95f53a 1305 if (!free_pages_prepare(page, 0))
689bcebf
HD
1306 return;
1307
5f8dcc21
MG
1308 migratetype = get_pageblock_migratetype(page);
1309 set_page_private(page, migratetype);
1da177e4 1310 local_irq_save(flags);
c277331d 1311 if (unlikely(wasMlocked))
da456f14 1312 free_page_mlock(page);
f8891e5e 1313 __count_vm_event(PGFREE);
da456f14 1314
5f8dcc21
MG
1315 /*
1316 * We only track unmovable, reclaimable and movable on pcp lists.
1317 * Free ISOLATE pages back to the allocator because they are being
1318 * offlined but treat RESERVE as movable pages so we can get those
1319 * areas back if necessary. Otherwise, we may have to free
1320 * excessively into the page allocator
1321 */
1322 if (migratetype >= MIGRATE_PCPTYPES) {
1323 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1324 free_one_page(zone, page, 0, migratetype);
1325 goto out;
1326 }
1327 migratetype = MIGRATE_MOVABLE;
1328 }
1329
99dcc3e5 1330 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1331 if (cold)
5f8dcc21 1332 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1333 else
5f8dcc21 1334 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1335 pcp->count++;
48db57f8 1336 if (pcp->count >= pcp->high) {
5f8dcc21 1337 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1338 pcp->count -= pcp->batch;
1339 }
5f8dcc21
MG
1340
1341out:
1da177e4 1342 local_irq_restore(flags);
1da177e4
LT
1343}
1344
cc59850e
KK
1345/*
1346 * Free a list of 0-order pages
1347 */
1348void free_hot_cold_page_list(struct list_head *list, int cold)
1349{
1350 struct page *page, *next;
1351
1352 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1353 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1354 free_hot_cold_page(page, cold);
1355 }
1356}
1357
8dfcc9ba
NP
1358/*
1359 * split_page takes a non-compound higher-order page, and splits it into
1360 * n (1<<order) sub-pages: page[0..n]
1361 * Each sub-page must be freed individually.
1362 *
1363 * Note: this is probably too low level an operation for use in drivers.
1364 * Please consult with lkml before using this in your driver.
1365 */
1366void split_page(struct page *page, unsigned int order)
1367{
1368 int i;
1369
725d704e
NP
1370 VM_BUG_ON(PageCompound(page));
1371 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1372
1373#ifdef CONFIG_KMEMCHECK
1374 /*
1375 * Split shadow pages too, because free(page[0]) would
1376 * otherwise free the whole shadow.
1377 */
1378 if (kmemcheck_page_is_tracked(page))
1379 split_page(virt_to_page(page[0].shadow), order);
1380#endif
1381
7835e98b
NP
1382 for (i = 1; i < (1 << order); i++)
1383 set_page_refcounted(page + i);
8dfcc9ba 1384}
8dfcc9ba 1385
748446bb 1386/*
1fb3f8ca
MG
1387 * Similar to the split_page family of functions except that the page
1388 * required at the given order and being isolated now to prevent races
1389 * with parallel allocators
748446bb 1390 */
1fb3f8ca 1391int capture_free_page(struct page *page, int alloc_order, int migratetype)
748446bb
MG
1392{
1393 unsigned int order;
1394 unsigned long watermark;
1395 struct zone *zone;
2139cbe6 1396 int mt;
748446bb
MG
1397
1398 BUG_ON(!PageBuddy(page));
1399
1400 zone = page_zone(page);
1401 order = page_order(page);
1402
1403 /* Obey watermarks as if the page was being allocated */
1404 watermark = low_wmark_pages(zone) + (1 << order);
1405 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1406 return 0;
1407
1408 /* Remove page from free list */
1409 list_del(&page->lru);
1410 zone->free_area[order].nr_free--;
1411 rmv_page_order(page);
2139cbe6
BZ
1412
1413 mt = get_pageblock_migratetype(page);
1414 if (unlikely(mt != MIGRATE_ISOLATE))
1415 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
748446bb 1416
1fb3f8ca
MG
1417 if (alloc_order != order)
1418 expand(zone, page, alloc_order, order,
1419 &zone->free_area[order], migratetype);
748446bb 1420
1fb3f8ca 1421 /* Set the pageblock if the captured page is at least a pageblock */
748446bb
MG
1422 if (order >= pageblock_order - 1) {
1423 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1424 for (; page < endpage; page += pageblock_nr_pages) {
1425 int mt = get_pageblock_migratetype(page);
1426 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1427 set_pageblock_migratetype(page,
1428 MIGRATE_MOVABLE);
1429 }
748446bb
MG
1430 }
1431
1fb3f8ca
MG
1432 return 1UL << order;
1433}
1434
1435/*
1436 * Similar to split_page except the page is already free. As this is only
1437 * being used for migration, the migratetype of the block also changes.
1438 * As this is called with interrupts disabled, the caller is responsible
1439 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1440 * are enabled.
1441 *
1442 * Note: this is probably too low level an operation for use in drivers.
1443 * Please consult with lkml before using this in your driver.
1444 */
1445int split_free_page(struct page *page)
1446{
1447 unsigned int order;
1448 int nr_pages;
1449
1450 BUG_ON(!PageBuddy(page));
1451 order = page_order(page);
1452
1453 nr_pages = capture_free_page(page, order, 0);
1454 if (!nr_pages)
1455 return 0;
1456
1457 /* Split into individual pages */
1458 set_page_refcounted(page);
1459 split_page(page, order);
1460 return nr_pages;
748446bb
MG
1461}
1462
1da177e4
LT
1463/*
1464 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1465 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1466 * or two.
1467 */
0a15c3e9
MG
1468static inline
1469struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1470 struct zone *zone, int order, gfp_t gfp_flags,
1471 int migratetype)
1da177e4
LT
1472{
1473 unsigned long flags;
689bcebf 1474 struct page *page;
1da177e4
LT
1475 int cold = !!(gfp_flags & __GFP_COLD);
1476
689bcebf 1477again:
48db57f8 1478 if (likely(order == 0)) {
1da177e4 1479 struct per_cpu_pages *pcp;
5f8dcc21 1480 struct list_head *list;
1da177e4 1481
1da177e4 1482 local_irq_save(flags);
99dcc3e5
CL
1483 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1484 list = &pcp->lists[migratetype];
5f8dcc21 1485 if (list_empty(list)) {
535131e6 1486 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1487 pcp->batch, list,
e084b2d9 1488 migratetype, cold);
5f8dcc21 1489 if (unlikely(list_empty(list)))
6fb332fa 1490 goto failed;
535131e6 1491 }
b92a6edd 1492
5f8dcc21
MG
1493 if (cold)
1494 page = list_entry(list->prev, struct page, lru);
1495 else
1496 page = list_entry(list->next, struct page, lru);
1497
b92a6edd
MG
1498 list_del(&page->lru);
1499 pcp->count--;
7fb1d9fc 1500 } else {
dab48dab
AM
1501 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1502 /*
1503 * __GFP_NOFAIL is not to be used in new code.
1504 *
1505 * All __GFP_NOFAIL callers should be fixed so that they
1506 * properly detect and handle allocation failures.
1507 *
1508 * We most definitely don't want callers attempting to
4923abf9 1509 * allocate greater than order-1 page units with
dab48dab
AM
1510 * __GFP_NOFAIL.
1511 */
4923abf9 1512 WARN_ON_ONCE(order > 1);
dab48dab 1513 }
1da177e4 1514 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1515 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1516 spin_unlock(&zone->lock);
1517 if (!page)
1518 goto failed;
6ccf80eb 1519 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1da177e4
LT
1520 }
1521
f8891e5e 1522 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1523 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1524 local_irq_restore(flags);
1da177e4 1525
725d704e 1526 VM_BUG_ON(bad_range(zone, page));
17cf4406 1527 if (prep_new_page(page, order, gfp_flags))
a74609fa 1528 goto again;
1da177e4 1529 return page;
a74609fa
NP
1530
1531failed:
1532 local_irq_restore(flags);
a74609fa 1533 return NULL;
1da177e4
LT
1534}
1535
41858966
MG
1536/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1537#define ALLOC_WMARK_MIN WMARK_MIN
1538#define ALLOC_WMARK_LOW WMARK_LOW
1539#define ALLOC_WMARK_HIGH WMARK_HIGH
1540#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1541
1542/* Mask to get the watermark bits */
1543#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1544
3148890b
NP
1545#define ALLOC_HARDER 0x10 /* try to alloc harder */
1546#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1547#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1548
933e312e
AM
1549#ifdef CONFIG_FAIL_PAGE_ALLOC
1550
b2588c4b 1551static struct {
933e312e
AM
1552 struct fault_attr attr;
1553
1554 u32 ignore_gfp_highmem;
1555 u32 ignore_gfp_wait;
54114994 1556 u32 min_order;
933e312e
AM
1557} fail_page_alloc = {
1558 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1559 .ignore_gfp_wait = 1,
1560 .ignore_gfp_highmem = 1,
54114994 1561 .min_order = 1,
933e312e
AM
1562};
1563
1564static int __init setup_fail_page_alloc(char *str)
1565{
1566 return setup_fault_attr(&fail_page_alloc.attr, str);
1567}
1568__setup("fail_page_alloc=", setup_fail_page_alloc);
1569
deaf386e 1570static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1571{
54114994 1572 if (order < fail_page_alloc.min_order)
deaf386e 1573 return false;
933e312e 1574 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1575 return false;
933e312e 1576 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1577 return false;
933e312e 1578 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1579 return false;
933e312e
AM
1580
1581 return should_fail(&fail_page_alloc.attr, 1 << order);
1582}
1583
1584#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1585
1586static int __init fail_page_alloc_debugfs(void)
1587{
f4ae40a6 1588 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1589 struct dentry *dir;
933e312e 1590
dd48c085
AM
1591 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1592 &fail_page_alloc.attr);
1593 if (IS_ERR(dir))
1594 return PTR_ERR(dir);
933e312e 1595
b2588c4b
AM
1596 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1597 &fail_page_alloc.ignore_gfp_wait))
1598 goto fail;
1599 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1600 &fail_page_alloc.ignore_gfp_highmem))
1601 goto fail;
1602 if (!debugfs_create_u32("min-order", mode, dir,
1603 &fail_page_alloc.min_order))
1604 goto fail;
1605
1606 return 0;
1607fail:
dd48c085 1608 debugfs_remove_recursive(dir);
933e312e 1609
b2588c4b 1610 return -ENOMEM;
933e312e
AM
1611}
1612
1613late_initcall(fail_page_alloc_debugfs);
1614
1615#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1616
1617#else /* CONFIG_FAIL_PAGE_ALLOC */
1618
deaf386e 1619static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1620{
deaf386e 1621 return false;
933e312e
AM
1622}
1623
1624#endif /* CONFIG_FAIL_PAGE_ALLOC */
1625
1da177e4 1626/*
88f5acf8 1627 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1628 * of the allocation.
1629 */
88f5acf8
MG
1630static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1631 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1632{
1633 /* free_pages my go negative - that's OK */
d23ad423 1634 long min = mark;
2cfed075 1635 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4
LT
1636 int o;
1637
df0a6daa 1638 free_pages -= (1 << order) - 1;
7fb1d9fc 1639 if (alloc_flags & ALLOC_HIGH)
1da177e4 1640 min -= min / 2;
7fb1d9fc 1641 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1642 min -= min / 4;
1643
2cfed075 1644 if (free_pages <= min + lowmem_reserve)
88f5acf8 1645 return false;
1da177e4
LT
1646 for (o = 0; o < order; o++) {
1647 /* At the next order, this order's pages become unavailable */
1648 free_pages -= z->free_area[o].nr_free << o;
1649
1650 /* Require fewer higher order pages to be free */
1651 min >>= 1;
1652
1653 if (free_pages <= min)
88f5acf8 1654 return false;
1da177e4 1655 }
88f5acf8
MG
1656 return true;
1657}
1658
702d1a6e
MK
1659#ifdef CONFIG_MEMORY_ISOLATION
1660static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1661{
1662 if (unlikely(zone->nr_pageblock_isolate))
1663 return zone->nr_pageblock_isolate * pageblock_nr_pages;
1664 return 0;
1665}
1666#else
1667static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1668{
1669 return 0;
1670}
1671#endif
1672
88f5acf8
MG
1673bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1674 int classzone_idx, int alloc_flags)
1675{
1676 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1677 zone_page_state(z, NR_FREE_PAGES));
1678}
1679
1680bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1681 int classzone_idx, int alloc_flags)
1682{
1683 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1684
1685 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1686 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1687
702d1a6e
MK
1688 /*
1689 * If the zone has MIGRATE_ISOLATE type free pages, we should consider
1690 * it. nr_zone_isolate_freepages is never accurate so kswapd might not
1691 * sleep although it could do so. But this is more desirable for memory
1692 * hotplug than sleeping which can cause a livelock in the direct
1693 * reclaim path.
1694 */
1695 free_pages -= nr_zone_isolate_freepages(z);
88f5acf8
MG
1696 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1697 free_pages);
1da177e4
LT
1698}
1699
9276b1bc
PJ
1700#ifdef CONFIG_NUMA
1701/*
1702 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1703 * skip over zones that are not allowed by the cpuset, or that have
1704 * been recently (in last second) found to be nearly full. See further
1705 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1706 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1707 *
1708 * If the zonelist cache is present in the passed in zonelist, then
1709 * returns a pointer to the allowed node mask (either the current
37b07e41 1710 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1711 *
1712 * If the zonelist cache is not available for this zonelist, does
1713 * nothing and returns NULL.
1714 *
1715 * If the fullzones BITMAP in the zonelist cache is stale (more than
1716 * a second since last zap'd) then we zap it out (clear its bits.)
1717 *
1718 * We hold off even calling zlc_setup, until after we've checked the
1719 * first zone in the zonelist, on the theory that most allocations will
1720 * be satisfied from that first zone, so best to examine that zone as
1721 * quickly as we can.
1722 */
1723static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1724{
1725 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1726 nodemask_t *allowednodes; /* zonelist_cache approximation */
1727
1728 zlc = zonelist->zlcache_ptr;
1729 if (!zlc)
1730 return NULL;
1731
f05111f5 1732 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1733 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1734 zlc->last_full_zap = jiffies;
1735 }
1736
1737 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1738 &cpuset_current_mems_allowed :
37b07e41 1739 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1740 return allowednodes;
1741}
1742
1743/*
1744 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1745 * if it is worth looking at further for free memory:
1746 * 1) Check that the zone isn't thought to be full (doesn't have its
1747 * bit set in the zonelist_cache fullzones BITMAP).
1748 * 2) Check that the zones node (obtained from the zonelist_cache
1749 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1750 * Return true (non-zero) if zone is worth looking at further, or
1751 * else return false (zero) if it is not.
1752 *
1753 * This check -ignores- the distinction between various watermarks,
1754 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1755 * found to be full for any variation of these watermarks, it will
1756 * be considered full for up to one second by all requests, unless
1757 * we are so low on memory on all allowed nodes that we are forced
1758 * into the second scan of the zonelist.
1759 *
1760 * In the second scan we ignore this zonelist cache and exactly
1761 * apply the watermarks to all zones, even it is slower to do so.
1762 * We are low on memory in the second scan, and should leave no stone
1763 * unturned looking for a free page.
1764 */
dd1a239f 1765static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1766 nodemask_t *allowednodes)
1767{
1768 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1769 int i; /* index of *z in zonelist zones */
1770 int n; /* node that zone *z is on */
1771
1772 zlc = zonelist->zlcache_ptr;
1773 if (!zlc)
1774 return 1;
1775
dd1a239f 1776 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1777 n = zlc->z_to_n[i];
1778
1779 /* This zone is worth trying if it is allowed but not full */
1780 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1781}
1782
1783/*
1784 * Given 'z' scanning a zonelist, set the corresponding bit in
1785 * zlc->fullzones, so that subsequent attempts to allocate a page
1786 * from that zone don't waste time re-examining it.
1787 */
dd1a239f 1788static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1789{
1790 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1791 int i; /* index of *z in zonelist zones */
1792
1793 zlc = zonelist->zlcache_ptr;
1794 if (!zlc)
1795 return;
1796
dd1a239f 1797 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1798
1799 set_bit(i, zlc->fullzones);
1800}
1801
76d3fbf8
MG
1802/*
1803 * clear all zones full, called after direct reclaim makes progress so that
1804 * a zone that was recently full is not skipped over for up to a second
1805 */
1806static void zlc_clear_zones_full(struct zonelist *zonelist)
1807{
1808 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1809
1810 zlc = zonelist->zlcache_ptr;
1811 if (!zlc)
1812 return;
1813
1814 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1815}
1816
9276b1bc
PJ
1817#else /* CONFIG_NUMA */
1818
1819static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1820{
1821 return NULL;
1822}
1823
dd1a239f 1824static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1825 nodemask_t *allowednodes)
1826{
1827 return 1;
1828}
1829
dd1a239f 1830static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1831{
1832}
76d3fbf8
MG
1833
1834static void zlc_clear_zones_full(struct zonelist *zonelist)
1835{
1836}
9276b1bc
PJ
1837#endif /* CONFIG_NUMA */
1838
7fb1d9fc 1839/*
0798e519 1840 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1841 * a page.
1842 */
1843static struct page *
19770b32 1844get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1845 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1846 struct zone *preferred_zone, int migratetype)
753ee728 1847{
dd1a239f 1848 struct zoneref *z;
7fb1d9fc 1849 struct page *page = NULL;
54a6eb5c 1850 int classzone_idx;
5117f45d 1851 struct zone *zone;
9276b1bc
PJ
1852 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1853 int zlc_active = 0; /* set if using zonelist_cache */
1854 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1855
19770b32 1856 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1857zonelist_scan:
7fb1d9fc 1858 /*
9276b1bc 1859 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1860 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1861 */
19770b32
MG
1862 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1863 high_zoneidx, nodemask) {
9276b1bc
PJ
1864 if (NUMA_BUILD && zlc_active &&
1865 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1866 continue;
7fb1d9fc 1867 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1868 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1869 continue;
a756cf59
JW
1870 /*
1871 * When allocating a page cache page for writing, we
1872 * want to get it from a zone that is within its dirty
1873 * limit, such that no single zone holds more than its
1874 * proportional share of globally allowed dirty pages.
1875 * The dirty limits take into account the zone's
1876 * lowmem reserves and high watermark so that kswapd
1877 * should be able to balance it without having to
1878 * write pages from its LRU list.
1879 *
1880 * This may look like it could increase pressure on
1881 * lower zones by failing allocations in higher zones
1882 * before they are full. But the pages that do spill
1883 * over are limited as the lower zones are protected
1884 * by this very same mechanism. It should not become
1885 * a practical burden to them.
1886 *
1887 * XXX: For now, allow allocations to potentially
1888 * exceed the per-zone dirty limit in the slowpath
1889 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1890 * which is important when on a NUMA setup the allowed
1891 * zones are together not big enough to reach the
1892 * global limit. The proper fix for these situations
1893 * will require awareness of zones in the
1894 * dirty-throttling and the flusher threads.
1895 */
1896 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1897 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1898 goto this_zone_full;
7fb1d9fc 1899
41858966 1900 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1901 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1902 unsigned long mark;
fa5e084e
MG
1903 int ret;
1904
41858966 1905 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1906 if (zone_watermark_ok(zone, order, mark,
1907 classzone_idx, alloc_flags))
1908 goto try_this_zone;
1909
cd38b115
MG
1910 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1911 /*
1912 * we do zlc_setup if there are multiple nodes
1913 * and before considering the first zone allowed
1914 * by the cpuset.
