]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
mm: page allocator: initialise ZLC for first zone eligible for zone_reclaim
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
925cc71e 54#include <linux/memory.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
718a3821 57#include <linux/ftrace_event.h>
f212ad7c 58#include <linux/memcontrol.h>
268bb0ce 59#include <linux/prefetch.h>
1da177e4
LT
60
61#include <asm/tlbflush.h>
ac924c60 62#include <asm/div64.h>
1da177e4
LT
63#include "internal.h"
64
72812019
LS
65#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
66DEFINE_PER_CPU(int, numa_node);
67EXPORT_PER_CPU_SYMBOL(numa_node);
68#endif
69
7aac7898
LS
70#ifdef CONFIG_HAVE_MEMORYLESS_NODES
71/*
72 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
73 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
74 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
75 * defined in <linux/topology.h>.
76 */
77DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
78EXPORT_PER_CPU_SYMBOL(_numa_mem_);
79#endif
80
1da177e4 81/*
13808910 82 * Array of node states.
1da177e4 83 */
13808910
CL
84nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
85 [N_POSSIBLE] = NODE_MASK_ALL,
86 [N_ONLINE] = { { [0] = 1UL } },
87#ifndef CONFIG_NUMA
88 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
89#ifdef CONFIG_HIGHMEM
90 [N_HIGH_MEMORY] = { { [0] = 1UL } },
91#endif
92 [N_CPU] = { { [0] = 1UL } },
93#endif /* NUMA */
94};
95EXPORT_SYMBOL(node_states);
96
6c231b7b 97unsigned long totalram_pages __read_mostly;
cb45b0e9 98unsigned long totalreserve_pages __read_mostly;
8ad4b1fb 99int percpu_pagelist_fraction;
dcce284a 100gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 101
452aa699
RW
102#ifdef CONFIG_PM_SLEEP
103/*
104 * The following functions are used by the suspend/hibernate code to temporarily
105 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
106 * while devices are suspended. To avoid races with the suspend/hibernate code,
107 * they should always be called with pm_mutex held (gfp_allowed_mask also should
108 * only be modified with pm_mutex held, unless the suspend/hibernate code is
109 * guaranteed not to run in parallel with that modification).
110 */
c9e664f1
RW
111
112static gfp_t saved_gfp_mask;
113
114void pm_restore_gfp_mask(void)
452aa699
RW
115{
116 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
117 if (saved_gfp_mask) {
118 gfp_allowed_mask = saved_gfp_mask;
119 saved_gfp_mask = 0;
120 }
452aa699
RW
121}
122
c9e664f1 123void pm_restrict_gfp_mask(void)
452aa699 124{
452aa699 125 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
126 WARN_ON(saved_gfp_mask);
127 saved_gfp_mask = gfp_allowed_mask;
128 gfp_allowed_mask &= ~GFP_IOFS;
452aa699
RW
129}
130#endif /* CONFIG_PM_SLEEP */
131
d9c23400
MG
132#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
133int pageblock_order __read_mostly;
134#endif
135
d98c7a09 136static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 137
1da177e4
LT
138/*
139 * results with 256, 32 in the lowmem_reserve sysctl:
140 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
141 * 1G machine -> (16M dma, 784M normal, 224M high)
142 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
143 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
144 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
145 *
146 * TBD: should special case ZONE_DMA32 machines here - in those we normally
147 * don't need any ZONE_NORMAL reservation
1da177e4 148 */
2f1b6248 149int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 150#ifdef CONFIG_ZONE_DMA
2f1b6248 151 256,
4b51d669 152#endif
fb0e7942 153#ifdef CONFIG_ZONE_DMA32
2f1b6248 154 256,
fb0e7942 155#endif
e53ef38d 156#ifdef CONFIG_HIGHMEM
2a1e274a 157 32,
e53ef38d 158#endif
2a1e274a 159 32,
2f1b6248 160};
1da177e4
LT
161
162EXPORT_SYMBOL(totalram_pages);
1da177e4 163
15ad7cdc 164static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 165#ifdef CONFIG_ZONE_DMA
2f1b6248 166 "DMA",
4b51d669 167#endif
fb0e7942 168#ifdef CONFIG_ZONE_DMA32
2f1b6248 169 "DMA32",
fb0e7942 170#endif
2f1b6248 171 "Normal",
e53ef38d 172#ifdef CONFIG_HIGHMEM
2a1e274a 173 "HighMem",
e53ef38d 174#endif
2a1e274a 175 "Movable",
2f1b6248
CL
176};
177
1da177e4
LT
178int min_free_kbytes = 1024;
179
2c85f51d
JB
180static unsigned long __meminitdata nr_kernel_pages;
181static unsigned long __meminitdata nr_all_pages;
a3142c8e 182static unsigned long __meminitdata dma_reserve;
1da177e4 183
c713216d
MG
184#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
185 /*
183ff22b 186 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
187 * ranges of memory (RAM) that may be registered with add_active_range().
188 * Ranges passed to add_active_range() will be merged if possible
189 * so the number of times add_active_range() can be called is
190 * related to the number of nodes and the number of holes
191 */
192 #ifdef CONFIG_MAX_ACTIVE_REGIONS
193 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
194 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
195 #else
196 #if MAX_NUMNODES >= 32
197 /* If there can be many nodes, allow up to 50 holes per node */
198 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
199 #else
200 /* By default, allow up to 256 distinct regions */
201 #define MAX_ACTIVE_REGIONS 256
202 #endif
203 #endif
204
98011f56
JB
205 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
206 static int __meminitdata nr_nodemap_entries;
207 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
208 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
b69a7288 209 static unsigned long __initdata required_kernelcore;
484f51f8 210 static unsigned long __initdata required_movablecore;
b69a7288 211 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
212
213 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
214 int movable_zone;
215 EXPORT_SYMBOL(movable_zone);
c713216d
MG
216#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
217
418508c1
MS
218#if MAX_NUMNODES > 1
219int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 220int nr_online_nodes __read_mostly = 1;
418508c1 221EXPORT_SYMBOL(nr_node_ids);
62bc62a8 222EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
223#endif
224
9ef9acb0
MG
225int page_group_by_mobility_disabled __read_mostly;
226
b2a0ac88
MG
227static void set_pageblock_migratetype(struct page *page, int migratetype)
228{
49255c61
MG
229
230 if (unlikely(page_group_by_mobility_disabled))
231 migratetype = MIGRATE_UNMOVABLE;
232
b2a0ac88
MG
233 set_pageblock_flags_group(page, (unsigned long)migratetype,
234 PB_migrate, PB_migrate_end);
235}
236
7f33d49a
RW
237bool oom_killer_disabled __read_mostly;
238
13e7444b 239#ifdef CONFIG_DEBUG_VM
c6a57e19 240static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 241{
bdc8cb98
DH
242 int ret = 0;
243 unsigned seq;
244 unsigned long pfn = page_to_pfn(page);
c6a57e19 245
bdc8cb98
DH
246 do {
247 seq = zone_span_seqbegin(zone);
248 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
249 ret = 1;
250 else if (pfn < zone->zone_start_pfn)
251 ret = 1;
252 } while (zone_span_seqretry(zone, seq));
253
254 return ret;
c6a57e19
DH
255}
256
257static int page_is_consistent(struct zone *zone, struct page *page)
258{
14e07298 259 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 260 return 0;
1da177e4 261 if (zone != page_zone(page))
c6a57e19
DH
262 return 0;
263
264 return 1;
265}
266/*
267 * Temporary debugging check for pages not lying within a given zone.
268 */
269static int bad_range(struct zone *zone, struct page *page)
270{
271 if (page_outside_zone_boundaries(zone, page))
1da177e4 272 return 1;
c6a57e19
DH
273 if (!page_is_consistent(zone, page))
274 return 1;
275
1da177e4
LT
276 return 0;
277}
13e7444b
NP
278#else
279static inline int bad_range(struct zone *zone, struct page *page)
280{
281 return 0;
282}
283#endif
284
224abf92 285static void bad_page(struct page *page)
1da177e4 286{
d936cf9b
HD
287 static unsigned long resume;
288 static unsigned long nr_shown;
289 static unsigned long nr_unshown;
290
2a7684a2
WF
291 /* Don't complain about poisoned pages */
292 if (PageHWPoison(page)) {
ef2b4b95 293 reset_page_mapcount(page); /* remove PageBuddy */
2a7684a2
WF
294 return;
295 }
296
d936cf9b
HD
297 /*
298 * Allow a burst of 60 reports, then keep quiet for that minute;
299 * or allow a steady drip of one report per second.
300 */
301 if (nr_shown == 60) {
302 if (time_before(jiffies, resume)) {
303 nr_unshown++;
304 goto out;
305 }
306 if (nr_unshown) {
1e9e6365
HD
307 printk(KERN_ALERT
308 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
309 nr_unshown);
310 nr_unshown = 0;
311 }
312 nr_shown = 0;
313 }
314 if (nr_shown++ == 0)
315 resume = jiffies + 60 * HZ;
316
1e9e6365 317 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 318 current->comm, page_to_pfn(page));
718a3821 319 dump_page(page);
3dc14741 320
1da177e4 321 dump_stack();
d936cf9b 322out:
8cc3b392 323 /* Leave bad fields for debug, except PageBuddy could make trouble */
ef2b4b95 324 reset_page_mapcount(page); /* remove PageBuddy */
9f158333 325 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
326}
327
1da177e4
LT
328/*
329 * Higher-order pages are called "compound pages". They are structured thusly:
330 *
331 * The first PAGE_SIZE page is called the "head page".
332 *
333 * The remaining PAGE_SIZE pages are called "tail pages".
334 *
335 * All pages have PG_compound set. All pages have their ->private pointing at
336 * the head page (even the head page has this).
337 *
41d78ba5
HD
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
1da177e4 341 */
d98c7a09
HD
342
343static void free_compound_page(struct page *page)
344{
d85f3385 345 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
346}
347
01ad1c08 348void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
349{
350 int i;
351 int nr_pages = 1 << order;
352
353 set_compound_page_dtor(page, free_compound_page);
354 set_compound_order(page, order);
355 __SetPageHead(page);
356 for (i = 1; i < nr_pages; i++) {
357 struct page *p = page + i;
358
359 __SetPageTail(p);
360 p->first_page = page;
361 }
362}
363
59ff4216 364/* update __split_huge_page_refcount if you change this function */
8cc3b392 365static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
366{
367 int i;
368 int nr_pages = 1 << order;
8cc3b392 369 int bad = 0;
1da177e4 370
8cc3b392
HD
371 if (unlikely(compound_order(page) != order) ||
372 unlikely(!PageHead(page))) {
224abf92 373 bad_page(page);
8cc3b392
HD
374 bad++;
375 }
1da177e4 376
6d777953 377 __ClearPageHead(page);
8cc3b392 378
18229df5
AW
379 for (i = 1; i < nr_pages; i++) {
380 struct page *p = page + i;
1da177e4 381
e713a21d 382 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 383 bad_page(page);
8cc3b392
HD
384 bad++;
385 }
d85f3385 386 __ClearPageTail(p);
1da177e4 387 }
8cc3b392
HD
388
389 return bad;
1da177e4 390}
1da177e4 391
17cf4406
NP
392static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
393{
394 int i;
395
6626c5d5
AM
396 /*
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
399 */
725d704e 400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
401 for (i = 0; i < (1 << order); i++)
402 clear_highpage(page + i);
403}
404
6aa3001b
AM
405static inline void set_page_order(struct page *page, int order)
406{
4c21e2f2 407 set_page_private(page, order);
676165a8 408 __SetPageBuddy(page);
1da177e4
LT
409}
410
411static inline void rmv_page_order(struct page *page)
412{
676165a8 413 __ClearPageBuddy(page);
4c21e2f2 414 set_page_private(page, 0);
1da177e4
LT
415}
416
417/*
418 * Locate the struct page for both the matching buddy in our
419 * pair (buddy1) and the combined O(n+1) page they form (page).
420 *
421 * 1) Any buddy B1 will have an order O twin B2 which satisfies
422 * the following equation:
423 * B2 = B1 ^ (1 << O)
424 * For example, if the starting buddy (buddy2) is #8 its order
425 * 1 buddy is #10:
426 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
427 *
428 * 2) Any buddy B will have an order O+1 parent P which
429 * satisfies the following equation:
430 * P = B & ~(1 << O)
431 *
d6e05edc 432 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 433 */
1da177e4 434static inline unsigned long
43506fad 435__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 436{
43506fad 437 return page_idx ^ (1 << order);
1da177e4
LT
438}
439
440/*
441 * This function checks whether a page is free && is the buddy
442 * we can do coalesce a page and its buddy if
13e7444b 443 * (a) the buddy is not in a hole &&
676165a8 444 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
445 * (c) a page and its buddy have the same order &&
446 * (d) a page and its buddy are in the same zone.
