]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
memory-hotplug: fix kswapd looping forever problem
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
041d3a8c 59#include <linux/migrate.h>
c0a32fc5 60#include <linux/page-debug-flags.h>
1da177e4
LT
61
62#include <asm/tlbflush.h>
ac924c60 63#include <asm/div64.h>
1da177e4
LT
64#include "internal.h"
65
72812019
LS
66#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67DEFINE_PER_CPU(int, numa_node);
68EXPORT_PER_CPU_SYMBOL(numa_node);
69#endif
70
7aac7898
LS
71#ifdef CONFIG_HAVE_MEMORYLESS_NODES
72/*
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
77 */
78DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80#endif
81
1da177e4 82/*
13808910 83 * Array of node states.
1da177e4 84 */
13808910
CL
85nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88#ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90#ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
92#endif
93 [N_CPU] = { { [0] = 1UL } },
94#endif /* NUMA */
95};
96EXPORT_SYMBOL(node_states);
97
6c231b7b 98unsigned long totalram_pages __read_mostly;
cb45b0e9 99unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
100/*
101 * When calculating the number of globally allowed dirty pages, there
102 * is a certain number of per-zone reserves that should not be
103 * considered dirtyable memory. This is the sum of those reserves
104 * over all existing zones that contribute dirtyable memory.
105 */
106unsigned long dirty_balance_reserve __read_mostly;
107
1b76b02f 108int percpu_pagelist_fraction;
dcce284a 109gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 110
452aa699
RW
111#ifdef CONFIG_PM_SLEEP
112/*
113 * The following functions are used by the suspend/hibernate code to temporarily
114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115 * while devices are suspended. To avoid races with the suspend/hibernate code,
116 * they should always be called with pm_mutex held (gfp_allowed_mask also should
117 * only be modified with pm_mutex held, unless the suspend/hibernate code is
118 * guaranteed not to run in parallel with that modification).
119 */
c9e664f1
RW
120
121static gfp_t saved_gfp_mask;
122
123void pm_restore_gfp_mask(void)
452aa699
RW
124{
125 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
126 if (saved_gfp_mask) {
127 gfp_allowed_mask = saved_gfp_mask;
128 saved_gfp_mask = 0;
129 }
452aa699
RW
130}
131
c9e664f1 132void pm_restrict_gfp_mask(void)
452aa699 133{
452aa699 134 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
135 WARN_ON(saved_gfp_mask);
136 saved_gfp_mask = gfp_allowed_mask;
137 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 138}
f90ac398
MG
139
140bool pm_suspended_storage(void)
141{
142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
143 return false;
144 return true;
145}
452aa699
RW
146#endif /* CONFIG_PM_SLEEP */
147
d9c23400
MG
148#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149int pageblock_order __read_mostly;
150#endif
151
d98c7a09 152static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 153
1da177e4
LT
154/*
155 * results with 256, 32 in the lowmem_reserve sysctl:
156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157 * 1G machine -> (16M dma, 784M normal, 224M high)
158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
161 *
162 * TBD: should special case ZONE_DMA32 machines here - in those we normally
163 * don't need any ZONE_NORMAL reservation
1da177e4 164 */
2f1b6248 165int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 166#ifdef CONFIG_ZONE_DMA
2f1b6248 167 256,
4b51d669 168#endif
fb0e7942 169#ifdef CONFIG_ZONE_DMA32
2f1b6248 170 256,
fb0e7942 171#endif
e53ef38d 172#ifdef CONFIG_HIGHMEM
2a1e274a 173 32,
e53ef38d 174#endif
2a1e274a 175 32,
2f1b6248 176};
1da177e4
LT
177
178EXPORT_SYMBOL(totalram_pages);
1da177e4 179
15ad7cdc 180static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 181#ifdef CONFIG_ZONE_DMA
2f1b6248 182 "DMA",
4b51d669 183#endif
fb0e7942 184#ifdef CONFIG_ZONE_DMA32
2f1b6248 185 "DMA32",
fb0e7942 186#endif
2f1b6248 187 "Normal",
e53ef38d 188#ifdef CONFIG_HIGHMEM
2a1e274a 189 "HighMem",
e53ef38d 190#endif
2a1e274a 191 "Movable",
2f1b6248
CL
192};
193
1da177e4
LT
194int min_free_kbytes = 1024;
195
2c85f51d
JB
196static unsigned long __meminitdata nr_kernel_pages;
197static unsigned long __meminitdata nr_all_pages;
a3142c8e 198static unsigned long __meminitdata dma_reserve;
1da177e4 199
0ee332c1
TH
200#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203static unsigned long __initdata required_kernelcore;
204static unsigned long __initdata required_movablecore;
205static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
206
207/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
208int movable_zone;
209EXPORT_SYMBOL(movable_zone);
210#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 211
418508c1
MS
212#if MAX_NUMNODES > 1
213int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 214int nr_online_nodes __read_mostly = 1;
418508c1 215EXPORT_SYMBOL(nr_node_ids);
62bc62a8 216EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
217#endif
218
9ef9acb0
MG
219int page_group_by_mobility_disabled __read_mostly;
220
702d1a6e
MK
221/*
222 * NOTE:
223 * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
224 * Instead, use {un}set_pageblock_isolate.
225 */
ee6f509c 226void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 227{
49255c61
MG
228
229 if (unlikely(page_group_by_mobility_disabled))
230 migratetype = MIGRATE_UNMOVABLE;
231
b2a0ac88
MG
232 set_pageblock_flags_group(page, (unsigned long)migratetype,
233 PB_migrate, PB_migrate_end);
234}
235
7f33d49a
RW
236bool oom_killer_disabled __read_mostly;
237
13e7444b 238#ifdef CONFIG_DEBUG_VM
c6a57e19 239static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 240{
bdc8cb98
DH
241 int ret = 0;
242 unsigned seq;
243 unsigned long pfn = page_to_pfn(page);
c6a57e19 244
bdc8cb98
DH
245 do {
246 seq = zone_span_seqbegin(zone);
247 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
248 ret = 1;
249 else if (pfn < zone->zone_start_pfn)
250 ret = 1;
251 } while (zone_span_seqretry(zone, seq));
252
253 return ret;
c6a57e19
DH
254}
255
256static int page_is_consistent(struct zone *zone, struct page *page)
257{
14e07298 258 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 259 return 0;
1da177e4 260 if (zone != page_zone(page))
c6a57e19
DH
261 return 0;
262
263 return 1;
264}
265/*
266 * Temporary debugging check for pages not lying within a given zone.
267 */
268static int bad_range(struct zone *zone, struct page *page)
269{
270 if (page_outside_zone_boundaries(zone, page))
1da177e4 271 return 1;
c6a57e19
DH
272 if (!page_is_consistent(zone, page))
273 return 1;
274
1da177e4
LT
275 return 0;
276}
13e7444b
NP
277#else
278static inline int bad_range(struct zone *zone, struct page *page)
279{
280 return 0;
281}
282#endif
283
224abf92 284static void bad_page(struct page *page)
1da177e4 285{
d936cf9b
HD
286 static unsigned long resume;
287 static unsigned long nr_shown;
288 static unsigned long nr_unshown;
289
2a7684a2
WF
290 /* Don't complain about poisoned pages */
291 if (PageHWPoison(page)) {
ef2b4b95 292 reset_page_mapcount(page); /* remove PageBuddy */
2a7684a2
WF
293 return;
294 }
295
d936cf9b
HD
296 /*
297 * Allow a burst of 60 reports, then keep quiet for that minute;
298 * or allow a steady drip of one report per second.
299 */
300 if (nr_shown == 60) {
301 if (time_before(jiffies, resume)) {
302 nr_unshown++;
303 goto out;
304 }
305 if (nr_unshown) {
1e9e6365
HD
306 printk(KERN_ALERT
307 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
308 nr_unshown);
309 nr_unshown = 0;
310 }
311 nr_shown = 0;
312 }
313 if (nr_shown++ == 0)
314 resume = jiffies + 60 * HZ;
315
1e9e6365 316 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 317 current->comm, page_to_pfn(page));
718a3821 318 dump_page(page);
3dc14741 319
4f31888c 320 print_modules();
1da177e4 321 dump_stack();
d936cf9b 322out:
8cc3b392 323 /* Leave bad fields for debug, except PageBuddy could make trouble */
ef2b4b95 324 reset_page_mapcount(page); /* remove PageBuddy */
9f158333 325 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
326}
327
1da177e4
LT
328/*
329 * Higher-order pages are called "compound pages". They are structured thusly:
330 *
331 * The first PAGE_SIZE page is called the "head page".
332 *
333 * The remaining PAGE_SIZE pages are called "tail pages".
334 *
6416b9fa
WSH
335 * All pages have PG_compound set. All tail pages have their ->first_page
336 * pointing at the head page.
1da177e4 337 *
41d78ba5
HD
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
1da177e4 341 */
d98c7a09
HD
342
343static void free_compound_page(struct page *page)
344{
d85f3385 345 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
346}
347
01ad1c08 348void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
349{
350 int i;
351 int nr_pages = 1 << order;
352
353 set_compound_page_dtor(page, free_compound_page);
354 set_compound_order(page, order);
355 __SetPageHead(page);
356 for (i = 1; i < nr_pages; i++) {
357 struct page *p = page + i;
18229df5 358 __SetPageTail(p);
58a84aa9 359 set_page_count(p, 0);
18229df5
AW
360 p->first_page = page;
361 }
362}
363
59ff4216 364/* update __split_huge_page_refcount if you change this function */
8cc3b392 365static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
366{
367 int i;
368 int nr_pages = 1 << order;
8cc3b392 369 int bad = 0;
1da177e4 370
8cc3b392
HD
371 if (unlikely(compound_order(page) != order) ||
372 unlikely(!PageHead(page))) {
224abf92 373 bad_page(page);
8cc3b392
HD
374 bad++;
375 }
1da177e4 376
6d777953 377 __ClearPageHead(page);
8cc3b392 378
18229df5
AW
379 for (i = 1; i < nr_pages; i++) {
380 struct page *p = page + i;
1da177e4 381
e713a21d 382 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 383 bad_page(page);
8cc3b392
HD
384 bad++;
385 }
d85f3385 386 __ClearPageTail(p);
1da177e4 387 }
8cc3b392
HD
388
389 return bad;
1da177e4 390}
1da177e4 391
17cf4406
NP
392static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
393{
394 int i;
395
6626c5d5
AM
396 /*
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
399 */
725d704e 400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
401 for (i = 0; i < (1 << order); i++)
402 clear_highpage(page + i);
403}
404
c0a32fc5
SG
405#ifdef CONFIG_DEBUG_PAGEALLOC
406unsigned int _debug_guardpage_minorder;
407
408static int __init debug_guardpage_minorder_setup(char *buf)
409{
410 unsigned long res;
411
412 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
413 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
414 return 0;
415 }
416 _debug_guardpage_minorder = res;
417 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
418 return 0;
419}
420__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
421
422static inline void set_page_guard_flag(struct page *page)
423{
424 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
425}
426
427static inline void clear_page_guard_flag(struct page *page)
428{
429 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
430}
431#else
432static inline void set_page_guard_flag(struct page *page) { }
433static inline void clear_page_guard_flag(struct page *page) { }
434#endif
435
6aa3001b
AM
436static inline void set_page_order(struct page *page, int order)
437{
4c21e2f2 438 set_page_private(page, order);
676165a8 439 __SetPageBuddy(page);
1da177e4
LT
440}
441
442static inline void rmv_page_order(struct page *page)
443{
676165a8 444 __ClearPageBuddy(page);
4c21e2f2 445 set_page_private(page, 0);
1da177e4
LT
446}
447
448/*
449 * Locate the struct page for both the matching buddy in our
450 * pair (buddy1) and the combined O(n+1) page they form (page).
451 *
452 * 1) Any buddy B1 will have an order O twin B2 which satisfies
453 * the following equation:
454 * B2 = B1 ^ (1 << O)
455 * For example, if the starting buddy (buddy2) is #8 its order
456 * 1 buddy is #10:
457 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
458 *
459 * 2) Any buddy B will have an order O+1 parent P which
460 * satisfies the following equation:
461 * P = B & ~(1 << O)
462 *
d6e05edc 463 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 464 */
1da177e4 465static inline unsigned long
43506fad 466__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 467{
43506fad 468 return page_idx ^ (1 << order);
1da177e4
LT
469}
470
471/*
472 * This function checks whether a page is free && is the buddy
473 * we can do coalesce a page and its buddy if
13e7444b 474 * (a) the buddy is not in a hole &&
676165a8 475 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
476 * (c) a page and its buddy have the same order &&
477 * (d) a page and its buddy are in the same zone.
676165a8 478 *
5f24ce5f
AA
479 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
480 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 481 *
676165a8 482 * For recording page's order, we use page_private(page).
1da177e4 483 */
cb2b95e1
AW
484static inline int page_is_buddy(struct page *page, struct page *buddy,
485 int order)
1da177e4 486{
14e07298 487 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 488 return 0;
13e7444b 489
cb2b95e1
AW
490 if (page_zone_id(page) != page_zone_id(buddy))
491 return 0;
492
c0a32fc5
SG
493 if (page_is_guard(buddy) && page_order(buddy) == order) {
494 VM_BUG_ON(page_count(buddy) != 0);
495 return 1;
496 }
497
cb2b95e1 498 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 499 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 500 return 1;
676165a8 501 }
6aa3001b 502 return 0;
1da177e4
LT
503}
504
505/*
506 * Freeing function for a buddy system allocator.
507 *
508 * The concept of a buddy system is to maintain direct-mapped table
509 * (containing bit values) for memory blocks of various "orders".
510 * The bottom level table contains the map for the smallest allocatable
511 * units of memory (here, pages), and each level above it describes
512 * pairs of units from the levels below, hence, "buddies".
513 * At a high level, all that happens here is marking the table entry
514 * at the bottom level available, and propagating the changes upward
515 * as necessary, plus some accounting needed to play nicely with other
516 * parts of the VM system.
517 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 518 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 519 * order is recorded in page_private(page) field.
1da177e4 520 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
521 * other. That is, if we allocate a small block, and both were
522 * free, the remainder of the region must be split into blocks.
1da177e4 523 * If a block is freed, and its buddy is also free, then this
5f63b720 524 * triggers coalescing into a block of larger size.
1da177e4
LT
525 *
526 * -- wli
527 */
528
48db57f8 529static inline void __free_one_page(struct page *page,
ed0ae21d
MG
530 struct zone *zone, unsigned int order,
531 int migratetype)
1da177e4
LT
532{
533 unsigned long page_idx;
6dda9d55 534 unsigned long combined_idx;
43506fad 535 unsigned long uninitialized_var(buddy_idx);
6dda9d55 536 struct page *buddy;
1da177e4 537
224abf92 538 if (unlikely(PageCompound(page)))
8cc3b392
HD
539 if (unlikely(destroy_compound_page(page, order)))
540 return;
1da177e4 541
ed0ae21d
MG
542 VM_BUG_ON(migratetype == -1);
543
1da177e4
LT
544 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
545
f2260e6b 546 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 547 VM_BUG_ON(bad_range(zone, page));
1da177e4 548
1da177e4 549 while (order < MAX_ORDER-1) {
43506fad
KC
550 buddy_idx = __find_buddy_index(page_idx, order);
551 buddy = page + (buddy_idx - page_idx);
cb2b95e1 552 if (!page_is_buddy(page, buddy, order))
3c82d0ce 553 break;
c0a32fc5
SG
554 /*
555 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
556 * merge with it and move up one order.
557 */
558 if (page_is_guard(buddy)) {
559 clear_page_guard_flag(buddy);
560 set_page_private(page, 0);
561 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
562 } else {
563 list_del(&buddy->lru);
564 zone->free_area[order].nr_free--;
565 rmv_page_order(buddy);
566 }
43506fad 567 combined_idx = buddy_idx & page_idx;
1da177e4
LT
568 page = page + (combined_idx - page_idx);
569 page_idx = combined_idx;
570 order++;
571 }
572 set_page_order(page, order);
6dda9d55
CZ
573
574 /*
575 * If this is not the largest possible page, check if the buddy
576 * of the next-highest order is free. If it is, it's possible
577 * that pages are being freed that will coalesce soon. In case,
578 * that is happening, add the free page to the tail of the list
579 * so it's less likely to be used soon and more likely to be merged
580 * as a higher order page
581 */
b7f50cfa 582 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 583 struct page *higher_page, *higher_buddy;
43506fad
KC
584 combined_idx = buddy_idx & page_idx;
585 higher_page = page + (combined_idx - page_idx);
586 buddy_idx = __find_buddy_index(combined_idx, order + 1);
587 higher_buddy = page + (buddy_idx - combined_idx);
6dda9d55
CZ
588 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
589 list_add_tail(&page->lru,
590 &zone->free_area[order].free_list[migratetype]);
591 goto out;
592 }
593 }
594
595 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
596out:
1da177e4
LT
597 zone->free_area[order].nr_free++;
598}
599
092cead6
KM
600/*
601 * free_page_mlock() -- clean up attempts to free and mlocked() page.
602 * Page should not be on lru, so no need to fix that up.
603 * free_pages_check() will verify...
604 */
605static inline void free_page_mlock(struct page *page)
606{
092cead6
KM
607 __dec_zone_page_state(page, NR_MLOCK);
608 __count_vm_event(UNEVICTABLE_MLOCKFREED);
609}
092cead6 610
224abf92 611static inline int free_pages_check(struct page *page)
1da177e4 612{
92be2e33
NP
613 if (unlikely(page_mapcount(page) |
614 (page->mapping != NULL) |
a3af9c38 615 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
616 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
617 (mem_cgroup_bad_page_check(page)))) {
224abf92 618 bad_page(page);
79f4b7bf 619 return 1;
8cc3b392 620 }
79f4b7bf
HD
621 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
622 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
623 return 0;
1da177e4
LT
624}
625
626/*
5f8dcc21 627 * Frees a number of pages from the PCP lists
1da177e4 628 * Assumes all pages on list are in same zone, and of same order.
207f36ee 629 * count is the number of pages to free.
1da177e4
LT
630 *
631 * If the zone was previously in an "all pages pinned" state then look to
632 * see if this freeing clears that state.
633 *
634 * And clear the zone's pages_scanned counter, to hold off the "all pages are
635 * pinned" detection logic.
636 */
5f8dcc21
MG
637static void free_pcppages_bulk(struct zone *zone, int count,
638 struct per_cpu_pages *pcp)
1da177e4 639{
5f8dcc21 640 int migratetype = 0;
a6f9edd6 641 int batch_free = 0;
72853e29 642 int to_free = count;
5f8dcc21 643
c54ad30c 644 spin_lock(&zone->lock);
93e4a89a 645 zone->all_unreclaimable = 0;
1da177e4 646 zone->pages_scanned = 0;
f2260e6b 647
72853e29 648 while (to_free) {
48db57f8 649 struct page *page;
5f8dcc21
MG
650 struct list_head *list;
651
652 /*
a6f9edd6
MG
653 * Remove pages from lists in a round-robin fashion. A
654 * batch_free count is maintained that is incremented when an
655 * empty list is encountered. This is so more pages are freed
656 * off fuller lists instead of spinning excessively around empty
657 * lists
5f8dcc21
MG
658 */
659 do {
a6f9edd6 660 batch_free++;
5f8dcc21
MG
661 if (++migratetype == MIGRATE_PCPTYPES)
662 migratetype = 0;
663 list = &pcp->lists[migratetype];
664 } while (list_empty(list));
48db57f8 665
1d16871d
NK
666 /* This is the only non-empty list. Free them all. */
667 if (batch_free == MIGRATE_PCPTYPES)
668 batch_free = to_free;
669
a6f9edd6
MG
670 do {
671 page = list_entry(list->prev, struct page, lru);
672 /* must delete as __free_one_page list manipulates */
673 list_del(&page->lru);
a7016235
HD
674 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
675 __free_one_page(page, zone, 0, page_private(page));
676 trace_mm_page_pcpu_drain(page, 0, page_private(page));
72853e29 677 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 678 }
72853e29 679 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
c54ad30c 680 spin_unlock(&zone->lock);
1da177e4
LT
681}
682
ed0ae21d
MG
683static void free_one_page(struct zone *zone, struct page *page, int order,
684 int migratetype)
1da177e4 685{
006d22d9 686 spin_lock(&zone->lock);
93e4a89a 687 zone->all_unreclaimable = 0;
006d22d9 688 zone->pages_scanned = 0;
f2260e6b 689
ed0ae21d 690 __free_one_page(page, zone, order, migratetype);
72853e29 691 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
006d22d9 692 spin_unlock(&zone->lock);
48db57f8
NP
693}
694
ec95f53a 695static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 696{
1da177e4 697 int i;
8cc3b392 698 int bad = 0;
1da177e4 699
b413d48a 700 trace_mm_page_free(page, order);
b1eeab67
VN
701 kmemcheck_free_shadow(page, order);
702
8dd60a3a
AA
703 if (PageAnon(page))
704 page->mapping = NULL;
705 for (i = 0; i < (1 << order); i++)
706 bad += free_pages_check(page + i);
8cc3b392 707 if (bad)
ec95f53a 708 return false;
689bcebf 709
3ac7fe5a 710 if (!PageHighMem(page)) {
9858db50 711 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
712 debug_check_no_obj_freed(page_address(page),
713 PAGE_SIZE << order);
714 }
dafb1367 715 arch_free_page(page, order);
48db57f8 716 kernel_map_pages(page, 1 << order, 0);
dafb1367 717
ec95f53a
KM
718 return true;
719}
720
721static void __free_pages_ok(struct page *page, unsigned int order)
722{
723 unsigned long flags;
724 int wasMlocked = __TestClearPageMlocked(page);
725
726 if (!free_pages_prepare(page, order))
727 return;
728
c54ad30c 729 local_irq_save(flags);
c277331d 730 if (unlikely(wasMlocked))
da456f14 731 free_page_mlock(page);
f8891e5e 732 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
733 free_one_page(page_zone(page), page, order,
734 get_pageblock_migratetype(page));
c54ad30c 735 local_irq_restore(flags);
1da177e4
LT
736}
737
af370fb8 738void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 739{
c3993076
JW
740 unsigned int nr_pages = 1 << order;
741 unsigned int loop;
a226f6c8 742
c3993076
JW
743 prefetchw(page);
744 for (loop = 0; loop < nr_pages; loop++) {
745 struct page *p = &page[loop];
746
747 if (loop + 1 < nr_pages)
748 prefetchw(p + 1);
749 __ClearPageReserved(p);
750 set_page_count(p, 0);
a226f6c8 751 }
c3993076
JW
752
753 set_page_refcounted(page);
754 __free_pages(page, order);
a226f6c8
DH
755}
756
47118af0
MN
757#ifdef CONFIG_CMA
758/* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
759void __init init_cma_reserved_pageblock(struct page *page)
760{
761 unsigned i = pageblock_nr_pages;
762 struct page *p = page;
763
764 do {
765 __ClearPageReserved(p);
766 set_page_count(p, 0);
767 } while (++p, --i);
768
769 set_page_refcounted(page);
770 set_pageblock_migratetype(page, MIGRATE_CMA);
771 __free_pages(page, pageblock_order);
772 totalram_pages += pageblock_nr_pages;
773}
774#endif
1da177e4
LT
775
776/*
777 * The order of subdivision here is critical for the IO subsystem.
778 * Please do not alter this order without good reasons and regression
779 * testing. Specifically, as large blocks of memory are subdivided,
780 * the order in which smaller blocks are delivered depends on the order
781 * they're subdivided in this function. This is the primary factor
782 * influencing the order in which pages are delivered to the IO
783 * subsystem according to empirical testing, and this is also justified
784 * by considering the behavior of a buddy system containing a single
785 * large block of memory acted on by a series of small allocations.
786 * This behavior is a critical factor in sglist merging's success.
787 *
788 * -- wli
789 */
085cc7d5 790static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
791 int low, int high, struct free_area *area,
792 int migratetype)
1da177e4
LT
793{
794 unsigned long size = 1 << high;
795
796 while (high > low) {
797 area--;
798 high--;
799 size >>= 1;
725d704e 800 VM_BUG_ON(bad_range(zone, &page[size]));
c0a32fc5
SG
801
802#ifdef CONFIG_DEBUG_PAGEALLOC
803 if (high < debug_guardpage_minorder()) {
804 /*
805 * Mark as guard pages (or page), that will allow to
806 * merge back to allocator when buddy will be freed.