1915 */
1916 allowednodes = zlc_setup(zonelist, alloc_flags);
1917 zlc_active = 1;
1918 did_zlc_setup = 1;
1919 }
1920
fa5e084e
MG
1921 if (zone_reclaim_mode == 0)
1922 goto this_zone_full;
1923
cd38b115
MG
1924 /*
1925 * As we may have just activated ZLC, check if the first
1926 * eligible zone has failed zone_reclaim recently.
1927 */
1928 if (NUMA_BUILD && zlc_active &&
1929 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1930 continue;
1931
fa5e084e
MG
1932 ret = zone_reclaim(zone, gfp_mask, order);
1933 switch (ret) {
1934 case ZONE_RECLAIM_NOSCAN:
1935 /* did not scan */
cd38b115 1936 continue;
fa5e084e
MG
1937 case ZONE_RECLAIM_FULL:
1938 /* scanned but unreclaimable */
cd38b115 1939 continue;
fa5e084e
MG
1940 default:
1941 /* did we reclaim enough */
1942 if (!zone_watermark_ok(zone, order, mark,
1943 classzone_idx, alloc_flags))
9276b1bc 1944 goto this_zone_full;
0798e519 1945 }
7fb1d9fc
RS
1946 }
1947
fa5e084e 1948try_this_zone:
3dd28266
MG
1949 page = buffered_rmqueue(preferred_zone, zone, order,
1950 gfp_mask, migratetype);
0798e519 1951 if (page)
7fb1d9fc 1952 break;
9276b1bc
PJ
1953this_zone_full:
1954 if (NUMA_BUILD)
1955 zlc_mark_zone_full(zonelist, z);
54a6eb5c 1956 }
9276b1bc
PJ
1957
1958 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1959 /* Disable zlc cache for second zonelist scan */
1960 zlc_active = 0;
1961 goto zonelist_scan;
1962 }
b121186a
AS
1963
1964 if (page)
1965 /*
1966 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1967 * necessary to allocate the page. The expectation is
1968 * that the caller is taking steps that will free more
1969 * memory. The caller should avoid the page being used
1970 * for !PFMEMALLOC purposes.
1971 */
1972 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1973
7fb1d9fc 1974 return page;
753ee728
MH
1975}
1976
29423e77
DR
1977/*
1978 * Large machines with many possible nodes should not always dump per-node
1979 * meminfo in irq context.
1980 */
1981static inline bool should_suppress_show_mem(void)
1982{
1983 bool ret = false;
1984
1985#if NODES_SHIFT > 8
1986 ret = in_interrupt();
1987#endif
1988 return ret;
1989}
1990
a238ab5b
DH
1991static DEFINE_RATELIMIT_STATE(nopage_rs,
1992 DEFAULT_RATELIMIT_INTERVAL,
1993 DEFAULT_RATELIMIT_BURST);
1994
1995void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1996{
a238ab5b
DH
1997 unsigned int filter = SHOW_MEM_FILTER_NODES;
1998
c0a32fc5
SG
1999 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2000 debug_guardpage_minorder() > 0)
a238ab5b
DH
2001 return;
2002
2003 /*
2004 * This documents exceptions given to allocations in certain
2005 * contexts that are allowed to allocate outside current's set
2006 * of allowed nodes.
2007 */
2008 if (!(gfp_mask & __GFP_NOMEMALLOC))
2009 if (test_thread_flag(TIF_MEMDIE) ||
2010 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2011 filter &= ~SHOW_MEM_FILTER_NODES;
2012 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2013 filter &= ~SHOW_MEM_FILTER_NODES;
2014
2015 if (fmt) {
3ee9a4f0
JP
2016 struct va_format vaf;
2017 va_list args;
2018
a238ab5b 2019 va_start(args, fmt);
3ee9a4f0
JP
2020
2021 vaf.fmt = fmt;
2022 vaf.va = &args;
2023
2024 pr_warn("%pV", &vaf);
2025
a238ab5b
DH
2026 va_end(args);
2027 }
2028
3ee9a4f0
JP
2029 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2030 current->comm, order, gfp_mask);
a238ab5b
DH
2031
2032 dump_stack();
2033 if (!should_suppress_show_mem())
2034 show_mem(filter);
2035}
2036
11e33f6a
MG
2037static inline int
2038should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2039 unsigned long did_some_progress,
11e33f6a 2040 unsigned long pages_reclaimed)
1da177e4 2041{
11e33f6a
MG
2042 /* Do not loop if specifically requested */
2043 if (gfp_mask & __GFP_NORETRY)
2044 return 0;
1da177e4 2045
f90ac398
MG
2046 /* Always retry if specifically requested */
2047 if (gfp_mask & __GFP_NOFAIL)
2048 return 1;
2049
2050 /*
2051 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2052 * making forward progress without invoking OOM. Suspend also disables
2053 * storage devices so kswapd will not help. Bail if we are suspending.
2054 */
2055 if (!did_some_progress && pm_suspended_storage())
2056 return 0;
2057
11e33f6a
MG
2058 /*
2059 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2060 * means __GFP_NOFAIL, but that may not be true in other
2061 * implementations.
2062 */
2063 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2064 return 1;
2065
2066 /*
2067 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2068 * specified, then we retry until we no longer reclaim any pages
2069 * (above), or we've reclaimed an order of pages at least as
2070 * large as the allocation's order. In both cases, if the
2071 * allocation still fails, we stop retrying.
2072 */
2073 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2074 return 1;
cf40bd16 2075
11e33f6a
MG
2076 return 0;
2077}
933e312e 2078
11e33f6a
MG
2079static inline struct page *
2080__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2081 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2082 nodemask_t *nodemask, struct zone *preferred_zone,
2083 int migratetype)
11e33f6a
MG
2084{
2085 struct page *page;
2086
2087 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2088 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2089 schedule_timeout_uninterruptible(1);
1da177e4
LT
2090 return NULL;
2091 }
6b1de916 2092
11e33f6a
MG
2093 /*
2094 * Go through the zonelist yet one more time, keep very high watermark
2095 * here, this is only to catch a parallel oom killing, we must fail if
2096 * we're still under heavy pressure.
2097 */
2098 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2099 order, zonelist, high_zoneidx,
5117f45d 2100 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2101 preferred_zone, migratetype);
7fb1d9fc 2102 if (page)
11e33f6a
MG
2103 goto out;
2104
4365a567
KH
2105 if (!(gfp_mask & __GFP_NOFAIL)) {
2106 /* The OOM killer will not help higher order allocs */
2107 if (order > PAGE_ALLOC_COSTLY_ORDER)
2108 goto out;
03668b3c
DR
2109 /* The OOM killer does not needlessly kill tasks for lowmem */
2110 if (high_zoneidx < ZONE_NORMAL)
2111 goto out;
4365a567
KH
2112 /*
2113 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2114 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2115 * The caller should handle page allocation failure by itself if
2116 * it specifies __GFP_THISNODE.
2117 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2118 */
2119 if (gfp_mask & __GFP_THISNODE)
2120 goto out;
2121 }
11e33f6a 2122 /* Exhausted what can be done so it's blamo time */
08ab9b10 2123 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2124
2125out:
2126 clear_zonelist_oom(zonelist, gfp_mask);
2127 return page;
2128}
2129
56de7263
MG
2130#ifdef CONFIG_COMPACTION
2131/* Try memory compaction for high-order allocations before reclaim */
2132static struct page *
2133__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2134 struct zonelist *zonelist, enum zone_type high_zoneidx,
2135 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2136 int migratetype, bool sync_migration,
c67fe375 2137 bool *contended_compaction, bool *deferred_compaction,
66199712 2138 unsigned long *did_some_progress)
56de7263 2139{
1fb3f8ca 2140 struct page *page = NULL;
56de7263 2141
66199712 2142 if (!order)
56de7263
MG
2143 return NULL;
2144
aff62249 2145 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2146 *deferred_compaction = true;
2147 return NULL;
2148 }
2149
c06b1fca 2150 current->flags |= PF_MEMALLOC;
56de7263 2151 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
c67fe375 2152 nodemask, sync_migration,
1fb3f8ca 2153 contended_compaction, &page);
c06b1fca 2154 current->flags &= ~PF_MEMALLOC;
56de7263 2155
1fb3f8ca
MG
2156 /* If compaction captured a page, prep and use it */
2157 if (page) {
2158 prep_new_page(page, order, gfp_mask);
2159 goto got_page;
2160 }
2161
2162 if (*did_some_progress != COMPACT_SKIPPED) {
56de7263
MG
2163 /* Page migration frees to the PCP lists but we want merging */
2164 drain_pages(get_cpu());
2165 put_cpu();
2166
2167 page = get_page_from_freelist(gfp_mask, nodemask,
2168 order, zonelist, high_zoneidx,
cfd19c5a
MG
2169 alloc_flags & ~ALLOC_NO_WATERMARKS,
2170 preferred_zone, migratetype);
56de7263 2171 if (page) {
1fb3f8ca 2172got_page:
4f92e258
MG
2173 preferred_zone->compact_considered = 0;
2174 preferred_zone->compact_defer_shift = 0;
aff62249
RR
2175 if (order >= preferred_zone->compact_order_failed)
2176 preferred_zone->compact_order_failed = order + 1;
56de7263
MG
2177 count_vm_event(COMPACTSUCCESS);
2178 return page;
2179 }
2180
2181 /*
2182 * It's bad if compaction run occurs and fails.
2183 * The most likely reason is that pages exist,
2184 * but not enough to satisfy watermarks.
2185 */
2186 count_vm_event(COMPACTFAIL);
66199712
MG
2187
2188 /*
2189 * As async compaction considers a subset of pageblocks, only
2190 * defer if the failure was a sync compaction failure.
2191 */
2192 if (sync_migration)
aff62249 2193 defer_compaction(preferred_zone, order);
56de7263
MG
2194
2195 cond_resched();
2196 }
2197
2198 return NULL;
2199}
2200#else
2201static inline struct page *
2202__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2203 struct zonelist *zonelist, enum zone_type high_zoneidx,
2204 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2205 int migratetype, bool sync_migration,
c67fe375 2206 bool *contended_compaction, bool *deferred_compaction,
66199712 2207 unsigned long *did_some_progress)
56de7263
MG
2208{
2209 return NULL;
2210}
2211#endif /* CONFIG_COMPACTION */
2212
bba90710
MS
2213/* Perform direct synchronous page reclaim */
2214static int
2215__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2216 nodemask_t *nodemask)
11e33f6a 2217{
11e33f6a 2218 struct reclaim_state reclaim_state;
bba90710 2219 int progress;
11e33f6a
MG
2220
2221 cond_resched();
2222
2223 /* We now go into synchronous reclaim */
2224 cpuset_memory_pressure_bump();
c06b1fca 2225 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2226 lockdep_set_current_reclaim_state(gfp_mask);
2227 reclaim_state.reclaimed_slab = 0;
c06b1fca 2228 current->reclaim_state = &reclaim_state;
11e33f6a 2229
bba90710 2230 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2231
c06b1fca 2232 current->reclaim_state = NULL;
11e33f6a 2233 lockdep_clear_current_reclaim_state();
c06b1fca 2234 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2235
2236 cond_resched();
2237
bba90710
MS
2238 return progress;
2239}
2240
2241/* The really slow allocator path where we enter direct reclaim */
2242static inline struct page *
2243__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2244 struct zonelist *zonelist, enum zone_type high_zoneidx,
2245 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2246 int migratetype, unsigned long *did_some_progress)
2247{
2248 struct page *page = NULL;
2249 bool drained = false;
2250
2251 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2252 nodemask);
9ee493ce
MG
2253 if (unlikely(!(*did_some_progress)))
2254 return NULL;
11e33f6a 2255
76d3fbf8
MG
2256 /* After successful reclaim, reconsider all zones for allocation */
2257 if (NUMA_BUILD)
2258 zlc_clear_zones_full(zonelist);
2259
9ee493ce
MG
2260retry:
2261 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2262 zonelist, high_zoneidx,
cfd19c5a
MG
2263 alloc_flags & ~ALLOC_NO_WATERMARKS,
2264 preferred_zone, migratetype);
9ee493ce
MG
2265
2266 /*
2267 * If an allocation failed after direct reclaim, it could be because
2268 * pages are pinned on the per-cpu lists. Drain them and try again
2269 */
2270 if (!page && !drained) {
2271 drain_all_pages();
2272 drained = true;
2273 goto retry;
2274 }
2275
11e33f6a
MG
2276 return page;
2277}
2278
1da177e4 2279/*
11e33f6a
MG
2280 * This is called in the allocator slow-path if the allocation request is of
2281 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2282 */
11e33f6a
MG
2283static inline struct page *
2284__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2285 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2286 nodemask_t *nodemask, struct zone *preferred_zone,
2287 int migratetype)
11e33f6a
MG
2288{
2289 struct page *page;
2290
2291 do {
2292 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2293 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2294 preferred_zone, migratetype);
11e33f6a
MG
2295
2296 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2297 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2298 } while (!page && (gfp_mask & __GFP_NOFAIL));
2299
2300 return page;
2301}
2302
2303static inline
2304void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2305 enum zone_type high_zoneidx,
2306 enum zone_type classzone_idx)
1da177e4 2307{
dd1a239f
MG
2308 struct zoneref *z;
2309 struct zone *zone;
1da177e4 2310
11e33f6a 2311 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2312 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2313}
cf40bd16 2314
341ce06f
PZ
2315static inline int
2316gfp_to_alloc_flags(gfp_t gfp_mask)
2317{
341ce06f
PZ
2318 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2319 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2320
a56f57ff 2321 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2322 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2323
341ce06f
PZ
2324 /*
2325 * The caller may dip into page reserves a bit more if the caller
2326 * cannot run direct reclaim, or if the caller has realtime scheduling
2327 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2328 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2329 */
e6223a3b 2330 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2331
341ce06f 2332 if (!wait) {
5c3240d9
AA
2333 /*
2334 * Not worth trying to allocate harder for
2335 * __GFP_NOMEMALLOC even if it can't schedule.
2336 */
2337 if (!(gfp_mask & __GFP_NOMEMALLOC))
2338 alloc_flags |= ALLOC_HARDER;
523b9458 2339 /*
341ce06f
PZ
2340 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2341 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2342 */
341ce06f 2343 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2344 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2345 alloc_flags |= ALLOC_HARDER;
2346
b37f1dd0
MG
2347 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2348 if (gfp_mask & __GFP_MEMALLOC)
2349 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2350 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2351 alloc_flags |= ALLOC_NO_WATERMARKS;
2352 else if (!in_interrupt() &&
2353 ((current->flags & PF_MEMALLOC) ||
2354 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2355 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2356 }
6b1de916 2357
341ce06f
PZ
2358 return alloc_flags;
2359}
2360
072bb0aa
MG
2361bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2362{
b37f1dd0 2363 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2364}
2365
11e33f6a
MG
2366static inline struct page *
2367__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2368 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2369 nodemask_t *nodemask, struct zone *preferred_zone,
2370 int migratetype)
11e33f6a
MG
2371{
2372 const gfp_t wait = gfp_mask & __GFP_WAIT;
2373 struct page *page = NULL;
2374 int alloc_flags;
2375 unsigned long pages_reclaimed = 0;
2376 unsigned long did_some_progress;
77f1fe6b 2377 bool sync_migration = false;
66199712 2378 bool deferred_compaction = false;
c67fe375 2379 bool contended_compaction = false;
1da177e4 2380
72807a74
MG
2381 /*
2382 * In the slowpath, we sanity check order to avoid ever trying to
2383 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2384 * be using allocators in order of preference for an area that is
2385 * too large.
2386 */
1fc28b70
MG
2387 if (order >= MAX_ORDER) {
2388 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2389 return NULL;
1fc28b70 2390 }
1da177e4 2391
952f3b51
CL
2392 /*
2393 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2394 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2395 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2396 * using a larger set of nodes after it has established that the
2397 * allowed per node queues are empty and that nodes are
2398 * over allocated.
2399 */
2400 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2401 goto nopage;
2402
cc4a6851 2403restart:
c6543459
RR
2404 wake_all_kswapd(order, zonelist, high_zoneidx,
2405 zone_idx(preferred_zone));
1da177e4 2406
9bf2229f 2407 /*
7fb1d9fc
RS
2408 * OK, we're below the kswapd watermark and have kicked background
2409 * reclaim. Now things get more complex, so set up alloc_flags according
2410 * to how we want to proceed.
9bf2229f 2411 */
341ce06f 2412 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2413
f33261d7
DR
2414 /*
2415 * Find the true preferred zone if the allocation is unconstrained by
2416 * cpusets.
2417 */
2418 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2419 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2420 &preferred_zone);
2421
cfa54a0f 2422rebalance:
341ce06f 2423 /* This is the last chance, in general, before the goto nopage. */
19770b32 2424 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2425 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2426 preferred_zone, migratetype);
7fb1d9fc
RS
2427 if (page)
2428 goto got_pg;
1da177e4 2429
11e33f6a 2430 /* Allocate without watermarks if the context allows */
341ce06f 2431 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2432 /*
2433 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2434 * the allocation is high priority and these type of
2435 * allocations are system rather than user orientated
2436 */
2437 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2438
341ce06f
PZ
2439 page = __alloc_pages_high_priority(gfp_mask, order,
2440 zonelist, high_zoneidx, nodemask,
2441 preferred_zone, migratetype);
cfd19c5a 2442 if (page) {
341ce06f 2443 goto got_pg;
cfd19c5a 2444 }
1da177e4
LT
2445 }
2446
2447 /* Atomic allocations - we can't balance anything */
2448 if (!wait)
2449 goto nopage;
2450
341ce06f 2451 /* Avoid recursion of direct reclaim */
c06b1fca 2452 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2453 goto nopage;
2454
6583bb64
DR
2455 /* Avoid allocations with no watermarks from looping endlessly */
2456 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2457 goto nopage;
2458
77f1fe6b
MG
2459 /*
2460 * Try direct compaction. The first pass is asynchronous. Subsequent
2461 * attempts after direct reclaim are synchronous
2462 */
56de7263
MG
2463 page = __alloc_pages_direct_compact(gfp_mask, order,
2464 zonelist, high_zoneidx,
2465 nodemask,
2466 alloc_flags, preferred_zone,
66199712 2467 migratetype, sync_migration,
c67fe375 2468 &contended_compaction,
66199712
MG
2469 &deferred_compaction,
2470 &did_some_progress);
56de7263
MG
2471 if (page)
2472 goto got_pg;
c6a140bf 2473 sync_migration = true;
56de7263 2474
66199712
MG
2475 /*
2476 * If compaction is deferred for high-order allocations, it is because
2477 * sync compaction recently failed. In this is the case and the caller
c67fe375
MG
2478 * requested a movable allocation that does not heavily disrupt the
2479 * system then fail the allocation instead of entering direct reclaim.
66199712 2480 */
c67fe375 2481 if ((deferred_compaction || contended_compaction) &&
c6543459 2482 (gfp_mask & (__GFP_MOVABLE|__GFP_REPEAT)) == __GFP_MOVABLE)
66199712
MG
2483 goto nopage;
2484
11e33f6a
MG
2485 /* Try direct reclaim and then allocating */
2486 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2487 zonelist, high_zoneidx,
2488 nodemask,
5117f45d 2489 alloc_flags, preferred_zone,
3dd28266 2490 migratetype, &did_some_progress);
11e33f6a
MG
2491 if (page)
2492 goto got_pg;
1da177e4 2493
e33c3b5e 2494 /*
11e33f6a
MG
2495 * If we failed to make any progress reclaiming, then we are
2496 * running out of options and have to consider going OOM
e33c3b5e 2497 */
11e33f6a
MG
2498 if (!did_some_progress) {
2499 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2500 if (oom_killer_disabled)
2501 goto nopage;
29fd66d2
DR
2502 /* Coredumps can quickly deplete all memory reserves */
2503 if ((current->flags & PF_DUMPCORE) &&
2504 !(gfp_mask & __GFP_NOFAIL))
2505 goto nopage;
11e33f6a
MG
2506 page = __alloc_pages_may_oom(gfp_mask, order,
2507 zonelist, high_zoneidx,
3dd28266
MG
2508 nodemask, preferred_zone,
2509 migratetype);
11e33f6a
MG
2510 if (page)
2511 goto got_pg;
1da177e4 2512
03668b3c
DR
2513 if (!(gfp_mask & __GFP_NOFAIL)) {
2514 /*
2515 * The oom killer is not called for high-order
2516 * allocations that may fail, so if no progress
2517 * is being made, there are no other options and
2518 * retrying is unlikely to help.