676165a8 447 *
5f24ce5f
AA
448 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
449 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 450 *
676165a8 451 * For recording page's order, we use page_private(page).
1da177e4 452 */
cb2b95e1
AW
453static inline int page_is_buddy(struct page *page, struct page *buddy,
454 int order)
1da177e4 455{
14e07298 456 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 457 return 0;
13e7444b 458
cb2b95e1
AW
459 if (page_zone_id(page) != page_zone_id(buddy))
460 return 0;
461
462 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 463 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 464 return 1;
676165a8 465 }
6aa3001b 466 return 0;
1da177e4
LT
467}
468
469/*
470 * Freeing function for a buddy system allocator.
471 *
472 * The concept of a buddy system is to maintain direct-mapped table
473 * (containing bit values) for memory blocks of various "orders".
474 * The bottom level table contains the map for the smallest allocatable
475 * units of memory (here, pages), and each level above it describes
476 * pairs of units from the levels below, hence, "buddies".
477 * At a high level, all that happens here is marking the table entry
478 * at the bottom level available, and propagating the changes upward
479 * as necessary, plus some accounting needed to play nicely with other
480 * parts of the VM system.
481 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 482 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 483 * order is recorded in page_private(page) field.
1da177e4
LT
484 * So when we are allocating or freeing one, we can derive the state of the
485 * other. That is, if we allocate a small block, and both were
486 * free, the remainder of the region must be split into blocks.
487 * If a block is freed, and its buddy is also free, then this
488 * triggers coalescing into a block of larger size.
489 *
490 * -- wli
491 */
492
48db57f8 493static inline void __free_one_page(struct page *page,
ed0ae21d
MG
494 struct zone *zone, unsigned int order,
495 int migratetype)
1da177e4
LT
496{
497 unsigned long page_idx;
6dda9d55 498 unsigned long combined_idx;
43506fad 499 unsigned long uninitialized_var(buddy_idx);
6dda9d55 500 struct page *buddy;
1da177e4 501
224abf92 502 if (unlikely(PageCompound(page)))
8cc3b392
HD
503 if (unlikely(destroy_compound_page(page, order)))
504 return;
1da177e4 505
ed0ae21d
MG
506 VM_BUG_ON(migratetype == -1);
507
1da177e4
LT
508 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
509
f2260e6b 510 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 511 VM_BUG_ON(bad_range(zone, page));
1da177e4 512
1da177e4 513 while (order < MAX_ORDER-1) {
43506fad
KC
514 buddy_idx = __find_buddy_index(page_idx, order);
515 buddy = page + (buddy_idx - page_idx);
cb2b95e1 516 if (!page_is_buddy(page, buddy, order))
3c82d0ce 517 break;
13e7444b 518
3c82d0ce 519 /* Our buddy is free, merge with it and move up one order. */
1da177e4 520 list_del(&buddy->lru);
b2a0ac88 521 zone->free_area[order].nr_free--;
1da177e4 522 rmv_page_order(buddy);
43506fad 523 combined_idx = buddy_idx & page_idx;
1da177e4
LT
524 page = page + (combined_idx - page_idx);
525 page_idx = combined_idx;
526 order++;
527 }
528 set_page_order(page, order);
6dda9d55
CZ
529
530 /*
531 * If this is not the largest possible page, check if the buddy
532 * of the next-highest order is free. If it is, it's possible
533 * that pages are being freed that will coalesce soon. In case,
534 * that is happening, add the free page to the tail of the list
535 * so it's less likely to be used soon and more likely to be merged
536 * as a higher order page
537 */
b7f50cfa 538 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 539 struct page *higher_page, *higher_buddy;
43506fad
KC
540 combined_idx = buddy_idx & page_idx;
541 higher_page = page + (combined_idx - page_idx);
542 buddy_idx = __find_buddy_index(combined_idx, order + 1);
543 higher_buddy = page + (buddy_idx - combined_idx);
6dda9d55
CZ
544 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
545 list_add_tail(&page->lru,
546 &zone->free_area[order].free_list[migratetype]);
547 goto out;
548 }
549 }
550
551 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
552out:
1da177e4
LT
553 zone->free_area[order].nr_free++;
554}
555
092cead6
KM
556/*
557 * free_page_mlock() -- clean up attempts to free and mlocked() page.
558 * Page should not be on lru, so no need to fix that up.
559 * free_pages_check() will verify...
560 */
561static inline void free_page_mlock(struct page *page)
562{
092cead6
KM
563 __dec_zone_page_state(page, NR_MLOCK);
564 __count_vm_event(UNEVICTABLE_MLOCKFREED);
565}
092cead6 566
224abf92 567static inline int free_pages_check(struct page *page)
1da177e4 568{
92be2e33
NP
569 if (unlikely(page_mapcount(page) |
570 (page->mapping != NULL) |
a3af9c38 571 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
572 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
573 (mem_cgroup_bad_page_check(page)))) {
224abf92 574 bad_page(page);
79f4b7bf 575 return 1;
8cc3b392 576 }
79f4b7bf
HD
577 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
578 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
579 return 0;
1da177e4
LT
580}
581
582/*
5f8dcc21 583 * Frees a number of pages from the PCP lists
1da177e4 584 * Assumes all pages on list are in same zone, and of same order.
207f36ee 585 * count is the number of pages to free.
1da177e4
LT
586 *
587 * If the zone was previously in an "all pages pinned" state then look to
588 * see if this freeing clears that state.
589 *
590 * And clear the zone's pages_scanned counter, to hold off the "all pages are
591 * pinned" detection logic.
592 */
5f8dcc21
MG
593static void free_pcppages_bulk(struct zone *zone, int count,
594 struct per_cpu_pages *pcp)
1da177e4 595{
5f8dcc21 596 int migratetype = 0;
a6f9edd6 597 int batch_free = 0;
72853e29 598 int to_free = count;
5f8dcc21 599
c54ad30c 600 spin_lock(&zone->lock);
93e4a89a 601 zone->all_unreclaimable = 0;
1da177e4 602 zone->pages_scanned = 0;
f2260e6b 603
72853e29 604 while (to_free) {
48db57f8 605 struct page *page;
5f8dcc21
MG
606 struct list_head *list;
607
608 /*
a6f9edd6
MG
609 * Remove pages from lists in a round-robin fashion. A
610 * batch_free count is maintained that is incremented when an
611 * empty list is encountered. This is so more pages are freed
612 * off fuller lists instead of spinning excessively around empty
613 * lists
5f8dcc21
MG
614 */
615 do {
a6f9edd6 616 batch_free++;
5f8dcc21
MG
617 if (++migratetype == MIGRATE_PCPTYPES)
618 migratetype = 0;
619 list = &pcp->lists[migratetype];
620 } while (list_empty(list));
48db57f8 621
1d16871d
NK
622 /* This is the only non-empty list. Free them all. */
623 if (batch_free == MIGRATE_PCPTYPES)
624 batch_free = to_free;
625
a6f9edd6
MG
626 do {
627 page = list_entry(list->prev, struct page, lru);
628 /* must delete as __free_one_page list manipulates */
629 list_del(&page->lru);
a7016235
HD
630 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
631 __free_one_page(page, zone, 0, page_private(page));
632 trace_mm_page_pcpu_drain(page, 0, page_private(page));
72853e29 633 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 634 }
72853e29 635 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
c54ad30c 636 spin_unlock(&zone->lock);
1da177e4
LT
637}
638
ed0ae21d
MG
639static void free_one_page(struct zone *zone, struct page *page, int order,
640 int migratetype)
1da177e4 641{
006d22d9 642 spin_lock(&zone->lock);
93e4a89a 643 zone->all_unreclaimable = 0;
006d22d9 644 zone->pages_scanned = 0;
f2260e6b 645
ed0ae21d 646 __free_one_page(page, zone, order, migratetype);
72853e29 647 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
006d22d9 648 spin_unlock(&zone->lock);
48db57f8
NP
649}
650
ec95f53a 651static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 652{
1da177e4 653 int i;
8cc3b392 654 int bad = 0;
1da177e4 655
f650316c 656 trace_mm_page_free_direct(page, order);
b1eeab67
VN
657 kmemcheck_free_shadow(page, order);
658
8dd60a3a
AA
659 if (PageAnon(page))
660 page->mapping = NULL;
661 for (i = 0; i < (1 << order); i++)
662 bad += free_pages_check(page + i);
8cc3b392 663 if (bad)
ec95f53a 664 return false;
689bcebf 665
3ac7fe5a 666 if (!PageHighMem(page)) {
9858db50 667 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
668 debug_check_no_obj_freed(page_address(page),
669 PAGE_SIZE << order);
670 }
dafb1367 671 arch_free_page(page, order);
48db57f8 672 kernel_map_pages(page, 1 << order, 0);
dafb1367 673
ec95f53a
KM
674 return true;
675}
676
677static void __free_pages_ok(struct page *page, unsigned int order)
678{
679 unsigned long flags;
680 int wasMlocked = __TestClearPageMlocked(page);
681
682 if (!free_pages_prepare(page, order))
683 return;
684
c54ad30c 685 local_irq_save(flags);
c277331d 686 if (unlikely(wasMlocked))
da456f14 687 free_page_mlock(page);
f8891e5e 688 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
689 free_one_page(page_zone(page), page, order,
690 get_pageblock_migratetype(page));
c54ad30c 691 local_irq_restore(flags);
1da177e4
LT
692}
693
a226f6c8
DH
694/*
695 * permit the bootmem allocator to evade page validation on high-order frees
696 */
af370fb8 697void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
698{
699 if (order == 0) {
700 __ClearPageReserved(page);
701 set_page_count(page, 0);
7835e98b 702 set_page_refcounted(page);
545b1ea9 703 __free_page(page);
a226f6c8 704 } else {
a226f6c8
DH
705 int loop;
706
545b1ea9 707 prefetchw(page);
a226f6c8
DH
708 for (loop = 0; loop < BITS_PER_LONG; loop++) {
709 struct page *p = &page[loop];
710
545b1ea9
NP
711 if (loop + 1 < BITS_PER_LONG)
712 prefetchw(p + 1);
a226f6c8
DH
713 __ClearPageReserved(p);
714 set_page_count(p, 0);
715 }
716
7835e98b 717 set_page_refcounted(page);
545b1ea9 718 __free_pages(page, order);
a226f6c8
DH
719 }
720}
721
1da177e4
LT
722
723/*
724 * The order of subdivision here is critical for the IO subsystem.
725 * Please do not alter this order without good reasons and regression
726 * testing. Specifically, as large blocks of memory are subdivided,
727 * the order in which smaller blocks are delivered depends on the order
728 * they're subdivided in this function. This is the primary factor
729 * influencing the order in which pages are delivered to the IO
730 * subsystem according to empirical testing, and this is also justified
731 * by considering the behavior of a buddy system containing a single
732 * large block of memory acted on by a series of small allocations.
733 * This behavior is a critical factor in sglist merging's success.