807 * Corresponding page table entries will not be touched,
808 * pages will stay not present in virtual address space
809 */
810 INIT_LIST_HEAD(&page[size].lru);
811 set_page_guard_flag(&page[size]);
812 set_page_private(&page[size], high);
813 /* Guard pages are not available for any usage */
814 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high));
815 continue;
816 }
817#endif
b2a0ac88 818 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
819 area->nr_free++;
820 set_page_order(&page[size], high);
821 }
1da177e4
LT
822}
823
1da177e4
LT
824/*
825 * This page is about to be returned from the page allocator
826 */
2a7684a2 827static inline int check_new_page(struct page *page)
1da177e4 828{
92be2e33
NP
829 if (unlikely(page_mapcount(page) |
830 (page->mapping != NULL) |
a3af9c38 831 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
832 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
833 (mem_cgroup_bad_page_check(page)))) {
224abf92 834 bad_page(page);
689bcebf 835 return 1;
8cc3b392 836 }
2a7684a2
WF
837 return 0;
838}
839
840static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
841{
842 int i;
843
844 for (i = 0; i < (1 << order); i++) {
845 struct page *p = page + i;
846 if (unlikely(check_new_page(p)))
847 return 1;
848 }
689bcebf 849
4c21e2f2 850 set_page_private(page, 0);
7835e98b 851 set_page_refcounted(page);
cc102509
NP
852
853 arch_alloc_page(page, order);
1da177e4 854 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
855
856 if (gfp_flags & __GFP_ZERO)
857 prep_zero_page(page, order, gfp_flags);
858
859 if (order && (gfp_flags & __GFP_COMP))
860 prep_compound_page(page, order);
861
689bcebf 862 return 0;
1da177e4
LT
863}
864
56fd56b8
MG
865/*
866 * Go through the free lists for the given migratetype and remove
867 * the smallest available page from the freelists
868 */
728ec980
MG
869static inline
870struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
871 int migratetype)
872{
873 unsigned int current_order;
874 struct free_area * area;
875 struct page *page;
876
877 /* Find a page of the appropriate size in the preferred list */
878 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
879 area = &(zone->free_area[current_order]);
880 if (list_empty(&area->free_list[migratetype]))
881 continue;
882
883 page = list_entry(area->free_list[migratetype].next,
884 struct page, lru);
885 list_del(&page->lru);
886 rmv_page_order(page);
887 area->nr_free--;
56fd56b8
MG
888 expand(zone, page, order, current_order, area, migratetype);
889 return page;
890 }
891
892 return NULL;
893}
894
895
b2a0ac88
MG
896/*
897 * This array describes the order lists are fallen back to when
898 * the free lists for the desirable migrate type are depleted
899 */
47118af0
MN
900static int fallbacks[MIGRATE_TYPES][4] = {
901 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
902 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
903#ifdef CONFIG_CMA
904 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
905 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
906#else
907 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
908#endif
6d4a4916
MN
909 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
910 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
911};
912
c361be55
MG
913/*
914 * Move the free pages in a range to the free lists of the requested type.
d9c23400 915 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
916 * boundary. If alignment is required, use move_freepages_block()
917 */
b69a7288
AB
918static int move_freepages(struct zone *zone,
919 struct page *start_page, struct page *end_page,
920 int migratetype)
c361be55
MG
921{
922 struct page *page;
923 unsigned long order;
d100313f 924 int pages_moved = 0;
c361be55
MG
925
926#ifndef CONFIG_HOLES_IN_ZONE
927 /*
928 * page_zone is not safe to call in this context when
929 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
930 * anyway as we check zone boundaries in move_freepages_block().
931 * Remove at a later date when no bug reports exist related to
ac0e5b7a 932 * grouping pages by mobility
c361be55
MG
933 */
934 BUG_ON(page_zone(start_page) != page_zone(end_page));
935#endif
936
937 for (page = start_page; page <= end_page;) {
344c790e
AL
938 /* Make sure we are not inadvertently changing nodes */
939 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
940
c361be55
MG
941 if (!pfn_valid_within(page_to_pfn(page))) {
942 page++;
943 continue;
944 }
945
946 if (!PageBuddy(page)) {
947 page++;
948 continue;
949 }
950
951 order = page_order(page);
84be48d8
KS
952 list_move(&page->lru,
953 &zone->free_area[order].free_list[migratetype]);
c361be55 954 page += 1 << order;
d100313f 955 pages_moved += 1 << order;
c361be55
MG
956 }
957
d100313f 958 return pages_moved;
c361be55
MG
959}
960
ee6f509c 961int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 962 int migratetype)
c361be55
MG
963{
964 unsigned long start_pfn, end_pfn;
965 struct page *start_page, *end_page;
966
967 start_pfn = page_to_pfn(page);
d9c23400 968 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 969 start_page = pfn_to_page(start_pfn);
d9c23400
MG
970 end_page = start_page + pageblock_nr_pages - 1;
971 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
972
973 /* Do not cross zone boundaries */
974 if (start_pfn < zone->zone_start_pfn)
975 start_page = page;
976 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
977 return 0;
978
979 return move_freepages(zone, start_page, end_page, migratetype);
980}
981
2f66a68f
MG
982static void change_pageblock_range(struct page *pageblock_page,
983 int start_order, int migratetype)
984{
985 int nr_pageblocks = 1 << (start_order - pageblock_order);
986
987 while (nr_pageblocks--) {
988 set_pageblock_migratetype(pageblock_page, migratetype);
989 pageblock_page += pageblock_nr_pages;
990 }
991}
992
b2a0ac88 993/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
994static inline struct page *
995__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
996{
997 struct free_area * area;
998 int current_order;
999 struct page *page;
1000 int migratetype, i;
1001
1002 /* Find the largest possible block of pages in the other list */
1003 for (current_order = MAX_ORDER-1; current_order >= order;
1004 --current_order) {
6d4a4916 1005 for (i = 0;; i++) {
b2a0ac88
MG
1006 migratetype = fallbacks[start_migratetype][i];
1007
56fd56b8
MG
1008 /* MIGRATE_RESERVE handled later if necessary */
1009 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1010 break;
e010487d 1011
b2a0ac88
MG
1012 area = &(zone->free_area[current_order]);
1013 if (list_empty(&area->free_list[migratetype]))
1014 continue;
1015
1016 page = list_entry(area->free_list[migratetype].next,
1017 struct page, lru);
1018 area->nr_free--;
1019
1020 /*
c361be55 1021 * If breaking a large block of pages, move all free
46dafbca
MG
1022 * pages to the preferred allocation list. If falling
1023 * back for a reclaimable kernel allocation, be more
25985edc 1024 * aggressive about taking ownership of free pages
47118af0
MN
1025 *
1026 * On the other hand, never change migration
1027 * type of MIGRATE_CMA pageblocks nor move CMA
1028 * pages on different free lists. We don't
1029 * want unmovable pages to be allocated from
1030 * MIGRATE_CMA areas.
b2a0ac88 1031 */
47118af0
MN
1032 if (!is_migrate_cma(migratetype) &&
1033 (unlikely(current_order >= pageblock_order / 2) ||
1034 start_migratetype == MIGRATE_RECLAIMABLE ||
1035 page_group_by_mobility_disabled)) {
1036 int pages;
46dafbca
MG
1037 pages = move_freepages_block(zone, page,
1038 start_migratetype);
1039
1040 /* Claim the whole block if over half of it is free */
dd5d241e
MG
1041 if (pages >= (1 << (pageblock_order-1)) ||
1042 page_group_by_mobility_disabled)
46dafbca
MG
1043 set_pageblock_migratetype(page,
1044 start_migratetype);
1045
b2a0ac88 1046 migratetype = start_migratetype;
c361be55 1047 }
b2a0ac88
MG
1048
1049 /* Remove the page from the freelists */
1050 list_del(&page->lru);
1051 rmv_page_order(page);
b2a0ac88 1052
2f66a68f 1053 /* Take ownership for orders >= pageblock_order */
47118af0
MN
1054 if (current_order >= pageblock_order &&
1055 !is_migrate_cma(migratetype))
2f66a68f 1056 change_pageblock_range(page, current_order,
b2a0ac88
MG
1057 start_migratetype);
1058
47118af0
MN
1059 expand(zone, page, order, current_order, area,
1060 is_migrate_cma(migratetype)
1061 ? migratetype : start_migratetype);
e0fff1bd
MG
1062
1063 trace_mm_page_alloc_extfrag(page, order, current_order,
1064 start_migratetype, migratetype);
1065
b2a0ac88
MG
1066 return page;
1067 }
1068 }
1069
728ec980 1070 return NULL;
b2a0ac88
MG
1071}
1072
56fd56b8 1073/*
1da177e4
LT
1074 * Do the hard work of removing an element from the buddy allocator.
1075 * Call me with the zone->lock already held.
1076 */
b2a0ac88
MG
1077static struct page *__rmqueue(struct zone *zone, unsigned int order,
1078 int migratetype)
1da177e4 1079{
1da177e4
LT
1080 struct page *page;
1081
728ec980 1082retry_reserve:
56fd56b8 1083 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1084
728ec980 1085 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1086 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1087
728ec980
MG
1088 /*
1089 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1090 * is used because __rmqueue_smallest is an inline function
1091 * and we want just one call site
1092 */
1093 if (!page) {
1094 migratetype = MIGRATE_RESERVE;
1095 goto retry_reserve;
1096 }
1097 }
1098
0d3d062a 1099 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1100 return page;
1da177e4
LT
1101}
1102
5f63b720 1103/*
1da177e4
LT
1104 * Obtain a specified number of elements from the buddy allocator, all under
1105 * a single hold of the lock, for efficiency. Add them to the supplied list.
1106 * Returns the number of new pages which were placed at *list.
1107 */
5f63b720 1108static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1109 unsigned long count, struct list_head *list,
e084b2d9 1110 int migratetype, int cold)
1da177e4 1111{
47118af0 1112 int mt = migratetype, i;
5f63b720 1113
c54ad30c 1114 spin_lock(&zone->lock);
1da177e4 1115 for (i = 0; i < count; ++i) {
b2a0ac88 1116 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1117 if (unlikely(page == NULL))
1da177e4 1118 break;
81eabcbe
MG
1119
1120 /*
1121 * Split buddy pages returned by expand() are received here
1122 * in physical page order. The page is added to the callers and
1123 * list and the list head then moves forward. From the callers
1124 * perspective, the linked list is ordered by page number in
1125 * some conditions. This is useful for IO devices that can
1126 * merge IO requests if the physical pages are ordered
1127 * properly.
1128 */
e084b2d9
MG
1129 if (likely(cold == 0))
1130 list_add(&page->lru, list);
1131 else
1132 list_add_tail(&page->lru, list);
47118af0
MN
1133 if (IS_ENABLED(CONFIG_CMA)) {
1134 mt = get_pageblock_migratetype(page);
1135 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1136 mt = migratetype;
1137 }
1138 set_page_private(page, mt);
81eabcbe 1139 list = &page->lru;
1da177e4 1140 }
f2260e6b 1141 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1142 spin_unlock(&zone->lock);
085cc7d5 1143 return i;
1da177e4
LT
1144}
1145
4ae7c039 1146#ifdef CONFIG_NUMA
8fce4d8e 1147/*
4037d452
CL
1148 * Called from the vmstat counter updater to drain pagesets of this
1149 * currently executing processor on remote nodes after they have
1150 * expired.
1151 *
879336c3
CL
1152 * Note that this function must be called with the thread pinned to
1153 * a single processor.
8fce4d8e 1154 */
4037d452 1155void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1156{
4ae7c039 1157 unsigned long flags;
4037d452 1158 int to_drain;
4ae7c039 1159
4037d452
CL
1160 local_irq_save(flags);
1161 if (pcp->count >= pcp->batch)
1162 to_drain = pcp->batch;
1163 else
1164 to_drain = pcp->count;
2a13515c
KM
1165 if (to_drain > 0) {
1166 free_pcppages_bulk(zone, to_drain, pcp);
1167 pcp->count -= to_drain;
1168 }
4037d452 1169 local_irq_restore(flags);
4ae7c039
CL
1170}
1171#endif
1172
9f8f2172
CL
1173/*
1174 * Drain pages of the indicated processor.
1175 *
1176 * The processor must either be the current processor and the
1177 * thread pinned to the current processor or a processor that
1178 * is not online.
1179 */
1180static void drain_pages(unsigned int cpu)
1da177e4 1181{
c54ad30c 1182 unsigned long flags;
1da177e4 1183 struct zone *zone;
1da177e4 1184
ee99c71c 1185 for_each_populated_zone(zone) {
1da177e4 1186 struct per_cpu_pageset *pset;
3dfa5721 1187 struct per_cpu_pages *pcp;
1da177e4 1188
99dcc3e5
CL
1189 local_irq_save(flags);
1190 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1191
1192 pcp = &pset->pcp;
2ff754fa
DR
1193 if (pcp->count) {
1194 free_pcppages_bulk(zone, pcp->count, pcp);
1195 pcp->count = 0;
1196 }
3dfa5721 1197 local_irq_restore(flags);
1da177e4
LT
1198 }
1199}
1da177e4 1200
9f8f2172
CL
1201/*
1202 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1203 */
1204void drain_local_pages(void *arg)
1205{
1206 drain_pages(smp_processor_id());
1207}
1208
1209/*
74046494
GBY
1210 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1211 *
1212 * Note that this code is protected against sending an IPI to an offline
1213 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1214 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1215 * nothing keeps CPUs from showing up after we populated the cpumask and
1216 * before the call to on_each_cpu_mask().
9f8f2172
CL
1217 */
1218void drain_all_pages(void)
1219{
74046494
GBY
1220 int cpu;
1221 struct per_cpu_pageset *pcp;
1222 struct zone *zone;
1223
1224 /*
1225 * Allocate in the BSS so we wont require allocation in
1226 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1227 */
1228 static cpumask_t cpus_with_pcps;
1229
1230 /*
1231 * We don't care about racing with CPU hotplug event
1232 * as offline notification will cause the notified
1233 * cpu to drain that CPU pcps and on_each_cpu_mask
1234 * disables preemption as part of its processing
1235 */
1236 for_each_online_cpu(cpu) {
1237 bool has_pcps = false;
1238 for_each_populated_zone(zone) {
1239 pcp = per_cpu_ptr(zone->pageset, cpu);
1240 if (pcp->pcp.count) {
1241 has_pcps = true;
1242 break;
1243 }
1244 }
1245 if (has_pcps)
1246 cpumask_set_cpu(cpu, &cpus_with_pcps);
1247 else
1248 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1249 }
1250 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1251}
1252
296699de 1253#ifdef CONFIG_HIBERNATION
1da177e4
LT
1254
1255void mark_free_pages(struct zone *zone)
1256{
f623f0db
RW
1257 unsigned long pfn, max_zone_pfn;
1258 unsigned long flags;
b2a0ac88 1259 int order, t;
1da177e4
LT
1260 struct list_head *curr;
1261
1262 if (!zone->spanned_pages)
1263 return;
1264
1265 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1266
1267 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1268 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1269 if (pfn_valid(pfn)) {
1270 struct page *page = pfn_to_page(pfn);
1271
7be98234
RW
1272 if (!swsusp_page_is_forbidden(page))
1273 swsusp_unset_page_free(page);
f623f0db 1274 }
1da177e4 1275
b2a0ac88
MG
1276 for_each_migratetype_order(order, t) {
1277 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1278 unsigned long i;
1da177e4 1279
f623f0db
RW
1280 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1281 for (i = 0; i < (1UL << order); i++)
7be98234 1282 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1283 }
b2a0ac88 1284 }
1da177e4
LT
1285 spin_unlock_irqrestore(&zone->lock, flags);
1286}
e2c55dc8 1287#endif /* CONFIG_PM */
1da177e4 1288
1da177e4
LT
1289/*
1290 * Free a 0-order page
fc91668e 1291 * cold == 1 ? free a cold page : free a hot page
1da177e4 1292 */
fc91668e 1293void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1294{
1295 struct zone *zone = page_zone(page);
1296 struct per_cpu_pages *pcp;
1297 unsigned long flags;
5f8dcc21 1298 int migratetype;
451ea25d 1299 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1300
ec95f53a 1301 if (!free_pages_prepare(page, 0))
689bcebf
HD
1302 return;
1303
5f8dcc21
MG
1304 migratetype = get_pageblock_migratetype(page);
1305 set_page_private(page, migratetype);
1da177e4 1306 local_irq_save(flags);
c277331d 1307 if (unlikely(wasMlocked))
da456f14 1308 free_page_mlock(page);
f8891e5e 1309 __count_vm_event(PGFREE);
da456f14 1310
5f8dcc21
MG
1311 /*
1312 * We only track unmovable, reclaimable and movable on pcp lists.
1313 * Free ISOLATE pages back to the allocator because they are being
1314 * offlined but treat RESERVE as movable pages so we can get those
1315 * areas back if necessary. Otherwise, we may have to free
1316 * excessively into the page allocator
1317 */
1318 if (migratetype >= MIGRATE_PCPTYPES) {
1319 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1320 free_one_page(zone, page, 0, migratetype);
1321 goto out;
1322 }
1323 migratetype = MIGRATE_MOVABLE;
1324 }
1325
99dcc3e5 1326 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1327 if (cold)
5f8dcc21 1328 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1329 else
5f8dcc21 1330 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1331 pcp->count++;
48db57f8 1332 if (pcp->count >= pcp->high) {
5f8dcc21 1333 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1334 pcp->count -= pcp->batch;
1335 }
5f8dcc21
MG
1336
1337out:
1da177e4 1338 local_irq_restore(flags);
1da177e4
LT
1339}
1340
cc59850e
KK
1341/*
1342 * Free a list of 0-order pages
1343 */
1344void free_hot_cold_page_list(struct list_head *list, int cold)
1345{
1346 struct page *page, *next;
1347
1348 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1349 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1350 free_hot_cold_page(page, cold);
1351 }
1352}
1353
8dfcc9ba
NP
1354/*
1355 * split_page takes a non-compound higher-order page, and splits it into
1356 * n (1<<order) sub-pages: page[0..n]
1357 * Each sub-page must be freed individually.
1358 *
1359 * Note: this is probably too low level an operation for use in drivers.
1360 * Please consult with lkml before using this in your driver.
1361 */
1362void split_page(struct page *page, unsigned int order)
1363{
1364 int i;
1365
725d704e
NP
1366 VM_BUG_ON(PageCompound(page));
1367 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1368
1369#ifdef CONFIG_KMEMCHECK
1370 /*
1371 * Split shadow pages too, because free(page[0]) would
1372 * otherwise free the whole shadow.
1373 */
1374 if (kmemcheck_page_is_tracked(page))
1375 split_page(virt_to_page(page[0].shadow), order);
1376#endif
1377
7835e98b
NP
1378 for (i = 1; i < (1 << order); i++)
1379 set_page_refcounted(page + i);
8dfcc9ba 1380}
8dfcc9ba 1381
748446bb
MG
1382/*
1383 * Similar to split_page except the page is already free. As this is only
1384 * being used for migration, the migratetype of the block also changes.
1385 * As this is called with interrupts disabled, the caller is responsible
1386 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1387 * are enabled.
1388 *
1389 * Note: this is probably too low level an operation for use in drivers.
1390 * Please consult with lkml before using this in your driver.
1391 */
1392int split_free_page(struct page *page)
1393{
1394 unsigned int order;
1395 unsigned long watermark;
1396 struct zone *zone;
1397
1398 BUG_ON(!PageBuddy(page));
1399
1400 zone = page_zone(page);
1401 order = page_order(page);
1402
1403 /* Obey watermarks as if the page was being allocated */
1404 watermark = low_wmark_pages(zone) + (1 << order);
1405 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1406 return 0;
1407
1408 /* Remove page from free list */
1409 list_del(&page->lru);
1410 zone->free_area[order].nr_free--;
1411 rmv_page_order(page);
1412 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1413
1414 /* Split into individual pages */
1415 set_page_refcounted(page);
1416 split_page(page, order);
1417
1418 if (order >= pageblock_order - 1) {
1419 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1420 for (; page < endpage; page += pageblock_nr_pages) {
1421 int mt = get_pageblock_migratetype(page);
1422 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1423 set_pageblock_migratetype(page,
1424 MIGRATE_MOVABLE);
1425 }
748446bb
MG
1426 }
1427
1428 return 1 << order;
1429}
1430
1da177e4
LT
1431/*
1432 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1433 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1434 * or two.
1435 */
0a15c3e9
MG
1436static inline
1437struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1438 struct zone *zone, int order, gfp_t gfp_flags,
1439 int migratetype)
1da177e4
LT
1440{
1441 unsigned long flags;
689bcebf 1442 struct page *page;
1da177e4
LT
1443 int cold = !!(gfp_flags & __GFP_COLD);
1444
689bcebf 1445again:
48db57f8 1446 if (likely(order == 0)) {
1da177e4 1447 struct per_cpu_pages *pcp;
5f8dcc21 1448 struct list_head *list;
1da177e4 1449
1da177e4 1450 local_irq_save(flags);
99dcc3e5
CL
1451 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1452 list = &pcp->lists[migratetype];
5f8dcc21 1453 if (list_empty(list)) {
535131e6 1454 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1455 pcp->batch, list,
e084b2d9 1456 migratetype, cold);
5f8dcc21 1457 if (unlikely(list_empty(list)))
6fb332fa 1458 goto failed;
535131e6 1459 }
b92a6edd 1460
5f8dcc21
MG
1461 if (cold)
1462 page = list_entry(list->prev, struct page, lru);
1463 else
1464 page = list_entry(list->next, struct page, lru);
1465
b92a6edd
MG
1466 list_del(&page->lru);
1467 pcp->count--;
7fb1d9fc 1468 } else {
dab48dab
AM
1469 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1470 /*
1471 * __GFP_NOFAIL is not to be used in new code.
1472 *
1473 * All __GFP_NOFAIL callers should be fixed so that they
1474 * properly detect and handle allocation failures.
1475 *
1476 * We most definitely don't want callers attempting to
4923abf9 1477 * allocate greater than order-1 page units with
dab48dab
AM
1478 * __GFP_NOFAIL.
1479 */
4923abf9 1480 WARN_ON_ONCE(order > 1);
dab48dab 1481 }
1da177e4 1482 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1483 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1484 spin_unlock(&zone->lock);
1485 if (!page)
1486 goto failed;
6ccf80eb 1487 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1da177e4
LT
1488 }
1489
f8891e5e 1490 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1491 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1492 local_irq_restore(flags);
1da177e4 1493
725d704e 1494 VM_BUG_ON(bad_range(zone, page));
17cf4406 1495 if (prep_new_page(page, order, gfp_flags))
a74609fa 1496 goto again;
1da177e4 1497 return page;
a74609fa
NP
1498
1499failed:
1500 local_irq_restore(flags);
a74609fa 1501 return NULL;
1da177e4
LT
1502}
1503
41858966
MG
1504/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1505#define ALLOC_WMARK_MIN WMARK_MIN
1506#define ALLOC_WMARK_LOW WMARK_LOW
1507#define ALLOC_WMARK_HIGH WMARK_HIGH
1508#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1509
1510/* Mask to get the watermark bits */
1511#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1512
3148890b
NP
1513#define ALLOC_HARDER 0x10 /* try to alloc harder */
1514#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1515#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1516
933e312e
AM
1517#ifdef CONFIG_FAIL_PAGE_ALLOC
1518
b2588c4b 1519static struct {
933e312e
AM
1520 struct fault_attr attr;
1521
1522 u32 ignore_gfp_highmem;
1523 u32 ignore_gfp_wait;
54114994 1524 u32 min_order;
933e312e
AM
1525} fail_page_alloc = {
1526 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1527 .ignore_gfp_wait = 1,
1528 .ignore_gfp_highmem = 1,
54114994 1529 .min_order = 1,
933e312e
AM
1530};
1531
1532static int __init setup_fail_page_alloc(char *str)
1533{
1534 return setup_fault_attr(&fail_page_alloc.attr, str);
1535}
1536__setup("fail_page_alloc=", setup_fail_page_alloc);
1537
deaf386e 1538static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1539{
54114994 1540 if (order < fail_page_alloc.min_order)
deaf386e 1541 return false;
933e312e 1542 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1543 return false;
933e312e 1544 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1545 return false;
933e312e 1546 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1547 return false;
933e312e
AM
1548
1549 return should_fail(&fail_page_alloc.attr, 1 << order);
1550}
1551
1552#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1553
1554static int __init fail_page_alloc_debugfs(void)
1555{
f4ae40a6 1556 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1557 struct dentry *dir;
933e312e 1558
dd48c085
AM
1559 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1560 &fail_page_alloc.attr);
1561 if (IS_ERR(dir))
1562 return PTR_ERR(dir);
933e312e 1563
b2588c4b
AM
1564 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1565 &fail_page_alloc.ignore_gfp_wait))
1566 goto fail;
1567 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1568 &fail_page_alloc.ignore_gfp_highmem))
1569 goto fail;
1570 if (!debugfs_create_u32("min-order", mode, dir,
1571 &fail_page_alloc.min_order))
1572 goto fail;
1573
1574 return 0;
1575fail:
dd48c085 1576 debugfs_remove_recursive(dir);
933e312e 1577
b2588c4b 1578 return -ENOMEM;
933e312e
AM
1579}
1580
1581late_initcall(fail_page_alloc_debugfs);
1582
1583#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1584
1585#else /* CONFIG_FAIL_PAGE_ALLOC */
1586
deaf386e 1587static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1588{
deaf386e 1589 return false;
933e312e
AM
1590}
1591
1592#endif /* CONFIG_FAIL_PAGE_ALLOC */
1593
1da177e4 1594/*
88f5acf8 1595 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1596 * of the allocation.