2519 */
2520 if (order > PAGE_ALLOC_COSTLY_ORDER)
2521 goto nopage;
2522 /*
2523 * The oom killer is not called for lowmem
2524 * allocations to prevent needlessly killing
2525 * innocent tasks.
2526 */
2527 if (high_zoneidx < ZONE_NORMAL)
2528 goto nopage;
2529 }
e2c55dc8 2530
ff0ceb9d
DR
2531 goto restart;
2532 }
1da177e4
LT
2533 }
2534
11e33f6a 2535 /* Check if we should retry the allocation */
a41f24ea 2536 pages_reclaimed += did_some_progress;
f90ac398
MG
2537 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2538 pages_reclaimed)) {
11e33f6a 2539 /* Wait for some write requests to complete then retry */
0e093d99 2540 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2541 goto rebalance;
3e7d3449
MG
2542 } else {
2543 /*
2544 * High-order allocations do not necessarily loop after
2545 * direct reclaim and reclaim/compaction depends on compaction
2546 * being called after reclaim so call directly if necessary
2547 */
2548 page = __alloc_pages_direct_compact(gfp_mask, order,
2549 zonelist, high_zoneidx,
2550 nodemask,
2551 alloc_flags, preferred_zone,
66199712 2552 migratetype, sync_migration,
c67fe375 2553 &contended_compaction,
66199712
MG
2554 &deferred_compaction,
2555 &did_some_progress);
3e7d3449
MG
2556 if (page)
2557 goto got_pg;
1da177e4
LT
2558 }
2559
2560nopage:
a238ab5b 2561 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2562 return page;
1da177e4 2563got_pg:
b1eeab67
VN
2564 if (kmemcheck_enabled)
2565 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2566
072bb0aa 2567 return page;
1da177e4 2568}
11e33f6a
MG
2569
2570/*
2571 * This is the 'heart' of the zoned buddy allocator.
2572 */
2573struct page *
2574__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2575 struct zonelist *zonelist, nodemask_t *nodemask)
2576{
2577 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2578 struct zone *preferred_zone;
cc9a6c87 2579 struct page *page = NULL;
3dd28266 2580 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2581 unsigned int cpuset_mems_cookie;
11e33f6a 2582
dcce284a
BH
2583 gfp_mask &= gfp_allowed_mask;
2584
11e33f6a
MG
2585 lockdep_trace_alloc(gfp_mask);
2586
2587 might_sleep_if(gfp_mask & __GFP_WAIT);
2588
2589 if (should_fail_alloc_page(gfp_mask, order))
2590 return NULL;
2591
2592 /*
2593 * Check the zones suitable for the gfp_mask contain at least one
2594 * valid zone. It's possible to have an empty zonelist as a result
2595 * of GFP_THISNODE and a memoryless node
2596 */
2597 if (unlikely(!zonelist->_zonerefs->zone))
2598 return NULL;
2599
cc9a6c87
MG
2600retry_cpuset:
2601 cpuset_mems_cookie = get_mems_allowed();
2602
5117f45d 2603 /* The preferred zone is used for statistics later */
f33261d7
DR
2604 first_zones_zonelist(zonelist, high_zoneidx,
2605 nodemask ? : &cpuset_current_mems_allowed,
2606 &preferred_zone);
cc9a6c87
MG
2607 if (!preferred_zone)
2608 goto out;
5117f45d
MG
2609
2610 /* First allocation attempt */
11e33f6a 2611 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 2612 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 2613 preferred_zone, migratetype);
11e33f6a
MG
2614 if (unlikely(!page))
2615 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2616 zonelist, high_zoneidx, nodemask,
3dd28266 2617 preferred_zone, migratetype);
11e33f6a 2618
4b4f278c 2619 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2620
2621out:
2622 /*
2623 * When updating a task's mems_allowed, it is possible to race with
2624 * parallel threads in such a way that an allocation can fail while
2625 * the mask is being updated. If a page allocation is about to fail,
2626 * check if the cpuset changed during allocation and if so, retry.
2627 */
2628 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2629 goto retry_cpuset;
2630
11e33f6a 2631 return page;
1da177e4 2632}
d239171e 2633EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2634
2635/*
2636 * Common helper functions.
2637 */
920c7a5d 2638unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2639{
945a1113
AM
2640 struct page *page;
2641
2642 /*
2643 * __get_free_pages() returns a 32-bit address, which cannot represent
2644 * a highmem page
2645 */
2646 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2647
1da177e4
LT
2648 page = alloc_pages(gfp_mask, order);
2649 if (!page)
2650 return 0;
2651 return (unsigned long) page_address(page);
2652}
1da177e4
LT
2653EXPORT_SYMBOL(__get_free_pages);
2654
920c7a5d 2655unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2656{
945a1113 2657 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2658}
1da177e4
LT
2659EXPORT_SYMBOL(get_zeroed_page);
2660
920c7a5d 2661void __free_pages(struct page *page, unsigned int order)
1da177e4 2662{
b5810039 2663 if (put_page_testzero(page)) {
1da177e4 2664 if (order == 0)
fc91668e 2665 free_hot_cold_page(page, 0);
1da177e4
LT
2666 else
2667 __free_pages_ok(page, order);
2668 }
2669}
2670
2671EXPORT_SYMBOL(__free_pages);
2672
920c7a5d 2673void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2674{
2675 if (addr != 0) {
725d704e 2676 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2677 __free_pages(virt_to_page((void *)addr), order);
2678 }
2679}
2680
2681EXPORT_SYMBOL(free_pages);
2682
ee85c2e1
AK
2683static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2684{
2685 if (addr) {
2686 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2687 unsigned long used = addr + PAGE_ALIGN(size);
2688
2689 split_page(virt_to_page((void *)addr), order);
2690 while (used < alloc_end) {
2691 free_page(used);
2692 used += PAGE_SIZE;
2693 }
2694 }
2695 return (void *)addr;
2696}
2697
2be0ffe2
TT
2698/**
2699 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2700 * @size: the number of bytes to allocate
2701 * @gfp_mask: GFP flags for the allocation
2702 *
2703 * This function is similar to alloc_pages(), except that it allocates the
2704 * minimum number of pages to satisfy the request. alloc_pages() can only
2705 * allocate memory in power-of-two pages.
2706 *
2707 * This function is also limited by MAX_ORDER.
2708 *
2709 * Memory allocated by this function must be released by free_pages_exact().
2710 */
2711void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2712{
2713 unsigned int order = get_order(size);
2714 unsigned long addr;
2715
2716 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2717 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2718}
2719EXPORT_SYMBOL(alloc_pages_exact);
2720
ee85c2e1
AK
2721/**
2722 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2723 * pages on a node.
b5e6ab58 2724 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2725 * @size: the number of bytes to allocate
2726 * @gfp_mask: GFP flags for the allocation
2727 *
2728 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2729 * back.
2730 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2731 * but is not exact.
2732 */
2733void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2734{
2735 unsigned order = get_order(size);
2736 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2737 if (!p)
2738 return NULL;
2739 return make_alloc_exact((unsigned long)page_address(p), order, size);
2740}
2741EXPORT_SYMBOL(alloc_pages_exact_nid);
2742
2be0ffe2
TT
2743/**
2744 * free_pages_exact - release memory allocated via alloc_pages_exact()
2745 * @virt: the value returned by alloc_pages_exact.
2746 * @size: size of allocation, same value as passed to alloc_pages_exact().
2747 *
2748 * Release the memory allocated by a previous call to alloc_pages_exact.
2749 */
2750void free_pages_exact(void *virt, size_t size)
2751{
2752 unsigned long addr = (unsigned long)virt;
2753 unsigned long end = addr + PAGE_ALIGN(size);
2754
2755 while (addr < end) {
2756 free_page(addr);
2757 addr += PAGE_SIZE;
2758 }
2759}
2760EXPORT_SYMBOL(free_pages_exact);
2761
1da177e4
LT
2762static unsigned int nr_free_zone_pages(int offset)
2763{
dd1a239f 2764 struct zoneref *z;
54a6eb5c
MG
2765 struct zone *zone;
2766
e310fd43 2767 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2768 unsigned int sum = 0;
2769
0e88460d 2770 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2771
54a6eb5c 2772 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2773 unsigned long size = zone->present_pages;
41858966 2774 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2775 if (size > high)
2776 sum += size - high;
1da177e4
LT
2777 }
2778
2779 return sum;
2780}
2781
2782/*
2783 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2784 */
2785unsigned int nr_free_buffer_pages(void)
2786{
af4ca457 2787 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2788}
c2f1a551 2789EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2790
2791/*
2792 * Amount of free RAM allocatable within all zones
2793 */
2794unsigned int nr_free_pagecache_pages(void)
2795{
2a1e274a 2796 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2797}
08e0f6a9
CL
2798
2799static inline void show_node(struct zone *zone)
1da177e4 2800{
08e0f6a9 2801 if (NUMA_BUILD)
25ba77c1 2802 printk("Node %d ", zone_to_nid(zone));
1da177e4 2803}
1da177e4 2804
1da177e4
LT
2805void si_meminfo(struct sysinfo *val)
2806{
2807 val->totalram = totalram_pages;
2808 val->sharedram = 0;
d23ad423 2809 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2810 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2811 val->totalhigh = totalhigh_pages;
2812 val->freehigh = nr_free_highpages();
1da177e4
LT
2813 val->mem_unit = PAGE_SIZE;
2814}
2815
2816EXPORT_SYMBOL(si_meminfo);
2817
2818#ifdef CONFIG_NUMA
2819void si_meminfo_node(struct sysinfo *val, int nid)
2820{
2821 pg_data_t *pgdat = NODE_DATA(nid);
2822
2823 val->totalram = pgdat->node_present_pages;
d23ad423 2824 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2825#ifdef CONFIG_HIGHMEM
1da177e4 2826 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2827 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2828 NR_FREE_PAGES);
98d2b0eb
CL
2829#else
2830 val->totalhigh = 0;
2831 val->freehigh = 0;
2832#endif
1da177e4
LT
2833 val->mem_unit = PAGE_SIZE;
2834}
2835#endif
2836
ddd588b5 2837/*
7bf02ea2
DR
2838 * Determine whether the node should be displayed or not, depending on whether
2839 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2840 */
7bf02ea2 2841bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2842{
2843 bool ret = false;
cc9a6c87 2844 unsigned int cpuset_mems_cookie;
ddd588b5
DR
2845
2846 if (!(flags & SHOW_MEM_FILTER_NODES))
2847 goto out;
2848
cc9a6c87
MG
2849 do {
2850 cpuset_mems_cookie = get_mems_allowed();
2851 ret = !node_isset(nid, cpuset_current_mems_allowed);
2852 } while (!put_mems_allowed(cpuset_mems_cookie));
ddd588b5
DR
2853out:
2854 return ret;
2855}
2856
1da177e4
LT
2857#define K(x) ((x) << (PAGE_SHIFT-10))
2858
2859/*
2860 * Show free area list (used inside shift_scroll-lock stuff)
2861 * We also calculate the percentage fragmentation. We do this by counting the
2862 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2863 * Suppresses nodes that are not allowed by current's cpuset if
2864 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2865 */
7bf02ea2 2866void show_free_areas(unsigned int filter)
1da177e4 2867{
c7241913 2868 int cpu;
1da177e4
LT
2869 struct zone *zone;
2870
ee99c71c 2871 for_each_populated_zone(zone) {
7bf02ea2 2872 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2873 continue;
c7241913
JS
2874 show_node(zone);
2875 printk("%s per-cpu:\n", zone->name);
1da177e4 2876
6b482c67 2877 for_each_online_cpu(cpu) {
1da177e4
LT
2878 struct per_cpu_pageset *pageset;
2879
99dcc3e5 2880 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2881
3dfa5721
CL
2882 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2883 cpu, pageset->pcp.high,
2884 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2885 }
2886 }
2887
a731286d
KM
2888 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2889 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2890 " unevictable:%lu"
b76146ed 2891 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2892 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4b02108a 2893 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe 2894 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2895 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2896 global_page_state(NR_ISOLATED_ANON),
2897 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2898 global_page_state(NR_INACTIVE_FILE),
a731286d 2899 global_page_state(NR_ISOLATED_FILE),
7b854121 2900 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2901 global_page_state(NR_FILE_DIRTY),
ce866b34 2902 global_page_state(NR_WRITEBACK),
fd39fc85 2903 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2904 global_page_state(NR_FREE_PAGES),
3701b033
KM
2905 global_page_state(NR_SLAB_RECLAIMABLE),
2906 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2907 global_page_state(NR_FILE_MAPPED),
4b02108a 2908 global_page_state(NR_SHMEM),
a25700a5
AM
2909 global_page_state(NR_PAGETABLE),
2910 global_page_state(NR_BOUNCE));
1da177e4 2911
ee99c71c 2912 for_each_populated_zone(zone) {
1da177e4
LT
2913 int i;
2914
7bf02ea2 2915 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2916 continue;
1da177e4
LT
2917 show_node(zone);
2918 printk("%s"
2919 " free:%lukB"
2920 " min:%lukB"
2921 " low:%lukB"
2922 " high:%lukB"
4f98a2fe
RR
2923 " active_anon:%lukB"
2924 " inactive_anon:%lukB"
2925 " active_file:%lukB"
2926 " inactive_file:%lukB"
7b854121 2927 " unevictable:%lukB"
a731286d
KM
2928 " isolated(anon):%lukB"
2929 " isolated(file):%lukB"
1da177e4 2930 " present:%lukB"
4a0aa73f
KM
2931 " mlocked:%lukB"
2932 " dirty:%lukB"
2933 " writeback:%lukB"
2934 " mapped:%lukB"
4b02108a 2935 " shmem:%lukB"
4a0aa73f
KM
2936 " slab_reclaimable:%lukB"
2937 " slab_unreclaimable:%lukB"
c6a7f572 2938 " kernel_stack:%lukB"
4a0aa73f
KM
2939 " pagetables:%lukB"
2940 " unstable:%lukB"
2941 " bounce:%lukB"
2942 " writeback_tmp:%lukB"
1da177e4
LT
2943 " pages_scanned:%lu"
2944 " all_unreclaimable? %s"
2945 "\n",
2946 zone->name,
88f5acf8 2947 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2948 K(min_wmark_pages(zone)),
2949 K(low_wmark_pages(zone)),
2950 K(high_wmark_pages(zone)),
4f98a2fe
RR
2951 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2952 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2953 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2954 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2955 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2956 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2957 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2958 K(zone->present_pages),
4a0aa73f
KM
2959 K(zone_page_state(zone, NR_MLOCK)),
2960 K(zone_page_state(zone, NR_FILE_DIRTY)),
2961 K(zone_page_state(zone, NR_WRITEBACK)),
2962 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2963 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2964 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2965 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2966 zone_page_state(zone, NR_KERNEL_STACK) *
2967 THREAD_SIZE / 1024,
4a0aa73f
KM
2968 K(zone_page_state(zone, NR_PAGETABLE)),
2969 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2970 K(zone_page_state(zone, NR_BOUNCE)),
2971 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2972 zone->pages_scanned,
93e4a89a 2973 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
2974 );
2975 printk("lowmem_reserve[]:");
2976 for (i = 0; i < MAX_NR_ZONES; i++)
2977 printk(" %lu", zone->lowmem_reserve[i]);
2978 printk("\n");
2979 }
2980
ee99c71c 2981 for_each_populated_zone(zone) {
8f9de51a 2982 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 2983
7bf02ea2 2984 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2985 continue;
1da177e4
LT
2986 show_node(zone);
2987 printk("%s: ", zone->name);
1da177e4
LT
2988
2989 spin_lock_irqsave(&zone->lock, flags);
2990 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2991 nr[order] = zone->free_area[order].nr_free;
2992 total += nr[order] << order;
1da177e4
LT
2993 }
2994 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2995 for (order = 0; order < MAX_ORDER; order++)
2996 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2997 printk("= %lukB\n", K(total));
2998 }
2999
e6f3602d
LW
3000 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3001
1da177e4
LT
3002 show_swap_cache_info();
3003}
3004
19770b32
MG
3005static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3006{
3007 zoneref->zone = zone;
3008 zoneref->zone_idx = zone_idx(zone);
3009}
3010
1da177e4
LT
3011/*
3012 * Builds allocation fallback zone lists.
1a93205b
CL
3013 *
3014 * Add all populated zones of a node to the zonelist.
1da177e4 3015 */
f0c0b2b8
KH
3016static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3017 int nr_zones, enum zone_type zone_type)
1da177e4 3018{
1a93205b
CL
3019 struct zone *zone;
3020
98d2b0eb 3021 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 3022 zone_type++;
02a68a5e
CL
3023
3024 do {
2f6726e5 3025 zone_type--;
070f8032 3026 zone = pgdat->node_zones + zone_type;
1a93205b 3027 if (populated_zone(zone)) {
dd1a239f
MG
3028 zoneref_set_zone(zone,
3029 &zonelist->_zonerefs[nr_zones++]);
070f8032 3030 check_highest_zone(zone_type);
1da177e4 3031 }
02a68a5e 3032
2f6726e5 3033 } while (zone_type);
070f8032 3034 return nr_zones;
1da177e4
LT
3035}
3036
f0c0b2b8
KH
3037
3038/*
3039 * zonelist_order:
3040 * 0 = automatic detection of better ordering.
3041 * 1 = order by ([node] distance, -zonetype)
3042 * 2 = order by (-zonetype, [node] distance)
3043 *
3044 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3045 * the same zonelist. So only NUMA can configure this param.
3046 */
3047#define ZONELIST_ORDER_DEFAULT 0
3048#define ZONELIST_ORDER_NODE 1
3049#define ZONELIST_ORDER_ZONE 2
3050
3051/* zonelist order in the kernel.
3052 * set_zonelist_order() will set this to NODE or ZONE.
3053 */
3054static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3055static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3056
3057
1da177e4 3058#ifdef CONFIG_NUMA
f0c0b2b8
KH
3059/* The value user specified ....changed by config */
3060static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3061/* string for sysctl */
3062#define NUMA_ZONELIST_ORDER_LEN 16
3063char numa_zonelist_order[16] = "default";
3064
3065/*
3066 * interface for configure zonelist ordering.
3067 * command line option "numa_zonelist_order"
3068 * = "[dD]efault - default, automatic configuration.
