]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
mm: add SECTION_ALIGN_UP() and SECTION_ALIGN_DOWN() macro
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
925cc71e 54#include <linux/memory.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
718a3821 57#include <linux/ftrace_event.h>
f212ad7c 58#include <linux/memcontrol.h>
268bb0ce 59#include <linux/prefetch.h>
1da177e4
LT
60
61#include <asm/tlbflush.h>
ac924c60 62#include <asm/div64.h>
1da177e4
LT
63#include "internal.h"
64
72812019
LS
65#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
66DEFINE_PER_CPU(int, numa_node);
67EXPORT_PER_CPU_SYMBOL(numa_node);
68#endif
69
7aac7898
LS
70#ifdef CONFIG_HAVE_MEMORYLESS_NODES
71/*
72 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
73 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
74 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
75 * defined in <linux/topology.h>.
76 */
77DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
78EXPORT_PER_CPU_SYMBOL(_numa_mem_);
79#endif
80
1da177e4 81/*
13808910 82 * Array of node states.
1da177e4 83 */
13808910
CL
84nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
85 [N_POSSIBLE] = NODE_MASK_ALL,
86 [N_ONLINE] = { { [0] = 1UL } },
87#ifndef CONFIG_NUMA
88 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
89#ifdef CONFIG_HIGHMEM
90 [N_HIGH_MEMORY] = { { [0] = 1UL } },
91#endif
92 [N_CPU] = { { [0] = 1UL } },
93#endif /* NUMA */
94};
95EXPORT_SYMBOL(node_states);
96
6c231b7b 97unsigned long totalram_pages __read_mostly;
cb45b0e9 98unsigned long totalreserve_pages __read_mostly;
8ad4b1fb 99int percpu_pagelist_fraction;
dcce284a 100gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 101
452aa699
RW
102#ifdef CONFIG_PM_SLEEP
103/*
104 * The following functions are used by the suspend/hibernate code to temporarily
105 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
106 * while devices are suspended. To avoid races with the suspend/hibernate code,
107 * they should always be called with pm_mutex held (gfp_allowed_mask also should
108 * only be modified with pm_mutex held, unless the suspend/hibernate code is
109 * guaranteed not to run in parallel with that modification).
110 */
c9e664f1
RW
111
112static gfp_t saved_gfp_mask;
113
114void pm_restore_gfp_mask(void)
452aa699
RW
115{
116 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
117 if (saved_gfp_mask) {
118 gfp_allowed_mask = saved_gfp_mask;
119 saved_gfp_mask = 0;
120 }
452aa699
RW
121}
122
c9e664f1 123void pm_restrict_gfp_mask(void)
452aa699 124{
452aa699 125 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
126 WARN_ON(saved_gfp_mask);
127 saved_gfp_mask = gfp_allowed_mask;
128 gfp_allowed_mask &= ~GFP_IOFS;
452aa699
RW
129}
130#endif /* CONFIG_PM_SLEEP */
131
d9c23400
MG
132#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
133int pageblock_order __read_mostly;
134#endif
135
d98c7a09 136static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 137
1da177e4
LT
138/*
139 * results with 256, 32 in the lowmem_reserve sysctl:
140 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
141 * 1G machine -> (16M dma, 784M normal, 224M high)
142 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
143 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
144 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
145 *
146 * TBD: should special case ZONE_DMA32 machines here - in those we normally
147 * don't need any ZONE_NORMAL reservation
1da177e4 148 */
2f1b6248 149int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 150#ifdef CONFIG_ZONE_DMA
2f1b6248 151 256,
4b51d669 152#endif
fb0e7942 153#ifdef CONFIG_ZONE_DMA32
2f1b6248 154 256,
fb0e7942 155#endif
e53ef38d 156#ifdef CONFIG_HIGHMEM
2a1e274a 157 32,
e53ef38d 158#endif
2a1e274a 159 32,
2f1b6248 160};
1da177e4
LT
161
162EXPORT_SYMBOL(totalram_pages);
1da177e4 163
15ad7cdc 164static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 165#ifdef CONFIG_ZONE_DMA
2f1b6248 166 "DMA",
4b51d669 167#endif
fb0e7942 168#ifdef CONFIG_ZONE_DMA32
2f1b6248 169 "DMA32",
fb0e7942 170#endif
2f1b6248 171 "Normal",
e53ef38d 172#ifdef CONFIG_HIGHMEM
2a1e274a 173 "HighMem",
e53ef38d 174#endif
2a1e274a 175 "Movable",
2f1b6248
CL
176};
177
1da177e4
LT
178int min_free_kbytes = 1024;
179
2c85f51d
JB
180static unsigned long __meminitdata nr_kernel_pages;
181static unsigned long __meminitdata nr_all_pages;
a3142c8e 182static unsigned long __meminitdata dma_reserve;
1da177e4 183
c713216d
MG
184#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
185 /*
183ff22b 186 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
187 * ranges of memory (RAM) that may be registered with add_active_range().
188 * Ranges passed to add_active_range() will be merged if possible
189 * so the number of times add_active_range() can be called is
190 * related to the number of nodes and the number of holes
191 */
192 #ifdef CONFIG_MAX_ACTIVE_REGIONS
193 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
194 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
195 #else
196 #if MAX_NUMNODES >= 32
197 /* If there can be many nodes, allow up to 50 holes per node */
198 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
199 #else
200 /* By default, allow up to 256 distinct regions */
201 #define MAX_ACTIVE_REGIONS 256
202 #endif
203 #endif
204
98011f56
JB
205 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
206 static int __meminitdata nr_nodemap_entries;
207 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
208 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
b69a7288 209 static unsigned long __initdata required_kernelcore;
484f51f8 210 static unsigned long __initdata required_movablecore;
b69a7288 211 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
212
213 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
214 int movable_zone;
215 EXPORT_SYMBOL(movable_zone);
c713216d
MG
216#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
217
418508c1
MS
218#if MAX_NUMNODES > 1
219int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 220int nr_online_nodes __read_mostly = 1;
418508c1 221EXPORT_SYMBOL(nr_node_ids);
62bc62a8 222EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
223#endif
224
9ef9acb0
MG
225int page_group_by_mobility_disabled __read_mostly;
226
b2a0ac88
MG
227static void set_pageblock_migratetype(struct page *page, int migratetype)
228{
49255c61
MG
229
230 if (unlikely(page_group_by_mobility_disabled))
231 migratetype = MIGRATE_UNMOVABLE;
232
b2a0ac88
MG
233 set_pageblock_flags_group(page, (unsigned long)migratetype,
234 PB_migrate, PB_migrate_end);
235}
236
7f33d49a
RW
237bool oom_killer_disabled __read_mostly;
238
13e7444b 239#ifdef CONFIG_DEBUG_VM
c6a57e19 240static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 241{
bdc8cb98
DH
242 int ret = 0;
243 unsigned seq;
244 unsigned long pfn = page_to_pfn(page);
c6a57e19 245
bdc8cb98
DH
246 do {
247 seq = zone_span_seqbegin(zone);
248 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
249 ret = 1;
250 else if (pfn < zone->zone_start_pfn)
251 ret = 1;
252 } while (zone_span_seqretry(zone, seq));
253
254 return ret;
c6a57e19
DH
255}
256
257static int page_is_consistent(struct zone *zone, struct page *page)
258{
14e07298 259 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 260 return 0;
1da177e4 261 if (zone != page_zone(page))
c6a57e19
DH
262 return 0;
263
264 return 1;
265}
266/*
267 * Temporary debugging check for pages not lying within a given zone.
268 */
269static int bad_range(struct zone *zone, struct page *page)
270{
271 if (page_outside_zone_boundaries(zone, page))
1da177e4 272 return 1;
c6a57e19
DH
273 if (!page_is_consistent(zone, page))
274 return 1;
275
1da177e4
LT
276 return 0;
277}
13e7444b
NP
278#else
279static inline int bad_range(struct zone *zone, struct page *page)
280{
281 return 0;
282}
283#endif
284
224abf92 285static void bad_page(struct page *page)
1da177e4 286{
d936cf9b
HD
287 static unsigned long resume;
288 static unsigned long nr_shown;
289 static unsigned long nr_unshown;
290
2a7684a2
WF
291 /* Don't complain about poisoned pages */
292 if (PageHWPoison(page)) {
ef2b4b95 293 reset_page_mapcount(page); /* remove PageBuddy */
2a7684a2
WF
294 return;
295 }
296
d936cf9b
HD
297 /*
298 * Allow a burst of 60 reports, then keep quiet for that minute;
299 * or allow a steady drip of one report per second.
300 */
301 if (nr_shown == 60) {
302 if (time_before(jiffies, resume)) {
303 nr_unshown++;
304 goto out;
305 }
306 if (nr_unshown) {
1e9e6365
HD
307 printk(KERN_ALERT
308 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
309 nr_unshown);
310 nr_unshown = 0;
311 }
312 nr_shown = 0;
313 }
314 if (nr_shown++ == 0)
315 resume = jiffies + 60 * HZ;
316
1e9e6365 317 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 318 current->comm, page_to_pfn(page));
718a3821 319 dump_page(page);
3dc14741 320
1da177e4 321 dump_stack();
d936cf9b 322out:
8cc3b392 323 /* Leave bad fields for debug, except PageBuddy could make trouble */
ef2b4b95 324 reset_page_mapcount(page); /* remove PageBuddy */
9f158333 325 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
326}
327
1da177e4
LT
328/*
329 * Higher-order pages are called "compound pages". They are structured thusly:
330 *
331 * The first PAGE_SIZE page is called the "head page".
332 *
333 * The remaining PAGE_SIZE pages are called "tail pages".
334 *
335 * All pages have PG_compound set. All pages have their ->private pointing at
336 * the head page (even the head page has this).
337 *
41d78ba5
HD
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
1da177e4 341 */
d98c7a09
HD
342
343static void free_compound_page(struct page *page)
344{
d85f3385 345 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
346}
347
01ad1c08 348void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
349{
350 int i;
351 int nr_pages = 1 << order;
352
353 set_compound_page_dtor(page, free_compound_page);
354 set_compound_order(page, order);
355 __SetPageHead(page);
356 for (i = 1; i < nr_pages; i++) {
357 struct page *p = page + i;
358
359 __SetPageTail(p);
360 p->first_page = page;
361 }
362}
363
59ff4216 364/* update __split_huge_page_refcount if you change this function */
8cc3b392 365static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
366{
367 int i;
368 int nr_pages = 1 << order;
8cc3b392 369 int bad = 0;
1da177e4 370
8cc3b392
HD
371 if (unlikely(compound_order(page) != order) ||
372 unlikely(!PageHead(page))) {
224abf92 373 bad_page(page);
8cc3b392
HD
374 bad++;
375 }
1da177e4 376
6d777953 377 __ClearPageHead(page);
8cc3b392 378
18229df5
AW
379 for (i = 1; i < nr_pages; i++) {
380 struct page *p = page + i;
1da177e4 381
e713a21d 382 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 383 bad_page(page);
8cc3b392
HD
384 bad++;
385 }
d85f3385 386 __ClearPageTail(p);
1da177e4 387 }
8cc3b392
HD
388
389 return bad;
1da177e4 390}
1da177e4 391
17cf4406
NP
392static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
393{
394 int i;
395
6626c5d5
AM
396 /*
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
399 */
725d704e 400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
401 for (i = 0; i < (1 << order); i++)
402 clear_highpage(page + i);
403}
404
6aa3001b
AM
405static inline void set_page_order(struct page *page, int order)
406{
4c21e2f2 407 set_page_private(page, order);
676165a8 408 __SetPageBuddy(page);
1da177e4
LT
409}
410
411static inline void rmv_page_order(struct page *page)
412{
676165a8 413 __ClearPageBuddy(page);
4c21e2f2 414 set_page_private(page, 0);
1da177e4
LT
415}
416
417/*
418 * Locate the struct page for both the matching buddy in our
419 * pair (buddy1) and the combined O(n+1) page they form (page).
420 *
421 * 1) Any buddy B1 will have an order O twin B2 which satisfies
422 * the following equation:
423 * B2 = B1 ^ (1 << O)
424 * For example, if the starting buddy (buddy2) is #8 its order
425 * 1 buddy is #10:
426 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
427 *
428 * 2) Any buddy B will have an order O+1 parent P which
429 * satisfies the following equation:
430 * P = B & ~(1 << O)
431 *
d6e05edc 432 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 433 */
1da177e4 434static inline unsigned long
43506fad 435__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 436{
43506fad 437 return page_idx ^ (1 << order);
1da177e4
LT
438}
439
440/*
441 * This function checks whether a page is free && is the buddy
442 * we can do coalesce a page and its buddy if
13e7444b 443 * (a) the buddy is not in a hole &&
676165a8 444 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
445 * (c) a page and its buddy have the same order &&
446 * (d) a page and its buddy are in the same zone.
676165a8 447 *
5f24ce5f
AA
448 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
449 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 450 *
676165a8 451 * For recording page's order, we use page_private(page).
1da177e4 452 */
cb2b95e1
AW
453static inline int page_is_buddy(struct page *page, struct page *buddy,
454 int order)
1da177e4 455{
14e07298 456 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 457 return 0;
13e7444b 458
cb2b95e1
AW
459 if (page_zone_id(page) != page_zone_id(buddy))
460 return 0;
461
462 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 463 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 464 return 1;
676165a8 465 }
6aa3001b 466 return 0;
1da177e4
LT
467}
468
469/*
470 * Freeing function for a buddy system allocator.
471 *
472 * The concept of a buddy system is to maintain direct-mapped table
473 * (containing bit values) for memory blocks of various "orders".
474 * The bottom level table contains the map for the smallest allocatable
475 * units of memory (here, pages), and each level above it describes
476 * pairs of units from the levels below, hence, "buddies".
477 * At a high level, all that happens here is marking the table entry
478 * at the bottom level available, and propagating the changes upward
479 * as necessary, plus some accounting needed to play nicely with other
480 * parts of the VM system.
481 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 482 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 483 * order is recorded in page_private(page) field.
1da177e4
LT
484 * So when we are allocating or freeing one, we can derive the state of the
485 * other. That is, if we allocate a small block, and both were
486 * free, the remainder of the region must be split into blocks.
487 * If a block is freed, and its buddy is also free, then this
488 * triggers coalescing into a block of larger size.
489 *
490 * -- wli
491 */
492
48db57f8 493static inline void __free_one_page(struct page *page,
ed0ae21d
MG
494 struct zone *zone, unsigned int order,
495 int migratetype)
1da177e4
LT
496{
497 unsigned long page_idx;
6dda9d55 498 unsigned long combined_idx;
43506fad 499 unsigned long uninitialized_var(buddy_idx);
6dda9d55 500 struct page *buddy;
1da177e4 501
224abf92 502 if (unlikely(PageCompound(page)))
8cc3b392
HD
503 if (unlikely(destroy_compound_page(page, order)))
504 return;
1da177e4 505
ed0ae21d
MG
506 VM_BUG_ON(migratetype == -1);
507
1da177e4
LT
508 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
509
f2260e6b 510 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 511 VM_BUG_ON(bad_range(zone, page));
1da177e4 512
1da177e4 513 while (order < MAX_ORDER-1) {
43506fad
KC
514 buddy_idx = __find_buddy_index(page_idx, order);
515 buddy = page + (buddy_idx - page_idx);
cb2b95e1 516 if (!page_is_buddy(page, buddy, order))
3c82d0ce 517 break;
13e7444b 518
3c82d0ce 519 /* Our buddy is free, merge with it and move up one order. */
1da177e4 520 list_del(&buddy->lru);
b2a0ac88 521 zone->free_area[order].nr_free--;
1da177e4 522 rmv_page_order(buddy);
43506fad 523 combined_idx = buddy_idx & page_idx;
1da177e4
LT
524 page = page + (combined_idx - page_idx);
525 page_idx = combined_idx;
526 order++;
527 }
528 set_page_order(page, order);
6dda9d55
CZ
529
530 /*
531 * If this is not the largest possible page, check if the buddy
532 * of the next-highest order is free. If it is, it's possible
533 * that pages are being freed that will coalesce soon. In case,
534 * that is happening, add the free page to the tail of the list
535 * so it's less likely to be used soon and more likely to be merged
536 * as a higher order page
537 */
b7f50cfa 538 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 539 struct page *higher_page, *higher_buddy;
43506fad
KC
540 combined_idx = buddy_idx & page_idx;
541 higher_page = page + (combined_idx - page_idx);
542 buddy_idx = __find_buddy_index(combined_idx, order + 1);
543 higher_buddy = page + (buddy_idx - combined_idx);
6dda9d55
CZ
544 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
545 list_add_tail(&page->lru,
546 &zone->free_area[order].free_list[migratetype]);
547 goto out;
548 }
549 }
550
551 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
552out:
1da177e4
LT
553 zone->free_area[order].nr_free++;
554}
555
092cead6
KM
556/*
557 * free_page_mlock() -- clean up attempts to free and mlocked() page.
558 * Page should not be on lru, so no need to fix that up.
559 * free_pages_check() will verify...
560 */
561static inline void free_page_mlock(struct page *page)
562{
092cead6
KM
563 __dec_zone_page_state(page, NR_MLOCK);
564 __count_vm_event(UNEVICTABLE_MLOCKFREED);
565}
092cead6 566
224abf92 567static inline int free_pages_check(struct page *page)
1da177e4 568{
92be2e33
NP
569 if (unlikely(page_mapcount(page) |
570 (page->mapping != NULL) |
a3af9c38 571 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
572 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
573 (mem_cgroup_bad_page_check(page)))) {
224abf92 574 bad_page(page);
79f4b7bf 575 return 1;
8cc3b392 576 }
79f4b7bf
HD
577 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
578 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
579 return 0;
1da177e4
LT
580}
581
582/*
5f8dcc21 583 * Frees a number of pages from the PCP lists
1da177e4 584 * Assumes all pages on list are in same zone, and of same order.
207f36ee 585 * count is the number of pages to free.
1da177e4
LT
586 *
587 * If the zone was previously in an "all pages pinned" state then look to
588 * see if this freeing clears that state.
589 *
590 * And clear the zone's pages_scanned counter, to hold off the "all pages are
591 * pinned" detection logic.
592 */
5f8dcc21
MG
593static void free_pcppages_bulk(struct zone *zone, int count,
594 struct per_cpu_pages *pcp)
1da177e4 595{
5f8dcc21 596 int migratetype = 0;
a6f9edd6 597 int batch_free = 0;
72853e29 598 int to_free = count;
5f8dcc21 599
c54ad30c 600 spin_lock(&zone->lock);
93e4a89a 601 zone->all_unreclaimable = 0;
1da177e4 602 zone->pages_scanned = 0;
f2260e6b 603
72853e29 604 while (to_free) {
48db57f8 605 struct page *page;
5f8dcc21
MG
606 struct list_head *list;
607
608 /*
a6f9edd6
MG
609 * Remove pages from lists in a round-robin fashion. A
610 * batch_free count is maintained that is incremented when an
611 * empty list is encountered. This is so more pages are freed
612 * off fuller lists instead of spinning excessively around empty
613 * lists
5f8dcc21
MG
614 */
615 do {
a6f9edd6 616 batch_free++;
5f8dcc21
MG
617 if (++migratetype == MIGRATE_PCPTYPES)
618 migratetype = 0;
619 list = &pcp->lists[migratetype];
620 } while (list_empty(list));
48db57f8 621
1d16871d
NK
622 /* This is the only non-empty list. Free them all. */
623 if (batch_free == MIGRATE_PCPTYPES)
624 batch_free = to_free;
625
a6f9edd6
MG
626 do {
627 page = list_entry(list->prev, struct page, lru);
628 /* must delete as __free_one_page list manipulates */
629 list_del(&page->lru);
a7016235
HD
630 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
631 __free_one_page(page, zone, 0, page_private(page));
632 trace_mm_page_pcpu_drain(page, 0, page_private(page));
72853e29 633 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 634 }
72853e29 635 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
c54ad30c 636 spin_unlock(&zone->lock);
1da177e4
LT
637}
638
ed0ae21d
MG
639static void free_one_page(struct zone *zone, struct page *page, int order,
640 int migratetype)
1da177e4 641{
006d22d9 642 spin_lock(&zone->lock);
93e4a89a 643 zone->all_unreclaimable = 0;
006d22d9 644 zone->pages_scanned = 0;
f2260e6b 645
ed0ae21d 646 __free_one_page(page, zone, order, migratetype);
72853e29 647 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
006d22d9 648 spin_unlock(&zone->lock);
48db57f8
NP
649}
650
ec95f53a 651static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 652{
1da177e4 653 int i;
8cc3b392 654 int bad = 0;
1da177e4 655
f650316c 656 trace_mm_page_free_direct(page, order);
b1eeab67
VN
657 kmemcheck_free_shadow(page, order);
658
8dd60a3a
AA
659 if (PageAnon(page))
660 page->mapping = NULL;
661 for (i = 0; i < (1 << order); i++)
662 bad += free_pages_check(page + i);
8cc3b392 663 if (bad)
ec95f53a 664 return false;
689bcebf 665
3ac7fe5a 666 if (!PageHighMem(page)) {
9858db50 667 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
668 debug_check_no_obj_freed(page_address(page),
669 PAGE_SIZE << order);
670 }
dafb1367 671 arch_free_page(page, order);
48db57f8 672 kernel_map_pages(page, 1 << order, 0);
dafb1367 673
ec95f53a
KM
674 return true;
675}
676
677static void __free_pages_ok(struct page *page, unsigned int order)
678{
679 unsigned long flags;
680 int wasMlocked = __TestClearPageMlocked(page);
681
682 if (!free_pages_prepare(page, order))
683 return;
684
c54ad30c 685 local_irq_save(flags);
c277331d 686 if (unlikely(wasMlocked))
da456f14 687 free_page_mlock(page);
f8891e5e 688 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
689 free_one_page(page_zone(page), page, order,
690 get_pageblock_migratetype(page));
c54ad30c 691 local_irq_restore(flags);
1da177e4
LT
692}
693
a226f6c8
DH
694/*
695 * permit the bootmem allocator to evade page validation on high-order frees
696 */
af370fb8 697void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
698{
699 if (order == 0) {
700 __ClearPageReserved(page);
701 set_page_count(page, 0);
7835e98b 702 set_page_refcounted(page);
545b1ea9 703 __free_page(page);
a226f6c8 704 } else {
a226f6c8
DH
705 int loop;
706
545b1ea9 707 prefetchw(page);
a226f6c8
DH
708 for (loop = 0; loop < BITS_PER_LONG; loop++) {
709 struct page *p = &page[loop];
710
545b1ea9
NP
711 if (loop + 1 < BITS_PER_LONG)
712 prefetchw(p + 1);
a226f6c8
DH
713 __ClearPageReserved(p);
714 set_page_count(p, 0);
715 }
716
7835e98b 717 set_page_refcounted(page);
545b1ea9 718 __free_pages(page, order);
a226f6c8
DH
719 }
720}
721
1da177e4
LT
722
723/*
724 * The order of subdivision here is critical for the IO subsystem.
725 * Please do not alter this order without good reasons and regression
726 * testing. Specifically, as large blocks of memory are subdivided,
727 * the order in which smaller blocks are delivered depends on the order
728 * they're subdivided in this function. This is the primary factor
729 * influencing the order in which pages are delivered to the IO
730 * subsystem according to empirical testing, and this is also justified
731 * by considering the behavior of a buddy system containing a single
732 * large block of memory acted on by a series of small allocations.