734 *
735 * -- wli
736 */
085cc7d5 737static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
738 int low, int high, struct free_area *area,
739 int migratetype)
1da177e4
LT
740{
741 unsigned long size = 1 << high;
742
743 while (high > low) {
744 area--;
745 high--;
746 size >>= 1;
725d704e 747 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 748 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
749 area->nr_free++;
750 set_page_order(&page[size], high);
751 }
1da177e4
LT
752}
753
1da177e4
LT
754/*
755 * This page is about to be returned from the page allocator
756 */
2a7684a2 757static inline int check_new_page(struct page *page)
1da177e4 758{
92be2e33
NP
759 if (unlikely(page_mapcount(page) |
760 (page->mapping != NULL) |
a3af9c38 761 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
762 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
763 (mem_cgroup_bad_page_check(page)))) {
224abf92 764 bad_page(page);
689bcebf 765 return 1;
8cc3b392 766 }
2a7684a2
WF
767 return 0;
768}
769
770static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
771{
772 int i;
773
774 for (i = 0; i < (1 << order); i++) {
775 struct page *p = page + i;
776 if (unlikely(check_new_page(p)))
777 return 1;
778 }
689bcebf 779
4c21e2f2 780 set_page_private(page, 0);
7835e98b 781 set_page_refcounted(page);
cc102509
NP
782
783 arch_alloc_page(page, order);
1da177e4 784 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
785
786 if (gfp_flags & __GFP_ZERO)
787 prep_zero_page(page, order, gfp_flags);
788
789 if (order && (gfp_flags & __GFP_COMP))
790 prep_compound_page(page, order);
791
689bcebf 792 return 0;
1da177e4
LT
793}
794
56fd56b8
MG
795/*
796 * Go through the free lists for the given migratetype and remove
797 * the smallest available page from the freelists
798 */
728ec980
MG
799static inline
800struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
801 int migratetype)
802{
803 unsigned int current_order;
804 struct free_area * area;
805 struct page *page;
806
807 /* Find a page of the appropriate size in the preferred list */
808 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
809 area = &(zone->free_area[current_order]);
810 if (list_empty(&area->free_list[migratetype]))
811 continue;
812
813 page = list_entry(area->free_list[migratetype].next,
814 struct page, lru);
815 list_del(&page->lru);
816 rmv_page_order(page);
817 area->nr_free--;
56fd56b8
MG
818 expand(zone, page, order, current_order, area, migratetype);
819 return page;
820 }
821
822 return NULL;
823}
824
825
b2a0ac88
MG
826/*
827 * This array describes the order lists are fallen back to when
828 * the free lists for the desirable migrate type are depleted
829 */
830static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
831 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
832 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
833 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
834 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
835};
836
c361be55
MG
837/*
838 * Move the free pages in a range to the free lists of the requested type.
d9c23400 839 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
840 * boundary. If alignment is required, use move_freepages_block()
841 */
b69a7288
AB
842static int move_freepages(struct zone *zone,
843 struct page *start_page, struct page *end_page,
844 int migratetype)
c361be55
MG
845{
846 struct page *page;
847 unsigned long order;
d100313f 848 int pages_moved = 0;
c361be55
MG
849
850#ifndef CONFIG_HOLES_IN_ZONE
851 /*
852 * page_zone is not safe to call in this context when
853 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
854 * anyway as we check zone boundaries in move_freepages_block().
855 * Remove at a later date when no bug reports exist related to
ac0e5b7a 856 * grouping pages by mobility
c361be55
MG
857 */
858 BUG_ON(page_zone(start_page) != page_zone(end_page));
859#endif
860
861 for (page = start_page; page <= end_page;) {
344c790e
AL
862 /* Make sure we are not inadvertently changing nodes */
863 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
864
c361be55
MG
865 if (!pfn_valid_within(page_to_pfn(page))) {
866 page++;
867 continue;
868 }
869
870 if (!PageBuddy(page)) {
871 page++;
872 continue;
873 }
874
875 order = page_order(page);
84be48d8
KS
876 list_move(&page->lru,
877 &zone->free_area[order].free_list[migratetype]);
c361be55 878 page += 1 << order;
d100313f 879 pages_moved += 1 << order;
c361be55
MG
880 }
881
d100313f 882 return pages_moved;
c361be55
MG
883}
884
b69a7288
AB
885static int move_freepages_block(struct zone *zone, struct page *page,
886 int migratetype)
c361be55
MG
887{
888 unsigned long start_pfn, end_pfn;
889 struct page *start_page, *end_page;
890
891 start_pfn = page_to_pfn(page);
d9c23400 892 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 893 start_page = pfn_to_page(start_pfn);
d9c23400
MG
894 end_page = start_page + pageblock_nr_pages - 1;
895 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
896
897 /* Do not cross zone boundaries */
898 if (start_pfn < zone->zone_start_pfn)
899 start_page = page;
900 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
901 return 0;
902
903 return move_freepages(zone, start_page, end_page, migratetype);
904}
905
2f66a68f
MG
906static void change_pageblock_range(struct page *pageblock_page,
907 int start_order, int migratetype)
908{
909 int nr_pageblocks = 1 << (start_order - pageblock_order);
910
911 while (nr_pageblocks--) {
912 set_pageblock_migratetype(pageblock_page, migratetype);
913 pageblock_page += pageblock_nr_pages;
914 }
915}
916
b2a0ac88 917/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
918static inline struct page *
919__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
920{
921 struct free_area * area;
922 int current_order;
923 struct page *page;
924 int migratetype, i;
925
926 /* Find the largest possible block of pages in the other list */
927 for (current_order = MAX_ORDER-1; current_order >= order;
928 --current_order) {
929 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
930 migratetype = fallbacks[start_migratetype][i];
931
56fd56b8
MG
932 /* MIGRATE_RESERVE handled later if necessary */
933 if (migratetype == MIGRATE_RESERVE)
934 continue;
e010487d 935
b2a0ac88
MG
936 area = &(zone->free_area[current_order]);
937 if (list_empty(&area->free_list[migratetype]))
938 continue;
939
940 page = list_entry(area->free_list[migratetype].next,
941 struct page, lru);
942 area->nr_free--;
943
944 /*
c361be55 945 * If breaking a large block of pages, move all free
46dafbca
MG
946 * pages to the preferred allocation list. If falling
947 * back for a reclaimable kernel allocation, be more
25985edc 948 * aggressive about taking ownership of free pages
b2a0ac88 949 */
d9c23400 950 if (unlikely(current_order >= (pageblock_order >> 1)) ||
dd5d241e
MG
951 start_migratetype == MIGRATE_RECLAIMABLE ||
952 page_group_by_mobility_disabled) {
46dafbca
MG
953 unsigned long pages;
954 pages = move_freepages_block(zone, page,
955 start_migratetype);
956
957 /* Claim the whole block if over half of it is free */
dd5d241e
MG
958 if (pages >= (1 << (pageblock_order-1)) ||
959 page_group_by_mobility_disabled)
46dafbca
MG
960 set_pageblock_migratetype(page,
961 start_migratetype);
962
b2a0ac88 963 migratetype = start_migratetype;
c361be55 964 }
b2a0ac88
MG
965
966 /* Remove the page from the freelists */
967 list_del(&page->lru);
968 rmv_page_order(page);
b2a0ac88 969
2f66a68f
MG
970 /* Take ownership for orders >= pageblock_order */
971 if (current_order >= pageblock_order)
972 change_pageblock_range(page, current_order,
b2a0ac88
MG
973 start_migratetype);
974
975 expand(zone, page, order, current_order, area, migratetype);
e0fff1bd
MG
976
977 trace_mm_page_alloc_extfrag(page, order, current_order,
978 start_migratetype, migratetype);
979
b2a0ac88
MG
980 return page;
981 }
982 }
983
728ec980 984 return NULL;
b2a0ac88
MG
985}
986
56fd56b8 987/*
1da177e4
LT
988 * Do the hard work of removing an element from the buddy allocator.
989 * Call me with the zone->lock already held.
990 */
b2a0ac88
MG
991static struct page *__rmqueue(struct zone *zone, unsigned int order,
992 int migratetype)
1da177e4 993{
1da177e4
LT
994 struct page *page;
995
728ec980 996retry_reserve:
56fd56b8 997 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 998
728ec980 999 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1000 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1001
728ec980
MG
1002 /*
1003 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1004 * is used because __rmqueue_smallest is an inline function
1005 * and we want just one call site
1006 */
1007 if (!page) {
1008 migratetype = MIGRATE_RESERVE;
1009 goto retry_reserve;
1010 }
1011 }
1012
0d3d062a 1013 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1014 return page;
1da177e4
LT
1015}
1016
1017/*
1018 * Obtain a specified number of elements from the buddy allocator, all under
1019 * a single hold of the lock, for efficiency. Add them to the supplied list.
1020 * Returns the number of new pages which were placed at *list.
1021 */
1022static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1023 unsigned long count, struct list_head *list,
e084b2d9 1024 int migratetype, int cold)
1da177e4 1025{
1da177e4 1026 int i;
1da177e4 1027
c54ad30c 1028 spin_lock(&zone->lock);
1da177e4 1029 for (i = 0; i < count; ++i) {
b2a0ac88 1030 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1031 if (unlikely(page == NULL))
1da177e4 1032 break;
81eabcbe
MG
1033
1034 /*
1035 * Split buddy pages returned by expand() are received here
1036 * in physical page order. The page is added to the callers and
1037 * list and the list head then moves forward. From the callers
1038 * perspective, the linked list is ordered by page number in
1039 * some conditions. This is useful for IO devices that can
1040 * merge IO requests if the physical pages are ordered
1041 * properly.
1042 */
e084b2d9
MG
1043 if (likely(cold == 0))
1044 list_add(&page->lru, list);
1045 else
1046 list_add_tail(&page->lru, list);
535131e6 1047 set_page_private(page, migratetype);
81eabcbe 1048 list = &page->lru;
1da177e4 1049 }
f2260e6b 1050 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1051 spin_unlock(&zone->lock);
085cc7d5 1052 return i;
1da177e4
LT
1053}
1054
4ae7c039 1055#ifdef CONFIG_NUMA
8fce4d8e 1056/*
4037d452
CL
1057 * Called from the vmstat counter updater to drain pagesets of this
1058 * currently executing processor on remote nodes after they have
1059 * expired.
1060 *
879336c3
CL
1061 * Note that this function must be called with the thread pinned to
1062 * a single processor.
8fce4d8e 1063 */
4037d452 1064void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1065{
4ae7c039 1066 unsigned long flags;
4037d452 1067 int to_drain;
4ae7c039 1068
4037d452
CL
1069 local_irq_save(flags);
1070 if (pcp->count >= pcp->batch)
1071 to_drain = pcp->batch;
1072 else
1073 to_drain = pcp->count;
5f8dcc21 1074 free_pcppages_bulk(zone, to_drain, pcp);
4037d452
CL
1075 pcp->count -= to_drain;
1076 local_irq_restore(flags);
4ae7c039
CL
1077}
1078#endif
1079
9f8f2172
CL
1080/*
1081 * Drain pages of the indicated processor.
1082 *
1083 * The processor must either be the current processor and the
1084 * thread pinned to the current processor or a processor that
1085 * is not online.
1086 */
1087static void drain_pages(unsigned int cpu)
1da177e4 1088{
c54ad30c 1089 unsigned long flags;
1da177e4 1090 struct zone *zone;
1da177e4 1091
ee99c71c 1092 for_each_populated_zone(zone) {
1da177e4 1093 struct per_cpu_pageset *pset;
3dfa5721 1094 struct per_cpu_pages *pcp;
1da177e4 1095
99dcc3e5
CL
1096 local_irq_save(flags);
1097 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1098
1099 pcp = &pset->pcp;
2ff754fa
DR
1100 if (pcp->count) {
1101 free_pcppages_bulk(zone, pcp->count, pcp);
1102 pcp->count = 0;
1103 }
3dfa5721 1104 local_irq_restore(flags);
1da177e4
LT
1105 }
1106}
1da177e4 1107
9f8f2172
CL
1108/*
1109 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1110 */
1111void drain_local_pages(void *arg)
1112{
1113 drain_pages(smp_processor_id());
1114}
1115
1116/*
1117 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1118 */
1119void drain_all_pages(void)
1120{
15c8b6c1 1121 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
1122}
1123
296699de 1124#ifdef CONFIG_HIBERNATION
1da177e4
LT
1125
1126void mark_free_pages(struct zone *zone)
1127{
f623f0db
RW
1128 unsigned long pfn, max_zone_pfn;
1129 unsigned long flags;
b2a0ac88 1130 int order, t;
1da177e4
LT
1131 struct list_head *curr;
1132
1133 if (!zone->spanned_pages)
1134 return;
1135
1136 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1137
1138 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1139 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1140 if (pfn_valid(pfn)) {
1141 struct page *page = pfn_to_page(pfn);
1142
7be98234
RW
1143 if (!swsusp_page_is_forbidden(page))
1144 swsusp_unset_page_free(page);
f623f0db 1145 }
1da177e4 1146
b2a0ac88
MG
1147 for_each_migratetype_order(order, t) {
1148 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1149 unsigned long i;
1da177e4 1150
f623f0db
RW
1151 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1152 for (i = 0; i < (1UL << order); i++)
7be98234 1153 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1154 }
b2a0ac88 1155 }
1da177e4
LT
1156 spin_unlock_irqrestore(&zone->lock, flags);
1157}
e2c55dc8 1158#endif /* CONFIG_PM */
1da177e4 1159
1da177e4
LT
1160/*
1161 * Free a 0-order page
fc91668e 1162 * cold == 1 ? free a cold page : free a hot page
1da177e4 1163 */
fc91668e 1164void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1165{
1166 struct zone *zone = page_zone(page);
1167 struct per_cpu_pages *pcp;
1168 unsigned long flags;
5f8dcc21 1169 int migratetype;
451ea25d 1170 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1171
ec95f53a 1172 if (!free_pages_prepare(page, 0))
689bcebf
HD
1173 return;
1174
5f8dcc21
MG
1175 migratetype = get_pageblock_migratetype(page);
1176 set_page_private(page, migratetype);
1da177e4 1177 local_irq_save(flags);
c277331d 1178 if (unlikely(wasMlocked))
da456f14 1179 free_page_mlock(page);
f8891e5e 1180 __count_vm_event(PGFREE);
da456f14 1181
5f8dcc21
MG
1182 /*
1183 * We only track unmovable, reclaimable and movable on pcp lists.