3069 * = "[nN]ode - order by node locality, then by zone within node
3070 * = "[zZ]one - order by zone, then by locality within zone
3071 */
3072
3073static int __parse_numa_zonelist_order(char *s)
3074{
3075 if (*s == 'd' || *s == 'D') {
3076 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3077 } else if (*s == 'n' || *s == 'N') {
3078 user_zonelist_order = ZONELIST_ORDER_NODE;
3079 } else if (*s == 'z' || *s == 'Z') {
3080 user_zonelist_order = ZONELIST_ORDER_ZONE;
3081 } else {
3082 printk(KERN_WARNING
3083 "Ignoring invalid numa_zonelist_order value: "
3084 "%s\n", s);
3085 return -EINVAL;
3086 }
3087 return 0;
3088}
3089
3090static __init int setup_numa_zonelist_order(char *s)
3091{
ecb256f8
VL
3092 int ret;
3093
3094 if (!s)
3095 return 0;
3096
3097 ret = __parse_numa_zonelist_order(s);
3098 if (ret == 0)
3099 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3100
3101 return ret;
f0c0b2b8
KH
3102}
3103early_param("numa_zonelist_order", setup_numa_zonelist_order);
3104
3105/*
3106 * sysctl handler for numa_zonelist_order
3107 */
3108int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3109 void __user *buffer, size_t *length,
f0c0b2b8
KH
3110 loff_t *ppos)
3111{
3112 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3113 int ret;
443c6f14 3114 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3115
443c6f14 3116 mutex_lock(&zl_order_mutex);
f0c0b2b8 3117 if (write)
443c6f14 3118 strcpy(saved_string, (char*)table->data);
8d65af78 3119 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3120 if (ret)
443c6f14 3121 goto out;
f0c0b2b8
KH
3122 if (write) {
3123 int oldval = user_zonelist_order;
3124 if (__parse_numa_zonelist_order((char*)table->data)) {
3125 /*
3126 * bogus value. restore saved string
3127 */
3128 strncpy((char*)table->data, saved_string,
3129 NUMA_ZONELIST_ORDER_LEN);
3130 user_zonelist_order = oldval;
4eaf3f64
HL
3131 } else if (oldval != user_zonelist_order) {
3132 mutex_lock(&zonelists_mutex);
9adb62a5 3133 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3134 mutex_unlock(&zonelists_mutex);
3135 }
f0c0b2b8 3136 }
443c6f14
AK
3137out:
3138 mutex_unlock(&zl_order_mutex);
3139 return ret;
f0c0b2b8
KH
3140}
3141
3142
62bc62a8 3143#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3144static int node_load[MAX_NUMNODES];
3145
1da177e4 3146/**
4dc3b16b 3147 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3148 * @node: node whose fallback list we're appending
3149 * @used_node_mask: nodemask_t of already used nodes
3150 *
3151 * We use a number of factors to determine which is the next node that should
3152 * appear on a given node's fallback list. The node should not have appeared
3153 * already in @node's fallback list, and it should be the next closest node
3154 * according to the distance array (which contains arbitrary distance values
3155 * from each node to each node in the system), and should also prefer nodes
3156 * with no CPUs, since presumably they'll have very little allocation pressure
3157 * on them otherwise.
3158 * It returns -1 if no node is found.
3159 */
f0c0b2b8 3160static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3161{
4cf808eb 3162 int n, val;
1da177e4
LT
3163 int min_val = INT_MAX;
3164 int best_node = -1;
a70f7302 3165 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3166
4cf808eb
LT
3167 /* Use the local node if we haven't already */
3168 if (!node_isset(node, *used_node_mask)) {
3169 node_set(node, *used_node_mask);
3170 return node;
3171 }
1da177e4 3172
37b07e41 3173 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
3174
3175 /* Don't want a node to appear more than once */
3176 if (node_isset(n, *used_node_mask))
3177 continue;
3178
1da177e4
LT
3179 /* Use the distance array to find the distance */
3180 val = node_distance(node, n);
3181
4cf808eb
LT
3182 /* Penalize nodes under us ("prefer the next node") */
3183 val += (n < node);
3184
1da177e4 3185 /* Give preference to headless and unused nodes */
a70f7302
RR
3186 tmp = cpumask_of_node(n);
3187 if (!cpumask_empty(tmp))
1da177e4
LT
3188 val += PENALTY_FOR_NODE_WITH_CPUS;
3189
3190 /* Slight preference for less loaded node */
3191 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3192 val += node_load[n];
3193
3194 if (val < min_val) {
3195 min_val = val;
3196 best_node = n;
3197 }
3198 }
3199
3200 if (best_node >= 0)
3201 node_set(best_node, *used_node_mask);
3202
3203 return best_node;
3204}
3205
f0c0b2b8
KH
3206
3207/*
3208 * Build zonelists ordered by node and zones within node.
3209 * This results in maximum locality--normal zone overflows into local
3210 * DMA zone, if any--but risks exhausting DMA zone.
3211 */
3212static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3213{
f0c0b2b8 3214 int j;
1da177e4 3215 struct zonelist *zonelist;
f0c0b2b8 3216
54a6eb5c 3217 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3218 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
3219 ;
3220 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3221 MAX_NR_ZONES - 1);
dd1a239f
MG
3222 zonelist->_zonerefs[j].zone = NULL;
3223 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3224}
3225
523b9458
CL
3226/*
3227 * Build gfp_thisnode zonelists
3228 */
3229static void build_thisnode_zonelists(pg_data_t *pgdat)
3230{
523b9458
CL
3231 int j;
3232 struct zonelist *zonelist;
3233
54a6eb5c
MG
3234 zonelist = &pgdat->node_zonelists[1];
3235 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
3236 zonelist->_zonerefs[j].zone = NULL;
3237 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3238}
3239
f0c0b2b8
KH
3240/*
3241 * Build zonelists ordered by zone and nodes within zones.
3242 * This results in conserving DMA zone[s] until all Normal memory is
3243 * exhausted, but results in overflowing to remote node while memory
3244 * may still exist in local DMA zone.
3245 */
3246static int node_order[MAX_NUMNODES];
3247
3248static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3249{
f0c0b2b8
KH
3250 int pos, j, node;
3251 int zone_type; /* needs to be signed */
3252 struct zone *z;
3253 struct zonelist *zonelist;
3254
54a6eb5c
MG
3255 zonelist = &pgdat->node_zonelists[0];
3256 pos = 0;
3257 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3258 for (j = 0; j < nr_nodes; j++) {
3259 node = node_order[j];
3260 z = &NODE_DATA(node)->node_zones[zone_type];
3261 if (populated_zone(z)) {
dd1a239f
MG
3262 zoneref_set_zone(z,
3263 &zonelist->_zonerefs[pos++]);
54a6eb5c 3264 check_highest_zone(zone_type);
f0c0b2b8
KH
3265 }
3266 }
f0c0b2b8 3267 }
dd1a239f
MG
3268 zonelist->_zonerefs[pos].zone = NULL;
3269 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3270}
3271
3272static int default_zonelist_order(void)
3273{
3274 int nid, zone_type;
3275 unsigned long low_kmem_size,total_size;
3276 struct zone *z;
3277 int average_size;
3278 /*
88393161 3279 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3280 * If they are really small and used heavily, the system can fall
3281 * into OOM very easily.
e325c90f 3282 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3283 */
3284 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3285 low_kmem_size = 0;
3286 total_size = 0;
3287 for_each_online_node(nid) {
3288 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3289 z = &NODE_DATA(nid)->node_zones[zone_type];
3290 if (populated_zone(z)) {
3291 if (zone_type < ZONE_NORMAL)
3292 low_kmem_size += z->present_pages;
3293 total_size += z->present_pages;
e325c90f
DR
3294 } else if (zone_type == ZONE_NORMAL) {
3295 /*
3296 * If any node has only lowmem, then node order
3297 * is preferred to allow kernel allocations
3298 * locally; otherwise, they can easily infringe
3299 * on other nodes when there is an abundance of
3300 * lowmem available to allocate from.
3301 */
3302 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3303 }
3304 }
3305 }
3306 if (!low_kmem_size || /* there are no DMA area. */
3307 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3308 return ZONELIST_ORDER_NODE;
3309 /*
3310 * look into each node's config.
3311 * If there is a node whose DMA/DMA32 memory is very big area on
3312 * local memory, NODE_ORDER may be suitable.
3313 */
37b07e41
LS
3314 average_size = total_size /
3315 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
3316 for_each_online_node(nid) {
3317 low_kmem_size = 0;
3318 total_size = 0;
3319 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3320 z = &NODE_DATA(nid)->node_zones[zone_type];
3321 if (populated_zone(z)) {
3322 if (zone_type < ZONE_NORMAL)
3323 low_kmem_size += z->present_pages;
3324 total_size += z->present_pages;
3325 }
3326 }
3327 if (low_kmem_size &&
3328 total_size > average_size && /* ignore small node */
3329 low_kmem_size > total_size * 70/100)
3330 return ZONELIST_ORDER_NODE;
3331 }
3332 return ZONELIST_ORDER_ZONE;
3333}
3334
3335static void set_zonelist_order(void)
3336{
3337 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3338 current_zonelist_order = default_zonelist_order();
3339 else
3340 current_zonelist_order = user_zonelist_order;
3341}
3342
3343static void build_zonelists(pg_data_t *pgdat)
3344{
3345 int j, node, load;
3346 enum zone_type i;
1da177e4 3347 nodemask_t used_mask;
f0c0b2b8
KH
3348 int local_node, prev_node;
3349 struct zonelist *zonelist;
3350 int order = current_zonelist_order;
1da177e4
LT
3351
3352 /* initialize zonelists */
523b9458 3353 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3354 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3355 zonelist->_zonerefs[0].zone = NULL;
3356 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3357 }
3358
3359 /* NUMA-aware ordering of nodes */
3360 local_node = pgdat->node_id;
62bc62a8 3361 load = nr_online_nodes;
1da177e4
LT
3362 prev_node = local_node;
3363 nodes_clear(used_mask);
f0c0b2b8 3364
f0c0b2b8
KH
3365 memset(node_order, 0, sizeof(node_order));
3366 j = 0;
3367
1da177e4 3368 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
3369 int distance = node_distance(local_node, node);
3370
3371 /*
3372 * If another node is sufficiently far away then it is better
3373 * to reclaim pages in a zone before going off node.
3374 */
3375 if (distance > RECLAIM_DISTANCE)
3376 zone_reclaim_mode = 1;
3377
1da177e4
LT
3378 /*
3379 * We don't want to pressure a particular node.
3380 * So adding penalty to the first node in same
3381 * distance group to make it round-robin.
3382 */
9eeff239 3383 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
3384 node_load[node] = load;
3385
1da177e4
LT
3386 prev_node = node;
3387 load--;
f0c0b2b8
KH
3388 if (order == ZONELIST_ORDER_NODE)
3389 build_zonelists_in_node_order(pgdat, node);
3390 else
3391 node_order[j++] = node; /* remember order */
3392 }
1da177e4 3393
f0c0b2b8
KH
3394 if (order == ZONELIST_ORDER_ZONE) {
3395 /* calculate node order -- i.e., DMA last! */
3396 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3397 }
523b9458
CL
3398
3399 build_thisnode_zonelists(pgdat);
1da177e4
LT
3400}
3401
9276b1bc 3402/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3403static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3404{
54a6eb5c
MG
3405 struct zonelist *zonelist;
3406 struct zonelist_cache *zlc;
dd1a239f 3407 struct zoneref *z;
9276b1bc 3408
54a6eb5c
MG
3409 zonelist = &pgdat->node_zonelists[0];
3410 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3411 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3412 for (z = zonelist->_zonerefs; z->zone; z++)
3413 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3414}
3415
7aac7898
LS
3416#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3417/*
3418 * Return node id of node used for "local" allocations.
3419 * I.e., first node id of first zone in arg node's generic zonelist.
3420 * Used for initializing percpu 'numa_mem', which is used primarily
3421 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3422 */
3423int local_memory_node(int node)
3424{
3425 struct zone *zone;
3426
3427 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3428 gfp_zone(GFP_KERNEL),
3429 NULL,
3430 &zone);
3431 return zone->node;
3432}
3433#endif
f0c0b2b8 3434
1da177e4
LT
3435#else /* CONFIG_NUMA */
3436
f0c0b2b8
KH
3437static void set_zonelist_order(void)
3438{
3439 current_zonelist_order = ZONELIST_ORDER_ZONE;
3440}
3441
3442static void build_zonelists(pg_data_t *pgdat)
1da177e4 3443{
19655d34 3444 int node, local_node;
54a6eb5c
MG
3445 enum zone_type j;
3446 struct zonelist *zonelist;
1da177e4
LT
3447
3448 local_node = pgdat->node_id;
1da177e4 3449
54a6eb5c
MG
3450 zonelist = &pgdat->node_zonelists[0];
3451 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 3452
54a6eb5c
MG
3453 /*
3454 * Now we build the zonelist so that it contains the zones
3455 * of all the other nodes.
3456 * We don't want to pressure a particular node, so when
3457 * building the zones for node N, we make sure that the
3458 * zones coming right after the local ones are those from
3459 * node N+1 (modulo N)
3460 */
3461 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3462 if (!node_online(node))
3463 continue;
3464 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3465 MAX_NR_ZONES - 1);
1da177e4 3466 }
54a6eb5c
MG
3467 for (node = 0; node < local_node; node++) {
3468 if (!node_online(node))
3469 continue;
3470 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3471 MAX_NR_ZONES - 1);
3472 }
3473
dd1a239f
MG
3474 zonelist->_zonerefs[j].zone = NULL;
3475 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3476}
3477
9276b1bc 3478/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3479static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3480{
54a6eb5c 3481 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3482}
3483
1da177e4
LT
3484#endif /* CONFIG_NUMA */
3485
99dcc3e5
CL
3486/*
3487 * Boot pageset table. One per cpu which is going to be used for all
3488 * zones and all nodes. The parameters will be set in such a way
3489 * that an item put on a list will immediately be handed over to
3490 * the buddy list. This is safe since pageset manipulation is done
3491 * with interrupts disabled.
3492 *
3493 * The boot_pagesets must be kept even after bootup is complete for
3494 * unused processors and/or zones. They do play a role for bootstrapping
3495 * hotplugged processors.
3496 *
3497 * zoneinfo_show() and maybe other functions do
3498 * not check if the processor is online before following the pageset pointer.
3499 * Other parts of the kernel may not check if the zone is available.
3500 */
3501static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3502static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3503static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3504
4eaf3f64
HL
3505/*
3506 * Global mutex to protect against size modification of zonelists
3507 * as well as to serialize pageset setup for the new populated zone.
3508 */
3509DEFINE_MUTEX(zonelists_mutex);
3510
9b1a4d38 3511/* return values int ....just for stop_machine() */
4ed7e022 3512static int __build_all_zonelists(void *data)
1da177e4 3513{
6811378e 3514 int nid;
99dcc3e5 3515 int cpu;
9adb62a5 3516 pg_data_t *self = data;
9276b1bc 3517
7f9cfb31
BL
3518#ifdef CONFIG_NUMA
3519 memset(node_load, 0, sizeof(node_load));
3520#endif
9adb62a5
JL
3521
3522 if (self && !node_online(self->node_id)) {
3523 build_zonelists(self);
3524 build_zonelist_cache(self);
3525 }
3526
9276b1bc 3527 for_each_online_node(nid) {
7ea1530a
CL
3528 pg_data_t *pgdat = NODE_DATA(nid);
3529
3530 build_zonelists(pgdat);
3531 build_zonelist_cache(pgdat);
9276b1bc 3532 }
99dcc3e5
CL
3533
3534 /*
3535 * Initialize the boot_pagesets that are going to be used
3536 * for bootstrapping processors. The real pagesets for
3537 * each zone will be allocated later when the per cpu
3538 * allocator is available.
3539 *
3540 * boot_pagesets are used also for bootstrapping offline
3541 * cpus if the system is already booted because the pagesets
3542 * are needed to initialize allocators on a specific cpu too.
3543 * F.e. the percpu allocator needs the page allocator which
3544 * needs the percpu allocator in order to allocate its pagesets
3545 * (a chicken-egg dilemma).
3546 */
7aac7898 3547 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3548 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3549
7aac7898
LS
3550#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3551 /*
3552 * We now know the "local memory node" for each node--
3553 * i.e., the node of the first zone in the generic zonelist.
3554 * Set up numa_mem percpu variable for on-line cpus. During
3555 * boot, only the boot cpu should be on-line; we'll init the
3556 * secondary cpus' numa_mem as they come on-line. During
3557 * node/memory hotplug, we'll fixup all on-line cpus.
3558 */
3559 if (cpu_online(cpu))
3560 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3561#endif
3562 }
3563
6811378e
YG
3564 return 0;
3565}
3566
4eaf3f64
HL
3567/*
3568 * Called with zonelists_mutex held always
3569 * unless system_state == SYSTEM_BOOTING.
3570 */
9adb62a5 3571void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3572{
f0c0b2b8
KH
3573 set_zonelist_order();
3574
6811378e 3575 if (system_state == SYSTEM_BOOTING) {
423b41d7 3576 __build_all_zonelists(NULL);
68ad8df4 3577 mminit_verify_zonelist();
6811378e
YG
3578 cpuset_init_current_mems_allowed();
3579 } else {
183ff22b 3580 /* we have to stop all cpus to guarantee there is no user
6811378e 3581 of zonelist */
e9959f0f 3582#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3583 if (zone)
3584 setup_zone_pageset(zone);
e9959f0f 3585#endif
9adb62a5 3586 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3587 /* cpuset refresh routine should be here */
3588 }
bd1e22b8 3589 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3590 /*
3591 * Disable grouping by mobility if the number of pages in the
3592 * system is too low to allow the mechanism to work. It would be
3593 * more accurate, but expensive to check per-zone. This check is
3594 * made on memory-hotadd so a system can start with mobility
3595 * disabled and enable it later
3596 */
d9c23400 3597 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3598 page_group_by_mobility_disabled = 1;
3599 else
3600 page_group_by_mobility_disabled = 0;
3601
3602 printk("Built %i zonelists in %s order, mobility grouping %s. "
3603 "Total pages: %ld\n",
62bc62a8 3604 nr_online_nodes,
f0c0b2b8 3605 zonelist_order_name[current_zonelist_order],
9ef9acb0 3606 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3607 vm_total_pages);
3608#ifdef CONFIG_NUMA
3609 printk("Policy zone: %s\n", zone_names[policy_zone]);
3610#endif
1da177e4
LT
3611}
3612
3613/*
3614 * Helper functions to size the waitqueue hash table.
3615 * Essentially these want to choose hash table sizes sufficiently
3616 * large so that collisions trying to wait on pages are rare.
3617 * But in fact, the number of active page waitqueues on typical
3618 * systems is ridiculously low, less than 200. So this is even
3619 * conservative, even though it seems large.
3620 *
3621 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3622 * waitqueues, i.e. the size of the waitq table given the number of pages.
3623 */
3624#define PAGES_PER_WAITQUEUE 256
3625
cca448fe 3626#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3627static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3628{
3629 unsigned long size = 1;
3630
3631 pages /= PAGES_PER_WAITQUEUE;
3632
3633 while (size < pages)
3634 size <<= 1;
3635
3636 /*
3637 * Once we have dozens or even hundreds of threads sleeping
3638 * on IO we've got bigger problems than wait queue collision.
3639 * Limit the size of the wait table to a reasonable size.
3640 */
3641 size = min(size, 4096UL);
3642
3643 return max(size, 4UL);
3644}
cca448fe
YG
3645#else
3646/*
3647 * A zone's size might be changed by hot-add, so it is not possible to determine
3648 * a suitable size for its wait_table. So we use the maximum size now.
3649 *
3650 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3651 *
3652 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3653 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3654 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3655 *
3656 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3657 * or more by the traditional way. (See above). It equals:
3658 *
3659 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3660 * ia64(16K page size) : = ( 8G + 4M)byte.
3661 * powerpc (64K page size) : = (32G +16M)byte.
3662 */
3663static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3664{
3665 return 4096UL;
3666}
3667#endif
1da177e4
LT
3668
3669/*
3670 * This is an integer logarithm so that shifts can be used later
3671 * to extract the more random high bits from the multiplicative
3672 * hash function before the remainder is taken.