733 * This behavior is a critical factor in sglist merging's success.
734 *
735 * -- wli
736 */
085cc7d5 737static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
738 int low, int high, struct free_area *area,
739 int migratetype)
1da177e4
LT
740{
741 unsigned long size = 1 << high;
742
743 while (high > low) {
744 area--;
745 high--;
746 size >>= 1;
725d704e 747 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 748 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
749 area->nr_free++;
750 set_page_order(&page[size], high);
751 }
1da177e4
LT
752}
753
1da177e4
LT
754/*
755 * This page is about to be returned from the page allocator
756 */
2a7684a2 757static inline int check_new_page(struct page *page)
1da177e4 758{
92be2e33
NP
759 if (unlikely(page_mapcount(page) |
760 (page->mapping != NULL) |
a3af9c38 761 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
762 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
763 (mem_cgroup_bad_page_check(page)))) {
224abf92 764 bad_page(page);
689bcebf 765 return 1;
8cc3b392 766 }
2a7684a2
WF
767 return 0;
768}
769
770static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
771{
772 int i;
773
774 for (i = 0; i < (1 << order); i++) {
775 struct page *p = page + i;
776 if (unlikely(check_new_page(p)))
777 return 1;
778 }
689bcebf 779
4c21e2f2 780 set_page_private(page, 0);
7835e98b 781 set_page_refcounted(page);
cc102509
NP
782
783 arch_alloc_page(page, order);
1da177e4 784 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
785
786 if (gfp_flags & __GFP_ZERO)
787 prep_zero_page(page, order, gfp_flags);
788
789 if (order && (gfp_flags & __GFP_COMP))
790 prep_compound_page(page, order);
791
689bcebf 792 return 0;
1da177e4
LT
793}
794
56fd56b8
MG
795/*
796 * Go through the free lists for the given migratetype and remove
797 * the smallest available page from the freelists
798 */
728ec980
MG
799static inline
800struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
801 int migratetype)
802{
803 unsigned int current_order;
804 struct free_area * area;
805 struct page *page;
806
807 /* Find a page of the appropriate size in the preferred list */
808 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
809 area = &(zone->free_area[current_order]);
810 if (list_empty(&area->free_list[migratetype]))
811 continue;
812
813 page = list_entry(area->free_list[migratetype].next,
814 struct page, lru);
815 list_del(&page->lru);
816 rmv_page_order(page);
817 area->nr_free--;
56fd56b8
MG
818 expand(zone, page, order, current_order, area, migratetype);
819 return page;
820 }
821
822 return NULL;
823}
824
825
b2a0ac88
MG
826/*
827 * This array describes the order lists are fallen back to when
828 * the free lists for the desirable migrate type are depleted
829 */
830static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
831 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
832 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
833 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
834 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
835};
836
c361be55
MG
837/*
838 * Move the free pages in a range to the free lists of the requested type.
d9c23400 839 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
840 * boundary. If alignment is required, use move_freepages_block()
841 */
b69a7288
AB
842static int move_freepages(struct zone *zone,
843 struct page *start_page, struct page *end_page,
844 int migratetype)
c361be55
MG
845{
846 struct page *page;
847 unsigned long order;
d100313f 848 int pages_moved = 0;
c361be55
MG
849
850#ifndef CONFIG_HOLES_IN_ZONE
851 /*
852 * page_zone is not safe to call in this context when
853 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
854 * anyway as we check zone boundaries in move_freepages_block().
855 * Remove at a later date when no bug reports exist related to
ac0e5b7a 856 * grouping pages by mobility
c361be55
MG
857 */
858 BUG_ON(page_zone(start_page) != page_zone(end_page));
859#endif
860
861 for (page = start_page; page <= end_page;) {
344c790e
AL
862 /* Make sure we are not inadvertently changing nodes */
863 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
864
c361be55
MG
865 if (!pfn_valid_within(page_to_pfn(page))) {
866 page++;
867 continue;
868 }
869
870 if (!PageBuddy(page)) {
871 page++;
872 continue;
873 }
874
875 order = page_order(page);
84be48d8
KS
876 list_move(&page->lru,
877 &zone->free_area[order].free_list[migratetype]);
c361be55 878 page += 1 << order;
d100313f 879 pages_moved += 1 << order;
c361be55
MG
880 }
881
d100313f 882 return pages_moved;
c361be55
MG
883}
884
b69a7288
AB
885static int move_freepages_block(struct zone *zone, struct page *page,
886 int migratetype)
c361be55
MG
887{
888 unsigned long start_pfn, end_pfn;
889 struct page *start_page, *end_page;
890
891 start_pfn = page_to_pfn(page);
d9c23400 892 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 893 start_page = pfn_to_page(start_pfn);
d9c23400
MG
894 end_page = start_page + pageblock_nr_pages - 1;
895 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
896
897 /* Do not cross zone boundaries */
898 if (start_pfn < zone->zone_start_pfn)
899 start_page = page;
900 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
901 return 0;
902
903 return move_freepages(zone, start_page, end_page, migratetype);
904}
905
2f66a68f
MG
906static void change_pageblock_range(struct page *pageblock_page,
907 int start_order, int migratetype)
908{
909 int nr_pageblocks = 1 << (start_order - pageblock_order);
910
911 while (nr_pageblocks--) {
912 set_pageblock_migratetype(pageblock_page, migratetype);
913 pageblock_page += pageblock_nr_pages;
914 }
915}
916
b2a0ac88 917/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
918static inline struct page *
919__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
920{
921 struct free_area * area;
922 int current_order;
923 struct page *page;
924 int migratetype, i;
925
926 /* Find the largest possible block of pages in the other list */
927 for (current_order = MAX_ORDER-1; current_order >= order;
928 --current_order) {
929 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
930 migratetype = fallbacks[start_migratetype][i];
931
56fd56b8
MG
932 /* MIGRATE_RESERVE handled later if necessary */
933 if (migratetype == MIGRATE_RESERVE)
934 continue;
e010487d 935
b2a0ac88
MG
936 area = &(zone->free_area[current_order]);
937 if (list_empty(&area->free_list[migratetype]))
938 continue;
939
940 page = list_entry(area->free_list[migratetype].next,
941 struct page, lru);
942 area->nr_free--;
943
944 /*
c361be55 945 * If breaking a large block of pages, move all free
46dafbca
MG
946 * pages to the preferred allocation list. If falling
947 * back for a reclaimable kernel allocation, be more
25985edc 948 * aggressive about taking ownership of free pages
b2a0ac88 949 */
d9c23400 950 if (unlikely(current_order >= (pageblock_order >> 1)) ||
dd5d241e
MG
951 start_migratetype == MIGRATE_RECLAIMABLE ||
952 page_group_by_mobility_disabled) {
46dafbca
MG
953 unsigned long pages;
954 pages = move_freepages_block(zone, page,
955 start_migratetype);
956
957 /* Claim the whole block if over half of it is free */
dd5d241e
MG
958 if (pages >= (1 << (pageblock_order-1)) ||
959 page_group_by_mobility_disabled)
46dafbca
MG
960 set_pageblock_migratetype(page,
961 start_migratetype);
962
b2a0ac88 963 migratetype = start_migratetype;
c361be55 964 }
b2a0ac88
MG
965
966 /* Remove the page from the freelists */
967 list_del(&page->lru);
968 rmv_page_order(page);
b2a0ac88 969
2f66a68f
MG
970 /* Take ownership for orders >= pageblock_order */
971 if (current_order >= pageblock_order)
972 change_pageblock_range(page, current_order,
b2a0ac88
MG
973 start_migratetype);
974
975 expand(zone, page, order, current_order, area, migratetype);
e0fff1bd
MG
976
977 trace_mm_page_alloc_extfrag(page, order, current_order,
978 start_migratetype, migratetype);
979
b2a0ac88
MG
980 return page;
981 }
982 }
983
728ec980 984 return NULL;
b2a0ac88
MG
985}
986
56fd56b8 987/*
1da177e4
LT
988 * Do the hard work of removing an element from the buddy allocator.
989 * Call me with the zone->lock already held.
990 */
b2a0ac88
MG
991static struct page *__rmqueue(struct zone *zone, unsigned int order,
992 int migratetype)
1da177e4 993{
1da177e4
LT
994 struct page *page;
995
728ec980 996retry_reserve:
56fd56b8 997 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 998
728ec980 999 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1000 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1001
728ec980
MG
1002 /*
1003 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1004 * is used because __rmqueue_smallest is an inline function
1005 * and we want just one call site
1006 */
1007 if (!page) {
1008 migratetype = MIGRATE_RESERVE;
1009 goto retry_reserve;
1010 }
1011 }
1012
0d3d062a 1013 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1014 return page;
1da177e4
LT
1015}
1016
1017/*
1018 * Obtain a specified number of elements from the buddy allocator, all under
1019 * a single hold of the lock, for efficiency. Add them to the supplied list.
1020 * Returns the number of new pages which were placed at *list.
1021 */
1022static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1023 unsigned long count, struct list_head *list,
e084b2d9 1024 int migratetype, int cold)
1da177e4 1025{
1da177e4 1026 int i;
1da177e4 1027
c54ad30c 1028 spin_lock(&zone->lock);
1da177e4 1029 for (i = 0; i < count; ++i) {
b2a0ac88 1030 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1031 if (unlikely(page == NULL))
1da177e4 1032 break;
81eabcbe
MG
1033
1034 /*
1035 * Split buddy pages returned by expand() are received here
1036 * in physical page order. The page is added to the callers and
1037 * list and the list head then moves forward. From the callers
1038 * perspective, the linked list is ordered by page number in
1039 * some conditions. This is useful for IO devices that can
1040 * merge IO requests if the physical pages are ordered
1041 * properly.
1042 */
e084b2d9
MG
1043 if (likely(cold == 0))
1044 list_add(&page->lru, list);
1045 else
1046 list_add_tail(&page->lru, list);
535131e6 1047 set_page_private(page, migratetype);
81eabcbe 1048 list = &page->lru;
1da177e4 1049 }
f2260e6b 1050 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1051 spin_unlock(&zone->lock);
085cc7d5 1052 return i;
1da177e4
LT
1053}
1054
4ae7c039 1055#ifdef CONFIG_NUMA
8fce4d8e 1056/*
4037d452
CL
1057 * Called from the vmstat counter updater to drain pagesets of this
1058 * currently executing processor on remote nodes after they have
1059 * expired.
1060 *
879336c3
CL
1061 * Note that this function must be called with the thread pinned to
1062 * a single processor.
8fce4d8e 1063 */
4037d452 1064void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1065{
4ae7c039 1066 unsigned long flags;
4037d452 1067 int to_drain;
4ae7c039 1068
4037d452
CL
1069 local_irq_save(flags);
1070 if (pcp->count >= pcp->batch)
1071 to_drain = pcp->batch;
1072 else
1073 to_drain = pcp->count;
5f8dcc21 1074 free_pcppages_bulk(zone, to_drain, pcp);
4037d452
CL
1075 pcp->count -= to_drain;
1076 local_irq_restore(flags);
4ae7c039
CL
1077}
1078#endif
1079
9f8f2172
CL
1080/*
1081 * Drain pages of the indicated processor.
1082 *
1083 * The processor must either be the current processor and the
1084 * thread pinned to the current processor or a processor that
1085 * is not online.
1086 */
1087static void drain_pages(unsigned int cpu)
1da177e4 1088{
c54ad30c 1089 unsigned long flags;
1da177e4 1090 struct zone *zone;
1da177e4 1091
ee99c71c 1092 for_each_populated_zone(zone) {
1da177e4 1093 struct per_cpu_pageset *pset;
3dfa5721 1094 struct per_cpu_pages *pcp;
1da177e4 1095
99dcc3e5
CL
1096 local_irq_save(flags);
1097 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1098
1099 pcp = &pset->pcp;
2ff754fa
DR
1100 if (pcp->count) {
1101 free_pcppages_bulk(zone, pcp->count, pcp);
1102 pcp->count = 0;
1103 }
3dfa5721 1104 local_irq_restore(flags);
1da177e4
LT
1105 }
1106}
1da177e4 1107
9f8f2172
CL
1108/*
1109 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1110 */
1111void drain_local_pages(void *arg)
1112{
1113 drain_pages(smp_processor_id());
1114}
1115
1116/*
1117 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1118 */
1119void drain_all_pages(void)
1120{
15c8b6c1 1121 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
1122}
1123
296699de 1124#ifdef CONFIG_HIBERNATION
1da177e4
LT
1125
1126void mark_free_pages(struct zone *zone)
1127{
f623f0db
RW
1128 unsigned long pfn, max_zone_pfn;
1129 unsigned long flags;
b2a0ac88 1130 int order, t;
1da177e4
LT
1131 struct list_head *curr;
1132
1133 if (!zone->spanned_pages)
1134 return;
1135
1136 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1137
1138 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1139 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1140 if (pfn_valid(pfn)) {
1141 struct page *page = pfn_to_page(pfn);
1142
7be98234
RW
1143 if (!swsusp_page_is_forbidden(page))
1144 swsusp_unset_page_free(page);
f623f0db 1145 }
1da177e4 1146
b2a0ac88
MG
1147 for_each_migratetype_order(order, t) {
1148 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1149 unsigned long i;
1da177e4 1150
f623f0db
RW
1151 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1152 for (i = 0; i < (1UL << order); i++)
7be98234 1153 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1154 }
b2a0ac88 1155 }
1da177e4
LT
1156 spin_unlock_irqrestore(&zone->lock, flags);
1157}
e2c55dc8 1158#endif /* CONFIG_PM */
1da177e4 1159
1da177e4
LT
1160/*
1161 * Free a 0-order page
fc91668e 1162 * cold == 1 ? free a cold page : free a hot page
1da177e4 1163 */
fc91668e 1164void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1165{
1166 struct zone *zone = page_zone(page);
1167 struct per_cpu_pages *pcp;
1168 unsigned long flags;
5f8dcc21 1169 int migratetype;
451ea25d 1170 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1171
ec95f53a 1172 if (!free_pages_prepare(page, 0))
689bcebf
HD
1173 return;
1174
5f8dcc21
MG
1175 migratetype = get_pageblock_migratetype(page);
1176 set_page_private(page, migratetype);
1da177e4 1177 local_irq_save(flags);
c277331d 1178 if (unlikely(wasMlocked))
da456f14 1179 free_page_mlock(page);
f8891e5e 1180 __count_vm_event(PGFREE);
da456f14 1181
5f8dcc21
MG
1182 /*
1183 * We only track unmovable, reclaimable and movable on pcp lists.
1184 * Free ISOLATE pages back to the allocator because they are being
1185 * offlined but treat RESERVE as movable pages so we can get those
1186 * areas back if necessary. Otherwise, we may have to free
1187 * excessively into the page allocator
1188 */
1189 if (migratetype >= MIGRATE_PCPTYPES) {
1190 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1191 free_one_page(zone, page, 0, migratetype);
1192 goto out;
1193 }
1194 migratetype = MIGRATE_MOVABLE;
1195 }
1196
99dcc3e5 1197 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1198 if (cold)
5f8dcc21 1199 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1200 else
5f8dcc21 1201 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1202 pcp->count++;
48db57f8 1203 if (pcp->count >= pcp->high) {
5f8dcc21 1204 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1205 pcp->count -= pcp->batch;
1206 }
5f8dcc21
MG
1207
1208out:
1da177e4 1209 local_irq_restore(flags);
1da177e4
LT
1210}
1211
8dfcc9ba
NP
1212/*
1213 * split_page takes a non-compound higher-order page, and splits it into
1214 * n (1<<order) sub-pages: page[0..n]
1215 * Each sub-page must be freed individually.
1216 *
1217 * Note: this is probably too low level an operation for use in drivers.
1218 * Please consult with lkml before using this in your driver.
1219 */
1220void split_page(struct page *page, unsigned int order)
1221{
1222 int i;
1223
725d704e
NP
1224 VM_BUG_ON(PageCompound(page));
1225 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1226
1227#ifdef CONFIG_KMEMCHECK
1228 /*
1229 * Split shadow pages too, because free(page[0]) would
1230 * otherwise free the whole shadow.
1231 */
1232 if (kmemcheck_page_is_tracked(page))
1233 split_page(virt_to_page(page[0].shadow), order);
1234#endif
1235
7835e98b
NP
1236 for (i = 1; i < (1 << order); i++)
1237 set_page_refcounted(page + i);
8dfcc9ba 1238}
8dfcc9ba 1239
748446bb
MG
1240/*
1241 * Similar to split_page except the page is already free. As this is only
1242 * being used for migration, the migratetype of the block also changes.
1243 * As this is called with interrupts disabled, the caller is responsible
1244 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1245 * are enabled.
1246 *
1247 * Note: this is probably too low level an operation for use in drivers.
1248 * Please consult with lkml before using this in your driver.
1249 */
1250int split_free_page(struct page *page)
1251{
1252 unsigned int order;
1253 unsigned long watermark;
1254 struct zone *zone;
1255
1256 BUG_ON(!PageBuddy(page));
1257
1258 zone = page_zone(page);
1259 order = page_order(page);
1260
1261 /* Obey watermarks as if the page was being allocated */
1262 watermark = low_wmark_pages(zone) + (1 << order);
1263 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1264 return 0;
1265
1266 /* Remove page from free list */
1267 list_del(&page->lru);
1268 zone->free_area[order].nr_free--;
1269 rmv_page_order(page);
1270 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1271
1272 /* Split into individual pages */
1273 set_page_refcounted(page);
1274 split_page(page, order);
1275
1276 if (order >= pageblock_order - 1) {
1277 struct page *endpage = page + (1 << order) - 1;
1278 for (; page < endpage; page += pageblock_nr_pages)
1279 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1280 }
1281
1282 return 1 << order;
1283}
1284
1da177e4
LT
1285/*
1286 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1287 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1288 * or two.
1289 */
0a15c3e9
MG
1290static inline
1291struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1292 struct zone *zone, int order, gfp_t gfp_flags,
1293 int migratetype)
1da177e4
LT
1294{
1295 unsigned long flags;
689bcebf 1296 struct page *page;
1da177e4
LT
1297 int cold = !!(gfp_flags & __GFP_COLD);
1298
689bcebf 1299again:
48db57f8 1300 if (likely(order == 0)) {
1da177e4 1301 struct per_cpu_pages *pcp;
5f8dcc21 1302 struct list_head *list;
1da177e4 1303
1da177e4 1304 local_irq_save(flags);
99dcc3e5
CL
1305 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1306 list = &pcp->lists[migratetype];
5f8dcc21 1307 if (list_empty(list)) {
535131e6 1308 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1309 pcp->batch, list,
e084b2d9 1310 migratetype, cold);
5f8dcc21 1311 if (unlikely(list_empty(list)))
6fb332fa 1312 goto failed;
535131e6 1313 }
b92a6edd 1314
5f8dcc21
MG
1315 if (cold)
1316 page = list_entry(list->prev, struct page, lru);
1317 else
1318 page = list_entry(list->next, struct page, lru);
1319
b92a6edd
MG
1320 list_del(&page->lru);
1321 pcp->count--;
7fb1d9fc 1322 } else {
dab48dab
AM
1323 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1324 /*
1325 * __GFP_NOFAIL is not to be used in new code.
1326 *
1327 * All __GFP_NOFAIL callers should be fixed so that they
1328 * properly detect and handle allocation failures.
1329 *
1330 * We most definitely don't want callers attempting to
4923abf9 1331 * allocate greater than order-1 page units with
dab48dab
AM
1332 * __GFP_NOFAIL.
1333 */
4923abf9 1334 WARN_ON_ONCE(order > 1);
dab48dab 1335 }
1da177e4 1336 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1337 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1338 spin_unlock(&zone->lock);
1339 if (!page)
1340 goto failed;
6ccf80eb 1341 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1da177e4
LT
1342 }
1343
f8891e5e 1344 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1345 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1346 local_irq_restore(flags);
1da177e4 1347
725d704e 1348 VM_BUG_ON(bad_range(zone, page));
17cf4406 1349 if (prep_new_page(page, order, gfp_flags))
a74609fa 1350 goto again;
1da177e4 1351 return page;
a74609fa
NP
1352
1353failed:
1354 local_irq_restore(flags);
a74609fa 1355 return NULL;
1da177e4
LT
1356}
1357
41858966
MG
1358/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1359#define ALLOC_WMARK_MIN WMARK_MIN
1360#define ALLOC_WMARK_LOW WMARK_LOW
1361#define ALLOC_WMARK_HIGH WMARK_HIGH
1362#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1363
1364/* Mask to get the watermark bits */
1365#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1366
3148890b
NP
1367#define ALLOC_HARDER 0x10 /* try to alloc harder */
1368#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1369#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1370
933e312e
AM
1371#ifdef CONFIG_FAIL_PAGE_ALLOC
1372
1373static struct fail_page_alloc_attr {
1374 struct fault_attr attr;
1375
1376 u32 ignore_gfp_highmem;
1377 u32 ignore_gfp_wait;
54114994 1378 u32 min_order;
933e312e
AM
1379
1380#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1381
1382 struct dentry *ignore_gfp_highmem_file;
1383 struct dentry *ignore_gfp_wait_file;
54114994 1384 struct dentry *min_order_file;
933e312e
AM
1385
1386#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1387
1388} fail_page_alloc = {
1389 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1390 .ignore_gfp_wait = 1,
1391 .ignore_gfp_highmem = 1,
54114994 1392 .min_order = 1,
933e312e
AM
1393};
1394
1395static int __init setup_fail_page_alloc(char *str)
1396{
1397 return setup_fault_attr(&fail_page_alloc.attr, str);
1398}
1399__setup("fail_page_alloc=", setup_fail_page_alloc);
1400
1401static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1402{
54114994
AM
1403 if (order < fail_page_alloc.min_order)
1404 return 0;
933e312e
AM
1405 if (gfp_mask & __GFP_NOFAIL)
1406 return 0;
1407 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1408 return 0;
1409 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1410 return 0;
1411
1412 return should_fail(&fail_page_alloc.attr, 1 << order);
1413}
1414
1415#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1416
1417static int __init fail_page_alloc_debugfs(void)
1418{
1419 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1420 struct dentry *dir;
1421 int err;
1422
1423 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1424 "fail_page_alloc");
1425 if (err)
1426 return err;
1427 dir = fail_page_alloc.attr.dentries.dir;
1428
1429 fail_page_alloc.ignore_gfp_wait_file =
1430 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1431 &fail_page_alloc.ignore_gfp_wait);
1432
1433 fail_page_alloc.ignore_gfp_highmem_file =
1434 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1435 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1436 fail_page_alloc.min_order_file =
1437 debugfs_create_u32("min-order", mode, dir,
1438 &fail_page_alloc.min_order);
933e312e
AM
1439
1440 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1441 !fail_page_alloc.ignore_gfp_highmem_file ||
1442 !fail_page_alloc.min_order_file) {
933e312e
AM
1443 err = -ENOMEM;
1444 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1445 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1446 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1447 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1448 }
1449
1450 return err;
1451}
1452
1453late_initcall(fail_page_alloc_debugfs);
1454
1455#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1456
1457#else /* CONFIG_FAIL_PAGE_ALLOC */
1458
1459static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1460{
1461 return 0;
1462}
1463
1464#endif /* CONFIG_FAIL_PAGE_ALLOC */
1465
1da177e4 1466/*
88f5acf8 1467 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1468 * of the allocation.