1184 * Free ISOLATE pages back to the allocator because they are being
1185 * offlined but treat RESERVE as movable pages so we can get those
1186 * areas back if necessary. Otherwise, we may have to free
1187 * excessively into the page allocator
1188 */
1189 if (migratetype >= MIGRATE_PCPTYPES) {
1190 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1191 free_one_page(zone, page, 0, migratetype);
1192 goto out;
1193 }
1194 migratetype = MIGRATE_MOVABLE;
1195 }
1196
99dcc3e5 1197 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1198 if (cold)
5f8dcc21 1199 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1200 else
5f8dcc21 1201 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1202 pcp->count++;
48db57f8 1203 if (pcp->count >= pcp->high) {
5f8dcc21 1204 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1205 pcp->count -= pcp->batch;
1206 }
5f8dcc21
MG
1207
1208out:
1da177e4 1209 local_irq_restore(flags);
1da177e4
LT
1210}
1211
8dfcc9ba
NP
1212/*
1213 * split_page takes a non-compound higher-order page, and splits it into
1214 * n (1<<order) sub-pages: page[0..n]
1215 * Each sub-page must be freed individually.
1216 *
1217 * Note: this is probably too low level an operation for use in drivers.
1218 * Please consult with lkml before using this in your driver.
1219 */
1220void split_page(struct page *page, unsigned int order)
1221{
1222 int i;
1223
725d704e
NP
1224 VM_BUG_ON(PageCompound(page));
1225 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1226
1227#ifdef CONFIG_KMEMCHECK
1228 /*
1229 * Split shadow pages too, because free(page[0]) would
1230 * otherwise free the whole shadow.
1231 */
1232 if (kmemcheck_page_is_tracked(page))
1233 split_page(virt_to_page(page[0].shadow), order);
1234#endif
1235
7835e98b
NP
1236 for (i = 1; i < (1 << order); i++)
1237 set_page_refcounted(page + i);
8dfcc9ba 1238}
8dfcc9ba 1239
748446bb
MG
1240/*
1241 * Similar to split_page except the page is already free. As this is only
1242 * being used for migration, the migratetype of the block also changes.
1243 * As this is called with interrupts disabled, the caller is responsible
1244 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1245 * are enabled.
1246 *
1247 * Note: this is probably too low level an operation for use in drivers.
1248 * Please consult with lkml before using this in your driver.
1249 */
1250int split_free_page(struct page *page)
1251{
1252 unsigned int order;
1253 unsigned long watermark;
1254 struct zone *zone;
1255
1256 BUG_ON(!PageBuddy(page));
1257
1258 zone = page_zone(page);
1259 order = page_order(page);
1260
1261 /* Obey watermarks as if the page was being allocated */
1262 watermark = low_wmark_pages(zone) + (1 << order);
1263 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1264 return 0;
1265
1266 /* Remove page from free list */
1267 list_del(&page->lru);
1268 zone->free_area[order].nr_free--;
1269 rmv_page_order(page);
1270 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1271
1272 /* Split into individual pages */
1273 set_page_refcounted(page);
1274 split_page(page, order);
1275
1276 if (order >= pageblock_order - 1) {
1277 struct page *endpage = page + (1 << order) - 1;
1278 for (; page < endpage; page += pageblock_nr_pages)
1279 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1280 }
1281
1282 return 1 << order;
1283}
1284
1da177e4
LT
1285/*
1286 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1287 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1288 * or two.
1289 */
0a15c3e9
MG
1290static inline
1291struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1292 struct zone *zone, int order, gfp_t gfp_flags,
1293 int migratetype)
1da177e4
LT
1294{
1295 unsigned long flags;
689bcebf 1296 struct page *page;
1da177e4
LT
1297 int cold = !!(gfp_flags & __GFP_COLD);
1298
689bcebf 1299again:
48db57f8 1300 if (likely(order == 0)) {
1da177e4 1301 struct per_cpu_pages *pcp;
5f8dcc21 1302 struct list_head *list;
1da177e4 1303
1da177e4 1304 local_irq_save(flags);
99dcc3e5
CL
1305 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1306 list = &pcp->lists[migratetype];
5f8dcc21 1307 if (list_empty(list)) {
535131e6 1308 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1309 pcp->batch, list,
e084b2d9 1310 migratetype, cold);
5f8dcc21 1311 if (unlikely(list_empty(list)))
6fb332fa 1312 goto failed;
535131e6 1313 }
b92a6edd 1314
5f8dcc21
MG
1315 if (cold)
1316 page = list_entry(list->prev, struct page, lru);
1317 else
1318 page = list_entry(list->next, struct page, lru);
1319
b92a6edd
MG
1320 list_del(&page->lru);
1321 pcp->count--;
7fb1d9fc 1322 } else {
dab48dab
AM
1323 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1324 /*
1325 * __GFP_NOFAIL is not to be used in new code.
1326 *
1327 * All __GFP_NOFAIL callers should be fixed so that they
1328 * properly detect and handle allocation failures.
1329 *
1330 * We most definitely don't want callers attempting to
4923abf9 1331 * allocate greater than order-1 page units with
dab48dab
AM
1332 * __GFP_NOFAIL.
1333 */
4923abf9 1334 WARN_ON_ONCE(order > 1);
dab48dab 1335 }
1da177e4 1336 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1337 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1338 spin_unlock(&zone->lock);
1339 if (!page)
1340 goto failed;
6ccf80eb 1341 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1da177e4
LT
1342 }
1343
f8891e5e 1344 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1345 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1346 local_irq_restore(flags);
1da177e4 1347
725d704e 1348 VM_BUG_ON(bad_range(zone, page));
17cf4406 1349 if (prep_new_page(page, order, gfp_flags))
a74609fa 1350 goto again;
1da177e4 1351 return page;
a74609fa
NP
1352
1353failed:
1354 local_irq_restore(flags);
a74609fa 1355 return NULL;
1da177e4
LT
1356}
1357
41858966
MG
1358/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1359#define ALLOC_WMARK_MIN WMARK_MIN
1360#define ALLOC_WMARK_LOW WMARK_LOW
1361#define ALLOC_WMARK_HIGH WMARK_HIGH
1362#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1363
1364/* Mask to get the watermark bits */
1365#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1366
3148890b
NP
1367#define ALLOC_HARDER 0x10 /* try to alloc harder */
1368#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1369#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1370
933e312e
AM
1371#ifdef CONFIG_FAIL_PAGE_ALLOC
1372
1373static struct fail_page_alloc_attr {
1374 struct fault_attr attr;
1375
1376 u32 ignore_gfp_highmem;
1377 u32 ignore_gfp_wait;
54114994 1378 u32 min_order;
933e312e
AM
1379
1380#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1381
1382 struct dentry *ignore_gfp_highmem_file;
1383 struct dentry *ignore_gfp_wait_file;
54114994 1384 struct dentry *min_order_file;
933e312e
AM
1385
1386#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1387
1388} fail_page_alloc = {
1389 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1390 .ignore_gfp_wait = 1,
1391 .ignore_gfp_highmem = 1,
54114994 1392 .min_order = 1,
933e312e
AM
1393};
1394
1395static int __init setup_fail_page_alloc(char *str)
1396{
1397 return setup_fault_attr(&fail_page_alloc.attr, str);
1398}
1399__setup("fail_page_alloc=", setup_fail_page_alloc);
1400
1401static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1402{
54114994
AM
1403 if (order < fail_page_alloc.min_order)
1404 return 0;
933e312e
AM
1405 if (gfp_mask & __GFP_NOFAIL)
1406 return 0;
1407 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1408 return 0;
1409 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1410 return 0;
1411
1412 return should_fail(&fail_page_alloc.attr, 1 << order);
1413}
1414
1415#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1416
1417static int __init fail_page_alloc_debugfs(void)
1418{
1419 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1420 struct dentry *dir;
1421 int err;
1422
1423 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1424 "fail_page_alloc");
1425 if (err)
1426 return err;
1427 dir = fail_page_alloc.attr.dentries.dir;
1428
1429 fail_page_alloc.ignore_gfp_wait_file =
1430 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1431 &fail_page_alloc.ignore_gfp_wait);
1432
1433 fail_page_alloc.ignore_gfp_highmem_file =
1434 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1435 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1436 fail_page_alloc.min_order_file =
1437 debugfs_create_u32("min-order", mode, dir,
1438 &fail_page_alloc.min_order);
933e312e
AM
1439
1440 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1441 !fail_page_alloc.ignore_gfp_highmem_file ||
1442 !fail_page_alloc.min_order_file) {
933e312e
AM
1443 err = -ENOMEM;
1444 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1445 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1446 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1447 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1448 }
1449
1450 return err;
1451}
1452
1453late_initcall(fail_page_alloc_debugfs);
1454
1455#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1456
1457#else /* CONFIG_FAIL_PAGE_ALLOC */
1458
1459static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1460{
1461 return 0;
1462}
1463
1464#endif /* CONFIG_FAIL_PAGE_ALLOC */
1465
1da177e4 1466/*
88f5acf8 1467 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1468 * of the allocation.
1469 */
88f5acf8
MG
1470static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1471 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1472{
1473 /* free_pages my go negative - that's OK */
d23ad423 1474 long min = mark;
1da177e4
LT
1475 int o;
1476
88f5acf8 1477 free_pages -= (1 << order) + 1;
7fb1d9fc 1478 if (alloc_flags & ALLOC_HIGH)
1da177e4 1479 min -= min / 2;
7fb1d9fc 1480 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1481 min -= min / 4;
1482
1483 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 1484 return false;
1da177e4
LT
1485 for (o = 0; o < order; o++) {
1486 /* At the next order, this order's pages become unavailable */
1487 free_pages -= z->free_area[o].nr_free << o;
1488
1489 /* Require fewer higher order pages to be free */
1490 min >>= 1;
1491
1492 if (free_pages <= min)
88f5acf8 1493 return false;
1da177e4 1494 }
88f5acf8
MG
1495 return true;
1496}
1497
1498bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1499 int classzone_idx, int alloc_flags)
1500{
1501 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1502 zone_page_state(z, NR_FREE_PAGES));
1503}
1504
1505bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1506 int classzone_idx, int alloc_flags)
1507{
1508 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1509
1510 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1511 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1512
1513 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1514 free_pages);
1da177e4
LT
1515}
1516
9276b1bc
PJ
1517#ifdef CONFIG_NUMA
1518/*
1519 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1520 * skip over zones that are not allowed by the cpuset, or that have
1521 * been recently (in last second) found to be nearly full. See further
1522 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1523 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1524 *
1525 * If the zonelist cache is present in the passed in zonelist, then
1526 * returns a pointer to the allowed node mask (either the current
37b07e41 1527 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1528 *
1529 * If the zonelist cache is not available for this zonelist, does
1530 * nothing and returns NULL.
1531 *
1532 * If the fullzones BITMAP in the zonelist cache is stale (more than
1533 * a second since last zap'd) then we zap it out (clear its bits.)
1534 *
1535 * We hold off even calling zlc_setup, until after we've checked the
1536 * first zone in the zonelist, on the theory that most allocations will
1537 * be satisfied from that first zone, so best to examine that zone as
1538 * quickly as we can.
1539 */
1540static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1541{
1542 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1543 nodemask_t *allowednodes; /* zonelist_cache approximation */
1544
1545 zlc = zonelist->zlcache_ptr;
1546 if (!zlc)
1547 return NULL;
1548
f05111f5 1549 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1550 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1551 zlc->last_full_zap = jiffies;
1552 }
1553
1554 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1555 &cpuset_current_mems_allowed :
37b07e41 1556 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1557 return allowednodes;
1558}
1559
1560/*
1561 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1562 * if it is worth looking at further for free memory:
1563 * 1) Check that the zone isn't thought to be full (doesn't have its
1564 * bit set in the zonelist_cache fullzones BITMAP).
1565 * 2) Check that the zones node (obtained from the zonelist_cache
1566 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1567 * Return true (non-zero) if zone is worth looking at further, or
1568 * else return false (zero) if it is not.
