]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
mem-hotplug: separate setup_per_cpu_pageset() into separate functions
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4
LT
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
b1eeab67 26#include <linux/kmemcheck.h>
1da177e4
LT
27#include <linux/module.h>
28#include <linux/suspend.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/slab.h>
5a3135c2 32#include <linux/oom.h>
1da177e4
LT
33#include <linux/notifier.h>
34#include <linux/topology.h>
35#include <linux/sysctl.h>
36#include <linux/cpu.h>
37#include <linux/cpuset.h>
bdc8cb98 38#include <linux/memory_hotplug.h>
1da177e4
LT
39#include <linux/nodemask.h>
40#include <linux/vmalloc.h>
4be38e35 41#include <linux/mempolicy.h>
6811378e 42#include <linux/stop_machine.h>
c713216d
MG
43#include <linux/sort.h>
44#include <linux/pfn.h>
3fcfab16 45#include <linux/backing-dev.h>
933e312e 46#include <linux/fault-inject.h>
a5d76b54 47#include <linux/page-isolation.h>
52d4b9ac 48#include <linux/page_cgroup.h>
3ac7fe5a 49#include <linux/debugobjects.h>
dbb1f81c 50#include <linux/kmemleak.h>
925cc71e 51#include <linux/memory.h>
56de7263 52#include <linux/compaction.h>
0d3d062a 53#include <trace/events/kmem.h>
718a3821 54#include <linux/ftrace_event.h>
1da177e4
LT
55
56#include <asm/tlbflush.h>
ac924c60 57#include <asm/div64.h>
1da177e4
LT
58#include "internal.h"
59
60/*
13808910 61 * Array of node states.
1da177e4 62 */
13808910
CL
63nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
64 [N_POSSIBLE] = NODE_MASK_ALL,
65 [N_ONLINE] = { { [0] = 1UL } },
66#ifndef CONFIG_NUMA
67 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
68#ifdef CONFIG_HIGHMEM
69 [N_HIGH_MEMORY] = { { [0] = 1UL } },
70#endif
71 [N_CPU] = { { [0] = 1UL } },
72#endif /* NUMA */
73};
74EXPORT_SYMBOL(node_states);
75
6c231b7b 76unsigned long totalram_pages __read_mostly;
cb45b0e9 77unsigned long totalreserve_pages __read_mostly;
8ad4b1fb 78int percpu_pagelist_fraction;
dcce284a 79gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 80
452aa699
RW
81#ifdef CONFIG_PM_SLEEP
82/*
83 * The following functions are used by the suspend/hibernate code to temporarily
84 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
85 * while devices are suspended. To avoid races with the suspend/hibernate code,
86 * they should always be called with pm_mutex held (gfp_allowed_mask also should
87 * only be modified with pm_mutex held, unless the suspend/hibernate code is
88 * guaranteed not to run in parallel with that modification).
89 */
90void set_gfp_allowed_mask(gfp_t mask)
91{
92 WARN_ON(!mutex_is_locked(&pm_mutex));
93 gfp_allowed_mask = mask;
94}
95
96gfp_t clear_gfp_allowed_mask(gfp_t mask)
97{
98 gfp_t ret = gfp_allowed_mask;
99
100 WARN_ON(!mutex_is_locked(&pm_mutex));
101 gfp_allowed_mask &= ~mask;
102 return ret;
103}
104#endif /* CONFIG_PM_SLEEP */
105
d9c23400
MG
106#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
107int pageblock_order __read_mostly;
108#endif
109
d98c7a09 110static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 111
1da177e4
LT
112/*
113 * results with 256, 32 in the lowmem_reserve sysctl:
114 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
115 * 1G machine -> (16M dma, 784M normal, 224M high)
116 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
117 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
118 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
119 *
120 * TBD: should special case ZONE_DMA32 machines here - in those we normally
121 * don't need any ZONE_NORMAL reservation
1da177e4 122 */
2f1b6248 123int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 124#ifdef CONFIG_ZONE_DMA
2f1b6248 125 256,
4b51d669 126#endif
fb0e7942 127#ifdef CONFIG_ZONE_DMA32
2f1b6248 128 256,
fb0e7942 129#endif
e53ef38d 130#ifdef CONFIG_HIGHMEM
2a1e274a 131 32,
e53ef38d 132#endif
2a1e274a 133 32,
2f1b6248 134};
1da177e4
LT
135
136EXPORT_SYMBOL(totalram_pages);
1da177e4 137
15ad7cdc 138static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 139#ifdef CONFIG_ZONE_DMA
2f1b6248 140 "DMA",
4b51d669 141#endif
fb0e7942 142#ifdef CONFIG_ZONE_DMA32
2f1b6248 143 "DMA32",
fb0e7942 144#endif
2f1b6248 145 "Normal",
e53ef38d 146#ifdef CONFIG_HIGHMEM
2a1e274a 147 "HighMem",
e53ef38d 148#endif
2a1e274a 149 "Movable",
2f1b6248
CL
150};
151
1da177e4
LT
152int min_free_kbytes = 1024;
153
2c85f51d
JB
154static unsigned long __meminitdata nr_kernel_pages;
155static unsigned long __meminitdata nr_all_pages;
a3142c8e 156static unsigned long __meminitdata dma_reserve;
1da177e4 157
c713216d
MG
158#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
159 /*
183ff22b 160 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
161 * ranges of memory (RAM) that may be registered with add_active_range().
162 * Ranges passed to add_active_range() will be merged if possible
163 * so the number of times add_active_range() can be called is
164 * related to the number of nodes and the number of holes
165 */
166 #ifdef CONFIG_MAX_ACTIVE_REGIONS
167 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
168 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
169 #else
170 #if MAX_NUMNODES >= 32
171 /* If there can be many nodes, allow up to 50 holes per node */
172 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
173 #else
174 /* By default, allow up to 256 distinct regions */
175 #define MAX_ACTIVE_REGIONS 256
176 #endif
177 #endif
178
98011f56
JB
179 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
180 static int __meminitdata nr_nodemap_entries;
181 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
182 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
b69a7288 183 static unsigned long __initdata required_kernelcore;
484f51f8 184 static unsigned long __initdata required_movablecore;
b69a7288 185 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
186
187 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
188 int movable_zone;
189 EXPORT_SYMBOL(movable_zone);
c713216d
MG
190#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
191
418508c1
MS
192#if MAX_NUMNODES > 1
193int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 194int nr_online_nodes __read_mostly = 1;
418508c1 195EXPORT_SYMBOL(nr_node_ids);
62bc62a8 196EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
197#endif
198
9ef9acb0
MG
199int page_group_by_mobility_disabled __read_mostly;
200
b2a0ac88
MG
201static void set_pageblock_migratetype(struct page *page, int migratetype)
202{
49255c61
MG
203
204 if (unlikely(page_group_by_mobility_disabled))
205 migratetype = MIGRATE_UNMOVABLE;
206
b2a0ac88
MG
207 set_pageblock_flags_group(page, (unsigned long)migratetype,
208 PB_migrate, PB_migrate_end);
209}
210
7f33d49a
RW
211bool oom_killer_disabled __read_mostly;
212
13e7444b 213#ifdef CONFIG_DEBUG_VM
c6a57e19 214static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 215{
bdc8cb98
DH
216 int ret = 0;
217 unsigned seq;
218 unsigned long pfn = page_to_pfn(page);
c6a57e19 219
bdc8cb98
DH
220 do {
221 seq = zone_span_seqbegin(zone);
222 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
223 ret = 1;
224 else if (pfn < zone->zone_start_pfn)
225 ret = 1;
226 } while (zone_span_seqretry(zone, seq));
227
228 return ret;
c6a57e19
DH
229}
230
231static int page_is_consistent(struct zone *zone, struct page *page)
232{
14e07298 233 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 234 return 0;
1da177e4 235 if (zone != page_zone(page))
c6a57e19
DH
236 return 0;
237
238 return 1;
239}
240/*
241 * Temporary debugging check for pages not lying within a given zone.
242 */
243static int bad_range(struct zone *zone, struct page *page)
244{
245 if (page_outside_zone_boundaries(zone, page))
1da177e4 246 return 1;
c6a57e19
DH
247 if (!page_is_consistent(zone, page))
248 return 1;
249
1da177e4
LT
250 return 0;
251}
13e7444b
NP
252#else
253static inline int bad_range(struct zone *zone, struct page *page)
254{
255 return 0;
256}
257#endif
258
224abf92 259static void bad_page(struct page *page)
1da177e4 260{
d936cf9b
HD
261 static unsigned long resume;
262 static unsigned long nr_shown;
263 static unsigned long nr_unshown;
264
2a7684a2
WF
265 /* Don't complain about poisoned pages */
266 if (PageHWPoison(page)) {
267 __ClearPageBuddy(page);
268 return;
269 }
270
d936cf9b
HD
271 /*
272 * Allow a burst of 60 reports, then keep quiet for that minute;
273 * or allow a steady drip of one report per second.
274 */
275 if (nr_shown == 60) {
276 if (time_before(jiffies, resume)) {
277 nr_unshown++;
278 goto out;
279 }
280 if (nr_unshown) {
1e9e6365
HD
281 printk(KERN_ALERT
282 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
283 nr_unshown);
284 nr_unshown = 0;
285 }
286 nr_shown = 0;
287 }
288 if (nr_shown++ == 0)
289 resume = jiffies + 60 * HZ;
290
1e9e6365 291 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 292 current->comm, page_to_pfn(page));
718a3821 293 dump_page(page);
3dc14741 294
1da177e4 295 dump_stack();
d936cf9b 296out:
8cc3b392
HD
297 /* Leave bad fields for debug, except PageBuddy could make trouble */
298 __ClearPageBuddy(page);
9f158333 299 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
300}
301
1da177e4
LT
302/*
303 * Higher-order pages are called "compound pages". They are structured thusly:
304 *
305 * The first PAGE_SIZE page is called the "head page".
306 *
307 * The remaining PAGE_SIZE pages are called "tail pages".
308 *
309 * All pages have PG_compound set. All pages have their ->private pointing at
310 * the head page (even the head page has this).
311 *
41d78ba5
HD
312 * The first tail page's ->lru.next holds the address of the compound page's
313 * put_page() function. Its ->lru.prev holds the order of allocation.
314 * This usage means that zero-order pages may not be compound.
1da177e4 315 */
d98c7a09
HD
316
317static void free_compound_page(struct page *page)
318{
d85f3385 319 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
320}
321
01ad1c08 322void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
323{
324 int i;
325 int nr_pages = 1 << order;
326
327 set_compound_page_dtor(page, free_compound_page);
328 set_compound_order(page, order);
329 __SetPageHead(page);
330 for (i = 1; i < nr_pages; i++) {
331 struct page *p = page + i;
332
333 __SetPageTail(p);
334 p->first_page = page;
335 }
336}
337
8cc3b392 338static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
339{
340 int i;
341 int nr_pages = 1 << order;
8cc3b392 342 int bad = 0;
1da177e4 343
8cc3b392
HD
344 if (unlikely(compound_order(page) != order) ||
345 unlikely(!PageHead(page))) {
224abf92 346 bad_page(page);
8cc3b392
HD
347 bad++;
348 }
1da177e4 349
6d777953 350 __ClearPageHead(page);
8cc3b392 351
18229df5
AW
352 for (i = 1; i < nr_pages; i++) {
353 struct page *p = page + i;
1da177e4 354
e713a21d 355 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 356 bad_page(page);
8cc3b392
HD
357 bad++;
358 }
d85f3385 359 __ClearPageTail(p);
1da177e4 360 }
8cc3b392
HD
361
362 return bad;
1da177e4 363}
1da177e4 364
17cf4406
NP
365static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
366{
367 int i;
368
6626c5d5
AM
369 /*
370 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
371 * and __GFP_HIGHMEM from hard or soft interrupt context.
372 */
725d704e 373 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
374 for (i = 0; i < (1 << order); i++)
375 clear_highpage(page + i);
376}
377
6aa3001b
AM
378static inline void set_page_order(struct page *page, int order)
379{
4c21e2f2 380 set_page_private(page, order);
676165a8 381 __SetPageBuddy(page);
1da177e4
LT
382}
383
384static inline void rmv_page_order(struct page *page)
385{
676165a8 386 __ClearPageBuddy(page);
4c21e2f2 387 set_page_private(page, 0);
1da177e4
LT
388}
389
390/*
391 * Locate the struct page for both the matching buddy in our
392 * pair (buddy1) and the combined O(n+1) page they form (page).
393 *
394 * 1) Any buddy B1 will have an order O twin B2 which satisfies
395 * the following equation:
396 * B2 = B1 ^ (1 << O)
397 * For example, if the starting buddy (buddy2) is #8 its order
398 * 1 buddy is #10:
399 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
400 *
401 * 2) Any buddy B will have an order O+1 parent P which
402 * satisfies the following equation:
403 * P = B & ~(1 << O)
404 *
d6e05edc 405 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
406 */
407static inline struct page *
408__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
409{
410 unsigned long buddy_idx = page_idx ^ (1 << order);
411
412 return page + (buddy_idx - page_idx);
413}
414
415static inline unsigned long
416__find_combined_index(unsigned long page_idx, unsigned int order)
417{
418 return (page_idx & ~(1 << order));
419}
420
421/*
422 * This function checks whether a page is free && is the buddy
423 * we can do coalesce a page and its buddy if
13e7444b 424 * (a) the buddy is not in a hole &&
676165a8 425 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
426 * (c) a page and its buddy have the same order &&
427 * (d) a page and its buddy are in the same zone.
676165a8
NP
428 *
429 * For recording whether a page is in the buddy system, we use PG_buddy.
430 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 431 *
676165a8 432 * For recording page's order, we use page_private(page).
1da177e4 433 */
cb2b95e1
AW
434static inline int page_is_buddy(struct page *page, struct page *buddy,
435 int order)
1da177e4 436{
14e07298 437 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 438 return 0;
13e7444b 439
cb2b95e1
AW
440 if (page_zone_id(page) != page_zone_id(buddy))
441 return 0;
442
443 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 444 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 445 return 1;
676165a8 446 }
6aa3001b 447 return 0;
1da177e4
LT
448}
449
450/*
451 * Freeing function for a buddy system allocator.
452 *
453 * The concept of a buddy system is to maintain direct-mapped table
454 * (containing bit values) for memory blocks of various "orders".
455 * The bottom level table contains the map for the smallest allocatable
456 * units of memory (here, pages), and each level above it describes
457 * pairs of units from the levels below, hence, "buddies".
458 * At a high level, all that happens here is marking the table entry
459 * at the bottom level available, and propagating the changes upward
460 * as necessary, plus some accounting needed to play nicely with other
461 * parts of the VM system.
462 * At each level, we keep a list of pages, which are heads of continuous
676165a8 463 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 464 * order is recorded in page_private(page) field.
1da177e4
LT
465 * So when we are allocating or freeing one, we can derive the state of the
466 * other. That is, if we allocate a small block, and both were
467 * free, the remainder of the region must be split into blocks.
468 * If a block is freed, and its buddy is also free, then this
469 * triggers coalescing into a block of larger size.
470 *
471 * -- wli
472 */
473
48db57f8 474static inline void __free_one_page(struct page *page,
ed0ae21d
MG
475 struct zone *zone, unsigned int order,
476 int migratetype)
1da177e4
LT
477{
478 unsigned long page_idx;
6dda9d55
CZ
479 unsigned long combined_idx;
480 struct page *buddy;
1da177e4 481
224abf92 482 if (unlikely(PageCompound(page)))
8cc3b392
HD
483 if (unlikely(destroy_compound_page(page, order)))
484 return;
1da177e4 485
ed0ae21d
MG
486 VM_BUG_ON(migratetype == -1);
487
1da177e4
LT
488 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
489
f2260e6b 490 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 491 VM_BUG_ON(bad_range(zone, page));
1da177e4 492
1da177e4 493 while (order < MAX_ORDER-1) {
1da177e4 494 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 495 if (!page_is_buddy(page, buddy, order))
3c82d0ce 496 break;
13e7444b 497
3c82d0ce 498 /* Our buddy is free, merge with it and move up one order. */
1da177e4 499 list_del(&buddy->lru);
b2a0ac88 500 zone->free_area[order].nr_free--;
1da177e4 501 rmv_page_order(buddy);
13e7444b 502 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
503 page = page + (combined_idx - page_idx);
504 page_idx = combined_idx;
505 order++;
506 }
507 set_page_order(page, order);
6dda9d55
CZ
508
509 /*
510 * If this is not the largest possible page, check if the buddy
511 * of the next-highest order is free. If it is, it's possible
512 * that pages are being freed that will coalesce soon. In case,
513 * that is happening, add the free page to the tail of the list
514 * so it's less likely to be used soon and more likely to be merged
515 * as a higher order page
516 */
517 if ((order < MAX_ORDER-1) && pfn_valid_within(page_to_pfn(buddy))) {
518 struct page *higher_page, *higher_buddy;
519 combined_idx = __find_combined_index(page_idx, order);
520 higher_page = page + combined_idx - page_idx;
521 higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1);
522 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
523 list_add_tail(&page->lru,
524 &zone->free_area[order].free_list[migratetype]);
525 goto out;
526 }
527 }
528
529 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
530out:
1da177e4
LT
531 zone->free_area[order].nr_free++;
532}
533
092cead6
KM
534/*
535 * free_page_mlock() -- clean up attempts to free and mlocked() page.
536 * Page should not be on lru, so no need to fix that up.
537 * free_pages_check() will verify...
538 */
539static inline void free_page_mlock(struct page *page)
540{
092cead6
KM
541 __dec_zone_page_state(page, NR_MLOCK);
542 __count_vm_event(UNEVICTABLE_MLOCKFREED);
543}
092cead6 544
224abf92 545static inline int free_pages_check(struct page *page)
1da177e4 546{
92be2e33
NP
547 if (unlikely(page_mapcount(page) |
548 (page->mapping != NULL) |
a3af9c38 549 (atomic_read(&page->_count) != 0) |
8cc3b392 550 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
224abf92 551 bad_page(page);
79f4b7bf 552 return 1;
8cc3b392 553 }
79f4b7bf
HD
554 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
555 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
556 return 0;
1da177e4
LT
557}
558
559/*
5f8dcc21 560 * Frees a number of pages from the PCP lists
1da177e4 561 * Assumes all pages on list are in same zone, and of same order.
207f36ee 562 * count is the number of pages to free.
1da177e4
LT
563 *
564 * If the zone was previously in an "all pages pinned" state then look to
565 * see if this freeing clears that state.
566 *
567 * And clear the zone's pages_scanned counter, to hold off the "all pages are
568 * pinned" detection logic.
569 */
5f8dcc21
MG
570static void free_pcppages_bulk(struct zone *zone, int count,
571 struct per_cpu_pages *pcp)
1da177e4 572{
5f8dcc21 573 int migratetype = 0;
a6f9edd6 574 int batch_free = 0;
5f8dcc21 575
c54ad30c 576 spin_lock(&zone->lock);
93e4a89a 577 zone->all_unreclaimable = 0;
1da177e4 578 zone->pages_scanned = 0;
f2260e6b 579
5f8dcc21 580 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
a6f9edd6 581 while (count) {
48db57f8 582 struct page *page;
5f8dcc21
MG
583 struct list_head *list;
584
585 /*
a6f9edd6
MG
586 * Remove pages from lists in a round-robin fashion. A
587 * batch_free count is maintained that is incremented when an
588 * empty list is encountered. This is so more pages are freed
589 * off fuller lists instead of spinning excessively around empty
590 * lists
5f8dcc21
MG
591 */
592 do {
a6f9edd6 593 batch_free++;
5f8dcc21
MG
594 if (++migratetype == MIGRATE_PCPTYPES)
595 migratetype = 0;
596 list = &pcp->lists[migratetype];
597 } while (list_empty(list));
48db57f8 598
a6f9edd6
MG
599 do {
600 page = list_entry(list->prev, struct page, lru);
601 /* must delete as __free_one_page list manipulates */
602 list_del(&page->lru);
a7016235
HD
603 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
604 __free_one_page(page, zone, 0, page_private(page));
605 trace_mm_page_pcpu_drain(page, 0, page_private(page));
a6f9edd6 606 } while (--count && --batch_free && !list_empty(list));
1da177e4 607 }
c54ad30c 608 spin_unlock(&zone->lock);
1da177e4
LT
609}
610
ed0ae21d
MG
611static void free_one_page(struct zone *zone, struct page *page, int order,
612 int migratetype)
1da177e4 613{
006d22d9 614 spin_lock(&zone->lock);
93e4a89a 615 zone->all_unreclaimable = 0;
006d22d9 616 zone->pages_scanned = 0;
f2260e6b
MG
617
618 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
ed0ae21d 619 __free_one_page(page, zone, order, migratetype);
006d22d9 620 spin_unlock(&zone->lock);
48db57f8
NP
621}
622
ec95f53a 623static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 624{
1da177e4 625 int i;
8cc3b392 626 int bad = 0;
1da177e4 627
f650316c 628 trace_mm_page_free_direct(page, order);
b1eeab67
VN
629 kmemcheck_free_shadow(page, order);
630
ec95f53a
KM
631 for (i = 0; i < (1 << order); i++) {
632 struct page *pg = page + i;
633
634 if (PageAnon(pg))
635 pg->mapping = NULL;
636 bad += free_pages_check(pg);
637 }
8cc3b392 638 if (bad)
ec95f53a 639 return false;
689bcebf 640
3ac7fe5a 641 if (!PageHighMem(page)) {
9858db50 642 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
643 debug_check_no_obj_freed(page_address(page),
644 PAGE_SIZE << order);
645 }
dafb1367 646 arch_free_page(page, order);
48db57f8 647 kernel_map_pages(page, 1 << order, 0);
dafb1367 648
ec95f53a
KM
649 return true;
650}
651
652static void __free_pages_ok(struct page *page, unsigned int order)
653{
654 unsigned long flags;
655 int wasMlocked = __TestClearPageMlocked(page);
656
657 if (!free_pages_prepare(page, order))
658 return;
659
c54ad30c 660 local_irq_save(flags);
c277331d 661 if (unlikely(wasMlocked))
da456f14 662 free_page_mlock(page);
f8891e5e 663 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
664 free_one_page(page_zone(page), page, order,
665 get_pageblock_migratetype(page));
c54ad30c 666 local_irq_restore(flags);
1da177e4
LT
667}
668
a226f6c8
DH
669/*
670 * permit the bootmem allocator to evade page validation on high-order frees
671 */
af370fb8 672void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
673{
674 if (order == 0) {
675 __ClearPageReserved(page);
676 set_page_count(page, 0);
7835e98b 677 set_page_refcounted(page);
545b1ea9 678 __free_page(page);
a226f6c8 679 } else {
a226f6c8
DH
680 int loop;
681
545b1ea9 682 prefetchw(page);
a226f6c8
DH
683 for (loop = 0; loop < BITS_PER_LONG; loop++) {
684 struct page *p = &page[loop];
685
545b1ea9
NP
686 if (loop + 1 < BITS_PER_LONG)
687 prefetchw(p + 1);
a226f6c8
DH
688 __ClearPageReserved(p);
689 set_page_count(p, 0);
690 }
691
7835e98b 692 set_page_refcounted(page);
545b1ea9 693 __free_pages(page, order);
a226f6c8
DH
694 }
695}
696
1da177e4
LT
697
698/*
699 * The order of subdivision here is critical for the IO subsystem.