1469 */
88f5acf8
MG
1470static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1471 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1472{
1473 /* free_pages my go negative - that's OK */
d23ad423 1474 long min = mark;
1da177e4
LT
1475 int o;
1476
88f5acf8 1477 free_pages -= (1 << order) + 1;
7fb1d9fc 1478 if (alloc_flags & ALLOC_HIGH)
1da177e4 1479 min -= min / 2;
7fb1d9fc 1480 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1481 min -= min / 4;
1482
1483 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 1484 return false;
1da177e4
LT
1485 for (o = 0; o < order; o++) {
1486 /* At the next order, this order's pages become unavailable */
1487 free_pages -= z->free_area[o].nr_free << o;
1488
1489 /* Require fewer higher order pages to be free */
1490 min >>= 1;
1491
1492 if (free_pages <= min)
88f5acf8 1493 return false;
1da177e4 1494 }
88f5acf8
MG
1495 return true;
1496}
1497
1498bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1499 int classzone_idx, int alloc_flags)
1500{
1501 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1502 zone_page_state(z, NR_FREE_PAGES));
1503}
1504
1505bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1506 int classzone_idx, int alloc_flags)
1507{
1508 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1509
1510 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1511 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1512
1513 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1514 free_pages);
1da177e4
LT
1515}
1516
9276b1bc
PJ
1517#ifdef CONFIG_NUMA
1518/*
1519 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1520 * skip over zones that are not allowed by the cpuset, or that have
1521 * been recently (in last second) found to be nearly full. See further
1522 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1523 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1524 *
1525 * If the zonelist cache is present in the passed in zonelist, then
1526 * returns a pointer to the allowed node mask (either the current
37b07e41 1527 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1528 *
1529 * If the zonelist cache is not available for this zonelist, does
1530 * nothing and returns NULL.
1531 *
1532 * If the fullzones BITMAP in the zonelist cache is stale (more than
1533 * a second since last zap'd) then we zap it out (clear its bits.)
1534 *
1535 * We hold off even calling zlc_setup, until after we've checked the
1536 * first zone in the zonelist, on the theory that most allocations will
1537 * be satisfied from that first zone, so best to examine that zone as
1538 * quickly as we can.
1539 */
1540static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1541{
1542 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1543 nodemask_t *allowednodes; /* zonelist_cache approximation */
1544
1545 zlc = zonelist->zlcache_ptr;
1546 if (!zlc)
1547 return NULL;
1548
f05111f5 1549 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1550 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1551 zlc->last_full_zap = jiffies;
1552 }
1553
1554 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1555 &cpuset_current_mems_allowed :
37b07e41 1556 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1557 return allowednodes;
1558}
1559
1560/*
1561 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1562 * if it is worth looking at further for free memory:
1563 * 1) Check that the zone isn't thought to be full (doesn't have its
1564 * bit set in the zonelist_cache fullzones BITMAP).
1565 * 2) Check that the zones node (obtained from the zonelist_cache
1566 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1567 * Return true (non-zero) if zone is worth looking at further, or
1568 * else return false (zero) if it is not.
1569 *
1570 * This check -ignores- the distinction between various watermarks,
1571 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1572 * found to be full for any variation of these watermarks, it will
1573 * be considered full for up to one second by all requests, unless
1574 * we are so low on memory on all allowed nodes that we are forced
1575 * into the second scan of the zonelist.
1576 *
1577 * In the second scan we ignore this zonelist cache and exactly
1578 * apply the watermarks to all zones, even it is slower to do so.
1579 * We are low on memory in the second scan, and should leave no stone
1580 * unturned looking for a free page.
1581 */
dd1a239f 1582static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1583 nodemask_t *allowednodes)
1584{
1585 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1586 int i; /* index of *z in zonelist zones */
1587 int n; /* node that zone *z is on */
1588
1589 zlc = zonelist->zlcache_ptr;
1590 if (!zlc)
1591 return 1;
1592
dd1a239f 1593 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1594 n = zlc->z_to_n[i];
1595
1596 /* This zone is worth trying if it is allowed but not full */
1597 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1598}
1599
1600/*
1601 * Given 'z' scanning a zonelist, set the corresponding bit in
1602 * zlc->fullzones, so that subsequent attempts to allocate a page
1603 * from that zone don't waste time re-examining it.
1604 */
dd1a239f 1605static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1606{
1607 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1608 int i; /* index of *z in zonelist zones */
1609
1610 zlc = zonelist->zlcache_ptr;
1611 if (!zlc)
1612 return;
1613
dd1a239f 1614 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1615
1616 set_bit(i, zlc->fullzones);
1617}
1618
1619#else /* CONFIG_NUMA */
1620
1621static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1622{
1623 return NULL;
1624}
1625
dd1a239f 1626static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1627 nodemask_t *allowednodes)
1628{
1629 return 1;
1630}
1631
dd1a239f 1632static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1633{
1634}
1635#endif /* CONFIG_NUMA */
1636
7fb1d9fc 1637/*
0798e519 1638 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1639 * a page.
1640 */
1641static struct page *
19770b32 1642get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1643 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1644 struct zone *preferred_zone, int migratetype)
753ee728 1645{
dd1a239f 1646 struct zoneref *z;
7fb1d9fc 1647 struct page *page = NULL;
54a6eb5c 1648 int classzone_idx;
5117f45d 1649 struct zone *zone;
9276b1bc
PJ
1650 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1651 int zlc_active = 0; /* set if using zonelist_cache */
1652 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1653
19770b32 1654 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1655zonelist_scan:
7fb1d9fc 1656 /*
9276b1bc 1657 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1658 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1659 */
19770b32
MG
1660 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1661 high_zoneidx, nodemask) {
9276b1bc
PJ
1662 if (NUMA_BUILD && zlc_active &&
1663 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1664 continue;
7fb1d9fc 1665 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1666 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1667 goto try_next_zone;
7fb1d9fc 1668
41858966 1669 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1670 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1671 unsigned long mark;
fa5e084e
MG
1672 int ret;
1673
41858966 1674 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1675 if (zone_watermark_ok(zone, order, mark,
1676 classzone_idx, alloc_flags))
1677 goto try_this_zone;
1678
1679 if (zone_reclaim_mode == 0)
1680 goto this_zone_full;
1681
1682 ret = zone_reclaim(zone, gfp_mask, order);
1683 switch (ret) {
1684 case ZONE_RECLAIM_NOSCAN:
1685 /* did not scan */
1686 goto try_next_zone;
1687 case ZONE_RECLAIM_FULL:
1688 /* scanned but unreclaimable */
1689 goto this_zone_full;
1690 default:
1691 /* did we reclaim enough */
1692 if (!zone_watermark_ok(zone, order, mark,
1693 classzone_idx, alloc_flags))
9276b1bc 1694 goto this_zone_full;
0798e519 1695 }
7fb1d9fc
RS
1696 }
1697
fa5e084e 1698try_this_zone:
3dd28266
MG
1699 page = buffered_rmqueue(preferred_zone, zone, order,
1700 gfp_mask, migratetype);
0798e519 1701 if (page)
7fb1d9fc 1702 break;
9276b1bc
PJ
1703this_zone_full:
1704 if (NUMA_BUILD)
1705 zlc_mark_zone_full(zonelist, z);
1706try_next_zone:
62bc62a8 1707 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
d395b734
MG
1708 /*
1709 * we do zlc_setup after the first zone is tried but only
1710 * if there are multiple nodes make it worthwhile
1711 */
9276b1bc
PJ
1712 allowednodes = zlc_setup(zonelist, alloc_flags);
1713 zlc_active = 1;
1714 did_zlc_setup = 1;
1715 }
54a6eb5c 1716 }
9276b1bc
PJ
1717
1718 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1719 /* Disable zlc cache for second zonelist scan */
1720 zlc_active = 0;
1721 goto zonelist_scan;
1722 }
7fb1d9fc 1723 return page;
753ee728
MH
1724}
1725
29423e77
DR
1726/*
1727 * Large machines with many possible nodes should not always dump per-node
1728 * meminfo in irq context.
1729 */
1730static inline bool should_suppress_show_mem(void)
1731{
1732 bool ret = false;
1733
1734#if NODES_SHIFT > 8
1735 ret = in_interrupt();
1736#endif
1737 return ret;
1738}
1739
a238ab5b
DH
1740static DEFINE_RATELIMIT_STATE(nopage_rs,
1741 DEFAULT_RATELIMIT_INTERVAL,
1742 DEFAULT_RATELIMIT_BURST);
1743
1744void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1745{
1746 va_list args;
1747 unsigned int filter = SHOW_MEM_FILTER_NODES;
1748
1749 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
1750 return;
1751
1752 /*
1753 * This documents exceptions given to allocations in certain
1754 * contexts that are allowed to allocate outside current's set
1755 * of allowed nodes.
1756 */
1757 if (!(gfp_mask & __GFP_NOMEMALLOC))
1758 if (test_thread_flag(TIF_MEMDIE) ||
1759 (current->flags & (PF_MEMALLOC | PF_EXITING)))
1760 filter &= ~SHOW_MEM_FILTER_NODES;
1761 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1762 filter &= ~SHOW_MEM_FILTER_NODES;
1763
1764 if (fmt) {
1765 printk(KERN_WARNING);
1766 va_start(args, fmt);
1767 vprintk(fmt, args);
1768 va_end(args);
1769 }
1770
1771 pr_warning("%s: page allocation failure: order:%d, mode:0x%x\n",
1772 current->comm, order, gfp_mask);
1773
1774 dump_stack();
1775 if (!should_suppress_show_mem())
1776 show_mem(filter);
1777}
1778
11e33f6a
MG
1779static inline int
1780should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1781 unsigned long pages_reclaimed)
1da177e4 1782{
11e33f6a
MG
1783 /* Do not loop if specifically requested */
1784 if (gfp_mask & __GFP_NORETRY)
1785 return 0;
1da177e4 1786
11e33f6a
MG
1787 /*
1788 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1789 * means __GFP_NOFAIL, but that may not be true in other
1790 * implementations.
1791 */
1792 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1793 return 1;
1794
1795 /*
1796 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1797 * specified, then we retry until we no longer reclaim any pages
1798 * (above), or we've reclaimed an order of pages at least as
1799 * large as the allocation's order. In both cases, if the
1800 * allocation still fails, we stop retrying.
1801 */
1802 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1803 return 1;
cf40bd16 1804
11e33f6a
MG
1805 /*
1806 * Don't let big-order allocations loop unless the caller
1807 * explicitly requests that.
1808 */
1809 if (gfp_mask & __GFP_NOFAIL)
1810 return 1;
1da177e4 1811
11e33f6a
MG
1812 return 0;
1813}
933e312e 1814
11e33f6a
MG
1815static inline struct page *
1816__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1817 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1818 nodemask_t *nodemask, struct zone *preferred_zone,
1819 int migratetype)
11e33f6a
MG
1820{
1821 struct page *page;
1822
1823 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 1824 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 1825 schedule_timeout_uninterruptible(1);
1da177e4
LT
1826 return NULL;
1827 }
6b1de916 1828
11e33f6a
MG
1829 /*
1830 * Go through the zonelist yet one more time, keep very high watermark
1831 * here, this is only to catch a parallel oom killing, we must fail if
1832 * we're still under heavy pressure.
1833 */
1834 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1835 order, zonelist, high_zoneidx,
5117f45d 1836 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1837 preferred_zone, migratetype);
7fb1d9fc 1838 if (page)
11e33f6a
MG
1839 goto out;
1840
4365a567
KH
1841 if (!(gfp_mask & __GFP_NOFAIL)) {
1842 /* The OOM killer will not help higher order allocs */
1843 if (order > PAGE_ALLOC_COSTLY_ORDER)
1844 goto out;
03668b3c
DR
1845 /* The OOM killer does not needlessly kill tasks for lowmem */
1846 if (high_zoneidx < ZONE_NORMAL)
1847 goto out;
4365a567
KH
1848 /*
1849 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1850 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1851 * The caller should handle page allocation failure by itself if
1852 * it specifies __GFP_THISNODE.
1853 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1854 */
1855 if (gfp_mask & __GFP_THISNODE)
1856 goto out;
1857 }
11e33f6a 1858 /* Exhausted what can be done so it's blamo time */
4365a567 1859 out_of_memory(zonelist, gfp_mask, order, nodemask);
11e33f6a
MG
1860
1861out:
1862 clear_zonelist_oom(zonelist, gfp_mask);
1863 return page;
1864}
1865
56de7263
MG
1866#ifdef CONFIG_COMPACTION
1867/* Try memory compaction for high-order allocations before reclaim */
1868static struct page *
1869__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1870 struct zonelist *zonelist, enum zone_type high_zoneidx,
1871 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
77f1fe6b
MG
1872 int migratetype, unsigned long *did_some_progress,
1873 bool sync_migration)
56de7263
MG
1874{
1875 struct page *page;
1876
4f92e258 1877 if (!order || compaction_deferred(preferred_zone))
56de7263
MG
1878 return NULL;
1879
c06b1fca 1880 current->flags |= PF_MEMALLOC;
56de7263 1881 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
77f1fe6b 1882 nodemask, sync_migration);
c06b1fca 1883 current->flags &= ~PF_MEMALLOC;
56de7263
MG
1884 if (*did_some_progress != COMPACT_SKIPPED) {
1885
1886 /* Page migration frees to the PCP lists but we want merging */
1887 drain_pages(get_cpu());
1888 put_cpu();
1889
1890 page = get_page_from_freelist(gfp_mask, nodemask,
1891 order, zonelist, high_zoneidx,
1892 alloc_flags, preferred_zone,
1893 migratetype);
1894 if (page) {
4f92e258
MG
1895 preferred_zone->compact_considered = 0;
1896 preferred_zone->compact_defer_shift = 0;
56de7263
MG
1897 count_vm_event(COMPACTSUCCESS);
1898 return page;
1899 }
1900
1901 /*
1902 * It's bad if compaction run occurs and fails.
1903 * The most likely reason is that pages exist,
1904 * but not enough to satisfy watermarks.
1905 */
1906 count_vm_event(COMPACTFAIL);
4f92e258 1907 defer_compaction(preferred_zone);
56de7263
MG
1908
1909 cond_resched();
1910 }
1911
1912 return NULL;
1913}
1914#else
1915static inline struct page *
1916__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1917 struct zonelist *zonelist, enum zone_type high_zoneidx,
1918 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
77f1fe6b
MG
1919 int migratetype, unsigned long *did_some_progress,
1920 bool sync_migration)
56de7263
MG
1921{
1922 return NULL;
1923}
1924#endif /* CONFIG_COMPACTION */
1925
11e33f6a
MG
1926/* The really slow allocator path where we enter direct reclaim */
1927static inline struct page *
1928__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1929 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 1930 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 1931 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
1932{
1933 struct page *page = NULL;
1934 struct reclaim_state reclaim_state;
9ee493ce 1935 bool drained = false;
11e33f6a
MG
1936
1937 cond_resched();
1938
1939 /* We now go into synchronous reclaim */
1940 cpuset_memory_pressure_bump();
c06b1fca 1941 current->flags |= PF_MEMALLOC;
11e33f6a
MG
1942 lockdep_set_current_reclaim_state(gfp_mask);
1943 reclaim_state.reclaimed_slab = 0;
c06b1fca 1944 current->reclaim_state = &reclaim_state;
11e33f6a
MG
1945
1946 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1947
c06b1fca 1948 current->reclaim_state = NULL;
11e33f6a 1949 lockdep_clear_current_reclaim_state();
c06b1fca 1950 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
1951
1952 cond_resched();
1953
9ee493ce
MG
1954 if (unlikely(!(*did_some_progress)))
1955 return NULL;
11e33f6a 1956
9ee493ce
MG
1957retry:
1958 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1959 zonelist, high_zoneidx,
3dd28266
MG
1960 alloc_flags, preferred_zone,
1961 migratetype);
9ee493ce
MG
1962
1963 /*
1964 * If an allocation failed after direct reclaim, it could be because
1965 * pages are pinned on the per-cpu lists. Drain them and try again
1966 */
1967 if (!page && !drained) {
1968 drain_all_pages();
1969 drained = true;
1970 goto retry;
1971 }
1972
11e33f6a
MG
1973 return page;
1974}
1975
1da177e4 1976/*
11e33f6a
MG
1977 * This is called in the allocator slow-path if the allocation request is of
1978 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 1979 */
11e33f6a
MG
1980static inline struct page *
1981__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1982 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1983 nodemask_t *nodemask, struct zone *preferred_zone,
1984 int migratetype)
11e33f6a
MG
1985{
1986 struct page *page;
1987
1988 do {
1989 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1990 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 1991 preferred_zone, migratetype);
11e33f6a
MG
1992
1993 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 1994 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
1995 } while (!page && (gfp_mask & __GFP_NOFAIL));
1996
1997 return page;
1998}
1999
2000static inline
2001void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2002 enum zone_type high_zoneidx,
2003 enum zone_type classzone_idx)
1da177e4 2004{
dd1a239f
MG
2005 struct zoneref *z;
2006 struct zone *zone;
1da177e4 2007
11e33f6a 2008 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2009 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2010}
cf40bd16 2011
341ce06f
PZ
2012static inline int
2013gfp_to_alloc_flags(gfp_t gfp_mask)
2014{
341ce06f
PZ
2015 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2016 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2017
a56f57ff 2018 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2019 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2020
341ce06f
PZ
2021 /*
2022 * The caller may dip into page reserves a bit more if the caller
2023 * cannot run direct reclaim, or if the caller has realtime scheduling
2024 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2025 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2026 */
e6223a3b 2027 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2028
341ce06f 2029 if (!wait) {
5c3240d9
AA
2030 /*
2031 * Not worth trying to allocate harder for
2032 * __GFP_NOMEMALLOC even if it can't schedule.
2033 */
2034 if (!(gfp_mask & __GFP_NOMEMALLOC))
2035 alloc_flags |= ALLOC_HARDER;
523b9458 2036 /*
341ce06f
PZ
2037 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2038 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2039 */
341ce06f 2040 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2041 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2042 alloc_flags |= ALLOC_HARDER;
2043
2044 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2045 if (!in_interrupt() &&
c06b1fca 2046 ((current->flags & PF_MEMALLOC) ||
341ce06f
PZ
2047 unlikely(test_thread_flag(TIF_MEMDIE))))
2048 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2049 }
6b1de916 2050
341ce06f
PZ
2051 return alloc_flags;
2052}
2053
11e33f6a
MG
2054static inline struct page *
2055__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2056 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2057 nodemask_t *nodemask, struct zone *preferred_zone,
2058 int migratetype)
11e33f6a
MG
2059{
2060 const gfp_t wait = gfp_mask & __GFP_WAIT;
2061 struct page *page = NULL;
2062 int alloc_flags;
2063 unsigned long pages_reclaimed = 0;
2064 unsigned long did_some_progress;
77f1fe6b 2065 bool sync_migration = false;
1da177e4 2066
72807a74
MG
2067 /*
2068 * In the slowpath, we sanity check order to avoid ever trying to
2069 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2070 * be using allocators in order of preference for an area that is
2071 * too large.
2072 */
1fc28b70
MG
2073 if (order >= MAX_ORDER) {
2074 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2075 return NULL;
1fc28b70 2076 }
1da177e4 2077
952f3b51
CL
2078 /*
2079 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2080 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2081 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2082 * using a larger set of nodes after it has established that the
2083 * allowed per node queues are empty and that nodes are
2084 * over allocated.
2085 */
2086 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2087 goto nopage;
2088
cc4a6851 2089restart:
32dba98e
AA
2090 if (!(gfp_mask & __GFP_NO_KSWAPD))
2091 wake_all_kswapd(order, zonelist, high_zoneidx,
99504748 2092 zone_idx(preferred_zone));
1da177e4 2093
9bf2229f 2094 /*
7fb1d9fc
RS
2095 * OK, we're below the kswapd watermark and have kicked background
2096 * reclaim. Now things get more complex, so set up alloc_flags according
2097 * to how we want to proceed.
9bf2229f 2098 */
341ce06f 2099 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2100
f33261d7
DR
2101 /*
2102 * Find the true preferred zone if the allocation is unconstrained by
2103 * cpusets.
2104 */
2105 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2106 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2107 &preferred_zone);
2108
341ce06f 2109 /* This is the last chance, in general, before the goto nopage. */
19770b32 2110 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2111 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2112 preferred_zone, migratetype);
7fb1d9fc
RS
2113 if (page)
2114 goto got_pg;
1da177e4 2115
b43a57bb 2116rebalance:
11e33f6a 2117 /* Allocate without watermarks if the context allows */
341ce06f
PZ
2118 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2119 page = __alloc_pages_high_priority(gfp_mask, order,
2120 zonelist, high_zoneidx, nodemask,
2121 preferred_zone, migratetype);
2122 if (page)
2123 goto got_pg;
1da177e4
LT
2124 }
2125
2126 /* Atomic allocations - we can't balance anything */
2127 if (!wait)
2128 goto nopage;
2129
341ce06f 2130 /* Avoid recursion of direct reclaim */
c06b1fca 2131 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2132 goto nopage;
2133
6583bb64
DR
2134 /* Avoid allocations with no watermarks from looping endlessly */
2135 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2136 goto nopage;
2137
77f1fe6b
MG
2138 /*
2139 * Try direct compaction. The first pass is asynchronous. Subsequent
2140 * attempts after direct reclaim are synchronous
2141 */
56de7263
MG
2142 page = __alloc_pages_direct_compact(gfp_mask, order,
2143 zonelist, high_zoneidx,
2144 nodemask,
2145 alloc_flags, preferred_zone,
77f1fe6b
MG
2146 migratetype, &did_some_progress,
2147 sync_migration);
56de7263
MG
2148 if (page)
2149 goto got_pg;
c6a140bf 2150 sync_migration = true;
56de7263 2151
11e33f6a
MG
2152 /* Try direct reclaim and then allocating */
2153 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2154 zonelist, high_zoneidx,
2155 nodemask,
5117f45d 2156 alloc_flags, preferred_zone,
3dd28266 2157 migratetype, &did_some_progress);
11e33f6a
MG
2158 if (page)
2159 goto got_pg;
1da177e4 2160
e33c3b5e 2161 /*
11e33f6a
MG
2162 * If we failed to make any progress reclaiming, then we are
2163 * running out of options and have to consider going OOM
e33c3b5e 2164 */
11e33f6a
MG
2165 if (!did_some_progress) {
2166 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2167 if (oom_killer_disabled)
2168 goto nopage;
11e33f6a
MG
2169 page = __alloc_pages_may_oom(gfp_mask, order,
2170 zonelist, high_zoneidx,
3dd28266
MG
2171 nodemask, preferred_zone,
2172 migratetype);
11e33f6a
MG
2173 if (page)
2174 goto got_pg;
1da177e4 2175
03668b3c
DR
2176 if (!(gfp_mask & __GFP_NOFAIL)) {
2177 /*
2178 * The oom killer is not called for high-order
2179 * allocations that may fail, so if no progress
2180 * is being made, there are no other options and
2181 * retrying is unlikely to help.
2182 */
2183 if (order > PAGE_ALLOC_COSTLY_ORDER)
2184 goto nopage;
2185 /*
2186 * The oom killer is not called for lowmem
2187 * allocations to prevent needlessly killing
2188 * innocent tasks.