1597 */
88f5acf8
MG
1598static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1599 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1600{
1601 /* free_pages my go negative - that's OK */
d23ad423 1602 long min = mark;
2cfed075 1603 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4
LT
1604 int o;
1605
df0a6daa 1606 free_pages -= (1 << order) - 1;
7fb1d9fc 1607 if (alloc_flags & ALLOC_HIGH)
1da177e4 1608 min -= min / 2;
7fb1d9fc 1609 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1610 min -= min / 4;
1611
2cfed075 1612 if (free_pages <= min + lowmem_reserve)
88f5acf8 1613 return false;
1da177e4
LT
1614 for (o = 0; o < order; o++) {
1615 /* At the next order, this order's pages become unavailable */
1616 free_pages -= z->free_area[o].nr_free << o;
1617
1618 /* Require fewer higher order pages to be free */
1619 min >>= 1;
1620
1621 if (free_pages <= min)
88f5acf8 1622 return false;
1da177e4 1623 }
88f5acf8
MG
1624 return true;
1625}
1626
702d1a6e
MK
1627#ifdef CONFIG_MEMORY_ISOLATION
1628static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1629{
1630 if (unlikely(zone->nr_pageblock_isolate))
1631 return zone->nr_pageblock_isolate * pageblock_nr_pages;
1632 return 0;
1633}
1634#else
1635static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1636{
1637 return 0;
1638}
1639#endif
1640
88f5acf8
MG
1641bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1642 int classzone_idx, int alloc_flags)
1643{
1644 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1645 zone_page_state(z, NR_FREE_PAGES));
1646}
1647
1648bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1649 int classzone_idx, int alloc_flags)
1650{
1651 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1652
1653 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1654 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1655
702d1a6e
MK
1656 /*
1657 * If the zone has MIGRATE_ISOLATE type free pages, we should consider
1658 * it. nr_zone_isolate_freepages is never accurate so kswapd might not
1659 * sleep although it could do so. But this is more desirable for memory
1660 * hotplug than sleeping which can cause a livelock in the direct
1661 * reclaim path.
1662 */
1663 free_pages -= nr_zone_isolate_freepages(z);
88f5acf8
MG
1664 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1665 free_pages);
1da177e4
LT
1666}
1667
9276b1bc
PJ
1668#ifdef CONFIG_NUMA
1669/*
1670 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1671 * skip over zones that are not allowed by the cpuset, or that have
1672 * been recently (in last second) found to be nearly full. See further
1673 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1674 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1675 *
1676 * If the zonelist cache is present in the passed in zonelist, then
1677 * returns a pointer to the allowed node mask (either the current
37b07e41 1678 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1679 *
1680 * If the zonelist cache is not available for this zonelist, does
1681 * nothing and returns NULL.
1682 *
1683 * If the fullzones BITMAP in the zonelist cache is stale (more than
1684 * a second since last zap'd) then we zap it out (clear its bits.)
1685 *
1686 * We hold off even calling zlc_setup, until after we've checked the
1687 * first zone in the zonelist, on the theory that most allocations will
1688 * be satisfied from that first zone, so best to examine that zone as
1689 * quickly as we can.
1690 */
1691static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1692{
1693 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1694 nodemask_t *allowednodes; /* zonelist_cache approximation */
1695
1696 zlc = zonelist->zlcache_ptr;
1697 if (!zlc)
1698 return NULL;
1699
f05111f5 1700 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1701 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1702 zlc->last_full_zap = jiffies;
1703 }
1704
1705 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1706 &cpuset_current_mems_allowed :
37b07e41 1707 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1708 return allowednodes;
1709}
1710
1711/*
1712 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1713 * if it is worth looking at further for free memory:
1714 * 1) Check that the zone isn't thought to be full (doesn't have its
1715 * bit set in the zonelist_cache fullzones BITMAP).
1716 * 2) Check that the zones node (obtained from the zonelist_cache
1717 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1718 * Return true (non-zero) if zone is worth looking at further, or
1719 * else return false (zero) if it is not.
1720 *
1721 * This check -ignores- the distinction between various watermarks,
1722 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1723 * found to be full for any variation of these watermarks, it will
1724 * be considered full for up to one second by all requests, unless
1725 * we are so low on memory on all allowed nodes that we are forced
1726 * into the second scan of the zonelist.
1727 *
1728 * In the second scan we ignore this zonelist cache and exactly
1729 * apply the watermarks to all zones, even it is slower to do so.
1730 * We are low on memory in the second scan, and should leave no stone
1731 * unturned looking for a free page.
1732 */
dd1a239f 1733static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1734 nodemask_t *allowednodes)
1735{
1736 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1737 int i; /* index of *z in zonelist zones */
1738 int n; /* node that zone *z is on */
1739
1740 zlc = zonelist->zlcache_ptr;
1741 if (!zlc)
1742 return 1;
1743
dd1a239f 1744 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1745 n = zlc->z_to_n[i];
1746
1747 /* This zone is worth trying if it is allowed but not full */
1748 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1749}
1750
1751/*
1752 * Given 'z' scanning a zonelist, set the corresponding bit in
1753 * zlc->fullzones, so that subsequent attempts to allocate a page
1754 * from that zone don't waste time re-examining it.
1755 */
dd1a239f 1756static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1757{
1758 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1759 int i; /* index of *z in zonelist zones */
1760
1761 zlc = zonelist->zlcache_ptr;
1762 if (!zlc)
1763 return;
1764
dd1a239f 1765 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1766
1767 set_bit(i, zlc->fullzones);
1768}
1769
76d3fbf8
MG
1770/*
1771 * clear all zones full, called after direct reclaim makes progress so that
1772 * a zone that was recently full is not skipped over for up to a second
1773 */
1774static void zlc_clear_zones_full(struct zonelist *zonelist)
1775{
1776 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1777
1778 zlc = zonelist->zlcache_ptr;
1779 if (!zlc)
1780 return;
1781
1782 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1783}
1784
9276b1bc
PJ
1785#else /* CONFIG_NUMA */
1786
1787static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1788{
1789 return NULL;
1790}
1791
dd1a239f 1792static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1793 nodemask_t *allowednodes)
1794{
1795 return 1;
1796}
1797
dd1a239f 1798static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1799{
1800}
76d3fbf8
MG
1801
1802static void zlc_clear_zones_full(struct zonelist *zonelist)
1803{
1804}
9276b1bc
PJ
1805#endif /* CONFIG_NUMA */
1806
7fb1d9fc 1807/*
0798e519 1808 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1809 * a page.
1810 */
1811static struct page *
19770b32 1812get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1813 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1814 struct zone *preferred_zone, int migratetype)
753ee728 1815{
dd1a239f 1816 struct zoneref *z;
7fb1d9fc 1817 struct page *page = NULL;
54a6eb5c 1818 int classzone_idx;
5117f45d 1819 struct zone *zone;
9276b1bc
PJ
1820 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1821 int zlc_active = 0; /* set if using zonelist_cache */
1822 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1823
19770b32 1824 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1825zonelist_scan:
7fb1d9fc 1826 /*
9276b1bc 1827 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1828 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1829 */
19770b32
MG
1830 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1831 high_zoneidx, nodemask) {
9276b1bc
PJ
1832 if (NUMA_BUILD && zlc_active &&
1833 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1834 continue;
7fb1d9fc 1835 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1836 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1837 continue;
a756cf59
JW
1838 /*
1839 * When allocating a page cache page for writing, we
1840 * want to get it from a zone that is within its dirty
1841 * limit, such that no single zone holds more than its
1842 * proportional share of globally allowed dirty pages.
1843 * The dirty limits take into account the zone's
1844 * lowmem reserves and high watermark so that kswapd
1845 * should be able to balance it without having to
1846 * write pages from its LRU list.
1847 *
1848 * This may look like it could increase pressure on
1849 * lower zones by failing allocations in higher zones
1850 * before they are full. But the pages that do spill
1851 * over are limited as the lower zones are protected
1852 * by this very same mechanism. It should not become
1853 * a practical burden to them.
1854 *
1855 * XXX: For now, allow allocations to potentially
1856 * exceed the per-zone dirty limit in the slowpath
1857 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1858 * which is important when on a NUMA setup the allowed
1859 * zones are together not big enough to reach the
1860 * global limit. The proper fix for these situations
1861 * will require awareness of zones in the
1862 * dirty-throttling and the flusher threads.
1863 */
1864 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1865 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1866 goto this_zone_full;
7fb1d9fc 1867
41858966 1868 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1869 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1870 unsigned long mark;
fa5e084e
MG
1871 int ret;
1872
41858966 1873 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1874 if (zone_watermark_ok(zone, order, mark,
1875 classzone_idx, alloc_flags))
1876 goto try_this_zone;
1877
cd38b115
MG
1878 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1879 /*
1880 * we do zlc_setup if there are multiple nodes
1881 * and before considering the first zone allowed
1882 * by the cpuset.
1883 */
1884 allowednodes = zlc_setup(zonelist, alloc_flags);
1885 zlc_active = 1;
1886 did_zlc_setup = 1;
1887 }
1888
fa5e084e
MG
1889 if (zone_reclaim_mode == 0)
1890 goto this_zone_full;
1891
cd38b115
MG
1892 /*
1893 * As we may have just activated ZLC, check if the first
1894 * eligible zone has failed zone_reclaim recently.
1895 */
1896 if (NUMA_BUILD && zlc_active &&
1897 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1898 continue;
1899
fa5e084e
MG
1900 ret = zone_reclaim(zone, gfp_mask, order);
1901 switch (ret) {
1902 case ZONE_RECLAIM_NOSCAN:
1903 /* did not scan */
cd38b115 1904 continue;
fa5e084e
MG
1905 case ZONE_RECLAIM_FULL:
1906 /* scanned but unreclaimable */
cd38b115 1907 continue;
fa5e084e
MG
1908 default:
1909 /* did we reclaim enough */
1910 if (!zone_watermark_ok(zone, order, mark,
1911 classzone_idx, alloc_flags))
9276b1bc 1912 goto this_zone_full;
0798e519 1913 }
7fb1d9fc
RS
1914 }
1915
fa5e084e 1916try_this_zone:
3dd28266
MG
1917 page = buffered_rmqueue(preferred_zone, zone, order,
1918 gfp_mask, migratetype);
0798e519 1919 if (page)
7fb1d9fc 1920 break;
9276b1bc
PJ
1921this_zone_full:
1922 if (NUMA_BUILD)
1923 zlc_mark_zone_full(zonelist, z);
54a6eb5c 1924 }
9276b1bc
PJ
1925
1926 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1927 /* Disable zlc cache for second zonelist scan */
1928 zlc_active = 0;
1929 goto zonelist_scan;
1930 }
7fb1d9fc 1931 return page;
753ee728
MH
1932}
1933
29423e77
DR
1934/*
1935 * Large machines with many possible nodes should not always dump per-node
1936 * meminfo in irq context.
1937 */
1938static inline bool should_suppress_show_mem(void)
1939{
1940 bool ret = false;
1941
1942#if NODES_SHIFT > 8
1943 ret = in_interrupt();
1944#endif
1945 return ret;
1946}
1947
a238ab5b
DH
1948static DEFINE_RATELIMIT_STATE(nopage_rs,
1949 DEFAULT_RATELIMIT_INTERVAL,
1950 DEFAULT_RATELIMIT_BURST);
1951
1952void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1953{
a238ab5b
DH
1954 unsigned int filter = SHOW_MEM_FILTER_NODES;
1955
c0a32fc5
SG
1956 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1957 debug_guardpage_minorder() > 0)
a238ab5b
DH
1958 return;
1959
1960 /*
1961 * This documents exceptions given to allocations in certain
1962 * contexts that are allowed to allocate outside current's set
1963 * of allowed nodes.
1964 */
1965 if (!(gfp_mask & __GFP_NOMEMALLOC))
1966 if (test_thread_flag(TIF_MEMDIE) ||
1967 (current->flags & (PF_MEMALLOC | PF_EXITING)))
1968 filter &= ~SHOW_MEM_FILTER_NODES;
1969 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1970 filter &= ~SHOW_MEM_FILTER_NODES;
1971
1972 if (fmt) {
3ee9a4f0
JP
1973 struct va_format vaf;
1974 va_list args;
1975
a238ab5b 1976 va_start(args, fmt);
3ee9a4f0
JP
1977
1978 vaf.fmt = fmt;
1979 vaf.va = &args;
1980
1981 pr_warn("%pV", &vaf);
1982
a238ab5b
DH
1983 va_end(args);
1984 }
1985
3ee9a4f0
JP
1986 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
1987 current->comm, order, gfp_mask);
a238ab5b
DH
1988
1989 dump_stack();
1990 if (!should_suppress_show_mem())
1991 show_mem(filter);
1992}
1993
11e33f6a
MG
1994static inline int
1995should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 1996 unsigned long did_some_progress,
11e33f6a 1997 unsigned long pages_reclaimed)
1da177e4 1998{
11e33f6a
MG
1999 /* Do not loop if specifically requested */
2000 if (gfp_mask & __GFP_NORETRY)
2001 return 0;
1da177e4 2002
f90ac398
MG
2003 /* Always retry if specifically requested */
2004 if (gfp_mask & __GFP_NOFAIL)
2005 return 1;
2006
2007 /*
2008 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2009 * making forward progress without invoking OOM. Suspend also disables
2010 * storage devices so kswapd will not help. Bail if we are suspending.
2011 */
2012 if (!did_some_progress && pm_suspended_storage())
2013 return 0;
2014
11e33f6a
MG
2015 /*
2016 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2017 * means __GFP_NOFAIL, but that may not be true in other
2018 * implementations.
2019 */
2020 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2021 return 1;
2022
2023 /*
2024 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2025 * specified, then we retry until we no longer reclaim any pages
2026 * (above), or we've reclaimed an order of pages at least as
2027 * large as the allocation's order. In both cases, if the
2028 * allocation still fails, we stop retrying.
2029 */
2030 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2031 return 1;
cf40bd16 2032
11e33f6a
MG
2033 return 0;
2034}
933e312e 2035
11e33f6a
MG
2036static inline struct page *
2037__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2038 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2039 nodemask_t *nodemask, struct zone *preferred_zone,
2040 int migratetype)
11e33f6a
MG
2041{
2042 struct page *page;
2043
2044 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2045 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2046 schedule_timeout_uninterruptible(1);
1da177e4
LT
2047 return NULL;
2048 }
6b1de916 2049
11e33f6a
MG
2050 /*
2051 * Go through the zonelist yet one more time, keep very high watermark
2052 * here, this is only to catch a parallel oom killing, we must fail if
2053 * we're still under heavy pressure.
2054 */
2055 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2056 order, zonelist, high_zoneidx,
5117f45d 2057 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2058 preferred_zone, migratetype);
7fb1d9fc 2059 if (page)
11e33f6a
MG
2060 goto out;
2061
4365a567
KH
2062 if (!(gfp_mask & __GFP_NOFAIL)) {
2063 /* The OOM killer will not help higher order allocs */
2064 if (order > PAGE_ALLOC_COSTLY_ORDER)
2065 goto out;
03668b3c
DR
2066 /* The OOM killer does not needlessly kill tasks for lowmem */
2067 if (high_zoneidx < ZONE_NORMAL)
2068 goto out;
4365a567
KH
2069 /*
2070 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2071 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2072 * The caller should handle page allocation failure by itself if
2073 * it specifies __GFP_THISNODE.
2074 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2075 */
2076 if (gfp_mask & __GFP_THISNODE)
2077 goto out;
2078 }
11e33f6a 2079 /* Exhausted what can be done so it's blamo time */
08ab9b10 2080 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2081
2082out:
2083 clear_zonelist_oom(zonelist, gfp_mask);
2084 return page;
2085}
2086
56de7263
MG
2087#ifdef CONFIG_COMPACTION
2088/* Try memory compaction for high-order allocations before reclaim */
2089static struct page *
2090__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2091 struct zonelist *zonelist, enum zone_type high_zoneidx,
2092 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712
MG
2093 int migratetype, bool sync_migration,
2094 bool *deferred_compaction,
2095 unsigned long *did_some_progress)
56de7263
MG
2096{
2097 struct page *page;
2098
66199712 2099 if (!order)
56de7263
MG
2100 return NULL;
2101
aff62249 2102 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2103 *deferred_compaction = true;
2104 return NULL;
2105 }
2106
c06b1fca 2107 current->flags |= PF_MEMALLOC;
56de7263 2108 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
77f1fe6b 2109 nodemask, sync_migration);
c06b1fca 2110 current->flags &= ~PF_MEMALLOC;
56de7263
MG
2111 if (*did_some_progress != COMPACT_SKIPPED) {
2112
2113 /* Page migration frees to the PCP lists but we want merging */
2114 drain_pages(get_cpu());
2115 put_cpu();
2116
2117 page = get_page_from_freelist(gfp_mask, nodemask,
2118 order, zonelist, high_zoneidx,
2119 alloc_flags, preferred_zone,
2120 migratetype);
2121 if (page) {
4f92e258
MG
2122 preferred_zone->compact_considered = 0;
2123 preferred_zone->compact_defer_shift = 0;
aff62249
RR
2124 if (order >= preferred_zone->compact_order_failed)
2125 preferred_zone->compact_order_failed = order + 1;
56de7263
MG
2126 count_vm_event(COMPACTSUCCESS);
2127 return page;
2128 }
2129
2130 /*
2131 * It's bad if compaction run occurs and fails.
2132 * The most likely reason is that pages exist,
2133 * but not enough to satisfy watermarks.
2134 */
2135 count_vm_event(COMPACTFAIL);
66199712
MG
2136
2137 /*
2138 * As async compaction considers a subset of pageblocks, only
2139 * defer if the failure was a sync compaction failure.
2140 */
2141 if (sync_migration)
aff62249 2142 defer_compaction(preferred_zone, order);
56de7263
MG
2143
2144 cond_resched();
2145 }
2146
2147 return NULL;
2148}
2149#else
2150static inline struct page *
2151__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2152 struct zonelist *zonelist, enum zone_type high_zoneidx,
2153 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712
MG
2154 int migratetype, bool sync_migration,
2155 bool *deferred_compaction,
2156 unsigned long *did_some_progress)
56de7263
MG
2157{
2158 return NULL;
2159}
2160#endif /* CONFIG_COMPACTION */
2161
bba90710
MS
2162/* Perform direct synchronous page reclaim */
2163static int
2164__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2165 nodemask_t *nodemask)
11e33f6a 2166{
11e33f6a 2167 struct reclaim_state reclaim_state;
bba90710 2168 int progress;
11e33f6a
MG
2169
2170 cond_resched();
2171
2172 /* We now go into synchronous reclaim */
2173 cpuset_memory_pressure_bump();
c06b1fca 2174 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2175 lockdep_set_current_reclaim_state(gfp_mask);
2176 reclaim_state.reclaimed_slab = 0;
c06b1fca 2177 current->reclaim_state = &reclaim_state;
11e33f6a 2178
bba90710 2179 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2180
c06b1fca 2181 current->reclaim_state = NULL;
11e33f6a 2182 lockdep_clear_current_reclaim_state();
c06b1fca 2183 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2184
2185 cond_resched();
2186
bba90710
MS
2187 return progress;
2188}
2189
2190/* The really slow allocator path where we enter direct reclaim */
2191static inline struct page *
2192__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2193 struct zonelist *zonelist, enum zone_type high_zoneidx,
2194 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2195 int migratetype, unsigned long *did_some_progress)
2196{
2197 struct page *page = NULL;
2198 bool drained = false;
2199
2200 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2201 nodemask);
9ee493ce
MG
2202 if (unlikely(!(*did_some_progress)))
2203 return NULL;
11e33f6a 2204
76d3fbf8
MG
2205 /* After successful reclaim, reconsider all zones for allocation */
2206 if (NUMA_BUILD)
2207 zlc_clear_zones_full(zonelist);
2208
9ee493ce
MG
2209retry:
2210 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2211 zonelist, high_zoneidx,
3dd28266
MG
2212 alloc_flags, preferred_zone,
2213 migratetype);
9ee493ce
MG
2214
2215 /*
2216 * If an allocation failed after direct reclaim, it could be because
2217 * pages are pinned on the per-cpu lists. Drain them and try again
2218 */
2219 if (!page && !drained) {
2220 drain_all_pages();
2221 drained = true;
2222 goto retry;
2223 }
2224
11e33f6a
MG
2225 return page;
2226}
2227
1da177e4 2228/*
11e33f6a
MG
2229 * This is called in the allocator slow-path if the allocation request is of
2230 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2231 */
11e33f6a
MG
2232static inline struct page *
2233__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2234 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2235 nodemask_t *nodemask, struct zone *preferred_zone,
2236 int migratetype)
11e33f6a
MG
2237{
2238 struct page *page;
2239
2240 do {
2241 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2242 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2243 preferred_zone, migratetype);
11e33f6a
MG
2244
2245 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2246 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2247 } while (!page && (gfp_mask & __GFP_NOFAIL));
2248
2249 return page;
2250}
2251
2252static inline
2253void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2254 enum zone_type high_zoneidx,
2255 enum zone_type classzone_idx)
1da177e4 2256{
dd1a239f
MG
2257 struct zoneref *z;
2258 struct zone *zone;
1da177e4 2259
11e33f6a 2260 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2261 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2262}
cf40bd16 2263
341ce06f
PZ
2264static inline int
2265gfp_to_alloc_flags(gfp_t gfp_mask)
2266{
341ce06f
PZ
2267 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2268 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2269
a56f57ff 2270 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2271 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2272
341ce06f
PZ
2273 /*
2274 * The caller may dip into page reserves a bit more if the caller
2275 * cannot run direct reclaim, or if the caller has realtime scheduling
2276 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2277 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2278 */
e6223a3b 2279 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2280
341ce06f 2281 if (!wait) {
5c3240d9
AA
2282 /*
2283 * Not worth trying to allocate harder for
2284 * __GFP_NOMEMALLOC even if it can't schedule.
2285 */
2286 if (!(gfp_mask & __GFP_NOMEMALLOC))
2287 alloc_flags |= ALLOC_HARDER;
523b9458 2288 /*
341ce06f
PZ
2289 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2290 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2291 */
341ce06f 2292 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2293 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2294 alloc_flags |= ALLOC_HARDER;
2295
2296 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2297 if (!in_interrupt() &&
c06b1fca 2298 ((current->flags & PF_MEMALLOC) ||
341ce06f
PZ
2299 unlikely(test_thread_flag(TIF_MEMDIE))))
2300 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2301 }
6b1de916 2302
341ce06f
PZ
2303 return alloc_flags;
2304}
2305
11e33f6a
MG
2306static inline struct page *
2307__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2308 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2309 nodemask_t *nodemask, struct zone *preferred_zone,
2310 int migratetype)
11e33f6a
MG
2311{
2312 const gfp_t wait = gfp_mask & __GFP_WAIT;
2313 struct page *page = NULL;
2314 int alloc_flags;
2315 unsigned long pages_reclaimed = 0;
2316 unsigned long did_some_progress;
77f1fe6b 2317 bool sync_migration = false;
66199712 2318 bool deferred_compaction = false;
1da177e4 2319
72807a74
MG
2320 /*
2321 * In the slowpath, we sanity check order to avoid ever trying to
2322 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2323 * be using allocators in order of preference for an area that is
2324 * too large.