3673 */
3674static inline unsigned long wait_table_bits(unsigned long size)
3675{
3676 return ffz(~size);
3677}
3678
3679#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3680
6d3163ce
AH
3681/*
3682 * Check if a pageblock contains reserved pages
3683 */
3684static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3685{
3686 unsigned long pfn;
3687
3688 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3689 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3690 return 1;
3691 }
3692 return 0;
3693}
3694
56fd56b8 3695/*
d9c23400 3696 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3697 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3698 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3699 * higher will lead to a bigger reserve which will get freed as contiguous
3700 * blocks as reclaim kicks in
3701 */
3702static void setup_zone_migrate_reserve(struct zone *zone)
3703{
6d3163ce 3704 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3705 struct page *page;
78986a67
MG
3706 unsigned long block_migratetype;
3707 int reserve;
56fd56b8 3708
d0215638
MH
3709 /*
3710 * Get the start pfn, end pfn and the number of blocks to reserve
3711 * We have to be careful to be aligned to pageblock_nr_pages to
3712 * make sure that we always check pfn_valid for the first page in
3713 * the block.
3714 */
56fd56b8
MG
3715 start_pfn = zone->zone_start_pfn;
3716 end_pfn = start_pfn + zone->spanned_pages;
d0215638 3717 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3718 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3719 pageblock_order;
56fd56b8 3720
78986a67
MG
3721 /*
3722 * Reserve blocks are generally in place to help high-order atomic
3723 * allocations that are short-lived. A min_free_kbytes value that
3724 * would result in more than 2 reserve blocks for atomic allocations
3725 * is assumed to be in place to help anti-fragmentation for the
3726 * future allocation of hugepages at runtime.
3727 */
3728 reserve = min(2, reserve);
3729
d9c23400 3730 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3731 if (!pfn_valid(pfn))
3732 continue;
3733 page = pfn_to_page(pfn);
3734
344c790e
AL
3735 /* Watch out for overlapping nodes */
3736 if (page_to_nid(page) != zone_to_nid(zone))
3737 continue;
3738
56fd56b8
MG
3739 block_migratetype = get_pageblock_migratetype(page);
3740
938929f1
MG
3741 /* Only test what is necessary when the reserves are not met */
3742 if (reserve > 0) {
3743 /*
3744 * Blocks with reserved pages will never free, skip
3745 * them.
3746 */
3747 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3748 if (pageblock_is_reserved(pfn, block_end_pfn))
3749 continue;
56fd56b8 3750
938929f1
MG
3751 /* If this block is reserved, account for it */
3752 if (block_migratetype == MIGRATE_RESERVE) {
3753 reserve--;
3754 continue;
3755 }
3756
3757 /* Suitable for reserving if this block is movable */
3758 if (block_migratetype == MIGRATE_MOVABLE) {
3759 set_pageblock_migratetype(page,
3760 MIGRATE_RESERVE);
3761 move_freepages_block(zone, page,
3762 MIGRATE_RESERVE);
3763 reserve--;
3764 continue;
3765 }
56fd56b8
MG
3766 }
3767
3768 /*
3769 * If the reserve is met and this is a previous reserved block,
3770 * take it back
3771 */
3772 if (block_migratetype == MIGRATE_RESERVE) {
3773 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3774 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3775 }
3776 }
3777}
ac0e5b7a 3778
1da177e4
LT
3779/*
3780 * Initially all pages are reserved - free ones are freed
3781 * up by free_all_bootmem() once the early boot process is
3782 * done. Non-atomic initialization, single-pass.
3783 */
c09b4240 3784void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3785 unsigned long start_pfn, enum memmap_context context)
1da177e4 3786{
1da177e4 3787 struct page *page;
29751f69
AW
3788 unsigned long end_pfn = start_pfn + size;
3789 unsigned long pfn;
86051ca5 3790 struct zone *z;
1da177e4 3791
22b31eec
HD
3792 if (highest_memmap_pfn < end_pfn - 1)
3793 highest_memmap_pfn = end_pfn - 1;
3794
86051ca5 3795 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3796 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3797 /*
3798 * There can be holes in boot-time mem_map[]s
3799 * handed to this function. They do not
3800 * exist on hotplugged memory.
3801 */
3802 if (context == MEMMAP_EARLY) {
3803 if (!early_pfn_valid(pfn))
3804 continue;
3805 if (!early_pfn_in_nid(pfn, nid))
3806 continue;
3807 }
d41dee36
AW
3808 page = pfn_to_page(pfn);
3809 set_page_links(page, zone, nid, pfn);
708614e6 3810 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3811 init_page_count(page);
1da177e4
LT
3812 reset_page_mapcount(page);
3813 SetPageReserved(page);
b2a0ac88
MG
3814 /*
3815 * Mark the block movable so that blocks are reserved for
3816 * movable at startup. This will force kernel allocations
3817 * to reserve their blocks rather than leaking throughout
3818 * the address space during boot when many long-lived
56fd56b8
MG
3819 * kernel allocations are made. Later some blocks near
3820 * the start are marked MIGRATE_RESERVE by
3821 * setup_zone_migrate_reserve()
86051ca5
KH
3822 *
3823 * bitmap is created for zone's valid pfn range. but memmap
3824 * can be created for invalid pages (for alignment)
3825 * check here not to call set_pageblock_migratetype() against
3826 * pfn out of zone.
b2a0ac88 3827 */
86051ca5
KH
3828 if ((z->zone_start_pfn <= pfn)
3829 && (pfn < z->zone_start_pfn + z->spanned_pages)
3830 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3831 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3832
1da177e4
LT
3833 INIT_LIST_HEAD(&page->lru);
3834#ifdef WANT_PAGE_VIRTUAL
3835 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3836 if (!is_highmem_idx(zone))
3212c6be 3837 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3838#endif
1da177e4
LT
3839 }
3840}
3841
1e548deb 3842static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3843{
b2a0ac88
MG
3844 int order, t;
3845 for_each_migratetype_order(order, t) {
3846 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3847 zone->free_area[order].nr_free = 0;
3848 }
3849}
3850
3851#ifndef __HAVE_ARCH_MEMMAP_INIT
3852#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3853 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3854#endif
3855
4ed7e022 3856static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 3857{
3a6be87f 3858#ifdef CONFIG_MMU
e7c8d5c9
CL
3859 int batch;
3860
3861 /*
3862 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3863 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3864 *
3865 * OK, so we don't know how big the cache is. So guess.
3866 */
3867 batch = zone->present_pages / 1024;
ba56e91c
SR
3868 if (batch * PAGE_SIZE > 512 * 1024)
3869 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3870 batch /= 4; /* We effectively *= 4 below */
3871 if (batch < 1)
3872 batch = 1;
3873
3874 /*
0ceaacc9
NP
3875 * Clamp the batch to a 2^n - 1 value. Having a power
3876 * of 2 value was found to be more likely to have
3877 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3878 *
0ceaacc9
NP
3879 * For example if 2 tasks are alternately allocating
3880 * batches of pages, one task can end up with a lot
3881 * of pages of one half of the possible page colors
3882 * and the other with pages of the other colors.
e7c8d5c9 3883 */
9155203a 3884 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3885
e7c8d5c9 3886 return batch;
3a6be87f
DH
3887
3888#else
3889 /* The deferral and batching of frees should be suppressed under NOMMU
3890 * conditions.
3891 *
3892 * The problem is that NOMMU needs to be able to allocate large chunks
3893 * of contiguous memory as there's no hardware page translation to
3894 * assemble apparent contiguous memory from discontiguous pages.
3895 *
3896 * Queueing large contiguous runs of pages for batching, however,
3897 * causes the pages to actually be freed in smaller chunks. As there
3898 * can be a significant delay between the individual batches being
3899 * recycled, this leads to the once large chunks of space being
3900 * fragmented and becoming unavailable for high-order allocations.
3901 */
3902 return 0;
3903#endif
e7c8d5c9
CL
3904}
3905
b69a7288 3906static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3907{
3908 struct per_cpu_pages *pcp;
5f8dcc21 3909 int migratetype;
2caaad41 3910
1c6fe946
MD
3911 memset(p, 0, sizeof(*p));
3912
3dfa5721 3913 pcp = &p->pcp;
2caaad41 3914 pcp->count = 0;
2caaad41
CL
3915 pcp->high = 6 * batch;
3916 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3917 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3918 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3919}
3920
8ad4b1fb
RS
3921/*
3922 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3923 * to the value high for the pageset p.
3924 */
3925
3926static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3927 unsigned long high)
3928{
3929 struct per_cpu_pages *pcp;
3930
3dfa5721 3931 pcp = &p->pcp;
8ad4b1fb
RS
3932 pcp->high = high;
3933 pcp->batch = max(1UL, high/4);
3934 if ((high/4) > (PAGE_SHIFT * 8))
3935 pcp->batch = PAGE_SHIFT * 8;
3936}
3937
4ed7e022 3938static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
3939{
3940 int cpu;
3941
3942 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3943
3944 for_each_possible_cpu(cpu) {
3945 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3946
3947 setup_pageset(pcp, zone_batchsize(zone));
3948
3949 if (percpu_pagelist_fraction)
3950 setup_pagelist_highmark(pcp,
3951 (zone->present_pages /
3952 percpu_pagelist_fraction));
3953 }
3954}
3955
2caaad41 3956/*
99dcc3e5
CL
3957 * Allocate per cpu pagesets and initialize them.
3958 * Before this call only boot pagesets were available.
e7c8d5c9 3959 */
99dcc3e5 3960void __init setup_per_cpu_pageset(void)
e7c8d5c9 3961{
99dcc3e5 3962 struct zone *zone;
e7c8d5c9 3963
319774e2
WF
3964 for_each_populated_zone(zone)
3965 setup_zone_pageset(zone);
e7c8d5c9
CL
3966}
3967
577a32f6 3968static noinline __init_refok
cca448fe 3969int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3970{
3971 int i;
3972 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3973 size_t alloc_size;
ed8ece2e
DH
3974
3975 /*
3976 * The per-page waitqueue mechanism uses hashed waitqueues
3977 * per zone.
3978 */
02b694de
YG
3979 zone->wait_table_hash_nr_entries =
3980 wait_table_hash_nr_entries(zone_size_pages);
3981 zone->wait_table_bits =
3982 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3983 alloc_size = zone->wait_table_hash_nr_entries
3984 * sizeof(wait_queue_head_t);
3985
cd94b9db 3986 if (!slab_is_available()) {
cca448fe 3987 zone->wait_table = (wait_queue_head_t *)
8f389a99 3988 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
3989 } else {
3990 /*
3991 * This case means that a zone whose size was 0 gets new memory
3992 * via memory hot-add.
3993 * But it may be the case that a new node was hot-added. In
3994 * this case vmalloc() will not be able to use this new node's
3995 * memory - this wait_table must be initialized to use this new
3996 * node itself as well.
3997 * To use this new node's memory, further consideration will be
3998 * necessary.
3999 */
8691f3a7 4000 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4001 }
4002 if (!zone->wait_table)
4003 return -ENOMEM;
ed8ece2e 4004
02b694de 4005 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4006 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4007
4008 return 0;
ed8ece2e
DH
4009}
4010
c09b4240 4011static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4012{
99dcc3e5
CL
4013 /*
4014 * per cpu subsystem is not up at this point. The following code
4015 * relies on the ability of the linker to provide the
4016 * offset of a (static) per cpu variable into the per cpu area.
4017 */
4018 zone->pageset = &boot_pageset;
ed8ece2e 4019
f5335c0f 4020 if (zone->present_pages)
99dcc3e5
CL
4021 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4022 zone->name, zone->present_pages,
4023 zone_batchsize(zone));
ed8ece2e
DH
4024}
4025
4ed7e022 4026int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4027 unsigned long zone_start_pfn,
a2f3aa02
DH
4028 unsigned long size,
4029 enum memmap_context context)
ed8ece2e
DH
4030{
4031 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4032 int ret;
4033 ret = zone_wait_table_init(zone, size);
4034 if (ret)
4035 return ret;
ed8ece2e
DH
4036 pgdat->nr_zones = zone_idx(zone) + 1;
4037
ed8ece2e
DH
4038 zone->zone_start_pfn = zone_start_pfn;
4039
708614e6
MG
4040 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4041 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4042 pgdat->node_id,
4043 (unsigned long)zone_idx(zone),
4044 zone_start_pfn, (zone_start_pfn + size));
4045
1e548deb 4046 zone_init_free_lists(zone);
718127cc
YG
4047
4048 return 0;
ed8ece2e
DH
4049}
4050
0ee332c1 4051#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4052#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4053/*
4054 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4055 * Architectures may implement their own version but if add_active_range()
4056 * was used and there are no special requirements, this is a convenient
4057 * alternative
4058 */
f2dbcfa7 4059int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4060{
c13291a5
TH
4061 unsigned long start_pfn, end_pfn;
4062 int i, nid;
c713216d 4063
c13291a5 4064 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
c713216d 4065 if (start_pfn <= pfn && pfn < end_pfn)
c13291a5 4066 return nid;
cc2559bc
KH
4067 /* This is a memory hole */
4068 return -1;
c713216d
MG
4069}
4070#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4071
f2dbcfa7
KH
4072int __meminit early_pfn_to_nid(unsigned long pfn)
4073{
cc2559bc
KH
4074 int nid;
4075
4076 nid = __early_pfn_to_nid(pfn);
4077 if (nid >= 0)
4078 return nid;
4079 /* just returns 0 */
4080 return 0;
f2dbcfa7
KH
4081}
4082
cc2559bc
KH
4083#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4084bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4085{
4086 int nid;
4087
4088 nid = __early_pfn_to_nid(pfn);
4089 if (nid >= 0 && nid != node)
4090 return false;
4091 return true;
4092}
4093#endif
f2dbcfa7 4094
c713216d
MG
4095/**
4096 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
4097 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4098 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
4099 *
4100 * If an architecture guarantees that all ranges registered with
4101 * add_active_ranges() contain no holes and may be freed, this
4102 * this function may be used instead of calling free_bootmem() manually.
4103 */
c13291a5 4104void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4105{
c13291a5
TH
4106 unsigned long start_pfn, end_pfn;
4107 int i, this_nid;
edbe7d23 4108
c13291a5
TH
4109 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4110 start_pfn = min(start_pfn, max_low_pfn);
4111 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4112
c13291a5
TH
4113 if (start_pfn < end_pfn)
4114 free_bootmem_node(NODE_DATA(this_nid),
4115 PFN_PHYS(start_pfn),
4116 (end_pfn - start_pfn) << PAGE_SHIFT);
edbe7d23 4117 }
edbe7d23 4118}
edbe7d23 4119
c713216d
MG
4120/**
4121 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4122 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4123 *
4124 * If an architecture guarantees that all ranges registered with
4125 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4126 * function may be used instead of calling memory_present() manually.
c713216d
MG
4127 */
4128void __init sparse_memory_present_with_active_regions(int nid)
4129{
c13291a5
TH
4130 unsigned long start_pfn, end_pfn;
4131 int i, this_nid;
c713216d 4132
c13291a5
TH
4133 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4134 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4135}
4136
4137/**
4138 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4139 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4140 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4141 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4142 *
4143 * It returns the start and end page frame of a node based on information
4144 * provided by an arch calling add_active_range(). If called for a node
4145 * with no available memory, a warning is printed and the start and end
88ca3b94 4146 * PFNs will be 0.
c713216d 4147 */
a3142c8e 4148void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4149 unsigned long *start_pfn, unsigned long *end_pfn)
4150{
c13291a5 4151 unsigned long this_start_pfn, this_end_pfn;
c713216d 4152 int i;
c13291a5 4153
c713216d
MG
4154 *start_pfn = -1UL;
4155 *end_pfn = 0;
4156
c13291a5
TH
4157 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4158 *start_pfn = min(*start_pfn, this_start_pfn);
4159 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4160 }
4161
633c0666 4162 if (*start_pfn == -1UL)
c713216d 4163 *start_pfn = 0;
c713216d
MG
4164}
4165
2a1e274a
MG
4166/*
4167 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4168 * assumption is made that zones within a node are ordered in monotonic
4169 * increasing memory addresses so that the "highest" populated zone is used
4170 */
b69a7288 4171static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4172{
4173 int zone_index;
4174 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4175 if (zone_index == ZONE_MOVABLE)
4176 continue;
4177
4178 if (arch_zone_highest_possible_pfn[zone_index] >
4179 arch_zone_lowest_possible_pfn[zone_index])
4180 break;
4181 }
4182
4183 VM_BUG_ON(zone_index == -1);
4184 movable_zone = zone_index;
4185}
4186
4187/*
4188 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4189 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4190 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4191 * in each node depending on the size of each node and how evenly kernelcore
4192 * is distributed. This helper function adjusts the zone ranges
4193 * provided by the architecture for a given node by using the end of the
4194 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4195 * zones within a node are in order of monotonic increases memory addresses
4196 */
b69a7288 4197static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4198 unsigned long zone_type,
4199 unsigned long node_start_pfn,
4200 unsigned long node_end_pfn,
4201 unsigned long *zone_start_pfn,
4202 unsigned long *zone_end_pfn)
4203{
4204 /* Only adjust if ZONE_MOVABLE is on this node */
4205 if (zone_movable_pfn[nid]) {
4206 /* Size ZONE_MOVABLE */
4207 if (zone_type == ZONE_MOVABLE) {
4208 *zone_start_pfn = zone_movable_pfn[nid];
4209 *zone_end_pfn = min(node_end_pfn,
4210 arch_zone_highest_possible_pfn[movable_zone]);
4211
4212 /* Adjust for ZONE_MOVABLE starting within this range */
4213 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4214 *zone_end_pfn > zone_movable_pfn[nid]) {
4215 *zone_end_pfn = zone_movable_pfn[nid];
4216
4217 /* Check if this whole range is within ZONE_MOVABLE */
4218 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4219 *zone_start_pfn = *zone_end_pfn;
4220 }
4221}
4222
c713216d
MG
4223/*
4224 * Return the number of pages a zone spans in a node, including holes
4225 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4226 */
6ea6e688 4227static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4228 unsigned long zone_type,
4229 unsigned long *ignored)
4230{
4231 unsigned long node_start_pfn, node_end_pfn;
4232 unsigned long zone_start_pfn, zone_end_pfn;
4233
4234 /* Get the start and end of the node and zone */
4235 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4236 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4237 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4238 adjust_zone_range_for_zone_movable(nid, zone_type,
4239 node_start_pfn, node_end_pfn,
4240 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4241
4242 /* Check that this node has pages within the zone's required range */
4243 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4244 return 0;
4245
4246 /* Move the zone boundaries inside the node if necessary */
4247 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4248 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4249
4250 /* Return the spanned pages */
4251 return zone_end_pfn - zone_start_pfn;
4252}
4253
4254/*
4255 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4256 * then all holes in the requested range will be accounted for.
c713216d 4257 */
32996250 4258unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4259 unsigned long range_start_pfn,
4260 unsigned long range_end_pfn)
4261{
96e907d1
TH
4262 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4263 unsigned long start_pfn, end_pfn;
4264 int i;
c713216d 4265
96e907d1
TH
4266 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4267 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4268 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4269 nr_absent -= end_pfn - start_pfn;
c713216d 4270 }
96e907d1 4271 return nr_absent;
c713216d
MG
4272}
4273
4274/**
4275 * absent_pages_in_range - Return number of page frames in holes within a range
4276 * @start_pfn: The start PFN to start searching for holes
4277 * @end_pfn: The end PFN to stop searching for holes
4278 *
88ca3b94 4279 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4280 */
4281unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4282 unsigned long end_pfn)
4283{
4284 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4285}
4286
4287/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4288static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4289 unsigned long zone_type,
4290 unsigned long *ignored)
4291{
96e907d1
TH
4292 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4293 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4294 unsigned long node_start_pfn, node_end_pfn;
4295 unsigned long zone_start_pfn, zone_end_pfn;
4296
4297 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
96e907d1
TH
4298 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4299 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4300
2a1e274a
MG
4301 adjust_zone_range_for_zone_movable(nid, zone_type,
4302 node_start_pfn, node_end_pfn,
4303 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4304 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4305}
0e0b864e 4306
0ee332c1 4307#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4308static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4309 unsigned long zone_type,
4310 unsigned long *zones_size)
4311{
4312 return zones_size[zone_type];
4313}
4314
6ea6e688 4315static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4316 unsigned long zone_type,
4317 unsigned long *zholes_size)
4318{
4319 if (!zholes_size)
4320 return 0;
4321
4322 return zholes_size[zone_type];
4323}
0e0b864e 4324
0ee332c1 4325#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4326
a3142c8e 4327static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4328 unsigned long *zones_size, unsigned long *zholes_size)
4329{
4330 unsigned long realtotalpages, totalpages = 0;
4331 enum zone_type i;
4332
4333 for (i = 0; i < MAX_NR_ZONES; i++)
4334 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4335 zones_size);
4336 pgdat->node_spanned_pages = totalpages;
4337
4338 realtotalpages = totalpages;
4339 for (i = 0; i < MAX_NR_ZONES; i++)
4340 realtotalpages -=
4341 zone_absent_pages_in_node(pgdat->node_id, i,
4342 zholes_size);
4343 pgdat->node_present_pages = realtotalpages;
4344 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4345 realtotalpages);
4346}
4347
835c134e
MG
4348#ifndef CONFIG_SPARSEMEM
4349/*
4350 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4351 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4352 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4353 * round what is now in bits to nearest long in bits, then return it in
4354 * bytes.