700 * Please do not alter this order without good reasons and regression
701 * testing. Specifically, as large blocks of memory are subdivided,
702 * the order in which smaller blocks are delivered depends on the order
703 * they're subdivided in this function. This is the primary factor
704 * influencing the order in which pages are delivered to the IO
705 * subsystem according to empirical testing, and this is also justified
706 * by considering the behavior of a buddy system containing a single
707 * large block of memory acted on by a series of small allocations.
708 * This behavior is a critical factor in sglist merging's success.
709 *
710 * -- wli
711 */
085cc7d5 712static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
713 int low, int high, struct free_area *area,
714 int migratetype)
1da177e4
LT
715{
716 unsigned long size = 1 << high;
717
718 while (high > low) {
719 area--;
720 high--;
721 size >>= 1;
725d704e 722 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 723 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
724 area->nr_free++;
725 set_page_order(&page[size], high);
726 }
1da177e4
LT
727}
728
1da177e4
LT
729/*
730 * This page is about to be returned from the page allocator
731 */
2a7684a2 732static inline int check_new_page(struct page *page)
1da177e4 733{
92be2e33
NP
734 if (unlikely(page_mapcount(page) |
735 (page->mapping != NULL) |
a3af9c38 736 (atomic_read(&page->_count) != 0) |
8cc3b392 737 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
224abf92 738 bad_page(page);
689bcebf 739 return 1;
8cc3b392 740 }
2a7684a2
WF
741 return 0;
742}
743
744static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
745{
746 int i;
747
748 for (i = 0; i < (1 << order); i++) {
749 struct page *p = page + i;
750 if (unlikely(check_new_page(p)))
751 return 1;
752 }
689bcebf 753
4c21e2f2 754 set_page_private(page, 0);
7835e98b 755 set_page_refcounted(page);
cc102509
NP
756
757 arch_alloc_page(page, order);
1da177e4 758 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
759
760 if (gfp_flags & __GFP_ZERO)
761 prep_zero_page(page, order, gfp_flags);
762
763 if (order && (gfp_flags & __GFP_COMP))
764 prep_compound_page(page, order);
765
689bcebf 766 return 0;
1da177e4
LT
767}
768
56fd56b8
MG
769/*
770 * Go through the free lists for the given migratetype and remove
771 * the smallest available page from the freelists
772 */
728ec980
MG
773static inline
774struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
775 int migratetype)
776{
777 unsigned int current_order;
778 struct free_area * area;
779 struct page *page;
780
781 /* Find a page of the appropriate size in the preferred list */
782 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
783 area = &(zone->free_area[current_order]);
784 if (list_empty(&area->free_list[migratetype]))
785 continue;
786
787 page = list_entry(area->free_list[migratetype].next,
788 struct page, lru);
789 list_del(&page->lru);
790 rmv_page_order(page);
791 area->nr_free--;
56fd56b8
MG
792 expand(zone, page, order, current_order, area, migratetype);
793 return page;
794 }
795
796 return NULL;
797}
798
799
b2a0ac88
MG
800/*
801 * This array describes the order lists are fallen back to when
802 * the free lists for the desirable migrate type are depleted
803 */
804static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
805 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
806 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
807 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
808 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
809};
810
c361be55
MG
811/*
812 * Move the free pages in a range to the free lists of the requested type.
d9c23400 813 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
814 * boundary. If alignment is required, use move_freepages_block()
815 */
b69a7288
AB
816static int move_freepages(struct zone *zone,
817 struct page *start_page, struct page *end_page,
818 int migratetype)
c361be55
MG
819{
820 struct page *page;
821 unsigned long order;
d100313f 822 int pages_moved = 0;
c361be55
MG
823
824#ifndef CONFIG_HOLES_IN_ZONE
825 /*
826 * page_zone is not safe to call in this context when
827 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
828 * anyway as we check zone boundaries in move_freepages_block().
829 * Remove at a later date when no bug reports exist related to
ac0e5b7a 830 * grouping pages by mobility
c361be55
MG
831 */
832 BUG_ON(page_zone(start_page) != page_zone(end_page));
833#endif
834
835 for (page = start_page; page <= end_page;) {
344c790e
AL
836 /* Make sure we are not inadvertently changing nodes */
837 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
838
c361be55
MG
839 if (!pfn_valid_within(page_to_pfn(page))) {
840 page++;
841 continue;
842 }
843
844 if (!PageBuddy(page)) {
845 page++;
846 continue;
847 }
848
849 order = page_order(page);
850 list_del(&page->lru);
851 list_add(&page->lru,
852 &zone->free_area[order].free_list[migratetype]);
853 page += 1 << order;
d100313f 854 pages_moved += 1 << order;
c361be55
MG
855 }
856
d100313f 857 return pages_moved;
c361be55
MG
858}
859
b69a7288
AB
860static int move_freepages_block(struct zone *zone, struct page *page,
861 int migratetype)
c361be55
MG
862{
863 unsigned long start_pfn, end_pfn;
864 struct page *start_page, *end_page;
865
866 start_pfn = page_to_pfn(page);
d9c23400 867 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 868 start_page = pfn_to_page(start_pfn);
d9c23400
MG
869 end_page = start_page + pageblock_nr_pages - 1;
870 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
871
872 /* Do not cross zone boundaries */
873 if (start_pfn < zone->zone_start_pfn)
874 start_page = page;
875 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
876 return 0;
877
878 return move_freepages(zone, start_page, end_page, migratetype);
879}
880
2f66a68f
MG
881static void change_pageblock_range(struct page *pageblock_page,
882 int start_order, int migratetype)
883{
884 int nr_pageblocks = 1 << (start_order - pageblock_order);
885
886 while (nr_pageblocks--) {
887 set_pageblock_migratetype(pageblock_page, migratetype);
888 pageblock_page += pageblock_nr_pages;
889 }
890}
891
b2a0ac88 892/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
893static inline struct page *
894__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
895{
896 struct free_area * area;
897 int current_order;
898 struct page *page;
899 int migratetype, i;
900
901 /* Find the largest possible block of pages in the other list */
902 for (current_order = MAX_ORDER-1; current_order >= order;
903 --current_order) {
904 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
905 migratetype = fallbacks[start_migratetype][i];
906
56fd56b8
MG
907 /* MIGRATE_RESERVE handled later if necessary */
908 if (migratetype == MIGRATE_RESERVE)
909 continue;
e010487d 910
b2a0ac88
MG
911 area = &(zone->free_area[current_order]);
912 if (list_empty(&area->free_list[migratetype]))
913 continue;
914
915 page = list_entry(area->free_list[migratetype].next,
916 struct page, lru);
917 area->nr_free--;
918
919 /*
c361be55 920 * If breaking a large block of pages, move all free
46dafbca
MG
921 * pages to the preferred allocation list. If falling
922 * back for a reclaimable kernel allocation, be more
923 * agressive about taking ownership of free pages
b2a0ac88 924 */
d9c23400 925 if (unlikely(current_order >= (pageblock_order >> 1)) ||
dd5d241e
MG
926 start_migratetype == MIGRATE_RECLAIMABLE ||
927 page_group_by_mobility_disabled) {
46dafbca
MG
928 unsigned long pages;
929 pages = move_freepages_block(zone, page,
930 start_migratetype);
931
932 /* Claim the whole block if over half of it is free */
dd5d241e
MG
933 if (pages >= (1 << (pageblock_order-1)) ||
934 page_group_by_mobility_disabled)
46dafbca
MG
935 set_pageblock_migratetype(page,
936 start_migratetype);
937
b2a0ac88 938 migratetype = start_migratetype;
c361be55 939 }
b2a0ac88
MG
940
941 /* Remove the page from the freelists */
942 list_del(&page->lru);
943 rmv_page_order(page);
b2a0ac88 944
2f66a68f
MG
945 /* Take ownership for orders >= pageblock_order */
946 if (current_order >= pageblock_order)
947 change_pageblock_range(page, current_order,
b2a0ac88
MG
948 start_migratetype);
949
950 expand(zone, page, order, current_order, area, migratetype);
e0fff1bd
MG
951
952 trace_mm_page_alloc_extfrag(page, order, current_order,
953 start_migratetype, migratetype);
954
b2a0ac88
MG
955 return page;
956 }
957 }
958
728ec980 959 return NULL;
b2a0ac88
MG
960}
961
56fd56b8 962/*
1da177e4
LT
963 * Do the hard work of removing an element from the buddy allocator.
964 * Call me with the zone->lock already held.
965 */
b2a0ac88
MG
966static struct page *__rmqueue(struct zone *zone, unsigned int order,
967 int migratetype)
1da177e4 968{
1da177e4
LT
969 struct page *page;
970
728ec980 971retry_reserve:
56fd56b8 972 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 973
728ec980 974 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 975 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 976
728ec980
MG
977 /*
978 * Use MIGRATE_RESERVE rather than fail an allocation. goto
979 * is used because __rmqueue_smallest is an inline function
980 * and we want just one call site
981 */
982 if (!page) {
983 migratetype = MIGRATE_RESERVE;
984 goto retry_reserve;
985 }
986 }
987
0d3d062a 988 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 989 return page;
1da177e4
LT
990}
991
992/*
993 * Obtain a specified number of elements from the buddy allocator, all under
994 * a single hold of the lock, for efficiency. Add them to the supplied list.
995 * Returns the number of new pages which were placed at *list.
996 */
997static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 998 unsigned long count, struct list_head *list,
e084b2d9 999 int migratetype, int cold)
1da177e4 1000{
1da177e4 1001 int i;
1da177e4 1002
c54ad30c 1003 spin_lock(&zone->lock);
1da177e4 1004 for (i = 0; i < count; ++i) {
b2a0ac88 1005 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1006 if (unlikely(page == NULL))
1da177e4 1007 break;
81eabcbe
MG
1008
1009 /*
1010 * Split buddy pages returned by expand() are received here
1011 * in physical page order. The page is added to the callers and
1012 * list and the list head then moves forward. From the callers
1013 * perspective, the linked list is ordered by page number in
1014 * some conditions. This is useful for IO devices that can
1015 * merge IO requests if the physical pages are ordered
1016 * properly.
1017 */
e084b2d9
MG
1018 if (likely(cold == 0))
1019 list_add(&page->lru, list);
1020 else
1021 list_add_tail(&page->lru, list);
535131e6 1022 set_page_private(page, migratetype);
81eabcbe 1023 list = &page->lru;
1da177e4 1024 }
f2260e6b 1025 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1026 spin_unlock(&zone->lock);
085cc7d5 1027 return i;
1da177e4
LT
1028}
1029
4ae7c039 1030#ifdef CONFIG_NUMA
8fce4d8e 1031/*
4037d452
CL
1032 * Called from the vmstat counter updater to drain pagesets of this
1033 * currently executing processor on remote nodes after they have
1034 * expired.
1035 *
879336c3
CL
1036 * Note that this function must be called with the thread pinned to
1037 * a single processor.
8fce4d8e 1038 */
4037d452 1039void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1040{
4ae7c039 1041 unsigned long flags;
4037d452 1042 int to_drain;
4ae7c039 1043
4037d452
CL
1044 local_irq_save(flags);
1045 if (pcp->count >= pcp->batch)
1046 to_drain = pcp->batch;
1047 else
1048 to_drain = pcp->count;
5f8dcc21 1049 free_pcppages_bulk(zone, to_drain, pcp);
4037d452
CL
1050 pcp->count -= to_drain;
1051 local_irq_restore(flags);
4ae7c039
CL
1052}
1053#endif
1054
9f8f2172
CL
1055/*
1056 * Drain pages of the indicated processor.
1057 *
1058 * The processor must either be the current processor and the
1059 * thread pinned to the current processor or a processor that
1060 * is not online.
1061 */
1062static void drain_pages(unsigned int cpu)
1da177e4 1063{
c54ad30c 1064 unsigned long flags;
1da177e4 1065 struct zone *zone;
1da177e4 1066
ee99c71c 1067 for_each_populated_zone(zone) {
1da177e4 1068 struct per_cpu_pageset *pset;
3dfa5721 1069 struct per_cpu_pages *pcp;
1da177e4 1070
99dcc3e5
CL
1071 local_irq_save(flags);
1072 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1073
1074 pcp = &pset->pcp;
5f8dcc21 1075 free_pcppages_bulk(zone, pcp->count, pcp);
3dfa5721
CL
1076 pcp->count = 0;
1077 local_irq_restore(flags);
1da177e4
LT
1078 }
1079}
1da177e4 1080
9f8f2172
CL
1081/*
1082 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1083 */
1084void drain_local_pages(void *arg)
1085{
1086 drain_pages(smp_processor_id());
1087}
1088
1089/*
1090 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1091 */
1092void drain_all_pages(void)
1093{
15c8b6c1 1094 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
1095}
1096
296699de 1097#ifdef CONFIG_HIBERNATION
1da177e4
LT
1098
1099void mark_free_pages(struct zone *zone)
1100{
f623f0db
RW
1101 unsigned long pfn, max_zone_pfn;
1102 unsigned long flags;
b2a0ac88 1103 int order, t;
1da177e4
LT
1104 struct list_head *curr;
1105
1106 if (!zone->spanned_pages)
1107 return;
1108
1109 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1110
1111 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1112 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1113 if (pfn_valid(pfn)) {
1114 struct page *page = pfn_to_page(pfn);
1115
7be98234
RW
1116 if (!swsusp_page_is_forbidden(page))
1117 swsusp_unset_page_free(page);
f623f0db 1118 }
1da177e4 1119
b2a0ac88
MG
1120 for_each_migratetype_order(order, t) {
1121 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1122 unsigned long i;
1da177e4 1123
f623f0db
RW
1124 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1125 for (i = 0; i < (1UL << order); i++)
7be98234 1126 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1127 }
b2a0ac88 1128 }
1da177e4
LT
1129 spin_unlock_irqrestore(&zone->lock, flags);
1130}
e2c55dc8 1131#endif /* CONFIG_PM */
1da177e4 1132
1da177e4
LT
1133/*
1134 * Free a 0-order page
fc91668e 1135 * cold == 1 ? free a cold page : free a hot page
1da177e4 1136 */
fc91668e 1137void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1138{
1139 struct zone *zone = page_zone(page);
1140 struct per_cpu_pages *pcp;
1141 unsigned long flags;
5f8dcc21 1142 int migratetype;
451ea25d 1143 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1144
ec95f53a 1145 if (!free_pages_prepare(page, 0))
689bcebf
HD
1146 return;
1147
5f8dcc21
MG
1148 migratetype = get_pageblock_migratetype(page);
1149 set_page_private(page, migratetype);
1da177e4 1150 local_irq_save(flags);
c277331d 1151 if (unlikely(wasMlocked))
da456f14 1152 free_page_mlock(page);
f8891e5e 1153 __count_vm_event(PGFREE);
da456f14 1154
5f8dcc21
MG
1155 /*
1156 * We only track unmovable, reclaimable and movable on pcp lists.
1157 * Free ISOLATE pages back to the allocator because they are being
1158 * offlined but treat RESERVE as movable pages so we can get those
1159 * areas back if necessary. Otherwise, we may have to free
1160 * excessively into the page allocator
1161 */
1162 if (migratetype >= MIGRATE_PCPTYPES) {
1163 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1164 free_one_page(zone, page, 0, migratetype);
1165 goto out;
1166 }
1167 migratetype = MIGRATE_MOVABLE;
1168 }
1169
99dcc3e5 1170 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1171 if (cold)
5f8dcc21 1172 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1173 else
5f8dcc21 1174 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1175 pcp->count++;
48db57f8 1176 if (pcp->count >= pcp->high) {
5f8dcc21 1177 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1178 pcp->count -= pcp->batch;
1179 }
5f8dcc21
MG
1180
1181out:
1da177e4 1182 local_irq_restore(flags);
1da177e4
LT
1183}
1184
8dfcc9ba
NP
1185/*
1186 * split_page takes a non-compound higher-order page, and splits it into
1187 * n (1<<order) sub-pages: page[0..n]
1188 * Each sub-page must be freed individually.
1189 *
1190 * Note: this is probably too low level an operation for use in drivers.
1191 * Please consult with lkml before using this in your driver.
1192 */
1193void split_page(struct page *page, unsigned int order)
1194{
1195 int i;
1196
725d704e
NP
1197 VM_BUG_ON(PageCompound(page));
1198 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1199
1200#ifdef CONFIG_KMEMCHECK
1201 /*
1202 * Split shadow pages too, because free(page[0]) would
1203 * otherwise free the whole shadow.
1204 */
1205 if (kmemcheck_page_is_tracked(page))
1206 split_page(virt_to_page(page[0].shadow), order);
1207#endif
1208
7835e98b
NP
1209 for (i = 1; i < (1 << order); i++)
1210 set_page_refcounted(page + i);
8dfcc9ba 1211}
8dfcc9ba 1212
748446bb
MG
1213/*
1214 * Similar to split_page except the page is already free. As this is only
1215 * being used for migration, the migratetype of the block also changes.
1216 * As this is called with interrupts disabled, the caller is responsible
1217 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1218 * are enabled.
1219 *
1220 * Note: this is probably too low level an operation for use in drivers.
1221 * Please consult with lkml before using this in your driver.
1222 */
1223int split_free_page(struct page *page)
1224{
1225 unsigned int order;
1226 unsigned long watermark;
1227 struct zone *zone;
1228
1229 BUG_ON(!PageBuddy(page));
1230
1231 zone = page_zone(page);
1232 order = page_order(page);
1233
1234 /* Obey watermarks as if the page was being allocated */
1235 watermark = low_wmark_pages(zone) + (1 << order);
1236 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1237 return 0;
1238
1239 /* Remove page from free list */
1240 list_del(&page->lru);
1241 zone->free_area[order].nr_free--;
1242 rmv_page_order(page);
1243 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1244
1245 /* Split into individual pages */
1246 set_page_refcounted(page);
1247 split_page(page, order);
1248
1249 if (order >= pageblock_order - 1) {
1250 struct page *endpage = page + (1 << order) - 1;
1251 for (; page < endpage; page += pageblock_nr_pages)
1252 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1253 }
1254
1255 return 1 << order;
1256}
1257
1da177e4
LT
1258/*
1259 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1260 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1261 * or two.
1262 */
0a15c3e9
MG
1263static inline
1264struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1265 struct zone *zone, int order, gfp_t gfp_flags,
1266 int migratetype)
1da177e4
LT
1267{
1268 unsigned long flags;
689bcebf 1269 struct page *page;
1da177e4
LT
1270 int cold = !!(gfp_flags & __GFP_COLD);
1271
689bcebf 1272again:
48db57f8 1273 if (likely(order == 0)) {
1da177e4 1274 struct per_cpu_pages *pcp;
5f8dcc21 1275 struct list_head *list;
1da177e4 1276
1da177e4 1277 local_irq_save(flags);
99dcc3e5
CL
1278 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1279 list = &pcp->lists[migratetype];
5f8dcc21 1280 if (list_empty(list)) {
535131e6 1281 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1282 pcp->batch, list,
e084b2d9 1283 migratetype, cold);
5f8dcc21 1284 if (unlikely(list_empty(list)))
6fb332fa 1285 goto failed;
535131e6 1286 }
b92a6edd 1287
5f8dcc21
MG
1288 if (cold)
1289 page = list_entry(list->prev, struct page, lru);
1290 else
1291 page = list_entry(list->next, struct page, lru);
1292
b92a6edd
MG
1293 list_del(&page->lru);
1294 pcp->count--;
7fb1d9fc 1295 } else {
dab48dab
AM
1296 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1297 /*
1298 * __GFP_NOFAIL is not to be used in new code.
1299 *
1300 * All __GFP_NOFAIL callers should be fixed so that they
1301 * properly detect and handle allocation failures.
1302 *
1303 * We most definitely don't want callers attempting to
4923abf9 1304 * allocate greater than order-1 page units with
dab48dab
AM
1305 * __GFP_NOFAIL.