2325 */
1fc28b70
MG
2326 if (order >= MAX_ORDER) {
2327 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2328 return NULL;
1fc28b70 2329 }
1da177e4 2330
952f3b51
CL
2331 /*
2332 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2333 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2334 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2335 * using a larger set of nodes after it has established that the
2336 * allowed per node queues are empty and that nodes are
2337 * over allocated.
2338 */
2339 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2340 goto nopage;
2341
cc4a6851 2342restart:
32dba98e
AA
2343 if (!(gfp_mask & __GFP_NO_KSWAPD))
2344 wake_all_kswapd(order, zonelist, high_zoneidx,
99504748 2345 zone_idx(preferred_zone));
1da177e4 2346
9bf2229f 2347 /*
7fb1d9fc
RS
2348 * OK, we're below the kswapd watermark and have kicked background
2349 * reclaim. Now things get more complex, so set up alloc_flags according
2350 * to how we want to proceed.
9bf2229f 2351 */
341ce06f 2352 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2353
f33261d7
DR
2354 /*
2355 * Find the true preferred zone if the allocation is unconstrained by
2356 * cpusets.
2357 */
2358 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2359 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2360 &preferred_zone);
2361
cfa54a0f 2362rebalance:
341ce06f 2363 /* This is the last chance, in general, before the goto nopage. */
19770b32 2364 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2365 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2366 preferred_zone, migratetype);
7fb1d9fc
RS
2367 if (page)
2368 goto got_pg;
1da177e4 2369
11e33f6a 2370 /* Allocate without watermarks if the context allows */
341ce06f
PZ
2371 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2372 page = __alloc_pages_high_priority(gfp_mask, order,
2373 zonelist, high_zoneidx, nodemask,
2374 preferred_zone, migratetype);
2375 if (page)
2376 goto got_pg;
1da177e4
LT
2377 }
2378
2379 /* Atomic allocations - we can't balance anything */
2380 if (!wait)
2381 goto nopage;
2382
341ce06f 2383 /* Avoid recursion of direct reclaim */
c06b1fca 2384 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2385 goto nopage;
2386
6583bb64
DR
2387 /* Avoid allocations with no watermarks from looping endlessly */
2388 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2389 goto nopage;
2390
77f1fe6b
MG
2391 /*
2392 * Try direct compaction. The first pass is asynchronous. Subsequent
2393 * attempts after direct reclaim are synchronous
2394 */
56de7263
MG
2395 page = __alloc_pages_direct_compact(gfp_mask, order,
2396 zonelist, high_zoneidx,
2397 nodemask,
2398 alloc_flags, preferred_zone,
66199712
MG
2399 migratetype, sync_migration,
2400 &deferred_compaction,
2401 &did_some_progress);
56de7263
MG
2402 if (page)
2403 goto got_pg;
c6a140bf 2404 sync_migration = true;
56de7263 2405
66199712
MG
2406 /*
2407 * If compaction is deferred for high-order allocations, it is because
2408 * sync compaction recently failed. In this is the case and the caller
2409 * has requested the system not be heavily disrupted, fail the
2410 * allocation now instead of entering direct reclaim
2411 */
2412 if (deferred_compaction && (gfp_mask & __GFP_NO_KSWAPD))
2413 goto nopage;
2414
11e33f6a
MG
2415 /* Try direct reclaim and then allocating */
2416 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2417 zonelist, high_zoneidx,
2418 nodemask,
5117f45d 2419 alloc_flags, preferred_zone,
3dd28266 2420 migratetype, &did_some_progress);
11e33f6a
MG
2421 if (page)
2422 goto got_pg;
1da177e4 2423
e33c3b5e 2424 /*
11e33f6a
MG
2425 * If we failed to make any progress reclaiming, then we are
2426 * running out of options and have to consider going OOM
e33c3b5e 2427 */
11e33f6a
MG
2428 if (!did_some_progress) {
2429 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2430 if (oom_killer_disabled)
2431 goto nopage;
29fd66d2
DR
2432 /* Coredumps can quickly deplete all memory reserves */
2433 if ((current->flags & PF_DUMPCORE) &&
2434 !(gfp_mask & __GFP_NOFAIL))
2435 goto nopage;
11e33f6a
MG
2436 page = __alloc_pages_may_oom(gfp_mask, order,
2437 zonelist, high_zoneidx,
3dd28266
MG
2438 nodemask, preferred_zone,
2439 migratetype);
11e33f6a
MG
2440 if (page)
2441 goto got_pg;
1da177e4 2442
03668b3c
DR
2443 if (!(gfp_mask & __GFP_NOFAIL)) {
2444 /*
2445 * The oom killer is not called for high-order
2446 * allocations that may fail, so if no progress
2447 * is being made, there are no other options and
2448 * retrying is unlikely to help.
2449 */
2450 if (order > PAGE_ALLOC_COSTLY_ORDER)
2451 goto nopage;
2452 /*
2453 * The oom killer is not called for lowmem
2454 * allocations to prevent needlessly killing
2455 * innocent tasks.
2456 */
2457 if (high_zoneidx < ZONE_NORMAL)
2458 goto nopage;
2459 }
e2c55dc8 2460
ff0ceb9d
DR
2461 goto restart;
2462 }
1da177e4
LT
2463 }
2464
11e33f6a 2465 /* Check if we should retry the allocation */
a41f24ea 2466 pages_reclaimed += did_some_progress;
f90ac398
MG
2467 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2468 pages_reclaimed)) {
11e33f6a 2469 /* Wait for some write requests to complete then retry */
0e093d99 2470 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2471 goto rebalance;
3e7d3449
MG
2472 } else {
2473 /*
2474 * High-order allocations do not necessarily loop after
2475 * direct reclaim and reclaim/compaction depends on compaction
2476 * being called after reclaim so call directly if necessary
2477 */
2478 page = __alloc_pages_direct_compact(gfp_mask, order,
2479 zonelist, high_zoneidx,
2480 nodemask,
2481 alloc_flags, preferred_zone,
66199712
MG
2482 migratetype, sync_migration,
2483 &deferred_compaction,
2484 &did_some_progress);
3e7d3449
MG
2485 if (page)
2486 goto got_pg;
1da177e4
LT
2487 }
2488
2489nopage:
a238ab5b 2490 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2491 return page;
1da177e4 2492got_pg:
b1eeab67
VN
2493 if (kmemcheck_enabled)
2494 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1da177e4 2495 return page;
11e33f6a 2496
1da177e4 2497}
11e33f6a
MG
2498
2499/*
2500 * This is the 'heart' of the zoned buddy allocator.
2501 */
2502struct page *
2503__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2504 struct zonelist *zonelist, nodemask_t *nodemask)
2505{
2506 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2507 struct zone *preferred_zone;
cc9a6c87 2508 struct page *page = NULL;
3dd28266 2509 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2510 unsigned int cpuset_mems_cookie;
11e33f6a 2511
dcce284a
BH
2512 gfp_mask &= gfp_allowed_mask;
2513
11e33f6a
MG
2514 lockdep_trace_alloc(gfp_mask);
2515
2516 might_sleep_if(gfp_mask & __GFP_WAIT);
2517
2518 if (should_fail_alloc_page(gfp_mask, order))
2519 return NULL;
2520
2521 /*
2522 * Check the zones suitable for the gfp_mask contain at least one
2523 * valid zone. It's possible to have an empty zonelist as a result
2524 * of GFP_THISNODE and a memoryless node
2525 */
2526 if (unlikely(!zonelist->_zonerefs->zone))
2527 return NULL;
2528
cc9a6c87
MG
2529retry_cpuset:
2530 cpuset_mems_cookie = get_mems_allowed();
2531
5117f45d 2532 /* The preferred zone is used for statistics later */
f33261d7
DR
2533 first_zones_zonelist(zonelist, high_zoneidx,
2534 nodemask ? : &cpuset_current_mems_allowed,
2535 &preferred_zone);
cc9a6c87
MG
2536 if (!preferred_zone)
2537 goto out;
5117f45d
MG
2538
2539 /* First allocation attempt */
11e33f6a 2540 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 2541 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 2542 preferred_zone, migratetype);
11e33f6a
MG
2543 if (unlikely(!page))
2544 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2545 zonelist, high_zoneidx, nodemask,
3dd28266 2546 preferred_zone, migratetype);
11e33f6a 2547
4b4f278c 2548 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2549
2550out:
2551 /*
2552 * When updating a task's mems_allowed, it is possible to race with
2553 * parallel threads in such a way that an allocation can fail while
2554 * the mask is being updated. If a page allocation is about to fail,
2555 * check if the cpuset changed during allocation and if so, retry.
2556 */
2557 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2558 goto retry_cpuset;
2559
11e33f6a 2560 return page;
1da177e4 2561}
d239171e 2562EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2563
2564/*
2565 * Common helper functions.
2566 */
920c7a5d 2567unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2568{
945a1113
AM
2569 struct page *page;
2570
2571 /*
2572 * __get_free_pages() returns a 32-bit address, which cannot represent
2573 * a highmem page
2574 */
2575 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2576
1da177e4
LT
2577 page = alloc_pages(gfp_mask, order);
2578 if (!page)
2579 return 0;
2580 return (unsigned long) page_address(page);
2581}
1da177e4
LT
2582EXPORT_SYMBOL(__get_free_pages);
2583
920c7a5d 2584unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2585{
945a1113 2586 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2587}
1da177e4
LT
2588EXPORT_SYMBOL(get_zeroed_page);
2589
920c7a5d 2590void __free_pages(struct page *page, unsigned int order)
1da177e4 2591{
b5810039 2592 if (put_page_testzero(page)) {
1da177e4 2593 if (order == 0)
fc91668e 2594 free_hot_cold_page(page, 0);
1da177e4
LT
2595 else
2596 __free_pages_ok(page, order);
2597 }
2598}
2599
2600EXPORT_SYMBOL(__free_pages);
2601
920c7a5d 2602void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2603{
2604 if (addr != 0) {
725d704e 2605 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2606 __free_pages(virt_to_page((void *)addr), order);
2607 }
2608}
2609
2610EXPORT_SYMBOL(free_pages);
2611
ee85c2e1
AK
2612static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2613{
2614 if (addr) {
2615 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2616 unsigned long used = addr + PAGE_ALIGN(size);
2617
2618 split_page(virt_to_page((void *)addr), order);
2619 while (used < alloc_end) {
2620 free_page(used);
2621 used += PAGE_SIZE;
2622 }
2623 }
2624 return (void *)addr;
2625}
2626
2be0ffe2
TT
2627/**
2628 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2629 * @size: the number of bytes to allocate
2630 * @gfp_mask: GFP flags for the allocation
2631 *
2632 * This function is similar to alloc_pages(), except that it allocates the
2633 * minimum number of pages to satisfy the request. alloc_pages() can only
2634 * allocate memory in power-of-two pages.
2635 *
2636 * This function is also limited by MAX_ORDER.
2637 *
2638 * Memory allocated by this function must be released by free_pages_exact().
2639 */
2640void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2641{
2642 unsigned int order = get_order(size);
2643 unsigned long addr;
2644
2645 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2646 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2647}
2648EXPORT_SYMBOL(alloc_pages_exact);
2649
ee85c2e1
AK
2650/**
2651 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2652 * pages on a node.
b5e6ab58 2653 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2654 * @size: the number of bytes to allocate
2655 * @gfp_mask: GFP flags for the allocation
2656 *
2657 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2658 * back.
2659 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2660 * but is not exact.
2661 */
2662void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2663{
2664 unsigned order = get_order(size);
2665 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2666 if (!p)
2667 return NULL;
2668 return make_alloc_exact((unsigned long)page_address(p), order, size);
2669}
2670EXPORT_SYMBOL(alloc_pages_exact_nid);
2671
2be0ffe2
TT
2672/**
2673 * free_pages_exact - release memory allocated via alloc_pages_exact()
2674 * @virt: the value returned by alloc_pages_exact.
2675 * @size: size of allocation, same value as passed to alloc_pages_exact().
2676 *
2677 * Release the memory allocated by a previous call to alloc_pages_exact.
2678 */
2679void free_pages_exact(void *virt, size_t size)
2680{
2681 unsigned long addr = (unsigned long)virt;
2682 unsigned long end = addr + PAGE_ALIGN(size);
2683
2684 while (addr < end) {
2685 free_page(addr);
2686 addr += PAGE_SIZE;
2687 }
2688}
2689EXPORT_SYMBOL(free_pages_exact);
2690
1da177e4
LT
2691static unsigned int nr_free_zone_pages(int offset)
2692{
dd1a239f 2693 struct zoneref *z;
54a6eb5c
MG
2694 struct zone *zone;
2695
e310fd43 2696 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2697 unsigned int sum = 0;
2698
0e88460d 2699 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2700
54a6eb5c 2701 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2702 unsigned long size = zone->present_pages;
41858966 2703 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2704 if (size > high)
2705 sum += size - high;
1da177e4
LT
2706 }
2707
2708 return sum;
2709}
2710
2711/*
2712 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2713 */
2714unsigned int nr_free_buffer_pages(void)
2715{
af4ca457 2716 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2717}
c2f1a551 2718EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2719
2720/*
2721 * Amount of free RAM allocatable within all zones
2722 */
2723unsigned int nr_free_pagecache_pages(void)
2724{
2a1e274a 2725 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2726}
08e0f6a9
CL
2727
2728static inline void show_node(struct zone *zone)
1da177e4 2729{
08e0f6a9 2730 if (NUMA_BUILD)
25ba77c1 2731 printk("Node %d ", zone_to_nid(zone));
1da177e4 2732}
1da177e4 2733
1da177e4
LT
2734void si_meminfo(struct sysinfo *val)
2735{
2736 val->totalram = totalram_pages;
2737 val->sharedram = 0;
d23ad423 2738 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2739 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2740 val->totalhigh = totalhigh_pages;
2741 val->freehigh = nr_free_highpages();
1da177e4
LT
2742 val->mem_unit = PAGE_SIZE;
2743}
2744
2745EXPORT_SYMBOL(si_meminfo);
2746
2747#ifdef CONFIG_NUMA
2748void si_meminfo_node(struct sysinfo *val, int nid)
2749{
2750 pg_data_t *pgdat = NODE_DATA(nid);
2751
2752 val->totalram = pgdat->node_present_pages;
d23ad423 2753 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2754#ifdef CONFIG_HIGHMEM
1da177e4 2755 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2756 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2757 NR_FREE_PAGES);
98d2b0eb
CL
2758#else
2759 val->totalhigh = 0;
2760 val->freehigh = 0;
2761#endif
1da177e4
LT
2762 val->mem_unit = PAGE_SIZE;
2763}
2764#endif
2765
ddd588b5 2766/*
7bf02ea2
DR
2767 * Determine whether the node should be displayed or not, depending on whether
2768 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2769 */
7bf02ea2 2770bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2771{
2772 bool ret = false;
cc9a6c87 2773 unsigned int cpuset_mems_cookie;
ddd588b5
DR
2774
2775 if (!(flags & SHOW_MEM_FILTER_NODES))
2776 goto out;
2777
cc9a6c87
MG
2778 do {
2779 cpuset_mems_cookie = get_mems_allowed();
2780 ret = !node_isset(nid, cpuset_current_mems_allowed);
2781 } while (!put_mems_allowed(cpuset_mems_cookie));
ddd588b5
DR
2782out:
2783 return ret;
2784}
2785
1da177e4
LT
2786#define K(x) ((x) << (PAGE_SHIFT-10))
2787
2788/*
2789 * Show free area list (used inside shift_scroll-lock stuff)
2790 * We also calculate the percentage fragmentation. We do this by counting the
2791 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2792 * Suppresses nodes that are not allowed by current's cpuset if
2793 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2794 */
7bf02ea2 2795void show_free_areas(unsigned int filter)
1da177e4 2796{
c7241913 2797 int cpu;
1da177e4
LT
2798 struct zone *zone;
2799
ee99c71c 2800 for_each_populated_zone(zone) {
7bf02ea2 2801 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2802 continue;
c7241913
JS
2803 show_node(zone);
2804 printk("%s per-cpu:\n", zone->name);
1da177e4 2805
6b482c67 2806 for_each_online_cpu(cpu) {
1da177e4
LT
2807 struct per_cpu_pageset *pageset;
2808
99dcc3e5 2809 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2810
3dfa5721
CL
2811 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2812 cpu, pageset->pcp.high,
2813 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2814 }
2815 }
2816
a731286d
KM
2817 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2818 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2819 " unevictable:%lu"
b76146ed 2820 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2821 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4b02108a 2822 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe 2823 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2824 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2825 global_page_state(NR_ISOLATED_ANON),
2826 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2827 global_page_state(NR_INACTIVE_FILE),
a731286d 2828 global_page_state(NR_ISOLATED_FILE),
7b854121 2829 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2830 global_page_state(NR_FILE_DIRTY),
ce866b34 2831 global_page_state(NR_WRITEBACK),
fd39fc85 2832 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2833 global_page_state(NR_FREE_PAGES),
3701b033
KM
2834 global_page_state(NR_SLAB_RECLAIMABLE),
2835 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2836 global_page_state(NR_FILE_MAPPED),
4b02108a 2837 global_page_state(NR_SHMEM),
a25700a5
AM
2838 global_page_state(NR_PAGETABLE),
2839 global_page_state(NR_BOUNCE));
1da177e4 2840
ee99c71c 2841 for_each_populated_zone(zone) {
1da177e4
LT
2842 int i;
2843
7bf02ea2 2844 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2845 continue;
1da177e4
LT
2846 show_node(zone);
2847 printk("%s"
2848 " free:%lukB"
2849 " min:%lukB"
2850 " low:%lukB"
2851 " high:%lukB"
4f98a2fe
RR
2852 " active_anon:%lukB"
2853 " inactive_anon:%lukB"
2854 " active_file:%lukB"
2855 " inactive_file:%lukB"
7b854121 2856 " unevictable:%lukB"
a731286d
KM
2857 " isolated(anon):%lukB"
2858 " isolated(file):%lukB"
1da177e4 2859 " present:%lukB"
4a0aa73f
KM
2860 " mlocked:%lukB"
2861 " dirty:%lukB"
2862 " writeback:%lukB"
2863 " mapped:%lukB"
4b02108a 2864 " shmem:%lukB"
4a0aa73f
KM
2865 " slab_reclaimable:%lukB"
2866 " slab_unreclaimable:%lukB"
c6a7f572 2867 " kernel_stack:%lukB"
4a0aa73f
KM
2868 " pagetables:%lukB"
2869 " unstable:%lukB"
2870 " bounce:%lukB"
2871 " writeback_tmp:%lukB"
1da177e4
LT
2872 " pages_scanned:%lu"
2873 " all_unreclaimable? %s"
2874 "\n",
2875 zone->name,
88f5acf8 2876 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2877 K(min_wmark_pages(zone)),
2878 K(low_wmark_pages(zone)),
2879 K(high_wmark_pages(zone)),
4f98a2fe
RR
2880 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2881 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2882 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2883 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2884 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2885 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2886 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2887 K(zone->present_pages),
4a0aa73f
KM
2888 K(zone_page_state(zone, NR_MLOCK)),
2889 K(zone_page_state(zone, NR_FILE_DIRTY)),
2890 K(zone_page_state(zone, NR_WRITEBACK)),
2891 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2892 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2893 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2894 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2895 zone_page_state(zone, NR_KERNEL_STACK) *
2896 THREAD_SIZE / 1024,
4a0aa73f
KM
2897 K(zone_page_state(zone, NR_PAGETABLE)),
2898 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2899 K(zone_page_state(zone, NR_BOUNCE)),
2900 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2901 zone->pages_scanned,
93e4a89a 2902 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
2903 );
2904 printk("lowmem_reserve[]:");
2905 for (i = 0; i < MAX_NR_ZONES; i++)
2906 printk(" %lu", zone->lowmem_reserve[i]);
2907 printk("\n");
2908 }
2909
ee99c71c 2910 for_each_populated_zone(zone) {
8f9de51a 2911 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 2912
7bf02ea2 2913 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2914 continue;
1da177e4
LT
2915 show_node(zone);
2916 printk("%s: ", zone->name);
1da177e4
LT
2917
2918 spin_lock_irqsave(&zone->lock, flags);
2919 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2920 nr[order] = zone->free_area[order].nr_free;
2921 total += nr[order] << order;
1da177e4
LT
2922 }
2923 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2924 for (order = 0; order < MAX_ORDER; order++)
2925 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2926 printk("= %lukB\n", K(total));
2927 }
2928
e6f3602d
LW
2929 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2930
1da177e4
LT
2931 show_swap_cache_info();
2932}
2933
19770b32
MG
2934static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2935{
2936 zoneref->zone = zone;
2937 zoneref->zone_idx = zone_idx(zone);
2938}
2939
1da177e4
LT
2940/*
2941 * Builds allocation fallback zone lists.
1a93205b
CL
2942 *
2943 * Add all populated zones of a node to the zonelist.
1da177e4 2944 */
f0c0b2b8
KH
2945static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2946 int nr_zones, enum zone_type zone_type)
1da177e4 2947{
1a93205b
CL
2948 struct zone *zone;
2949
98d2b0eb 2950 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2951 zone_type++;
02a68a5e
CL
2952
2953 do {
2f6726e5 2954 zone_type--;
070f8032 2955 zone = pgdat->node_zones + zone_type;
1a93205b 2956 if (populated_zone(zone)) {
dd1a239f
MG
2957 zoneref_set_zone(zone,
2958 &zonelist->_zonerefs[nr_zones++]);
070f8032 2959 check_highest_zone(zone_type);
1da177e4 2960 }
02a68a5e 2961
2f6726e5 2962 } while (zone_type);
070f8032 2963 return nr_zones;
1da177e4
LT
2964}
2965
f0c0b2b8
KH
2966
2967/*
2968 * zonelist_order:
2969 * 0 = automatic detection of better ordering.
2970 * 1 = order by ([node] distance, -zonetype)
2971 * 2 = order by (-zonetype, [node] distance)
2972 *
2973 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2974 * the same zonelist. So only NUMA can configure this param.
2975 */
2976#define ZONELIST_ORDER_DEFAULT 0
2977#define ZONELIST_ORDER_NODE 1
2978#define ZONELIST_ORDER_ZONE 2
2979
2980/* zonelist order in the kernel.
2981 * set_zonelist_order() will set this to NODE or ZONE.
2982 */
2983static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2984static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2985
2986
1da177e4 2987#ifdef CONFIG_NUMA
f0c0b2b8
KH
2988/* The value user specified ....changed by config */
2989static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2990/* string for sysctl */
2991#define NUMA_ZONELIST_ORDER_LEN 16
2992char numa_zonelist_order[16] = "default";
2993
2994/*
2995 * interface for configure zonelist ordering.
2996 * command line option "numa_zonelist_order"
2997 * = "[dD]efault - default, automatic configuration.