2189 */
2190 if (high_zoneidx < ZONE_NORMAL)
2191 goto nopage;
2192 }
e2c55dc8 2193
ff0ceb9d
DR
2194 goto restart;
2195 }
1da177e4
LT
2196 }
2197
11e33f6a 2198 /* Check if we should retry the allocation */
a41f24ea 2199 pages_reclaimed += did_some_progress;
11e33f6a
MG
2200 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2201 /* Wait for some write requests to complete then retry */
0e093d99 2202 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2203 goto rebalance;
3e7d3449
MG
2204 } else {
2205 /*
2206 * High-order allocations do not necessarily loop after
2207 * direct reclaim and reclaim/compaction depends on compaction
2208 * being called after reclaim so call directly if necessary
2209 */
2210 page = __alloc_pages_direct_compact(gfp_mask, order,
2211 zonelist, high_zoneidx,
2212 nodemask,
2213 alloc_flags, preferred_zone,
77f1fe6b
MG
2214 migratetype, &did_some_progress,
2215 sync_migration);
3e7d3449
MG
2216 if (page)
2217 goto got_pg;
1da177e4
LT
2218 }
2219
2220nopage:
a238ab5b 2221 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2222 return page;
1da177e4 2223got_pg:
b1eeab67
VN
2224 if (kmemcheck_enabled)
2225 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1da177e4 2226 return page;
11e33f6a 2227
1da177e4 2228}
11e33f6a
MG
2229
2230/*
2231 * This is the 'heart' of the zoned buddy allocator.
2232 */
2233struct page *
2234__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2235 struct zonelist *zonelist, nodemask_t *nodemask)
2236{
2237 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2238 struct zone *preferred_zone;
11e33f6a 2239 struct page *page;
3dd28266 2240 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a 2241
dcce284a
BH
2242 gfp_mask &= gfp_allowed_mask;
2243
11e33f6a
MG
2244 lockdep_trace_alloc(gfp_mask);
2245
2246 might_sleep_if(gfp_mask & __GFP_WAIT);
2247
2248 if (should_fail_alloc_page(gfp_mask, order))
2249 return NULL;
a197b59a
DR
2250#ifndef CONFIG_ZONE_DMA
2251 if (WARN_ON_ONCE(gfp_mask & __GFP_DMA))
2252 return NULL;
2253#endif
11e33f6a
MG
2254
2255 /*
2256 * Check the zones suitable for the gfp_mask contain at least one
2257 * valid zone. It's possible to have an empty zonelist as a result
2258 * of GFP_THISNODE and a memoryless node
2259 */
2260 if (unlikely(!zonelist->_zonerefs->zone))
2261 return NULL;
2262
c0ff7453 2263 get_mems_allowed();
5117f45d 2264 /* The preferred zone is used for statistics later */
f33261d7
DR
2265 first_zones_zonelist(zonelist, high_zoneidx,
2266 nodemask ? : &cpuset_current_mems_allowed,
2267 &preferred_zone);
c0ff7453
MX
2268 if (!preferred_zone) {
2269 put_mems_allowed();
5117f45d 2270 return NULL;
c0ff7453 2271 }
5117f45d
MG
2272
2273 /* First allocation attempt */
11e33f6a 2274 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 2275 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 2276 preferred_zone, migratetype);
11e33f6a
MG
2277 if (unlikely(!page))
2278 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2279 zonelist, high_zoneidx, nodemask,
3dd28266 2280 preferred_zone, migratetype);
c0ff7453 2281 put_mems_allowed();
11e33f6a 2282
4b4f278c 2283 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
11e33f6a 2284 return page;
1da177e4 2285}
d239171e 2286EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2287
2288/*
2289 * Common helper functions.
2290 */
920c7a5d 2291unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2292{
945a1113
AM
2293 struct page *page;
2294
2295 /*
2296 * __get_free_pages() returns a 32-bit address, which cannot represent
2297 * a highmem page
2298 */
2299 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2300
1da177e4
LT
2301 page = alloc_pages(gfp_mask, order);
2302 if (!page)
2303 return 0;
2304 return (unsigned long) page_address(page);
2305}
1da177e4
LT
2306EXPORT_SYMBOL(__get_free_pages);
2307
920c7a5d 2308unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2309{
945a1113 2310 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2311}
1da177e4
LT
2312EXPORT_SYMBOL(get_zeroed_page);
2313
2314void __pagevec_free(struct pagevec *pvec)
2315{
2316 int i = pagevec_count(pvec);
2317
4b4f278c
MG
2318 while (--i >= 0) {
2319 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
1da177e4 2320 free_hot_cold_page(pvec->pages[i], pvec->cold);
4b4f278c 2321 }
1da177e4
LT
2322}
2323
920c7a5d 2324void __free_pages(struct page *page, unsigned int order)
1da177e4 2325{
b5810039 2326 if (put_page_testzero(page)) {
1da177e4 2327 if (order == 0)
fc91668e 2328 free_hot_cold_page(page, 0);
1da177e4
LT
2329 else
2330 __free_pages_ok(page, order);
2331 }
2332}
2333
2334EXPORT_SYMBOL(__free_pages);
2335
920c7a5d 2336void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2337{
2338 if (addr != 0) {
725d704e 2339 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2340 __free_pages(virt_to_page((void *)addr), order);
2341 }
2342}
2343
2344EXPORT_SYMBOL(free_pages);
2345
ee85c2e1
AK
2346static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2347{
2348 if (addr) {
2349 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2350 unsigned long used = addr + PAGE_ALIGN(size);
2351
2352 split_page(virt_to_page((void *)addr), order);
2353 while (used < alloc_end) {
2354 free_page(used);
2355 used += PAGE_SIZE;
2356 }
2357 }
2358 return (void *)addr;
2359}
2360
2be0ffe2
TT
2361/**
2362 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2363 * @size: the number of bytes to allocate
2364 * @gfp_mask: GFP flags for the allocation
2365 *
2366 * This function is similar to alloc_pages(), except that it allocates the
2367 * minimum number of pages to satisfy the request. alloc_pages() can only
2368 * allocate memory in power-of-two pages.
2369 *
2370 * This function is also limited by MAX_ORDER.
2371 *
2372 * Memory allocated by this function must be released by free_pages_exact().
2373 */
2374void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2375{
2376 unsigned int order = get_order(size);
2377 unsigned long addr;
2378
2379 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2380 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2381}
2382EXPORT_SYMBOL(alloc_pages_exact);
2383
ee85c2e1
AK
2384/**
2385 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2386 * pages on a node.
b5e6ab58 2387 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2388 * @size: the number of bytes to allocate
2389 * @gfp_mask: GFP flags for the allocation
2390 *
2391 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2392 * back.
2393 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2394 * but is not exact.
2395 */
2396void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2397{
2398 unsigned order = get_order(size);
2399 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2400 if (!p)
2401 return NULL;
2402 return make_alloc_exact((unsigned long)page_address(p), order, size);
2403}
2404EXPORT_SYMBOL(alloc_pages_exact_nid);
2405
2be0ffe2
TT
2406/**
2407 * free_pages_exact - release memory allocated via alloc_pages_exact()
2408 * @virt: the value returned by alloc_pages_exact.
2409 * @size: size of allocation, same value as passed to alloc_pages_exact().
2410 *
2411 * Release the memory allocated by a previous call to alloc_pages_exact.
2412 */
2413void free_pages_exact(void *virt, size_t size)
2414{
2415 unsigned long addr = (unsigned long)virt;
2416 unsigned long end = addr + PAGE_ALIGN(size);
2417
2418 while (addr < end) {
2419 free_page(addr);
2420 addr += PAGE_SIZE;
2421 }
2422}
2423EXPORT_SYMBOL(free_pages_exact);
2424
1da177e4
LT
2425static unsigned int nr_free_zone_pages(int offset)
2426{
dd1a239f 2427 struct zoneref *z;
54a6eb5c
MG
2428 struct zone *zone;
2429
e310fd43 2430 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2431 unsigned int sum = 0;
2432
0e88460d 2433 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2434
54a6eb5c 2435 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2436 unsigned long size = zone->present_pages;
41858966 2437 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2438 if (size > high)
2439 sum += size - high;
1da177e4
LT
2440 }
2441
2442 return sum;
2443}
2444
2445/*
2446 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2447 */
2448unsigned int nr_free_buffer_pages(void)
2449{
af4ca457 2450 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2451}
c2f1a551 2452EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2453
2454/*
2455 * Amount of free RAM allocatable within all zones
2456 */
2457unsigned int nr_free_pagecache_pages(void)
2458{
2a1e274a 2459 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2460}
08e0f6a9
CL
2461
2462static inline void show_node(struct zone *zone)
1da177e4 2463{
08e0f6a9 2464 if (NUMA_BUILD)
25ba77c1 2465 printk("Node %d ", zone_to_nid(zone));
1da177e4 2466}
1da177e4 2467
1da177e4
LT
2468void si_meminfo(struct sysinfo *val)
2469{
2470 val->totalram = totalram_pages;
2471 val->sharedram = 0;
d23ad423 2472 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2473 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2474 val->totalhigh = totalhigh_pages;
2475 val->freehigh = nr_free_highpages();
1da177e4
LT
2476 val->mem_unit = PAGE_SIZE;
2477}
2478
2479EXPORT_SYMBOL(si_meminfo);
2480
2481#ifdef CONFIG_NUMA
2482void si_meminfo_node(struct sysinfo *val, int nid)
2483{
2484 pg_data_t *pgdat = NODE_DATA(nid);
2485
2486 val->totalram = pgdat->node_present_pages;
d23ad423 2487 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2488#ifdef CONFIG_HIGHMEM
1da177e4 2489 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2490 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2491 NR_FREE_PAGES);
98d2b0eb
CL
2492#else
2493 val->totalhigh = 0;
2494 val->freehigh = 0;
2495#endif
1da177e4
LT
2496 val->mem_unit = PAGE_SIZE;
2497}
2498#endif
2499
ddd588b5 2500/*
7bf02ea2
DR
2501 * Determine whether the node should be displayed or not, depending on whether
2502 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2503 */
7bf02ea2 2504bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2505{
2506 bool ret = false;
2507
2508 if (!(flags & SHOW_MEM_FILTER_NODES))
2509 goto out;
2510
2511 get_mems_allowed();
7bf02ea2 2512 ret = !node_isset(nid, cpuset_current_mems_allowed);
ddd588b5
DR
2513 put_mems_allowed();
2514out:
2515 return ret;
2516}
2517
1da177e4
LT
2518#define K(x) ((x) << (PAGE_SHIFT-10))
2519
2520/*
2521 * Show free area list (used inside shift_scroll-lock stuff)
2522 * We also calculate the percentage fragmentation. We do this by counting the
2523 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2524 * Suppresses nodes that are not allowed by current's cpuset if
2525 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2526 */
7bf02ea2 2527void show_free_areas(unsigned int filter)
1da177e4 2528{
c7241913 2529 int cpu;
1da177e4
LT
2530 struct zone *zone;
2531
ee99c71c 2532 for_each_populated_zone(zone) {
7bf02ea2 2533 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2534 continue;
c7241913
JS
2535 show_node(zone);
2536 printk("%s per-cpu:\n", zone->name);
1da177e4 2537
6b482c67 2538 for_each_online_cpu(cpu) {
1da177e4
LT
2539 struct per_cpu_pageset *pageset;
2540
99dcc3e5 2541 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2542
3dfa5721
CL
2543 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2544 cpu, pageset->pcp.high,
2545 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2546 }
2547 }
2548
a731286d
KM
2549 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2550 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2551 " unevictable:%lu"
b76146ed 2552 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2553 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4b02108a 2554 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe 2555 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2556 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2557 global_page_state(NR_ISOLATED_ANON),
2558 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2559 global_page_state(NR_INACTIVE_FILE),
a731286d 2560 global_page_state(NR_ISOLATED_FILE),
7b854121 2561 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2562 global_page_state(NR_FILE_DIRTY),
ce866b34 2563 global_page_state(NR_WRITEBACK),
fd39fc85 2564 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2565 global_page_state(NR_FREE_PAGES),
3701b033
KM
2566 global_page_state(NR_SLAB_RECLAIMABLE),
2567 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2568 global_page_state(NR_FILE_MAPPED),
4b02108a 2569 global_page_state(NR_SHMEM),
a25700a5
AM
2570 global_page_state(NR_PAGETABLE),
2571 global_page_state(NR_BOUNCE));
1da177e4 2572
ee99c71c 2573 for_each_populated_zone(zone) {
1da177e4
LT
2574 int i;
2575
7bf02ea2 2576 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2577 continue;
1da177e4
LT
2578 show_node(zone);
2579 printk("%s"
2580 " free:%lukB"
2581 " min:%lukB"
2582 " low:%lukB"
2583 " high:%lukB"
4f98a2fe
RR
2584 " active_anon:%lukB"
2585 " inactive_anon:%lukB"
2586 " active_file:%lukB"
2587 " inactive_file:%lukB"
7b854121 2588 " unevictable:%lukB"
a731286d
KM
2589 " isolated(anon):%lukB"
2590 " isolated(file):%lukB"
1da177e4 2591 " present:%lukB"
4a0aa73f
KM
2592 " mlocked:%lukB"
2593 " dirty:%lukB"
2594 " writeback:%lukB"
2595 " mapped:%lukB"
4b02108a 2596 " shmem:%lukB"
4a0aa73f
KM
2597 " slab_reclaimable:%lukB"
2598 " slab_unreclaimable:%lukB"
c6a7f572 2599 " kernel_stack:%lukB"
4a0aa73f
KM
2600 " pagetables:%lukB"
2601 " unstable:%lukB"
2602 " bounce:%lukB"
2603 " writeback_tmp:%lukB"
1da177e4
LT
2604 " pages_scanned:%lu"
2605 " all_unreclaimable? %s"
2606 "\n",
2607 zone->name,
88f5acf8 2608 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2609 K(min_wmark_pages(zone)),
2610 K(low_wmark_pages(zone)),
2611 K(high_wmark_pages(zone)),
4f98a2fe
RR
2612 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2613 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2614 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2615 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2616 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2617 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2618 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2619 K(zone->present_pages),
4a0aa73f
KM
2620 K(zone_page_state(zone, NR_MLOCK)),
2621 K(zone_page_state(zone, NR_FILE_DIRTY)),
2622 K(zone_page_state(zone, NR_WRITEBACK)),
2623 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2624 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2625 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2626 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2627 zone_page_state(zone, NR_KERNEL_STACK) *
2628 THREAD_SIZE / 1024,
4a0aa73f
KM
2629 K(zone_page_state(zone, NR_PAGETABLE)),
2630 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2631 K(zone_page_state(zone, NR_BOUNCE)),
2632 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2633 zone->pages_scanned,
93e4a89a 2634 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
2635 );
2636 printk("lowmem_reserve[]:");
2637 for (i = 0; i < MAX_NR_ZONES; i++)
2638 printk(" %lu", zone->lowmem_reserve[i]);
2639 printk("\n");
2640 }
2641
ee99c71c 2642 for_each_populated_zone(zone) {
8f9de51a 2643 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 2644
7bf02ea2 2645 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2646 continue;
1da177e4
LT
2647 show_node(zone);
2648 printk("%s: ", zone->name);
1da177e4
LT
2649
2650 spin_lock_irqsave(&zone->lock, flags);
2651 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2652 nr[order] = zone->free_area[order].nr_free;
2653 total += nr[order] << order;
1da177e4
LT
2654 }
2655 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2656 for (order = 0; order < MAX_ORDER; order++)
2657 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2658 printk("= %lukB\n", K(total));
2659 }
2660
e6f3602d
LW
2661 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2662
1da177e4
LT
2663 show_swap_cache_info();
2664}
2665
19770b32
MG
2666static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2667{
2668 zoneref->zone = zone;
2669 zoneref->zone_idx = zone_idx(zone);
2670}
2671
1da177e4
LT
2672/*
2673 * Builds allocation fallback zone lists.
1a93205b
CL
2674 *
2675 * Add all populated zones of a node to the zonelist.
1da177e4 2676 */
f0c0b2b8
KH
2677static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2678 int nr_zones, enum zone_type zone_type)
1da177e4 2679{
1a93205b
CL
2680 struct zone *zone;
2681
98d2b0eb 2682 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2683 zone_type++;
02a68a5e
CL
2684
2685 do {
2f6726e5 2686 zone_type--;
070f8032 2687 zone = pgdat->node_zones + zone_type;
1a93205b 2688 if (populated_zone(zone)) {
dd1a239f
MG
2689 zoneref_set_zone(zone,
2690 &zonelist->_zonerefs[nr_zones++]);
070f8032 2691 check_highest_zone(zone_type);
1da177e4 2692 }
02a68a5e 2693
2f6726e5 2694 } while (zone_type);
070f8032 2695 return nr_zones;
1da177e4
LT
2696}
2697
f0c0b2b8
KH
2698
2699/*
2700 * zonelist_order:
2701 * 0 = automatic detection of better ordering.
2702 * 1 = order by ([node] distance, -zonetype)
2703 * 2 = order by (-zonetype, [node] distance)
2704 *
2705 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2706 * the same zonelist. So only NUMA can configure this param.
2707 */
2708#define ZONELIST_ORDER_DEFAULT 0
2709#define ZONELIST_ORDER_NODE 1
2710#define ZONELIST_ORDER_ZONE 2
2711
2712/* zonelist order in the kernel.
2713 * set_zonelist_order() will set this to NODE or ZONE.
2714 */
2715static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2716static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2717
2718
1da177e4 2719#ifdef CONFIG_NUMA
f0c0b2b8
KH
2720/* The value user specified ....changed by config */
2721static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2722/* string for sysctl */
2723#define NUMA_ZONELIST_ORDER_LEN 16
2724char numa_zonelist_order[16] = "default";
2725
2726/*
2727 * interface for configure zonelist ordering.
2728 * command line option "numa_zonelist_order"
2729 * = "[dD]efault - default, automatic configuration.
2730 * = "[nN]ode - order by node locality, then by zone within node
2731 * = "[zZ]one - order by zone, then by locality within zone
2732 */
2733
2734static int __parse_numa_zonelist_order(char *s)
2735{
2736 if (*s == 'd' || *s == 'D') {
2737 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2738 } else if (*s == 'n' || *s == 'N') {
2739 user_zonelist_order = ZONELIST_ORDER_NODE;
2740 } else if (*s == 'z' || *s == 'Z') {
2741 user_zonelist_order = ZONELIST_ORDER_ZONE;
2742 } else {
2743 printk(KERN_WARNING
2744 "Ignoring invalid numa_zonelist_order value: "
2745 "%s\n", s);
2746 return -EINVAL;
2747 }
2748 return 0;
2749}
2750
2751static __init int setup_numa_zonelist_order(char *s)
2752{
ecb256f8
VL
2753 int ret;
2754
2755 if (!s)
2756 return 0;
2757
2758 ret = __parse_numa_zonelist_order(s);
2759 if (ret == 0)
2760 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2761
2762 return ret;
f0c0b2b8
KH
2763}
2764early_param("numa_zonelist_order", setup_numa_zonelist_order);
2765
2766/*
2767 * sysctl handler for numa_zonelist_order
2768 */
2769int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 2770 void __user *buffer, size_t *length,
f0c0b2b8
KH
2771 loff_t *ppos)
2772{
2773 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2774 int ret;
443c6f14 2775 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 2776
443c6f14 2777 mutex_lock(&zl_order_mutex);
f0c0b2b8 2778 if (write)
443c6f14 2779 strcpy(saved_string, (char*)table->data);
8d65af78 2780 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 2781 if (ret)
443c6f14 2782 goto out;
f0c0b2b8
KH
2783 if (write) {
2784 int oldval = user_zonelist_order;
2785 if (__parse_numa_zonelist_order((char*)table->data)) {
2786 /*
2787 * bogus value. restore saved string
2788 */
2789 strncpy((char*)table->data, saved_string,
2790 NUMA_ZONELIST_ORDER_LEN);
2791 user_zonelist_order = oldval;
4eaf3f64
HL
2792 } else if (oldval != user_zonelist_order) {
2793 mutex_lock(&zonelists_mutex);
1f522509 2794 build_all_zonelists(NULL);
4eaf3f64
HL
2795 mutex_unlock(&zonelists_mutex);
2796 }
f0c0b2b8 2797 }
443c6f14
AK
2798out:
2799 mutex_unlock(&zl_order_mutex);
2800 return ret;
f0c0b2b8
KH
2801}
2802
2803
62bc62a8 2804#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
2805static int node_load[MAX_NUMNODES];
2806
1da177e4 2807/**
4dc3b16b 2808 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2809 * @node: node whose fallback list we're appending
2810 * @used_node_mask: nodemask_t of already used nodes
2811 *
2812 * We use a number of factors to determine which is the next node that should
2813 * appear on a given node's fallback list. The node should not have appeared
2814 * already in @node's fallback list, and it should be the next closest node
2815 * according to the distance array (which contains arbitrary distance values
2816 * from each node to each node in the system), and should also prefer nodes
2817 * with no CPUs, since presumably they'll have very little allocation pressure
2818 * on them otherwise.
2819 * It returns -1 if no node is found.
2820 */
f0c0b2b8 2821static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2822{
4cf808eb 2823 int n, val;
1da177e4
LT
2824 int min_val = INT_MAX;
2825 int best_node = -1;
a70f7302 2826 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2827
4cf808eb
LT
2828 /* Use the local node if we haven't already */
2829 if (!node_isset(node, *used_node_mask)) {
2830 node_set(node, *used_node_mask);
2831 return node;
2832 }
1da177e4 2833
37b07e41 2834 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2835
2836 /* Don't want a node to appear more than once */
2837 if (node_isset(n, *used_node_mask))
2838 continue;
2839
1da177e4
LT
2840 /* Use the distance array to find the distance */
2841 val = node_distance(node, n);
2842
4cf808eb
LT
2843 /* Penalize nodes under us ("prefer the next node") */
2844 val += (n < node);
2845
1da177e4 2846 /* Give preference to headless and unused nodes */
a70f7302
RR
2847 tmp = cpumask_of_node(n);
2848 if (!cpumask_empty(tmp))
1da177e4
LT
2849 val += PENALTY_FOR_NODE_WITH_CPUS;
2850
2851 /* Slight preference for less loaded node */
2852 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2853 val += node_load[n];
2854
2855 if (val < min_val) {
2856 min_val = val;
2857 best_node = n;
2858 }
2859 }
2860
2861 if (best_node >= 0)
2862 node_set(best_node, *used_node_mask);
2863
2864 return best_node;
2865}
2866
f0c0b2b8
KH
2867
2868/*
2869 * Build zonelists ordered by node and zones within node.
2870 * This results in maximum locality--normal zone overflows into local
2871 * DMA zone, if any--but risks exhausting DMA zone.
2872 */
2873static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2874{
f0c0b2b8 2875 int j;
1da177e4 2876 struct zonelist *zonelist;
f0c0b2b8 2877
54a6eb5c 2878 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2879 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2880 ;
2881 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2882 MAX_NR_ZONES - 1);
dd1a239f
MG
2883 zonelist->_zonerefs[j].zone = NULL;
2884 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2885}
2886
523b9458
CL
2887/*
2888 * Build gfp_thisnode zonelists
2889 */
2890static void build_thisnode_zonelists(pg_data_t *pgdat)
2891{
523b9458
CL
2892 int j;
2893 struct zonelist *zonelist;
2894
54a6eb5c
MG
2895 zonelist = &pgdat->node_zonelists[1];
2896 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2897 zonelist->_zonerefs[j].zone = NULL;
2898 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2899}
2900
f0c0b2b8
KH
2901/*
2902 * Build zonelists ordered by zone and nodes within zones.