1306 */
4923abf9 1307 WARN_ON_ONCE(order > 1);
dab48dab 1308 }
1da177e4 1309 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1310 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1311 spin_unlock(&zone->lock);
1312 if (!page)
1313 goto failed;
6ccf80eb 1314 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1da177e4
LT
1315 }
1316
f8891e5e 1317 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1318 zone_statistics(preferred_zone, zone);
a74609fa 1319 local_irq_restore(flags);
1da177e4 1320
725d704e 1321 VM_BUG_ON(bad_range(zone, page));
17cf4406 1322 if (prep_new_page(page, order, gfp_flags))
a74609fa 1323 goto again;
1da177e4 1324 return page;
a74609fa
NP
1325
1326failed:
1327 local_irq_restore(flags);
a74609fa 1328 return NULL;
1da177e4
LT
1329}
1330
41858966
MG
1331/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1332#define ALLOC_WMARK_MIN WMARK_MIN
1333#define ALLOC_WMARK_LOW WMARK_LOW
1334#define ALLOC_WMARK_HIGH WMARK_HIGH
1335#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1336
1337/* Mask to get the watermark bits */
1338#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1339
3148890b
NP
1340#define ALLOC_HARDER 0x10 /* try to alloc harder */
1341#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1342#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1343
933e312e
AM
1344#ifdef CONFIG_FAIL_PAGE_ALLOC
1345
1346static struct fail_page_alloc_attr {
1347 struct fault_attr attr;
1348
1349 u32 ignore_gfp_highmem;
1350 u32 ignore_gfp_wait;
54114994 1351 u32 min_order;
933e312e
AM
1352
1353#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1354
1355 struct dentry *ignore_gfp_highmem_file;
1356 struct dentry *ignore_gfp_wait_file;
54114994 1357 struct dentry *min_order_file;
933e312e
AM
1358
1359#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1360
1361} fail_page_alloc = {
1362 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1363 .ignore_gfp_wait = 1,
1364 .ignore_gfp_highmem = 1,
54114994 1365 .min_order = 1,
933e312e
AM
1366};
1367
1368static int __init setup_fail_page_alloc(char *str)
1369{
1370 return setup_fault_attr(&fail_page_alloc.attr, str);
1371}
1372__setup("fail_page_alloc=", setup_fail_page_alloc);
1373
1374static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1375{
54114994
AM
1376 if (order < fail_page_alloc.min_order)
1377 return 0;
933e312e
AM
1378 if (gfp_mask & __GFP_NOFAIL)
1379 return 0;
1380 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1381 return 0;
1382 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1383 return 0;
1384
1385 return should_fail(&fail_page_alloc.attr, 1 << order);
1386}
1387
1388#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1389
1390static int __init fail_page_alloc_debugfs(void)
1391{
1392 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1393 struct dentry *dir;
1394 int err;
1395
1396 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1397 "fail_page_alloc");
1398 if (err)
1399 return err;
1400 dir = fail_page_alloc.attr.dentries.dir;
1401
1402 fail_page_alloc.ignore_gfp_wait_file =
1403 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1404 &fail_page_alloc.ignore_gfp_wait);
1405
1406 fail_page_alloc.ignore_gfp_highmem_file =
1407 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1408 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1409 fail_page_alloc.min_order_file =
1410 debugfs_create_u32("min-order", mode, dir,
1411 &fail_page_alloc.min_order);
933e312e
AM
1412
1413 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1414 !fail_page_alloc.ignore_gfp_highmem_file ||
1415 !fail_page_alloc.min_order_file) {
933e312e
AM
1416 err = -ENOMEM;
1417 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1418 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1419 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1420 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1421 }
1422
1423 return err;
1424}
1425
1426late_initcall(fail_page_alloc_debugfs);
1427
1428#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1429
1430#else /* CONFIG_FAIL_PAGE_ALLOC */
1431
1432static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1433{
1434 return 0;
1435}
1436
1437#endif /* CONFIG_FAIL_PAGE_ALLOC */
1438
1da177e4
LT
1439/*
1440 * Return 1 if free pages are above 'mark'. This takes into account the order
1441 * of the allocation.
1442 */
1443int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1444 int classzone_idx, int alloc_flags)
1da177e4
LT
1445{
1446 /* free_pages my go negative - that's OK */
d23ad423
CL
1447 long min = mark;
1448 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1449 int o;
1450
7fb1d9fc 1451 if (alloc_flags & ALLOC_HIGH)
1da177e4 1452 min -= min / 2;
7fb1d9fc 1453 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1454 min -= min / 4;
1455
1456 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1457 return 0;
1458 for (o = 0; o < order; o++) {
1459 /* At the next order, this order's pages become unavailable */
1460 free_pages -= z->free_area[o].nr_free << o;
1461
1462 /* Require fewer higher order pages to be free */
1463 min >>= 1;
1464
1465 if (free_pages <= min)
1466 return 0;
1467 }
1468 return 1;
1469}
1470
9276b1bc
PJ
1471#ifdef CONFIG_NUMA
1472/*
1473 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1474 * skip over zones that are not allowed by the cpuset, or that have
1475 * been recently (in last second) found to be nearly full. See further
1476 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1477 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1478 *
1479 * If the zonelist cache is present in the passed in zonelist, then
1480 * returns a pointer to the allowed node mask (either the current
37b07e41 1481 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1482 *
1483 * If the zonelist cache is not available for this zonelist, does
1484 * nothing and returns NULL.
1485 *
1486 * If the fullzones BITMAP in the zonelist cache is stale (more than
1487 * a second since last zap'd) then we zap it out (clear its bits.)
1488 *
1489 * We hold off even calling zlc_setup, until after we've checked the
1490 * first zone in the zonelist, on the theory that most allocations will
1491 * be satisfied from that first zone, so best to examine that zone as
1492 * quickly as we can.
1493 */
1494static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1495{
1496 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1497 nodemask_t *allowednodes; /* zonelist_cache approximation */
1498
1499 zlc = zonelist->zlcache_ptr;
1500 if (!zlc)
1501 return NULL;
1502
f05111f5 1503 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1504 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1505 zlc->last_full_zap = jiffies;
1506 }
1507
1508 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1509 &cpuset_current_mems_allowed :
37b07e41 1510 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1511 return allowednodes;
1512}
1513
1514/*
1515 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1516 * if it is worth looking at further for free memory:
1517 * 1) Check that the zone isn't thought to be full (doesn't have its
1518 * bit set in the zonelist_cache fullzones BITMAP).
1519 * 2) Check that the zones node (obtained from the zonelist_cache
1520 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1521 * Return true (non-zero) if zone is worth looking at further, or
1522 * else return false (zero) if it is not.
1523 *
1524 * This check -ignores- the distinction between various watermarks,
1525 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1526 * found to be full for any variation of these watermarks, it will
1527 * be considered full for up to one second by all requests, unless
1528 * we are so low on memory on all allowed nodes that we are forced
1529 * into the second scan of the zonelist.
1530 *
1531 * In the second scan we ignore this zonelist cache and exactly
1532 * apply the watermarks to all zones, even it is slower to do so.
1533 * We are low on memory in the second scan, and should leave no stone
1534 * unturned looking for a free page.
1535 */
dd1a239f 1536static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1537 nodemask_t *allowednodes)
1538{
1539 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1540 int i; /* index of *z in zonelist zones */
1541 int n; /* node that zone *z is on */
1542
1543 zlc = zonelist->zlcache_ptr;
1544 if (!zlc)
1545 return 1;
1546
dd1a239f 1547 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1548 n = zlc->z_to_n[i];
1549
1550 /* This zone is worth trying if it is allowed but not full */
1551 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1552}
1553
1554/*
1555 * Given 'z' scanning a zonelist, set the corresponding bit in
1556 * zlc->fullzones, so that subsequent attempts to allocate a page
1557 * from that zone don't waste time re-examining it.
1558 */
dd1a239f 1559static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1560{
1561 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1562 int i; /* index of *z in zonelist zones */
1563
1564 zlc = zonelist->zlcache_ptr;
1565 if (!zlc)
1566 return;
1567
dd1a239f 1568 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1569
1570 set_bit(i, zlc->fullzones);
1571}
1572
1573#else /* CONFIG_NUMA */
1574
1575static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1576{
1577 return NULL;
1578}
1579
dd1a239f 1580static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1581 nodemask_t *allowednodes)
1582{
1583 return 1;
1584}
1585
dd1a239f 1586static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1587{
1588}
1589#endif /* CONFIG_NUMA */
1590
7fb1d9fc 1591/*
0798e519 1592 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1593 * a page.
1594 */
1595static struct page *
19770b32 1596get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1597 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1598 struct zone *preferred_zone, int migratetype)
753ee728 1599{
dd1a239f 1600 struct zoneref *z;
7fb1d9fc 1601 struct page *page = NULL;
54a6eb5c 1602 int classzone_idx;
5117f45d 1603 struct zone *zone;
9276b1bc
PJ
1604 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1605 int zlc_active = 0; /* set if using zonelist_cache */
1606 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1607
19770b32 1608 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1609zonelist_scan:
7fb1d9fc 1610 /*
9276b1bc 1611 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1612 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1613 */
19770b32
MG
1614 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1615 high_zoneidx, nodemask) {
9276b1bc
PJ
1616 if (NUMA_BUILD && zlc_active &&
1617 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1618 continue;
7fb1d9fc 1619 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1620 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1621 goto try_next_zone;
7fb1d9fc 1622
41858966 1623 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1624 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1625 unsigned long mark;
fa5e084e
MG
1626 int ret;
1627
41858966 1628 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1629 if (zone_watermark_ok(zone, order, mark,
1630 classzone_idx, alloc_flags))
1631 goto try_this_zone;
1632
1633 if (zone_reclaim_mode == 0)
1634 goto this_zone_full;
1635
1636 ret = zone_reclaim(zone, gfp_mask, order);
1637 switch (ret) {
1638 case ZONE_RECLAIM_NOSCAN:
1639 /* did not scan */
1640 goto try_next_zone;
1641 case ZONE_RECLAIM_FULL:
1642 /* scanned but unreclaimable */
1643 goto this_zone_full;
1644 default:
1645 /* did we reclaim enough */
1646 if (!zone_watermark_ok(zone, order, mark,
1647 classzone_idx, alloc_flags))
9276b1bc 1648 goto this_zone_full;
0798e519 1649 }
7fb1d9fc
RS
1650 }
1651
fa5e084e 1652try_this_zone:
3dd28266
MG
1653 page = buffered_rmqueue(preferred_zone, zone, order,
1654 gfp_mask, migratetype);
0798e519 1655 if (page)
7fb1d9fc 1656 break;
9276b1bc
PJ
1657this_zone_full:
1658 if (NUMA_BUILD)
1659 zlc_mark_zone_full(zonelist, z);
1660try_next_zone:
62bc62a8 1661 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
d395b734
MG
1662 /*
1663 * we do zlc_setup after the first zone is tried but only
1664 * if there are multiple nodes make it worthwhile
1665 */
9276b1bc
PJ
1666 allowednodes = zlc_setup(zonelist, alloc_flags);
1667 zlc_active = 1;
1668 did_zlc_setup = 1;
1669 }
54a6eb5c 1670 }
9276b1bc
PJ
1671
1672 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1673 /* Disable zlc cache for second zonelist scan */
1674 zlc_active = 0;
1675 goto zonelist_scan;
1676 }
7fb1d9fc 1677 return page;
753ee728
MH
1678}
1679
11e33f6a
MG
1680static inline int
1681should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1682 unsigned long pages_reclaimed)
1da177e4 1683{
11e33f6a
MG
1684 /* Do not loop if specifically requested */
1685 if (gfp_mask & __GFP_NORETRY)
1686 return 0;
1da177e4 1687
11e33f6a
MG
1688 /*
1689 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1690 * means __GFP_NOFAIL, but that may not be true in other
1691 * implementations.
1692 */
1693 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1694 return 1;
1695
1696 /*
1697 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1698 * specified, then we retry until we no longer reclaim any pages
1699 * (above), or we've reclaimed an order of pages at least as
1700 * large as the allocation's order. In both cases, if the
1701 * allocation still fails, we stop retrying.
1702 */
1703 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1704 return 1;
cf40bd16 1705
11e33f6a
MG
1706 /*
1707 * Don't let big-order allocations loop unless the caller
1708 * explicitly requests that.
1709 */
1710 if (gfp_mask & __GFP_NOFAIL)
1711 return 1;
1da177e4 1712
11e33f6a
MG
1713 return 0;
1714}
933e312e 1715
11e33f6a
MG
1716static inline struct page *
1717__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1718 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1719 nodemask_t *nodemask, struct zone *preferred_zone,
1720 int migratetype)
11e33f6a
MG
1721{
1722 struct page *page;
1723
1724 /* Acquire the OOM killer lock for the zones in zonelist */
1725 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1726 schedule_timeout_uninterruptible(1);
1da177e4
LT
1727 return NULL;
1728 }
6b1de916 1729
11e33f6a
MG
1730 /*
1731 * Go through the zonelist yet one more time, keep very high watermark
1732 * here, this is only to catch a parallel oom killing, we must fail if
1733 * we're still under heavy pressure.
1734 */
1735 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1736 order, zonelist, high_zoneidx,
5117f45d 1737 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1738 preferred_zone, migratetype);
7fb1d9fc 1739 if (page)
11e33f6a
MG
1740 goto out;
1741
4365a567
KH
1742 if (!(gfp_mask & __GFP_NOFAIL)) {
1743 /* The OOM killer will not help higher order allocs */
1744 if (order > PAGE_ALLOC_COSTLY_ORDER)
1745 goto out;
1746 /*
1747 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1748 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1749 * The caller should handle page allocation failure by itself if
1750 * it specifies __GFP_THISNODE.
1751 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1752 */
1753 if (gfp_mask & __GFP_THISNODE)
1754 goto out;
1755 }
11e33f6a 1756 /* Exhausted what can be done so it's blamo time */
4365a567 1757 out_of_memory(zonelist, gfp_mask, order, nodemask);
11e33f6a
MG
1758
1759out:
1760 clear_zonelist_oom(zonelist, gfp_mask);
1761 return page;
1762}
1763
56de7263
MG
1764#ifdef CONFIG_COMPACTION
1765/* Try memory compaction for high-order allocations before reclaim */
1766static struct page *
1767__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1768 struct zonelist *zonelist, enum zone_type high_zoneidx,
1769 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1770 int migratetype, unsigned long *did_some_progress)
1771{
1772 struct page *page;
1773
4f92e258 1774 if (!order || compaction_deferred(preferred_zone))
56de7263
MG
1775 return NULL;
1776
1777 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1778 nodemask);
1779 if (*did_some_progress != COMPACT_SKIPPED) {
1780
1781 /* Page migration frees to the PCP lists but we want merging */
1782 drain_pages(get_cpu());
1783 put_cpu();
1784
1785 page = get_page_from_freelist(gfp_mask, nodemask,
1786 order, zonelist, high_zoneidx,
1787 alloc_flags, preferred_zone,
1788 migratetype);
1789 if (page) {
4f92e258
MG
1790 preferred_zone->compact_considered = 0;
1791 preferred_zone->compact_defer_shift = 0;
56de7263
MG
1792 count_vm_event(COMPACTSUCCESS);
1793 return page;
1794 }
1795
1796 /*
1797 * It's bad if compaction run occurs and fails.
1798 * The most likely reason is that pages exist,
1799 * but not enough to satisfy watermarks.
1800 */
1801 count_vm_event(COMPACTFAIL);
4f92e258 1802 defer_compaction(preferred_zone);
56de7263
MG
1803
1804 cond_resched();
1805 }
1806
1807 return NULL;
1808}
1809#else
1810static inline struct page *
1811__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1812 struct zonelist *zonelist, enum zone_type high_zoneidx,
1813 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1814 int migratetype, unsigned long *did_some_progress)
1815{
1816 return NULL;
1817}
1818#endif /* CONFIG_COMPACTION */
1819
11e33f6a
MG
1820/* The really slow allocator path where we enter direct reclaim */
1821static inline struct page *
1822__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1823 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 1824 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 1825 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
1826{
1827 struct page *page = NULL;
1828 struct reclaim_state reclaim_state;
1829 struct task_struct *p = current;
1830
1831 cond_resched();
1832
1833 /* We now go into synchronous reclaim */
1834 cpuset_memory_pressure_bump();
11e33f6a
MG
1835 p->flags |= PF_MEMALLOC;
1836 lockdep_set_current_reclaim_state(gfp_mask);
1837 reclaim_state.reclaimed_slab = 0;
1838 p->reclaim_state = &reclaim_state;
1839
1840 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1841
1842 p->reclaim_state = NULL;
1843 lockdep_clear_current_reclaim_state();
1844 p->flags &= ~PF_MEMALLOC;
1845
1846 cond_resched();
1847
1848 if (order != 0)
1849 drain_all_pages();
1850
1851 if (likely(*did_some_progress))
1852 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1853 zonelist, high_zoneidx,
3dd28266
MG
1854 alloc_flags, preferred_zone,
1855 migratetype);
11e33f6a
MG
1856 return page;
1857}
1858
1da177e4 1859/*
11e33f6a
MG
1860 * This is called in the allocator slow-path if the allocation request is of
1861 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 1862 */
11e33f6a
MG
1863static inline struct page *
1864__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1865 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1866 nodemask_t *nodemask, struct zone *preferred_zone,
1867 int migratetype)
11e33f6a
MG
1868{
1869 struct page *page;
1870
1871 do {
1872 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1873 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 1874 preferred_zone, migratetype);
11e33f6a
MG
1875
1876 if (!page && gfp_mask & __GFP_NOFAIL)
8aa7e847 1877 congestion_wait(BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
1878 } while (!page && (gfp_mask & __GFP_NOFAIL));
1879
1880 return page;
1881}
1882
1883static inline
1884void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1885 enum zone_type high_zoneidx)
1da177e4 1886{
dd1a239f
MG
1887 struct zoneref *z;
1888 struct zone *zone;
1da177e4 1889
11e33f6a
MG
1890 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1891 wakeup_kswapd(zone, order);
1892}
cf40bd16 1893
341ce06f
PZ
1894static inline int
1895gfp_to_alloc_flags(gfp_t gfp_mask)
1896{
1897 struct task_struct *p = current;
1898 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1899 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 1900
a56f57ff
MG
1901 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1902 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
933e312e 1903
341ce06f
PZ
1904 /*
1905 * The caller may dip into page reserves a bit more if the caller
1906 * cannot run direct reclaim, or if the caller has realtime scheduling
1907 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1908 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1909 */
a56f57ff 1910 alloc_flags |= (gfp_mask & __GFP_HIGH);
1da177e4 1911
341ce06f
PZ
1912 if (!wait) {
1913 alloc_flags |= ALLOC_HARDER;
523b9458 1914 /*
341ce06f
PZ
1915 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1916 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 1917 */
341ce06f 1918 alloc_flags &= ~ALLOC_CPUSET;
9d0ed60f 1919 } else if (unlikely(rt_task(p)) && !in_interrupt())
341ce06f
PZ
1920 alloc_flags |= ALLOC_HARDER;
1921
1922 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1923 if (!in_interrupt() &&
1924 ((p->flags & PF_MEMALLOC) ||
1925 unlikely(test_thread_flag(TIF_MEMDIE))))
1926 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 1927 }
6b1de916 1928
341ce06f
PZ
1929 return alloc_flags;
1930}
1931
11e33f6a
MG
1932static inline struct page *
1933__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1934 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1935 nodemask_t *nodemask, struct zone *preferred_zone,
1936 int migratetype)
11e33f6a
MG
1937{
1938 const gfp_t wait = gfp_mask & __GFP_WAIT;
1939 struct page *page = NULL;
1940 int alloc_flags;
1941 unsigned long pages_reclaimed = 0;
1942 unsigned long did_some_progress;
1943 struct task_struct *p = current;
1da177e4 1944
72807a74
MG
1945 /*
1946 * In the slowpath, we sanity check order to avoid ever trying to
1947 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1948 * be using allocators in order of preference for an area that is
1949 * too large.
1950 */
1fc28b70
MG
1951 if (order >= MAX_ORDER) {
1952 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 1953 return NULL;
1fc28b70 1954 }
1da177e4 1955
952f3b51
CL
1956 /*
1957 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1958 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1959 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1960 * using a larger set of nodes after it has established that the
1961 * allowed per node queues are empty and that nodes are
1962 * over allocated.
1963 */
1964 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1965 goto nopage;
1966
cc4a6851 1967restart:
11e33f6a 1968 wake_all_kswapd(order, zonelist, high_zoneidx);
1da177e4 1969
9bf2229f 1970 /*
7fb1d9fc
RS
1971 * OK, we're below the kswapd watermark and have kicked background
1972 * reclaim. Now things get more complex, so set up alloc_flags according
1973 * to how we want to proceed.
9bf2229f 1974 */
341ce06f 1975 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 1976
341ce06f 1977 /* This is the last chance, in general, before the goto nopage. */
19770b32 1978 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
1979 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1980 preferred_zone, migratetype);
7fb1d9fc
RS
1981 if (page)
1982 goto got_pg;
1da177e4 1983
b43a57bb 1984rebalance:
11e33f6a 1985 /* Allocate without watermarks if the context allows */
341ce06f
PZ
1986 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1987 page = __alloc_pages_high_priority(gfp_mask, order,
1988 zonelist, high_zoneidx, nodemask,
1989 preferred_zone, migratetype);
1990 if (page)
1991 goto got_pg;
1da177e4
LT
1992 }
1993
1994 /* Atomic allocations - we can't balance anything */
1995 if (!wait)
1996 goto nopage;
1997
341ce06f
PZ
1998 /* Avoid recursion of direct reclaim */
1999 if (p->flags & PF_MEMALLOC)
2000 goto nopage;
2001
6583bb64
DR
2002 /* Avoid allocations with no watermarks from looping endlessly */
2003 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2004 goto nopage;
2005
56de7263
MG
2006 /* Try direct compaction */
2007 page = __alloc_pages_direct_compact(gfp_mask, order,
2008 zonelist, high_zoneidx,
2009 nodemask,
2010 alloc_flags, preferred_zone,
2011 migratetype, &did_some_progress);
2012 if (page)
2013 goto got_pg;
2014
11e33f6a
MG
2015 /* Try direct reclaim and then allocating */
2016 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2017 zonelist, high_zoneidx,
2018 nodemask,
5117f45d 2019 alloc_flags, preferred_zone,
3dd28266 2020 migratetype, &did_some_progress);
11e33f6a
MG
2021 if (page)
2022 goto got_pg;
1da177e4 2023
e33c3b5e 2024 /*
11e33f6a
MG
2025 * If we failed to make any progress reclaiming, then we are
2026 * running out of options and have to consider going OOM
e33c3b5e 2027 */
11e33f6a
MG
2028 if (!did_some_progress) {
2029 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2030 if (oom_killer_disabled)
2031 goto nopage;
11e33f6a
MG
2032 page = __alloc_pages_may_oom(gfp_mask, order,
2033 zonelist, high_zoneidx,
3dd28266
MG
2034 nodemask, preferred_zone,
2035 migratetype);
11e33f6a
MG
2036 if (page)
2037 goto got_pg;
1da177e4 2038
11e33f6a 2039 /*
82553a93
DR
2040 * The OOM killer does not trigger for high-order
2041 * ~__GFP_NOFAIL allocations so if no progress is being
2042 * made, there are no other options and retrying is
2043 * unlikely to help.