2998 * = "[nN]ode - order by node locality, then by zone within node
2999 * = "[zZ]one - order by zone, then by locality within zone
3000 */
3001
3002static int __parse_numa_zonelist_order(char *s)
3003{
3004 if (*s == 'd' || *s == 'D') {
3005 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3006 } else if (*s == 'n' || *s == 'N') {
3007 user_zonelist_order = ZONELIST_ORDER_NODE;
3008 } else if (*s == 'z' || *s == 'Z') {
3009 user_zonelist_order = ZONELIST_ORDER_ZONE;
3010 } else {
3011 printk(KERN_WARNING
3012 "Ignoring invalid numa_zonelist_order value: "
3013 "%s\n", s);
3014 return -EINVAL;
3015 }
3016 return 0;
3017}
3018
3019static __init int setup_numa_zonelist_order(char *s)
3020{
ecb256f8
VL
3021 int ret;
3022
3023 if (!s)
3024 return 0;
3025
3026 ret = __parse_numa_zonelist_order(s);
3027 if (ret == 0)
3028 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3029
3030 return ret;
f0c0b2b8
KH
3031}
3032early_param("numa_zonelist_order", setup_numa_zonelist_order);
3033
3034/*
3035 * sysctl handler for numa_zonelist_order
3036 */
3037int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3038 void __user *buffer, size_t *length,
f0c0b2b8
KH
3039 loff_t *ppos)
3040{
3041 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3042 int ret;
443c6f14 3043 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3044
443c6f14 3045 mutex_lock(&zl_order_mutex);
f0c0b2b8 3046 if (write)
443c6f14 3047 strcpy(saved_string, (char*)table->data);
8d65af78 3048 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3049 if (ret)
443c6f14 3050 goto out;
f0c0b2b8
KH
3051 if (write) {
3052 int oldval = user_zonelist_order;
3053 if (__parse_numa_zonelist_order((char*)table->data)) {
3054 /*
3055 * bogus value. restore saved string
3056 */
3057 strncpy((char*)table->data, saved_string,
3058 NUMA_ZONELIST_ORDER_LEN);
3059 user_zonelist_order = oldval;
4eaf3f64
HL
3060 } else if (oldval != user_zonelist_order) {
3061 mutex_lock(&zonelists_mutex);
9adb62a5 3062 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3063 mutex_unlock(&zonelists_mutex);
3064 }
f0c0b2b8 3065 }
443c6f14
AK
3066out:
3067 mutex_unlock(&zl_order_mutex);
3068 return ret;
f0c0b2b8
KH
3069}
3070
3071
62bc62a8 3072#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3073static int node_load[MAX_NUMNODES];
3074
1da177e4 3075/**
4dc3b16b 3076 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3077 * @node: node whose fallback list we're appending
3078 * @used_node_mask: nodemask_t of already used nodes
3079 *
3080 * We use a number of factors to determine which is the next node that should
3081 * appear on a given node's fallback list. The node should not have appeared
3082 * already in @node's fallback list, and it should be the next closest node
3083 * according to the distance array (which contains arbitrary distance values
3084 * from each node to each node in the system), and should also prefer nodes
3085 * with no CPUs, since presumably they'll have very little allocation pressure
3086 * on them otherwise.
3087 * It returns -1 if no node is found.
3088 */
f0c0b2b8 3089static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3090{
4cf808eb 3091 int n, val;
1da177e4
LT
3092 int min_val = INT_MAX;
3093 int best_node = -1;
a70f7302 3094 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3095
4cf808eb
LT
3096 /* Use the local node if we haven't already */
3097 if (!node_isset(node, *used_node_mask)) {
3098 node_set(node, *used_node_mask);
3099 return node;
3100 }
1da177e4 3101
37b07e41 3102 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
3103
3104 /* Don't want a node to appear more than once */
3105 if (node_isset(n, *used_node_mask))
3106 continue;
3107
1da177e4
LT
3108 /* Use the distance array to find the distance */
3109 val = node_distance(node, n);
3110
4cf808eb
LT
3111 /* Penalize nodes under us ("prefer the next node") */
3112 val += (n < node);
3113
1da177e4 3114 /* Give preference to headless and unused nodes */
a70f7302
RR
3115 tmp = cpumask_of_node(n);
3116 if (!cpumask_empty(tmp))
1da177e4
LT
3117 val += PENALTY_FOR_NODE_WITH_CPUS;
3118
3119 /* Slight preference for less loaded node */
3120 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3121 val += node_load[n];
3122
3123 if (val < min_val) {
3124 min_val = val;
3125 best_node = n;
3126 }
3127 }
3128
3129 if (best_node >= 0)
3130 node_set(best_node, *used_node_mask);
3131
3132 return best_node;
3133}
3134
f0c0b2b8
KH
3135
3136/*
3137 * Build zonelists ordered by node and zones within node.
3138 * This results in maximum locality--normal zone overflows into local
3139 * DMA zone, if any--but risks exhausting DMA zone.
3140 */
3141static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3142{
f0c0b2b8 3143 int j;
1da177e4 3144 struct zonelist *zonelist;
f0c0b2b8 3145
54a6eb5c 3146 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3147 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
3148 ;
3149 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3150 MAX_NR_ZONES - 1);
dd1a239f
MG
3151 zonelist->_zonerefs[j].zone = NULL;
3152 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3153}
3154
523b9458
CL
3155/*
3156 * Build gfp_thisnode zonelists
3157 */
3158static void build_thisnode_zonelists(pg_data_t *pgdat)
3159{
523b9458
CL
3160 int j;
3161 struct zonelist *zonelist;
3162
54a6eb5c
MG
3163 zonelist = &pgdat->node_zonelists[1];
3164 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
3165 zonelist->_zonerefs[j].zone = NULL;
3166 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3167}
3168
f0c0b2b8
KH
3169/*
3170 * Build zonelists ordered by zone and nodes within zones.
3171 * This results in conserving DMA zone[s] until all Normal memory is
3172 * exhausted, but results in overflowing to remote node while memory
3173 * may still exist in local DMA zone.
3174 */
3175static int node_order[MAX_NUMNODES];
3176
3177static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3178{
f0c0b2b8
KH
3179 int pos, j, node;
3180 int zone_type; /* needs to be signed */
3181 struct zone *z;
3182 struct zonelist *zonelist;
3183
54a6eb5c
MG
3184 zonelist = &pgdat->node_zonelists[0];
3185 pos = 0;
3186 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3187 for (j = 0; j < nr_nodes; j++) {
3188 node = node_order[j];
3189 z = &NODE_DATA(node)->node_zones[zone_type];
3190 if (populated_zone(z)) {
dd1a239f
MG
3191 zoneref_set_zone(z,
3192 &zonelist->_zonerefs[pos++]);
54a6eb5c 3193 check_highest_zone(zone_type);
f0c0b2b8
KH
3194 }
3195 }
f0c0b2b8 3196 }
dd1a239f
MG
3197 zonelist->_zonerefs[pos].zone = NULL;
3198 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3199}
3200
3201static int default_zonelist_order(void)
3202{
3203 int nid, zone_type;
3204 unsigned long low_kmem_size,total_size;
3205 struct zone *z;
3206 int average_size;
3207 /*
88393161 3208 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3209 * If they are really small and used heavily, the system can fall
3210 * into OOM very easily.
e325c90f 3211 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3212 */
3213 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3214 low_kmem_size = 0;
3215 total_size = 0;
3216 for_each_online_node(nid) {
3217 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3218 z = &NODE_DATA(nid)->node_zones[zone_type];
3219 if (populated_zone(z)) {
3220 if (zone_type < ZONE_NORMAL)
3221 low_kmem_size += z->present_pages;
3222 total_size += z->present_pages;
e325c90f
DR
3223 } else if (zone_type == ZONE_NORMAL) {
3224 /*
3225 * If any node has only lowmem, then node order
3226 * is preferred to allow kernel allocations
3227 * locally; otherwise, they can easily infringe
3228 * on other nodes when there is an abundance of
3229 * lowmem available to allocate from.
3230 */
3231 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3232 }
3233 }
3234 }
3235 if (!low_kmem_size || /* there are no DMA area. */
3236 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3237 return ZONELIST_ORDER_NODE;
3238 /*
3239 * look into each node's config.
3240 * If there is a node whose DMA/DMA32 memory is very big area on
3241 * local memory, NODE_ORDER may be suitable.
3242 */
37b07e41
LS
3243 average_size = total_size /
3244 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
3245 for_each_online_node(nid) {
3246 low_kmem_size = 0;
3247 total_size = 0;
3248 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3249 z = &NODE_DATA(nid)->node_zones[zone_type];
3250 if (populated_zone(z)) {
3251 if (zone_type < ZONE_NORMAL)
3252 low_kmem_size += z->present_pages;
3253 total_size += z->present_pages;
3254 }
3255 }
3256 if (low_kmem_size &&
3257 total_size > average_size && /* ignore small node */
3258 low_kmem_size > total_size * 70/100)
3259 return ZONELIST_ORDER_NODE;
3260 }
3261 return ZONELIST_ORDER_ZONE;
3262}
3263
3264static void set_zonelist_order(void)
3265{
3266 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3267 current_zonelist_order = default_zonelist_order();
3268 else
3269 current_zonelist_order = user_zonelist_order;
3270}
3271
3272static void build_zonelists(pg_data_t *pgdat)
3273{
3274 int j, node, load;
3275 enum zone_type i;
1da177e4 3276 nodemask_t used_mask;
f0c0b2b8
KH
3277 int local_node, prev_node;
3278 struct zonelist *zonelist;
3279 int order = current_zonelist_order;
1da177e4
LT
3280
3281 /* initialize zonelists */
523b9458 3282 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3283 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3284 zonelist->_zonerefs[0].zone = NULL;
3285 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3286 }
3287
3288 /* NUMA-aware ordering of nodes */
3289 local_node = pgdat->node_id;
62bc62a8 3290 load = nr_online_nodes;
1da177e4
LT
3291 prev_node = local_node;
3292 nodes_clear(used_mask);
f0c0b2b8 3293
f0c0b2b8
KH
3294 memset(node_order, 0, sizeof(node_order));
3295 j = 0;
3296
1da177e4 3297 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
3298 int distance = node_distance(local_node, node);
3299
3300 /*
3301 * If another node is sufficiently far away then it is better
3302 * to reclaim pages in a zone before going off node.
3303 */
3304 if (distance > RECLAIM_DISTANCE)
3305 zone_reclaim_mode = 1;
3306
1da177e4
LT
3307 /*
3308 * We don't want to pressure a particular node.
3309 * So adding penalty to the first node in same
3310 * distance group to make it round-robin.
3311 */
9eeff239 3312 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
3313 node_load[node] = load;
3314
1da177e4
LT
3315 prev_node = node;
3316 load--;
f0c0b2b8
KH
3317 if (order == ZONELIST_ORDER_NODE)
3318 build_zonelists_in_node_order(pgdat, node);
3319 else
3320 node_order[j++] = node; /* remember order */
3321 }
1da177e4 3322
f0c0b2b8
KH
3323 if (order == ZONELIST_ORDER_ZONE) {
3324 /* calculate node order -- i.e., DMA last! */
3325 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3326 }
523b9458
CL
3327
3328 build_thisnode_zonelists(pgdat);
1da177e4
LT
3329}
3330
9276b1bc 3331/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3332static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3333{
54a6eb5c
MG
3334 struct zonelist *zonelist;
3335 struct zonelist_cache *zlc;
dd1a239f 3336 struct zoneref *z;
9276b1bc 3337
54a6eb5c
MG
3338 zonelist = &pgdat->node_zonelists[0];
3339 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3340 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3341 for (z = zonelist->_zonerefs; z->zone; z++)
3342 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3343}
3344
7aac7898
LS
3345#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3346/*
3347 * Return node id of node used for "local" allocations.
3348 * I.e., first node id of first zone in arg node's generic zonelist.
3349 * Used for initializing percpu 'numa_mem', which is used primarily
3350 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3351 */
3352int local_memory_node(int node)
3353{
3354 struct zone *zone;
3355
3356 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3357 gfp_zone(GFP_KERNEL),
3358 NULL,
3359 &zone);
3360 return zone->node;
3361}
3362#endif
f0c0b2b8 3363
1da177e4
LT
3364#else /* CONFIG_NUMA */
3365
f0c0b2b8
KH
3366static void set_zonelist_order(void)
3367{
3368 current_zonelist_order = ZONELIST_ORDER_ZONE;
3369}
3370
3371static void build_zonelists(pg_data_t *pgdat)
1da177e4 3372{
19655d34 3373 int node, local_node;
54a6eb5c
MG
3374 enum zone_type j;
3375 struct zonelist *zonelist;
1da177e4
LT
3376
3377 local_node = pgdat->node_id;
1da177e4 3378
54a6eb5c
MG
3379 zonelist = &pgdat->node_zonelists[0];
3380 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 3381
54a6eb5c
MG
3382 /*
3383 * Now we build the zonelist so that it contains the zones
3384 * of all the other nodes.
3385 * We don't want to pressure a particular node, so when
3386 * building the zones for node N, we make sure that the
3387 * zones coming right after the local ones are those from
3388 * node N+1 (modulo N)
3389 */
3390 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3391 if (!node_online(node))
3392 continue;
3393 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3394 MAX_NR_ZONES - 1);
1da177e4 3395 }
54a6eb5c
MG
3396 for (node = 0; node < local_node; node++) {
3397 if (!node_online(node))
3398 continue;
3399 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3400 MAX_NR_ZONES - 1);
3401 }
3402
dd1a239f
MG
3403 zonelist->_zonerefs[j].zone = NULL;
3404 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3405}
3406
9276b1bc 3407/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3408static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3409{
54a6eb5c 3410 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3411}
3412
1da177e4
LT
3413#endif /* CONFIG_NUMA */
3414
99dcc3e5
CL
3415/*
3416 * Boot pageset table. One per cpu which is going to be used for all
3417 * zones and all nodes. The parameters will be set in such a way
3418 * that an item put on a list will immediately be handed over to
3419 * the buddy list. This is safe since pageset manipulation is done
3420 * with interrupts disabled.
3421 *
3422 * The boot_pagesets must be kept even after bootup is complete for
3423 * unused processors and/or zones. They do play a role for bootstrapping
3424 * hotplugged processors.
3425 *
3426 * zoneinfo_show() and maybe other functions do
3427 * not check if the processor is online before following the pageset pointer.
3428 * Other parts of the kernel may not check if the zone is available.
3429 */
3430static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3431static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3432static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3433
4eaf3f64
HL
3434/*
3435 * Global mutex to protect against size modification of zonelists
3436 * as well as to serialize pageset setup for the new populated zone.
3437 */
3438DEFINE_MUTEX(zonelists_mutex);
3439
9b1a4d38 3440/* return values int ....just for stop_machine() */
4ed7e022 3441static int __build_all_zonelists(void *data)
1da177e4 3442{
6811378e 3443 int nid;
99dcc3e5 3444 int cpu;
9adb62a5 3445 pg_data_t *self = data;
9276b1bc 3446
7f9cfb31
BL
3447#ifdef CONFIG_NUMA
3448 memset(node_load, 0, sizeof(node_load));
3449#endif
9adb62a5
JL
3450
3451 if (self && !node_online(self->node_id)) {
3452 build_zonelists(self);
3453 build_zonelist_cache(self);
3454 }
3455
9276b1bc 3456 for_each_online_node(nid) {
7ea1530a
CL
3457 pg_data_t *pgdat = NODE_DATA(nid);
3458
3459 build_zonelists(pgdat);
3460 build_zonelist_cache(pgdat);
9276b1bc 3461 }
99dcc3e5
CL
3462
3463 /*
3464 * Initialize the boot_pagesets that are going to be used
3465 * for bootstrapping processors. The real pagesets for
3466 * each zone will be allocated later when the per cpu
3467 * allocator is available.
3468 *
3469 * boot_pagesets are used also for bootstrapping offline
3470 * cpus if the system is already booted because the pagesets
3471 * are needed to initialize allocators on a specific cpu too.
3472 * F.e. the percpu allocator needs the page allocator which
3473 * needs the percpu allocator in order to allocate its pagesets
3474 * (a chicken-egg dilemma).
3475 */
7aac7898 3476 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3477 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3478
7aac7898
LS
3479#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3480 /*
3481 * We now know the "local memory node" for each node--
3482 * i.e., the node of the first zone in the generic zonelist.
3483 * Set up numa_mem percpu variable for on-line cpus. During
3484 * boot, only the boot cpu should be on-line; we'll init the
3485 * secondary cpus' numa_mem as they come on-line. During
3486 * node/memory hotplug, we'll fixup all on-line cpus.
3487 */
3488 if (cpu_online(cpu))
3489 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3490#endif
3491 }
3492
6811378e
YG
3493 return 0;
3494}
3495
4eaf3f64
HL
3496/*
3497 * Called with zonelists_mutex held always
3498 * unless system_state == SYSTEM_BOOTING.
3499 */
9adb62a5 3500void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3501{
f0c0b2b8
KH
3502 set_zonelist_order();
3503
6811378e 3504 if (system_state == SYSTEM_BOOTING) {
423b41d7 3505 __build_all_zonelists(NULL);
68ad8df4 3506 mminit_verify_zonelist();
6811378e
YG
3507 cpuset_init_current_mems_allowed();
3508 } else {
183ff22b 3509 /* we have to stop all cpus to guarantee there is no user
6811378e 3510 of zonelist */
e9959f0f 3511#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3512 if (zone)
3513 setup_zone_pageset(zone);
e9959f0f 3514#endif
9adb62a5 3515 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3516 /* cpuset refresh routine should be here */
3517 }
bd1e22b8 3518 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3519 /*
3520 * Disable grouping by mobility if the number of pages in the
3521 * system is too low to allow the mechanism to work. It would be
3522 * more accurate, but expensive to check per-zone. This check is
3523 * made on memory-hotadd so a system can start with mobility
3524 * disabled and enable it later
3525 */
d9c23400 3526 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3527 page_group_by_mobility_disabled = 1;
3528 else
3529 page_group_by_mobility_disabled = 0;
3530
3531 printk("Built %i zonelists in %s order, mobility grouping %s. "
3532 "Total pages: %ld\n",
62bc62a8 3533 nr_online_nodes,
f0c0b2b8 3534 zonelist_order_name[current_zonelist_order],
9ef9acb0 3535 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3536 vm_total_pages);
3537#ifdef CONFIG_NUMA
3538 printk("Policy zone: %s\n", zone_names[policy_zone]);
3539#endif
1da177e4
LT
3540}
3541
3542/*
3543 * Helper functions to size the waitqueue hash table.
3544 * Essentially these want to choose hash table sizes sufficiently
3545 * large so that collisions trying to wait on pages are rare.
3546 * But in fact, the number of active page waitqueues on typical
3547 * systems is ridiculously low, less than 200. So this is even
3548 * conservative, even though it seems large.
3549 *
3550 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3551 * waitqueues, i.e. the size of the waitq table given the number of pages.
3552 */
3553#define PAGES_PER_WAITQUEUE 256
3554
cca448fe 3555#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3556static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3557{
3558 unsigned long size = 1;
3559
3560 pages /= PAGES_PER_WAITQUEUE;
3561
3562 while (size < pages)
3563 size <<= 1;
3564
3565 /*
3566 * Once we have dozens or even hundreds of threads sleeping
3567 * on IO we've got bigger problems than wait queue collision.
3568 * Limit the size of the wait table to a reasonable size.
3569 */
3570 size = min(size, 4096UL);
3571
3572 return max(size, 4UL);
3573}
cca448fe
YG
3574#else
3575/*
3576 * A zone's size might be changed by hot-add, so it is not possible to determine
3577 * a suitable size for its wait_table. So we use the maximum size now.
3578 *
3579 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3580 *
3581 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3582 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3583 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3584 *
3585 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3586 * or more by the traditional way. (See above). It equals:
3587 *
3588 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3589 * ia64(16K page size) : = ( 8G + 4M)byte.
3590 * powerpc (64K page size) : = (32G +16M)byte.
3591 */
3592static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3593{
3594 return 4096UL;
3595}
3596#endif
1da177e4
LT
3597
3598/*
3599 * This is an integer logarithm so that shifts can be used later
3600 * to extract the more random high bits from the multiplicative
3601 * hash function before the remainder is taken.
3602 */
3603static inline unsigned long wait_table_bits(unsigned long size)
3604{
3605 return ffz(~size);
3606}
3607
3608#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3609
6d3163ce
AH
3610/*
3611 * Check if a pageblock contains reserved pages
3612 */
3613static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3614{
3615 unsigned long pfn;
3616
3617 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3618 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3619 return 1;
3620 }
3621 return 0;
3622}
3623
56fd56b8 3624/*
d9c23400 3625 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3626 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3627 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3628 * higher will lead to a bigger reserve which will get freed as contiguous
3629 * blocks as reclaim kicks in
3630 */
3631static void setup_zone_migrate_reserve(struct zone *zone)
3632{
6d3163ce 3633 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3634 struct page *page;
78986a67
MG
3635 unsigned long block_migratetype;
3636 int reserve;
56fd56b8 3637
d0215638
MH
3638 /*
3639 * Get the start pfn, end pfn and the number of blocks to reserve
3640 * We have to be careful to be aligned to pageblock_nr_pages to
3641 * make sure that we always check pfn_valid for the first page in
3642 * the block.
3643 */
56fd56b8
MG
3644 start_pfn = zone->zone_start_pfn;
3645 end_pfn = start_pfn + zone->spanned_pages;
d0215638 3646 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3647 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3648 pageblock_order;
56fd56b8 3649
78986a67
MG
3650 /*
3651 * Reserve blocks are generally in place to help high-order atomic
3652 * allocations that are short-lived. A min_free_kbytes value that
3653 * would result in more than 2 reserve blocks for atomic allocations
3654 * is assumed to be in place to help anti-fragmentation for the
3655 * future allocation of hugepages at runtime.
3656 */
3657 reserve = min(2, reserve);
3658
d9c23400 3659 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3660 if (!pfn_valid(pfn))
3661 continue;
3662 page = pfn_to_page(pfn);
3663
344c790e
AL
3664 /* Watch out for overlapping nodes */
3665 if (page_to_nid(page) != zone_to_nid(zone))
3666 continue;
3667
56fd56b8
MG
3668 block_migratetype = get_pageblock_migratetype(page);
3669
938929f1
MG
3670 /* Only test what is necessary when the reserves are not met */
3671 if (reserve > 0) {
3672 /*
3673 * Blocks with reserved pages will never free, skip
3674 * them.
3675 */
3676 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3677 if (pageblock_is_reserved(pfn, block_end_pfn))
3678 continue;
56fd56b8 3679
938929f1
MG
3680 /* If this block is reserved, account for it */
3681 if (block_migratetype == MIGRATE_RESERVE) {
3682 reserve--;
3683 continue;
3684 }
3685
3686 /* Suitable for reserving if this block is movable */
3687 if (block_migratetype == MIGRATE_MOVABLE) {
3688 set_pageblock_migratetype(page,
3689 MIGRATE_RESERVE);
3690 move_freepages_block(zone, page,
3691 MIGRATE_RESERVE);
3692 reserve--;
3693 continue;
3694 }
56fd56b8
MG
3695 }
3696
3697 /*
3698 * If the reserve is met and this is a previous reserved block,
3699 * take it back
3700 */
3701 if (block_migratetype == MIGRATE_RESERVE) {
3702 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3703 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3704 }
3705 }
3706}
ac0e5b7a 3707
1da177e4
LT
3708/*
3709 * Initially all pages are reserved - free ones are freed
3710 * up by free_all_bootmem() once the early boot process is
3711 * done. Non-atomic initialization, single-pass.
3712 */
c09b4240 3713void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3714 unsigned long start_pfn, enum memmap_context context)
1da177e4 3715{
1da177e4 3716 struct page *page;
29751f69
AW
3717 unsigned long end_pfn = start_pfn + size;
3718 unsigned long pfn;
86051ca5 3719 struct zone *z;
1da177e4 3720
22b31eec
HD
3721 if (highest_memmap_pfn < end_pfn - 1)
3722 highest_memmap_pfn = end_pfn - 1;
3723
86051ca5 3724 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3725 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3726 /*
3727 * There can be holes in boot-time mem_map[]s
3728 * handed to this function. They do not
3729 * exist on hotplugged memory.
3730 */
3731 if (context == MEMMAP_EARLY) {
3732 if (!early_pfn_valid(pfn))
3733 continue;
3734 if (!early_pfn_in_nid(pfn, nid))
3735 continue;
3736 }
d41dee36
AW
3737 page = pfn_to_page(pfn);
3738 set_page_links(page, zone, nid, pfn);
708614e6 3739 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3740 init_page_count(page);
1da177e4
LT
3741 reset_page_mapcount(page);
3742 SetPageReserved(page);
b2a0ac88
MG
3743 /*
3744 * Mark the block movable so that blocks are reserved for
3745 * movable at startup. This will force kernel allocations
3746 * to reserve their blocks rather than leaking throughout
3747 * the address space during boot when many long-lived
56fd56b8
MG
3748 * kernel allocations are made. Later some blocks near
3749 * the start are marked MIGRATE_RESERVE by
3750 * setup_zone_migrate_reserve()
86051ca5
KH
3751 *
3752 * bitmap is created for zone's valid pfn range. but memmap
3753 * can be created for invalid pages (for alignment)
3754 * check here not to call set_pageblock_migratetype() against
3755 * pfn out of zone.
b2a0ac88 3756 */
86051ca5
KH
3757 if ((z->zone_start_pfn <= pfn)
3758 && (pfn < z->zone_start_pfn + z->spanned_pages)
3759 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3760 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3761
1da177e4
LT
3762 INIT_LIST_HEAD(&page->lru);
3763#ifdef WANT_PAGE_VIRTUAL
3764 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3765 if (!is_highmem_idx(zone))
3212c6be 3766 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3767#endif
1da177e4
LT
3768 }
3769}
3770
1e548deb 3771static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3772{
b2a0ac88
MG
3773 int order, t;
3774 for_each_migratetype_order(order, t) {
3775 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3776 zone->free_area[order].nr_free = 0;
3777 }
3778}
3779
3780#ifndef __HAVE_ARCH_MEMMAP_INIT
3781#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3782 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3783#endif
3784
4ed7e022 3785static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 3786{
3a6be87f 3787#ifdef CONFIG_MMU
e7c8d5c9
CL
3788 int batch;
3789
3790 /*
3791 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3792 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3793 *
3794 * OK, so we don't know how big the cache is. So guess.