1569 *
1570 * This check -ignores- the distinction between various watermarks,
1571 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1572 * found to be full for any variation of these watermarks, it will
1573 * be considered full for up to one second by all requests, unless
1574 * we are so low on memory on all allowed nodes that we are forced
1575 * into the second scan of the zonelist.
1576 *
1577 * In the second scan we ignore this zonelist cache and exactly
1578 * apply the watermarks to all zones, even it is slower to do so.
1579 * We are low on memory in the second scan, and should leave no stone
1580 * unturned looking for a free page.
1581 */
dd1a239f 1582static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1583 nodemask_t *allowednodes)
1584{
1585 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1586 int i; /* index of *z in zonelist zones */
1587 int n; /* node that zone *z is on */
1588
1589 zlc = zonelist->zlcache_ptr;
1590 if (!zlc)
1591 return 1;
1592
dd1a239f 1593 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1594 n = zlc->z_to_n[i];
1595
1596 /* This zone is worth trying if it is allowed but not full */
1597 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1598}
1599
1600/*
1601 * Given 'z' scanning a zonelist, set the corresponding bit in
1602 * zlc->fullzones, so that subsequent attempts to allocate a page
1603 * from that zone don't waste time re-examining it.
1604 */
dd1a239f 1605static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1606{
1607 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1608 int i; /* index of *z in zonelist zones */
1609
1610 zlc = zonelist->zlcache_ptr;
1611 if (!zlc)
1612 return;
1613
dd1a239f 1614 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1615
1616 set_bit(i, zlc->fullzones);
1617}
1618
1619#else /* CONFIG_NUMA */
1620
1621static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1622{
1623 return NULL;
1624}
1625
dd1a239f 1626static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1627 nodemask_t *allowednodes)
1628{
1629 return 1;
1630}
1631
dd1a239f 1632static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1633{
1634}
1635#endif /* CONFIG_NUMA */
1636
7fb1d9fc 1637/*
0798e519 1638 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1639 * a page.
1640 */
1641static struct page *
19770b32 1642get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1643 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1644 struct zone *preferred_zone, int migratetype)
753ee728 1645{
dd1a239f 1646 struct zoneref *z;
7fb1d9fc 1647 struct page *page = NULL;
54a6eb5c 1648 int classzone_idx;
5117f45d 1649 struct zone *zone;
9276b1bc
PJ
1650 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1651 int zlc_active = 0; /* set if using zonelist_cache */
1652 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1653
19770b32 1654 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1655zonelist_scan:
7fb1d9fc 1656 /*
9276b1bc 1657 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1658 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1659 */
19770b32
MG
1660 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1661 high_zoneidx, nodemask) {
9276b1bc
PJ
1662 if (NUMA_BUILD && zlc_active &&
1663 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1664 continue;
7fb1d9fc 1665 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1666 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1667 continue;
7fb1d9fc 1668
41858966 1669 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1670 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1671 unsigned long mark;
fa5e084e
MG
1672 int ret;
1673
41858966 1674 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1675 if (zone_watermark_ok(zone, order, mark,
1676 classzone_idx, alloc_flags))
1677 goto try_this_zone;
1678
cd38b115
MG
1679 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1680 /*
1681 * we do zlc_setup if there are multiple nodes
1682 * and before considering the first zone allowed
1683 * by the cpuset.
1684 */
1685 allowednodes = zlc_setup(zonelist, alloc_flags);
1686 zlc_active = 1;
1687 did_zlc_setup = 1;
1688 }
1689
fa5e084e
MG
1690 if (zone_reclaim_mode == 0)
1691 goto this_zone_full;
1692
cd38b115
MG
1693 /*
1694 * As we may have just activated ZLC, check if the first
1695 * eligible zone has failed zone_reclaim recently.
1696 */
1697 if (NUMA_BUILD && zlc_active &&
1698 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1699 continue;
1700
fa5e084e
MG
1701 ret = zone_reclaim(zone, gfp_mask, order);
1702 switch (ret) {
1703 case ZONE_RECLAIM_NOSCAN:
1704 /* did not scan */
cd38b115 1705 continue;
fa5e084e
MG
1706 case ZONE_RECLAIM_FULL:
1707 /* scanned but unreclaimable */
cd38b115 1708 continue;
fa5e084e
MG
1709 default:
1710 /* did we reclaim enough */
1711 if (!zone_watermark_ok(zone, order, mark,
1712 classzone_idx, alloc_flags))
9276b1bc 1713 goto this_zone_full;
0798e519 1714 }
7fb1d9fc
RS
1715 }
1716
fa5e084e 1717try_this_zone:
3dd28266
MG
1718 page = buffered_rmqueue(preferred_zone, zone, order,
1719 gfp_mask, migratetype);
0798e519 1720 if (page)
7fb1d9fc 1721 break;
9276b1bc
PJ
1722this_zone_full:
1723 if (NUMA_BUILD)
1724 zlc_mark_zone_full(zonelist, z);
54a6eb5c 1725 }
9276b1bc
PJ
1726
1727 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1728 /* Disable zlc cache for second zonelist scan */
1729 zlc_active = 0;
1730 goto zonelist_scan;
1731 }
7fb1d9fc 1732 return page;
753ee728
MH
1733}
1734
29423e77
DR
1735/*
1736 * Large machines with many possible nodes should not always dump per-node
1737 * meminfo in irq context.
1738 */
1739static inline bool should_suppress_show_mem(void)
1740{
1741 bool ret = false;
1742
1743#if NODES_SHIFT > 8
1744 ret = in_interrupt();
1745#endif
1746 return ret;
1747}
1748
a238ab5b
DH
1749static DEFINE_RATELIMIT_STATE(nopage_rs,
1750 DEFAULT_RATELIMIT_INTERVAL,
1751 DEFAULT_RATELIMIT_BURST);
1752
1753void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1754{
1755 va_list args;
1756 unsigned int filter = SHOW_MEM_FILTER_NODES;
1757
1758 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
1759 return;
1760
1761 /*
1762 * This documents exceptions given to allocations in certain
1763 * contexts that are allowed to allocate outside current's set
1764 * of allowed nodes.
1765 */
1766 if (!(gfp_mask & __GFP_NOMEMALLOC))
1767 if (test_thread_flag(TIF_MEMDIE) ||
1768 (current->flags & (PF_MEMALLOC | PF_EXITING)))
1769 filter &= ~SHOW_MEM_FILTER_NODES;
1770 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1771 filter &= ~SHOW_MEM_FILTER_NODES;
1772
1773 if (fmt) {
1774 printk(KERN_WARNING);
1775 va_start(args, fmt);
1776 vprintk(fmt, args);
1777 va_end(args);
1778 }
1779
1780 pr_warning("%s: page allocation failure: order:%d, mode:0x%x\n",
1781 current->comm, order, gfp_mask);
1782
1783 dump_stack();
1784 if (!should_suppress_show_mem())
1785 show_mem(filter);
1786}
1787
11e33f6a
MG
1788static inline int
1789should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1790 unsigned long pages_reclaimed)
1da177e4 1791{
11e33f6a
MG
1792 /* Do not loop if specifically requested */
1793 if (gfp_mask & __GFP_NORETRY)
1794 return 0;
1da177e4 1795
11e33f6a
MG
1796 /*
1797 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1798 * means __GFP_NOFAIL, but that may not be true in other
1799 * implementations.
1800 */
1801 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1802 return 1;
1803
1804 /*
1805 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1806 * specified, then we retry until we no longer reclaim any pages
1807 * (above), or we've reclaimed an order of pages at least as
1808 * large as the allocation's order. In both cases, if the
1809 * allocation still fails, we stop retrying.
1810 */
1811 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1812 return 1;
cf40bd16 1813
11e33f6a
MG
1814 /*
1815 * Don't let big-order allocations loop unless the caller
1816 * explicitly requests that.
1817 */
1818 if (gfp_mask & __GFP_NOFAIL)
1819 return 1;
1da177e4 1820
11e33f6a
MG
1821 return 0;
1822}
933e312e 1823
11e33f6a
MG
1824static inline struct page *
1825__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1826 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1827 nodemask_t *nodemask, struct zone *preferred_zone,
1828 int migratetype)
11e33f6a
MG
1829{
1830 struct page *page;
1831
1832 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 1833 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 1834 schedule_timeout_uninterruptible(1);
1da177e4
LT
1835 return NULL;
1836 }
6b1de916 1837
11e33f6a
MG
1838 /*
1839 * Go through the zonelist yet one more time, keep very high watermark
1840 * here, this is only to catch a parallel oom killing, we must fail if
1841 * we're still under heavy pressure.
1842 */
1843 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1844 order, zonelist, high_zoneidx,
5117f45d 1845 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1846 preferred_zone, migratetype);
7fb1d9fc 1847 if (page)
11e33f6a
MG
1848 goto out;
1849
4365a567
KH
1850 if (!(gfp_mask & __GFP_NOFAIL)) {
1851 /* The OOM killer will not help higher order allocs */
1852 if (order > PAGE_ALLOC_COSTLY_ORDER)
1853 goto out;
03668b3c
DR
1854 /* The OOM killer does not needlessly kill tasks for lowmem */
1855 if (high_zoneidx < ZONE_NORMAL)
1856 goto out;
4365a567
KH
1857 /*
1858 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1859 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1860 * The caller should handle page allocation failure by itself if
1861 * it specifies __GFP_THISNODE.
1862 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1863 */
1864 if (gfp_mask & __GFP_THISNODE)
1865 goto out;
1866 }
11e33f6a 1867 /* Exhausted what can be done so it's blamo time */
4365a567 1868 out_of_memory(zonelist, gfp_mask, order, nodemask);
11e33f6a
MG
1869
1870out:
1871 clear_zonelist_oom(zonelist, gfp_mask);
1872 return page;
1873}
1874
56de7263
MG
1875#ifdef CONFIG_COMPACTION
1876/* Try memory compaction for high-order allocations before reclaim */
1877static struct page *
1878__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1879 struct zonelist *zonelist, enum zone_type high_zoneidx,
1880 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
77f1fe6b
MG
1881 int migratetype, unsigned long *did_some_progress,
1882 bool sync_migration)
56de7263
MG
1883{
1884 struct page *page;
1885
4f92e258 1886 if (!order || compaction_deferred(preferred_zone))
56de7263
MG
1887 return NULL;
1888
c06b1fca 1889 current->flags |= PF_MEMALLOC;
56de7263 1890 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
77f1fe6b 1891 nodemask, sync_migration);
c06b1fca 1892 current->flags &= ~PF_MEMALLOC;
56de7263
MG
1893 if (*did_some_progress != COMPACT_SKIPPED) {
1894
1895 /* Page migration frees to the PCP lists but we want merging */
1896 drain_pages(get_cpu());
1897 put_cpu();
1898
1899 page = get_page_from_freelist(gfp_mask, nodemask,
1900 order, zonelist, high_zoneidx,
1901 alloc_flags, preferred_zone,
1902 migratetype);
1903 if (page) {
4f92e258
MG
1904 preferred_zone->compact_considered = 0;
1905 preferred_zone->compact_defer_shift = 0;
56de7263
MG
1906 count_vm_event(COMPACTSUCCESS);
1907 return page;
1908 }
1909
1910 /*
1911 * It's bad if compaction run occurs and fails.
1912 * The most likely reason is that pages exist,
1913 * but not enough to satisfy watermarks.