11e33f6a 2044 */
82553a93
DR
2045 if (order > PAGE_ALLOC_COSTLY_ORDER &&
2046 !(gfp_mask & __GFP_NOFAIL))
11e33f6a 2047 goto nopage;
e2c55dc8 2048
ff0ceb9d
DR
2049 goto restart;
2050 }
1da177e4
LT
2051 }
2052
11e33f6a 2053 /* Check if we should retry the allocation */
a41f24ea 2054 pages_reclaimed += did_some_progress;
11e33f6a
MG
2055 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2056 /* Wait for some write requests to complete then retry */
8aa7e847 2057 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
2058 goto rebalance;
2059 }
2060
2061nopage:
2062 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2063 printk(KERN_WARNING "%s: page allocation failure."
2064 " order:%d, mode:0x%x\n",
2065 p->comm, order, gfp_mask);
2066 dump_stack();
578c2fd6 2067 show_mem();
1da177e4 2068 }
b1eeab67 2069 return page;
1da177e4 2070got_pg:
b1eeab67
VN
2071 if (kmemcheck_enabled)
2072 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1da177e4 2073 return page;
11e33f6a 2074
1da177e4 2075}
11e33f6a
MG
2076
2077/*
2078 * This is the 'heart' of the zoned buddy allocator.
2079 */
2080struct page *
2081__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2082 struct zonelist *zonelist, nodemask_t *nodemask)
2083{
2084 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2085 struct zone *preferred_zone;
11e33f6a 2086 struct page *page;
3dd28266 2087 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a 2088
dcce284a
BH
2089 gfp_mask &= gfp_allowed_mask;
2090
11e33f6a
MG
2091 lockdep_trace_alloc(gfp_mask);
2092
2093 might_sleep_if(gfp_mask & __GFP_WAIT);
2094
2095 if (should_fail_alloc_page(gfp_mask, order))
2096 return NULL;
2097
2098 /*
2099 * Check the zones suitable for the gfp_mask contain at least one
2100 * valid zone. It's possible to have an empty zonelist as a result
2101 * of GFP_THISNODE and a memoryless node
2102 */
2103 if (unlikely(!zonelist->_zonerefs->zone))
2104 return NULL;
2105
c0ff7453 2106 get_mems_allowed();
5117f45d
MG
2107 /* The preferred zone is used for statistics later */
2108 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
c0ff7453
MX
2109 if (!preferred_zone) {
2110 put_mems_allowed();
5117f45d 2111 return NULL;
c0ff7453 2112 }
5117f45d
MG
2113
2114 /* First allocation attempt */
11e33f6a 2115 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 2116 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 2117 preferred_zone, migratetype);
11e33f6a
MG
2118 if (unlikely(!page))
2119 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2120 zonelist, high_zoneidx, nodemask,
3dd28266 2121 preferred_zone, migratetype);
c0ff7453 2122 put_mems_allowed();
11e33f6a 2123
4b4f278c 2124 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
11e33f6a 2125 return page;
1da177e4 2126}
d239171e 2127EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2128
2129/*
2130 * Common helper functions.
2131 */
920c7a5d 2132unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2133{
945a1113
AM
2134 struct page *page;
2135
2136 /*
2137 * __get_free_pages() returns a 32-bit address, which cannot represent
2138 * a highmem page
2139 */
2140 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2141
1da177e4
LT
2142 page = alloc_pages(gfp_mask, order);
2143 if (!page)
2144 return 0;
2145 return (unsigned long) page_address(page);
2146}
1da177e4
LT
2147EXPORT_SYMBOL(__get_free_pages);
2148
920c7a5d 2149unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2150{
945a1113 2151 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2152}
1da177e4
LT
2153EXPORT_SYMBOL(get_zeroed_page);
2154
2155void __pagevec_free(struct pagevec *pvec)
2156{
2157 int i = pagevec_count(pvec);
2158
4b4f278c
MG
2159 while (--i >= 0) {
2160 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
1da177e4 2161 free_hot_cold_page(pvec->pages[i], pvec->cold);
4b4f278c 2162 }
1da177e4
LT
2163}
2164
920c7a5d 2165void __free_pages(struct page *page, unsigned int order)
1da177e4 2166{
b5810039 2167 if (put_page_testzero(page)) {
1da177e4 2168 if (order == 0)
fc91668e 2169 free_hot_cold_page(page, 0);
1da177e4
LT
2170 else
2171 __free_pages_ok(page, order);
2172 }
2173}
2174
2175EXPORT_SYMBOL(__free_pages);
2176
920c7a5d 2177void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2178{
2179 if (addr != 0) {
725d704e 2180 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2181 __free_pages(virt_to_page((void *)addr), order);
2182 }
2183}
2184
2185EXPORT_SYMBOL(free_pages);
2186
2be0ffe2
TT
2187/**
2188 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2189 * @size: the number of bytes to allocate
2190 * @gfp_mask: GFP flags for the allocation
2191 *
2192 * This function is similar to alloc_pages(), except that it allocates the
2193 * minimum number of pages to satisfy the request. alloc_pages() can only
2194 * allocate memory in power-of-two pages.
2195 *
2196 * This function is also limited by MAX_ORDER.
2197 *
2198 * Memory allocated by this function must be released by free_pages_exact().
2199 */
2200void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2201{
2202 unsigned int order = get_order(size);
2203 unsigned long addr;
2204
2205 addr = __get_free_pages(gfp_mask, order);
2206 if (addr) {
2207 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2208 unsigned long used = addr + PAGE_ALIGN(size);
2209
5bfd7560 2210 split_page(virt_to_page((void *)addr), order);
2be0ffe2
TT
2211 while (used < alloc_end) {
2212 free_page(used);
2213 used += PAGE_SIZE;
2214 }
2215 }
2216
2217 return (void *)addr;
2218}
2219EXPORT_SYMBOL(alloc_pages_exact);
2220
2221/**
2222 * free_pages_exact - release memory allocated via alloc_pages_exact()
2223 * @virt: the value returned by alloc_pages_exact.
2224 * @size: size of allocation, same value as passed to alloc_pages_exact().
2225 *
2226 * Release the memory allocated by a previous call to alloc_pages_exact.
2227 */
2228void free_pages_exact(void *virt, size_t size)
2229{
2230 unsigned long addr = (unsigned long)virt;
2231 unsigned long end = addr + PAGE_ALIGN(size);
2232
2233 while (addr < end) {
2234 free_page(addr);
2235 addr += PAGE_SIZE;
2236 }
2237}
2238EXPORT_SYMBOL(free_pages_exact);
2239
1da177e4
LT
2240static unsigned int nr_free_zone_pages(int offset)
2241{
dd1a239f 2242 struct zoneref *z;
54a6eb5c
MG
2243 struct zone *zone;
2244
e310fd43 2245 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2246 unsigned int sum = 0;
2247
0e88460d 2248 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2249
54a6eb5c 2250 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2251 unsigned long size = zone->present_pages;
41858966 2252 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2253 if (size > high)
2254 sum += size - high;
1da177e4
LT
2255 }
2256
2257 return sum;
2258}
2259
2260/*
2261 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2262 */
2263unsigned int nr_free_buffer_pages(void)
2264{
af4ca457 2265 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2266}
c2f1a551 2267EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2268
2269/*
2270 * Amount of free RAM allocatable within all zones
2271 */
2272unsigned int nr_free_pagecache_pages(void)
2273{
2a1e274a 2274 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2275}
08e0f6a9
CL
2276
2277static inline void show_node(struct zone *zone)
1da177e4 2278{
08e0f6a9 2279 if (NUMA_BUILD)
25ba77c1 2280 printk("Node %d ", zone_to_nid(zone));
1da177e4 2281}
1da177e4 2282
1da177e4
LT
2283void si_meminfo(struct sysinfo *val)
2284{
2285 val->totalram = totalram_pages;
2286 val->sharedram = 0;
d23ad423 2287 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2288 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2289 val->totalhigh = totalhigh_pages;
2290 val->freehigh = nr_free_highpages();
1da177e4
LT
2291 val->mem_unit = PAGE_SIZE;
2292}
2293
2294EXPORT_SYMBOL(si_meminfo);
2295
2296#ifdef CONFIG_NUMA
2297void si_meminfo_node(struct sysinfo *val, int nid)
2298{
2299 pg_data_t *pgdat = NODE_DATA(nid);
2300
2301 val->totalram = pgdat->node_present_pages;
d23ad423 2302 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2303#ifdef CONFIG_HIGHMEM
1da177e4 2304 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2305 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2306 NR_FREE_PAGES);
98d2b0eb
CL
2307#else
2308 val->totalhigh = 0;
2309 val->freehigh = 0;
2310#endif
1da177e4
LT
2311 val->mem_unit = PAGE_SIZE;
2312}
2313#endif
2314
2315#define K(x) ((x) << (PAGE_SHIFT-10))
2316
2317/*
2318 * Show free area list (used inside shift_scroll-lock stuff)
2319 * We also calculate the percentage fragmentation. We do this by counting the
2320 * memory on each free list with the exception of the first item on the list.
2321 */
2322void show_free_areas(void)
2323{
c7241913 2324 int cpu;
1da177e4
LT
2325 struct zone *zone;
2326
ee99c71c 2327 for_each_populated_zone(zone) {
c7241913
JS
2328 show_node(zone);
2329 printk("%s per-cpu:\n", zone->name);
1da177e4 2330
6b482c67 2331 for_each_online_cpu(cpu) {
1da177e4
LT
2332 struct per_cpu_pageset *pageset;
2333
99dcc3e5 2334 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2335
3dfa5721
CL
2336 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2337 cpu, pageset->pcp.high,
2338 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2339 }
2340 }
2341
a731286d
KM
2342 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2343 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2344 " unevictable:%lu"
b76146ed 2345 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2346 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4b02108a 2347 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe 2348 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2349 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2350 global_page_state(NR_ISOLATED_ANON),
2351 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2352 global_page_state(NR_INACTIVE_FILE),
a731286d 2353 global_page_state(NR_ISOLATED_FILE),
7b854121 2354 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2355 global_page_state(NR_FILE_DIRTY),
ce866b34 2356 global_page_state(NR_WRITEBACK),
fd39fc85 2357 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2358 global_page_state(NR_FREE_PAGES),
3701b033
KM
2359 global_page_state(NR_SLAB_RECLAIMABLE),
2360 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2361 global_page_state(NR_FILE_MAPPED),
4b02108a 2362 global_page_state(NR_SHMEM),
a25700a5
AM
2363 global_page_state(NR_PAGETABLE),
2364 global_page_state(NR_BOUNCE));
1da177e4 2365
ee99c71c 2366 for_each_populated_zone(zone) {
1da177e4
LT
2367 int i;
2368
2369 show_node(zone);
2370 printk("%s"
2371 " free:%lukB"
2372 " min:%lukB"
2373 " low:%lukB"
2374 " high:%lukB"
4f98a2fe
RR
2375 " active_anon:%lukB"
2376 " inactive_anon:%lukB"
2377 " active_file:%lukB"
2378 " inactive_file:%lukB"
7b854121 2379 " unevictable:%lukB"
a731286d
KM
2380 " isolated(anon):%lukB"
2381 " isolated(file):%lukB"
1da177e4 2382 " present:%lukB"
4a0aa73f
KM
2383 " mlocked:%lukB"
2384 " dirty:%lukB"
2385 " writeback:%lukB"
2386 " mapped:%lukB"
4b02108a 2387 " shmem:%lukB"
4a0aa73f
KM
2388 " slab_reclaimable:%lukB"
2389 " slab_unreclaimable:%lukB"
c6a7f572 2390 " kernel_stack:%lukB"
4a0aa73f
KM
2391 " pagetables:%lukB"
2392 " unstable:%lukB"
2393 " bounce:%lukB"
2394 " writeback_tmp:%lukB"
1da177e4
LT
2395 " pages_scanned:%lu"
2396 " all_unreclaimable? %s"
2397 "\n",
2398 zone->name,
d23ad423 2399 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2400 K(min_wmark_pages(zone)),
2401 K(low_wmark_pages(zone)),
2402 K(high_wmark_pages(zone)),
4f98a2fe
RR
2403 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2404 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2405 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2406 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2407 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2408 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2409 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2410 K(zone->present_pages),
4a0aa73f
KM
2411 K(zone_page_state(zone, NR_MLOCK)),
2412 K(zone_page_state(zone, NR_FILE_DIRTY)),
2413 K(zone_page_state(zone, NR_WRITEBACK)),
2414 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2415 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2416 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2417 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2418 zone_page_state(zone, NR_KERNEL_STACK) *
2419 THREAD_SIZE / 1024,
4a0aa73f
KM
2420 K(zone_page_state(zone, NR_PAGETABLE)),
2421 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2422 K(zone_page_state(zone, NR_BOUNCE)),
2423 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2424 zone->pages_scanned,
93e4a89a 2425 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
2426 );
2427 printk("lowmem_reserve[]:");
2428 for (i = 0; i < MAX_NR_ZONES; i++)
2429 printk(" %lu", zone->lowmem_reserve[i]);
2430 printk("\n");
2431 }
2432
ee99c71c 2433 for_each_populated_zone(zone) {
8f9de51a 2434 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
2435
2436 show_node(zone);
2437 printk("%s: ", zone->name);
1da177e4
LT
2438
2439 spin_lock_irqsave(&zone->lock, flags);
2440 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2441 nr[order] = zone->free_area[order].nr_free;
2442 total += nr[order] << order;
1da177e4
LT
2443 }
2444 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2445 for (order = 0; order < MAX_ORDER; order++)
2446 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2447 printk("= %lukB\n", K(total));
2448 }
2449
e6f3602d
LW
2450 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2451
1da177e4
LT
2452 show_swap_cache_info();
2453}
2454
19770b32
MG
2455static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2456{
2457 zoneref->zone = zone;
2458 zoneref->zone_idx = zone_idx(zone);
2459}
2460
1da177e4
LT
2461/*
2462 * Builds allocation fallback zone lists.
1a93205b
CL
2463 *
2464 * Add all populated zones of a node to the zonelist.
1da177e4 2465 */
f0c0b2b8
KH
2466static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2467 int nr_zones, enum zone_type zone_type)
1da177e4 2468{
1a93205b
CL
2469 struct zone *zone;
2470
98d2b0eb 2471 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2472 zone_type++;
02a68a5e
CL
2473
2474 do {
2f6726e5 2475 zone_type--;
070f8032 2476 zone = pgdat->node_zones + zone_type;
1a93205b 2477 if (populated_zone(zone)) {
dd1a239f
MG
2478 zoneref_set_zone(zone,
2479 &zonelist->_zonerefs[nr_zones++]);
070f8032 2480 check_highest_zone(zone_type);
1da177e4 2481 }
02a68a5e 2482
2f6726e5 2483 } while (zone_type);
070f8032 2484 return nr_zones;
1da177e4
LT
2485}
2486
f0c0b2b8
KH
2487
2488/*
2489 * zonelist_order:
2490 * 0 = automatic detection of better ordering.
2491 * 1 = order by ([node] distance, -zonetype)
2492 * 2 = order by (-zonetype, [node] distance)
2493 *
2494 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2495 * the same zonelist. So only NUMA can configure this param.
2496 */
2497#define ZONELIST_ORDER_DEFAULT 0
2498#define ZONELIST_ORDER_NODE 1
2499#define ZONELIST_ORDER_ZONE 2
2500
2501/* zonelist order in the kernel.
2502 * set_zonelist_order() will set this to NODE or ZONE.
2503 */
2504static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2505static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2506
2507
1da177e4 2508#ifdef CONFIG_NUMA
f0c0b2b8
KH
2509/* The value user specified ....changed by config */
2510static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2511/* string for sysctl */
2512#define NUMA_ZONELIST_ORDER_LEN 16
2513char numa_zonelist_order[16] = "default";
2514
2515/*
2516 * interface for configure zonelist ordering.
2517 * command line option "numa_zonelist_order"
2518 * = "[dD]efault - default, automatic configuration.
2519 * = "[nN]ode - order by node locality, then by zone within node
2520 * = "[zZ]one - order by zone, then by locality within zone
2521 */
2522
2523static int __parse_numa_zonelist_order(char *s)
2524{
2525 if (*s == 'd' || *s == 'D') {
2526 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2527 } else if (*s == 'n' || *s == 'N') {
2528 user_zonelist_order = ZONELIST_ORDER_NODE;
2529 } else if (*s == 'z' || *s == 'Z') {
2530 user_zonelist_order = ZONELIST_ORDER_ZONE;
2531 } else {
2532 printk(KERN_WARNING
2533 "Ignoring invalid numa_zonelist_order value: "
2534 "%s\n", s);
2535 return -EINVAL;
2536 }
2537 return 0;
2538}
2539
2540static __init int setup_numa_zonelist_order(char *s)
2541{
2542 if (s)
2543 return __parse_numa_zonelist_order(s);
2544 return 0;
2545}
2546early_param("numa_zonelist_order", setup_numa_zonelist_order);
2547
2548/*
2549 * sysctl handler for numa_zonelist_order
2550 */
2551int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 2552 void __user *buffer, size_t *length,
f0c0b2b8
KH
2553 loff_t *ppos)
2554{
2555 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2556 int ret;
443c6f14 2557 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 2558
443c6f14 2559 mutex_lock(&zl_order_mutex);
f0c0b2b8 2560 if (write)
443c6f14 2561 strcpy(saved_string, (char*)table->data);
8d65af78 2562 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 2563 if (ret)
443c6f14 2564 goto out;
f0c0b2b8
KH
2565 if (write) {
2566 int oldval = user_zonelist_order;
2567 if (__parse_numa_zonelist_order((char*)table->data)) {
2568 /*
2569 * bogus value. restore saved string
2570 */
2571 strncpy((char*)table->data, saved_string,
2572 NUMA_ZONELIST_ORDER_LEN);
2573 user_zonelist_order = oldval;
2574 } else if (oldval != user_zonelist_order)
2575 build_all_zonelists();
2576 }
443c6f14
AK
2577out:
2578 mutex_unlock(&zl_order_mutex);
2579 return ret;
f0c0b2b8
KH
2580}
2581
2582
62bc62a8 2583#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
2584static int node_load[MAX_NUMNODES];
2585
1da177e4 2586/**
4dc3b16b 2587 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2588 * @node: node whose fallback list we're appending
2589 * @used_node_mask: nodemask_t of already used nodes
2590 *
2591 * We use a number of factors to determine which is the next node that should
2592 * appear on a given node's fallback list. The node should not have appeared
2593 * already in @node's fallback list, and it should be the next closest node
2594 * according to the distance array (which contains arbitrary distance values
2595 * from each node to each node in the system), and should also prefer nodes
2596 * with no CPUs, since presumably they'll have very little allocation pressure
2597 * on them otherwise.
2598 * It returns -1 if no node is found.
2599 */
f0c0b2b8 2600static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2601{
4cf808eb 2602 int n, val;
1da177e4
LT
2603 int min_val = INT_MAX;
2604 int best_node = -1;
a70f7302 2605 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2606
4cf808eb
LT
2607 /* Use the local node if we haven't already */
2608 if (!node_isset(node, *used_node_mask)) {
2609 node_set(node, *used_node_mask);
2610 return node;
2611 }
1da177e4 2612
37b07e41 2613 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2614
2615 /* Don't want a node to appear more than once */
2616 if (node_isset(n, *used_node_mask))
2617 continue;
2618
1da177e4
LT
2619 /* Use the distance array to find the distance */
2620 val = node_distance(node, n);
2621
4cf808eb
LT
2622 /* Penalize nodes under us ("prefer the next node") */
2623 val += (n < node);
2624
1da177e4 2625 /* Give preference to headless and unused nodes */
a70f7302
RR
2626 tmp = cpumask_of_node(n);
2627 if (!cpumask_empty(tmp))
1da177e4
LT
2628 val += PENALTY_FOR_NODE_WITH_CPUS;
2629
2630 /* Slight preference for less loaded node */
2631 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2632 val += node_load[n];
2633
2634 if (val < min_val) {
2635 min_val = val;
2636 best_node = n;
2637 }
2638 }
2639
2640 if (best_node >= 0)
2641 node_set(best_node, *used_node_mask);
2642
2643 return best_node;
2644}
2645
f0c0b2b8
KH
2646
2647/*
2648 * Build zonelists ordered by node and zones within node.
2649 * This results in maximum locality--normal zone overflows into local
2650 * DMA zone, if any--but risks exhausting DMA zone.
2651 */
2652static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2653{
f0c0b2b8 2654 int j;
1da177e4 2655 struct zonelist *zonelist;
f0c0b2b8 2656
54a6eb5c 2657 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2658 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2659 ;
2660 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2661 MAX_NR_ZONES - 1);
dd1a239f
MG
2662 zonelist->_zonerefs[j].zone = NULL;
2663 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2664}
2665
523b9458
CL
2666/*
2667 * Build gfp_thisnode zonelists
2668 */
2669static void build_thisnode_zonelists(pg_data_t *pgdat)
2670{
523b9458
CL
2671 int j;
2672 struct zonelist *zonelist;
2673
54a6eb5c
MG
2674 zonelist = &pgdat->node_zonelists[1];
2675 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2676 zonelist->_zonerefs[j].zone = NULL;
2677 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2678}
2679
f0c0b2b8
KH
2680/*
2681 * Build zonelists ordered by zone and nodes within zones.
2682 * This results in conserving DMA zone[s] until all Normal memory is
2683 * exhausted, but results in overflowing to remote node while memory
2684 * may still exist in local DMA zone.