3795 */
3796 batch = zone->present_pages / 1024;
ba56e91c
SR
3797 if (batch * PAGE_SIZE > 512 * 1024)
3798 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3799 batch /= 4; /* We effectively *= 4 below */
3800 if (batch < 1)
3801 batch = 1;
3802
3803 /*
0ceaacc9
NP
3804 * Clamp the batch to a 2^n - 1 value. Having a power
3805 * of 2 value was found to be more likely to have
3806 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3807 *
0ceaacc9
NP
3808 * For example if 2 tasks are alternately allocating
3809 * batches of pages, one task can end up with a lot
3810 * of pages of one half of the possible page colors
3811 * and the other with pages of the other colors.
e7c8d5c9 3812 */
9155203a 3813 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3814
e7c8d5c9 3815 return batch;
3a6be87f
DH
3816
3817#else
3818 /* The deferral and batching of frees should be suppressed under NOMMU
3819 * conditions.
3820 *
3821 * The problem is that NOMMU needs to be able to allocate large chunks
3822 * of contiguous memory as there's no hardware page translation to
3823 * assemble apparent contiguous memory from discontiguous pages.
3824 *
3825 * Queueing large contiguous runs of pages for batching, however,
3826 * causes the pages to actually be freed in smaller chunks. As there
3827 * can be a significant delay between the individual batches being
3828 * recycled, this leads to the once large chunks of space being
3829 * fragmented and becoming unavailable for high-order allocations.
3830 */
3831 return 0;
3832#endif
e7c8d5c9
CL
3833}
3834
b69a7288 3835static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3836{
3837 struct per_cpu_pages *pcp;
5f8dcc21 3838 int migratetype;
2caaad41 3839
1c6fe946
MD
3840 memset(p, 0, sizeof(*p));
3841
3dfa5721 3842 pcp = &p->pcp;
2caaad41 3843 pcp->count = 0;
2caaad41
CL
3844 pcp->high = 6 * batch;
3845 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3846 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3847 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3848}
3849
8ad4b1fb
RS
3850/*
3851 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3852 * to the value high for the pageset p.
3853 */
3854
3855static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3856 unsigned long high)
3857{
3858 struct per_cpu_pages *pcp;
3859
3dfa5721 3860 pcp = &p->pcp;
8ad4b1fb
RS
3861 pcp->high = high;
3862 pcp->batch = max(1UL, high/4);
3863 if ((high/4) > (PAGE_SHIFT * 8))
3864 pcp->batch = PAGE_SHIFT * 8;
3865}
3866
4ed7e022 3867static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
3868{
3869 int cpu;
3870
3871 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3872
3873 for_each_possible_cpu(cpu) {
3874 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3875
3876 setup_pageset(pcp, zone_batchsize(zone));
3877
3878 if (percpu_pagelist_fraction)
3879 setup_pagelist_highmark(pcp,
3880 (zone->present_pages /
3881 percpu_pagelist_fraction));
3882 }
3883}
3884
2caaad41 3885/*
99dcc3e5
CL
3886 * Allocate per cpu pagesets and initialize them.
3887 * Before this call only boot pagesets were available.
e7c8d5c9 3888 */
99dcc3e5 3889void __init setup_per_cpu_pageset(void)
e7c8d5c9 3890{
99dcc3e5 3891 struct zone *zone;
e7c8d5c9 3892
319774e2
WF
3893 for_each_populated_zone(zone)
3894 setup_zone_pageset(zone);
e7c8d5c9
CL
3895}
3896
577a32f6 3897static noinline __init_refok
cca448fe 3898int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3899{
3900 int i;
3901 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3902 size_t alloc_size;
ed8ece2e
DH
3903
3904 /*
3905 * The per-page waitqueue mechanism uses hashed waitqueues
3906 * per zone.
3907 */
02b694de
YG
3908 zone->wait_table_hash_nr_entries =
3909 wait_table_hash_nr_entries(zone_size_pages);
3910 zone->wait_table_bits =
3911 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3912 alloc_size = zone->wait_table_hash_nr_entries
3913 * sizeof(wait_queue_head_t);
3914
cd94b9db 3915 if (!slab_is_available()) {
cca448fe 3916 zone->wait_table = (wait_queue_head_t *)
8f389a99 3917 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
3918 } else {
3919 /*
3920 * This case means that a zone whose size was 0 gets new memory
3921 * via memory hot-add.
3922 * But it may be the case that a new node was hot-added. In
3923 * this case vmalloc() will not be able to use this new node's
3924 * memory - this wait_table must be initialized to use this new
3925 * node itself as well.
3926 * To use this new node's memory, further consideration will be
3927 * necessary.
3928 */
8691f3a7 3929 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3930 }
3931 if (!zone->wait_table)
3932 return -ENOMEM;
ed8ece2e 3933
02b694de 3934 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3935 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3936
3937 return 0;
ed8ece2e
DH
3938}
3939
c09b4240 3940static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 3941{
99dcc3e5
CL
3942 /*
3943 * per cpu subsystem is not up at this point. The following code
3944 * relies on the ability of the linker to provide the
3945 * offset of a (static) per cpu variable into the per cpu area.
3946 */
3947 zone->pageset = &boot_pageset;
ed8ece2e 3948
f5335c0f 3949 if (zone->present_pages)
99dcc3e5
CL
3950 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3951 zone->name, zone->present_pages,
3952 zone_batchsize(zone));
ed8ece2e
DH
3953}
3954
4ed7e022 3955int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 3956 unsigned long zone_start_pfn,
a2f3aa02
DH
3957 unsigned long size,
3958 enum memmap_context context)
ed8ece2e
DH
3959{
3960 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3961 int ret;
3962 ret = zone_wait_table_init(zone, size);
3963 if (ret)
3964 return ret;
ed8ece2e
DH
3965 pgdat->nr_zones = zone_idx(zone) + 1;
3966
ed8ece2e
DH
3967 zone->zone_start_pfn = zone_start_pfn;
3968
708614e6
MG
3969 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3970 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3971 pgdat->node_id,
3972 (unsigned long)zone_idx(zone),
3973 zone_start_pfn, (zone_start_pfn + size));
3974
1e548deb 3975 zone_init_free_lists(zone);
718127cc
YG
3976
3977 return 0;
ed8ece2e
DH
3978}
3979
0ee332c1 3980#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
3981#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3982/*
3983 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3984 * Architectures may implement their own version but if add_active_range()
3985 * was used and there are no special requirements, this is a convenient
3986 * alternative
3987 */
f2dbcfa7 3988int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 3989{
c13291a5
TH
3990 unsigned long start_pfn, end_pfn;
3991 int i, nid;
c713216d 3992
c13291a5 3993 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
c713216d 3994 if (start_pfn <= pfn && pfn < end_pfn)
c13291a5 3995 return nid;
cc2559bc
KH
3996 /* This is a memory hole */
3997 return -1;
c713216d
MG
3998}
3999#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4000
f2dbcfa7
KH
4001int __meminit early_pfn_to_nid(unsigned long pfn)
4002{
cc2559bc
KH
4003 int nid;
4004
4005 nid = __early_pfn_to_nid(pfn);
4006 if (nid >= 0)
4007 return nid;
4008 /* just returns 0 */
4009 return 0;
f2dbcfa7
KH
4010}
4011
cc2559bc
KH
4012#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4013bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4014{
4015 int nid;
4016
4017 nid = __early_pfn_to_nid(pfn);
4018 if (nid >= 0 && nid != node)
4019 return false;
4020 return true;
4021}
4022#endif
f2dbcfa7 4023
c713216d
MG
4024/**
4025 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
4026 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4027 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
4028 *
4029 * If an architecture guarantees that all ranges registered with
4030 * add_active_ranges() contain no holes and may be freed, this
4031 * this function may be used instead of calling free_bootmem() manually.
4032 */
c13291a5 4033void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4034{
c13291a5
TH
4035 unsigned long start_pfn, end_pfn;
4036 int i, this_nid;
edbe7d23 4037
c13291a5
TH
4038 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4039 start_pfn = min(start_pfn, max_low_pfn);
4040 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4041
c13291a5
TH
4042 if (start_pfn < end_pfn)
4043 free_bootmem_node(NODE_DATA(this_nid),
4044 PFN_PHYS(start_pfn),
4045 (end_pfn - start_pfn) << PAGE_SHIFT);
edbe7d23 4046 }
edbe7d23 4047}
edbe7d23 4048
c713216d
MG
4049/**
4050 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4051 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4052 *
4053 * If an architecture guarantees that all ranges registered with
4054 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4055 * function may be used instead of calling memory_present() manually.
c713216d
MG
4056 */
4057void __init sparse_memory_present_with_active_regions(int nid)
4058{
c13291a5
TH
4059 unsigned long start_pfn, end_pfn;
4060 int i, this_nid;
c713216d 4061
c13291a5
TH
4062 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4063 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4064}
4065
4066/**
4067 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4068 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4069 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4070 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4071 *
4072 * It returns the start and end page frame of a node based on information
4073 * provided by an arch calling add_active_range(). If called for a node
4074 * with no available memory, a warning is printed and the start and end
88ca3b94 4075 * PFNs will be 0.
c713216d 4076 */
a3142c8e 4077void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4078 unsigned long *start_pfn, unsigned long *end_pfn)
4079{
c13291a5 4080 unsigned long this_start_pfn, this_end_pfn;
c713216d 4081 int i;
c13291a5 4082
c713216d
MG
4083 *start_pfn = -1UL;
4084 *end_pfn = 0;
4085
c13291a5
TH
4086 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4087 *start_pfn = min(*start_pfn, this_start_pfn);
4088 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4089 }
4090
633c0666 4091 if (*start_pfn == -1UL)
c713216d 4092 *start_pfn = 0;
c713216d
MG
4093}
4094
2a1e274a
MG
4095/*
4096 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4097 * assumption is made that zones within a node are ordered in monotonic
4098 * increasing memory addresses so that the "highest" populated zone is used
4099 */
b69a7288 4100static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4101{
4102 int zone_index;
4103 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4104 if (zone_index == ZONE_MOVABLE)
4105 continue;
4106
4107 if (arch_zone_highest_possible_pfn[zone_index] >
4108 arch_zone_lowest_possible_pfn[zone_index])
4109 break;
4110 }
4111
4112 VM_BUG_ON(zone_index == -1);
4113 movable_zone = zone_index;
4114}
4115
4116/*
4117 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4118 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4119 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4120 * in each node depending on the size of each node and how evenly kernelcore
4121 * is distributed. This helper function adjusts the zone ranges
4122 * provided by the architecture for a given node by using the end of the
4123 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4124 * zones within a node are in order of monotonic increases memory addresses
4125 */
b69a7288 4126static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4127 unsigned long zone_type,
4128 unsigned long node_start_pfn,
4129 unsigned long node_end_pfn,
4130 unsigned long *zone_start_pfn,
4131 unsigned long *zone_end_pfn)
4132{
4133 /* Only adjust if ZONE_MOVABLE is on this node */
4134 if (zone_movable_pfn[nid]) {
4135 /* Size ZONE_MOVABLE */
4136 if (zone_type == ZONE_MOVABLE) {
4137 *zone_start_pfn = zone_movable_pfn[nid];
4138 *zone_end_pfn = min(node_end_pfn,
4139 arch_zone_highest_possible_pfn[movable_zone]);
4140
4141 /* Adjust for ZONE_MOVABLE starting within this range */
4142 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4143 *zone_end_pfn > zone_movable_pfn[nid]) {
4144 *zone_end_pfn = zone_movable_pfn[nid];
4145
4146 /* Check if this whole range is within ZONE_MOVABLE */
4147 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4148 *zone_start_pfn = *zone_end_pfn;
4149 }
4150}
4151
c713216d
MG
4152/*
4153 * Return the number of pages a zone spans in a node, including holes
4154 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4155 */
6ea6e688 4156static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4157 unsigned long zone_type,
4158 unsigned long *ignored)
4159{
4160 unsigned long node_start_pfn, node_end_pfn;
4161 unsigned long zone_start_pfn, zone_end_pfn;
4162
4163 /* Get the start and end of the node and zone */
4164 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4165 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4166 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4167 adjust_zone_range_for_zone_movable(nid, zone_type,
4168 node_start_pfn, node_end_pfn,
4169 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4170
4171 /* Check that this node has pages within the zone's required range */
4172 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4173 return 0;
4174
4175 /* Move the zone boundaries inside the node if necessary */
4176 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4177 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4178
4179 /* Return the spanned pages */
4180 return zone_end_pfn - zone_start_pfn;
4181}
4182
4183/*
4184 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4185 * then all holes in the requested range will be accounted for.
c713216d 4186 */
32996250 4187unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4188 unsigned long range_start_pfn,
4189 unsigned long range_end_pfn)
4190{
96e907d1
TH
4191 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4192 unsigned long start_pfn, end_pfn;
4193 int i;
c713216d 4194
96e907d1
TH
4195 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4196 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4197 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4198 nr_absent -= end_pfn - start_pfn;
c713216d 4199 }
96e907d1 4200 return nr_absent;
c713216d
MG
4201}
4202
4203/**
4204 * absent_pages_in_range - Return number of page frames in holes within a range
4205 * @start_pfn: The start PFN to start searching for holes
4206 * @end_pfn: The end PFN to stop searching for holes
4207 *
88ca3b94 4208 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4209 */
4210unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4211 unsigned long end_pfn)
4212{
4213 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4214}
4215
4216/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4217static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4218 unsigned long zone_type,
4219 unsigned long *ignored)
4220{
96e907d1
TH
4221 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4222 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4223 unsigned long node_start_pfn, node_end_pfn;
4224 unsigned long zone_start_pfn, zone_end_pfn;
4225
4226 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
96e907d1
TH
4227 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4228 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4229
2a1e274a
MG
4230 adjust_zone_range_for_zone_movable(nid, zone_type,
4231 node_start_pfn, node_end_pfn,
4232 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4233 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4234}
0e0b864e 4235
0ee332c1 4236#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4237static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4238 unsigned long zone_type,
4239 unsigned long *zones_size)
4240{
4241 return zones_size[zone_type];
4242}
4243
6ea6e688 4244static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4245 unsigned long zone_type,
4246 unsigned long *zholes_size)
4247{
4248 if (!zholes_size)
4249 return 0;
4250
4251 return zholes_size[zone_type];
4252}
0e0b864e 4253
0ee332c1 4254#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4255
a3142c8e 4256static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4257 unsigned long *zones_size, unsigned long *zholes_size)
4258{
4259 unsigned long realtotalpages, totalpages = 0;
4260 enum zone_type i;
4261
4262 for (i = 0; i < MAX_NR_ZONES; i++)
4263 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4264 zones_size);
4265 pgdat->node_spanned_pages = totalpages;
4266
4267 realtotalpages = totalpages;
4268 for (i = 0; i < MAX_NR_ZONES; i++)
4269 realtotalpages -=
4270 zone_absent_pages_in_node(pgdat->node_id, i,
4271 zholes_size);
4272 pgdat->node_present_pages = realtotalpages;
4273 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4274 realtotalpages);
4275}
4276
835c134e
MG
4277#ifndef CONFIG_SPARSEMEM
4278/*
4279 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4280 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4281 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4282 * round what is now in bits to nearest long in bits, then return it in
4283 * bytes.
4284 */
4285static unsigned long __init usemap_size(unsigned long zonesize)
4286{
4287 unsigned long usemapsize;
4288
d9c23400
MG
4289 usemapsize = roundup(zonesize, pageblock_nr_pages);
4290 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4291 usemapsize *= NR_PAGEBLOCK_BITS;
4292 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4293
4294 return usemapsize / 8;
4295}
4296
4297static void __init setup_usemap(struct pglist_data *pgdat,
4298 struct zone *zone, unsigned long zonesize)
4299{
4300 unsigned long usemapsize = usemap_size(zonesize);
4301 zone->pageblock_flags = NULL;
58a01a45 4302 if (usemapsize)
8f389a99
YL
4303 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4304 usemapsize);
835c134e
MG
4305}
4306#else
fa9f90be 4307static inline void setup_usemap(struct pglist_data *pgdat,
835c134e
MG
4308 struct zone *zone, unsigned long zonesize) {}
4309#endif /* CONFIG_SPARSEMEM */
4310
d9c23400 4311#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4312
d9c23400 4313/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
ca57df79 4314void __init set_pageblock_order(void)
d9c23400 4315{
955c1cd7
AM
4316 unsigned int order;
4317
d9c23400
MG
4318 /* Check that pageblock_nr_pages has not already been setup */
4319 if (pageblock_order)
4320 return;
4321
955c1cd7
AM
4322 if (HPAGE_SHIFT > PAGE_SHIFT)
4323 order = HUGETLB_PAGE_ORDER;
4324 else
4325 order = MAX_ORDER - 1;
4326
d9c23400
MG
4327 /*
4328 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4329 * This value may be variable depending on boot parameters on IA64 and
4330 * powerpc.
d9c23400
MG
4331 */
4332 pageblock_order = order;
4333}
4334#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4335
ba72cb8c
MG
4336/*
4337 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4338 * is unused as pageblock_order is set at compile-time. See
4339 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4340 * the kernel config
ba72cb8c 4341 */
ca57df79 4342void __init set_pageblock_order(void)
ba72cb8c 4343{
ba72cb8c 4344}
d9c23400
MG
4345
4346#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4347
1da177e4
LT
4348/*
4349 * Set up the zone data structures:
4350 * - mark all pages reserved
4351 * - mark all memory queues empty
4352 * - clear the memory bitmaps
4353 */
b5a0e011 4354static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4355 unsigned long *zones_size, unsigned long *zholes_size)
4356{
2f1b6248 4357 enum zone_type j;
ed8ece2e 4358 int nid = pgdat->node_id;
1da177e4 4359 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4360 int ret;
1da177e4 4361
208d54e5 4362 pgdat_resize_init(pgdat);
1da177e4
LT
4363 pgdat->nr_zones = 0;
4364 init_waitqueue_head(&pgdat->kswapd_wait);
4365 pgdat->kswapd_max_order = 0;
52d4b9ac 4366 pgdat_page_cgroup_init(pgdat);
5f63b720 4367
1da177e4
LT
4368 for (j = 0; j < MAX_NR_ZONES; j++) {
4369 struct zone *zone = pgdat->node_zones + j;
0e0b864e 4370 unsigned long size, realsize, memmap_pages;
1da177e4 4371
c713216d
MG
4372 size = zone_spanned_pages_in_node(nid, j, zones_size);
4373 realsize = size - zone_absent_pages_in_node(nid, j,
4374 zholes_size);
1da177e4 4375
0e0b864e
MG
4376 /*
4377 * Adjust realsize so that it accounts for how much memory
4378 * is used by this zone for memmap. This affects the watermark
4379 * and per-cpu initialisations
4380 */
f7232154
JW
4381 memmap_pages =
4382 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
4383 if (realsize >= memmap_pages) {
4384 realsize -= memmap_pages;
5594c8c8
YL
4385 if (memmap_pages)
4386 printk(KERN_DEBUG
4387 " %s zone: %lu pages used for memmap\n",
4388 zone_names[j], memmap_pages);
0e0b864e
MG
4389 } else
4390 printk(KERN_WARNING
4391 " %s zone: %lu pages exceeds realsize %lu\n",
4392 zone_names[j], memmap_pages, realsize);
4393
6267276f
CL
4394 /* Account for reserved pages */
4395 if (j == 0 && realsize > dma_reserve) {
0e0b864e 4396 realsize -= dma_reserve;
d903ef9f 4397 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4398 zone_names[0], dma_reserve);
0e0b864e
MG
4399 }
4400
98d2b0eb 4401 if (!is_highmem_idx(j))
1da177e4
LT
4402 nr_kernel_pages += realsize;
4403 nr_all_pages += realsize;
4404
4405 zone->spanned_pages = size;
4406 zone->present_pages = realsize;
7db8889a
RR
4407#if defined CONFIG_COMPACTION || defined CONFIG_CMA
4408 zone->compact_cached_free_pfn = zone->zone_start_pfn +
4409 zone->spanned_pages;
4410 zone->compact_cached_free_pfn &= ~(pageblock_nr_pages-1);
4411#endif
9614634f 4412#ifdef CONFIG_NUMA
d5f541ed 4413 zone->node = nid;
8417bba4 4414 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4415 / 100;
0ff38490 4416 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4417#endif
1da177e4
LT
4418 zone->name = zone_names[j];
4419 spin_lock_init(&zone->lock);
4420 spin_lock_init(&zone->lru_lock);
bdc8cb98 4421 zone_seqlock_init(zone);
1da177e4 4422 zone->zone_pgdat = pgdat;
1da177e4 4423
ed8ece2e 4424 zone_pcp_init(zone);
7f5e86c2 4425 lruvec_init(&zone->lruvec, zone);
2244b95a 4426 zap_zone_vm_stats(zone);
e815af95 4427 zone->flags = 0;
702d1a6e
MK
4428#ifdef CONFIG_MEMORY_ISOLATION
4429 zone->nr_pageblock_isolate = 0;
4430#endif
1da177e4
LT
4431 if (!size)
4432 continue;
4433
955c1cd7 4434 set_pageblock_order();
835c134e 4435 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4436 ret = init_currently_empty_zone(zone, zone_start_pfn,
4437 size, MEMMAP_EARLY);
718127cc 4438 BUG_ON(ret);
76cdd58e 4439 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4440 zone_start_pfn += size;
1da177e4
LT
4441 }
4442}
4443
577a32f6 4444static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4445{
1da177e4
LT
4446 /* Skip empty nodes */
4447 if (!pgdat->node_spanned_pages)
4448 return;
4449
d41dee36 4450#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4451 /* ia64 gets its own node_mem_map, before this, without bootmem */
4452 if (!pgdat->node_mem_map) {
e984bb43 4453 unsigned long size, start, end;
d41dee36
AW
4454 struct page *map;
4455
e984bb43
BP
4456 /*
4457 * The zone's endpoints aren't required to be MAX_ORDER
4458 * aligned but the node_mem_map endpoints must be in order
4459 * for the buddy allocator to function correctly.
4460 */
4461 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4462 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4463 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4464 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4465 map = alloc_remap(pgdat->node_id, size);
4466 if (!map)
8f389a99 4467 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4468 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4469 }
12d810c1 4470#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4471 /*
4472 * With no DISCONTIG, the global mem_map is just set as node 0's
4473 */
c713216d 4474 if (pgdat == NODE_DATA(0)) {
1da177e4 4475 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4476#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4477 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4478 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4479#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4480 }
1da177e4 4481#endif
d41dee36 4482#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4483}
4484
9109fb7b
JW
4485void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4486 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4487{
9109fb7b
JW
4488 pg_data_t *pgdat = NODE_DATA(nid);
4489
1da177e4
LT
4490 pgdat->node_id = nid;
4491 pgdat->node_start_pfn = node_start_pfn;
c713216d 4492 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4493
4494 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4495#ifdef CONFIG_FLAT_NODE_MEM_MAP
4496 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4497 nid, (unsigned long)pgdat,
4498 (unsigned long)pgdat->node_mem_map);
4499#endif
1da177e4
LT
4500
4501 free_area_init_core(pgdat, zones_size, zholes_size);
4502}
4503
0ee332c1 4504#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4505
4506#if MAX_NUMNODES > 1
4507/*
4508 * Figure out the number of possible node ids.
4509 */
4510static void __init setup_nr_node_ids(void)
4511{
4512 unsigned int node;
4513 unsigned int highest = 0;
4514
4515 for_each_node_mask(node, node_possible_map)
4516 highest = node;
4517 nr_node_ids = highest + 1;
4518}
4519#else
4520static inline void setup_nr_node_ids(void)
4521{
4522}
4523#endif
4524
1e01979c
TH
4525/**
4526 * node_map_pfn_alignment - determine the maximum internode alignment
4527 *
4528 * This function should be called after node map is populated and sorted.