4355 */
4356static unsigned long __init usemap_size(unsigned long zonesize)
4357{
4358 unsigned long usemapsize;
4359
d9c23400
MG
4360 usemapsize = roundup(zonesize, pageblock_nr_pages);
4361 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4362 usemapsize *= NR_PAGEBLOCK_BITS;
4363 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4364
4365 return usemapsize / 8;
4366}
4367
4368static void __init setup_usemap(struct pglist_data *pgdat,
4369 struct zone *zone, unsigned long zonesize)
4370{
4371 unsigned long usemapsize = usemap_size(zonesize);
4372 zone->pageblock_flags = NULL;
58a01a45 4373 if (usemapsize)
8f389a99
YL
4374 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4375 usemapsize);
835c134e
MG
4376}
4377#else
fa9f90be 4378static inline void setup_usemap(struct pglist_data *pgdat,
835c134e
MG
4379 struct zone *zone, unsigned long zonesize) {}
4380#endif /* CONFIG_SPARSEMEM */
4381
d9c23400 4382#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4383
d9c23400 4384/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
ca57df79 4385void __init set_pageblock_order(void)
d9c23400 4386{
955c1cd7
AM
4387 unsigned int order;
4388
d9c23400
MG
4389 /* Check that pageblock_nr_pages has not already been setup */
4390 if (pageblock_order)
4391 return;
4392
955c1cd7
AM
4393 if (HPAGE_SHIFT > PAGE_SHIFT)
4394 order = HUGETLB_PAGE_ORDER;
4395 else
4396 order = MAX_ORDER - 1;
4397
d9c23400
MG
4398 /*
4399 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4400 * This value may be variable depending on boot parameters on IA64 and
4401 * powerpc.
d9c23400
MG
4402 */
4403 pageblock_order = order;
4404}
4405#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4406
ba72cb8c
MG
4407/*
4408 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4409 * is unused as pageblock_order is set at compile-time. See
4410 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4411 * the kernel config
ba72cb8c 4412 */
ca57df79 4413void __init set_pageblock_order(void)
ba72cb8c 4414{
ba72cb8c 4415}
d9c23400
MG
4416
4417#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4418
1da177e4
LT
4419/*
4420 * Set up the zone data structures:
4421 * - mark all pages reserved
4422 * - mark all memory queues empty
4423 * - clear the memory bitmaps
6527af5d
MK
4424 *
4425 * NOTE: pgdat should get zeroed by caller.
1da177e4 4426 */
b5a0e011 4427static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4428 unsigned long *zones_size, unsigned long *zholes_size)
4429{
2f1b6248 4430 enum zone_type j;
ed8ece2e 4431 int nid = pgdat->node_id;
1da177e4 4432 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4433 int ret;
1da177e4 4434
208d54e5 4435 pgdat_resize_init(pgdat);
1da177e4 4436 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4437 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4438 pgdat_page_cgroup_init(pgdat);
5f63b720 4439
1da177e4
LT
4440 for (j = 0; j < MAX_NR_ZONES; j++) {
4441 struct zone *zone = pgdat->node_zones + j;
0e0b864e 4442 unsigned long size, realsize, memmap_pages;
1da177e4 4443
c713216d
MG
4444 size = zone_spanned_pages_in_node(nid, j, zones_size);
4445 realsize = size - zone_absent_pages_in_node(nid, j,
4446 zholes_size);
1da177e4 4447
0e0b864e
MG
4448 /*
4449 * Adjust realsize so that it accounts for how much memory
4450 * is used by this zone for memmap. This affects the watermark
4451 * and per-cpu initialisations
4452 */
f7232154
JW
4453 memmap_pages =
4454 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
4455 if (realsize >= memmap_pages) {
4456 realsize -= memmap_pages;
5594c8c8
YL
4457 if (memmap_pages)
4458 printk(KERN_DEBUG
4459 " %s zone: %lu pages used for memmap\n",
4460 zone_names[j], memmap_pages);
0e0b864e
MG
4461 } else
4462 printk(KERN_WARNING
4463 " %s zone: %lu pages exceeds realsize %lu\n",
4464 zone_names[j], memmap_pages, realsize);
4465
6267276f
CL
4466 /* Account for reserved pages */
4467 if (j == 0 && realsize > dma_reserve) {
0e0b864e 4468 realsize -= dma_reserve;
d903ef9f 4469 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4470 zone_names[0], dma_reserve);
0e0b864e
MG
4471 }
4472
98d2b0eb 4473 if (!is_highmem_idx(j))
1da177e4
LT
4474 nr_kernel_pages += realsize;
4475 nr_all_pages += realsize;
4476
4477 zone->spanned_pages = size;
4478 zone->present_pages = realsize;
7db8889a
RR
4479#if defined CONFIG_COMPACTION || defined CONFIG_CMA
4480 zone->compact_cached_free_pfn = zone->zone_start_pfn +
4481 zone->spanned_pages;
4482 zone->compact_cached_free_pfn &= ~(pageblock_nr_pages-1);
4483#endif
9614634f 4484#ifdef CONFIG_NUMA
d5f541ed 4485 zone->node = nid;
8417bba4 4486 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4487 / 100;
0ff38490 4488 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4489#endif
1da177e4
LT
4490 zone->name = zone_names[j];
4491 spin_lock_init(&zone->lock);
4492 spin_lock_init(&zone->lru_lock);
bdc8cb98 4493 zone_seqlock_init(zone);
1da177e4 4494 zone->zone_pgdat = pgdat;
1da177e4 4495
ed8ece2e 4496 zone_pcp_init(zone);
7f5e86c2 4497 lruvec_init(&zone->lruvec, zone);
1da177e4
LT
4498 if (!size)
4499 continue;
4500
955c1cd7 4501 set_pageblock_order();
835c134e 4502 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4503 ret = init_currently_empty_zone(zone, zone_start_pfn,
4504 size, MEMMAP_EARLY);
718127cc 4505 BUG_ON(ret);
76cdd58e 4506 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4507 zone_start_pfn += size;
1da177e4
LT
4508 }
4509}
4510
577a32f6 4511static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4512{
1da177e4
LT
4513 /* Skip empty nodes */
4514 if (!pgdat->node_spanned_pages)
4515 return;
4516
d41dee36 4517#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4518 /* ia64 gets its own node_mem_map, before this, without bootmem */
4519 if (!pgdat->node_mem_map) {
e984bb43 4520 unsigned long size, start, end;
d41dee36
AW
4521 struct page *map;
4522
e984bb43
BP
4523 /*
4524 * The zone's endpoints aren't required to be MAX_ORDER
4525 * aligned but the node_mem_map endpoints must be in order
4526 * for the buddy allocator to function correctly.
4527 */
4528 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4529 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4530 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4531 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4532 map = alloc_remap(pgdat->node_id, size);
4533 if (!map)
8f389a99 4534 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4535 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4536 }
12d810c1 4537#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4538 /*
4539 * With no DISCONTIG, the global mem_map is just set as node 0's
4540 */
c713216d 4541 if (pgdat == NODE_DATA(0)) {
1da177e4 4542 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4543#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4544 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4545 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4546#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4547 }
1da177e4 4548#endif
d41dee36 4549#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4550}
4551
9109fb7b
JW
4552void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4553 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4554{
9109fb7b
JW
4555 pg_data_t *pgdat = NODE_DATA(nid);
4556
88fdf75d 4557 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4558 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4559
1da177e4
LT
4560 pgdat->node_id = nid;
4561 pgdat->node_start_pfn = node_start_pfn;
c713216d 4562 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4563
4564 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4565#ifdef CONFIG_FLAT_NODE_MEM_MAP
4566 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4567 nid, (unsigned long)pgdat,
4568 (unsigned long)pgdat->node_mem_map);
4569#endif
1da177e4
LT
4570
4571 free_area_init_core(pgdat, zones_size, zholes_size);
4572}
4573
0ee332c1 4574#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4575
4576#if MAX_NUMNODES > 1
4577/*
4578 * Figure out the number of possible node ids.
4579 */
4580static void __init setup_nr_node_ids(void)
4581{
4582 unsigned int node;
4583 unsigned int highest = 0;
4584
4585 for_each_node_mask(node, node_possible_map)
4586 highest = node;
4587 nr_node_ids = highest + 1;
4588}
4589#else
4590static inline void setup_nr_node_ids(void)
4591{
4592}
4593#endif
4594
1e01979c
TH
4595/**
4596 * node_map_pfn_alignment - determine the maximum internode alignment
4597 *
4598 * This function should be called after node map is populated and sorted.
4599 * It calculates the maximum power of two alignment which can distinguish
4600 * all the nodes.
4601 *
4602 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4603 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4604 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4605 * shifted, 1GiB is enough and this function will indicate so.
4606 *
4607 * This is used to test whether pfn -> nid mapping of the chosen memory
4608 * model has fine enough granularity to avoid incorrect mapping for the
4609 * populated node map.
4610 *
4611 * Returns the determined alignment in pfn's. 0 if there is no alignment
4612 * requirement (single node).
4613 */
4614unsigned long __init node_map_pfn_alignment(void)
4615{
4616 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4617 unsigned long start, end, mask;
1e01979c 4618 int last_nid = -1;
c13291a5 4619 int i, nid;
1e01979c 4620
c13291a5 4621 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4622 if (!start || last_nid < 0 || last_nid == nid) {
4623 last_nid = nid;
4624 last_end = end;
4625 continue;
4626 }
4627
4628 /*
4629 * Start with a mask granular enough to pin-point to the
4630 * start pfn and tick off bits one-by-one until it becomes
4631 * too coarse to separate the current node from the last.
4632 */
4633 mask = ~((1 << __ffs(start)) - 1);
4634 while (mask && last_end <= (start & (mask << 1)))
4635 mask <<= 1;
4636
4637 /* accumulate all internode masks */
4638 accl_mask |= mask;
4639 }
4640
4641 /* convert mask to number of pages */
4642 return ~accl_mask + 1;
4643}
4644
a6af2bc3 4645/* Find the lowest pfn for a node */
b69a7288 4646static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4647{
a6af2bc3 4648 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4649 unsigned long start_pfn;
4650 int i;
1abbfb41 4651
c13291a5
TH
4652 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4653 min_pfn = min(min_pfn, start_pfn);
c713216d 4654
a6af2bc3
MG
4655 if (min_pfn == ULONG_MAX) {
4656 printk(KERN_WARNING
2bc0d261 4657 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4658 return 0;
4659 }
4660
4661 return min_pfn;
c713216d
MG
4662}
4663
4664/**
4665 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4666 *
4667 * It returns the minimum PFN based on information provided via
88ca3b94 4668 * add_active_range().
c713216d
MG
4669 */
4670unsigned long __init find_min_pfn_with_active_regions(void)
4671{
4672 return find_min_pfn_for_node(MAX_NUMNODES);
4673}
4674
37b07e41
LS
4675/*
4676 * early_calculate_totalpages()
4677 * Sum pages in active regions for movable zone.
4678 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4679 */
484f51f8 4680static unsigned long __init early_calculate_totalpages(void)
7e63efef 4681{
7e63efef 4682 unsigned long totalpages = 0;
c13291a5
TH
4683 unsigned long start_pfn, end_pfn;
4684 int i, nid;
4685
4686 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4687 unsigned long pages = end_pfn - start_pfn;
7e63efef 4688
37b07e41
LS
4689 totalpages += pages;
4690 if (pages)
c13291a5 4691 node_set_state(nid, N_HIGH_MEMORY);
37b07e41
LS
4692 }
4693 return totalpages;
7e63efef
MG
4694}
4695
2a1e274a
MG
4696/*
4697 * Find the PFN the Movable zone begins in each node. Kernel memory
4698 * is spread evenly between nodes as long as the nodes have enough
4699 * memory. When they don't, some nodes will have more kernelcore than
4700 * others
4701 */
b224ef85 4702static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
4703{
4704 int i, nid;
4705 unsigned long usable_startpfn;
4706 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4707 /* save the state before borrow the nodemask */
4708 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4709 unsigned long totalpages = early_calculate_totalpages();
4710 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4711
7e63efef
MG
4712 /*
4713 * If movablecore was specified, calculate what size of
4714 * kernelcore that corresponds so that memory usable for
4715 * any allocation type is evenly spread. If both kernelcore
4716 * and movablecore are specified, then the value of kernelcore
4717 * will be used for required_kernelcore if it's greater than
4718 * what movablecore would have allowed.
4719 */
4720 if (required_movablecore) {
7e63efef
MG
4721 unsigned long corepages;
4722
4723 /*
4724 * Round-up so that ZONE_MOVABLE is at least as large as what
4725 * was requested by the user
4726 */
4727 required_movablecore =
4728 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4729 corepages = totalpages - required_movablecore;
4730
4731 required_kernelcore = max(required_kernelcore, corepages);
4732 }
4733
2a1e274a
MG
4734 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4735 if (!required_kernelcore)
66918dcd 4736 goto out;
2a1e274a
MG
4737
4738 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4739 find_usable_zone_for_movable();
4740 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4741
4742restart:
4743 /* Spread kernelcore memory as evenly as possible throughout nodes */
4744 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4745 for_each_node_state(nid, N_HIGH_MEMORY) {
c13291a5
TH
4746 unsigned long start_pfn, end_pfn;
4747
2a1e274a
MG
4748 /*
4749 * Recalculate kernelcore_node if the division per node
4750 * now exceeds what is necessary to satisfy the requested
4751 * amount of memory for the kernel
4752 */
4753 if (required_kernelcore < kernelcore_node)
4754 kernelcore_node = required_kernelcore / usable_nodes;
4755
4756 /*
4757 * As the map is walked, we track how much memory is usable
4758 * by the kernel using kernelcore_remaining. When it is
4759 * 0, the rest of the node is usable by ZONE_MOVABLE
4760 */
4761 kernelcore_remaining = kernelcore_node;
4762
4763 /* Go through each range of PFNs within this node */
c13291a5 4764 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
4765 unsigned long size_pages;
4766
c13291a5 4767 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
4768 if (start_pfn >= end_pfn)
4769 continue;
4770
4771 /* Account for what is only usable for kernelcore */
4772 if (start_pfn < usable_startpfn) {
4773 unsigned long kernel_pages;
4774 kernel_pages = min(end_pfn, usable_startpfn)
4775 - start_pfn;
4776
4777 kernelcore_remaining -= min(kernel_pages,
4778 kernelcore_remaining);
4779 required_kernelcore -= min(kernel_pages,
4780 required_kernelcore);
4781
4782 /* Continue if range is now fully accounted */
4783 if (end_pfn <= usable_startpfn) {
4784
4785 /*
4786 * Push zone_movable_pfn to the end so
4787 * that if we have to rebalance
4788 * kernelcore across nodes, we will
4789 * not double account here
4790 */
4791 zone_movable_pfn[nid] = end_pfn;
4792 continue;
4793 }
4794 start_pfn = usable_startpfn;
4795 }
4796
4797 /*
4798 * The usable PFN range for ZONE_MOVABLE is from
4799 * start_pfn->end_pfn. Calculate size_pages as the
4800 * number of pages used as kernelcore
4801 */
4802 size_pages = end_pfn - start_pfn;
4803 if (size_pages > kernelcore_remaining)
4804 size_pages = kernelcore_remaining;
4805 zone_movable_pfn[nid] = start_pfn + size_pages;
4806
4807 /*
4808 * Some kernelcore has been met, update counts and
4809 * break if the kernelcore for this node has been
4810 * satisified
4811 */
4812 required_kernelcore -= min(required_kernelcore,
4813 size_pages);
4814 kernelcore_remaining -= size_pages;
4815 if (!kernelcore_remaining)
4816 break;
4817 }
4818 }
4819
4820 /*
4821 * If there is still required_kernelcore, we do another pass with one
4822 * less node in the count. This will push zone_movable_pfn[nid] further
4823 * along on the nodes that still have memory until kernelcore is
4824 * satisified
4825 */
4826 usable_nodes--;
4827 if (usable_nodes && required_kernelcore > usable_nodes)
4828 goto restart;
4829
4830 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4831 for (nid = 0; nid < MAX_NUMNODES; nid++)
4832 zone_movable_pfn[nid] =
4833 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4834
4835out:
4836 /* restore the node_state */
4837 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4838}
4839
37b07e41 4840/* Any regular memory on that node ? */
4ed7e022 4841static void __init check_for_regular_memory(pg_data_t *pgdat)
37b07e41
LS
4842{
4843#ifdef CONFIG_HIGHMEM
4844 enum zone_type zone_type;
4845
4846 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4847 struct zone *zone = &pgdat->node_zones[zone_type];
d0048b0e 4848 if (zone->present_pages) {
37b07e41 4849 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
d0048b0e
BL
4850 break;
4851 }
37b07e41
LS
4852 }
4853#endif
4854}
4855
c713216d
MG
4856/**
4857 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4858 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4859 *
4860 * This will call free_area_init_node() for each active node in the system.
4861 * Using the page ranges provided by add_active_range(), the size of each
4862 * zone in each node and their holes is calculated. If the maximum PFN
4863 * between two adjacent zones match, it is assumed that the zone is empty.
4864 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4865 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4866 * starts where the previous one ended. For example, ZONE_DMA32 starts
4867 * at arch_max_dma_pfn.