2685 */
2686static int node_order[MAX_NUMNODES];
2687
2688static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2689{
f0c0b2b8
KH
2690 int pos, j, node;
2691 int zone_type; /* needs to be signed */
2692 struct zone *z;
2693 struct zonelist *zonelist;
2694
54a6eb5c
MG
2695 zonelist = &pgdat->node_zonelists[0];
2696 pos = 0;
2697 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2698 for (j = 0; j < nr_nodes; j++) {
2699 node = node_order[j];
2700 z = &NODE_DATA(node)->node_zones[zone_type];
2701 if (populated_zone(z)) {
dd1a239f
MG
2702 zoneref_set_zone(z,
2703 &zonelist->_zonerefs[pos++]);
54a6eb5c 2704 check_highest_zone(zone_type);
f0c0b2b8
KH
2705 }
2706 }
f0c0b2b8 2707 }
dd1a239f
MG
2708 zonelist->_zonerefs[pos].zone = NULL;
2709 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2710}
2711
2712static int default_zonelist_order(void)
2713{
2714 int nid, zone_type;
2715 unsigned long low_kmem_size,total_size;
2716 struct zone *z;
2717 int average_size;
2718 /*
88393161 2719 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
2720 * If they are really small and used heavily, the system can fall
2721 * into OOM very easily.
e325c90f 2722 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
2723 */
2724 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2725 low_kmem_size = 0;
2726 total_size = 0;
2727 for_each_online_node(nid) {
2728 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2729 z = &NODE_DATA(nid)->node_zones[zone_type];
2730 if (populated_zone(z)) {
2731 if (zone_type < ZONE_NORMAL)
2732 low_kmem_size += z->present_pages;
2733 total_size += z->present_pages;
e325c90f
DR
2734 } else if (zone_type == ZONE_NORMAL) {
2735 /*
2736 * If any node has only lowmem, then node order
2737 * is preferred to allow kernel allocations
2738 * locally; otherwise, they can easily infringe
2739 * on other nodes when there is an abundance of
2740 * lowmem available to allocate from.
2741 */
2742 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
2743 }
2744 }
2745 }
2746 if (!low_kmem_size || /* there are no DMA area. */
2747 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2748 return ZONELIST_ORDER_NODE;
2749 /*
2750 * look into each node's config.
2751 * If there is a node whose DMA/DMA32 memory is very big area on
2752 * local memory, NODE_ORDER may be suitable.
2753 */
37b07e41
LS
2754 average_size = total_size /
2755 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2756 for_each_online_node(nid) {
2757 low_kmem_size = 0;
2758 total_size = 0;
2759 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2760 z = &NODE_DATA(nid)->node_zones[zone_type];
2761 if (populated_zone(z)) {
2762 if (zone_type < ZONE_NORMAL)
2763 low_kmem_size += z->present_pages;
2764 total_size += z->present_pages;
2765 }
2766 }
2767 if (low_kmem_size &&
2768 total_size > average_size && /* ignore small node */
2769 low_kmem_size > total_size * 70/100)
2770 return ZONELIST_ORDER_NODE;
2771 }
2772 return ZONELIST_ORDER_ZONE;
2773}
2774
2775static void set_zonelist_order(void)
2776{
2777 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2778 current_zonelist_order = default_zonelist_order();
2779 else
2780 current_zonelist_order = user_zonelist_order;
2781}
2782
2783static void build_zonelists(pg_data_t *pgdat)
2784{
2785 int j, node, load;
2786 enum zone_type i;
1da177e4 2787 nodemask_t used_mask;
f0c0b2b8
KH
2788 int local_node, prev_node;
2789 struct zonelist *zonelist;
2790 int order = current_zonelist_order;
1da177e4
LT
2791
2792 /* initialize zonelists */
523b9458 2793 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2794 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2795 zonelist->_zonerefs[0].zone = NULL;
2796 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2797 }
2798
2799 /* NUMA-aware ordering of nodes */
2800 local_node = pgdat->node_id;
62bc62a8 2801 load = nr_online_nodes;
1da177e4
LT
2802 prev_node = local_node;
2803 nodes_clear(used_mask);
f0c0b2b8 2804
f0c0b2b8
KH
2805 memset(node_order, 0, sizeof(node_order));
2806 j = 0;
2807
1da177e4 2808 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2809 int distance = node_distance(local_node, node);
2810
2811 /*
2812 * If another node is sufficiently far away then it is better
2813 * to reclaim pages in a zone before going off node.
2814 */
2815 if (distance > RECLAIM_DISTANCE)
2816 zone_reclaim_mode = 1;
2817
1da177e4
LT
2818 /*
2819 * We don't want to pressure a particular node.
2820 * So adding penalty to the first node in same
2821 * distance group to make it round-robin.
2822 */
9eeff239 2823 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2824 node_load[node] = load;
2825
1da177e4
LT
2826 prev_node = node;
2827 load--;
f0c0b2b8
KH
2828 if (order == ZONELIST_ORDER_NODE)
2829 build_zonelists_in_node_order(pgdat, node);
2830 else
2831 node_order[j++] = node; /* remember order */
2832 }
1da177e4 2833
f0c0b2b8
KH
2834 if (order == ZONELIST_ORDER_ZONE) {
2835 /* calculate node order -- i.e., DMA last! */
2836 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2837 }
523b9458
CL
2838
2839 build_thisnode_zonelists(pgdat);
1da177e4
LT
2840}
2841
9276b1bc 2842/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2843static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2844{
54a6eb5c
MG
2845 struct zonelist *zonelist;
2846 struct zonelist_cache *zlc;
dd1a239f 2847 struct zoneref *z;
9276b1bc 2848
54a6eb5c
MG
2849 zonelist = &pgdat->node_zonelists[0];
2850 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2851 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2852 for (z = zonelist->_zonerefs; z->zone; z++)
2853 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2854}
2855
f0c0b2b8 2856
1da177e4
LT
2857#else /* CONFIG_NUMA */
2858
f0c0b2b8
KH
2859static void set_zonelist_order(void)
2860{
2861 current_zonelist_order = ZONELIST_ORDER_ZONE;
2862}
2863
2864static void build_zonelists(pg_data_t *pgdat)
1da177e4 2865{
19655d34 2866 int node, local_node;
54a6eb5c
MG
2867 enum zone_type j;
2868 struct zonelist *zonelist;
1da177e4
LT
2869
2870 local_node = pgdat->node_id;
1da177e4 2871
54a6eb5c
MG
2872 zonelist = &pgdat->node_zonelists[0];
2873 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2874
54a6eb5c
MG
2875 /*
2876 * Now we build the zonelist so that it contains the zones
2877 * of all the other nodes.
2878 * We don't want to pressure a particular node, so when
2879 * building the zones for node N, we make sure that the
2880 * zones coming right after the local ones are those from
2881 * node N+1 (modulo N)
2882 */
2883 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2884 if (!node_online(node))
2885 continue;
2886 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2887 MAX_NR_ZONES - 1);
1da177e4 2888 }
54a6eb5c
MG
2889 for (node = 0; node < local_node; node++) {
2890 if (!node_online(node))
2891 continue;
2892 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2893 MAX_NR_ZONES - 1);
2894 }
2895
dd1a239f
MG
2896 zonelist->_zonerefs[j].zone = NULL;
2897 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
2898}
2899
9276b1bc 2900/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2901static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2902{
54a6eb5c 2903 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
2904}
2905
1da177e4
LT
2906#endif /* CONFIG_NUMA */
2907
99dcc3e5
CL
2908/*
2909 * Boot pageset table. One per cpu which is going to be used for all
2910 * zones and all nodes. The parameters will be set in such a way
2911 * that an item put on a list will immediately be handed over to
2912 * the buddy list. This is safe since pageset manipulation is done
2913 * with interrupts disabled.
2914 *
2915 * The boot_pagesets must be kept even after bootup is complete for
2916 * unused processors and/or zones. They do play a role for bootstrapping
2917 * hotplugged processors.
2918 *
2919 * zoneinfo_show() and maybe other functions do
2920 * not check if the processor is online before following the pageset pointer.
2921 * Other parts of the kernel may not check if the zone is available.
2922 */
2923static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
2924static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
2925
9b1a4d38 2926/* return values int ....just for stop_machine() */
f0c0b2b8 2927static int __build_all_zonelists(void *dummy)
1da177e4 2928{
6811378e 2929 int nid;
99dcc3e5 2930 int cpu;
9276b1bc 2931
7f9cfb31
BL
2932#ifdef CONFIG_NUMA
2933 memset(node_load, 0, sizeof(node_load));
2934#endif
9276b1bc 2935 for_each_online_node(nid) {
7ea1530a
CL
2936 pg_data_t *pgdat = NODE_DATA(nid);
2937
2938 build_zonelists(pgdat);
2939 build_zonelist_cache(pgdat);
9276b1bc 2940 }
99dcc3e5
CL
2941
2942 /*
2943 * Initialize the boot_pagesets that are going to be used
2944 * for bootstrapping processors. The real pagesets for
2945 * each zone will be allocated later when the per cpu
2946 * allocator is available.
2947 *
2948 * boot_pagesets are used also for bootstrapping offline
2949 * cpus if the system is already booted because the pagesets
2950 * are needed to initialize allocators on a specific cpu too.
2951 * F.e. the percpu allocator needs the page allocator which
2952 * needs the percpu allocator in order to allocate its pagesets
2953 * (a chicken-egg dilemma).
2954 */
2955 for_each_possible_cpu(cpu)
2956 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
2957
6811378e
YG
2958 return 0;
2959}
2960
f0c0b2b8 2961void build_all_zonelists(void)
6811378e 2962{
f0c0b2b8
KH
2963 set_zonelist_order();
2964
6811378e 2965 if (system_state == SYSTEM_BOOTING) {
423b41d7 2966 __build_all_zonelists(NULL);
68ad8df4 2967 mminit_verify_zonelist();
6811378e
YG
2968 cpuset_init_current_mems_allowed();
2969 } else {
183ff22b 2970 /* we have to stop all cpus to guarantee there is no user
6811378e 2971 of zonelist */
9b1a4d38 2972 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
2973 /* cpuset refresh routine should be here */
2974 }
bd1e22b8 2975 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
2976 /*
2977 * Disable grouping by mobility if the number of pages in the
2978 * system is too low to allow the mechanism to work. It would be
2979 * more accurate, but expensive to check per-zone. This check is
2980 * made on memory-hotadd so a system can start with mobility
2981 * disabled and enable it later
2982 */
d9c23400 2983 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
2984 page_group_by_mobility_disabled = 1;
2985 else
2986 page_group_by_mobility_disabled = 0;
2987
2988 printk("Built %i zonelists in %s order, mobility grouping %s. "
2989 "Total pages: %ld\n",
62bc62a8 2990 nr_online_nodes,
f0c0b2b8 2991 zonelist_order_name[current_zonelist_order],
9ef9acb0 2992 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
2993 vm_total_pages);
2994#ifdef CONFIG_NUMA
2995 printk("Policy zone: %s\n", zone_names[policy_zone]);
2996#endif
1da177e4
LT
2997}
2998
2999/*
3000 * Helper functions to size the waitqueue hash table.
3001 * Essentially these want to choose hash table sizes sufficiently
3002 * large so that collisions trying to wait on pages are rare.
3003 * But in fact, the number of active page waitqueues on typical
3004 * systems is ridiculously low, less than 200. So this is even
3005 * conservative, even though it seems large.
3006 *
3007 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3008 * waitqueues, i.e. the size of the waitq table given the number of pages.
3009 */
3010#define PAGES_PER_WAITQUEUE 256
3011
cca448fe 3012#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3013static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3014{
3015 unsigned long size = 1;
3016
3017 pages /= PAGES_PER_WAITQUEUE;
3018
3019 while (size < pages)
3020 size <<= 1;
3021
3022 /*
3023 * Once we have dozens or even hundreds of threads sleeping
3024 * on IO we've got bigger problems than wait queue collision.
3025 * Limit the size of the wait table to a reasonable size.
3026 */
3027 size = min(size, 4096UL);
3028
3029 return max(size, 4UL);
3030}
cca448fe
YG
3031#else
3032/*
3033 * A zone's size might be changed by hot-add, so it is not possible to determine
3034 * a suitable size for its wait_table. So we use the maximum size now.
3035 *
3036 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3037 *
3038 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3039 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3040 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3041 *
3042 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3043 * or more by the traditional way. (See above). It equals:
3044 *
3045 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3046 * ia64(16K page size) : = ( 8G + 4M)byte.
3047 * powerpc (64K page size) : = (32G +16M)byte.
3048 */
3049static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3050{
3051 return 4096UL;
3052}
3053#endif
1da177e4
LT
3054
3055/*
3056 * This is an integer logarithm so that shifts can be used later
3057 * to extract the more random high bits from the multiplicative
3058 * hash function before the remainder is taken.
3059 */
3060static inline unsigned long wait_table_bits(unsigned long size)
3061{
3062 return ffz(~size);
3063}
3064
3065#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3066
56fd56b8 3067/*
d9c23400 3068 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3069 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3070 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3071 * higher will lead to a bigger reserve which will get freed as contiguous
3072 * blocks as reclaim kicks in
3073 */
3074static void setup_zone_migrate_reserve(struct zone *zone)
3075{
3076 unsigned long start_pfn, pfn, end_pfn;
3077 struct page *page;
78986a67
MG
3078 unsigned long block_migratetype;
3079 int reserve;
56fd56b8
MG
3080
3081 /* Get the start pfn, end pfn and the number of blocks to reserve */
3082 start_pfn = zone->zone_start_pfn;
3083 end_pfn = start_pfn + zone->spanned_pages;
41858966 3084 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3085 pageblock_order;
56fd56b8 3086
78986a67
MG
3087 /*
3088 * Reserve blocks are generally in place to help high-order atomic
3089 * allocations that are short-lived. A min_free_kbytes value that
3090 * would result in more than 2 reserve blocks for atomic allocations
3091 * is assumed to be in place to help anti-fragmentation for the
3092 * future allocation of hugepages at runtime.
3093 */
3094 reserve = min(2, reserve);
3095
d9c23400 3096 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3097 if (!pfn_valid(pfn))
3098 continue;
3099 page = pfn_to_page(pfn);
3100
344c790e
AL
3101 /* Watch out for overlapping nodes */
3102 if (page_to_nid(page) != zone_to_nid(zone))
3103 continue;
3104
56fd56b8
MG
3105 /* Blocks with reserved pages will never free, skip them. */
3106 if (PageReserved(page))
3107 continue;
3108
3109 block_migratetype = get_pageblock_migratetype(page);
3110
3111 /* If this block is reserved, account for it */
3112 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3113 reserve--;
3114 continue;
3115 }
3116
3117 /* Suitable for reserving if this block is movable */
3118 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3119 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3120 move_freepages_block(zone, page, MIGRATE_RESERVE);
3121 reserve--;
3122 continue;
3123 }
3124
3125 /*
3126 * If the reserve is met and this is a previous reserved block,
3127 * take it back
3128 */
3129 if (block_migratetype == MIGRATE_RESERVE) {
3130 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3131 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3132 }
3133 }
3134}
ac0e5b7a 3135
1da177e4
LT
3136/*
3137 * Initially all pages are reserved - free ones are freed
3138 * up by free_all_bootmem() once the early boot process is
3139 * done. Non-atomic initialization, single-pass.
3140 */
c09b4240 3141void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3142 unsigned long start_pfn, enum memmap_context context)
1da177e4 3143{
1da177e4 3144 struct page *page;
29751f69
AW
3145 unsigned long end_pfn = start_pfn + size;
3146 unsigned long pfn;
86051ca5 3147 struct zone *z;
1da177e4 3148
22b31eec
HD
3149 if (highest_memmap_pfn < end_pfn - 1)
3150 highest_memmap_pfn = end_pfn - 1;
3151
86051ca5 3152 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3153 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3154 /*
3155 * There can be holes in boot-time mem_map[]s
3156 * handed to this function. They do not
3157 * exist on hotplugged memory.
3158 */
3159 if (context == MEMMAP_EARLY) {
3160 if (!early_pfn_valid(pfn))
3161 continue;
3162 if (!early_pfn_in_nid(pfn, nid))
3163 continue;
3164 }
d41dee36
AW
3165 page = pfn_to_page(pfn);
3166 set_page_links(page, zone, nid, pfn);
708614e6 3167 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3168 init_page_count(page);
1da177e4
LT
3169 reset_page_mapcount(page);
3170 SetPageReserved(page);
b2a0ac88
MG
3171 /*
3172 * Mark the block movable so that blocks are reserved for
3173 * movable at startup. This will force kernel allocations
3174 * to reserve their blocks rather than leaking throughout
3175 * the address space during boot when many long-lived
56fd56b8
MG
3176 * kernel allocations are made. Later some blocks near
3177 * the start are marked MIGRATE_RESERVE by
3178 * setup_zone_migrate_reserve()
86051ca5
KH
3179 *
3180 * bitmap is created for zone's valid pfn range. but memmap
3181 * can be created for invalid pages (for alignment)
3182 * check here not to call set_pageblock_migratetype() against
3183 * pfn out of zone.
b2a0ac88 3184 */
86051ca5
KH
3185 if ((z->zone_start_pfn <= pfn)
3186 && (pfn < z->zone_start_pfn + z->spanned_pages)
3187 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3188 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3189
1da177e4
LT
3190 INIT_LIST_HEAD(&page->lru);
3191#ifdef WANT_PAGE_VIRTUAL
3192 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3193 if (!is_highmem_idx(zone))
3212c6be 3194 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3195#endif
1da177e4
LT
3196 }
3197}
3198
1e548deb 3199static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3200{
b2a0ac88
MG
3201 int order, t;
3202 for_each_migratetype_order(order, t) {
3203 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3204 zone->free_area[order].nr_free = 0;
3205 }
3206}
3207
3208#ifndef __HAVE_ARCH_MEMMAP_INIT
3209#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3210 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3211#endif
3212
1d6f4e60 3213static int zone_batchsize(struct zone *zone)
e7c8d5c9 3214{
3a6be87f 3215#ifdef CONFIG_MMU
e7c8d5c9
CL
3216 int batch;
3217
3218 /*
3219 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3220 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3221 *
3222 * OK, so we don't know how big the cache is. So guess.
3223 */
3224 batch = zone->present_pages / 1024;
ba56e91c
SR
3225 if (batch * PAGE_SIZE > 512 * 1024)
3226 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3227 batch /= 4; /* We effectively *= 4 below */
3228 if (batch < 1)
3229 batch = 1;
3230
3231 /*
0ceaacc9
NP
3232 * Clamp the batch to a 2^n - 1 value. Having a power
3233 * of 2 value was found to be more likely to have
3234 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3235 *
0ceaacc9
NP
3236 * For example if 2 tasks are alternately allocating
3237 * batches of pages, one task can end up with a lot
3238 * of pages of one half of the possible page colors
3239 * and the other with pages of the other colors.
e7c8d5c9 3240 */
9155203a 3241 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3242
e7c8d5c9 3243 return batch;
3a6be87f
DH
3244
3245#else
3246 /* The deferral and batching of frees should be suppressed under NOMMU
3247 * conditions.
3248 *
3249 * The problem is that NOMMU needs to be able to allocate large chunks
3250 * of contiguous memory as there's no hardware page translation to
3251 * assemble apparent contiguous memory from discontiguous pages.
3252 *
3253 * Queueing large contiguous runs of pages for batching, however,
3254 * causes the pages to actually be freed in smaller chunks. As there
3255 * can be a significant delay between the individual batches being
3256 * recycled, this leads to the once large chunks of space being
3257 * fragmented and becoming unavailable for high-order allocations.
3258 */
3259 return 0;
3260#endif
e7c8d5c9
CL
3261}
3262
b69a7288 3263static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3264{
3265 struct per_cpu_pages *pcp;
5f8dcc21 3266 int migratetype;
2caaad41 3267
1c6fe946
MD
3268 memset(p, 0, sizeof(*p));
3269
3dfa5721 3270 pcp = &p->pcp;
2caaad41 3271 pcp->count = 0;
2caaad41
CL
3272 pcp->high = 6 * batch;
3273 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3274 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3275 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3276}
3277
8ad4b1fb
RS
3278/*
3279 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3280 * to the value high for the pageset p.
3281 */
3282
3283static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3284 unsigned long high)
3285{
3286 struct per_cpu_pages *pcp;
3287
3dfa5721 3288 pcp = &p->pcp;
8ad4b1fb
RS
3289 pcp->high = high;
3290 pcp->batch = max(1UL, high/4);
3291 if ((high/4) > (PAGE_SHIFT * 8))
3292 pcp->batch = PAGE_SHIFT * 8;
3293}
3294
319774e2
WF
3295static __meminit void setup_zone_pageset(struct zone *zone)
3296{
3297 int cpu;
3298
3299 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3300
3301 for_each_possible_cpu(cpu) {
3302 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3303
3304 setup_pageset(pcp, zone_batchsize(zone));
3305
3306 if (percpu_pagelist_fraction)
3307 setup_pagelist_highmark(pcp,
3308 (zone->present_pages /
3309 percpu_pagelist_fraction));
3310 }
3311}
3312
2caaad41 3313/*
99dcc3e5
CL
3314 * Allocate per cpu pagesets and initialize them.
3315 * Before this call only boot pagesets were available.
e7c8d5c9 3316 */
99dcc3e5 3317void __init setup_per_cpu_pageset(void)
e7c8d5c9 3318{
99dcc3e5 3319 struct zone *zone;
e7c8d5c9 3320
319774e2
WF
3321 for_each_populated_zone(zone)
3322 setup_zone_pageset(zone);
e7c8d5c9
CL
3323}
3324
577a32f6 3325static noinline __init_refok
cca448fe 3326int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3327{
3328 int i;
3329 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3330 size_t alloc_size;
ed8ece2e
DH
3331
3332 /*
3333 * The per-page waitqueue mechanism uses hashed waitqueues
3334 * per zone.
3335 */
02b694de
YG
3336 zone->wait_table_hash_nr_entries =
3337 wait_table_hash_nr_entries(zone_size_pages);
3338 zone->wait_table_bits =
3339 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3340 alloc_size = zone->wait_table_hash_nr_entries
3341 * sizeof(wait_queue_head_t);
3342
cd94b9db 3343 if (!slab_is_available()) {
cca448fe
YG
3344 zone->wait_table = (wait_queue_head_t *)
3345 alloc_bootmem_node(pgdat, alloc_size);
3346 } else {
3347 /*
3348 * This case means that a zone whose size was 0 gets new memory
3349 * via memory hot-add.
3350 * But it may be the case that a new node was hot-added. In
3351 * this case vmalloc() will not be able to use this new node's
3352 * memory - this wait_table must be initialized to use this new
3353 * node itself as well.
3354 * To use this new node's memory, further consideration will be
3355 * necessary.