4529 * It calculates the maximum power of two alignment which can distinguish
4530 * all the nodes.
4531 *
4532 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4533 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4534 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4535 * shifted, 1GiB is enough and this function will indicate so.
4536 *
4537 * This is used to test whether pfn -> nid mapping of the chosen memory
4538 * model has fine enough granularity to avoid incorrect mapping for the
4539 * populated node map.
4540 *
4541 * Returns the determined alignment in pfn's. 0 if there is no alignment
4542 * requirement (single node).
4543 */
4544unsigned long __init node_map_pfn_alignment(void)
4545{
4546 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4547 unsigned long start, end, mask;
1e01979c 4548 int last_nid = -1;
c13291a5 4549 int i, nid;
1e01979c 4550
c13291a5 4551 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4552 if (!start || last_nid < 0 || last_nid == nid) {
4553 last_nid = nid;
4554 last_end = end;
4555 continue;
4556 }
4557
4558 /*
4559 * Start with a mask granular enough to pin-point to the
4560 * start pfn and tick off bits one-by-one until it becomes
4561 * too coarse to separate the current node from the last.
4562 */
4563 mask = ~((1 << __ffs(start)) - 1);
4564 while (mask && last_end <= (start & (mask << 1)))
4565 mask <<= 1;
4566
4567 /* accumulate all internode masks */
4568 accl_mask |= mask;
4569 }
4570
4571 /* convert mask to number of pages */
4572 return ~accl_mask + 1;
4573}
4574
a6af2bc3 4575/* Find the lowest pfn for a node */
b69a7288 4576static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4577{
a6af2bc3 4578 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4579 unsigned long start_pfn;
4580 int i;
1abbfb41 4581
c13291a5
TH
4582 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4583 min_pfn = min(min_pfn, start_pfn);
c713216d 4584
a6af2bc3
MG
4585 if (min_pfn == ULONG_MAX) {
4586 printk(KERN_WARNING
2bc0d261 4587 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4588 return 0;
4589 }
4590
4591 return min_pfn;
c713216d
MG
4592}
4593
4594/**
4595 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4596 *
4597 * It returns the minimum PFN based on information provided via
88ca3b94 4598 * add_active_range().
c713216d
MG
4599 */
4600unsigned long __init find_min_pfn_with_active_regions(void)
4601{
4602 return find_min_pfn_for_node(MAX_NUMNODES);
4603}
4604
37b07e41
LS
4605/*
4606 * early_calculate_totalpages()
4607 * Sum pages in active regions for movable zone.
4608 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4609 */
484f51f8 4610static unsigned long __init early_calculate_totalpages(void)
7e63efef 4611{
7e63efef 4612 unsigned long totalpages = 0;
c13291a5
TH
4613 unsigned long start_pfn, end_pfn;
4614 int i, nid;
4615
4616 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4617 unsigned long pages = end_pfn - start_pfn;
7e63efef 4618
37b07e41
LS
4619 totalpages += pages;
4620 if (pages)
c13291a5 4621 node_set_state(nid, N_HIGH_MEMORY);
37b07e41
LS
4622 }
4623 return totalpages;
7e63efef
MG
4624}
4625
2a1e274a
MG
4626/*
4627 * Find the PFN the Movable zone begins in each node. Kernel memory
4628 * is spread evenly between nodes as long as the nodes have enough
4629 * memory. When they don't, some nodes will have more kernelcore than
4630 * others
4631 */
b224ef85 4632static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
4633{
4634 int i, nid;
4635 unsigned long usable_startpfn;
4636 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4637 /* save the state before borrow the nodemask */
4638 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4639 unsigned long totalpages = early_calculate_totalpages();
4640 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4641
7e63efef
MG
4642 /*
4643 * If movablecore was specified, calculate what size of
4644 * kernelcore that corresponds so that memory usable for
4645 * any allocation type is evenly spread. If both kernelcore
4646 * and movablecore are specified, then the value of kernelcore
4647 * will be used for required_kernelcore if it's greater than
4648 * what movablecore would have allowed.
4649 */
4650 if (required_movablecore) {
7e63efef
MG
4651 unsigned long corepages;
4652
4653 /*
4654 * Round-up so that ZONE_MOVABLE is at least as large as what
4655 * was requested by the user
4656 */
4657 required_movablecore =
4658 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4659 corepages = totalpages - required_movablecore;
4660
4661 required_kernelcore = max(required_kernelcore, corepages);
4662 }
4663
2a1e274a
MG
4664 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4665 if (!required_kernelcore)
66918dcd 4666 goto out;
2a1e274a
MG
4667
4668 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4669 find_usable_zone_for_movable();
4670 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4671
4672restart:
4673 /* Spread kernelcore memory as evenly as possible throughout nodes */
4674 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4675 for_each_node_state(nid, N_HIGH_MEMORY) {
c13291a5
TH
4676 unsigned long start_pfn, end_pfn;
4677
2a1e274a
MG
4678 /*
4679 * Recalculate kernelcore_node if the division per node
4680 * now exceeds what is necessary to satisfy the requested
4681 * amount of memory for the kernel
4682 */
4683 if (required_kernelcore < kernelcore_node)
4684 kernelcore_node = required_kernelcore / usable_nodes;
4685
4686 /*
4687 * As the map is walked, we track how much memory is usable
4688 * by the kernel using kernelcore_remaining. When it is
4689 * 0, the rest of the node is usable by ZONE_MOVABLE
4690 */
4691 kernelcore_remaining = kernelcore_node;
4692
4693 /* Go through each range of PFNs within this node */
c13291a5 4694 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
4695 unsigned long size_pages;
4696
c13291a5 4697 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
4698 if (start_pfn >= end_pfn)
4699 continue;
4700
4701 /* Account for what is only usable for kernelcore */
4702 if (start_pfn < usable_startpfn) {
4703 unsigned long kernel_pages;
4704 kernel_pages = min(end_pfn, usable_startpfn)
4705 - start_pfn;
4706
4707 kernelcore_remaining -= min(kernel_pages,
4708 kernelcore_remaining);
4709 required_kernelcore -= min(kernel_pages,
4710 required_kernelcore);
4711
4712 /* Continue if range is now fully accounted */
4713 if (end_pfn <= usable_startpfn) {
4714
4715 /*
4716 * Push zone_movable_pfn to the end so
4717 * that if we have to rebalance
4718 * kernelcore across nodes, we will
4719 * not double account here
4720 */
4721 zone_movable_pfn[nid] = end_pfn;
4722 continue;
4723 }
4724 start_pfn = usable_startpfn;
4725 }
4726
4727 /*
4728 * The usable PFN range for ZONE_MOVABLE is from
4729 * start_pfn->end_pfn. Calculate size_pages as the
4730 * number of pages used as kernelcore
4731 */
4732 size_pages = end_pfn - start_pfn;
4733 if (size_pages > kernelcore_remaining)
4734 size_pages = kernelcore_remaining;
4735 zone_movable_pfn[nid] = start_pfn + size_pages;
4736
4737 /*
4738 * Some kernelcore has been met, update counts and
4739 * break if the kernelcore for this node has been
4740 * satisified
4741 */
4742 required_kernelcore -= min(required_kernelcore,
4743 size_pages);
4744 kernelcore_remaining -= size_pages;
4745 if (!kernelcore_remaining)
4746 break;
4747 }
4748 }
4749
4750 /*
4751 * If there is still required_kernelcore, we do another pass with one
4752 * less node in the count. This will push zone_movable_pfn[nid] further
4753 * along on the nodes that still have memory until kernelcore is
4754 * satisified
4755 */
4756 usable_nodes--;
4757 if (usable_nodes && required_kernelcore > usable_nodes)
4758 goto restart;
4759
4760 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4761 for (nid = 0; nid < MAX_NUMNODES; nid++)
4762 zone_movable_pfn[nid] =
4763 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4764
4765out:
4766 /* restore the node_state */
4767 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4768}
4769
37b07e41 4770/* Any regular memory on that node ? */
4ed7e022 4771static void __init check_for_regular_memory(pg_data_t *pgdat)
37b07e41
LS
4772{
4773#ifdef CONFIG_HIGHMEM
4774 enum zone_type zone_type;
4775
4776 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4777 struct zone *zone = &pgdat->node_zones[zone_type];
d0048b0e 4778 if (zone->present_pages) {
37b07e41 4779 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
d0048b0e
BL
4780 break;
4781 }
37b07e41
LS
4782 }
4783#endif
4784}
4785
c713216d
MG
4786/**
4787 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4788 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4789 *
4790 * This will call free_area_init_node() for each active node in the system.
4791 * Using the page ranges provided by add_active_range(), the size of each
4792 * zone in each node and their holes is calculated. If the maximum PFN
4793 * between two adjacent zones match, it is assumed that the zone is empty.
4794 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4795 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4796 * starts where the previous one ended. For example, ZONE_DMA32 starts
4797 * at arch_max_dma_pfn.
4798 */
4799void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4800{
c13291a5
TH
4801 unsigned long start_pfn, end_pfn;
4802 int i, nid;
a6af2bc3 4803
c713216d
MG
4804 /* Record where the zone boundaries are */
4805 memset(arch_zone_lowest_possible_pfn, 0,
4806 sizeof(arch_zone_lowest_possible_pfn));
4807 memset(arch_zone_highest_possible_pfn, 0,
4808 sizeof(arch_zone_highest_possible_pfn));
4809 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4810 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4811 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4812 if (i == ZONE_MOVABLE)
4813 continue;
c713216d
MG
4814 arch_zone_lowest_possible_pfn[i] =
4815 arch_zone_highest_possible_pfn[i-1];
4816 arch_zone_highest_possible_pfn[i] =
4817 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4818 }
2a1e274a
MG
4819 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4820 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4821
4822 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4823 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 4824 find_zone_movable_pfns_for_nodes();
c713216d 4825
c713216d 4826 /* Print out the zone ranges */
a62e2f4f 4827 printk("Zone ranges:\n");
2a1e274a
MG
4828 for (i = 0; i < MAX_NR_ZONES; i++) {
4829 if (i == ZONE_MOVABLE)
4830 continue;
155cbfc8 4831 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
4832 if (arch_zone_lowest_possible_pfn[i] ==
4833 arch_zone_highest_possible_pfn[i])
155cbfc8 4834 printk(KERN_CONT "empty\n");
72f0ba02 4835 else
a62e2f4f
BH
4836 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
4837 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
4838 (arch_zone_highest_possible_pfn[i]
4839 << PAGE_SHIFT) - 1);
2a1e274a
MG
4840 }
4841
4842 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 4843 printk("Movable zone start for each node\n");
2a1e274a
MG
4844 for (i = 0; i < MAX_NUMNODES; i++) {
4845 if (zone_movable_pfn[i])
a62e2f4f
BH
4846 printk(" Node %d: %#010lx\n", i,
4847 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 4848 }
c713216d
MG
4849
4850 /* Print out the early_node_map[] */
a62e2f4f 4851 printk("Early memory node ranges\n");
c13291a5 4852 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
4853 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
4854 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
4855
4856 /* Initialise every node */
708614e6 4857 mminit_verify_pageflags_layout();
8ef82866 4858 setup_nr_node_ids();
c713216d
MG
4859 for_each_online_node(nid) {
4860 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4861 free_area_init_node(nid, NULL,
c713216d 4862 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4863
4864 /* Any memory on that node */
4865 if (pgdat->node_present_pages)
4866 node_set_state(nid, N_HIGH_MEMORY);
4867 check_for_regular_memory(pgdat);
c713216d
MG
4868 }
4869}
2a1e274a 4870
7e63efef 4871static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4872{
4873 unsigned long long coremem;
4874 if (!p)
4875 return -EINVAL;
4876
4877 coremem = memparse(p, &p);
7e63efef 4878 *core = coremem >> PAGE_SHIFT;
2a1e274a 4879
7e63efef 4880 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4881 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4882
4883 return 0;
4884}
ed7ed365 4885
7e63efef
MG
4886/*
4887 * kernelcore=size sets the amount of memory for use for allocations that
4888 * cannot be reclaimed or migrated.
4889 */
4890static int __init cmdline_parse_kernelcore(char *p)
4891{
4892 return cmdline_parse_core(p, &required_kernelcore);
4893}
4894
4895/*
4896 * movablecore=size sets the amount of memory for use for allocations that
4897 * can be reclaimed or migrated.
4898 */
4899static int __init cmdline_parse_movablecore(char *p)
4900{
4901 return cmdline_parse_core(p, &required_movablecore);
4902}
4903
ed7ed365 4904early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4905early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4906
0ee332c1 4907#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4908
0e0b864e 4909/**
88ca3b94
RD
4910 * set_dma_reserve - set the specified number of pages reserved in the first zone
4911 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4912 *
4913 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4914 * In the DMA zone, a significant percentage may be consumed by kernel image
4915 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4916 * function may optionally be used to account for unfreeable pages in the
4917 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4918 * smaller per-cpu batchsize.
0e0b864e
MG
4919 */
4920void __init set_dma_reserve(unsigned long new_dma_reserve)
4921{
4922 dma_reserve = new_dma_reserve;
4923}
4924
1da177e4
LT
4925void __init free_area_init(unsigned long *zones_size)
4926{
9109fb7b 4927 free_area_init_node(0, zones_size,
1da177e4
LT
4928 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4929}
1da177e4 4930
1da177e4
LT
4931static int page_alloc_cpu_notify(struct notifier_block *self,
4932 unsigned long action, void *hcpu)
4933{
4934 int cpu = (unsigned long)hcpu;
1da177e4 4935
8bb78442 4936 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 4937 lru_add_drain_cpu(cpu);
9f8f2172
CL
4938 drain_pages(cpu);
4939
4940 /*
4941 * Spill the event counters of the dead processor
4942 * into the current processors event counters.
4943 * This artificially elevates the count of the current
4944 * processor.
4945 */
f8891e5e 4946 vm_events_fold_cpu(cpu);
9f8f2172
CL
4947
4948 /*
4949 * Zero the differential counters of the dead processor
4950 * so that the vm statistics are consistent.
4951 *
4952 * This is only okay since the processor is dead and cannot
4953 * race with what we are doing.
4954 */
2244b95a 4955 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4956 }
4957 return NOTIFY_OK;
4958}
1da177e4
LT
4959
4960void __init page_alloc_init(void)
4961{
4962 hotcpu_notifier(page_alloc_cpu_notify, 0);
4963}
4964
cb45b0e9
HA
4965/*
4966 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4967 * or min_free_kbytes changes.
4968 */
4969static void calculate_totalreserve_pages(void)
4970{
4971 struct pglist_data *pgdat;
4972 unsigned long reserve_pages = 0;
2f6726e5 4973 enum zone_type i, j;
cb45b0e9
HA
4974
4975 for_each_online_pgdat(pgdat) {
4976 for (i = 0; i < MAX_NR_ZONES; i++) {
4977 struct zone *zone = pgdat->node_zones + i;
4978 unsigned long max = 0;
4979
4980 /* Find valid and maximum lowmem_reserve in the zone */
4981 for (j = i; j < MAX_NR_ZONES; j++) {
4982 if (zone->lowmem_reserve[j] > max)
4983 max = zone->lowmem_reserve[j];
4984 }
4985
41858966
MG
4986 /* we treat the high watermark as reserved pages. */
4987 max += high_wmark_pages(zone);
cb45b0e9
HA
4988
4989 if (max > zone->present_pages)
4990 max = zone->present_pages;
4991 reserve_pages += max;
ab8fabd4
JW
4992 /*
4993 * Lowmem reserves are not available to
4994 * GFP_HIGHUSER page cache allocations and
4995 * kswapd tries to balance zones to their high
4996 * watermark. As a result, neither should be
4997 * regarded as dirtyable memory, to prevent a
4998 * situation where reclaim has to clean pages
4999 * in order to balance the zones.
5000 */
5001 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5002 }
5003 }
ab8fabd4 5004 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5005 totalreserve_pages = reserve_pages;
5006}
5007
1da177e4
LT
5008/*
5009 * setup_per_zone_lowmem_reserve - called whenever
5010 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5011 * has a correct pages reserved value, so an adequate number of
5012 * pages are left in the zone after a successful __alloc_pages().
5013 */
5014static void setup_per_zone_lowmem_reserve(void)
5015{
5016 struct pglist_data *pgdat;
2f6726e5 5017 enum zone_type j, idx;
1da177e4 5018
ec936fc5 5019 for_each_online_pgdat(pgdat) {
1da177e4
LT
5020 for (j = 0; j < MAX_NR_ZONES; j++) {
5021 struct zone *zone = pgdat->node_zones + j;
5022 unsigned long present_pages = zone->present_pages;
5023
5024 zone->lowmem_reserve[j] = 0;
5025
2f6726e5
CL
5026 idx = j;
5027 while (idx) {
1da177e4
LT
5028 struct zone *lower_zone;
5029
2f6726e5
CL
5030 idx--;
5031
1da177e4
LT
5032 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5033 sysctl_lowmem_reserve_ratio[idx] = 1;
5034
5035 lower_zone = pgdat->node_zones + idx;
5036 lower_zone->lowmem_reserve[j] = present_pages /
5037 sysctl_lowmem_reserve_ratio[idx];
5038 present_pages += lower_zone->present_pages;
5039 }
5040 }
5041 }
cb45b0e9
HA
5042
5043 /* update totalreserve_pages */
5044 calculate_totalreserve_pages();
1da177e4
LT
5045}
5046
cfd3da1e 5047static void __setup_per_zone_wmarks(void)
1da177e4
LT
5048{
5049 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5050 unsigned long lowmem_pages = 0;
5051 struct zone *zone;
5052 unsigned long flags;
5053
5054 /* Calculate total number of !ZONE_HIGHMEM pages */
5055 for_each_zone(zone) {
5056 if (!is_highmem(zone))
5057 lowmem_pages += zone->present_pages;
5058 }
5059
5060 for_each_zone(zone) {
ac924c60
AM
5061 u64 tmp;
5062
1125b4e3 5063 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
5064 tmp = (u64)pages_min * zone->present_pages;
5065 do_div(tmp, lowmem_pages);
1da177e4
LT
5066 if (is_highmem(zone)) {
5067 /*
669ed175
NP
5068 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5069 * need highmem pages, so cap pages_min to a small
5070 * value here.
5071 *
41858966 5072 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5073 * deltas controls asynch page reclaim, and so should
5074 * not be capped for highmem.
1da177e4
LT
5075 */
5076 int min_pages;
5077
5078 min_pages = zone->present_pages / 1024;
5079 if (min_pages < SWAP_CLUSTER_MAX)
5080 min_pages = SWAP_CLUSTER_MAX;
5081 if (min_pages > 128)
5082 min_pages = 128;
41858966 5083 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5084 } else {
669ed175
NP
5085 /*
5086 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5087 * proportionate to the zone's size.
5088 */
41858966 5089 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5090 }
5091
41858966
MG
5092 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5093 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9
MS
5094
5095 zone->watermark[WMARK_MIN] += cma_wmark_pages(zone);
5096 zone->watermark[WMARK_LOW] += cma_wmark_pages(zone);
5097 zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone);
5098
56fd56b8 5099 setup_zone_migrate_reserve(zone);
1125b4e3 5100 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5101 }
cb45b0e9
HA
5102
5103 /* update totalreserve_pages */
5104 calculate_totalreserve_pages();
1da177e4
LT
5105}
5106
cfd3da1e
MG
5107/**
5108 * setup_per_zone_wmarks - called when min_free_kbytes changes
5109 * or when memory is hot-{added|removed}
5110 *
5111 * Ensures that the watermark[min,low,high] values for each zone are set
5112 * correctly with respect to min_free_kbytes.
5113 */
5114void setup_per_zone_wmarks(void)
5115{
5116 mutex_lock(&zonelists_mutex);
5117 __setup_per_zone_wmarks();
5118 mutex_unlock(&zonelists_mutex);
5119}
5120
55a4462a 5121/*
556adecb
RR
5122 * The inactive anon list should be small enough that the VM never has to
5123 * do too much work, but large enough that each inactive page has a chance
5124 * to be referenced again before it is swapped out.
5125 *
5126 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5127 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5128 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5129 * the anonymous pages are kept on the inactive list.
5130 *
5131 * total target max
5132 * memory ratio inactive anon
5133 * -------------------------------------
5134 * 10MB 1 5MB
5135 * 100MB 1 50MB
5136 * 1GB 3 250MB
5137 * 10GB 10 0.9GB
5138 * 100GB 31 3GB
5139 * 1TB 101 10GB
5140 * 10TB 320 32GB
5141 */
1b79acc9 5142static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5143{
96cb4df5 5144 unsigned int gb, ratio;
556adecb 5145
96cb4df5
MK
5146 /* Zone size in gigabytes */
5147 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5148 if (gb)
556adecb 5149 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5150 else
5151 ratio = 1;
556adecb 5152
96cb4df5
MK
5153 zone->inactive_ratio = ratio;
5154}
556adecb 5155
839a4fcc 5156static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5157{
5158 struct zone *zone;
5159
5160 for_each_zone(zone)
5161 calculate_zone_inactive_ratio(zone);
556adecb
RR
5162}
5163
1da177e4
LT
5164/*
5165 * Initialise min_free_kbytes.
5166 *
5167 * For small machines we want it small (128k min). For large machines
5168 * we want it large (64MB max). But it is not linear, because network
5169 * bandwidth does not increase linearly with machine size. We use
5170 *
5171 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5172 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5173 *
5174 * which yields
5175 *
5176 * 16MB: 512k
5177 * 32MB: 724k
5178 * 64MB: 1024k
5179 * 128MB: 1448k
5180 * 256MB: 2048k
5181 * 512MB: 2896k
5182 * 1024MB: 4096k
5183 * 2048MB: 5792k
5184 * 4096MB: 8192k
5185 * 8192MB: 11584k
5186 * 16384MB: 16384k
5187 */
1b79acc9 5188int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5189{
5190 unsigned long lowmem_kbytes;
5191
5192 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5193
5194 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5195 if (min_free_kbytes < 128)
5196 min_free_kbytes = 128;
5197 if (min_free_kbytes > 65536)
5198 min_free_kbytes = 65536;
bc75d33f 5199 setup_per_zone_wmarks();
a6cccdc3 5200 refresh_zone_stat_thresholds();
1da177e4 5201 setup_per_zone_lowmem_reserve();
556adecb 5202 setup_per_zone_inactive_ratio();
1da177e4
LT
5203 return 0;
5204}
bc75d33f 5205module_init(init_per_zone_wmark_min)
1da177e4
LT
5206
5207/*
5208 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5209 * that we can call two helper functions whenever min_free_kbytes
5210 * changes.
5211 */
5212int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5213 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5214{
8d65af78 5215 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5216 if (write)
bc75d33f 5217 setup_per_zone_wmarks();
1da177e4
LT
5218 return 0;
5219}
5220
9614634f
CL
5221#ifdef CONFIG_NUMA
5222int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5223 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5224{
5225 struct zone *zone;
5226 int rc;
5227
8d65af78 5228 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5229 if (rc)
5230 return rc;
5231
5232 for_each_zone(zone)
8417bba4 5233 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5234 sysctl_min_unmapped_ratio) / 100;
5235 return 0;
5236}
0ff38490
CL
5237
5238int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5239 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5240{
5241 struct zone *zone;
5242 int rc;
5243
8d65af78 5244 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5245 if (rc)
5246 return rc;
5247
5248 for_each_zone(zone)
5249 zone->min_slab_pages = (zone->present_pages *
5250 sysctl_min_slab_ratio) / 100;
5251 return 0;
5252}
9614634f
CL
5253#endif
5254
1da177e4
LT
5255/*
5256 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5257 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5258 * whenever sysctl_lowmem_reserve_ratio changes.
5259 *
5260 * The reserve ratio obviously has absolutely no relation with the
41858966 5261 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5262 * if in function of the boot time zone sizes.
5263 */
5264int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5265 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5266{
8d65af78 5267 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5268 setup_per_zone_lowmem_reserve();
5269 return 0;
5270}
5271
8ad4b1fb
RS
5272/*
5273 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5274 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5275 * can have before it gets flushed back to buddy allocator.