4868 */
4869void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4870{
c13291a5
TH
4871 unsigned long start_pfn, end_pfn;
4872 int i, nid;
a6af2bc3 4873
c713216d
MG
4874 /* Record where the zone boundaries are */
4875 memset(arch_zone_lowest_possible_pfn, 0,
4876 sizeof(arch_zone_lowest_possible_pfn));
4877 memset(arch_zone_highest_possible_pfn, 0,
4878 sizeof(arch_zone_highest_possible_pfn));
4879 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4880 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4881 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4882 if (i == ZONE_MOVABLE)
4883 continue;
c713216d
MG
4884 arch_zone_lowest_possible_pfn[i] =
4885 arch_zone_highest_possible_pfn[i-1];
4886 arch_zone_highest_possible_pfn[i] =
4887 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4888 }
2a1e274a
MG
4889 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4890 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4891
4892 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4893 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 4894 find_zone_movable_pfns_for_nodes();
c713216d 4895
c713216d 4896 /* Print out the zone ranges */
a62e2f4f 4897 printk("Zone ranges:\n");
2a1e274a
MG
4898 for (i = 0; i < MAX_NR_ZONES; i++) {
4899 if (i == ZONE_MOVABLE)
4900 continue;
155cbfc8 4901 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
4902 if (arch_zone_lowest_possible_pfn[i] ==
4903 arch_zone_highest_possible_pfn[i])
155cbfc8 4904 printk(KERN_CONT "empty\n");
72f0ba02 4905 else
a62e2f4f
BH
4906 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
4907 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
4908 (arch_zone_highest_possible_pfn[i]
4909 << PAGE_SHIFT) - 1);
2a1e274a
MG
4910 }
4911
4912 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 4913 printk("Movable zone start for each node\n");
2a1e274a
MG
4914 for (i = 0; i < MAX_NUMNODES; i++) {
4915 if (zone_movable_pfn[i])
a62e2f4f
BH
4916 printk(" Node %d: %#010lx\n", i,
4917 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 4918 }
c713216d
MG
4919
4920 /* Print out the early_node_map[] */
a62e2f4f 4921 printk("Early memory node ranges\n");
c13291a5 4922 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
4923 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
4924 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
4925
4926 /* Initialise every node */
708614e6 4927 mminit_verify_pageflags_layout();
8ef82866 4928 setup_nr_node_ids();
c713216d
MG
4929 for_each_online_node(nid) {
4930 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4931 free_area_init_node(nid, NULL,
c713216d 4932 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4933
4934 /* Any memory on that node */
4935 if (pgdat->node_present_pages)
4936 node_set_state(nid, N_HIGH_MEMORY);
4937 check_for_regular_memory(pgdat);
c713216d
MG
4938 }
4939}
2a1e274a 4940
7e63efef 4941static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4942{
4943 unsigned long long coremem;
4944 if (!p)
4945 return -EINVAL;
4946
4947 coremem = memparse(p, &p);
7e63efef 4948 *core = coremem >> PAGE_SHIFT;
2a1e274a 4949
7e63efef 4950 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4951 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4952
4953 return 0;
4954}
ed7ed365 4955
7e63efef
MG
4956/*
4957 * kernelcore=size sets the amount of memory for use for allocations that
4958 * cannot be reclaimed or migrated.
4959 */
4960static int __init cmdline_parse_kernelcore(char *p)
4961{
4962 return cmdline_parse_core(p, &required_kernelcore);
4963}
4964
4965/*
4966 * movablecore=size sets the amount of memory for use for allocations that
4967 * can be reclaimed or migrated.
4968 */
4969static int __init cmdline_parse_movablecore(char *p)
4970{
4971 return cmdline_parse_core(p, &required_movablecore);
4972}
4973
ed7ed365 4974early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4975early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4976
0ee332c1 4977#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4978
0e0b864e 4979/**
88ca3b94
RD
4980 * set_dma_reserve - set the specified number of pages reserved in the first zone
4981 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4982 *
4983 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4984 * In the DMA zone, a significant percentage may be consumed by kernel image
4985 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4986 * function may optionally be used to account for unfreeable pages in the
4987 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4988 * smaller per-cpu batchsize.
0e0b864e
MG
4989 */
4990void __init set_dma_reserve(unsigned long new_dma_reserve)
4991{
4992 dma_reserve = new_dma_reserve;
4993}
4994
1da177e4
LT
4995void __init free_area_init(unsigned long *zones_size)
4996{
9109fb7b 4997 free_area_init_node(0, zones_size,
1da177e4
LT
4998 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4999}
1da177e4 5000
1da177e4
LT
5001static int page_alloc_cpu_notify(struct notifier_block *self,
5002 unsigned long action, void *hcpu)
5003{
5004 int cpu = (unsigned long)hcpu;
1da177e4 5005
8bb78442 5006 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5007 lru_add_drain_cpu(cpu);
9f8f2172
CL
5008 drain_pages(cpu);
5009
5010 /*
5011 * Spill the event counters of the dead processor
5012 * into the current processors event counters.
5013 * This artificially elevates the count of the current
5014 * processor.
5015 */
f8891e5e 5016 vm_events_fold_cpu(cpu);
9f8f2172
CL
5017
5018 /*
5019 * Zero the differential counters of the dead processor
5020 * so that the vm statistics are consistent.
5021 *
5022 * This is only okay since the processor is dead and cannot
5023 * race with what we are doing.
5024 */
2244b95a 5025 refresh_cpu_vm_stats(cpu);
1da177e4
LT
5026 }
5027 return NOTIFY_OK;
5028}
1da177e4
LT
5029
5030void __init page_alloc_init(void)
5031{
5032 hotcpu_notifier(page_alloc_cpu_notify, 0);
5033}
5034
cb45b0e9
HA
5035/*
5036 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5037 * or min_free_kbytes changes.
5038 */
5039static void calculate_totalreserve_pages(void)
5040{
5041 struct pglist_data *pgdat;
5042 unsigned long reserve_pages = 0;
2f6726e5 5043 enum zone_type i, j;
cb45b0e9
HA
5044
5045 for_each_online_pgdat(pgdat) {
5046 for (i = 0; i < MAX_NR_ZONES; i++) {
5047 struct zone *zone = pgdat->node_zones + i;
5048 unsigned long max = 0;
5049
5050 /* Find valid and maximum lowmem_reserve in the zone */
5051 for (j = i; j < MAX_NR_ZONES; j++) {
5052 if (zone->lowmem_reserve[j] > max)
5053 max = zone->lowmem_reserve[j];
5054 }
5055
41858966
MG
5056 /* we treat the high watermark as reserved pages. */
5057 max += high_wmark_pages(zone);
cb45b0e9
HA
5058
5059 if (max > zone->present_pages)
5060 max = zone->present_pages;
5061 reserve_pages += max;
ab8fabd4
JW
5062 /*
5063 * Lowmem reserves are not available to
5064 * GFP_HIGHUSER page cache allocations and
5065 * kswapd tries to balance zones to their high
5066 * watermark. As a result, neither should be
5067 * regarded as dirtyable memory, to prevent a
5068 * situation where reclaim has to clean pages
5069 * in order to balance the zones.
5070 */
5071 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5072 }
5073 }
ab8fabd4 5074 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5075 totalreserve_pages = reserve_pages;
5076}
5077
1da177e4
LT
5078/*
5079 * setup_per_zone_lowmem_reserve - called whenever
5080 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5081 * has a correct pages reserved value, so an adequate number of
5082 * pages are left in the zone after a successful __alloc_pages().
5083 */
5084static void setup_per_zone_lowmem_reserve(void)
5085{
5086 struct pglist_data *pgdat;
2f6726e5 5087 enum zone_type j, idx;
1da177e4 5088
ec936fc5 5089 for_each_online_pgdat(pgdat) {
1da177e4
LT
5090 for (j = 0; j < MAX_NR_ZONES; j++) {
5091 struct zone *zone = pgdat->node_zones + j;
5092 unsigned long present_pages = zone->present_pages;
5093
5094 zone->lowmem_reserve[j] = 0;
5095
2f6726e5
CL
5096 idx = j;
5097 while (idx) {
1da177e4
LT
5098 struct zone *lower_zone;
5099
2f6726e5
CL
5100 idx--;
5101
1da177e4
LT
5102 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5103 sysctl_lowmem_reserve_ratio[idx] = 1;
5104
5105 lower_zone = pgdat->node_zones + idx;
5106 lower_zone->lowmem_reserve[j] = present_pages /
5107 sysctl_lowmem_reserve_ratio[idx];
5108 present_pages += lower_zone->present_pages;
5109 }
5110 }
5111 }
cb45b0e9
HA
5112
5113 /* update totalreserve_pages */
5114 calculate_totalreserve_pages();
1da177e4
LT
5115}
5116
cfd3da1e 5117static void __setup_per_zone_wmarks(void)
1da177e4
LT
5118{
5119 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5120 unsigned long lowmem_pages = 0;
5121 struct zone *zone;
5122 unsigned long flags;
5123
5124 /* Calculate total number of !ZONE_HIGHMEM pages */
5125 for_each_zone(zone) {
5126 if (!is_highmem(zone))
5127 lowmem_pages += zone->present_pages;
5128 }
5129
5130 for_each_zone(zone) {
ac924c60
AM
5131 u64 tmp;
5132
1125b4e3 5133 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
5134 tmp = (u64)pages_min * zone->present_pages;
5135 do_div(tmp, lowmem_pages);
1da177e4
LT
5136 if (is_highmem(zone)) {
5137 /*
669ed175
NP
5138 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5139 * need highmem pages, so cap pages_min to a small
5140 * value here.
5141 *
41858966 5142 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5143 * deltas controls asynch page reclaim, and so should
5144 * not be capped for highmem.
1da177e4
LT
5145 */
5146 int min_pages;
5147
5148 min_pages = zone->present_pages / 1024;
5149 if (min_pages < SWAP_CLUSTER_MAX)
5150 min_pages = SWAP_CLUSTER_MAX;
5151 if (min_pages > 128)
5152 min_pages = 128;
41858966 5153 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5154 } else {
669ed175
NP
5155 /*
5156 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5157 * proportionate to the zone's size.
5158 */
41858966 5159 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5160 }
5161
41858966
MG
5162 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5163 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9
MS
5164
5165 zone->watermark[WMARK_MIN] += cma_wmark_pages(zone);
5166 zone->watermark[WMARK_LOW] += cma_wmark_pages(zone);
5167 zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone);
5168
56fd56b8 5169 setup_zone_migrate_reserve(zone);
1125b4e3 5170 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5171 }
cb45b0e9
HA
5172
5173 /* update totalreserve_pages */
5174 calculate_totalreserve_pages();
1da177e4
LT
5175}
5176
cfd3da1e
MG
5177/**
5178 * setup_per_zone_wmarks - called when min_free_kbytes changes
5179 * or when memory is hot-{added|removed}
5180 *
5181 * Ensures that the watermark[min,low,high] values for each zone are set
5182 * correctly with respect to min_free_kbytes.
5183 */
5184void setup_per_zone_wmarks(void)
5185{
5186 mutex_lock(&zonelists_mutex);
5187 __setup_per_zone_wmarks();
5188 mutex_unlock(&zonelists_mutex);
5189}
5190
55a4462a 5191/*
556adecb
RR
5192 * The inactive anon list should be small enough that the VM never has to
5193 * do too much work, but large enough that each inactive page has a chance
5194 * to be referenced again before it is swapped out.
5195 *
5196 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5197 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5198 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5199 * the anonymous pages are kept on the inactive list.
5200 *
5201 * total target max
5202 * memory ratio inactive anon
5203 * -------------------------------------
5204 * 10MB 1 5MB
5205 * 100MB 1 50MB
5206 * 1GB 3 250MB
5207 * 10GB 10 0.9GB
5208 * 100GB 31 3GB
5209 * 1TB 101 10GB
5210 * 10TB 320 32GB
5211 */
1b79acc9 5212static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5213{
96cb4df5 5214 unsigned int gb, ratio;
556adecb 5215
96cb4df5
MK
5216 /* Zone size in gigabytes */
5217 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5218 if (gb)
556adecb 5219 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5220 else
5221 ratio = 1;
556adecb 5222
96cb4df5
MK
5223 zone->inactive_ratio = ratio;
5224}
556adecb 5225
839a4fcc 5226static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5227{
5228 struct zone *zone;
5229
5230 for_each_zone(zone)
5231 calculate_zone_inactive_ratio(zone);
556adecb
RR
5232}
5233
1da177e4
LT
5234/*
5235 * Initialise min_free_kbytes.
5236 *
5237 * For small machines we want it small (128k min). For large machines
5238 * we want it large (64MB max). But it is not linear, because network
5239 * bandwidth does not increase linearly with machine size. We use
5240 *
5241 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5242 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5243 *
5244 * which yields
5245 *
5246 * 16MB: 512k
5247 * 32MB: 724k
5248 * 64MB: 1024k
5249 * 128MB: 1448k
5250 * 256MB: 2048k
5251 * 512MB: 2896k
5252 * 1024MB: 4096k
5253 * 2048MB: 5792k
5254 * 4096MB: 8192k
5255 * 8192MB: 11584k
5256 * 16384MB: 16384k
5257 */
1b79acc9 5258int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5259{
5260 unsigned long lowmem_kbytes;
5261
5262 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5263
5264 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5265 if (min_free_kbytes < 128)
5266 min_free_kbytes = 128;
5267 if (min_free_kbytes > 65536)
5268 min_free_kbytes = 65536;
bc75d33f 5269 setup_per_zone_wmarks();
a6cccdc3 5270 refresh_zone_stat_thresholds();
1da177e4 5271 setup_per_zone_lowmem_reserve();
556adecb 5272 setup_per_zone_inactive_ratio();
1da177e4
LT
5273 return 0;
5274}
bc75d33f 5275module_init(init_per_zone_wmark_min)
1da177e4
LT
5276
5277/*
5278 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5279 * that we can call two helper functions whenever min_free_kbytes
5280 * changes.
5281 */
5282int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5283 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5284{
8d65af78 5285 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5286 if (write)
bc75d33f 5287 setup_per_zone_wmarks();
1da177e4
LT
5288 return 0;
5289}
5290
9614634f
CL
5291#ifdef CONFIG_NUMA
5292int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5293 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5294{
5295 struct zone *zone;
5296 int rc;
5297
8d65af78 5298 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5299 if (rc)
5300 return rc;
5301
5302 for_each_zone(zone)
8417bba4 5303 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5304 sysctl_min_unmapped_ratio) / 100;
5305 return 0;
5306}
0ff38490
CL
5307
5308int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5309 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5310{
5311 struct zone *zone;
5312 int rc;
5313
8d65af78 5314 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5315 if (rc)
5316 return rc;
5317
5318 for_each_zone(zone)
5319 zone->min_slab_pages = (zone->present_pages *
5320 sysctl_min_slab_ratio) / 100;
5321 return 0;
5322}
9614634f
CL
5323#endif
5324
1da177e4
LT
5325/*
5326 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5327 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5328 * whenever sysctl_lowmem_reserve_ratio changes.
5329 *
5330 * The reserve ratio obviously has absolutely no relation with the
41858966 5331 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5332 * if in function of the boot time zone sizes.
5333 */
5334int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5335 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5336{
8d65af78 5337 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5338 setup_per_zone_lowmem_reserve();
5339 return 0;
5340}
5341
8ad4b1fb
RS
5342/*
5343 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5344 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5345 * can have before it gets flushed back to buddy allocator.
5346 */
5347
5348int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5349 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5350{
5351 struct zone *zone;
5352 unsigned int cpu;
5353 int ret;
5354
8d65af78 5355 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5356 if (!write || (ret < 0))
8ad4b1fb 5357 return ret;
364df0eb 5358 for_each_populated_zone(zone) {
99dcc3e5 5359 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5360 unsigned long high;
5361 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5362 setup_pagelist_highmark(
5363 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5364 }
5365 }
5366 return 0;
5367}
5368
f034b5d4 5369int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5370
5371#ifdef CONFIG_NUMA
5372static int __init set_hashdist(char *str)
5373{
5374 if (!str)
5375 return 0;
5376 hashdist = simple_strtoul(str, &str, 0);
5377 return 1;
5378}
5379__setup("hashdist=", set_hashdist);
5380#endif
5381
5382/*
5383 * allocate a large system hash table from bootmem
5384 * - it is assumed that the hash table must contain an exact power-of-2
5385 * quantity of entries
5386 * - limit is the number of hash buckets, not the total allocation size
5387 */
5388void *__init alloc_large_system_hash(const char *tablename,
5389 unsigned long bucketsize,
5390 unsigned long numentries,
5391 int scale,
5392 int flags,
5393 unsigned int *_hash_shift,
5394 unsigned int *_hash_mask,
31fe62b9
TB
5395 unsigned long low_limit,
5396 unsigned long high_limit)
1da177e4 5397{
31fe62b9 5398 unsigned long long max = high_limit;
1da177e4
LT
5399 unsigned long log2qty, size;
5400 void *table = NULL;
5401
5402 /* allow the kernel cmdline to have a say */
5403 if (!numentries) {
5404 /* round applicable memory size up to nearest megabyte */
04903664 5405 numentries = nr_kernel_pages;
1da177e4
LT
5406 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5407 numentries >>= 20 - PAGE_SHIFT;
5408 numentries <<= 20 - PAGE_SHIFT;
5409
5410 /* limit to 1 bucket per 2^scale bytes of low memory */
5411 if (scale > PAGE_SHIFT)
5412 numentries >>= (scale - PAGE_SHIFT);
5413 else
5414 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5415
5416 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5417 if (unlikely(flags & HASH_SMALL)) {
5418 /* Makes no sense without HASH_EARLY */
5419 WARN_ON(!(flags & HASH_EARLY));
5420 if (!(numentries >> *_hash_shift)) {
5421 numentries = 1UL << *_hash_shift;
5422 BUG_ON(!numentries);
5423 }
5424 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5425 numentries = PAGE_SIZE / bucketsize;
1da177e4 5426 }
6e692ed3 5427 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5428
5429 /* limit allocation size to 1/16 total memory by default */
5430 if (max == 0) {
5431 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5432 do_div(max, bucketsize);
5433 }
074b8517 5434 max = min(max, 0x80000000ULL);
1da177e4 5435
31fe62b9
TB
5436 if (numentries < low_limit)
5437 numentries = low_limit;
1da177e4
LT
5438 if (numentries > max)
5439 numentries = max;
5440
f0d1b0b3 5441 log2qty = ilog2(numentries);
1da177e4
LT
5442
5443 do {
5444 size = bucketsize << log2qty;
5445 if (flags & HASH_EARLY)
74768ed8 5446 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5447 else if (hashdist)
5448 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5449 else {
1037b83b
ED
5450 /*
5451 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5452 * some pages at the end of hash table which
5453 * alloc_pages_exact() automatically does
1037b83b 5454 */
264ef8a9 5455 if (get_order(size) < MAX_ORDER) {
a1dd268c 5456 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5457 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5458 }
1da177e4
LT
5459 }
5460 } while (!table && size > PAGE_SIZE && --log2qty);
5461
5462 if (!table)
5463 panic("Failed to allocate %s hash table\n", tablename);
5464
f241e660 5465 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5466 tablename,
f241e660 5467 (1UL << log2qty),
f0d1b0b3 5468 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5469 size);
5470
5471 if (_hash_shift)
5472 *_hash_shift = log2qty;
5473 if (_hash_mask)
5474 *_hash_mask = (1 << log2qty) - 1;
5475
5476 return table;
5477}
a117e66e 5478
835c134e
MG
5479/* Return a pointer to the bitmap storing bits affecting a block of pages */
5480static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5481 unsigned long pfn)
5482{
5483#ifdef CONFIG_SPARSEMEM
5484 return __pfn_to_section(pfn)->pageblock_flags;
5485#else
5486 return zone->pageblock_flags;
5487#endif /* CONFIG_SPARSEMEM */
5488}
5489
5490static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5491{
5492#ifdef CONFIG_SPARSEMEM
5493 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5494 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5495#else
5496 pfn = pfn - zone->zone_start_pfn;
d9c23400 5497 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5498#endif /* CONFIG_SPARSEMEM */
5499}
5500
5501/**
d9c23400 5502 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5503 * @page: The page within the block of interest
5504 * @start_bitidx: The first bit of interest to retrieve
5505 * @end_bitidx: The last bit of interest
5506 * returns pageblock_bits flags
5507 */
5508unsigned long get_pageblock_flags_group(struct page *page,
5509 int start_bitidx, int end_bitidx)
5510{
5511 struct zone *zone;
5512 unsigned long *bitmap;
5513 unsigned long pfn, bitidx;
5514 unsigned long flags = 0;
5515 unsigned long value = 1;
5516
5517 zone = page_zone(page);
5518 pfn = page_to_pfn(page);
5519 bitmap = get_pageblock_bitmap(zone, pfn);
5520 bitidx = pfn_to_bitidx(zone, pfn);
5521
5522 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5523 if (test_bit(bitidx + start_bitidx, bitmap))
5524 flags |= value;
6220ec78 5525
835c134e
MG
5526 return flags;
5527}
5528
5529/**
d9c23400 5530 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5531 * @page: The page within the block of interest
5532 * @start_bitidx: The first bit of interest
5533 * @end_bitidx: The last bit of interest
5534 * @flags: The flags to set
5535 */
5536void set_pageblock_flags_group(struct page *page, unsigned long flags,
5537 int start_bitidx, int end_bitidx)
5538{
5539 struct zone *zone;
5540 unsigned long *bitmap;
5541 unsigned long pfn, bitidx;
5542 unsigned long value = 1;
5543
5544 zone = page_zone(page);
5545 pfn = page_to_pfn(page);
5546 bitmap = get_pageblock_bitmap(zone, pfn);
5547 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5548 VM_BUG_ON(pfn < zone->zone_start_pfn);
5549 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5550
5551 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5552 if (flags & value)
5553 __set_bit(bitidx + start_bitidx, bitmap);
5554 else
5555 __clear_bit(bitidx + start_bitidx, bitmap);
5556}
a5d76b54
KH
5557
5558/*
80934513
MK
5559 * This function checks whether pageblock includes unmovable pages or not.