1914 */
1915 count_vm_event(COMPACTFAIL);
4f92e258 1916 defer_compaction(preferred_zone);
56de7263
MG
1917
1918 cond_resched();
1919 }
1920
1921 return NULL;
1922}
1923#else
1924static inline struct page *
1925__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1926 struct zonelist *zonelist, enum zone_type high_zoneidx,
1927 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
77f1fe6b
MG
1928 int migratetype, unsigned long *did_some_progress,
1929 bool sync_migration)
56de7263
MG
1930{
1931 return NULL;
1932}
1933#endif /* CONFIG_COMPACTION */
1934
11e33f6a
MG
1935/* The really slow allocator path where we enter direct reclaim */
1936static inline struct page *
1937__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1938 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 1939 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 1940 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
1941{
1942 struct page *page = NULL;
1943 struct reclaim_state reclaim_state;
9ee493ce 1944 bool drained = false;
11e33f6a
MG
1945
1946 cond_resched();
1947
1948 /* We now go into synchronous reclaim */
1949 cpuset_memory_pressure_bump();
c06b1fca 1950 current->flags |= PF_MEMALLOC;
11e33f6a
MG
1951 lockdep_set_current_reclaim_state(gfp_mask);
1952 reclaim_state.reclaimed_slab = 0;
c06b1fca 1953 current->reclaim_state = &reclaim_state;
11e33f6a
MG
1954
1955 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1956
c06b1fca 1957 current->reclaim_state = NULL;
11e33f6a 1958 lockdep_clear_current_reclaim_state();
c06b1fca 1959 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
1960
1961 cond_resched();
1962
9ee493ce
MG
1963 if (unlikely(!(*did_some_progress)))
1964 return NULL;
11e33f6a 1965
9ee493ce
MG
1966retry:
1967 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1968 zonelist, high_zoneidx,
3dd28266
MG
1969 alloc_flags, preferred_zone,
1970 migratetype);
9ee493ce
MG
1971
1972 /*
1973 * If an allocation failed after direct reclaim, it could be because
1974 * pages are pinned on the per-cpu lists. Drain them and try again
1975 */
1976 if (!page && !drained) {
1977 drain_all_pages();
1978 drained = true;
1979 goto retry;
1980 }
1981
11e33f6a
MG
1982 return page;
1983}
1984
1da177e4 1985/*
11e33f6a
MG
1986 * This is called in the allocator slow-path if the allocation request is of
1987 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 1988 */
11e33f6a
MG
1989static inline struct page *
1990__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1991 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1992 nodemask_t *nodemask, struct zone *preferred_zone,
1993 int migratetype)
11e33f6a
MG
1994{
1995 struct page *page;
1996
1997 do {
1998 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1999 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2000 preferred_zone, migratetype);
11e33f6a
MG
2001
2002 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2003 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2004 } while (!page && (gfp_mask & __GFP_NOFAIL));
2005
2006 return page;
2007}
2008
2009static inline
2010void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2011 enum zone_type high_zoneidx,
2012 enum zone_type classzone_idx)
1da177e4 2013{
dd1a239f
MG
2014 struct zoneref *z;
2015 struct zone *zone;
1da177e4 2016
11e33f6a 2017 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2018 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2019}
cf40bd16 2020
341ce06f
PZ
2021static inline int
2022gfp_to_alloc_flags(gfp_t gfp_mask)
2023{
341ce06f
PZ
2024 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2025 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2026
a56f57ff 2027 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2028 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2029
341ce06f
PZ
2030 /*
2031 * The caller may dip into page reserves a bit more if the caller
2032 * cannot run direct reclaim, or if the caller has realtime scheduling
2033 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2034 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2035 */
e6223a3b 2036 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2037
341ce06f 2038 if (!wait) {
5c3240d9
AA
2039 /*
2040 * Not worth trying to allocate harder for
2041 * __GFP_NOMEMALLOC even if it can't schedule.
2042 */
2043 if (!(gfp_mask & __GFP_NOMEMALLOC))
2044 alloc_flags |= ALLOC_HARDER;
523b9458 2045 /*
341ce06f
PZ
2046 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2047 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2048 */
341ce06f 2049 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2050 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2051 alloc_flags |= ALLOC_HARDER;
2052
2053 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2054 if (!in_interrupt() &&
c06b1fca 2055 ((current->flags & PF_MEMALLOC) ||
341ce06f
PZ
2056 unlikely(test_thread_flag(TIF_MEMDIE))))
2057 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2058 }
6b1de916 2059
341ce06f
PZ
2060 return alloc_flags;
2061}
2062
11e33f6a
MG
2063static inline struct page *
2064__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2065 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2066 nodemask_t *nodemask, struct zone *preferred_zone,
2067 int migratetype)
11e33f6a
MG
2068{
2069 const gfp_t wait = gfp_mask & __GFP_WAIT;
2070 struct page *page = NULL;
2071 int alloc_flags;
2072 unsigned long pages_reclaimed = 0;
2073 unsigned long did_some_progress;
77f1fe6b 2074 bool sync_migration = false;
1da177e4 2075
72807a74
MG
2076 /*
2077 * In the slowpath, we sanity check order to avoid ever trying to
2078 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2079 * be using allocators in order of preference for an area that is
2080 * too large.
2081 */
1fc28b70
MG
2082 if (order >= MAX_ORDER) {
2083 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2084 return NULL;
1fc28b70 2085 }
1da177e4 2086
952f3b51
CL
2087 /*
2088 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2089 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2090 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2091 * using a larger set of nodes after it has established that the
2092 * allowed per node queues are empty and that nodes are
2093 * over allocated.
2094 */
2095 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2096 goto nopage;
2097
cc4a6851 2098restart:
32dba98e
AA
2099 if (!(gfp_mask & __GFP_NO_KSWAPD))
2100 wake_all_kswapd(order, zonelist, high_zoneidx,
99504748 2101 zone_idx(preferred_zone));
1da177e4 2102
9bf2229f 2103 /*
7fb1d9fc
RS
2104 * OK, we're below the kswapd watermark and have kicked background
2105 * reclaim. Now things get more complex, so set up alloc_flags according
2106 * to how we want to proceed.
9bf2229f 2107 */
341ce06f 2108 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2109
f33261d7
DR
2110 /*
2111 * Find the true preferred zone if the allocation is unconstrained by
2112 * cpusets.
2113 */
2114 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2115 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2116 &preferred_zone);
2117
cfa54a0f 2118rebalance:
341ce06f 2119 /* This is the last chance, in general, before the goto nopage. */
19770b32 2120 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2121 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2122 preferred_zone, migratetype);
7fb1d9fc
RS
2123 if (page)
2124 goto got_pg;
1da177e4 2125
11e33f6a 2126 /* Allocate without watermarks if the context allows */
341ce06f
PZ
2127 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2128 page = __alloc_pages_high_priority(gfp_mask, order,
2129 zonelist, high_zoneidx, nodemask,
2130 preferred_zone, migratetype);
2131 if (page)
2132 goto got_pg;
1da177e4
LT
2133 }
2134
2135 /* Atomic allocations - we can't balance anything */
2136 if (!wait)
2137 goto nopage;
2138
341ce06f 2139 /* Avoid recursion of direct reclaim */
c06b1fca 2140 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2141 goto nopage;
2142
6583bb64
DR
2143 /* Avoid allocations with no watermarks from looping endlessly */
2144 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2145 goto nopage;
2146
77f1fe6b
MG
2147 /*
2148 * Try direct compaction. The first pass is asynchronous. Subsequent
2149 * attempts after direct reclaim are synchronous
2150 */
56de7263
MG
2151 page = __alloc_pages_direct_compact(gfp_mask, order,
2152 zonelist, high_zoneidx,
2153 nodemask,
2154 alloc_flags, preferred_zone,
77f1fe6b
MG
2155 migratetype, &did_some_progress,
2156 sync_migration);
56de7263
MG
2157 if (page)
2158 goto got_pg;
c6a140bf 2159 sync_migration = true;
56de7263 2160
11e33f6a
MG
2161 /* Try direct reclaim and then allocating */
2162 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2163 zonelist, high_zoneidx,
2164 nodemask,
5117f45d 2165 alloc_flags, preferred_zone,
3dd28266 2166 migratetype, &did_some_progress);
11e33f6a
MG
2167 if (page)
2168 goto got_pg;
1da177e4 2169
e33c3b5e 2170 /*
11e33f6a
MG
2171 * If we failed to make any progress reclaiming, then we are
2172 * running out of options and have to consider going OOM
e33c3b5e 2173 */
11e33f6a
MG
2174 if (!did_some_progress) {
2175 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2176 if (oom_killer_disabled)
2177 goto nopage;
11e33f6a
MG
2178 page = __alloc_pages_may_oom(gfp_mask, order,
2179 zonelist, high_zoneidx,
3dd28266
MG
2180 nodemask, preferred_zone,
2181 migratetype);
11e33f6a
MG
2182 if (page)
2183 goto got_pg;
1da177e4 2184
03668b3c
DR
2185 if (!(gfp_mask & __GFP_NOFAIL)) {
2186 /*
2187 * The oom killer is not called for high-order
2188 * allocations that may fail, so if no progress
2189 * is being made, there are no other options and
2190 * retrying is unlikely to help.
2191 */
2192 if (order > PAGE_ALLOC_COSTLY_ORDER)
2193 goto nopage;
2194 /*
2195 * The oom killer is not called for lowmem
2196 * allocations to prevent needlessly killing
2197 * innocent tasks.
2198 */
2199 if (high_zoneidx < ZONE_NORMAL)
2200 goto nopage;
2201 }
e2c55dc8 2202
ff0ceb9d
DR
2203 goto restart;
2204 }
1da177e4
LT
2205 }
2206
11e33f6a 2207 /* Check if we should retry the allocation */
a41f24ea 2208 pages_reclaimed += did_some_progress;
11e33f6a
MG
2209 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2210 /* Wait for some write requests to complete then retry */
0e093d99 2211 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2212 goto rebalance;
3e7d3449
MG
2213 } else {
2214 /*
2215 * High-order allocations do not necessarily loop after
2216 * direct reclaim and reclaim/compaction depends on compaction
2217 * being called after reclaim so call directly if necessary
2218 */
2219 page = __alloc_pages_direct_compact(gfp_mask, order,
2220 zonelist, high_zoneidx,
2221 nodemask,
2222 alloc_flags, preferred_zone,
77f1fe6b
MG
2223 migratetype, &did_some_progress,
2224 sync_migration);
3e7d3449
MG
2225 if (page)
2226 goto got_pg;
1da177e4
LT
2227 }
2228
2229nopage:
a238ab5b 2230 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2231 return page;
1da177e4 2232got_pg:
b1eeab67
VN
2233 if (kmemcheck_enabled)
2234 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1da177e4 2235 return page;
11e33f6a 2236
1da177e4 2237}
11e33f6a
MG
2238
2239/*
2240 * This is the 'heart' of the zoned buddy allocator.
2241 */
2242struct page *
2243__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2244 struct zonelist *zonelist, nodemask_t *nodemask)
2245{
2246 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2247 struct zone *preferred_zone;
11e33f6a 2248 struct page *page;
3dd28266 2249 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a 2250
dcce284a
BH
2251 gfp_mask &= gfp_allowed_mask;
2252
11e33f6a
MG
2253 lockdep_trace_alloc(gfp_mask);
2254
2255 might_sleep_if(gfp_mask & __GFP_WAIT);
2256
2257 if (should_fail_alloc_page(gfp_mask, order))
2258 return NULL;
2259
2260 /*
2261 * Check the zones suitable for the gfp_mask contain at least one
2262 * valid zone. It's possible to have an empty zonelist as a result
2263 * of GFP_THISNODE and a memoryless node
2264 */
2265 if (unlikely(!zonelist->_zonerefs->zone))
2266 return NULL;
2267
c0ff7453 2268 get_mems_allowed();
5117f45d 2269 /* The preferred zone is used for statistics later */
f33261d7
DR
2270 first_zones_zonelist(zonelist, high_zoneidx,
2271 nodemask ? : &cpuset_current_mems_allowed,
2272 &preferred_zone);
c0ff7453
MX
2273 if (!preferred_zone) {
2274 put_mems_allowed();
5117f45d 2275 return NULL;
c0ff7453 2276 }
5117f45d
MG
2277
2278 /* First allocation attempt */
11e33f6a 2279 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 2280 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 2281 preferred_zone, migratetype);
11e33f6a
MG
2282 if (unlikely(!page))
2283 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2284 zonelist, high_zoneidx, nodemask,
3dd28266 2285 preferred_zone, migratetype);
c0ff7453 2286 put_mems_allowed();
11e33f6a 2287
4b4f278c 2288 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
11e33f6a 2289 return page;
1da177e4 2290}
d239171e 2291EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2292
2293/*
2294 * Common helper functions.