3356 */
8691f3a7 3357 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3358 }
3359 if (!zone->wait_table)
3360 return -ENOMEM;
ed8ece2e 3361
02b694de 3362 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3363 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3364
3365 return 0;
ed8ece2e
DH
3366}
3367
112067f0
SL
3368static int __zone_pcp_update(void *data)
3369{
3370 struct zone *zone = data;
3371 int cpu;
3372 unsigned long batch = zone_batchsize(zone), flags;
3373
2d30a1f6 3374 for_each_possible_cpu(cpu) {
112067f0
SL
3375 struct per_cpu_pageset *pset;
3376 struct per_cpu_pages *pcp;
3377
99dcc3e5 3378 pset = per_cpu_ptr(zone->pageset, cpu);
112067f0
SL
3379 pcp = &pset->pcp;
3380
3381 local_irq_save(flags);
5f8dcc21 3382 free_pcppages_bulk(zone, pcp->count, pcp);
112067f0
SL
3383 setup_pageset(pset, batch);
3384 local_irq_restore(flags);
3385 }
3386 return 0;
3387}
3388
3389void zone_pcp_update(struct zone *zone)
3390{
3391 stop_machine(__zone_pcp_update, zone, NULL);
3392}
3393
c09b4240 3394static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 3395{
99dcc3e5
CL
3396 /*
3397 * per cpu subsystem is not up at this point. The following code
3398 * relies on the ability of the linker to provide the
3399 * offset of a (static) per cpu variable into the per cpu area.
3400 */
3401 zone->pageset = &boot_pageset;
ed8ece2e 3402
f5335c0f 3403 if (zone->present_pages)
99dcc3e5
CL
3404 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3405 zone->name, zone->present_pages,
3406 zone_batchsize(zone));
ed8ece2e
DH
3407}
3408
718127cc
YG
3409__meminit int init_currently_empty_zone(struct zone *zone,
3410 unsigned long zone_start_pfn,
a2f3aa02
DH
3411 unsigned long size,
3412 enum memmap_context context)
ed8ece2e
DH
3413{
3414 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3415 int ret;
3416 ret = zone_wait_table_init(zone, size);
3417 if (ret)
3418 return ret;
ed8ece2e
DH
3419 pgdat->nr_zones = zone_idx(zone) + 1;
3420
ed8ece2e
DH
3421 zone->zone_start_pfn = zone_start_pfn;
3422
708614e6
MG
3423 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3424 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3425 pgdat->node_id,
3426 (unsigned long)zone_idx(zone),
3427 zone_start_pfn, (zone_start_pfn + size));
3428
1e548deb 3429 zone_init_free_lists(zone);
718127cc
YG
3430
3431 return 0;
ed8ece2e
DH
3432}
3433
c713216d
MG
3434#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3435/*
3436 * Basic iterator support. Return the first range of PFNs for a node
3437 * Note: nid == MAX_NUMNODES returns first region regardless of node
3438 */
a3142c8e 3439static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
3440{
3441 int i;
3442
3443 for (i = 0; i < nr_nodemap_entries; i++)
3444 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3445 return i;
3446
3447 return -1;
3448}
3449
3450/*
3451 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 3452 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 3453 */
a3142c8e 3454static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
3455{
3456 for (index = index + 1; index < nr_nodemap_entries; index++)
3457 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3458 return index;
3459
3460 return -1;
3461}
3462
3463#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3464/*
3465 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3466 * Architectures may implement their own version but if add_active_range()
3467 * was used and there are no special requirements, this is a convenient
3468 * alternative
3469 */
f2dbcfa7 3470int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
3471{
3472 int i;
3473
3474 for (i = 0; i < nr_nodemap_entries; i++) {
3475 unsigned long start_pfn = early_node_map[i].start_pfn;
3476 unsigned long end_pfn = early_node_map[i].end_pfn;
3477
3478 if (start_pfn <= pfn && pfn < end_pfn)
3479 return early_node_map[i].nid;
3480 }
cc2559bc
KH
3481 /* This is a memory hole */
3482 return -1;
c713216d
MG
3483}
3484#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3485
f2dbcfa7
KH
3486int __meminit early_pfn_to_nid(unsigned long pfn)
3487{
cc2559bc
KH
3488 int nid;
3489
3490 nid = __early_pfn_to_nid(pfn);
3491 if (nid >= 0)
3492 return nid;
3493 /* just returns 0 */
3494 return 0;
f2dbcfa7
KH
3495}
3496
cc2559bc
KH
3497#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3498bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3499{
3500 int nid;
3501
3502 nid = __early_pfn_to_nid(pfn);
3503 if (nid >= 0 && nid != node)
3504 return false;
3505 return true;
3506}
3507#endif
f2dbcfa7 3508
c713216d
MG
3509/* Basic iterator support to walk early_node_map[] */
3510#define for_each_active_range_index_in_nid(i, nid) \
3511 for (i = first_active_region_index_in_nid(nid); i != -1; \
3512 i = next_active_region_index_in_nid(i, nid))
3513
3514/**
3515 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3516 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3517 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3518 *
3519 * If an architecture guarantees that all ranges registered with
3520 * add_active_ranges() contain no holes and may be freed, this
3521 * this function may be used instead of calling free_bootmem() manually.
3522 */
3523void __init free_bootmem_with_active_regions(int nid,
3524 unsigned long max_low_pfn)
3525{
3526 int i;
3527
3528 for_each_active_range_index_in_nid(i, nid) {
3529 unsigned long size_pages = 0;
3530 unsigned long end_pfn = early_node_map[i].end_pfn;
3531
3532 if (early_node_map[i].start_pfn >= max_low_pfn)
3533 continue;
3534
3535 if (end_pfn > max_low_pfn)
3536 end_pfn = max_low_pfn;
3537
3538 size_pages = end_pfn - early_node_map[i].start_pfn;
3539 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3540 PFN_PHYS(early_node_map[i].start_pfn),
3541 size_pages << PAGE_SHIFT);
3542 }
3543}
3544
08677214
YL
3545int __init add_from_early_node_map(struct range *range, int az,
3546 int nr_range, int nid)
3547{
3548 int i;
3549 u64 start, end;
3550
3551 /* need to go over early_node_map to find out good range for node */
3552 for_each_active_range_index_in_nid(i, nid) {
3553 start = early_node_map[i].start_pfn;
3554 end = early_node_map[i].end_pfn;
3555 nr_range = add_range(range, az, nr_range, start, end);
3556 }
3557 return nr_range;
3558}
3559
2ee78f7b 3560#ifdef CONFIG_NO_BOOTMEM
08677214
YL
3561void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3562 u64 goal, u64 limit)
3563{
3564 int i;
3565 void *ptr;
3566
3567 /* need to go over early_node_map to find out good range for node */
3568 for_each_active_range_index_in_nid(i, nid) {
3569 u64 addr;
3570 u64 ei_start, ei_last;
3571
3572 ei_last = early_node_map[i].end_pfn;
3573 ei_last <<= PAGE_SHIFT;
3574 ei_start = early_node_map[i].start_pfn;
3575 ei_start <<= PAGE_SHIFT;
3576 addr = find_early_area(ei_start, ei_last,
3577 goal, limit, size, align);
3578
3579 if (addr == -1ULL)
3580 continue;
3581
3582#if 0
3583 printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
3584 nid,
3585 ei_start, ei_last, goal, limit, size,
3586 align, addr);
3587#endif
3588
3589 ptr = phys_to_virt(addr);
3590 memset(ptr, 0, size);
3591 reserve_early_without_check(addr, addr + size, "BOOTMEM");
3592 return ptr;
3593 }
3594
3595 return NULL;
3596}
2ee78f7b 3597#endif
08677214
YL
3598
3599
b5bc6c0e
YL
3600void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3601{
3602 int i;
d52d53b8 3603 int ret;
b5bc6c0e 3604
d52d53b8
YL
3605 for_each_active_range_index_in_nid(i, nid) {
3606 ret = work_fn(early_node_map[i].start_pfn,
3607 early_node_map[i].end_pfn, data);
3608 if (ret)
3609 break;
3610 }
b5bc6c0e 3611}
c713216d
MG
3612/**
3613 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3614 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3615 *
3616 * If an architecture guarantees that all ranges registered with
3617 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3618 * function may be used instead of calling memory_present() manually.
c713216d
MG
3619 */
3620void __init sparse_memory_present_with_active_regions(int nid)
3621{
3622 int i;
3623
3624 for_each_active_range_index_in_nid(i, nid)
3625 memory_present(early_node_map[i].nid,
3626 early_node_map[i].start_pfn,
3627 early_node_map[i].end_pfn);
3628}
3629
3630/**
3631 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3632 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3633 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3634 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3635 *
3636 * It returns the start and end page frame of a node based on information
3637 * provided by an arch calling add_active_range(). If called for a node
3638 * with no available memory, a warning is printed and the start and end
88ca3b94 3639 * PFNs will be 0.
c713216d 3640 */
a3142c8e 3641void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3642 unsigned long *start_pfn, unsigned long *end_pfn)
3643{
3644 int i;
3645 *start_pfn = -1UL;
3646 *end_pfn = 0;
3647
3648 for_each_active_range_index_in_nid(i, nid) {
3649 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3650 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3651 }
3652
633c0666 3653 if (*start_pfn == -1UL)
c713216d 3654 *start_pfn = 0;
c713216d
MG
3655}
3656
2a1e274a
MG
3657/*
3658 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3659 * assumption is made that zones within a node are ordered in monotonic
3660 * increasing memory addresses so that the "highest" populated zone is used
3661 */
b69a7288 3662static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3663{
3664 int zone_index;
3665 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3666 if (zone_index == ZONE_MOVABLE)
3667 continue;
3668
3669 if (arch_zone_highest_possible_pfn[zone_index] >
3670 arch_zone_lowest_possible_pfn[zone_index])
3671 break;
3672 }
3673
3674 VM_BUG_ON(zone_index == -1);
3675 movable_zone = zone_index;
3676}
3677
3678/*
3679 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3680 * because it is sized independant of architecture. Unlike the other zones,
3681 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3682 * in each node depending on the size of each node and how evenly kernelcore
3683 * is distributed. This helper function adjusts the zone ranges
3684 * provided by the architecture for a given node by using the end of the
3685 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3686 * zones within a node are in order of monotonic increases memory addresses
3687 */
b69a7288 3688static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3689 unsigned long zone_type,
3690 unsigned long node_start_pfn,
3691 unsigned long node_end_pfn,
3692 unsigned long *zone_start_pfn,
3693 unsigned long *zone_end_pfn)
3694{
3695 /* Only adjust if ZONE_MOVABLE is on this node */
3696 if (zone_movable_pfn[nid]) {
3697 /* Size ZONE_MOVABLE */
3698 if (zone_type == ZONE_MOVABLE) {
3699 *zone_start_pfn = zone_movable_pfn[nid];
3700 *zone_end_pfn = min(node_end_pfn,
3701 arch_zone_highest_possible_pfn[movable_zone]);
3702
3703 /* Adjust for ZONE_MOVABLE starting within this range */
3704 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3705 *zone_end_pfn > zone_movable_pfn[nid]) {
3706 *zone_end_pfn = zone_movable_pfn[nid];
3707
3708 /* Check if this whole range is within ZONE_MOVABLE */
3709 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3710 *zone_start_pfn = *zone_end_pfn;
3711 }
3712}
3713
c713216d
MG
3714/*
3715 * Return the number of pages a zone spans in a node, including holes
3716 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3717 */
6ea6e688 3718static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3719 unsigned long zone_type,
3720 unsigned long *ignored)
3721{
3722 unsigned long node_start_pfn, node_end_pfn;
3723 unsigned long zone_start_pfn, zone_end_pfn;
3724
3725 /* Get the start and end of the node and zone */
3726 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3727 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3728 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3729 adjust_zone_range_for_zone_movable(nid, zone_type,
3730 node_start_pfn, node_end_pfn,
3731 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3732
3733 /* Check that this node has pages within the zone's required range */
3734 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3735 return 0;
3736
3737 /* Move the zone boundaries inside the node if necessary */
3738 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3739 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3740
3741 /* Return the spanned pages */
3742 return zone_end_pfn - zone_start_pfn;
3743}
3744
3745/*
3746 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3747 * then all holes in the requested range will be accounted for.
c713216d 3748 */
32996250 3749unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3750 unsigned long range_start_pfn,
3751 unsigned long range_end_pfn)
3752{
3753 int i = 0;
3754 unsigned long prev_end_pfn = 0, hole_pages = 0;
3755 unsigned long start_pfn;
3756
3757 /* Find the end_pfn of the first active range of pfns in the node */
3758 i = first_active_region_index_in_nid(nid);
3759 if (i == -1)
3760 return 0;
3761
b5445f95
MG
3762 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3763
9c7cd687
MG
3764 /* Account for ranges before physical memory on this node */
3765 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3766 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3767
3768 /* Find all holes for the zone within the node */
3769 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3770
3771 /* No need to continue if prev_end_pfn is outside the zone */
3772 if (prev_end_pfn >= range_end_pfn)
3773 break;
3774
3775 /* Make sure the end of the zone is not within the hole */
3776 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3777 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3778
3779 /* Update the hole size cound and move on */
3780 if (start_pfn > range_start_pfn) {
3781 BUG_ON(prev_end_pfn > start_pfn);
3782 hole_pages += start_pfn - prev_end_pfn;
3783 }
3784 prev_end_pfn = early_node_map[i].end_pfn;
3785 }
3786
9c7cd687
MG
3787 /* Account for ranges past physical memory on this node */
3788 if (range_end_pfn > prev_end_pfn)
0c6cb974 3789 hole_pages += range_end_pfn -
9c7cd687
MG
3790 max(range_start_pfn, prev_end_pfn);
3791
c713216d
MG
3792 return hole_pages;
3793}
3794
3795/**
3796 * absent_pages_in_range - Return number of page frames in holes within a range
3797 * @start_pfn: The start PFN to start searching for holes
3798 * @end_pfn: The end PFN to stop searching for holes
3799 *
88ca3b94 3800 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3801 */
3802unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3803 unsigned long end_pfn)
3804{
3805 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3806}
3807
3808/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3809static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3810 unsigned long zone_type,
3811 unsigned long *ignored)
3812{
9c7cd687
MG
3813 unsigned long node_start_pfn, node_end_pfn;
3814 unsigned long zone_start_pfn, zone_end_pfn;
3815
3816 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3817 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3818 node_start_pfn);
3819 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3820 node_end_pfn);
3821
2a1e274a
MG
3822 adjust_zone_range_for_zone_movable(nid, zone_type,
3823 node_start_pfn, node_end_pfn,
3824 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3825 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3826}
0e0b864e 3827
c713216d 3828#else
6ea6e688 3829static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3830 unsigned long zone_type,
3831 unsigned long *zones_size)
3832{
3833 return zones_size[zone_type];
3834}
3835
6ea6e688 3836static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3837 unsigned long zone_type,
3838 unsigned long *zholes_size)
3839{
3840 if (!zholes_size)
3841 return 0;
3842
3843 return zholes_size[zone_type];
3844}
0e0b864e 3845
c713216d
MG
3846#endif
3847
a3142c8e 3848static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3849 unsigned long *zones_size, unsigned long *zholes_size)
3850{
3851 unsigned long realtotalpages, totalpages = 0;
3852 enum zone_type i;
3853
3854 for (i = 0; i < MAX_NR_ZONES; i++)
3855 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3856 zones_size);
3857 pgdat->node_spanned_pages = totalpages;
3858
3859 realtotalpages = totalpages;
3860 for (i = 0; i < MAX_NR_ZONES; i++)
3861 realtotalpages -=
3862 zone_absent_pages_in_node(pgdat->node_id, i,
3863 zholes_size);
3864 pgdat->node_present_pages = realtotalpages;
3865 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3866 realtotalpages);
3867}
3868
835c134e
MG
3869#ifndef CONFIG_SPARSEMEM
3870/*
3871 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
3872 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3873 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
3874 * round what is now in bits to nearest long in bits, then return it in
3875 * bytes.
3876 */
3877static unsigned long __init usemap_size(unsigned long zonesize)
3878{
3879 unsigned long usemapsize;
3880
d9c23400
MG
3881 usemapsize = roundup(zonesize, pageblock_nr_pages);
3882 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
3883 usemapsize *= NR_PAGEBLOCK_BITS;
3884 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3885
3886 return usemapsize / 8;
3887}
3888
3889static void __init setup_usemap(struct pglist_data *pgdat,
3890 struct zone *zone, unsigned long zonesize)
3891{
3892 unsigned long usemapsize = usemap_size(zonesize);
3893 zone->pageblock_flags = NULL;
58a01a45 3894 if (usemapsize)
835c134e 3895 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
835c134e
MG
3896}
3897#else
3898static void inline setup_usemap(struct pglist_data *pgdat,
3899 struct zone *zone, unsigned long zonesize) {}
3900#endif /* CONFIG_SPARSEMEM */
3901
d9c23400 3902#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
3903
3904/* Return a sensible default order for the pageblock size. */
3905static inline int pageblock_default_order(void)
3906{
3907 if (HPAGE_SHIFT > PAGE_SHIFT)
3908 return HUGETLB_PAGE_ORDER;
3909
3910 return MAX_ORDER-1;
3911}
3912
d9c23400
MG
3913/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3914static inline void __init set_pageblock_order(unsigned int order)
3915{
3916 /* Check that pageblock_nr_pages has not already been setup */
3917 if (pageblock_order)
3918 return;
3919
3920 /*
3921 * Assume the largest contiguous order of interest is a huge page.
3922 * This value may be variable depending on boot parameters on IA64
3923 */
3924 pageblock_order = order;
3925}
3926#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3927
ba72cb8c
MG
3928/*
3929 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3930 * and pageblock_default_order() are unused as pageblock_order is set
3931 * at compile-time. See include/linux/pageblock-flags.h for the values of
3932 * pageblock_order based on the kernel config
3933 */
3934static inline int pageblock_default_order(unsigned int order)
3935{
3936 return MAX_ORDER-1;
3937}
d9c23400
MG
3938#define set_pageblock_order(x) do {} while (0)
3939
3940#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3941
1da177e4
LT
3942/*
3943 * Set up the zone data structures:
3944 * - mark all pages reserved
3945 * - mark all memory queues empty
3946 * - clear the memory bitmaps
3947 */
b5a0e011 3948static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
3949 unsigned long *zones_size, unsigned long *zholes_size)
3950{
2f1b6248 3951 enum zone_type j;
ed8ece2e 3952 int nid = pgdat->node_id;
1da177e4 3953 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 3954 int ret;
1da177e4 3955
208d54e5 3956 pgdat_resize_init(pgdat);
1da177e4
LT
3957 pgdat->nr_zones = 0;
3958 init_waitqueue_head(&pgdat->kswapd_wait);
3959 pgdat->kswapd_max_order = 0;
52d4b9ac 3960 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
3961
3962 for (j = 0; j < MAX_NR_ZONES; j++) {
3963 struct zone *zone = pgdat->node_zones + j;
0e0b864e 3964 unsigned long size, realsize, memmap_pages;
b69408e8 3965 enum lru_list l;
1da177e4 3966
c713216d
MG
3967 size = zone_spanned_pages_in_node(nid, j, zones_size);
3968 realsize = size - zone_absent_pages_in_node(nid, j,
3969 zholes_size);
1da177e4 3970
0e0b864e
MG
3971 /*
3972 * Adjust realsize so that it accounts for how much memory
3973 * is used by this zone for memmap. This affects the watermark
3974 * and per-cpu initialisations
3975 */
f7232154
JW
3976 memmap_pages =
3977 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
3978 if (realsize >= memmap_pages) {
3979 realsize -= memmap_pages;
5594c8c8
YL
3980 if (memmap_pages)
3981 printk(KERN_DEBUG
3982 " %s zone: %lu pages used for memmap\n",
3983 zone_names[j], memmap_pages);
0e0b864e
MG
3984 } else
3985 printk(KERN_WARNING
3986 " %s zone: %lu pages exceeds realsize %lu\n",
3987 zone_names[j], memmap_pages, realsize);
3988
6267276f
CL
3989 /* Account for reserved pages */
3990 if (j == 0 && realsize > dma_reserve) {
0e0b864e 3991 realsize -= dma_reserve;
d903ef9f 3992 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 3993 zone_names[0], dma_reserve);
0e0b864e
MG
3994 }
3995
98d2b0eb 3996 if (!is_highmem_idx(j))
1da177e4
LT
3997 nr_kernel_pages += realsize;
3998 nr_all_pages += realsize;
3999
4000 zone->spanned_pages = size;
4001 zone->present_pages = realsize;
9614634f 4002#ifdef CONFIG_NUMA
d5f541ed 4003 zone->node = nid;
8417bba4 4004 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4005 / 100;
0ff38490 4006 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4007#endif
1da177e4
LT
4008 zone->name = zone_names[j];
4009 spin_lock_init(&zone->lock);
4010 spin_lock_init(&zone->lru_lock);
bdc8cb98 4011 zone_seqlock_init(zone);
1da177e4 4012 zone->zone_pgdat = pgdat;
1da177e4 4013
3bb1a852 4014 zone->prev_priority = DEF_PRIORITY;
1da177e4 4015
ed8ece2e 4016 zone_pcp_init(zone);
b69408e8
CL
4017 for_each_lru(l) {
4018 INIT_LIST_HEAD(&zone->lru[l].list);
f8629631 4019 zone->reclaim_stat.nr_saved_scan[l] = 0;
b69408e8 4020 }
6e901571
KM
4021 zone->reclaim_stat.recent_rotated[0] = 0;
4022 zone->reclaim_stat.recent_rotated[1] = 0;
4023 zone->reclaim_stat.recent_scanned[0] = 0;
4024 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 4025 zap_zone_vm_stats(zone);
e815af95 4026 zone->flags = 0;
1da177e4
LT
4027 if (!size)
4028 continue;
4029
ba72cb8c 4030 set_pageblock_order(pageblock_default_order());
835c134e 4031 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4032 ret = init_currently_empty_zone(zone, zone_start_pfn,
4033 size, MEMMAP_EARLY);
718127cc 4034 BUG_ON(ret);
76cdd58e 4035 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4036 zone_start_pfn += size;
1da177e4
LT
4037 }
4038}
4039
577a32f6 4040static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4041{
1da177e4
LT
4042 /* Skip empty nodes */
4043 if (!pgdat->node_spanned_pages)
4044 return;
4045
d41dee36 4046#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4047 /* ia64 gets its own node_mem_map, before this, without bootmem */
4048 if (!pgdat->node_mem_map) {
e984bb43 4049 unsigned long size, start, end;
d41dee36
AW
4050 struct page *map;
4051
e984bb43
BP
4052 /*
4053 * The zone's endpoints aren't required to be MAX_ORDER
4054 * aligned but the node_mem_map endpoints must be in order
4055 * for the buddy allocator to function correctly.