2903 * This results in conserving DMA zone[s] until all Normal memory is
2904 * exhausted, but results in overflowing to remote node while memory
2905 * may still exist in local DMA zone.
2906 */
2907static int node_order[MAX_NUMNODES];
2908
2909static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2910{
f0c0b2b8
KH
2911 int pos, j, node;
2912 int zone_type; /* needs to be signed */
2913 struct zone *z;
2914 struct zonelist *zonelist;
2915
54a6eb5c
MG
2916 zonelist = &pgdat->node_zonelists[0];
2917 pos = 0;
2918 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2919 for (j = 0; j < nr_nodes; j++) {
2920 node = node_order[j];
2921 z = &NODE_DATA(node)->node_zones[zone_type];
2922 if (populated_zone(z)) {
dd1a239f
MG
2923 zoneref_set_zone(z,
2924 &zonelist->_zonerefs[pos++]);
54a6eb5c 2925 check_highest_zone(zone_type);
f0c0b2b8
KH
2926 }
2927 }
f0c0b2b8 2928 }
dd1a239f
MG
2929 zonelist->_zonerefs[pos].zone = NULL;
2930 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2931}
2932
2933static int default_zonelist_order(void)
2934{
2935 int nid, zone_type;
2936 unsigned long low_kmem_size,total_size;
2937 struct zone *z;
2938 int average_size;
2939 /*
88393161 2940 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
2941 * If they are really small and used heavily, the system can fall
2942 * into OOM very easily.
e325c90f 2943 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
2944 */
2945 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2946 low_kmem_size = 0;
2947 total_size = 0;
2948 for_each_online_node(nid) {
2949 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2950 z = &NODE_DATA(nid)->node_zones[zone_type];
2951 if (populated_zone(z)) {
2952 if (zone_type < ZONE_NORMAL)
2953 low_kmem_size += z->present_pages;
2954 total_size += z->present_pages;
e325c90f
DR
2955 } else if (zone_type == ZONE_NORMAL) {
2956 /*
2957 * If any node has only lowmem, then node order
2958 * is preferred to allow kernel allocations
2959 * locally; otherwise, they can easily infringe
2960 * on other nodes when there is an abundance of
2961 * lowmem available to allocate from.
2962 */
2963 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
2964 }
2965 }
2966 }
2967 if (!low_kmem_size || /* there are no DMA area. */
2968 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2969 return ZONELIST_ORDER_NODE;
2970 /*
2971 * look into each node's config.
2972 * If there is a node whose DMA/DMA32 memory is very big area on
2973 * local memory, NODE_ORDER may be suitable.
2974 */
37b07e41
LS
2975 average_size = total_size /
2976 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2977 for_each_online_node(nid) {
2978 low_kmem_size = 0;
2979 total_size = 0;
2980 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2981 z = &NODE_DATA(nid)->node_zones[zone_type];
2982 if (populated_zone(z)) {
2983 if (zone_type < ZONE_NORMAL)
2984 low_kmem_size += z->present_pages;
2985 total_size += z->present_pages;
2986 }
2987 }
2988 if (low_kmem_size &&
2989 total_size > average_size && /* ignore small node */
2990 low_kmem_size > total_size * 70/100)
2991 return ZONELIST_ORDER_NODE;
2992 }
2993 return ZONELIST_ORDER_ZONE;
2994}
2995
2996static void set_zonelist_order(void)
2997{
2998 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2999 current_zonelist_order = default_zonelist_order();
3000 else
3001 current_zonelist_order = user_zonelist_order;
3002}
3003
3004static void build_zonelists(pg_data_t *pgdat)
3005{
3006 int j, node, load;
3007 enum zone_type i;
1da177e4 3008 nodemask_t used_mask;
f0c0b2b8
KH
3009 int local_node, prev_node;
3010 struct zonelist *zonelist;
3011 int order = current_zonelist_order;
1da177e4
LT
3012
3013 /* initialize zonelists */
523b9458 3014 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3015 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3016 zonelist->_zonerefs[0].zone = NULL;
3017 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3018 }
3019
3020 /* NUMA-aware ordering of nodes */
3021 local_node = pgdat->node_id;
62bc62a8 3022 load = nr_online_nodes;
1da177e4
LT
3023 prev_node = local_node;
3024 nodes_clear(used_mask);
f0c0b2b8 3025
f0c0b2b8
KH
3026 memset(node_order, 0, sizeof(node_order));
3027 j = 0;
3028
1da177e4 3029 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
3030 int distance = node_distance(local_node, node);
3031
3032 /*
3033 * If another node is sufficiently far away then it is better
3034 * to reclaim pages in a zone before going off node.
3035 */
3036 if (distance > RECLAIM_DISTANCE)
3037 zone_reclaim_mode = 1;
3038
1da177e4
LT
3039 /*
3040 * We don't want to pressure a particular node.
3041 * So adding penalty to the first node in same
3042 * distance group to make it round-robin.
3043 */
9eeff239 3044 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
3045 node_load[node] = load;
3046
1da177e4
LT
3047 prev_node = node;
3048 load--;
f0c0b2b8
KH
3049 if (order == ZONELIST_ORDER_NODE)
3050 build_zonelists_in_node_order(pgdat, node);
3051 else
3052 node_order[j++] = node; /* remember order */
3053 }
1da177e4 3054
f0c0b2b8
KH
3055 if (order == ZONELIST_ORDER_ZONE) {
3056 /* calculate node order -- i.e., DMA last! */
3057 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3058 }
523b9458
CL
3059
3060 build_thisnode_zonelists(pgdat);
1da177e4
LT
3061}
3062
9276b1bc 3063/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3064static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3065{
54a6eb5c
MG
3066 struct zonelist *zonelist;
3067 struct zonelist_cache *zlc;
dd1a239f 3068 struct zoneref *z;
9276b1bc 3069
54a6eb5c
MG
3070 zonelist = &pgdat->node_zonelists[0];
3071 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3072 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3073 for (z = zonelist->_zonerefs; z->zone; z++)
3074 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3075}
3076
7aac7898
LS
3077#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3078/*
3079 * Return node id of node used for "local" allocations.
3080 * I.e., first node id of first zone in arg node's generic zonelist.
3081 * Used for initializing percpu 'numa_mem', which is used primarily
3082 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3083 */
3084int local_memory_node(int node)
3085{
3086 struct zone *zone;
3087
3088 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3089 gfp_zone(GFP_KERNEL),
3090 NULL,
3091 &zone);
3092 return zone->node;
3093}
3094#endif
f0c0b2b8 3095
1da177e4
LT
3096#else /* CONFIG_NUMA */
3097
f0c0b2b8
KH
3098static void set_zonelist_order(void)
3099{
3100 current_zonelist_order = ZONELIST_ORDER_ZONE;
3101}
3102
3103static void build_zonelists(pg_data_t *pgdat)
1da177e4 3104{
19655d34 3105 int node, local_node;
54a6eb5c
MG
3106 enum zone_type j;
3107 struct zonelist *zonelist;
1da177e4
LT
3108
3109 local_node = pgdat->node_id;
1da177e4 3110
54a6eb5c
MG
3111 zonelist = &pgdat->node_zonelists[0];
3112 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 3113
54a6eb5c
MG
3114 /*
3115 * Now we build the zonelist so that it contains the zones
3116 * of all the other nodes.
3117 * We don't want to pressure a particular node, so when
3118 * building the zones for node N, we make sure that the
3119 * zones coming right after the local ones are those from
3120 * node N+1 (modulo N)
3121 */
3122 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3123 if (!node_online(node))
3124 continue;
3125 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3126 MAX_NR_ZONES - 1);
1da177e4 3127 }
54a6eb5c
MG
3128 for (node = 0; node < local_node; node++) {
3129 if (!node_online(node))
3130 continue;
3131 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3132 MAX_NR_ZONES - 1);
3133 }
3134
dd1a239f
MG
3135 zonelist->_zonerefs[j].zone = NULL;
3136 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3137}
3138
9276b1bc 3139/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3140static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3141{
54a6eb5c 3142 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3143}
3144
1da177e4
LT
3145#endif /* CONFIG_NUMA */
3146
99dcc3e5
CL
3147/*
3148 * Boot pageset table. One per cpu which is going to be used for all
3149 * zones and all nodes. The parameters will be set in such a way
3150 * that an item put on a list will immediately be handed over to
3151 * the buddy list. This is safe since pageset manipulation is done
3152 * with interrupts disabled.
3153 *
3154 * The boot_pagesets must be kept even after bootup is complete for
3155 * unused processors and/or zones. They do play a role for bootstrapping
3156 * hotplugged processors.
3157 *
3158 * zoneinfo_show() and maybe other functions do
3159 * not check if the processor is online before following the pageset pointer.
3160 * Other parts of the kernel may not check if the zone is available.
3161 */
3162static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3163static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3164static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3165
4eaf3f64
HL
3166/*
3167 * Global mutex to protect against size modification of zonelists
3168 * as well as to serialize pageset setup for the new populated zone.
3169 */
3170DEFINE_MUTEX(zonelists_mutex);
3171
9b1a4d38 3172/* return values int ....just for stop_machine() */
1f522509 3173static __init_refok int __build_all_zonelists(void *data)
1da177e4 3174{
6811378e 3175 int nid;
99dcc3e5 3176 int cpu;
9276b1bc 3177
7f9cfb31
BL
3178#ifdef CONFIG_NUMA
3179 memset(node_load, 0, sizeof(node_load));
3180#endif
9276b1bc 3181 for_each_online_node(nid) {
7ea1530a
CL
3182 pg_data_t *pgdat = NODE_DATA(nid);
3183
3184 build_zonelists(pgdat);
3185 build_zonelist_cache(pgdat);
9276b1bc 3186 }
99dcc3e5
CL
3187
3188 /*
3189 * Initialize the boot_pagesets that are going to be used
3190 * for bootstrapping processors. The real pagesets for
3191 * each zone will be allocated later when the per cpu
3192 * allocator is available.
3193 *
3194 * boot_pagesets are used also for bootstrapping offline
3195 * cpus if the system is already booted because the pagesets
3196 * are needed to initialize allocators on a specific cpu too.
3197 * F.e. the percpu allocator needs the page allocator which
3198 * needs the percpu allocator in order to allocate its pagesets
3199 * (a chicken-egg dilemma).
3200 */
7aac7898 3201 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3202 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3203
7aac7898
LS
3204#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3205 /*
3206 * We now know the "local memory node" for each node--
3207 * i.e., the node of the first zone in the generic zonelist.
3208 * Set up numa_mem percpu variable for on-line cpus. During
3209 * boot, only the boot cpu should be on-line; we'll init the
3210 * secondary cpus' numa_mem as they come on-line. During
3211 * node/memory hotplug, we'll fixup all on-line cpus.
3212 */
3213 if (cpu_online(cpu))
3214 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3215#endif
3216 }
3217
6811378e
YG
3218 return 0;
3219}
3220
4eaf3f64
HL
3221/*
3222 * Called with zonelists_mutex held always
3223 * unless system_state == SYSTEM_BOOTING.
3224 */
9f6ae448 3225void __ref build_all_zonelists(void *data)
6811378e 3226{
f0c0b2b8
KH
3227 set_zonelist_order();
3228
6811378e 3229 if (system_state == SYSTEM_BOOTING) {
423b41d7 3230 __build_all_zonelists(NULL);
68ad8df4 3231 mminit_verify_zonelist();
6811378e
YG
3232 cpuset_init_current_mems_allowed();
3233 } else {
183ff22b 3234 /* we have to stop all cpus to guarantee there is no user
6811378e 3235 of zonelist */
e9959f0f
KH
3236#ifdef CONFIG_MEMORY_HOTPLUG
3237 if (data)
3238 setup_zone_pageset((struct zone *)data);
3239#endif
3240 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
3241 /* cpuset refresh routine should be here */
3242 }
bd1e22b8 3243 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3244 /*
3245 * Disable grouping by mobility if the number of pages in the
3246 * system is too low to allow the mechanism to work. It would be
3247 * more accurate, but expensive to check per-zone. This check is
3248 * made on memory-hotadd so a system can start with mobility
3249 * disabled and enable it later
3250 */
d9c23400 3251 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3252 page_group_by_mobility_disabled = 1;
3253 else
3254 page_group_by_mobility_disabled = 0;
3255
3256 printk("Built %i zonelists in %s order, mobility grouping %s. "
3257 "Total pages: %ld\n",
62bc62a8 3258 nr_online_nodes,
f0c0b2b8 3259 zonelist_order_name[current_zonelist_order],
9ef9acb0 3260 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3261 vm_total_pages);
3262#ifdef CONFIG_NUMA
3263 printk("Policy zone: %s\n", zone_names[policy_zone]);
3264#endif
1da177e4
LT
3265}
3266
3267/*
3268 * Helper functions to size the waitqueue hash table.
3269 * Essentially these want to choose hash table sizes sufficiently
3270 * large so that collisions trying to wait on pages are rare.
3271 * But in fact, the number of active page waitqueues on typical
3272 * systems is ridiculously low, less than 200. So this is even
3273 * conservative, even though it seems large.
3274 *
3275 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3276 * waitqueues, i.e. the size of the waitq table given the number of pages.
3277 */
3278#define PAGES_PER_WAITQUEUE 256
3279
cca448fe 3280#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3281static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3282{
3283 unsigned long size = 1;
3284
3285 pages /= PAGES_PER_WAITQUEUE;
3286
3287 while (size < pages)
3288 size <<= 1;
3289
3290 /*
3291 * Once we have dozens or even hundreds of threads sleeping
3292 * on IO we've got bigger problems than wait queue collision.
3293 * Limit the size of the wait table to a reasonable size.
3294 */
3295 size = min(size, 4096UL);
3296
3297 return max(size, 4UL);
3298}
cca448fe
YG
3299#else
3300/*
3301 * A zone's size might be changed by hot-add, so it is not possible to determine
3302 * a suitable size for its wait_table. So we use the maximum size now.
3303 *
3304 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3305 *
3306 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3307 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3308 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3309 *
3310 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3311 * or more by the traditional way. (See above). It equals:
3312 *
3313 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3314 * ia64(16K page size) : = ( 8G + 4M)byte.
3315 * powerpc (64K page size) : = (32G +16M)byte.
3316 */
3317static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3318{
3319 return 4096UL;
3320}
3321#endif
1da177e4
LT
3322
3323/*
3324 * This is an integer logarithm so that shifts can be used later
3325 * to extract the more random high bits from the multiplicative
3326 * hash function before the remainder is taken.
3327 */
3328static inline unsigned long wait_table_bits(unsigned long size)
3329{
3330 return ffz(~size);
3331}
3332
3333#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3334
6d3163ce
AH
3335/*
3336 * Check if a pageblock contains reserved pages
3337 */
3338static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3339{
3340 unsigned long pfn;
3341
3342 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3343 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3344 return 1;
3345 }
3346 return 0;
3347}
3348
56fd56b8 3349/*
d9c23400 3350 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3351 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3352 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3353 * higher will lead to a bigger reserve which will get freed as contiguous
3354 * blocks as reclaim kicks in
3355 */
3356static void setup_zone_migrate_reserve(struct zone *zone)
3357{
6d3163ce 3358 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3359 struct page *page;
78986a67
MG
3360 unsigned long block_migratetype;
3361 int reserve;
56fd56b8
MG
3362
3363 /* Get the start pfn, end pfn and the number of blocks to reserve */
3364 start_pfn = zone->zone_start_pfn;
3365 end_pfn = start_pfn + zone->spanned_pages;
41858966 3366 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3367 pageblock_order;
56fd56b8 3368
78986a67
MG
3369 /*
3370 * Reserve blocks are generally in place to help high-order atomic
3371 * allocations that are short-lived. A min_free_kbytes value that
3372 * would result in more than 2 reserve blocks for atomic allocations
3373 * is assumed to be in place to help anti-fragmentation for the
3374 * future allocation of hugepages at runtime.
3375 */
3376 reserve = min(2, reserve);
3377
d9c23400 3378 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3379 if (!pfn_valid(pfn))
3380 continue;
3381 page = pfn_to_page(pfn);
3382
344c790e
AL
3383 /* Watch out for overlapping nodes */
3384 if (page_to_nid(page) != zone_to_nid(zone))
3385 continue;
3386
56fd56b8 3387 /* Blocks with reserved pages will never free, skip them. */
6d3163ce
AH
3388 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3389 if (pageblock_is_reserved(pfn, block_end_pfn))
56fd56b8
MG
3390 continue;
3391
3392 block_migratetype = get_pageblock_migratetype(page);
3393
3394 /* If this block is reserved, account for it */
3395 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3396 reserve--;
3397 continue;
3398 }
3399
3400 /* Suitable for reserving if this block is movable */
3401 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3402 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3403 move_freepages_block(zone, page, MIGRATE_RESERVE);
3404 reserve--;
3405 continue;
3406 }
3407
3408 /*
3409 * If the reserve is met and this is a previous reserved block,
3410 * take it back
3411 */
3412 if (block_migratetype == MIGRATE_RESERVE) {
3413 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3414 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3415 }
3416 }
3417}
ac0e5b7a 3418
1da177e4
LT
3419/*
3420 * Initially all pages are reserved - free ones are freed
3421 * up by free_all_bootmem() once the early boot process is
3422 * done. Non-atomic initialization, single-pass.
3423 */
c09b4240 3424void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3425 unsigned long start_pfn, enum memmap_context context)
1da177e4 3426{
1da177e4 3427 struct page *page;
29751f69
AW
3428 unsigned long end_pfn = start_pfn + size;
3429 unsigned long pfn;
86051ca5 3430 struct zone *z;
1da177e4 3431
22b31eec
HD
3432 if (highest_memmap_pfn < end_pfn - 1)
3433 highest_memmap_pfn = end_pfn - 1;
3434
86051ca5 3435 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3436 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3437 /*
3438 * There can be holes in boot-time mem_map[]s
3439 * handed to this function. They do not
3440 * exist on hotplugged memory.
3441 */
3442 if (context == MEMMAP_EARLY) {
3443 if (!early_pfn_valid(pfn))
3444 continue;
3445 if (!early_pfn_in_nid(pfn, nid))
3446 continue;
3447 }
d41dee36
AW
3448 page = pfn_to_page(pfn);
3449 set_page_links(page, zone, nid, pfn);
708614e6 3450 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3451 init_page_count(page);
1da177e4
LT
3452 reset_page_mapcount(page);
3453 SetPageReserved(page);
b2a0ac88
MG
3454 /*
3455 * Mark the block movable so that blocks are reserved for
3456 * movable at startup. This will force kernel allocations
3457 * to reserve their blocks rather than leaking throughout
3458 * the address space during boot when many long-lived
56fd56b8
MG
3459 * kernel allocations are made. Later some blocks near
3460 * the start are marked MIGRATE_RESERVE by
3461 * setup_zone_migrate_reserve()
86051ca5
KH
3462 *
3463 * bitmap is created for zone's valid pfn range. but memmap
3464 * can be created for invalid pages (for alignment)
3465 * check here not to call set_pageblock_migratetype() against
3466 * pfn out of zone.
b2a0ac88 3467 */
86051ca5
KH
3468 if ((z->zone_start_pfn <= pfn)
3469 && (pfn < z->zone_start_pfn + z->spanned_pages)
3470 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3471 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3472
1da177e4
LT
3473 INIT_LIST_HEAD(&page->lru);
3474#ifdef WANT_PAGE_VIRTUAL
3475 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3476 if (!is_highmem_idx(zone))
3212c6be 3477 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3478#endif
1da177e4
LT
3479 }
3480}
3481
1e548deb 3482static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3483{
b2a0ac88
MG
3484 int order, t;
3485 for_each_migratetype_order(order, t) {
3486 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3487 zone->free_area[order].nr_free = 0;
3488 }
3489}
3490
3491#ifndef __HAVE_ARCH_MEMMAP_INIT
3492#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3493 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3494#endif
3495
1d6f4e60 3496static int zone_batchsize(struct zone *zone)
e7c8d5c9 3497{
3a6be87f 3498#ifdef CONFIG_MMU
e7c8d5c9
CL
3499 int batch;
3500
3501 /*
3502 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3503 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3504 *
3505 * OK, so we don't know how big the cache is. So guess.
3506 */
3507 batch = zone->present_pages / 1024;
ba56e91c
SR
3508 if (batch * PAGE_SIZE > 512 * 1024)
3509 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3510 batch /= 4; /* We effectively *= 4 below */
3511 if (batch < 1)
3512 batch = 1;
3513
3514 /*
0ceaacc9
NP
3515 * Clamp the batch to a 2^n - 1 value. Having a power
3516 * of 2 value was found to be more likely to have
3517 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3518 *
0ceaacc9
NP
3519 * For example if 2 tasks are alternately allocating
3520 * batches of pages, one task can end up with a lot
3521 * of pages of one half of the possible page colors
3522 * and the other with pages of the other colors.
e7c8d5c9 3523 */
9155203a 3524 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3525
e7c8d5c9 3526 return batch;
3a6be87f
DH
3527
3528#else
3529 /* The deferral and batching of frees should be suppressed under NOMMU
3530 * conditions.
3531 *
3532 * The problem is that NOMMU needs to be able to allocate large chunks
3533 * of contiguous memory as there's no hardware page translation to
3534 * assemble apparent contiguous memory from discontiguous pages.
3535 *
3536 * Queueing large contiguous runs of pages for batching, however,
3537 * causes the pages to actually be freed in smaller chunks. As there
3538 * can be a significant delay between the individual batches being
3539 * recycled, this leads to the once large chunks of space being
3540 * fragmented and becoming unavailable for high-order allocations.
3541 */
3542 return 0;
3543#endif
e7c8d5c9
CL
3544}
3545
b69a7288 3546static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3547{
3548 struct per_cpu_pages *pcp;
5f8dcc21 3549 int migratetype;
2caaad41 3550
1c6fe946
MD
3551 memset(p, 0, sizeof(*p));
3552
3dfa5721 3553 pcp = &p->pcp;
2caaad41 3554 pcp->count = 0;
2caaad41
CL
3555 pcp->high = 6 * batch;
3556 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3557 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3558 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3559}
3560
8ad4b1fb
RS
3561/*
3562 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3563 * to the value high for the pageset p.
3564 */
3565
3566static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3567 unsigned long high)
3568{
3569 struct per_cpu_pages *pcp;
3570
3dfa5721 3571 pcp = &p->pcp;
8ad4b1fb
RS
3572 pcp->high = high;
3573 pcp->batch = max(1UL, high/4);
3574 if ((high/4) > (PAGE_SHIFT * 8))
3575 pcp->batch = PAGE_SHIFT * 8;
3576}
3577
58c2ee40 3578static void setup_zone_pageset(struct zone *zone)
319774e2
WF
3579{
3580 int cpu;
3581
3582 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3583
3584 for_each_possible_cpu(cpu) {
3585 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3586
3587 setup_pageset(pcp, zone_batchsize(zone));
3588
3589 if (percpu_pagelist_fraction)
3590 setup_pagelist_highmark(pcp,
3591 (zone->present_pages /
3592 percpu_pagelist_fraction));
3593 }
3594}
3595
2caaad41 3596/*
99dcc3e5
CL
3597 * Allocate per cpu pagesets and initialize them.