2295 */
920c7a5d 2296unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2297{
945a1113
AM
2298 struct page *page;
2299
2300 /*
2301 * __get_free_pages() returns a 32-bit address, which cannot represent
2302 * a highmem page
2303 */
2304 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2305
1da177e4
LT
2306 page = alloc_pages(gfp_mask, order);
2307 if (!page)
2308 return 0;
2309 return (unsigned long) page_address(page);
2310}
1da177e4
LT
2311EXPORT_SYMBOL(__get_free_pages);
2312
920c7a5d 2313unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2314{
945a1113 2315 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2316}
1da177e4
LT
2317EXPORT_SYMBOL(get_zeroed_page);
2318
2319void __pagevec_free(struct pagevec *pvec)
2320{
2321 int i = pagevec_count(pvec);
2322
4b4f278c
MG
2323 while (--i >= 0) {
2324 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
1da177e4 2325 free_hot_cold_page(pvec->pages[i], pvec->cold);
4b4f278c 2326 }
1da177e4
LT
2327}
2328
920c7a5d 2329void __free_pages(struct page *page, unsigned int order)
1da177e4 2330{
b5810039 2331 if (put_page_testzero(page)) {
1da177e4 2332 if (order == 0)
fc91668e 2333 free_hot_cold_page(page, 0);
1da177e4
LT
2334 else
2335 __free_pages_ok(page, order);
2336 }
2337}
2338
2339EXPORT_SYMBOL(__free_pages);
2340
920c7a5d 2341void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2342{
2343 if (addr != 0) {
725d704e 2344 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2345 __free_pages(virt_to_page((void *)addr), order);
2346 }
2347}
2348
2349EXPORT_SYMBOL(free_pages);
2350
ee85c2e1
AK
2351static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2352{
2353 if (addr) {
2354 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2355 unsigned long used = addr + PAGE_ALIGN(size);
2356
2357 split_page(virt_to_page((void *)addr), order);
2358 while (used < alloc_end) {
2359 free_page(used);
2360 used += PAGE_SIZE;
2361 }
2362 }
2363 return (void *)addr;
2364}
2365
2be0ffe2
TT
2366/**
2367 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2368 * @size: the number of bytes to allocate
2369 * @gfp_mask: GFP flags for the allocation
2370 *
2371 * This function is similar to alloc_pages(), except that it allocates the
2372 * minimum number of pages to satisfy the request. alloc_pages() can only
2373 * allocate memory in power-of-two pages.
2374 *
2375 * This function is also limited by MAX_ORDER.
2376 *
2377 * Memory allocated by this function must be released by free_pages_exact().
2378 */
2379void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2380{
2381 unsigned int order = get_order(size);
2382 unsigned long addr;
2383
2384 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2385 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2386}
2387EXPORT_SYMBOL(alloc_pages_exact);
2388
ee85c2e1
AK
2389/**
2390 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2391 * pages on a node.
b5e6ab58 2392 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2393 * @size: the number of bytes to allocate
2394 * @gfp_mask: GFP flags for the allocation
2395 *
2396 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2397 * back.
2398 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2399 * but is not exact.
2400 */
2401void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2402{
2403 unsigned order = get_order(size);
2404 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2405 if (!p)
2406 return NULL;
2407 return make_alloc_exact((unsigned long)page_address(p), order, size);
2408}
2409EXPORT_SYMBOL(alloc_pages_exact_nid);
2410
2be0ffe2
TT
2411/**
2412 * free_pages_exact - release memory allocated via alloc_pages_exact()
2413 * @virt: the value returned by alloc_pages_exact.
2414 * @size: size of allocation, same value as passed to alloc_pages_exact().
2415 *
2416 * Release the memory allocated by a previous call to alloc_pages_exact.
2417 */
2418void free_pages_exact(void *virt, size_t size)
2419{
2420 unsigned long addr = (unsigned long)virt;
2421 unsigned long end = addr + PAGE_ALIGN(size);
2422
2423 while (addr < end) {
2424 free_page(addr);
2425 addr += PAGE_SIZE;
2426 }
2427}
2428EXPORT_SYMBOL(free_pages_exact);
2429
1da177e4
LT
2430static unsigned int nr_free_zone_pages(int offset)
2431{
dd1a239f 2432 struct zoneref *z;
54a6eb5c
MG
2433 struct zone *zone;
2434
e310fd43 2435 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2436 unsigned int sum = 0;
2437
0e88460d 2438 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2439
54a6eb5c 2440 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2441 unsigned long size = zone->present_pages;
41858966 2442 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2443 if (size > high)
2444 sum += size - high;
1da177e4
LT
2445 }
2446
2447 return sum;
2448}
2449
2450/*
2451 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2452 */
2453unsigned int nr_free_buffer_pages(void)
2454{
af4ca457 2455 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2456}
c2f1a551 2457EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2458
2459/*
2460 * Amount of free RAM allocatable within all zones
2461 */
2462unsigned int nr_free_pagecache_pages(void)
2463{
2a1e274a 2464 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2465}
08e0f6a9
CL
2466
2467static inline void show_node(struct zone *zone)
1da177e4 2468{
08e0f6a9 2469 if (NUMA_BUILD)
25ba77c1 2470 printk("Node %d ", zone_to_nid(zone));
1da177e4 2471}
1da177e4 2472
1da177e4
LT
2473void si_meminfo(struct sysinfo *val)
2474{
2475 val->totalram = totalram_pages;
2476 val->sharedram = 0;
d23ad423 2477 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2478 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2479 val->totalhigh = totalhigh_pages;
2480 val->freehigh = nr_free_highpages();
1da177e4
LT
2481 val->mem_unit = PAGE_SIZE;
2482}
2483
2484EXPORT_SYMBOL(si_meminfo);
2485
2486#ifdef CONFIG_NUMA
2487void si_meminfo_node(struct sysinfo *val, int nid)
2488{
2489 pg_data_t *pgdat = NODE_DATA(nid);
2490
2491 val->totalram = pgdat->node_present_pages;
d23ad423 2492 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2493#ifdef CONFIG_HIGHMEM
1da177e4 2494 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2495 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2496 NR_FREE_PAGES);
98d2b0eb
CL
2497#else
2498 val->totalhigh = 0;
2499 val->freehigh = 0;
2500#endif
1da177e4
LT
2501 val->mem_unit = PAGE_SIZE;
2502}
2503#endif
2504
ddd588b5 2505/*
7bf02ea2
DR
2506 * Determine whether the node should be displayed or not, depending on whether
2507 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2508 */
7bf02ea2 2509bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2510{
2511 bool ret = false;
2512
2513 if (!(flags & SHOW_MEM_FILTER_NODES))
2514 goto out;
2515
2516 get_mems_allowed();
7bf02ea2 2517 ret = !node_isset(nid, cpuset_current_mems_allowed);
ddd588b5
DR
2518 put_mems_allowed();
2519out:
2520 return ret;
2521}
2522
1da177e4
LT
2523#define K(x) ((x) << (PAGE_SHIFT-10))
2524
2525/*
2526 * Show free area list (used inside shift_scroll-lock stuff)
2527 * We also calculate the percentage fragmentation. We do this by counting the
2528 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2529 * Suppresses nodes that are not allowed by current's cpuset if
2530 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2531 */
7bf02ea2 2532void show_free_areas(unsigned int filter)
1da177e4 2533{
c7241913 2534 int cpu;
1da177e4
LT
2535 struct zone *zone;
2536
ee99c71c 2537 for_each_populated_zone(zone) {
7bf02ea2 2538 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2539 continue;
c7241913
JS
2540 show_node(zone);
2541 printk("%s per-cpu:\n", zone->name);
1da177e4 2542
6b482c67 2543 for_each_online_cpu(cpu) {
1da177e4
LT
2544 struct per_cpu_pageset *pageset;
2545
99dcc3e5 2546 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2547
3dfa5721
CL
2548 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2549 cpu, pageset->pcp.high,
2550 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2551 }
2552 }
2553
a731286d
KM
2554 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2555 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2556 " unevictable:%lu"
b76146ed 2557 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2558 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4b02108a 2559 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe 2560 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2561 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2562 global_page_state(NR_ISOLATED_ANON),
2563 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2564 global_page_state(NR_INACTIVE_FILE),
a731286d 2565 global_page_state(NR_ISOLATED_FILE),
7b854121 2566 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2567 global_page_state(NR_FILE_DIRTY),
ce866b34 2568 global_page_state(NR_WRITEBACK),
fd39fc85 2569 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2570 global_page_state(NR_FREE_PAGES),
3701b033
KM
2571 global_page_state(NR_SLAB_RECLAIMABLE),
2572 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2573 global_page_state(NR_FILE_MAPPED),
4b02108a 2574 global_page_state(NR_SHMEM),
a25700a5
AM
2575 global_page_state(NR_PAGETABLE),
2576 global_page_state(NR_BOUNCE));
1da177e4 2577
ee99c71c 2578 for_each_populated_zone(zone) {
1da177e4
LT
2579 int i;
2580
7bf02ea2 2581 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2582 continue;
1da177e4
LT
2583 show_node(zone);
2584 printk("%s"
2585 " free:%lukB"
2586 " min:%lukB"
2587 " low:%lukB"
2588 " high:%lukB"
4f98a2fe
RR
2589 " active_anon:%lukB"
2590 " inactive_anon:%lukB"
2591 " active_file:%lukB"
2592 " inactive_file:%lukB"
7b854121 2593 " unevictable:%lukB"
a731286d
KM
2594 " isolated(anon):%lukB"
2595 " isolated(file):%lukB"
1da177e4 2596 " present:%lukB"
4a0aa73f
KM
2597 " mlocked:%lukB"
2598 " dirty:%lukB"
2599 " writeback:%lukB"
2600 " mapped:%lukB"
4b02108a 2601 " shmem:%lukB"
4a0aa73f
KM
2602 " slab_reclaimable:%lukB"
2603 " slab_unreclaimable:%lukB"
c6a7f572 2604 " kernel_stack:%lukB"
4a0aa73f
KM
2605 " pagetables:%lukB"
2606 " unstable:%lukB"
2607 " bounce:%lukB"
2608 " writeback_tmp:%lukB"
1da177e4
LT
2609 " pages_scanned:%lu"
2610 " all_unreclaimable? %s"
2611 "\n",
2612 zone->name,
88f5acf8 2613 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2614 K(min_wmark_pages(zone)),
2615 K(low_wmark_pages(zone)),
2616 K(high_wmark_pages(zone)),
4f98a2fe
RR
2617 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2618 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2619 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2620 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2621 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2622 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2623 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2624 K(zone->present_pages),
4a0aa73f
KM
2625 K(zone_page_state(zone, NR_MLOCK)),
2626 K(zone_page_state(zone, NR_FILE_DIRTY)),
2627 K(zone_page_state(zone, NR_WRITEBACK)),
2628 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2629 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2630 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2631 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2632 zone_page_state(zone, NR_KERNEL_STACK) *
2633 THREAD_SIZE / 1024,
4a0aa73f
KM
2634 K(zone_page_state(zone, NR_PAGETABLE)),
2635 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2636 K(zone_page_state(zone, NR_BOUNCE)),
2637 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2638 zone->pages_scanned,
93e4a89a 2639 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
2640 );
2641 printk("lowmem_reserve[]:");
2642 for (i = 0; i < MAX_NR_ZONES; i++)
2643 printk(" %lu", zone->lowmem_reserve[i]);
2644 printk("\n");
2645 }
2646
ee99c71c 2647 for_each_populated_zone(zone) {
8f9de51a 2648 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 2649
7bf02ea2 2650 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2651 continue;
1da177e4
LT
2652 show_node(zone);
2653 printk("%s: ", zone->name);
1da177e4
LT
2654
2655 spin_lock_irqsave(&zone->lock, flags);
2656 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2657 nr[order] = zone->free_area[order].nr_free;
2658 total += nr[order] << order;
1da177e4
LT
2659 }
2660 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2661 for (order = 0; order < MAX_ORDER; order++)
2662 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2663 printk("= %lukB\n", K(total));
2664 }
2665
e6f3602d
LW
2666 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2667
1da177e4
LT
2668 show_swap_cache_info();
2669}
2670
19770b32
MG
2671static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2672{
2673 zoneref->zone = zone;
2674 zoneref->zone_idx = zone_idx(zone);
2675}
2676
1da177e4
LT
2677/*
2678 * Builds allocation fallback zone lists.
1a93205b
CL
2679 *
2680 * Add all populated zones of a node to the zonelist.
1da177e4 2681 */
f0c0b2b8
KH
2682static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2683 int nr_zones, enum zone_type zone_type)
1da177e4 2684{
1a93205b
CL
2685 struct zone *zone;
2686
98d2b0eb 2687 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2688 zone_type++;
02a68a5e
CL
2689
2690 do {
2f6726e5 2691 zone_type--;
070f8032 2692 zone = pgdat->node_zones + zone_type;
1a93205b 2693 if (populated_zone(zone)) {
dd1a239f
MG
2694 zoneref_set_zone(zone,
2695 &zonelist->_zonerefs[nr_zones++]);
070f8032 2696 check_highest_zone(zone_type);
1da177e4 2697 }
02a68a5e 2698
2f6726e5 2699 } while (zone_type);
070f8032 2700 return nr_zones;
1da177e4
LT
2701}
2702
f0c0b2b8
KH
2703
2704/*
2705 * zonelist_order:
2706 * 0 = automatic detection of better ordering.