4056 */
4057 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4058 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4059 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4060 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4061 map = alloc_remap(pgdat->node_id, size);
4062 if (!map)
4063 map = alloc_bootmem_node(pgdat, size);
e984bb43 4064 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4065 }
12d810c1 4066#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4067 /*
4068 * With no DISCONTIG, the global mem_map is just set as node 0's
4069 */
c713216d 4070 if (pgdat == NODE_DATA(0)) {
1da177e4 4071 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
4072#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4073 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4074 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
4075#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4076 }
1da177e4 4077#endif
d41dee36 4078#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4079}
4080
9109fb7b
JW
4081void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4082 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4083{
9109fb7b
JW
4084 pg_data_t *pgdat = NODE_DATA(nid);
4085
1da177e4
LT
4086 pgdat->node_id = nid;
4087 pgdat->node_start_pfn = node_start_pfn;
c713216d 4088 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4089
4090 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4091#ifdef CONFIG_FLAT_NODE_MEM_MAP
4092 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4093 nid, (unsigned long)pgdat,
4094 (unsigned long)pgdat->node_mem_map);
4095#endif
1da177e4
LT
4096
4097 free_area_init_core(pgdat, zones_size, zholes_size);
4098}
4099
c713216d 4100#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
4101
4102#if MAX_NUMNODES > 1
4103/*
4104 * Figure out the number of possible node ids.
4105 */
4106static void __init setup_nr_node_ids(void)
4107{
4108 unsigned int node;
4109 unsigned int highest = 0;
4110
4111 for_each_node_mask(node, node_possible_map)
4112 highest = node;
4113 nr_node_ids = highest + 1;
4114}
4115#else
4116static inline void setup_nr_node_ids(void)
4117{
4118}
4119#endif
4120
c713216d
MG
4121/**
4122 * add_active_range - Register a range of PFNs backed by physical memory
4123 * @nid: The node ID the range resides on
4124 * @start_pfn: The start PFN of the available physical memory
4125 * @end_pfn: The end PFN of the available physical memory
4126 *
4127 * These ranges are stored in an early_node_map[] and later used by
4128 * free_area_init_nodes() to calculate zone sizes and holes. If the
4129 * range spans a memory hole, it is up to the architecture to ensure
4130 * the memory is not freed by the bootmem allocator. If possible
4131 * the range being registered will be merged with existing ranges.
4132 */
4133void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4134 unsigned long end_pfn)
4135{
4136 int i;
4137
6b74ab97
MG
4138 mminit_dprintk(MMINIT_TRACE, "memory_register",
4139 "Entering add_active_range(%d, %#lx, %#lx) "
4140 "%d entries of %d used\n",
4141 nid, start_pfn, end_pfn,
4142 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 4143
2dbb51c4
MG
4144 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4145
c713216d
MG
4146 /* Merge with existing active regions if possible */
4147 for (i = 0; i < nr_nodemap_entries; i++) {
4148 if (early_node_map[i].nid != nid)
4149 continue;
4150
4151 /* Skip if an existing region covers this new one */
4152 if (start_pfn >= early_node_map[i].start_pfn &&
4153 end_pfn <= early_node_map[i].end_pfn)
4154 return;
4155
4156 /* Merge forward if suitable */
4157 if (start_pfn <= early_node_map[i].end_pfn &&
4158 end_pfn > early_node_map[i].end_pfn) {
4159 early_node_map[i].end_pfn = end_pfn;
4160 return;
4161 }
4162
4163 /* Merge backward if suitable */
d2dbe08d 4164 if (start_pfn < early_node_map[i].start_pfn &&
c713216d
MG
4165 end_pfn >= early_node_map[i].start_pfn) {
4166 early_node_map[i].start_pfn = start_pfn;
4167 return;
4168 }
4169 }
4170
4171 /* Check that early_node_map is large enough */
4172 if (i >= MAX_ACTIVE_REGIONS) {
4173 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4174 MAX_ACTIVE_REGIONS);
4175 return;
4176 }
4177
4178 early_node_map[i].nid = nid;
4179 early_node_map[i].start_pfn = start_pfn;
4180 early_node_map[i].end_pfn = end_pfn;
4181 nr_nodemap_entries = i + 1;
4182}
4183
4184/**
cc1050ba 4185 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 4186 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
4187 * @start_pfn: The new PFN of the range
4188 * @end_pfn: The new PFN of the range
c713216d
MG
4189 *
4190 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
4191 * The map is kept near the end physical page range that has already been
4192 * registered. This function allows an arch to shrink an existing registered
4193 * range.
c713216d 4194 */
cc1050ba
YL
4195void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4196 unsigned long end_pfn)
c713216d 4197{
cc1a9d86
YL
4198 int i, j;
4199 int removed = 0;
c713216d 4200
cc1050ba
YL
4201 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4202 nid, start_pfn, end_pfn);
4203
c713216d 4204 /* Find the old active region end and shrink */
cc1a9d86 4205 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
4206 if (early_node_map[i].start_pfn >= start_pfn &&
4207 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 4208 /* clear it */
cc1050ba 4209 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
4210 early_node_map[i].end_pfn = 0;
4211 removed = 1;
4212 continue;
4213 }
cc1050ba
YL
4214 if (early_node_map[i].start_pfn < start_pfn &&
4215 early_node_map[i].end_pfn > start_pfn) {
4216 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4217 early_node_map[i].end_pfn = start_pfn;
4218 if (temp_end_pfn > end_pfn)
4219 add_active_range(nid, end_pfn, temp_end_pfn);
4220 continue;
4221 }
4222 if (early_node_map[i].start_pfn >= start_pfn &&
4223 early_node_map[i].end_pfn > end_pfn &&
4224 early_node_map[i].start_pfn < end_pfn) {
4225 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 4226 continue;
c713216d 4227 }
cc1a9d86
YL
4228 }
4229
4230 if (!removed)
4231 return;
4232
4233 /* remove the blank ones */
4234 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4235 if (early_node_map[i].nid != nid)
4236 continue;
4237 if (early_node_map[i].end_pfn)
4238 continue;
4239 /* we found it, get rid of it */
4240 for (j = i; j < nr_nodemap_entries - 1; j++)
4241 memcpy(&early_node_map[j], &early_node_map[j+1],
4242 sizeof(early_node_map[j]));
4243 j = nr_nodemap_entries - 1;
4244 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4245 nr_nodemap_entries--;
4246 }
c713216d
MG
4247}
4248
4249/**
4250 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 4251 *
c713216d
MG
4252 * During discovery, it may be found that a table like SRAT is invalid
4253 * and an alternative discovery method must be used. This function removes
4254 * all currently registered regions.
4255 */
88ca3b94 4256void __init remove_all_active_ranges(void)
c713216d
MG
4257{
4258 memset(early_node_map, 0, sizeof(early_node_map));
4259 nr_nodemap_entries = 0;
4260}
4261
4262/* Compare two active node_active_regions */
4263static int __init cmp_node_active_region(const void *a, const void *b)
4264{
4265 struct node_active_region *arange = (struct node_active_region *)a;
4266 struct node_active_region *brange = (struct node_active_region *)b;
4267
4268 /* Done this way to avoid overflows */
4269 if (arange->start_pfn > brange->start_pfn)
4270 return 1;
4271 if (arange->start_pfn < brange->start_pfn)
4272 return -1;
4273
4274 return 0;
4275}
4276
4277/* sort the node_map by start_pfn */
32996250 4278void __init sort_node_map(void)
c713216d
MG
4279{
4280 sort(early_node_map, (size_t)nr_nodemap_entries,
4281 sizeof(struct node_active_region),
4282 cmp_node_active_region, NULL);
4283}
4284
a6af2bc3 4285/* Find the lowest pfn for a node */
b69a7288 4286static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
4287{
4288 int i;
a6af2bc3 4289 unsigned long min_pfn = ULONG_MAX;
1abbfb41 4290
c713216d
MG
4291 /* Assuming a sorted map, the first range found has the starting pfn */
4292 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 4293 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 4294
a6af2bc3
MG
4295 if (min_pfn == ULONG_MAX) {
4296 printk(KERN_WARNING
2bc0d261 4297 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4298 return 0;
4299 }
4300
4301 return min_pfn;
c713216d
MG
4302}
4303
4304/**
4305 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4306 *
4307 * It returns the minimum PFN based on information provided via
88ca3b94 4308 * add_active_range().
c713216d
MG
4309 */
4310unsigned long __init find_min_pfn_with_active_regions(void)
4311{
4312 return find_min_pfn_for_node(MAX_NUMNODES);
4313}
4314
37b07e41
LS
4315/*
4316 * early_calculate_totalpages()
4317 * Sum pages in active regions for movable zone.
4318 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4319 */
484f51f8 4320static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
4321{
4322 int i;
4323 unsigned long totalpages = 0;
4324
37b07e41
LS
4325 for (i = 0; i < nr_nodemap_entries; i++) {
4326 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 4327 early_node_map[i].start_pfn;
37b07e41
LS
4328 totalpages += pages;
4329 if (pages)
4330 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4331 }
4332 return totalpages;
7e63efef
MG
4333}
4334
2a1e274a
MG
4335/*
4336 * Find the PFN the Movable zone begins in each node. Kernel memory
4337 * is spread evenly between nodes as long as the nodes have enough
4338 * memory. When they don't, some nodes will have more kernelcore than
4339 * others
4340 */
b69a7288 4341static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
4342{
4343 int i, nid;
4344 unsigned long usable_startpfn;
4345 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4346 /* save the state before borrow the nodemask */
4347 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4348 unsigned long totalpages = early_calculate_totalpages();
4349 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4350
7e63efef
MG
4351 /*
4352 * If movablecore was specified, calculate what size of
4353 * kernelcore that corresponds so that memory usable for
4354 * any allocation type is evenly spread. If both kernelcore
4355 * and movablecore are specified, then the value of kernelcore
4356 * will be used for required_kernelcore if it's greater than
4357 * what movablecore would have allowed.
4358 */
4359 if (required_movablecore) {
7e63efef
MG
4360 unsigned long corepages;
4361
4362 /*
4363 * Round-up so that ZONE_MOVABLE is at least as large as what
4364 * was requested by the user
4365 */
4366 required_movablecore =
4367 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4368 corepages = totalpages - required_movablecore;
4369
4370 required_kernelcore = max(required_kernelcore, corepages);
4371 }
4372
2a1e274a
MG
4373 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4374 if (!required_kernelcore)
66918dcd 4375 goto out;
2a1e274a
MG
4376
4377 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4378 find_usable_zone_for_movable();
4379 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4380
4381restart:
4382 /* Spread kernelcore memory as evenly as possible throughout nodes */
4383 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4384 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
4385 /*
4386 * Recalculate kernelcore_node if the division per node
4387 * now exceeds what is necessary to satisfy the requested
4388 * amount of memory for the kernel
4389 */
4390 if (required_kernelcore < kernelcore_node)
4391 kernelcore_node = required_kernelcore / usable_nodes;
4392
4393 /*
4394 * As the map is walked, we track how much memory is usable
4395 * by the kernel using kernelcore_remaining. When it is
4396 * 0, the rest of the node is usable by ZONE_MOVABLE
4397 */
4398 kernelcore_remaining = kernelcore_node;
4399
4400 /* Go through each range of PFNs within this node */
4401 for_each_active_range_index_in_nid(i, nid) {
4402 unsigned long start_pfn, end_pfn;
4403 unsigned long size_pages;
4404
4405 start_pfn = max(early_node_map[i].start_pfn,
4406 zone_movable_pfn[nid]);
4407 end_pfn = early_node_map[i].end_pfn;
4408 if (start_pfn >= end_pfn)
4409 continue;
4410
4411 /* Account for what is only usable for kernelcore */
4412 if (start_pfn < usable_startpfn) {
4413 unsigned long kernel_pages;
4414 kernel_pages = min(end_pfn, usable_startpfn)
4415 - start_pfn;
4416
4417 kernelcore_remaining -= min(kernel_pages,
4418 kernelcore_remaining);
4419 required_kernelcore -= min(kernel_pages,
4420 required_kernelcore);
4421
4422 /* Continue if range is now fully accounted */
4423 if (end_pfn <= usable_startpfn) {
4424
4425 /*
4426 * Push zone_movable_pfn to the end so
4427 * that if we have to rebalance
4428 * kernelcore across nodes, we will
4429 * not double account here
4430 */
4431 zone_movable_pfn[nid] = end_pfn;
4432 continue;
4433 }
4434 start_pfn = usable_startpfn;
4435 }
4436
4437 /*
4438 * The usable PFN range for ZONE_MOVABLE is from
4439 * start_pfn->end_pfn. Calculate size_pages as the
4440 * number of pages used as kernelcore
4441 */
4442 size_pages = end_pfn - start_pfn;
4443 if (size_pages > kernelcore_remaining)
4444 size_pages = kernelcore_remaining;
4445 zone_movable_pfn[nid] = start_pfn + size_pages;
4446
4447 /*
4448 * Some kernelcore has been met, update counts and
4449 * break if the kernelcore for this node has been
4450 * satisified
4451 */
4452 required_kernelcore -= min(required_kernelcore,
4453 size_pages);
4454 kernelcore_remaining -= size_pages;
4455 if (!kernelcore_remaining)
4456 break;
4457 }
4458 }
4459
4460 /*
4461 * If there is still required_kernelcore, we do another pass with one
4462 * less node in the count. This will push zone_movable_pfn[nid] further
4463 * along on the nodes that still have memory until kernelcore is
4464 * satisified
4465 */
4466 usable_nodes--;
4467 if (usable_nodes && required_kernelcore > usable_nodes)
4468 goto restart;
4469
4470 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4471 for (nid = 0; nid < MAX_NUMNODES; nid++)
4472 zone_movable_pfn[nid] =
4473 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4474
4475out:
4476 /* restore the node_state */
4477 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4478}
4479
37b07e41
LS
4480/* Any regular memory on that node ? */
4481static void check_for_regular_memory(pg_data_t *pgdat)
4482{
4483#ifdef CONFIG_HIGHMEM
4484 enum zone_type zone_type;
4485
4486 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4487 struct zone *zone = &pgdat->node_zones[zone_type];
4488 if (zone->present_pages)
4489 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4490 }
4491#endif
4492}
4493
c713216d
MG
4494/**
4495 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4496 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4497 *
4498 * This will call free_area_init_node() for each active node in the system.
4499 * Using the page ranges provided by add_active_range(), the size of each
4500 * zone in each node and their holes is calculated. If the maximum PFN
4501 * between two adjacent zones match, it is assumed that the zone is empty.
4502 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4503 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4504 * starts where the previous one ended. For example, ZONE_DMA32 starts
4505 * at arch_max_dma_pfn.
4506 */
4507void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4508{
4509 unsigned long nid;
db99100d 4510 int i;
c713216d 4511
a6af2bc3
MG
4512 /* Sort early_node_map as initialisation assumes it is sorted */
4513 sort_node_map();
4514
c713216d
MG
4515 /* Record where the zone boundaries are */
4516 memset(arch_zone_lowest_possible_pfn, 0,
4517 sizeof(arch_zone_lowest_possible_pfn));
4518 memset(arch_zone_highest_possible_pfn, 0,
4519 sizeof(arch_zone_highest_possible_pfn));
4520 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4521 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4522 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4523 if (i == ZONE_MOVABLE)
4524 continue;
c713216d
MG
4525 arch_zone_lowest_possible_pfn[i] =
4526 arch_zone_highest_possible_pfn[i-1];
4527 arch_zone_highest_possible_pfn[i] =
4528 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4529 }
2a1e274a
MG
4530 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4531 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4532
4533 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4534 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4535 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4536
c713216d
MG
4537 /* Print out the zone ranges */
4538 printk("Zone PFN ranges:\n");
2a1e274a
MG
4539 for (i = 0; i < MAX_NR_ZONES; i++) {
4540 if (i == ZONE_MOVABLE)
4541 continue;
72f0ba02
DR
4542 printk(" %-8s ", zone_names[i]);
4543 if (arch_zone_lowest_possible_pfn[i] ==
4544 arch_zone_highest_possible_pfn[i])
4545 printk("empty\n");
4546 else
4547 printk("%0#10lx -> %0#10lx\n",
c713216d
MG
4548 arch_zone_lowest_possible_pfn[i],
4549 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4550 }
4551
4552 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4553 printk("Movable zone start PFN for each node\n");
4554 for (i = 0; i < MAX_NUMNODES; i++) {
4555 if (zone_movable_pfn[i])
4556 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4557 }
c713216d
MG
4558
4559 /* Print out the early_node_map[] */
4560 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4561 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4562 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4563 early_node_map[i].start_pfn,
4564 early_node_map[i].end_pfn);
4565
4566 /* Initialise every node */
708614e6 4567 mminit_verify_pageflags_layout();
8ef82866 4568 setup_nr_node_ids();
c713216d
MG
4569 for_each_online_node(nid) {
4570 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4571 free_area_init_node(nid, NULL,
c713216d 4572 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4573
4574 /* Any memory on that node */
4575 if (pgdat->node_present_pages)
4576 node_set_state(nid, N_HIGH_MEMORY);
4577 check_for_regular_memory(pgdat);
c713216d
MG
4578 }
4579}
2a1e274a 4580
7e63efef 4581static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4582{
4583 unsigned long long coremem;
4584 if (!p)
4585 return -EINVAL;
4586
4587 coremem = memparse(p, &p);
7e63efef 4588 *core = coremem >> PAGE_SHIFT;
2a1e274a 4589
7e63efef 4590 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4591 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4592
4593 return 0;
4594}
ed7ed365 4595
7e63efef
MG
4596/*
4597 * kernelcore=size sets the amount of memory for use for allocations that
4598 * cannot be reclaimed or migrated.
4599 */
4600static int __init cmdline_parse_kernelcore(char *p)
4601{
4602 return cmdline_parse_core(p, &required_kernelcore);
4603}
4604
4605/*
4606 * movablecore=size sets the amount of memory for use for allocations that
4607 * can be reclaimed or migrated.
4608 */
4609static int __init cmdline_parse_movablecore(char *p)
4610{
4611 return cmdline_parse_core(p, &required_movablecore);
4612}
4613
ed7ed365 4614early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4615early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4616
c713216d
MG
4617#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4618
0e0b864e 4619/**
88ca3b94
RD
4620 * set_dma_reserve - set the specified number of pages reserved in the first zone
4621 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4622 *
4623 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4624 * In the DMA zone, a significant percentage may be consumed by kernel image
4625 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4626 * function may optionally be used to account for unfreeable pages in the
4627 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4628 * smaller per-cpu batchsize.
0e0b864e
MG
4629 */
4630void __init set_dma_reserve(unsigned long new_dma_reserve)
4631{
4632 dma_reserve = new_dma_reserve;
4633}
4634
93b7504e 4635#ifndef CONFIG_NEED_MULTIPLE_NODES
08677214
YL
4636struct pglist_data __refdata contig_page_data = {
4637#ifndef CONFIG_NO_BOOTMEM
4638 .bdata = &bootmem_node_data[0]
4639#endif
4640 };
1da177e4 4641EXPORT_SYMBOL(contig_page_data);
93b7504e 4642#endif
1da177e4
LT
4643
4644void __init free_area_init(unsigned long *zones_size)
4645{
9109fb7b 4646 free_area_init_node(0, zones_size,
1da177e4
LT
4647 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4648}
1da177e4 4649
1da177e4
LT
4650static int page_alloc_cpu_notify(struct notifier_block *self,
4651 unsigned long action, void *hcpu)
4652{
4653 int cpu = (unsigned long)hcpu;
1da177e4 4654
8bb78442 4655 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4656 drain_pages(cpu);
4657
4658 /*
4659 * Spill the event counters of the dead processor
4660 * into the current processors event counters.
4661 * This artificially elevates the count of the current
4662 * processor.
4663 */
f8891e5e 4664 vm_events_fold_cpu(cpu);
9f8f2172
CL
4665
4666 /*
4667 * Zero the differential counters of the dead processor
4668 * so that the vm statistics are consistent.
4669 *
4670 * This is only okay since the processor is dead and cannot
4671 * race with what we are doing.
4672 */
2244b95a 4673 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4674 }
4675 return NOTIFY_OK;
4676}
1da177e4
LT
4677
4678void __init page_alloc_init(void)
4679{
4680 hotcpu_notifier(page_alloc_cpu_notify, 0);
4681}
4682
cb45b0e9
HA
4683/*
4684 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4685 * or min_free_kbytes changes.
4686 */
4687static void calculate_totalreserve_pages(void)
4688{
4689 struct pglist_data *pgdat;
4690 unsigned long reserve_pages = 0;
2f6726e5 4691 enum zone_type i, j;
cb45b0e9
HA
4692
4693 for_each_online_pgdat(pgdat) {
4694 for (i = 0; i < MAX_NR_ZONES; i++) {
4695 struct zone *zone = pgdat->node_zones + i;
4696 unsigned long max = 0;
4697
4698 /* Find valid and maximum lowmem_reserve in the zone */
4699 for (j = i; j < MAX_NR_ZONES; j++) {
4700 if (zone->lowmem_reserve[j] > max)
4701 max = zone->lowmem_reserve[j];
4702 }
4703
41858966
MG
4704 /* we treat the high watermark as reserved pages. */
4705 max += high_wmark_pages(zone);
cb45b0e9
HA
4706
4707 if (max > zone->present_pages)
4708 max = zone->present_pages;
4709 reserve_pages += max;
4710 }
4711 }
4712 totalreserve_pages = reserve_pages;
4713}
4714
1da177e4
LT
4715/*
4716 * setup_per_zone_lowmem_reserve - called whenever
4717 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4718 * has a correct pages reserved value, so an adequate number of
4719 * pages are left in the zone after a successful __alloc_pages().