3598 * Before this call only boot pagesets were available.
e7c8d5c9 3599 */
99dcc3e5 3600void __init setup_per_cpu_pageset(void)
e7c8d5c9 3601{
99dcc3e5 3602 struct zone *zone;
e7c8d5c9 3603
319774e2
WF
3604 for_each_populated_zone(zone)
3605 setup_zone_pageset(zone);
e7c8d5c9
CL
3606}
3607
577a32f6 3608static noinline __init_refok
cca448fe 3609int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3610{
3611 int i;
3612 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3613 size_t alloc_size;
ed8ece2e
DH
3614
3615 /*
3616 * The per-page waitqueue mechanism uses hashed waitqueues
3617 * per zone.
3618 */
02b694de
YG
3619 zone->wait_table_hash_nr_entries =
3620 wait_table_hash_nr_entries(zone_size_pages);
3621 zone->wait_table_bits =
3622 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3623 alloc_size = zone->wait_table_hash_nr_entries
3624 * sizeof(wait_queue_head_t);
3625
cd94b9db 3626 if (!slab_is_available()) {
cca448fe 3627 zone->wait_table = (wait_queue_head_t *)
8f389a99 3628 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
3629 } else {
3630 /*
3631 * This case means that a zone whose size was 0 gets new memory
3632 * via memory hot-add.
3633 * But it may be the case that a new node was hot-added. In
3634 * this case vmalloc() will not be able to use this new node's
3635 * memory - this wait_table must be initialized to use this new
3636 * node itself as well.
3637 * To use this new node's memory, further consideration will be
3638 * necessary.
3639 */
8691f3a7 3640 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3641 }
3642 if (!zone->wait_table)
3643 return -ENOMEM;
ed8ece2e 3644
02b694de 3645 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3646 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3647
3648 return 0;
ed8ece2e
DH
3649}
3650
112067f0
SL
3651static int __zone_pcp_update(void *data)
3652{
3653 struct zone *zone = data;
3654 int cpu;
3655 unsigned long batch = zone_batchsize(zone), flags;
3656
2d30a1f6 3657 for_each_possible_cpu(cpu) {
112067f0
SL
3658 struct per_cpu_pageset *pset;
3659 struct per_cpu_pages *pcp;
3660
99dcc3e5 3661 pset = per_cpu_ptr(zone->pageset, cpu);
112067f0
SL
3662 pcp = &pset->pcp;
3663
3664 local_irq_save(flags);
5f8dcc21 3665 free_pcppages_bulk(zone, pcp->count, pcp);
112067f0
SL
3666 setup_pageset(pset, batch);
3667 local_irq_restore(flags);
3668 }
3669 return 0;
3670}
3671
3672void zone_pcp_update(struct zone *zone)
3673{
3674 stop_machine(__zone_pcp_update, zone, NULL);
3675}
3676
c09b4240 3677static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 3678{
99dcc3e5
CL
3679 /*
3680 * per cpu subsystem is not up at this point. The following code
3681 * relies on the ability of the linker to provide the
3682 * offset of a (static) per cpu variable into the per cpu area.
3683 */
3684 zone->pageset = &boot_pageset;
ed8ece2e 3685
f5335c0f 3686 if (zone->present_pages)
99dcc3e5
CL
3687 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3688 zone->name, zone->present_pages,
3689 zone_batchsize(zone));
ed8ece2e
DH
3690}
3691
718127cc
YG
3692__meminit int init_currently_empty_zone(struct zone *zone,
3693 unsigned long zone_start_pfn,
a2f3aa02
DH
3694 unsigned long size,
3695 enum memmap_context context)
ed8ece2e
DH
3696{
3697 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3698 int ret;
3699 ret = zone_wait_table_init(zone, size);
3700 if (ret)
3701 return ret;
ed8ece2e
DH
3702 pgdat->nr_zones = zone_idx(zone) + 1;
3703
ed8ece2e
DH
3704 zone->zone_start_pfn = zone_start_pfn;
3705
708614e6
MG
3706 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3707 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3708 pgdat->node_id,
3709 (unsigned long)zone_idx(zone),
3710 zone_start_pfn, (zone_start_pfn + size));
3711
1e548deb 3712 zone_init_free_lists(zone);
718127cc
YG
3713
3714 return 0;
ed8ece2e
DH
3715}
3716
c713216d
MG
3717#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3718/*
3719 * Basic iterator support. Return the first range of PFNs for a node
3720 * Note: nid == MAX_NUMNODES returns first region regardless of node
3721 */
a3142c8e 3722static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
3723{
3724 int i;
3725
3726 for (i = 0; i < nr_nodemap_entries; i++)
3727 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3728 return i;
3729
3730 return -1;
3731}
3732
3733/*
3734 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 3735 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 3736 */
a3142c8e 3737static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
3738{
3739 for (index = index + 1; index < nr_nodemap_entries; index++)
3740 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3741 return index;
3742
3743 return -1;
3744}
3745
3746#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3747/*
3748 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3749 * Architectures may implement their own version but if add_active_range()
3750 * was used and there are no special requirements, this is a convenient
3751 * alternative
3752 */
f2dbcfa7 3753int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
3754{
3755 int i;
3756
3757 for (i = 0; i < nr_nodemap_entries; i++) {
3758 unsigned long start_pfn = early_node_map[i].start_pfn;
3759 unsigned long end_pfn = early_node_map[i].end_pfn;
3760
3761 if (start_pfn <= pfn && pfn < end_pfn)
3762 return early_node_map[i].nid;
3763 }
cc2559bc
KH
3764 /* This is a memory hole */
3765 return -1;
c713216d
MG
3766}
3767#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3768
f2dbcfa7
KH
3769int __meminit early_pfn_to_nid(unsigned long pfn)
3770{
cc2559bc
KH
3771 int nid;
3772
3773 nid = __early_pfn_to_nid(pfn);
3774 if (nid >= 0)
3775 return nid;
3776 /* just returns 0 */
3777 return 0;
f2dbcfa7
KH
3778}
3779
cc2559bc
KH
3780#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3781bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3782{
3783 int nid;
3784
3785 nid = __early_pfn_to_nid(pfn);
3786 if (nid >= 0 && nid != node)
3787 return false;
3788 return true;
3789}
3790#endif
f2dbcfa7 3791
c713216d
MG
3792/* Basic iterator support to walk early_node_map[] */
3793#define for_each_active_range_index_in_nid(i, nid) \
3794 for (i = first_active_region_index_in_nid(nid); i != -1; \
3795 i = next_active_region_index_in_nid(i, nid))
3796
3797/**
3798 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3799 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3800 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3801 *
3802 * If an architecture guarantees that all ranges registered with
3803 * add_active_ranges() contain no holes and may be freed, this
3804 * this function may be used instead of calling free_bootmem() manually.
3805 */
3806void __init free_bootmem_with_active_regions(int nid,
3807 unsigned long max_low_pfn)
3808{
3809 int i;
3810
3811 for_each_active_range_index_in_nid(i, nid) {
3812 unsigned long size_pages = 0;
3813 unsigned long end_pfn = early_node_map[i].end_pfn;
3814
3815 if (early_node_map[i].start_pfn >= max_low_pfn)
3816 continue;
3817
3818 if (end_pfn > max_low_pfn)
3819 end_pfn = max_low_pfn;
3820
3821 size_pages = end_pfn - early_node_map[i].start_pfn;
3822 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3823 PFN_PHYS(early_node_map[i].start_pfn),
3824 size_pages << PAGE_SHIFT);
3825 }
3826}
3827
edbe7d23 3828#ifdef CONFIG_HAVE_MEMBLOCK
cc289894
YL
3829/*
3830 * Basic iterator support. Return the last range of PFNs for a node
3831 * Note: nid == MAX_NUMNODES returns last region regardless of node
3832 */
3833static int __meminit last_active_region_index_in_nid(int nid)
3834{
3835 int i;
3836
3837 for (i = nr_nodemap_entries - 1; i >= 0; i--)
3838 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3839 return i;
3840
3841 return -1;
3842}
3843
3844/*
3845 * Basic iterator support. Return the previous active range of PFNs for a node
3846 * Note: nid == MAX_NUMNODES returns next region regardless of node
3847 */
3848static int __meminit previous_active_region_index_in_nid(int index, int nid)
3849{
3850 for (index = index - 1; index >= 0; index--)
3851 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3852 return index;
3853
3854 return -1;
3855}
3856
3857#define for_each_active_range_index_in_nid_reverse(i, nid) \
3858 for (i = last_active_region_index_in_nid(nid); i != -1; \
3859 i = previous_active_region_index_in_nid(i, nid))
3860
edbe7d23
YL
3861u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3862 u64 goal, u64 limit)
3863{
3864 int i;
3865
3866 /* Need to go over early_node_map to find out good range for node */
1a4a678b 3867 for_each_active_range_index_in_nid_reverse(i, nid) {
edbe7d23
YL
3868 u64 addr;
3869 u64 ei_start, ei_last;
3870 u64 final_start, final_end;
3871
3872 ei_last = early_node_map[i].end_pfn;
3873 ei_last <<= PAGE_SHIFT;
3874 ei_start = early_node_map[i].start_pfn;
3875 ei_start <<= PAGE_SHIFT;
3876
3877 final_start = max(ei_start, goal);
3878 final_end = min(ei_last, limit);
3879
3880 if (final_start >= final_end)
3881 continue;
3882
3883 addr = memblock_find_in_range(final_start, final_end, size, align);
3884
3885 if (addr == MEMBLOCK_ERROR)
3886 continue;
3887
3888 return addr;
3889 }
3890
3891 return MEMBLOCK_ERROR;
3892}
3893#endif
3894
08677214
YL
3895int __init add_from_early_node_map(struct range *range, int az,
3896 int nr_range, int nid)
3897{
3898 int i;
3899 u64 start, end;
3900
3901 /* need to go over early_node_map to find out good range for node */
3902 for_each_active_range_index_in_nid(i, nid) {
3903 start = early_node_map[i].start_pfn;
3904 end = early_node_map[i].end_pfn;
3905 nr_range = add_range(range, az, nr_range, start, end);
3906 }
3907 return nr_range;
3908}
3909
b5bc6c0e
YL
3910void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3911{
3912 int i;
d52d53b8 3913 int ret;
b5bc6c0e 3914
d52d53b8
YL
3915 for_each_active_range_index_in_nid(i, nid) {
3916 ret = work_fn(early_node_map[i].start_pfn,
3917 early_node_map[i].end_pfn, data);
3918 if (ret)
3919 break;
3920 }
b5bc6c0e 3921}
c713216d
MG
3922/**
3923 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3924 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3925 *
3926 * If an architecture guarantees that all ranges registered with
3927 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3928 * function may be used instead of calling memory_present() manually.
c713216d
MG
3929 */
3930void __init sparse_memory_present_with_active_regions(int nid)
3931{
3932 int i;
3933
3934 for_each_active_range_index_in_nid(i, nid)
3935 memory_present(early_node_map[i].nid,
3936 early_node_map[i].start_pfn,
3937 early_node_map[i].end_pfn);
3938}
3939
3940/**
3941 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3942 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3943 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3944 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3945 *
3946 * It returns the start and end page frame of a node based on information
3947 * provided by an arch calling add_active_range(). If called for a node
3948 * with no available memory, a warning is printed and the start and end
88ca3b94 3949 * PFNs will be 0.
c713216d 3950 */
a3142c8e 3951void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3952 unsigned long *start_pfn, unsigned long *end_pfn)
3953{
3954 int i;
3955 *start_pfn = -1UL;
3956 *end_pfn = 0;
3957
3958 for_each_active_range_index_in_nid(i, nid) {
3959 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3960 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3961 }
3962
633c0666 3963 if (*start_pfn == -1UL)
c713216d 3964 *start_pfn = 0;
c713216d
MG
3965}
3966
2a1e274a
MG
3967/*
3968 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3969 * assumption is made that zones within a node are ordered in monotonic
3970 * increasing memory addresses so that the "highest" populated zone is used
3971 */
b69a7288 3972static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3973{
3974 int zone_index;
3975 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3976 if (zone_index == ZONE_MOVABLE)
3977 continue;
3978
3979 if (arch_zone_highest_possible_pfn[zone_index] >
3980 arch_zone_lowest_possible_pfn[zone_index])
3981 break;
3982 }
3983
3984 VM_BUG_ON(zone_index == -1);
3985 movable_zone = zone_index;
3986}
3987
3988/*
3989 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 3990 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
3991 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3992 * in each node depending on the size of each node and how evenly kernelcore
3993 * is distributed. This helper function adjusts the zone ranges
3994 * provided by the architecture for a given node by using the end of the
3995 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3996 * zones within a node are in order of monotonic increases memory addresses
3997 */
b69a7288 3998static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3999 unsigned long zone_type,
4000 unsigned long node_start_pfn,
4001 unsigned long node_end_pfn,
4002 unsigned long *zone_start_pfn,
4003 unsigned long *zone_end_pfn)
4004{
4005 /* Only adjust if ZONE_MOVABLE is on this node */
4006 if (zone_movable_pfn[nid]) {
4007 /* Size ZONE_MOVABLE */
4008 if (zone_type == ZONE_MOVABLE) {
4009 *zone_start_pfn = zone_movable_pfn[nid];
4010 *zone_end_pfn = min(node_end_pfn,
4011 arch_zone_highest_possible_pfn[movable_zone]);
4012
4013 /* Adjust for ZONE_MOVABLE starting within this range */
4014 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4015 *zone_end_pfn > zone_movable_pfn[nid]) {
4016 *zone_end_pfn = zone_movable_pfn[nid];
4017
4018 /* Check if this whole range is within ZONE_MOVABLE */
4019 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4020 *zone_start_pfn = *zone_end_pfn;
4021 }
4022}
4023
c713216d
MG
4024/*
4025 * Return the number of pages a zone spans in a node, including holes
4026 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4027 */
6ea6e688 4028static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4029 unsigned long zone_type,
4030 unsigned long *ignored)
4031{
4032 unsigned long node_start_pfn, node_end_pfn;
4033 unsigned long zone_start_pfn, zone_end_pfn;
4034
4035 /* Get the start and end of the node and zone */
4036 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4037 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4038 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4039 adjust_zone_range_for_zone_movable(nid, zone_type,
4040 node_start_pfn, node_end_pfn,
4041 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4042
4043 /* Check that this node has pages within the zone's required range */
4044 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4045 return 0;
4046
4047 /* Move the zone boundaries inside the node if necessary */
4048 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4049 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4050
4051 /* Return the spanned pages */
4052 return zone_end_pfn - zone_start_pfn;
4053}
4054
4055/*
4056 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4057 * then all holes in the requested range will be accounted for.
c713216d 4058 */
32996250 4059unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4060 unsigned long range_start_pfn,
4061 unsigned long range_end_pfn)
4062{
4063 int i = 0;
4064 unsigned long prev_end_pfn = 0, hole_pages = 0;
4065 unsigned long start_pfn;
4066
4067 /* Find the end_pfn of the first active range of pfns in the node */
4068 i = first_active_region_index_in_nid(nid);
4069 if (i == -1)
4070 return 0;
4071
b5445f95
MG
4072 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4073
9c7cd687
MG
4074 /* Account for ranges before physical memory on this node */
4075 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 4076 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
4077
4078 /* Find all holes for the zone within the node */
4079 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
4080
4081 /* No need to continue if prev_end_pfn is outside the zone */
4082 if (prev_end_pfn >= range_end_pfn)
4083 break;
4084
4085 /* Make sure the end of the zone is not within the hole */
4086 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4087 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
4088
4089 /* Update the hole size cound and move on */
4090 if (start_pfn > range_start_pfn) {
4091 BUG_ON(prev_end_pfn > start_pfn);
4092 hole_pages += start_pfn - prev_end_pfn;
4093 }
4094 prev_end_pfn = early_node_map[i].end_pfn;
4095 }
4096
9c7cd687
MG
4097 /* Account for ranges past physical memory on this node */
4098 if (range_end_pfn > prev_end_pfn)
0c6cb974 4099 hole_pages += range_end_pfn -
9c7cd687
MG
4100 max(range_start_pfn, prev_end_pfn);
4101
c713216d
MG
4102 return hole_pages;
4103}
4104
4105/**
4106 * absent_pages_in_range - Return number of page frames in holes within a range
4107 * @start_pfn: The start PFN to start searching for holes
4108 * @end_pfn: The end PFN to stop searching for holes
4109 *
88ca3b94 4110 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4111 */
4112unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4113 unsigned long end_pfn)
4114{
4115 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4116}
4117
4118/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4119static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4120 unsigned long zone_type,
4121 unsigned long *ignored)
4122{
9c7cd687
MG
4123 unsigned long node_start_pfn, node_end_pfn;
4124 unsigned long zone_start_pfn, zone_end_pfn;
4125
4126 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4127 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
4128 node_start_pfn);
4129 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
4130 node_end_pfn);
4131
2a1e274a
MG
4132 adjust_zone_range_for_zone_movable(nid, zone_type,
4133 node_start_pfn, node_end_pfn,
4134 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4135 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4136}
0e0b864e 4137
c713216d 4138#else
6ea6e688 4139static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4140 unsigned long zone_type,
4141 unsigned long *zones_size)
4142{
4143 return zones_size[zone_type];
4144}
4145
6ea6e688 4146static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4147 unsigned long zone_type,
4148 unsigned long *zholes_size)
4149{
4150 if (!zholes_size)
4151 return 0;
4152
4153 return zholes_size[zone_type];
4154}
0e0b864e 4155
c713216d
MG
4156#endif
4157
a3142c8e 4158static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4159 unsigned long *zones_size, unsigned long *zholes_size)
4160{
4161 unsigned long realtotalpages, totalpages = 0;
4162 enum zone_type i;
4163
4164 for (i = 0; i < MAX_NR_ZONES; i++)
4165 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4166 zones_size);
4167 pgdat->node_spanned_pages = totalpages;
4168
4169 realtotalpages = totalpages;
4170 for (i = 0; i < MAX_NR_ZONES; i++)
4171 realtotalpages -=
4172 zone_absent_pages_in_node(pgdat->node_id, i,
4173 zholes_size);
4174 pgdat->node_present_pages = realtotalpages;
4175 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4176 realtotalpages);
4177}
4178
835c134e
MG
4179#ifndef CONFIG_SPARSEMEM
4180/*
4181 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4182 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4183 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4184 * round what is now in bits to nearest long in bits, then return it in
4185 * bytes.
4186 */
4187static unsigned long __init usemap_size(unsigned long zonesize)
4188{
4189 unsigned long usemapsize;
4190
d9c23400
MG
4191 usemapsize = roundup(zonesize, pageblock_nr_pages);
4192 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4193 usemapsize *= NR_PAGEBLOCK_BITS;
4194 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4195
4196 return usemapsize / 8;
4197}
4198
4199static void __init setup_usemap(struct pglist_data *pgdat,
4200 struct zone *zone, unsigned long zonesize)
4201{
4202 unsigned long usemapsize = usemap_size(zonesize);
4203 zone->pageblock_flags = NULL;
58a01a45 4204 if (usemapsize)
8f389a99
YL
4205 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4206 usemapsize);
835c134e
MG
4207}
4208#else
fa9f90be 4209static inline void setup_usemap(struct pglist_data *pgdat,
835c134e
MG
4210 struct zone *zone, unsigned long zonesize) {}
4211#endif /* CONFIG_SPARSEMEM */
4212
d9c23400 4213#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
4214
4215/* Return a sensible default order for the pageblock size. */
4216static inline int pageblock_default_order(void)
4217{
4218 if (HPAGE_SHIFT > PAGE_SHIFT)
4219 return HUGETLB_PAGE_ORDER;
4220
4221 return MAX_ORDER-1;
4222}
4223
d9c23400
MG
4224/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4225static inline void __init set_pageblock_order(unsigned int order)
4226{
4227 /* Check that pageblock_nr_pages has not already been setup */
4228 if (pageblock_order)
4229 return;
4230
4231 /*
4232 * Assume the largest contiguous order of interest is a huge page.
4233 * This value may be variable depending on boot parameters on IA64
4234 */
4235 pageblock_order = order;
4236}
4237#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4238
ba72cb8c
MG
4239/*
4240 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4241 * and pageblock_default_order() are unused as pageblock_order is set
4242 * at compile-time. See include/linux/pageblock-flags.h for the values of
4243 * pageblock_order based on the kernel config
4244 */
4245static inline int pageblock_default_order(unsigned int order)
4246{
4247 return MAX_ORDER-1;
4248}
d9c23400
MG
4249#define set_pageblock_order(x) do {} while (0)
4250
4251#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4252
1da177e4
LT
4253/*
4254 * Set up the zone data structures:
4255 * - mark all pages reserved
4256 * - mark all memory queues empty
4257 * - clear the memory bitmaps
4258 */
b5a0e011 4259static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4260 unsigned long *zones_size, unsigned long *zholes_size)
4261{
2f1b6248 4262 enum zone_type j;
ed8ece2e 4263 int nid = pgdat->node_id;
1da177e4 4264 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4265 int ret;
1da177e4 4266
208d54e5 4267 pgdat_resize_init(pgdat);
1da177e4
LT
4268 pgdat->nr_zones = 0;
4269 init_waitqueue_head(&pgdat->kswapd_wait);
4270 pgdat->kswapd_max_order = 0;
52d4b9ac 4271 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
4272
4273 for (j = 0; j < MAX_NR_ZONES; j++) {
4274 struct zone *zone = pgdat->node_zones + j;
0e0b864e 4275 unsigned long size, realsize, memmap_pages;
b69408e8 4276 enum lru_list l;
1da177e4 4277
c713216d
MG
4278 size = zone_spanned_pages_in_node(nid, j, zones_size);
4279 realsize = size - zone_absent_pages_in_node(nid, j,
4280 zholes_size);
1da177e4 4281
0e0b864e
MG
4282 /*
4283 * Adjust realsize so that it accounts for how much memory
4284 * is used by this zone for memmap. This affects the watermark
4285 * and per-cpu initialisations
4286 */
f7232154
JW
4287 memmap_pages =
4288 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
4289 if (realsize >= memmap_pages) {
4290 realsize -= memmap_pages;
5594c8c8
YL
4291 if (memmap_pages)
4292 printk(KERN_DEBUG
4293 " %s zone: %lu pages used for memmap\n",
4294 zone_names[j], memmap_pages);
0e0b864e
MG
4295 } else
4296 printk(KERN_WARNING
4297 " %s zone: %lu pages exceeds realsize %lu\n",
4298 zone_names[j], memmap_pages, realsize);
4299
6267276f
CL
4300 /* Account for reserved pages */
4301 if (j == 0 && realsize > dma_reserve) {
0e0b864e 4302 realsize -= dma_reserve;
d903ef9f 4303 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4304 zone_names[0], dma_reserve);
0e0b864e
MG
4305 }
4306
98d2b0eb 4307 if (!is_highmem_idx(j))
1da177e4
LT
4308 nr_kernel_pages += realsize;
4309 nr_all_pages += realsize;
4310
4311 zone->spanned_pages = size;
4312 zone->present_pages = realsize;
9614634f 4313#ifdef CONFIG_NUMA
d5f541ed 4314 zone->node = nid;
8417bba4 4315 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4316 / 100;
0ff38490 4317 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4318#endif
1da177e4
LT
4319 zone->name = zone_names[j];
4320 spin_lock_init(&zone->lock);
4321 spin_lock_init(&zone->lru_lock);
bdc8cb98 4322 zone_seqlock_init(zone);
1da177e4 4323 zone->zone_pgdat = pgdat;
1da177e4 4324
ed8ece2e 4325 zone_pcp_init(zone);
b69408e8
CL
4326 for_each_lru(l) {
4327 INIT_LIST_HEAD(&zone->lru[l].list);
f8629631 4328 zone->reclaim_stat.nr_saved_scan[l] = 0;
b69408e8 4329 }
6e901571
KM
4330 zone->reclaim_stat.recent_rotated[0] = 0;
4331 zone->reclaim_stat.recent_rotated[1] = 0;
4332 zone->reclaim_stat.recent_scanned[0] = 0;
4333 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 4334 zap_zone_vm_stats(zone);
e815af95 4335 zone->flags = 0;
1da177e4
LT
4336 if (!size)
4337 continue;
4338
ba72cb8c 4339 set_pageblock_order(pageblock_default_order());
835c134e 4340 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4341 ret = init_currently_empty_zone(zone, zone_start_pfn,
4342 size, MEMMAP_EARLY);
718127cc 4343 BUG_ON(ret);
76cdd58e 4344 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4345 zone_start_pfn += size;
1da177e4
LT
4346 }
4347}
4348
577a32f6 4349static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4350{
1da177e4
LT
4351 /* Skip empty nodes */
4352 if (!pgdat->node_spanned_pages)
4353 return;
4354
d41dee36 4355#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4356 /* ia64 gets its own node_mem_map, before this, without bootmem */
4357 if (!pgdat->node_mem_map) {
e984bb43 4358 unsigned long size, start, end;
d41dee36
AW
4359 struct page *map;
4360
e984bb43
BP
4361 /*
4362 * The zone's endpoints aren't required to be MAX_ORDER
4363 * aligned but the node_mem_map endpoints must be in order
4364 * for the buddy allocator to function correctly.