5276 */
5277
5278int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5279 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5280{
5281 struct zone *zone;
5282 unsigned int cpu;
5283 int ret;
5284
8d65af78 5285 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5286 if (!write || (ret < 0))
8ad4b1fb 5287 return ret;
364df0eb 5288 for_each_populated_zone(zone) {
99dcc3e5 5289 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5290 unsigned long high;
5291 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5292 setup_pagelist_highmark(
5293 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5294 }
5295 }
5296 return 0;
5297}
5298
f034b5d4 5299int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5300
5301#ifdef CONFIG_NUMA
5302static int __init set_hashdist(char *str)
5303{
5304 if (!str)
5305 return 0;
5306 hashdist = simple_strtoul(str, &str, 0);
5307 return 1;
5308}
5309__setup("hashdist=", set_hashdist);
5310#endif
5311
5312/*
5313 * allocate a large system hash table from bootmem
5314 * - it is assumed that the hash table must contain an exact power-of-2
5315 * quantity of entries
5316 * - limit is the number of hash buckets, not the total allocation size
5317 */
5318void *__init alloc_large_system_hash(const char *tablename,
5319 unsigned long bucketsize,
5320 unsigned long numentries,
5321 int scale,
5322 int flags,
5323 unsigned int *_hash_shift,
5324 unsigned int *_hash_mask,
31fe62b9
TB
5325 unsigned long low_limit,
5326 unsigned long high_limit)
1da177e4 5327{
31fe62b9 5328 unsigned long long max = high_limit;
1da177e4
LT
5329 unsigned long log2qty, size;
5330 void *table = NULL;
5331
5332 /* allow the kernel cmdline to have a say */
5333 if (!numentries) {
5334 /* round applicable memory size up to nearest megabyte */
04903664 5335 numentries = nr_kernel_pages;
1da177e4
LT
5336 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5337 numentries >>= 20 - PAGE_SHIFT;
5338 numentries <<= 20 - PAGE_SHIFT;
5339
5340 /* limit to 1 bucket per 2^scale bytes of low memory */
5341 if (scale > PAGE_SHIFT)
5342 numentries >>= (scale - PAGE_SHIFT);
5343 else
5344 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5345
5346 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5347 if (unlikely(flags & HASH_SMALL)) {
5348 /* Makes no sense without HASH_EARLY */
5349 WARN_ON(!(flags & HASH_EARLY));
5350 if (!(numentries >> *_hash_shift)) {
5351 numentries = 1UL << *_hash_shift;
5352 BUG_ON(!numentries);
5353 }
5354 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5355 numentries = PAGE_SIZE / bucketsize;
1da177e4 5356 }
6e692ed3 5357 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5358
5359 /* limit allocation size to 1/16 total memory by default */
5360 if (max == 0) {
5361 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5362 do_div(max, bucketsize);
5363 }
074b8517 5364 max = min(max, 0x80000000ULL);
1da177e4 5365
31fe62b9
TB
5366 if (numentries < low_limit)
5367 numentries = low_limit;
1da177e4
LT
5368 if (numentries > max)
5369 numentries = max;
5370
f0d1b0b3 5371 log2qty = ilog2(numentries);
1da177e4
LT
5372
5373 do {
5374 size = bucketsize << log2qty;
5375 if (flags & HASH_EARLY)
74768ed8 5376 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5377 else if (hashdist)
5378 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5379 else {
1037b83b
ED
5380 /*
5381 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5382 * some pages at the end of hash table which
5383 * alloc_pages_exact() automatically does
1037b83b 5384 */
264ef8a9 5385 if (get_order(size) < MAX_ORDER) {
a1dd268c 5386 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5387 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5388 }
1da177e4
LT
5389 }
5390 } while (!table && size > PAGE_SIZE && --log2qty);
5391
5392 if (!table)
5393 panic("Failed to allocate %s hash table\n", tablename);
5394
f241e660 5395 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5396 tablename,
f241e660 5397 (1UL << log2qty),
f0d1b0b3 5398 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5399 size);
5400
5401 if (_hash_shift)
5402 *_hash_shift = log2qty;
5403 if (_hash_mask)
5404 *_hash_mask = (1 << log2qty) - 1;
5405
5406 return table;
5407}
a117e66e 5408
835c134e
MG
5409/* Return a pointer to the bitmap storing bits affecting a block of pages */
5410static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5411 unsigned long pfn)
5412{
5413#ifdef CONFIG_SPARSEMEM
5414 return __pfn_to_section(pfn)->pageblock_flags;
5415#else
5416 return zone->pageblock_flags;
5417#endif /* CONFIG_SPARSEMEM */
5418}
5419
5420static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5421{
5422#ifdef CONFIG_SPARSEMEM
5423 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5424 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5425#else
5426 pfn = pfn - zone->zone_start_pfn;
d9c23400 5427 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5428#endif /* CONFIG_SPARSEMEM */
5429}
5430
5431/**
d9c23400 5432 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5433 * @page: The page within the block of interest
5434 * @start_bitidx: The first bit of interest to retrieve
5435 * @end_bitidx: The last bit of interest
5436 * returns pageblock_bits flags
5437 */
5438unsigned long get_pageblock_flags_group(struct page *page,
5439 int start_bitidx, int end_bitidx)
5440{
5441 struct zone *zone;
5442 unsigned long *bitmap;
5443 unsigned long pfn, bitidx;
5444 unsigned long flags = 0;
5445 unsigned long value = 1;
5446
5447 zone = page_zone(page);
5448 pfn = page_to_pfn(page);
5449 bitmap = get_pageblock_bitmap(zone, pfn);
5450 bitidx = pfn_to_bitidx(zone, pfn);
5451
5452 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5453 if (test_bit(bitidx + start_bitidx, bitmap))
5454 flags |= value;
6220ec78 5455
835c134e
MG
5456 return flags;
5457}
5458
5459/**
d9c23400 5460 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5461 * @page: The page within the block of interest
5462 * @start_bitidx: The first bit of interest
5463 * @end_bitidx: The last bit of interest
5464 * @flags: The flags to set
5465 */
5466void set_pageblock_flags_group(struct page *page, unsigned long flags,
5467 int start_bitidx, int end_bitidx)
5468{
5469 struct zone *zone;
5470 unsigned long *bitmap;
5471 unsigned long pfn, bitidx;
5472 unsigned long value = 1;
5473
5474 zone = page_zone(page);
5475 pfn = page_to_pfn(page);
5476 bitmap = get_pageblock_bitmap(zone, pfn);
5477 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5478 VM_BUG_ON(pfn < zone->zone_start_pfn);
5479 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5480
5481 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5482 if (flags & value)
5483 __set_bit(bitidx + start_bitidx, bitmap);
5484 else
5485 __clear_bit(bitidx + start_bitidx, bitmap);
5486}
a5d76b54
KH
5487
5488/*
80934513
MK
5489 * This function checks whether pageblock includes unmovable pages or not.
5490 * If @count is not zero, it is okay to include less @count unmovable pages
5491 *
5492 * PageLRU check wihtout isolation or lru_lock could race so that
5493 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5494 * expect this function should be exact.
a5d76b54 5495 */
ee6f509c 5496bool has_unmovable_pages(struct zone *zone, struct page *page, int count)
49ac8255
KH
5497{
5498 unsigned long pfn, iter, found;
47118af0
MN
5499 int mt;
5500
49ac8255
KH
5501 /*
5502 * For avoiding noise data, lru_add_drain_all() should be called
80934513 5503 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
5504 */
5505 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 5506 return false;
47118af0
MN
5507 mt = get_pageblock_migratetype(page);
5508 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 5509 return false;
49ac8255
KH
5510
5511 pfn = page_to_pfn(page);
5512 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5513 unsigned long check = pfn + iter;
5514
29723fcc 5515 if (!pfn_valid_within(check))
49ac8255 5516 continue;
29723fcc 5517
49ac8255 5518 page = pfn_to_page(check);
97d255c8
MK
5519 /*
5520 * We can't use page_count without pin a page
5521 * because another CPU can free compound page.
5522 * This check already skips compound tails of THP
5523 * because their page->_count is zero at all time.
5524 */
5525 if (!atomic_read(&page->_count)) {
49ac8255
KH
5526 if (PageBuddy(page))
5527 iter += (1 << page_order(page)) - 1;
5528 continue;
5529 }
97d255c8 5530
49ac8255
KH
5531 if (!PageLRU(page))
5532 found++;
5533 /*
5534 * If there are RECLAIMABLE pages, we need to check it.
5535 * But now, memory offline itself doesn't call shrink_slab()
5536 * and it still to be fixed.
5537 */
5538 /*
5539 * If the page is not RAM, page_count()should be 0.
5540 * we don't need more check. This is an _used_ not-movable page.
5541 *
5542 * The problematic thing here is PG_reserved pages. PG_reserved
5543 * is set to both of a memory hole page and a _used_ kernel
5544 * page at boot.
5545 */
5546 if (found > count)
80934513 5547 return true;
49ac8255 5548 }
80934513 5549 return false;
49ac8255
KH
5550}
5551
5552bool is_pageblock_removable_nolock(struct page *page)
5553{
656a0706
MH
5554 struct zone *zone;
5555 unsigned long pfn;
687875fb
MH
5556
5557 /*
5558 * We have to be careful here because we are iterating over memory
5559 * sections which are not zone aware so we might end up outside of
5560 * the zone but still within the section.
656a0706
MH
5561 * We have to take care about the node as well. If the node is offline
5562 * its NODE_DATA will be NULL - see page_zone.
687875fb 5563 */
656a0706
MH
5564 if (!node_online(page_to_nid(page)))
5565 return false;
5566
5567 zone = page_zone(page);
5568 pfn = page_to_pfn(page);
5569 if (zone->zone_start_pfn > pfn ||
687875fb
MH
5570 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5571 return false;
5572
ee6f509c 5573 return !has_unmovable_pages(zone, page, 0);
a5d76b54 5574}
0c0e6195 5575
041d3a8c
MN
5576#ifdef CONFIG_CMA
5577
5578static unsigned long pfn_max_align_down(unsigned long pfn)
5579{
5580 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5581 pageblock_nr_pages) - 1);
5582}
5583
5584static unsigned long pfn_max_align_up(unsigned long pfn)
5585{
5586 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5587 pageblock_nr_pages));
5588}
5589
5590static struct page *
5591__alloc_contig_migrate_alloc(struct page *page, unsigned long private,
5592 int **resultp)
5593{
6a6dccba
RV
5594 gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
5595
5596 if (PageHighMem(page))
5597 gfp_mask |= __GFP_HIGHMEM;
5598
5599 return alloc_page(gfp_mask);
041d3a8c
MN
5600}
5601
5602/* [start, end) must belong to a single zone. */
5603static int __alloc_contig_migrate_range(unsigned long start, unsigned long end)
5604{
5605 /* This function is based on compact_zone() from compaction.c. */
5606
5607 unsigned long pfn = start;
5608 unsigned int tries = 0;
5609 int ret = 0;
5610
5611 struct compact_control cc = {
5612 .nr_migratepages = 0,
5613 .order = -1,
5614 .zone = page_zone(pfn_to_page(start)),
68e3e926 5615 .sync = true,
041d3a8c
MN
5616 };
5617 INIT_LIST_HEAD(&cc.migratepages);
5618
5619 migrate_prep_local();
5620
5621 while (pfn < end || !list_empty(&cc.migratepages)) {
5622 if (fatal_signal_pending(current)) {
5623 ret = -EINTR;
5624 break;
5625 }
5626
5627 if (list_empty(&cc.migratepages)) {
5628 cc.nr_migratepages = 0;
5629 pfn = isolate_migratepages_range(cc.zone, &cc,
5630 pfn, end);
5631 if (!pfn) {
5632 ret = -EINTR;
5633 break;
5634 }
5635 tries = 0;
5636 } else if (++tries == 5) {
5637 ret = ret < 0 ? ret : -EBUSY;
5638 break;
5639 }
5640
5641 ret = migrate_pages(&cc.migratepages,
5642 __alloc_contig_migrate_alloc,
58f42fd5 5643 0, false, MIGRATE_SYNC);
041d3a8c
MN
5644 }
5645
5646 putback_lru_pages(&cc.migratepages);
5647 return ret > 0 ? 0 : ret;
5648}
5649
49f223a9
MS
5650/*
5651 * Update zone's cma pages counter used for watermark level calculation.
5652 */
5653static inline void __update_cma_watermarks(struct zone *zone, int count)
5654{
5655 unsigned long flags;
5656 spin_lock_irqsave(&zone->lock, flags);
5657 zone->min_cma_pages += count;
5658 spin_unlock_irqrestore(&zone->lock, flags);
5659 setup_per_zone_wmarks();
5660}
5661
5662/*
5663 * Trigger memory pressure bump to reclaim some pages in order to be able to
5664 * allocate 'count' pages in single page units. Does similar work as
5665 *__alloc_pages_slowpath() function.
5666 */
5667static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count)
5668{
5669 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5670 struct zonelist *zonelist = node_zonelist(0, gfp_mask);
5671 int did_some_progress = 0;
5672 int order = 1;
5673
5674 /*
5675 * Increase level of watermarks to force kswapd do his job
5676 * to stabilise at new watermark level.
5677 */
5678 __update_cma_watermarks(zone, count);
5679
5680 /* Obey watermarks as if the page was being allocated */
5681 while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) {
5682 wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));
5683
5684 did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
5685 NULL);
5686 if (!did_some_progress) {
5687 /* Exhausted what can be done so it's blamo time */
5688 out_of_memory(zonelist, gfp_mask, order, NULL, false);
5689 }
5690 }
5691
5692 /* Restore original watermark levels. */
5693 __update_cma_watermarks(zone, -count);
5694
5695 return count;
5696}
5697
041d3a8c
MN
5698/**
5699 * alloc_contig_range() -- tries to allocate given range of pages
5700 * @start: start PFN to allocate
5701 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
5702 * @migratetype: migratetype of the underlaying pageblocks (either
5703 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5704 * in range must have the same migratetype and it must
5705 * be either of the two.
041d3a8c
MN
5706 *
5707 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5708 * aligned, however it's the caller's responsibility to guarantee that
5709 * we are the only thread that changes migrate type of pageblocks the
5710 * pages fall in.
5711 *
5712 * The PFN range must belong to a single zone.
5713 *
5714 * Returns zero on success or negative error code. On success all
5715 * pages which PFN is in [start, end) are allocated for the caller and
5716 * need to be freed with free_contig_range().
5717 */
0815f3d8
MN
5718int alloc_contig_range(unsigned long start, unsigned long end,
5719 unsigned migratetype)
041d3a8c
MN
5720{
5721 struct zone *zone = page_zone(pfn_to_page(start));
5722 unsigned long outer_start, outer_end;
5723 int ret = 0, order;
5724
5725 /*
5726 * What we do here is we mark all pageblocks in range as
5727 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5728 * have different sizes, and due to the way page allocator
5729 * work, we align the range to biggest of the two pages so
5730 * that page allocator won't try to merge buddies from
5731 * different pageblocks and change MIGRATE_ISOLATE to some
5732 * other migration type.
5733 *
5734 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5735 * migrate the pages from an unaligned range (ie. pages that
5736 * we are interested in). This will put all the pages in
5737 * range back to page allocator as MIGRATE_ISOLATE.
5738 *
5739 * When this is done, we take the pages in range from page
5740 * allocator removing them from the buddy system. This way
5741 * page allocator will never consider using them.
5742 *
5743 * This lets us mark the pageblocks back as
5744 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5745 * aligned range but not in the unaligned, original range are
5746 * put back to page allocator so that buddy can use them.
5747 */
5748
5749 ret = start_isolate_page_range(pfn_max_align_down(start),
0815f3d8 5750 pfn_max_align_up(end), migratetype);
041d3a8c
MN
5751 if (ret)
5752 goto done;
5753
5754 ret = __alloc_contig_migrate_range(start, end);
5755 if (ret)
5756 goto done;
5757
5758 /*
5759 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5760 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5761 * more, all pages in [start, end) are free in page allocator.
5762 * What we are going to do is to allocate all pages from
5763 * [start, end) (that is remove them from page allocator).
5764 *
5765 * The only problem is that pages at the beginning and at the
5766 * end of interesting range may be not aligned with pages that
5767 * page allocator holds, ie. they can be part of higher order
5768 * pages. Because of this, we reserve the bigger range and
5769 * once this is done free the pages we are not interested in.
5770 *
5771 * We don't have to hold zone->lock here because the pages are
5772 * isolated thus they won't get removed from buddy.
5773 */
5774
5775 lru_add_drain_all();
5776 drain_all_pages();
5777
5778 order = 0;
5779 outer_start = start;
5780 while (!PageBuddy(pfn_to_page(outer_start))) {
5781 if (++order >= MAX_ORDER) {
5782 ret = -EBUSY;
5783 goto done;
5784 }
5785 outer_start &= ~0UL << order;
5786 }
5787
5788 /* Make sure the range is really isolated. */
5789 if (test_pages_isolated(outer_start, end)) {
5790 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5791 outer_start, end);
5792 ret = -EBUSY;
5793 goto done;
5794 }
5795
49f223a9
MS
5796 /*
5797 * Reclaim enough pages to make sure that contiguous allocation
5798 * will not starve the system.
5799 */
5800 __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);
5801
5802 /* Grab isolated pages from freelists. */
041d3a8c
MN
5803 outer_end = isolate_freepages_range(outer_start, end);
5804 if (!outer_end) {
5805 ret = -EBUSY;
5806 goto done;
5807 }
5808
5809 /* Free head and tail (if any) */
5810 if (start != outer_start)
5811 free_contig_range(outer_start, start - outer_start);
5812 if (end != outer_end)
5813 free_contig_range(end, outer_end - end);
5814
5815done:
5816 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 5817 pfn_max_align_up(end), migratetype);
041d3a8c
MN
5818 return ret;
5819}
5820
5821void free_contig_range(unsigned long pfn, unsigned nr_pages)
5822{
5823 for (; nr_pages--; ++pfn)
5824 __free_page(pfn_to_page(pfn));
5825}
5826#endif
5827
4ed7e022
JL
5828#ifdef CONFIG_MEMORY_HOTPLUG
5829static int __meminit __zone_pcp_update(void *data)
5830{
5831 struct zone *zone = data;
5832 int cpu;
5833 unsigned long batch = zone_batchsize(zone), flags;
5834
5835 for_each_possible_cpu(cpu) {
5836 struct per_cpu_pageset *pset;
5837 struct per_cpu_pages *pcp;
5838
5839 pset = per_cpu_ptr(zone->pageset, cpu);
5840 pcp = &pset->pcp;
5841
5842 local_irq_save(flags);
5843 if (pcp->count > 0)
5844 free_pcppages_bulk(zone, pcp->count, pcp);
5845 setup_pageset(pset, batch);
5846 local_irq_restore(flags);
5847 }
5848 return 0;
5849}
5850
5851void __meminit zone_pcp_update(struct zone *zone)
5852{
5853 stop_machine(__zone_pcp_update, zone, NULL);
5854}
5855#endif
5856
0c0e6195 5857#ifdef CONFIG_MEMORY_HOTREMOVE
340175b7
JL
5858void zone_pcp_reset(struct zone *zone)
5859{
5860 unsigned long flags;
5861
5862 /* avoid races with drain_pages() */
5863 local_irq_save(flags);
5864 if (zone->pageset != &boot_pageset) {
5865 free_percpu(zone->pageset);
5866 zone->pageset = &boot_pageset;
5867 }
5868 local_irq_restore(flags);
5869}
5870
0c0e6195
KH
5871/*
5872 * All pages in the range must be isolated before calling this.
5873 */
5874void
5875__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5876{
5877 struct page *page;
5878 struct zone *zone;
5879 int order, i;
5880 unsigned long pfn;
5881 unsigned long flags;
5882 /* find the first valid pfn */
5883 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5884 if (pfn_valid(pfn))
5885 break;
5886 if (pfn == end_pfn)
5887 return;
5888 zone = page_zone(pfn_to_page(pfn));
5889 spin_lock_irqsave(&zone->lock, flags);
5890 pfn = start_pfn;
5891 while (pfn < end_pfn) {
5892 if (!pfn_valid(pfn)) {
5893 pfn++;
5894 continue;
5895 }
5896 page = pfn_to_page(pfn);
5897 BUG_ON(page_count(page));
5898 BUG_ON(!PageBuddy(page));
5899 order = page_order(page);
5900#ifdef CONFIG_DEBUG_VM
5901 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5902 pfn, 1 << order, end_pfn);
5903#endif
5904 list_del(&page->lru);
5905 rmv_page_order(page);
5906 zone->free_area[order].nr_free--;
5907 __mod_zone_page_state(zone, NR_FREE_PAGES,
5908 - (1UL << order));
5909 for (i = 0; i < (1 << order); i++)
5910 SetPageReserved((page+i));
5911 pfn += (1 << order);
5912 }
5913 spin_unlock_irqrestore(&zone->lock, flags);
5914}
5915#endif
8d22ba1b
WF
5916
5917#ifdef CONFIG_MEMORY_FAILURE
5918bool is_free_buddy_page(struct page *page)
5919{
5920 struct zone *zone = page_zone(page);
5921 unsigned long pfn = page_to_pfn(page);
5922 unsigned long flags;
5923 int order;
5924
5925 spin_lock_irqsave(&zone->lock, flags);
5926 for (order = 0; order < MAX_ORDER; order++) {
5927 struct page *page_head = page - (pfn & ((1 << order) - 1));
5928
5929 if (PageBuddy(page_head) && page_order(page_head) >= order)
5930 break;
5931 }
5932 spin_unlock_irqrestore(&zone->lock, flags);
5933
5934 return order < MAX_ORDER;
5935}
5936#endif
718a3821 5937
51300cef 5938static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
5939 {1UL << PG_locked, "locked" },
5940 {1UL << PG_error, "error" },
5941 {1UL << PG_referenced, "referenced" },
5942 {1UL << PG_uptodate, "uptodate" },
5943 {1UL << PG_dirty, "dirty" },
5944 {1UL << PG_lru, "lru" },
5945 {1UL << PG_active, "active" },
5946 {1UL << PG_slab, "slab" },
5947 {1UL << PG_owner_priv_1, "owner_priv_1" },
5948 {1UL << PG_arch_1, "arch_1" },
5949 {1UL << PG_reserved, "reserved" },
5950 {1UL << PG_private, "private" },
5951 {1UL << PG_private_2, "private_2" },
5952 {1UL << PG_writeback, "writeback" },
5953#ifdef CONFIG_PAGEFLAGS_EXTENDED
5954 {1UL << PG_head, "head" },
5955 {1UL << PG_tail, "tail" },
5956#else
5957 {1UL << PG_compound, "compound" },
5958#endif
5959 {1UL << PG_swapcache, "swapcache" },
5960 {1UL << PG_mappedtodisk, "mappedtodisk" },
5961 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
5962 {1UL << PG_swapbacked, "swapbacked" },
5963 {1UL << PG_unevictable, "unevictable" },
5964#ifdef CONFIG_MMU
5965 {1UL << PG_mlocked, "mlocked" },
5966#endif
5967#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5968 {1UL << PG_uncached, "uncached" },
5969#endif
5970#ifdef CONFIG_MEMORY_FAILURE
5971 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
5972#endif
5973#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5974 {1UL << PG_compound_lock, "compound_lock" },
718a3821 5975#endif
718a3821
WF
5976};
5977
5978static void dump_page_flags(unsigned long flags)
5979{
5980 const char *delim = "";
5981 unsigned long mask;
5982 int i;
5983
51300cef 5984 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 5985
718a3821
WF
5986 printk(KERN_ALERT "page flags: %#lx(", flags);
5987
5988 /* remove zone id */
5989 flags &= (1UL << NR_PAGEFLAGS) - 1;
5990
51300cef 5991 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
5992
5993 mask = pageflag_names[i].mask;
5994 if ((flags & mask) != mask)
5995 continue;
5996
5997 flags &= ~mask;
5998 printk("%s%s", delim, pageflag_names[i].name);
5999 delim = "|";
6000 }
6001
6002 /* check for left over flags */
6003 if (flags)
6004 printk("%s%#lx", delim, flags);
6005
6006 printk(")\n");
6007}
6008
6009void dump_page(struct page *page)
6010{
6011 printk(KERN_ALERT
6012 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6013 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6014 page->mapping, page->index);
6015 dump_page_flags(page->flags);
f212ad7c 6016 mem_cgroup_print_bad_page(page);
718a3821 6017}