4720 */
4721static void setup_per_zone_lowmem_reserve(void)
4722{
4723 struct pglist_data *pgdat;
2f6726e5 4724 enum zone_type j, idx;
1da177e4 4725
ec936fc5 4726 for_each_online_pgdat(pgdat) {
1da177e4
LT
4727 for (j = 0; j < MAX_NR_ZONES; j++) {
4728 struct zone *zone = pgdat->node_zones + j;
4729 unsigned long present_pages = zone->present_pages;
4730
4731 zone->lowmem_reserve[j] = 0;
4732
2f6726e5
CL
4733 idx = j;
4734 while (idx) {
1da177e4
LT
4735 struct zone *lower_zone;
4736
2f6726e5
CL
4737 idx--;
4738
1da177e4
LT
4739 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4740 sysctl_lowmem_reserve_ratio[idx] = 1;
4741
4742 lower_zone = pgdat->node_zones + idx;
4743 lower_zone->lowmem_reserve[j] = present_pages /
4744 sysctl_lowmem_reserve_ratio[idx];
4745 present_pages += lower_zone->present_pages;
4746 }
4747 }
4748 }
cb45b0e9
HA
4749
4750 /* update totalreserve_pages */
4751 calculate_totalreserve_pages();
1da177e4
LT
4752}
4753
88ca3b94 4754/**
bc75d33f 4755 * setup_per_zone_wmarks - called when min_free_kbytes changes
bce7394a 4756 * or when memory is hot-{added|removed}
88ca3b94 4757 *
bc75d33f
MK
4758 * Ensures that the watermark[min,low,high] values for each zone are set
4759 * correctly with respect to min_free_kbytes.
1da177e4 4760 */
bc75d33f 4761void setup_per_zone_wmarks(void)
1da177e4
LT
4762{
4763 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4764 unsigned long lowmem_pages = 0;
4765 struct zone *zone;
4766 unsigned long flags;
4767
4768 /* Calculate total number of !ZONE_HIGHMEM pages */
4769 for_each_zone(zone) {
4770 if (!is_highmem(zone))
4771 lowmem_pages += zone->present_pages;
4772 }
4773
4774 for_each_zone(zone) {
ac924c60
AM
4775 u64 tmp;
4776
1125b4e3 4777 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4778 tmp = (u64)pages_min * zone->present_pages;
4779 do_div(tmp, lowmem_pages);
1da177e4
LT
4780 if (is_highmem(zone)) {
4781 /*
669ed175
NP
4782 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4783 * need highmem pages, so cap pages_min to a small
4784 * value here.
4785 *
41858966 4786 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
4787 * deltas controls asynch page reclaim, and so should
4788 * not be capped for highmem.
1da177e4
LT
4789 */
4790 int min_pages;
4791
4792 min_pages = zone->present_pages / 1024;
4793 if (min_pages < SWAP_CLUSTER_MAX)
4794 min_pages = SWAP_CLUSTER_MAX;
4795 if (min_pages > 128)
4796 min_pages = 128;
41858966 4797 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 4798 } else {
669ed175
NP
4799 /*
4800 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4801 * proportionate to the zone's size.
4802 */
41858966 4803 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
4804 }
4805
41858966
MG
4806 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4807 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
56fd56b8 4808 setup_zone_migrate_reserve(zone);
1125b4e3 4809 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4810 }
cb45b0e9
HA
4811
4812 /* update totalreserve_pages */
4813 calculate_totalreserve_pages();
1da177e4
LT
4814}
4815
55a4462a 4816/*
556adecb
RR
4817 * The inactive anon list should be small enough that the VM never has to
4818 * do too much work, but large enough that each inactive page has a chance
4819 * to be referenced again before it is swapped out.
4820 *
4821 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4822 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4823 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4824 * the anonymous pages are kept on the inactive list.
4825 *
4826 * total target max
4827 * memory ratio inactive anon
4828 * -------------------------------------
4829 * 10MB 1 5MB
4830 * 100MB 1 50MB
4831 * 1GB 3 250MB
4832 * 10GB 10 0.9GB
4833 * 100GB 31 3GB
4834 * 1TB 101 10GB
4835 * 10TB 320 32GB
4836 */
96cb4df5 4837void calculate_zone_inactive_ratio(struct zone *zone)
556adecb 4838{
96cb4df5 4839 unsigned int gb, ratio;
556adecb 4840
96cb4df5
MK
4841 /* Zone size in gigabytes */
4842 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4843 if (gb)
556adecb 4844 ratio = int_sqrt(10 * gb);
96cb4df5
MK
4845 else
4846 ratio = 1;
556adecb 4847
96cb4df5
MK
4848 zone->inactive_ratio = ratio;
4849}
556adecb 4850
96cb4df5
MK
4851static void __init setup_per_zone_inactive_ratio(void)
4852{
4853 struct zone *zone;
4854
4855 for_each_zone(zone)
4856 calculate_zone_inactive_ratio(zone);
556adecb
RR
4857}
4858
1da177e4
LT
4859/*
4860 * Initialise min_free_kbytes.
4861 *
4862 * For small machines we want it small (128k min). For large machines
4863 * we want it large (64MB max). But it is not linear, because network
4864 * bandwidth does not increase linearly with machine size. We use
4865 *
4866 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4867 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4868 *
4869 * which yields
4870 *
4871 * 16MB: 512k
4872 * 32MB: 724k
4873 * 64MB: 1024k
4874 * 128MB: 1448k
4875 * 256MB: 2048k
4876 * 512MB: 2896k
4877 * 1024MB: 4096k
4878 * 2048MB: 5792k
4879 * 4096MB: 8192k
4880 * 8192MB: 11584k
4881 * 16384MB: 16384k
4882 */
bc75d33f 4883static int __init init_per_zone_wmark_min(void)
1da177e4
LT
4884{
4885 unsigned long lowmem_kbytes;
4886
4887 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4888
4889 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4890 if (min_free_kbytes < 128)
4891 min_free_kbytes = 128;
4892 if (min_free_kbytes > 65536)
4893 min_free_kbytes = 65536;
bc75d33f 4894 setup_per_zone_wmarks();
1da177e4 4895 setup_per_zone_lowmem_reserve();
556adecb 4896 setup_per_zone_inactive_ratio();
1da177e4
LT
4897 return 0;
4898}
bc75d33f 4899module_init(init_per_zone_wmark_min)
1da177e4
LT
4900
4901/*
4902 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4903 * that we can call two helper functions whenever min_free_kbytes
4904 * changes.
4905 */
4906int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 4907 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 4908{
8d65af78 4909 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 4910 if (write)
bc75d33f 4911 setup_per_zone_wmarks();
1da177e4
LT
4912 return 0;
4913}
4914
9614634f
CL
4915#ifdef CONFIG_NUMA
4916int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 4917 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
4918{
4919 struct zone *zone;
4920 int rc;
4921
8d65af78 4922 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
4923 if (rc)
4924 return rc;
4925
4926 for_each_zone(zone)
8417bba4 4927 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
4928 sysctl_min_unmapped_ratio) / 100;
4929 return 0;
4930}
0ff38490
CL
4931
4932int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 4933 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
4934{
4935 struct zone *zone;
4936 int rc;
4937
8d65af78 4938 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
4939 if (rc)
4940 return rc;
4941
4942 for_each_zone(zone)
4943 zone->min_slab_pages = (zone->present_pages *
4944 sysctl_min_slab_ratio) / 100;
4945 return 0;
4946}
9614634f
CL
4947#endif
4948
1da177e4
LT
4949/*
4950 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4951 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4952 * whenever sysctl_lowmem_reserve_ratio changes.
4953 *
4954 * The reserve ratio obviously has absolutely no relation with the
41858966 4955 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
4956 * if in function of the boot time zone sizes.
4957 */
4958int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 4959 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 4960{
8d65af78 4961 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
4962 setup_per_zone_lowmem_reserve();
4963 return 0;
4964}
4965
8ad4b1fb
RS
4966/*
4967 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4968 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4969 * can have before it gets flushed back to buddy allocator.
4970 */
4971
4972int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 4973 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
4974{
4975 struct zone *zone;
4976 unsigned int cpu;
4977 int ret;
4978
8d65af78 4979 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8ad4b1fb
RS
4980 if (!write || (ret == -EINVAL))
4981 return ret;
364df0eb 4982 for_each_populated_zone(zone) {
99dcc3e5 4983 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
4984 unsigned long high;
4985 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
4986 setup_pagelist_highmark(
4987 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
4988 }
4989 }
4990 return 0;
4991}
4992
f034b5d4 4993int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
4994
4995#ifdef CONFIG_NUMA
4996static int __init set_hashdist(char *str)
4997{
4998 if (!str)
4999 return 0;
5000 hashdist = simple_strtoul(str, &str, 0);
5001 return 1;
5002}
5003__setup("hashdist=", set_hashdist);
5004#endif
5005
5006/*
5007 * allocate a large system hash table from bootmem
5008 * - it is assumed that the hash table must contain an exact power-of-2
5009 * quantity of entries
5010 * - limit is the number of hash buckets, not the total allocation size
5011 */
5012void *__init alloc_large_system_hash(const char *tablename,
5013 unsigned long bucketsize,
5014 unsigned long numentries,
5015 int scale,
5016 int flags,
5017 unsigned int *_hash_shift,
5018 unsigned int *_hash_mask,
5019 unsigned long limit)
5020{
5021 unsigned long long max = limit;
5022 unsigned long log2qty, size;
5023 void *table = NULL;
5024
5025 /* allow the kernel cmdline to have a say */
5026 if (!numentries) {
5027 /* round applicable memory size up to nearest megabyte */
04903664 5028 numentries = nr_kernel_pages;
1da177e4
LT
5029 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5030 numentries >>= 20 - PAGE_SHIFT;
5031 numentries <<= 20 - PAGE_SHIFT;
5032
5033 /* limit to 1 bucket per 2^scale bytes of low memory */
5034 if (scale > PAGE_SHIFT)
5035 numentries >>= (scale - PAGE_SHIFT);
5036 else
5037 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5038
5039 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5040 if (unlikely(flags & HASH_SMALL)) {
5041 /* Makes no sense without HASH_EARLY */
5042 WARN_ON(!(flags & HASH_EARLY));
5043 if (!(numentries >> *_hash_shift)) {
5044 numentries = 1UL << *_hash_shift;
5045 BUG_ON(!numentries);
5046 }
5047 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5048 numentries = PAGE_SIZE / bucketsize;
1da177e4 5049 }
6e692ed3 5050 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5051
5052 /* limit allocation size to 1/16 total memory by default */
5053 if (max == 0) {
5054 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5055 do_div(max, bucketsize);
5056 }
5057
5058 if (numentries > max)
5059 numentries = max;
5060
f0d1b0b3 5061 log2qty = ilog2(numentries);
1da177e4
LT
5062
5063 do {
5064 size = bucketsize << log2qty;
5065 if (flags & HASH_EARLY)
74768ed8 5066 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5067 else if (hashdist)
5068 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5069 else {
1037b83b
ED
5070 /*
5071 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5072 * some pages at the end of hash table which
5073 * alloc_pages_exact() automatically does
1037b83b 5074 */
264ef8a9 5075 if (get_order(size) < MAX_ORDER) {
a1dd268c 5076 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5077 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5078 }
1da177e4
LT
5079 }
5080 } while (!table && size > PAGE_SIZE && --log2qty);
5081
5082 if (!table)
5083 panic("Failed to allocate %s hash table\n", tablename);
5084
b49ad484 5085 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
5086 tablename,
5087 (1U << log2qty),
f0d1b0b3 5088 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5089 size);
5090
5091 if (_hash_shift)
5092 *_hash_shift = log2qty;
5093 if (_hash_mask)
5094 *_hash_mask = (1 << log2qty) - 1;
5095
5096 return table;
5097}
a117e66e 5098
835c134e
MG
5099/* Return a pointer to the bitmap storing bits affecting a block of pages */
5100static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5101 unsigned long pfn)
5102{
5103#ifdef CONFIG_SPARSEMEM
5104 return __pfn_to_section(pfn)->pageblock_flags;
5105#else
5106 return zone->pageblock_flags;
5107#endif /* CONFIG_SPARSEMEM */
5108}
5109
5110static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5111{
5112#ifdef CONFIG_SPARSEMEM
5113 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5114 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5115#else
5116 pfn = pfn - zone->zone_start_pfn;
d9c23400 5117 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5118#endif /* CONFIG_SPARSEMEM */
5119}
5120
5121/**
d9c23400 5122 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5123 * @page: The page within the block of interest
5124 * @start_bitidx: The first bit of interest to retrieve
5125 * @end_bitidx: The last bit of interest
5126 * returns pageblock_bits flags
5127 */
5128unsigned long get_pageblock_flags_group(struct page *page,
5129 int start_bitidx, int end_bitidx)
5130{
5131 struct zone *zone;
5132 unsigned long *bitmap;
5133 unsigned long pfn, bitidx;
5134 unsigned long flags = 0;
5135 unsigned long value = 1;
5136
5137 zone = page_zone(page);
5138 pfn = page_to_pfn(page);
5139 bitmap = get_pageblock_bitmap(zone, pfn);
5140 bitidx = pfn_to_bitidx(zone, pfn);
5141
5142 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5143 if (test_bit(bitidx + start_bitidx, bitmap))
5144 flags |= value;
6220ec78 5145
835c134e
MG
5146 return flags;
5147}
5148
5149/**
d9c23400 5150 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5151 * @page: The page within the block of interest
5152 * @start_bitidx: The first bit of interest
5153 * @end_bitidx: The last bit of interest
5154 * @flags: The flags to set
5155 */
5156void set_pageblock_flags_group(struct page *page, unsigned long flags,
5157 int start_bitidx, int end_bitidx)
5158{
5159 struct zone *zone;
5160 unsigned long *bitmap;
5161 unsigned long pfn, bitidx;
5162 unsigned long value = 1;
5163
5164 zone = page_zone(page);
5165 pfn = page_to_pfn(page);
5166 bitmap = get_pageblock_bitmap(zone, pfn);
5167 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5168 VM_BUG_ON(pfn < zone->zone_start_pfn);
5169 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5170
5171 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5172 if (flags & value)
5173 __set_bit(bitidx + start_bitidx, bitmap);
5174 else
5175 __clear_bit(bitidx + start_bitidx, bitmap);
5176}
a5d76b54
KH
5177
5178/*
5179 * This is designed as sub function...plz see page_isolation.c also.
5180 * set/clear page block's type to be ISOLATE.
5181 * page allocater never alloc memory from ISOLATE block.
5182 */
5183
5184int set_migratetype_isolate(struct page *page)
5185{
5186 struct zone *zone;
925cc71e
RJ
5187 struct page *curr_page;
5188 unsigned long flags, pfn, iter;
5189 unsigned long immobile = 0;
5190 struct memory_isolate_notify arg;
5191 int notifier_ret;
a5d76b54 5192 int ret = -EBUSY;
8e7e40d9 5193 int zone_idx;
a5d76b54
KH
5194
5195 zone = page_zone(page);
8e7e40d9 5196 zone_idx = zone_idx(zone);
925cc71e 5197
a5d76b54 5198 spin_lock_irqsave(&zone->lock, flags);
925cc71e
RJ
5199 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
5200 zone_idx == ZONE_MOVABLE) {
5201 ret = 0;
5202 goto out;
5203 }
5204
5205 pfn = page_to_pfn(page);
5206 arg.start_pfn = pfn;
5207 arg.nr_pages = pageblock_nr_pages;
5208 arg.pages_found = 0;
5209
a5d76b54 5210 /*
925cc71e
RJ
5211 * It may be possible to isolate a pageblock even if the
5212 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5213 * notifier chain is used by balloon drivers to return the
5214 * number of pages in a range that are held by the balloon
5215 * driver to shrink memory. If all the pages are accounted for
5216 * by balloons, are free, or on the LRU, isolation can continue.
5217 * Later, for example, when memory hotplug notifier runs, these
5218 * pages reported as "can be isolated" should be isolated(freed)
5219 * by the balloon driver through the memory notifier chain.
a5d76b54 5220 */
925cc71e
RJ
5221 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5222 notifier_ret = notifier_to_errno(notifier_ret);
5223 if (notifier_ret || !arg.pages_found)
a5d76b54 5224 goto out;
925cc71e
RJ
5225
5226 for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
5227 if (!pfn_valid_within(pfn))
5228 continue;
5229
5230 curr_page = pfn_to_page(iter);
5231 if (!page_count(curr_page) || PageLRU(curr_page))
5232 continue;
5233
5234 immobile++;
5235 }
5236
5237 if (arg.pages_found == immobile)
5238 ret = 0;
5239
a5d76b54 5240out:
925cc71e
RJ
5241 if (!ret) {
5242 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5243 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5244 }
5245
a5d76b54
KH
5246 spin_unlock_irqrestore(&zone->lock, flags);
5247 if (!ret)
9f8f2172 5248 drain_all_pages();
a5d76b54
KH
5249 return ret;
5250}
5251
5252void unset_migratetype_isolate(struct page *page)
5253{
5254 struct zone *zone;
5255 unsigned long flags;
5256 zone = page_zone(page);
5257 spin_lock_irqsave(&zone->lock, flags);
5258 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5259 goto out;
5260 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5261 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5262out:
5263 spin_unlock_irqrestore(&zone->lock, flags);
5264}
0c0e6195
KH
5265
5266#ifdef CONFIG_MEMORY_HOTREMOVE
5267/*
5268 * All pages in the range must be isolated before calling this.
5269 */
5270void
5271__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5272{
5273 struct page *page;
5274 struct zone *zone;
5275 int order, i;
5276 unsigned long pfn;
5277 unsigned long flags;
5278 /* find the first valid pfn */
5279 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5280 if (pfn_valid(pfn))
5281 break;
5282 if (pfn == end_pfn)
5283 return;
5284 zone = page_zone(pfn_to_page(pfn));
5285 spin_lock_irqsave(&zone->lock, flags);
5286 pfn = start_pfn;
5287 while (pfn < end_pfn) {
5288 if (!pfn_valid(pfn)) {
5289 pfn++;
5290 continue;
5291 }
5292 page = pfn_to_page(pfn);
5293 BUG_ON(page_count(page));
5294 BUG_ON(!PageBuddy(page));
5295 order = page_order(page);
5296#ifdef CONFIG_DEBUG_VM
5297 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5298 pfn, 1 << order, end_pfn);
5299#endif
5300 list_del(&page->lru);
5301 rmv_page_order(page);
5302 zone->free_area[order].nr_free--;
5303 __mod_zone_page_state(zone, NR_FREE_PAGES,
5304 - (1UL << order));
5305 for (i = 0; i < (1 << order); i++)
5306 SetPageReserved((page+i));
5307 pfn += (1 << order);
5308 }
5309 spin_unlock_irqrestore(&zone->lock, flags);
5310}
5311#endif
8d22ba1b
WF
5312
5313#ifdef CONFIG_MEMORY_FAILURE
5314bool is_free_buddy_page(struct page *page)
5315{
5316 struct zone *zone = page_zone(page);
5317 unsigned long pfn = page_to_pfn(page);
5318 unsigned long flags;
5319 int order;
5320
5321 spin_lock_irqsave(&zone->lock, flags);
5322 for (order = 0; order < MAX_ORDER; order++) {
5323 struct page *page_head = page - (pfn & ((1 << order) - 1));
5324
5325 if (PageBuddy(page_head) && page_order(page_head) >= order)
5326 break;
5327 }
5328 spin_unlock_irqrestore(&zone->lock, flags);
5329
5330 return order < MAX_ORDER;
5331}
5332#endif
718a3821
WF
5333
5334static struct trace_print_flags pageflag_names[] = {
5335 {1UL << PG_locked, "locked" },
5336 {1UL << PG_error, "error" },
5337 {1UL << PG_referenced, "referenced" },
5338 {1UL << PG_uptodate, "uptodate" },
5339 {1UL << PG_dirty, "dirty" },
5340 {1UL << PG_lru, "lru" },
5341 {1UL << PG_active, "active" },
5342 {1UL << PG_slab, "slab" },
5343 {1UL << PG_owner_priv_1, "owner_priv_1" },
5344 {1UL << PG_arch_1, "arch_1" },
5345 {1UL << PG_reserved, "reserved" },
5346 {1UL << PG_private, "private" },
5347 {1UL << PG_private_2, "private_2" },
5348 {1UL << PG_writeback, "writeback" },
5349#ifdef CONFIG_PAGEFLAGS_EXTENDED
5350 {1UL << PG_head, "head" },
5351 {1UL << PG_tail, "tail" },
5352#else
5353 {1UL << PG_compound, "compound" },
5354#endif
5355 {1UL << PG_swapcache, "swapcache" },
5356 {1UL << PG_mappedtodisk, "mappedtodisk" },
5357 {1UL << PG_reclaim, "reclaim" },
5358 {1UL << PG_buddy, "buddy" },
5359 {1UL << PG_swapbacked, "swapbacked" },
5360 {1UL << PG_unevictable, "unevictable" },
5361#ifdef CONFIG_MMU
5362 {1UL << PG_mlocked, "mlocked" },
5363#endif
5364#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5365 {1UL << PG_uncached, "uncached" },
5366#endif
5367#ifdef CONFIG_MEMORY_FAILURE
5368 {1UL << PG_hwpoison, "hwpoison" },
5369#endif
5370 {-1UL, NULL },
5371};
5372
5373static void dump_page_flags(unsigned long flags)
5374{
5375 const char *delim = "";
5376 unsigned long mask;
5377 int i;
5378
5379 printk(KERN_ALERT "page flags: %#lx(", flags);
5380
5381 /* remove zone id */
5382 flags &= (1UL << NR_PAGEFLAGS) - 1;
5383
5384 for (i = 0; pageflag_names[i].name && flags; i++) {
5385
5386 mask = pageflag_names[i].mask;
5387 if ((flags & mask) != mask)
5388 continue;
5389
5390 flags &= ~mask;
5391 printk("%s%s", delim, pageflag_names[i].name);
5392 delim = "|";
5393 }
5394
5395 /* check for left over flags */
5396 if (flags)
5397 printk("%s%#lx", delim, flags);
5398
5399 printk(")\n");
5400}
5401
5402void dump_page(struct page *page)
5403{
5404 printk(KERN_ALERT
5405 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5406 page, page_count(page), page_mapcount(page),
5407 page->mapping, page->index);
5408 dump_page_flags(page->flags);
5409}