4365 */
4366 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4367 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4368 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4369 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4370 map = alloc_remap(pgdat->node_id, size);
4371 if (!map)
8f389a99 4372 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4373 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4374 }
12d810c1 4375#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4376 /*
4377 * With no DISCONTIG, the global mem_map is just set as node 0's
4378 */
c713216d 4379 if (pgdat == NODE_DATA(0)) {
1da177e4 4380 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
4381#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4382 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4383 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
4384#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4385 }
1da177e4 4386#endif
d41dee36 4387#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4388}
4389
9109fb7b
JW
4390void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4391 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4392{
9109fb7b
JW
4393 pg_data_t *pgdat = NODE_DATA(nid);
4394
1da177e4
LT
4395 pgdat->node_id = nid;
4396 pgdat->node_start_pfn = node_start_pfn;
c713216d 4397 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4398
4399 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4400#ifdef CONFIG_FLAT_NODE_MEM_MAP
4401 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4402 nid, (unsigned long)pgdat,
4403 (unsigned long)pgdat->node_mem_map);
4404#endif
1da177e4
LT
4405
4406 free_area_init_core(pgdat, zones_size, zholes_size);
4407}
4408
c713216d 4409#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
4410
4411#if MAX_NUMNODES > 1
4412/*
4413 * Figure out the number of possible node ids.
4414 */
4415static void __init setup_nr_node_ids(void)
4416{
4417 unsigned int node;
4418 unsigned int highest = 0;
4419
4420 for_each_node_mask(node, node_possible_map)
4421 highest = node;
4422 nr_node_ids = highest + 1;
4423}
4424#else
4425static inline void setup_nr_node_ids(void)
4426{
4427}
4428#endif
4429
c713216d
MG
4430/**
4431 * add_active_range - Register a range of PFNs backed by physical memory
4432 * @nid: The node ID the range resides on
4433 * @start_pfn: The start PFN of the available physical memory
4434 * @end_pfn: The end PFN of the available physical memory
4435 *
4436 * These ranges are stored in an early_node_map[] and later used by
4437 * free_area_init_nodes() to calculate zone sizes and holes. If the
4438 * range spans a memory hole, it is up to the architecture to ensure
4439 * the memory is not freed by the bootmem allocator. If possible
4440 * the range being registered will be merged with existing ranges.
4441 */
4442void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4443 unsigned long end_pfn)
4444{
4445 int i;
4446
6b74ab97
MG
4447 mminit_dprintk(MMINIT_TRACE, "memory_register",
4448 "Entering add_active_range(%d, %#lx, %#lx) "
4449 "%d entries of %d used\n",
4450 nid, start_pfn, end_pfn,
4451 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 4452
2dbb51c4
MG
4453 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4454
c713216d
MG
4455 /* Merge with existing active regions if possible */
4456 for (i = 0; i < nr_nodemap_entries; i++) {
4457 if (early_node_map[i].nid != nid)
4458 continue;
4459
4460 /* Skip if an existing region covers this new one */
4461 if (start_pfn >= early_node_map[i].start_pfn &&
4462 end_pfn <= early_node_map[i].end_pfn)
4463 return;
4464
4465 /* Merge forward if suitable */
4466 if (start_pfn <= early_node_map[i].end_pfn &&
4467 end_pfn > early_node_map[i].end_pfn) {
4468 early_node_map[i].end_pfn = end_pfn;
4469 return;
4470 }
4471
4472 /* Merge backward if suitable */
d2dbe08d 4473 if (start_pfn < early_node_map[i].start_pfn &&
c713216d
MG
4474 end_pfn >= early_node_map[i].start_pfn) {
4475 early_node_map[i].start_pfn = start_pfn;
4476 return;
4477 }
4478 }
4479
4480 /* Check that early_node_map is large enough */
4481 if (i >= MAX_ACTIVE_REGIONS) {
4482 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4483 MAX_ACTIVE_REGIONS);
4484 return;
4485 }
4486
4487 early_node_map[i].nid = nid;
4488 early_node_map[i].start_pfn = start_pfn;
4489 early_node_map[i].end_pfn = end_pfn;
4490 nr_nodemap_entries = i + 1;
4491}
4492
4493/**
cc1050ba 4494 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 4495 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
4496 * @start_pfn: The new PFN of the range
4497 * @end_pfn: The new PFN of the range
c713216d
MG
4498 *
4499 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
4500 * The map is kept near the end physical page range that has already been
4501 * registered. This function allows an arch to shrink an existing registered
4502 * range.
c713216d 4503 */
cc1050ba
YL
4504void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4505 unsigned long end_pfn)
c713216d 4506{
cc1a9d86
YL
4507 int i, j;
4508 int removed = 0;
c713216d 4509
cc1050ba
YL
4510 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4511 nid, start_pfn, end_pfn);
4512
c713216d 4513 /* Find the old active region end and shrink */
cc1a9d86 4514 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
4515 if (early_node_map[i].start_pfn >= start_pfn &&
4516 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 4517 /* clear it */
cc1050ba 4518 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
4519 early_node_map[i].end_pfn = 0;
4520 removed = 1;
4521 continue;
4522 }
cc1050ba
YL
4523 if (early_node_map[i].start_pfn < start_pfn &&
4524 early_node_map[i].end_pfn > start_pfn) {
4525 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4526 early_node_map[i].end_pfn = start_pfn;
4527 if (temp_end_pfn > end_pfn)
4528 add_active_range(nid, end_pfn, temp_end_pfn);
4529 continue;
4530 }
4531 if (early_node_map[i].start_pfn >= start_pfn &&
4532 early_node_map[i].end_pfn > end_pfn &&
4533 early_node_map[i].start_pfn < end_pfn) {
4534 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 4535 continue;
c713216d 4536 }
cc1a9d86
YL
4537 }
4538
4539 if (!removed)
4540 return;
4541
4542 /* remove the blank ones */
4543 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4544 if (early_node_map[i].nid != nid)
4545 continue;
4546 if (early_node_map[i].end_pfn)
4547 continue;
4548 /* we found it, get rid of it */
4549 for (j = i; j < nr_nodemap_entries - 1; j++)
4550 memcpy(&early_node_map[j], &early_node_map[j+1],
4551 sizeof(early_node_map[j]));
4552 j = nr_nodemap_entries - 1;
4553 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4554 nr_nodemap_entries--;
4555 }
c713216d
MG
4556}
4557
4558/**
4559 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 4560 *
c713216d
MG
4561 * During discovery, it may be found that a table like SRAT is invalid
4562 * and an alternative discovery method must be used. This function removes
4563 * all currently registered regions.
4564 */
88ca3b94 4565void __init remove_all_active_ranges(void)
c713216d
MG
4566{
4567 memset(early_node_map, 0, sizeof(early_node_map));
4568 nr_nodemap_entries = 0;
4569}
4570
4571/* Compare two active node_active_regions */
4572static int __init cmp_node_active_region(const void *a, const void *b)
4573{
4574 struct node_active_region *arange = (struct node_active_region *)a;
4575 struct node_active_region *brange = (struct node_active_region *)b;
4576
4577 /* Done this way to avoid overflows */
4578 if (arange->start_pfn > brange->start_pfn)
4579 return 1;
4580 if (arange->start_pfn < brange->start_pfn)
4581 return -1;
4582
4583 return 0;
4584}
4585
4586/* sort the node_map by start_pfn */
32996250 4587void __init sort_node_map(void)
c713216d
MG
4588{
4589 sort(early_node_map, (size_t)nr_nodemap_entries,
4590 sizeof(struct node_active_region),
4591 cmp_node_active_region, NULL);
4592}
4593
a6af2bc3 4594/* Find the lowest pfn for a node */
b69a7288 4595static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
4596{
4597 int i;
a6af2bc3 4598 unsigned long min_pfn = ULONG_MAX;
1abbfb41 4599
c713216d
MG
4600 /* Assuming a sorted map, the first range found has the starting pfn */
4601 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 4602 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 4603
a6af2bc3
MG
4604 if (min_pfn == ULONG_MAX) {
4605 printk(KERN_WARNING
2bc0d261 4606 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4607 return 0;
4608 }
4609
4610 return min_pfn;
c713216d
MG
4611}
4612
4613/**
4614 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4615 *
4616 * It returns the minimum PFN based on information provided via
88ca3b94 4617 * add_active_range().
c713216d
MG
4618 */
4619unsigned long __init find_min_pfn_with_active_regions(void)
4620{
4621 return find_min_pfn_for_node(MAX_NUMNODES);
4622}
4623
37b07e41
LS
4624/*
4625 * early_calculate_totalpages()
4626 * Sum pages in active regions for movable zone.
4627 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4628 */
484f51f8 4629static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
4630{
4631 int i;
4632 unsigned long totalpages = 0;
4633
37b07e41
LS
4634 for (i = 0; i < nr_nodemap_entries; i++) {
4635 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 4636 early_node_map[i].start_pfn;
37b07e41
LS
4637 totalpages += pages;
4638 if (pages)
4639 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4640 }
4641 return totalpages;
7e63efef
MG
4642}
4643
2a1e274a
MG
4644/*
4645 * Find the PFN the Movable zone begins in each node. Kernel memory
4646 * is spread evenly between nodes as long as the nodes have enough
4647 * memory. When they don't, some nodes will have more kernelcore than
4648 * others
4649 */
b69a7288 4650static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
4651{
4652 int i, nid;
4653 unsigned long usable_startpfn;
4654 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4655 /* save the state before borrow the nodemask */
4656 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4657 unsigned long totalpages = early_calculate_totalpages();
4658 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4659
7e63efef
MG
4660 /*
4661 * If movablecore was specified, calculate what size of
4662 * kernelcore that corresponds so that memory usable for
4663 * any allocation type is evenly spread. If both kernelcore
4664 * and movablecore are specified, then the value of kernelcore
4665 * will be used for required_kernelcore if it's greater than
4666 * what movablecore would have allowed.
4667 */
4668 if (required_movablecore) {
7e63efef
MG
4669 unsigned long corepages;
4670
4671 /*
4672 * Round-up so that ZONE_MOVABLE is at least as large as what
4673 * was requested by the user
4674 */
4675 required_movablecore =
4676 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4677 corepages = totalpages - required_movablecore;
4678
4679 required_kernelcore = max(required_kernelcore, corepages);
4680 }
4681
2a1e274a
MG
4682 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4683 if (!required_kernelcore)
66918dcd 4684 goto out;
2a1e274a
MG
4685
4686 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4687 find_usable_zone_for_movable();
4688 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4689
4690restart:
4691 /* Spread kernelcore memory as evenly as possible throughout nodes */
4692 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4693 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
4694 /*
4695 * Recalculate kernelcore_node if the division per node
4696 * now exceeds what is necessary to satisfy the requested
4697 * amount of memory for the kernel
4698 */
4699 if (required_kernelcore < kernelcore_node)
4700 kernelcore_node = required_kernelcore / usable_nodes;
4701
4702 /*
4703 * As the map is walked, we track how much memory is usable
4704 * by the kernel using kernelcore_remaining. When it is
4705 * 0, the rest of the node is usable by ZONE_MOVABLE
4706 */
4707 kernelcore_remaining = kernelcore_node;
4708
4709 /* Go through each range of PFNs within this node */
4710 for_each_active_range_index_in_nid(i, nid) {
4711 unsigned long start_pfn, end_pfn;
4712 unsigned long size_pages;
4713
4714 start_pfn = max(early_node_map[i].start_pfn,
4715 zone_movable_pfn[nid]);
4716 end_pfn = early_node_map[i].end_pfn;
4717 if (start_pfn >= end_pfn)
4718 continue;
4719
4720 /* Account for what is only usable for kernelcore */
4721 if (start_pfn < usable_startpfn) {
4722 unsigned long kernel_pages;
4723 kernel_pages = min(end_pfn, usable_startpfn)
4724 - start_pfn;
4725
4726 kernelcore_remaining -= min(kernel_pages,
4727 kernelcore_remaining);
4728 required_kernelcore -= min(kernel_pages,
4729 required_kernelcore);
4730
4731 /* Continue if range is now fully accounted */
4732 if (end_pfn <= usable_startpfn) {
4733
4734 /*
4735 * Push zone_movable_pfn to the end so
4736 * that if we have to rebalance
4737 * kernelcore across nodes, we will
4738 * not double account here
4739 */
4740 zone_movable_pfn[nid] = end_pfn;
4741 continue;
4742 }
4743 start_pfn = usable_startpfn;
4744 }
4745
4746 /*
4747 * The usable PFN range for ZONE_MOVABLE is from
4748 * start_pfn->end_pfn. Calculate size_pages as the
4749 * number of pages used as kernelcore
4750 */
4751 size_pages = end_pfn - start_pfn;
4752 if (size_pages > kernelcore_remaining)
4753 size_pages = kernelcore_remaining;
4754 zone_movable_pfn[nid] = start_pfn + size_pages;
4755
4756 /*
4757 * Some kernelcore has been met, update counts and
4758 * break if the kernelcore for this node has been
4759 * satisified
4760 */
4761 required_kernelcore -= min(required_kernelcore,
4762 size_pages);
4763 kernelcore_remaining -= size_pages;
4764 if (!kernelcore_remaining)
4765 break;
4766 }
4767 }
4768
4769 /*
4770 * If there is still required_kernelcore, we do another pass with one
4771 * less node in the count. This will push zone_movable_pfn[nid] further
4772 * along on the nodes that still have memory until kernelcore is
4773 * satisified
4774 */
4775 usable_nodes--;
4776 if (usable_nodes && required_kernelcore > usable_nodes)
4777 goto restart;
4778
4779 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4780 for (nid = 0; nid < MAX_NUMNODES; nid++)
4781 zone_movable_pfn[nid] =
4782 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4783
4784out:
4785 /* restore the node_state */
4786 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4787}
4788
37b07e41
LS
4789/* Any regular memory on that node ? */
4790static void check_for_regular_memory(pg_data_t *pgdat)
4791{
4792#ifdef CONFIG_HIGHMEM
4793 enum zone_type zone_type;
4794
4795 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4796 struct zone *zone = &pgdat->node_zones[zone_type];
4797 if (zone->present_pages)
4798 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4799 }
4800#endif
4801}
4802
c713216d
MG
4803/**
4804 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4805 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4806 *
4807 * This will call free_area_init_node() for each active node in the system.
4808 * Using the page ranges provided by add_active_range(), the size of each
4809 * zone in each node and their holes is calculated. If the maximum PFN
4810 * between two adjacent zones match, it is assumed that the zone is empty.
4811 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4812 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4813 * starts where the previous one ended. For example, ZONE_DMA32 starts
4814 * at arch_max_dma_pfn.
4815 */
4816void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4817{
4818 unsigned long nid;
db99100d 4819 int i;
c713216d 4820
a6af2bc3
MG
4821 /* Sort early_node_map as initialisation assumes it is sorted */
4822 sort_node_map();
4823
c713216d
MG
4824 /* Record where the zone boundaries are */
4825 memset(arch_zone_lowest_possible_pfn, 0,
4826 sizeof(arch_zone_lowest_possible_pfn));
4827 memset(arch_zone_highest_possible_pfn, 0,
4828 sizeof(arch_zone_highest_possible_pfn));
4829 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4830 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4831 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4832 if (i == ZONE_MOVABLE)
4833 continue;
c713216d
MG
4834 arch_zone_lowest_possible_pfn[i] =
4835 arch_zone_highest_possible_pfn[i-1];
4836 arch_zone_highest_possible_pfn[i] =
4837 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4838 }
2a1e274a
MG
4839 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4840 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4841
4842 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4843 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4844 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4845
c713216d
MG
4846 /* Print out the zone ranges */
4847 printk("Zone PFN ranges:\n");
2a1e274a
MG
4848 for (i = 0; i < MAX_NR_ZONES; i++) {
4849 if (i == ZONE_MOVABLE)
4850 continue;
72f0ba02
DR
4851 printk(" %-8s ", zone_names[i]);
4852 if (arch_zone_lowest_possible_pfn[i] ==
4853 arch_zone_highest_possible_pfn[i])
4854 printk("empty\n");
4855 else
4856 printk("%0#10lx -> %0#10lx\n",
c713216d
MG
4857 arch_zone_lowest_possible_pfn[i],
4858 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4859 }
4860
4861 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4862 printk("Movable zone start PFN for each node\n");
4863 for (i = 0; i < MAX_NUMNODES; i++) {
4864 if (zone_movable_pfn[i])
4865 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4866 }
c713216d
MG
4867
4868 /* Print out the early_node_map[] */
4869 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4870 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4871 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4872 early_node_map[i].start_pfn,
4873 early_node_map[i].end_pfn);
4874
4875 /* Initialise every node */
708614e6 4876 mminit_verify_pageflags_layout();
8ef82866 4877 setup_nr_node_ids();
c713216d
MG
4878 for_each_online_node(nid) {
4879 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4880 free_area_init_node(nid, NULL,
c713216d 4881 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4882
4883 /* Any memory on that node */
4884 if (pgdat->node_present_pages)
4885 node_set_state(nid, N_HIGH_MEMORY);
4886 check_for_regular_memory(pgdat);
c713216d
MG
4887 }
4888}
2a1e274a 4889
7e63efef 4890static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4891{
4892 unsigned long long coremem;
4893 if (!p)
4894 return -EINVAL;
4895
4896 coremem = memparse(p, &p);
7e63efef 4897 *core = coremem >> PAGE_SHIFT;
2a1e274a 4898
7e63efef 4899 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4900 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4901
4902 return 0;
4903}
ed7ed365 4904
7e63efef
MG
4905/*
4906 * kernelcore=size sets the amount of memory for use for allocations that
4907 * cannot be reclaimed or migrated.
4908 */
4909static int __init cmdline_parse_kernelcore(char *p)
4910{
4911 return cmdline_parse_core(p, &required_kernelcore);
4912}
4913
4914/*
4915 * movablecore=size sets the amount of memory for use for allocations that
4916 * can be reclaimed or migrated.
4917 */
4918static int __init cmdline_parse_movablecore(char *p)
4919{
4920 return cmdline_parse_core(p, &required_movablecore);
4921}
4922
ed7ed365 4923early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4924early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4925
c713216d
MG
4926#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4927
0e0b864e 4928/**
88ca3b94
RD
4929 * set_dma_reserve - set the specified number of pages reserved in the first zone
4930 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4931 *
4932 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4933 * In the DMA zone, a significant percentage may be consumed by kernel image
4934 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4935 * function may optionally be used to account for unfreeable pages in the
4936 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4937 * smaller per-cpu batchsize.
0e0b864e
MG
4938 */
4939void __init set_dma_reserve(unsigned long new_dma_reserve)
4940{
4941 dma_reserve = new_dma_reserve;
4942}
4943
1da177e4
LT
4944void __init free_area_init(unsigned long *zones_size)
4945{
9109fb7b 4946 free_area_init_node(0, zones_size,
1da177e4
LT
4947 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4948}
1da177e4 4949
1da177e4
LT
4950static int page_alloc_cpu_notify(struct notifier_block *self,
4951 unsigned long action, void *hcpu)
4952{
4953 int cpu = (unsigned long)hcpu;
1da177e4 4954
8bb78442 4955 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4956 drain_pages(cpu);
4957
4958 /*
4959 * Spill the event counters of the dead processor
4960 * into the current processors event counters.
4961 * This artificially elevates the count of the current
4962 * processor.
4963 */
f8891e5e 4964 vm_events_fold_cpu(cpu);
9f8f2172
CL
4965
4966 /*
4967 * Zero the differential counters of the dead processor
4968 * so that the vm statistics are consistent.
4969 *
4970 * This is only okay since the processor is dead and cannot
4971 * race with what we are doing.
4972 */
2244b95a 4973 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4974 }
4975 return NOTIFY_OK;
4976}
1da177e4
LT
4977
4978void __init page_alloc_init(void)
4979{
4980 hotcpu_notifier(page_alloc_cpu_notify, 0);
4981}
4982
cb45b0e9
HA
4983/*
4984 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4985 * or min_free_kbytes changes.
4986 */
4987static void calculate_totalreserve_pages(void)
4988{
4989 struct pglist_data *pgdat;
4990 unsigned long reserve_pages = 0;
2f6726e5 4991 enum zone_type i, j;
cb45b0e9
HA
4992
4993 for_each_online_pgdat(pgdat) {
4994 for (i = 0; i < MAX_NR_ZONES; i++) {
4995 struct zone *zone = pgdat->node_zones + i;
4996 unsigned long max = 0;
4997
4998 /* Find valid and maximum lowmem_reserve in the zone */
4999 for (j = i; j < MAX_NR_ZONES; j++) {
5000 if (zone->lowmem_reserve[j] > max)
5001 max = zone->lowmem_reserve[j];
5002 }
5003
41858966
MG
5004 /* we treat the high watermark as reserved pages. */
5005 max += high_wmark_pages(zone);
cb45b0e9
HA
5006
5007 if (max > zone->present_pages)
5008 max = zone->present_pages;
5009 reserve_pages += max;
5010 }
5011 }
5012 totalreserve_pages = reserve_pages;
5013}
5014
1da177e4
LT
5015/*
5016 * setup_per_zone_lowmem_reserve - called whenever
5017 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5018 * has a correct pages reserved value, so an adequate number of
5019 * pages are left in the zone after a successful __alloc_pages().