5560 * If @count is not zero, it is okay to include less @count unmovable pages
5561 *
5562 * PageLRU check wihtout isolation or lru_lock could race so that
5563 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5564 * expect this function should be exact.
a5d76b54 5565 */
ee6f509c 5566bool has_unmovable_pages(struct zone *zone, struct page *page, int count)
49ac8255
KH
5567{
5568 unsigned long pfn, iter, found;
47118af0
MN
5569 int mt;
5570
49ac8255
KH
5571 /*
5572 * For avoiding noise data, lru_add_drain_all() should be called
80934513 5573 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
5574 */
5575 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 5576 return false;
47118af0
MN
5577 mt = get_pageblock_migratetype(page);
5578 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 5579 return false;
49ac8255
KH
5580
5581 pfn = page_to_pfn(page);
5582 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5583 unsigned long check = pfn + iter;
5584
29723fcc 5585 if (!pfn_valid_within(check))
49ac8255 5586 continue;
29723fcc 5587
49ac8255 5588 page = pfn_to_page(check);
97d255c8
MK
5589 /*
5590 * We can't use page_count without pin a page
5591 * because another CPU can free compound page.
5592 * This check already skips compound tails of THP
5593 * because their page->_count is zero at all time.
5594 */
5595 if (!atomic_read(&page->_count)) {
49ac8255
KH
5596 if (PageBuddy(page))
5597 iter += (1 << page_order(page)) - 1;
5598 continue;
5599 }
97d255c8 5600
49ac8255
KH
5601 if (!PageLRU(page))
5602 found++;
5603 /*
5604 * If there are RECLAIMABLE pages, we need to check it.
5605 * But now, memory offline itself doesn't call shrink_slab()
5606 * and it still to be fixed.
5607 */
5608 /*
5609 * If the page is not RAM, page_count()should be 0.
5610 * we don't need more check. This is an _used_ not-movable page.
5611 *
5612 * The problematic thing here is PG_reserved pages. PG_reserved
5613 * is set to both of a memory hole page and a _used_ kernel
5614 * page at boot.
5615 */
5616 if (found > count)
80934513 5617 return true;
49ac8255 5618 }
80934513 5619 return false;
49ac8255
KH
5620}
5621
5622bool is_pageblock_removable_nolock(struct page *page)
5623{
656a0706
MH
5624 struct zone *zone;
5625 unsigned long pfn;
687875fb
MH
5626
5627 /*
5628 * We have to be careful here because we are iterating over memory
5629 * sections which are not zone aware so we might end up outside of
5630 * the zone but still within the section.
656a0706
MH
5631 * We have to take care about the node as well. If the node is offline
5632 * its NODE_DATA will be NULL - see page_zone.
687875fb 5633 */
656a0706
MH
5634 if (!node_online(page_to_nid(page)))
5635 return false;
5636
5637 zone = page_zone(page);
5638 pfn = page_to_pfn(page);
5639 if (zone->zone_start_pfn > pfn ||
687875fb
MH
5640 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5641 return false;
5642
ee6f509c 5643 return !has_unmovable_pages(zone, page, 0);
a5d76b54 5644}
0c0e6195 5645
041d3a8c
MN
5646#ifdef CONFIG_CMA
5647
5648static unsigned long pfn_max_align_down(unsigned long pfn)
5649{
5650 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5651 pageblock_nr_pages) - 1);
5652}
5653
5654static unsigned long pfn_max_align_up(unsigned long pfn)
5655{
5656 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5657 pageblock_nr_pages));
5658}
5659
5660static struct page *
5661__alloc_contig_migrate_alloc(struct page *page, unsigned long private,
5662 int **resultp)
5663{
6a6dccba
RV
5664 gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
5665
5666 if (PageHighMem(page))
5667 gfp_mask |= __GFP_HIGHMEM;
5668
5669 return alloc_page(gfp_mask);
041d3a8c
MN
5670}
5671
5672/* [start, end) must belong to a single zone. */
5673static int __alloc_contig_migrate_range(unsigned long start, unsigned long end)
5674{
5675 /* This function is based on compact_zone() from compaction.c. */
5676
5677 unsigned long pfn = start;
5678 unsigned int tries = 0;
5679 int ret = 0;
5680
5681 struct compact_control cc = {
5682 .nr_migratepages = 0,
5683 .order = -1,
5684 .zone = page_zone(pfn_to_page(start)),
68e3e926 5685 .sync = true,
041d3a8c
MN
5686 };
5687 INIT_LIST_HEAD(&cc.migratepages);
5688
5689 migrate_prep_local();
5690
5691 while (pfn < end || !list_empty(&cc.migratepages)) {
5692 if (fatal_signal_pending(current)) {
5693 ret = -EINTR;
5694 break;
5695 }
5696
5697 if (list_empty(&cc.migratepages)) {
5698 cc.nr_migratepages = 0;
5699 pfn = isolate_migratepages_range(cc.zone, &cc,
5700 pfn, end);
5701 if (!pfn) {
5702 ret = -EINTR;
5703 break;
5704 }
5705 tries = 0;
5706 } else if (++tries == 5) {
5707 ret = ret < 0 ? ret : -EBUSY;
5708 break;
5709 }
5710
02c6de8d
MK
5711 reclaim_clean_pages_from_list(cc.zone, &cc.migratepages);
5712
041d3a8c
MN
5713 ret = migrate_pages(&cc.migratepages,
5714 __alloc_contig_migrate_alloc,
58f42fd5 5715 0, false, MIGRATE_SYNC);
041d3a8c
MN
5716 }
5717
5718 putback_lru_pages(&cc.migratepages);
5719 return ret > 0 ? 0 : ret;
5720}
5721
49f223a9
MS
5722/*
5723 * Update zone's cma pages counter used for watermark level calculation.
5724 */
5725static inline void __update_cma_watermarks(struct zone *zone, int count)
5726{
5727 unsigned long flags;
5728 spin_lock_irqsave(&zone->lock, flags);
5729 zone->min_cma_pages += count;
5730 spin_unlock_irqrestore(&zone->lock, flags);
5731 setup_per_zone_wmarks();
5732}
5733
5734/*
5735 * Trigger memory pressure bump to reclaim some pages in order to be able to
5736 * allocate 'count' pages in single page units. Does similar work as
5737 *__alloc_pages_slowpath() function.
5738 */
5739static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count)
5740{
5741 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5742 struct zonelist *zonelist = node_zonelist(0, gfp_mask);
5743 int did_some_progress = 0;
5744 int order = 1;
5745
5746 /*
5747 * Increase level of watermarks to force kswapd do his job
5748 * to stabilise at new watermark level.
5749 */
5750 __update_cma_watermarks(zone, count);
5751
5752 /* Obey watermarks as if the page was being allocated */
5753 while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) {
5754 wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));
5755
5756 did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
5757 NULL);
5758 if (!did_some_progress) {
5759 /* Exhausted what can be done so it's blamo time */
5760 out_of_memory(zonelist, gfp_mask, order, NULL, false);
5761 }
5762 }
5763
5764 /* Restore original watermark levels. */
5765 __update_cma_watermarks(zone, -count);
5766
5767 return count;
5768}
5769
041d3a8c
MN
5770/**
5771 * alloc_contig_range() -- tries to allocate given range of pages
5772 * @start: start PFN to allocate
5773 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
5774 * @migratetype: migratetype of the underlaying pageblocks (either
5775 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5776 * in range must have the same migratetype and it must
5777 * be either of the two.
041d3a8c
MN
5778 *
5779 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5780 * aligned, however it's the caller's responsibility to guarantee that
5781 * we are the only thread that changes migrate type of pageblocks the
5782 * pages fall in.
5783 *
5784 * The PFN range must belong to a single zone.
5785 *
5786 * Returns zero on success or negative error code. On success all
5787 * pages which PFN is in [start, end) are allocated for the caller and
5788 * need to be freed with free_contig_range().
5789 */
0815f3d8
MN
5790int alloc_contig_range(unsigned long start, unsigned long end,
5791 unsigned migratetype)
041d3a8c
MN
5792{
5793 struct zone *zone = page_zone(pfn_to_page(start));
5794 unsigned long outer_start, outer_end;
5795 int ret = 0, order;
5796
5797 /*
5798 * What we do here is we mark all pageblocks in range as
5799 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5800 * have different sizes, and due to the way page allocator
5801 * work, we align the range to biggest of the two pages so
5802 * that page allocator won't try to merge buddies from
5803 * different pageblocks and change MIGRATE_ISOLATE to some
5804 * other migration type.
5805 *
5806 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5807 * migrate the pages from an unaligned range (ie. pages that
5808 * we are interested in). This will put all the pages in
5809 * range back to page allocator as MIGRATE_ISOLATE.
5810 *
5811 * When this is done, we take the pages in range from page
5812 * allocator removing them from the buddy system. This way
5813 * page allocator will never consider using them.
5814 *
5815 * This lets us mark the pageblocks back as
5816 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5817 * aligned range but not in the unaligned, original range are
5818 * put back to page allocator so that buddy can use them.
5819 */
5820
5821 ret = start_isolate_page_range(pfn_max_align_down(start),
0815f3d8 5822 pfn_max_align_up(end), migratetype);
041d3a8c
MN
5823 if (ret)
5824 goto done;
5825
5826 ret = __alloc_contig_migrate_range(start, end);
5827 if (ret)
5828 goto done;
5829
5830 /*
5831 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5832 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5833 * more, all pages in [start, end) are free in page allocator.
5834 * What we are going to do is to allocate all pages from
5835 * [start, end) (that is remove them from page allocator).
5836 *
5837 * The only problem is that pages at the beginning and at the
5838 * end of interesting range may be not aligned with pages that
5839 * page allocator holds, ie. they can be part of higher order
5840 * pages. Because of this, we reserve the bigger range and
5841 * once this is done free the pages we are not interested in.
5842 *
5843 * We don't have to hold zone->lock here because the pages are
5844 * isolated thus they won't get removed from buddy.
5845 */
5846
5847 lru_add_drain_all();
5848 drain_all_pages();
5849
5850 order = 0;
5851 outer_start = start;
5852 while (!PageBuddy(pfn_to_page(outer_start))) {
5853 if (++order >= MAX_ORDER) {
5854 ret = -EBUSY;
5855 goto done;
5856 }
5857 outer_start &= ~0UL << order;
5858 }
5859
5860 /* Make sure the range is really isolated. */
5861 if (test_pages_isolated(outer_start, end)) {
5862 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5863 outer_start, end);
5864 ret = -EBUSY;
5865 goto done;
5866 }
5867
49f223a9
MS
5868 /*
5869 * Reclaim enough pages to make sure that contiguous allocation
5870 * will not starve the system.
5871 */
5872 __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);
5873
5874 /* Grab isolated pages from freelists. */
041d3a8c
MN
5875 outer_end = isolate_freepages_range(outer_start, end);
5876 if (!outer_end) {
5877 ret = -EBUSY;
5878 goto done;
5879 }
5880
5881 /* Free head and tail (if any) */
5882 if (start != outer_start)
5883 free_contig_range(outer_start, start - outer_start);
5884 if (end != outer_end)
5885 free_contig_range(end, outer_end - end);
5886
5887done:
5888 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 5889 pfn_max_align_up(end), migratetype);
041d3a8c
MN
5890 return ret;
5891}
5892
5893void free_contig_range(unsigned long pfn, unsigned nr_pages)
5894{
5895 for (; nr_pages--; ++pfn)
5896 __free_page(pfn_to_page(pfn));
5897}
5898#endif
5899
4ed7e022
JL
5900#ifdef CONFIG_MEMORY_HOTPLUG
5901static int __meminit __zone_pcp_update(void *data)
5902{
5903 struct zone *zone = data;
5904 int cpu;
5905 unsigned long batch = zone_batchsize(zone), flags;
5906
5907 for_each_possible_cpu(cpu) {
5908 struct per_cpu_pageset *pset;
5909 struct per_cpu_pages *pcp;
5910
5911 pset = per_cpu_ptr(zone->pageset, cpu);
5912 pcp = &pset->pcp;
5913
5914 local_irq_save(flags);
5915 if (pcp->count > 0)
5916 free_pcppages_bulk(zone, pcp->count, pcp);
5917 setup_pageset(pset, batch);
5918 local_irq_restore(flags);
5919 }
5920 return 0;
5921}
5922
5923void __meminit zone_pcp_update(struct zone *zone)
5924{
5925 stop_machine(__zone_pcp_update, zone, NULL);
5926}
5927#endif
5928
0c0e6195 5929#ifdef CONFIG_MEMORY_HOTREMOVE
340175b7
JL
5930void zone_pcp_reset(struct zone *zone)
5931{
5932 unsigned long flags;
5933
5934 /* avoid races with drain_pages() */
5935 local_irq_save(flags);
5936 if (zone->pageset != &boot_pageset) {
5937 free_percpu(zone->pageset);
5938 zone->pageset = &boot_pageset;
5939 }
5940 local_irq_restore(flags);
5941}
5942
0c0e6195
KH
5943/*
5944 * All pages in the range must be isolated before calling this.
5945 */
5946void
5947__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5948{
5949 struct page *page;
5950 struct zone *zone;
5951 int order, i;
5952 unsigned long pfn;
5953 unsigned long flags;
5954 /* find the first valid pfn */
5955 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5956 if (pfn_valid(pfn))
5957 break;
5958 if (pfn == end_pfn)
5959 return;
5960 zone = page_zone(pfn_to_page(pfn));
5961 spin_lock_irqsave(&zone->lock, flags);
5962 pfn = start_pfn;
5963 while (pfn < end_pfn) {
5964 if (!pfn_valid(pfn)) {
5965 pfn++;
5966 continue;
5967 }
5968 page = pfn_to_page(pfn);
5969 BUG_ON(page_count(page));
5970 BUG_ON(!PageBuddy(page));
5971 order = page_order(page);
5972#ifdef CONFIG_DEBUG_VM
5973 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5974 pfn, 1 << order, end_pfn);
5975#endif
5976 list_del(&page->lru);
5977 rmv_page_order(page);
5978 zone->free_area[order].nr_free--;
5979 __mod_zone_page_state(zone, NR_FREE_PAGES,
5980 - (1UL << order));
5981 for (i = 0; i < (1 << order); i++)
5982 SetPageReserved((page+i));
5983 pfn += (1 << order);
5984 }
5985 spin_unlock_irqrestore(&zone->lock, flags);
5986}
5987#endif
8d22ba1b
WF
5988
5989#ifdef CONFIG_MEMORY_FAILURE
5990bool is_free_buddy_page(struct page *page)
5991{
5992 struct zone *zone = page_zone(page);
5993 unsigned long pfn = page_to_pfn(page);
5994 unsigned long flags;
5995 int order;
5996
5997 spin_lock_irqsave(&zone->lock, flags);
5998 for (order = 0; order < MAX_ORDER; order++) {
5999 struct page *page_head = page - (pfn & ((1 << order) - 1));
6000
6001 if (PageBuddy(page_head) && page_order(page_head) >= order)
6002 break;
6003 }
6004 spin_unlock_irqrestore(&zone->lock, flags);
6005
6006 return order < MAX_ORDER;
6007}
6008#endif
718a3821 6009
51300cef 6010static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6011 {1UL << PG_locked, "locked" },
6012 {1UL << PG_error, "error" },
6013 {1UL << PG_referenced, "referenced" },
6014 {1UL << PG_uptodate, "uptodate" },
6015 {1UL << PG_dirty, "dirty" },
6016 {1UL << PG_lru, "lru" },
6017 {1UL << PG_active, "active" },
6018 {1UL << PG_slab, "slab" },
6019 {1UL << PG_owner_priv_1, "owner_priv_1" },
6020 {1UL << PG_arch_1, "arch_1" },
6021 {1UL << PG_reserved, "reserved" },
6022 {1UL << PG_private, "private" },
6023 {1UL << PG_private_2, "private_2" },
6024 {1UL << PG_writeback, "writeback" },
6025#ifdef CONFIG_PAGEFLAGS_EXTENDED
6026 {1UL << PG_head, "head" },
6027 {1UL << PG_tail, "tail" },
6028#else
6029 {1UL << PG_compound, "compound" },
6030#endif
6031 {1UL << PG_swapcache, "swapcache" },
6032 {1UL << PG_mappedtodisk, "mappedtodisk" },
6033 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6034 {1UL << PG_swapbacked, "swapbacked" },
6035 {1UL << PG_unevictable, "unevictable" },
6036#ifdef CONFIG_MMU
6037 {1UL << PG_mlocked, "mlocked" },
6038#endif
6039#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6040 {1UL << PG_uncached, "uncached" },
6041#endif
6042#ifdef CONFIG_MEMORY_FAILURE
6043 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6044#endif
6045#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6046 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6047#endif
718a3821
WF
6048};
6049
6050static void dump_page_flags(unsigned long flags)
6051{
6052 const char *delim = "";
6053 unsigned long mask;
6054 int i;
6055
51300cef 6056 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6057
718a3821
WF
6058 printk(KERN_ALERT "page flags: %#lx(", flags);
6059
6060 /* remove zone id */
6061 flags &= (1UL << NR_PAGEFLAGS) - 1;
6062
51300cef 6063 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6064
6065 mask = pageflag_names[i].mask;
6066 if ((flags & mask) != mask)
6067 continue;
6068
6069 flags &= ~mask;
6070 printk("%s%s", delim, pageflag_names[i].name);
6071 delim = "|";
6072 }
6073
6074 /* check for left over flags */
6075 if (flags)
6076 printk("%s%#lx", delim, flags);
6077
6078 printk(")\n");
6079}
6080
6081void dump_page(struct page *page)
6082{
6083 printk(KERN_ALERT
6084 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6085 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6086 page->mapping, page->index);
6087 dump_page_flags(page->flags);
f212ad7c 6088 mem_cgroup_print_bad_page(page);
718a3821 6089}