5020 */
5021static void setup_per_zone_lowmem_reserve(void)
5022{
5023 struct pglist_data *pgdat;
2f6726e5 5024 enum zone_type j, idx;
1da177e4 5025
ec936fc5 5026 for_each_online_pgdat(pgdat) {
1da177e4
LT
5027 for (j = 0; j < MAX_NR_ZONES; j++) {
5028 struct zone *zone = pgdat->node_zones + j;
5029 unsigned long present_pages = zone->present_pages;
5030
5031 zone->lowmem_reserve[j] = 0;
5032
2f6726e5
CL
5033 idx = j;
5034 while (idx) {
1da177e4
LT
5035 struct zone *lower_zone;
5036
2f6726e5
CL
5037 idx--;
5038
1da177e4
LT
5039 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5040 sysctl_lowmem_reserve_ratio[idx] = 1;
5041
5042 lower_zone = pgdat->node_zones + idx;
5043 lower_zone->lowmem_reserve[j] = present_pages /
5044 sysctl_lowmem_reserve_ratio[idx];
5045 present_pages += lower_zone->present_pages;
5046 }
5047 }
5048 }
cb45b0e9
HA
5049
5050 /* update totalreserve_pages */
5051 calculate_totalreserve_pages();
1da177e4
LT
5052}
5053
88ca3b94 5054/**
bc75d33f 5055 * setup_per_zone_wmarks - called when min_free_kbytes changes
bce7394a 5056 * or when memory is hot-{added|removed}
88ca3b94 5057 *
bc75d33f
MK
5058 * Ensures that the watermark[min,low,high] values for each zone are set
5059 * correctly with respect to min_free_kbytes.
1da177e4 5060 */
bc75d33f 5061void setup_per_zone_wmarks(void)
1da177e4
LT
5062{
5063 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5064 unsigned long lowmem_pages = 0;
5065 struct zone *zone;
5066 unsigned long flags;
5067
5068 /* Calculate total number of !ZONE_HIGHMEM pages */
5069 for_each_zone(zone) {
5070 if (!is_highmem(zone))
5071 lowmem_pages += zone->present_pages;
5072 }
5073
5074 for_each_zone(zone) {
ac924c60
AM
5075 u64 tmp;
5076
1125b4e3 5077 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
5078 tmp = (u64)pages_min * zone->present_pages;
5079 do_div(tmp, lowmem_pages);
1da177e4
LT
5080 if (is_highmem(zone)) {
5081 /*
669ed175
NP
5082 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5083 * need highmem pages, so cap pages_min to a small
5084 * value here.
5085 *
41858966 5086 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5087 * deltas controls asynch page reclaim, and so should
5088 * not be capped for highmem.
1da177e4
LT
5089 */
5090 int min_pages;
5091
5092 min_pages = zone->present_pages / 1024;
5093 if (min_pages < SWAP_CLUSTER_MAX)
5094 min_pages = SWAP_CLUSTER_MAX;
5095 if (min_pages > 128)
5096 min_pages = 128;
41858966 5097 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5098 } else {
669ed175
NP
5099 /*
5100 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5101 * proportionate to the zone's size.
5102 */
41858966 5103 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5104 }
5105
41858966
MG
5106 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5107 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
56fd56b8 5108 setup_zone_migrate_reserve(zone);
1125b4e3 5109 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5110 }
cb45b0e9
HA
5111
5112 /* update totalreserve_pages */
5113 calculate_totalreserve_pages();
1da177e4
LT
5114}
5115
55a4462a 5116/*
556adecb
RR
5117 * The inactive anon list should be small enough that the VM never has to
5118 * do too much work, but large enough that each inactive page has a chance
5119 * to be referenced again before it is swapped out.
5120 *
5121 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5122 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5123 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5124 * the anonymous pages are kept on the inactive list.
5125 *
5126 * total target max
5127 * memory ratio inactive anon
5128 * -------------------------------------
5129 * 10MB 1 5MB
5130 * 100MB 1 50MB
5131 * 1GB 3 250MB
5132 * 10GB 10 0.9GB
5133 * 100GB 31 3GB
5134 * 1TB 101 10GB
5135 * 10TB 320 32GB
5136 */
1b79acc9 5137static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5138{
96cb4df5 5139 unsigned int gb, ratio;
556adecb 5140
96cb4df5
MK
5141 /* Zone size in gigabytes */
5142 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5143 if (gb)
556adecb 5144 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5145 else
5146 ratio = 1;
556adecb 5147
96cb4df5
MK
5148 zone->inactive_ratio = ratio;
5149}
556adecb 5150
839a4fcc 5151static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5152{
5153 struct zone *zone;
5154
5155 for_each_zone(zone)
5156 calculate_zone_inactive_ratio(zone);
556adecb
RR
5157}
5158
1da177e4
LT
5159/*
5160 * Initialise min_free_kbytes.
5161 *
5162 * For small machines we want it small (128k min). For large machines
5163 * we want it large (64MB max). But it is not linear, because network
5164 * bandwidth does not increase linearly with machine size. We use
5165 *
5166 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5167 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5168 *
5169 * which yields
5170 *
5171 * 16MB: 512k
5172 * 32MB: 724k
5173 * 64MB: 1024k
5174 * 128MB: 1448k
5175 * 256MB: 2048k
5176 * 512MB: 2896k
5177 * 1024MB: 4096k
5178 * 2048MB: 5792k
5179 * 4096MB: 8192k
5180 * 8192MB: 11584k
5181 * 16384MB: 16384k
5182 */
1b79acc9 5183int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5184{
5185 unsigned long lowmem_kbytes;
5186
5187 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5188
5189 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5190 if (min_free_kbytes < 128)
5191 min_free_kbytes = 128;
5192 if (min_free_kbytes > 65536)
5193 min_free_kbytes = 65536;
bc75d33f 5194 setup_per_zone_wmarks();
a6cccdc3 5195 refresh_zone_stat_thresholds();
1da177e4 5196 setup_per_zone_lowmem_reserve();
556adecb 5197 setup_per_zone_inactive_ratio();
1da177e4
LT
5198 return 0;
5199}
bc75d33f 5200module_init(init_per_zone_wmark_min)
1da177e4
LT
5201
5202/*
5203 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5204 * that we can call two helper functions whenever min_free_kbytes
5205 * changes.
5206 */
5207int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5208 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5209{
8d65af78 5210 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5211 if (write)
bc75d33f 5212 setup_per_zone_wmarks();
1da177e4
LT
5213 return 0;
5214}
5215
9614634f
CL
5216#ifdef CONFIG_NUMA
5217int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5218 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5219{
5220 struct zone *zone;
5221 int rc;
5222
8d65af78 5223 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5224 if (rc)
5225 return rc;
5226
5227 for_each_zone(zone)
8417bba4 5228 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5229 sysctl_min_unmapped_ratio) / 100;
5230 return 0;
5231}
0ff38490
CL
5232
5233int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5234 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5235{
5236 struct zone *zone;
5237 int rc;
5238
8d65af78 5239 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5240 if (rc)
5241 return rc;
5242
5243 for_each_zone(zone)
5244 zone->min_slab_pages = (zone->present_pages *
5245 sysctl_min_slab_ratio) / 100;
5246 return 0;
5247}
9614634f
CL
5248#endif
5249
1da177e4
LT
5250/*
5251 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5252 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5253 * whenever sysctl_lowmem_reserve_ratio changes.
5254 *
5255 * The reserve ratio obviously has absolutely no relation with the
41858966 5256 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5257 * if in function of the boot time zone sizes.
5258 */
5259int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5260 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5261{
8d65af78 5262 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5263 setup_per_zone_lowmem_reserve();
5264 return 0;
5265}
5266
8ad4b1fb
RS
5267/*
5268 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5269 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5270 * can have before it gets flushed back to buddy allocator.
5271 */
5272
5273int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5274 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5275{
5276 struct zone *zone;
5277 unsigned int cpu;
5278 int ret;
5279
8d65af78 5280 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8ad4b1fb
RS
5281 if (!write || (ret == -EINVAL))
5282 return ret;
364df0eb 5283 for_each_populated_zone(zone) {
99dcc3e5 5284 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5285 unsigned long high;
5286 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5287 setup_pagelist_highmark(
5288 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5289 }
5290 }
5291 return 0;
5292}
5293
f034b5d4 5294int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5295
5296#ifdef CONFIG_NUMA
5297static int __init set_hashdist(char *str)
5298{
5299 if (!str)
5300 return 0;
5301 hashdist = simple_strtoul(str, &str, 0);
5302 return 1;
5303}
5304__setup("hashdist=", set_hashdist);
5305#endif
5306
5307/*
5308 * allocate a large system hash table from bootmem
5309 * - it is assumed that the hash table must contain an exact power-of-2
5310 * quantity of entries
5311 * - limit is the number of hash buckets, not the total allocation size
5312 */
5313void *__init alloc_large_system_hash(const char *tablename,
5314 unsigned long bucketsize,
5315 unsigned long numentries,
5316 int scale,
5317 int flags,
5318 unsigned int *_hash_shift,
5319 unsigned int *_hash_mask,
5320 unsigned long limit)
5321{
5322 unsigned long long max = limit;
5323 unsigned long log2qty, size;
5324 void *table = NULL;
5325
5326 /* allow the kernel cmdline to have a say */
5327 if (!numentries) {
5328 /* round applicable memory size up to nearest megabyte */
04903664 5329 numentries = nr_kernel_pages;
1da177e4
LT
5330 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5331 numentries >>= 20 - PAGE_SHIFT;
5332 numentries <<= 20 - PAGE_SHIFT;
5333
5334 /* limit to 1 bucket per 2^scale bytes of low memory */
5335 if (scale > PAGE_SHIFT)
5336 numentries >>= (scale - PAGE_SHIFT);
5337 else
5338 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5339
5340 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5341 if (unlikely(flags & HASH_SMALL)) {
5342 /* Makes no sense without HASH_EARLY */
5343 WARN_ON(!(flags & HASH_EARLY));
5344 if (!(numentries >> *_hash_shift)) {
5345 numentries = 1UL << *_hash_shift;
5346 BUG_ON(!numentries);
5347 }
5348 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5349 numentries = PAGE_SIZE / bucketsize;
1da177e4 5350 }
6e692ed3 5351 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5352
5353 /* limit allocation size to 1/16 total memory by default */
5354 if (max == 0) {
5355 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5356 do_div(max, bucketsize);
5357 }
5358
5359 if (numentries > max)
5360 numentries = max;
5361
f0d1b0b3 5362 log2qty = ilog2(numentries);
1da177e4
LT
5363
5364 do {
5365 size = bucketsize << log2qty;
5366 if (flags & HASH_EARLY)
74768ed8 5367 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5368 else if (hashdist)
5369 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5370 else {
1037b83b
ED
5371 /*
5372 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5373 * some pages at the end of hash table which
5374 * alloc_pages_exact() automatically does
1037b83b 5375 */
264ef8a9 5376 if (get_order(size) < MAX_ORDER) {
a1dd268c 5377 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5378 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5379 }
1da177e4
LT
5380 }
5381 } while (!table && size > PAGE_SIZE && --log2qty);
5382
5383 if (!table)
5384 panic("Failed to allocate %s hash table\n", tablename);
5385
f241e660 5386 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5387 tablename,
f241e660 5388 (1UL << log2qty),
f0d1b0b3 5389 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5390 size);
5391
5392 if (_hash_shift)
5393 *_hash_shift = log2qty;
5394 if (_hash_mask)
5395 *_hash_mask = (1 << log2qty) - 1;
5396
5397 return table;
5398}
a117e66e 5399
835c134e
MG
5400/* Return a pointer to the bitmap storing bits affecting a block of pages */
5401static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5402 unsigned long pfn)
5403{
5404#ifdef CONFIG_SPARSEMEM
5405 return __pfn_to_section(pfn)->pageblock_flags;
5406#else
5407 return zone->pageblock_flags;
5408#endif /* CONFIG_SPARSEMEM */
5409}
5410
5411static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5412{
5413#ifdef CONFIG_SPARSEMEM
5414 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5415 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5416#else
5417 pfn = pfn - zone->zone_start_pfn;
d9c23400 5418 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5419#endif /* CONFIG_SPARSEMEM */
5420}
5421
5422/**
d9c23400 5423 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5424 * @page: The page within the block of interest
5425 * @start_bitidx: The first bit of interest to retrieve
5426 * @end_bitidx: The last bit of interest
5427 * returns pageblock_bits flags
5428 */
5429unsigned long get_pageblock_flags_group(struct page *page,
5430 int start_bitidx, int end_bitidx)
5431{
5432 struct zone *zone;
5433 unsigned long *bitmap;
5434 unsigned long pfn, bitidx;
5435 unsigned long flags = 0;
5436 unsigned long value = 1;
5437
5438 zone = page_zone(page);
5439 pfn = page_to_pfn(page);
5440 bitmap = get_pageblock_bitmap(zone, pfn);
5441 bitidx = pfn_to_bitidx(zone, pfn);
5442
5443 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5444 if (test_bit(bitidx + start_bitidx, bitmap))
5445 flags |= value;
6220ec78 5446
835c134e
MG
5447 return flags;
5448}
5449
5450/**
d9c23400 5451 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5452 * @page: The page within the block of interest
5453 * @start_bitidx: The first bit of interest
5454 * @end_bitidx: The last bit of interest
5455 * @flags: The flags to set
5456 */
5457void set_pageblock_flags_group(struct page *page, unsigned long flags,
5458 int start_bitidx, int end_bitidx)
5459{
5460 struct zone *zone;
5461 unsigned long *bitmap;
5462 unsigned long pfn, bitidx;
5463 unsigned long value = 1;
5464
5465 zone = page_zone(page);
5466 pfn = page_to_pfn(page);
5467 bitmap = get_pageblock_bitmap(zone, pfn);
5468 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5469 VM_BUG_ON(pfn < zone->zone_start_pfn);
5470 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5471
5472 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5473 if (flags & value)
5474 __set_bit(bitidx + start_bitidx, bitmap);
5475 else
5476 __clear_bit(bitidx + start_bitidx, bitmap);
5477}
a5d76b54
KH
5478
5479/*
5480 * This is designed as sub function...plz see page_isolation.c also.
5481 * set/clear page block's type to be ISOLATE.
5482 * page allocater never alloc memory from ISOLATE block.
5483 */
5484
49ac8255
KH
5485static int
5486__count_immobile_pages(struct zone *zone, struct page *page, int count)
5487{
5488 unsigned long pfn, iter, found;
5489 /*
5490 * For avoiding noise data, lru_add_drain_all() should be called
5491 * If ZONE_MOVABLE, the zone never contains immobile pages
5492 */
5493 if (zone_idx(zone) == ZONE_MOVABLE)
5494 return true;
5495
5496 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5497 return true;
5498
5499 pfn = page_to_pfn(page);
5500 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5501 unsigned long check = pfn + iter;
5502
29723fcc 5503 if (!pfn_valid_within(check))
49ac8255 5504 continue;
29723fcc 5505
49ac8255
KH
5506 page = pfn_to_page(check);
5507 if (!page_count(page)) {
5508 if (PageBuddy(page))
5509 iter += (1 << page_order(page)) - 1;
5510 continue;
5511 }
5512 if (!PageLRU(page))
5513 found++;
5514 /*
5515 * If there are RECLAIMABLE pages, we need to check it.
5516 * But now, memory offline itself doesn't call shrink_slab()
5517 * and it still to be fixed.
5518 */
5519 /*
5520 * If the page is not RAM, page_count()should be 0.
5521 * we don't need more check. This is an _used_ not-movable page.
5522 *
5523 * The problematic thing here is PG_reserved pages. PG_reserved
5524 * is set to both of a memory hole page and a _used_ kernel
5525 * page at boot.
5526 */
5527 if (found > count)
5528 return false;
5529 }
5530 return true;
5531}
5532
5533bool is_pageblock_removable_nolock(struct page *page)
5534{
5535 struct zone *zone = page_zone(page);
5536 return __count_immobile_pages(zone, page, 0);
5537}
5538
a5d76b54
KH
5539int set_migratetype_isolate(struct page *page)
5540{
5541 struct zone *zone;
49ac8255 5542 unsigned long flags, pfn;
925cc71e
RJ
5543 struct memory_isolate_notify arg;
5544 int notifier_ret;
a5d76b54
KH
5545 int ret = -EBUSY;
5546
5547 zone = page_zone(page);
925cc71e 5548
a5d76b54 5549 spin_lock_irqsave(&zone->lock, flags);
925cc71e
RJ
5550
5551 pfn = page_to_pfn(page);
5552 arg.start_pfn = pfn;
5553 arg.nr_pages = pageblock_nr_pages;
5554 arg.pages_found = 0;
5555
a5d76b54 5556 /*
925cc71e
RJ
5557 * It may be possible to isolate a pageblock even if the
5558 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5559 * notifier chain is used by balloon drivers to return the
5560 * number of pages in a range that are held by the balloon
5561 * driver to shrink memory. If all the pages are accounted for
5562 * by balloons, are free, or on the LRU, isolation can continue.
5563 * Later, for example, when memory hotplug notifier runs, these
5564 * pages reported as "can be isolated" should be isolated(freed)
5565 * by the balloon driver through the memory notifier chain.
a5d76b54 5566 */
925cc71e
RJ
5567 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5568 notifier_ret = notifier_to_errno(notifier_ret);
4b20477f 5569 if (notifier_ret)
a5d76b54 5570 goto out;
49ac8255
KH
5571 /*
5572 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5573 * We just check MOVABLE pages.
5574 */
5575 if (__count_immobile_pages(zone, page, arg.pages_found))
925cc71e
RJ
5576 ret = 0;
5577
49ac8255
KH
5578 /*
5579 * immobile means "not-on-lru" paes. If immobile is larger than
5580 * removable-by-driver pages reported by notifier, we'll fail.
5581 */
5582
a5d76b54 5583out:
925cc71e
RJ
5584 if (!ret) {
5585 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5586 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5587 }
5588
a5d76b54
KH
5589 spin_unlock_irqrestore(&zone->lock, flags);
5590 if (!ret)
9f8f2172 5591 drain_all_pages();
a5d76b54
KH
5592 return ret;
5593}
5594
5595void unset_migratetype_isolate(struct page *page)
5596{
5597 struct zone *zone;
5598 unsigned long flags;
5599 zone = page_zone(page);
5600 spin_lock_irqsave(&zone->lock, flags);
5601 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5602 goto out;
5603 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5604 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5605out:
5606 spin_unlock_irqrestore(&zone->lock, flags);
5607}
0c0e6195
KH
5608
5609#ifdef CONFIG_MEMORY_HOTREMOVE
5610/*
5611 * All pages in the range must be isolated before calling this.
5612 */
5613void
5614__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5615{
5616 struct page *page;
5617 struct zone *zone;
5618 int order, i;
5619 unsigned long pfn;
5620 unsigned long flags;
5621 /* find the first valid pfn */
5622 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5623 if (pfn_valid(pfn))
5624 break;
5625 if (pfn == end_pfn)
5626 return;
5627 zone = page_zone(pfn_to_page(pfn));
5628 spin_lock_irqsave(&zone->lock, flags);
5629 pfn = start_pfn;
5630 while (pfn < end_pfn) {
5631 if (!pfn_valid(pfn)) {
5632 pfn++;
5633 continue;
5634 }
5635 page = pfn_to_page(pfn);
5636 BUG_ON(page_count(page));
5637 BUG_ON(!PageBuddy(page));
5638 order = page_order(page);
5639#ifdef CONFIG_DEBUG_VM
5640 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5641 pfn, 1 << order, end_pfn);
5642#endif
5643 list_del(&page->lru);
5644 rmv_page_order(page);
5645 zone->free_area[order].nr_free--;
5646 __mod_zone_page_state(zone, NR_FREE_PAGES,
5647 - (1UL << order));
5648 for (i = 0; i < (1 << order); i++)
5649 SetPageReserved((page+i));
5650 pfn += (1 << order);
5651 }
5652 spin_unlock_irqrestore(&zone->lock, flags);
5653}
5654#endif
8d22ba1b
WF
5655
5656#ifdef CONFIG_MEMORY_FAILURE
5657bool is_free_buddy_page(struct page *page)
5658{
5659 struct zone *zone = page_zone(page);
5660 unsigned long pfn = page_to_pfn(page);
5661 unsigned long flags;
5662 int order;
5663
5664 spin_lock_irqsave(&zone->lock, flags);
5665 for (order = 0; order < MAX_ORDER; order++) {
5666 struct page *page_head = page - (pfn & ((1 << order) - 1));
5667
5668 if (PageBuddy(page_head) && page_order(page_head) >= order)
5669 break;
5670 }
5671 spin_unlock_irqrestore(&zone->lock, flags);
5672
5673 return order < MAX_ORDER;
5674}
5675#endif
718a3821
WF
5676
5677static struct trace_print_flags pageflag_names[] = {
5678 {1UL << PG_locked, "locked" },
5679 {1UL << PG_error, "error" },
5680 {1UL << PG_referenced, "referenced" },
5681 {1UL << PG_uptodate, "uptodate" },
5682 {1UL << PG_dirty, "dirty" },
5683 {1UL << PG_lru, "lru" },
5684 {1UL << PG_active, "active" },
5685 {1UL << PG_slab, "slab" },
5686 {1UL << PG_owner_priv_1, "owner_priv_1" },
5687 {1UL << PG_arch_1, "arch_1" },
5688 {1UL << PG_reserved, "reserved" },
5689 {1UL << PG_private, "private" },
5690 {1UL << PG_private_2, "private_2" },
5691 {1UL << PG_writeback, "writeback" },
5692#ifdef CONFIG_PAGEFLAGS_EXTENDED
5693 {1UL << PG_head, "head" },
5694 {1UL << PG_tail, "tail" },
5695#else
5696 {1UL << PG_compound, "compound" },
5697#endif
5698 {1UL << PG_swapcache, "swapcache" },
5699 {1UL << PG_mappedtodisk, "mappedtodisk" },
5700 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
5701 {1UL << PG_swapbacked, "swapbacked" },
5702 {1UL << PG_unevictable, "unevictable" },
5703#ifdef CONFIG_MMU
5704 {1UL << PG_mlocked, "mlocked" },
5705#endif
5706#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5707 {1UL << PG_uncached, "uncached" },
5708#endif
5709#ifdef CONFIG_MEMORY_FAILURE
5710 {1UL << PG_hwpoison, "hwpoison" },
5711#endif
5712 {-1UL, NULL },
5713};
5714
5715static void dump_page_flags(unsigned long flags)
5716{
5717 const char *delim = "";
5718 unsigned long mask;
5719 int i;
5720
5721 printk(KERN_ALERT "page flags: %#lx(", flags);
5722
5723 /* remove zone id */
5724 flags &= (1UL << NR_PAGEFLAGS) - 1;
5725
5726 for (i = 0; pageflag_names[i].name && flags; i++) {
5727
5728 mask = pageflag_names[i].mask;
5729 if ((flags & mask) != mask)
5730 continue;
5731
5732 flags &= ~mask;
5733 printk("%s%s", delim, pageflag_names[i].name);
5734 delim = "|";
5735 }
5736
5737 /* check for left over flags */
5738 if (flags)
5739 printk("%s%#lx", delim, flags);
5740
5741 printk(")\n");
5742}
5743
5744void dump_page(struct page *page)
5745{
5746 printk(KERN_ALERT
5747 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 5748 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
5749 page->mapping, page->index);
5750 dump_page_flags(page->flags);
f212ad7c 5751 mem_cgroup_print_bad_page(page);
718a3821 5752}