2707 * 1 = order by ([node] distance, -zonetype)
2708 * 2 = order by (-zonetype, [node] distance)
2709 *
2710 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2711 * the same zonelist. So only NUMA can configure this param.
2712 */
2713#define ZONELIST_ORDER_DEFAULT 0
2714#define ZONELIST_ORDER_NODE 1
2715#define ZONELIST_ORDER_ZONE 2
2716
2717/* zonelist order in the kernel.
2718 * set_zonelist_order() will set this to NODE or ZONE.
2719 */
2720static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2721static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2722
2723
1da177e4 2724#ifdef CONFIG_NUMA
f0c0b2b8
KH
2725/* The value user specified ....changed by config */
2726static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2727/* string for sysctl */
2728#define NUMA_ZONELIST_ORDER_LEN 16
2729char numa_zonelist_order[16] = "default";
2730
2731/*
2732 * interface for configure zonelist ordering.
2733 * command line option "numa_zonelist_order"
2734 * = "[dD]efault - default, automatic configuration.
2735 * = "[nN]ode - order by node locality, then by zone within node
2736 * = "[zZ]one - order by zone, then by locality within zone
2737 */
2738
2739static int __parse_numa_zonelist_order(char *s)
2740{
2741 if (*s == 'd' || *s == 'D') {
2742 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2743 } else if (*s == 'n' || *s == 'N') {
2744 user_zonelist_order = ZONELIST_ORDER_NODE;
2745 } else if (*s == 'z' || *s == 'Z') {
2746 user_zonelist_order = ZONELIST_ORDER_ZONE;
2747 } else {
2748 printk(KERN_WARNING
2749 "Ignoring invalid numa_zonelist_order value: "
2750 "%s\n", s);
2751 return -EINVAL;
2752 }
2753 return 0;
2754}
2755
2756static __init int setup_numa_zonelist_order(char *s)
2757{
ecb256f8
VL
2758 int ret;
2759
2760 if (!s)
2761 return 0;
2762
2763 ret = __parse_numa_zonelist_order(s);
2764 if (ret == 0)
2765 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2766
2767 return ret;
f0c0b2b8
KH
2768}
2769early_param("numa_zonelist_order", setup_numa_zonelist_order);
2770
2771/*
2772 * sysctl handler for numa_zonelist_order
2773 */
2774int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 2775 void __user *buffer, size_t *length,
f0c0b2b8
KH
2776 loff_t *ppos)
2777{
2778 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2779 int ret;
443c6f14 2780 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 2781
443c6f14 2782 mutex_lock(&zl_order_mutex);
f0c0b2b8 2783 if (write)
443c6f14 2784 strcpy(saved_string, (char*)table->data);
8d65af78 2785 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 2786 if (ret)
443c6f14 2787 goto out;
f0c0b2b8
KH
2788 if (write) {
2789 int oldval = user_zonelist_order;
2790 if (__parse_numa_zonelist_order((char*)table->data)) {
2791 /*
2792 * bogus value. restore saved string
2793 */
2794 strncpy((char*)table->data, saved_string,
2795 NUMA_ZONELIST_ORDER_LEN);
2796 user_zonelist_order = oldval;
4eaf3f64
HL
2797 } else if (oldval != user_zonelist_order) {
2798 mutex_lock(&zonelists_mutex);
1f522509 2799 build_all_zonelists(NULL);
4eaf3f64
HL
2800 mutex_unlock(&zonelists_mutex);
2801 }
f0c0b2b8 2802 }
443c6f14
AK
2803out:
2804 mutex_unlock(&zl_order_mutex);
2805 return ret;
f0c0b2b8
KH
2806}
2807
2808
62bc62a8 2809#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
2810static int node_load[MAX_NUMNODES];
2811
1da177e4 2812/**
4dc3b16b 2813 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2814 * @node: node whose fallback list we're appending
2815 * @used_node_mask: nodemask_t of already used nodes
2816 *
2817 * We use a number of factors to determine which is the next node that should
2818 * appear on a given node's fallback list. The node should not have appeared
2819 * already in @node's fallback list, and it should be the next closest node
2820 * according to the distance array (which contains arbitrary distance values
2821 * from each node to each node in the system), and should also prefer nodes
2822 * with no CPUs, since presumably they'll have very little allocation pressure
2823 * on them otherwise.
2824 * It returns -1 if no node is found.
2825 */
f0c0b2b8 2826static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2827{
4cf808eb 2828 int n, val;
1da177e4
LT
2829 int min_val = INT_MAX;
2830 int best_node = -1;
a70f7302 2831 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2832
4cf808eb
LT
2833 /* Use the local node if we haven't already */
2834 if (!node_isset(node, *used_node_mask)) {
2835 node_set(node, *used_node_mask);
2836 return node;
2837 }
1da177e4 2838
37b07e41 2839 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2840
2841 /* Don't want a node to appear more than once */
2842 if (node_isset(n, *used_node_mask))
2843 continue;
2844
1da177e4
LT
2845 /* Use the distance array to find the distance */
2846 val = node_distance(node, n);
2847
4cf808eb
LT
2848 /* Penalize nodes under us ("prefer the next node") */
2849 val += (n < node);
2850
1da177e4 2851 /* Give preference to headless and unused nodes */
a70f7302
RR
2852 tmp = cpumask_of_node(n);
2853 if (!cpumask_empty(tmp))
1da177e4
LT
2854 val += PENALTY_FOR_NODE_WITH_CPUS;
2855
2856 /* Slight preference for less loaded node */
2857 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2858 val += node_load[n];
2859
2860 if (val < min_val) {
2861 min_val = val;
2862 best_node = n;
2863 }
2864 }
2865
2866 if (best_node >= 0)
2867 node_set(best_node, *used_node_mask);
2868
2869 return best_node;
2870}
2871
f0c0b2b8
KH
2872
2873/*
2874 * Build zonelists ordered by node and zones within node.
2875 * This results in maximum locality--normal zone overflows into local
2876 * DMA zone, if any--but risks exhausting DMA zone.
2877 */
2878static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2879{
f0c0b2b8 2880 int j;
1da177e4 2881 struct zonelist *zonelist;
f0c0b2b8 2882
54a6eb5c 2883 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2884 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2885 ;
2886 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2887 MAX_NR_ZONES - 1);
dd1a239f
MG
2888 zonelist->_zonerefs[j].zone = NULL;
2889 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2890}
2891
523b9458
CL
2892/*
2893 * Build gfp_thisnode zonelists
2894 */
2895static void build_thisnode_zonelists(pg_data_t *pgdat)
2896{
523b9458
CL
2897 int j;
2898 struct zonelist *zonelist;
2899
54a6eb5c
MG
2900 zonelist = &pgdat->node_zonelists[1];
2901 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2902 zonelist->_zonerefs[j].zone = NULL;
2903 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2904}
2905
f0c0b2b8
KH
2906/*
2907 * Build zonelists ordered by zone and nodes within zones.
2908 * This results in conserving DMA zone[s] until all Normal memory is
2909 * exhausted, but results in overflowing to remote node while memory
2910 * may still exist in local DMA zone.
2911 */
2912static int node_order[MAX_NUMNODES];
2913
2914static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2915{
f0c0b2b8
KH
2916 int pos, j, node;
2917 int zone_type; /* needs to be signed */
2918 struct zone *z;
2919 struct zonelist *zonelist;
2920
54a6eb5c
MG
2921 zonelist = &pgdat->node_zonelists[0];
2922 pos = 0;
2923 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2924 for (j = 0; j < nr_nodes; j++) {
2925 node = node_order[j];
2926 z = &NODE_DATA(node)->node_zones[zone_type];
2927 if (populated_zone(z)) {
dd1a239f
MG
2928 zoneref_set_zone(z,
2929 &zonelist->_zonerefs[pos++]);
54a6eb5c 2930 check_highest_zone(zone_type);
f0c0b2b8
KH
2931 }
2932 }
f0c0b2b8 2933 }
dd1a239f
MG
2934 zonelist->_zonerefs[pos].zone = NULL;
2935 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2936}
2937
2938static int default_zonelist_order(void)
2939{
2940 int nid, zone_type;
2941 unsigned long low_kmem_size,total_size;
2942 struct zone *z;
2943 int average_size;
2944 /*
88393161 2945 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
2946 * If they are really small and used heavily, the system can fall
2947 * into OOM very easily.
e325c90f 2948 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
2949 */
2950 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2951 low_kmem_size = 0;
2952 total_size = 0;
2953 for_each_online_node(nid) {
2954 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2955 z = &NODE_DATA(nid)->node_zones[zone_type];
2956 if (populated_zone(z)) {
2957 if (zone_type < ZONE_NORMAL)
2958 low_kmem_size += z->present_pages;
2959 total_size += z->present_pages;
e325c90f
DR
2960 } else if (zone_type == ZONE_NORMAL) {
2961 /*
2962 * If any node has only lowmem, then node order
2963 * is preferred to allow kernel allocations
2964 * locally; otherwise, they can easily infringe
2965 * on other nodes when there is an abundance of
2966 * lowmem available to allocate from.
2967 */
2968 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
2969 }
2970 }
2971 }
2972 if (!low_kmem_size || /* there are no DMA area. */
2973 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2974 return ZONELIST_ORDER_NODE;
2975 /*
2976 * look into each node's config.
2977 * If there is a node whose DMA/DMA32 memory is very big area on
2978 * local memory, NODE_ORDER may be suitable.
2979 */
37b07e41
LS
2980 average_size = total_size /
2981 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2982 for_each_online_node(nid) {
2983 low_kmem_size = 0;
2984 total_size = 0;
2985 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2986 z = &NODE_DATA(nid)->node_zones[zone_type];
2987 if (populated_zone(z)) {
2988 if (zone_type < ZONE_NORMAL)
2989 low_kmem_size += z->present_pages;
2990 total_size += z->present_pages;
2991 }
2992 }
2993 if (low_kmem_size &&
2994 total_size > average_size && /* ignore small node */
2995 low_kmem_size > total_size * 70/100)
2996 return ZONELIST_ORDER_NODE;
2997 }
2998 return ZONELIST_ORDER_ZONE;
2999}
3000
3001static void set_zonelist_order(void)
3002{
3003 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3004 current_zonelist_order = default_zonelist_order();
3005 else
3006 current_zonelist_order = user_zonelist_order;
3007}
3008
3009static void build_zonelists(pg_data_t *pgdat)
3010{
3011 int j, node, load;
3012 enum zone_type i;
1da177e4 3013 nodemask_t used_mask;
f0c0b2b8
KH
3014 int local_node, prev_node;
3015 struct zonelist *zonelist;
3016 int order = current_zonelist_order;
1da177e4
LT
3017
3018 /* initialize zonelists */
523b9458 3019 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3020 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3021 zonelist->_zonerefs[0].zone = NULL;
3022 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3023 }
3024
3025 /* NUMA-aware ordering of nodes */
3026 local_node = pgdat->node_id;
62bc62a8 3027 load = nr_online_nodes;
1da177e4
LT
3028 prev_node = local_node;
3029 nodes_clear(used_mask);
f0c0b2b8 3030
f0c0b2b8
KH
3031 memset(node_order, 0, sizeof(node_order));
3032 j = 0;
3033
1da177e4 3034 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
3035 int distance = node_distance(local_node, node);
3036
3037 /*
3038 * If another node is sufficiently far away then it is better
3039 * to reclaim pages in a zone before going off node.
3040 */
3041 if (distance > RECLAIM_DISTANCE)
3042 zone_reclaim_mode = 1;
3043
1da177e4
LT
3044 /*
3045 * We don't want to pressure a particular node.
3046 * So adding penalty to the first node in same
3047 * distance group to make it round-robin.
3048 */
9eeff239 3049 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
3050 node_load[node] = load;
3051
1da177e4
LT
3052 prev_node = node;
3053 load--;
f0c0b2b8
KH
3054 if (order == ZONELIST_ORDER_NODE)
3055 build_zonelists_in_node_order(pgdat, node);
3056 else
3057 node_order[j++] = node; /* remember order */
3058 }
1da177e4 3059
f0c0b2b8
KH
3060 if (order == ZONELIST_ORDER_ZONE) {
3061 /* calculate node order -- i.e., DMA last! */
3062 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3063 }
523b9458
CL
3064
3065 build_thisnode_zonelists(pgdat);
1da177e4
LT
3066}
3067
9276b1bc 3068/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3069static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3070{
54a6eb5c
MG
3071 struct zonelist *zonelist;
3072 struct zonelist_cache *zlc;
dd1a239f 3073 struct zoneref *z;
9276b1bc 3074
54a6eb5c
MG
3075 zonelist = &pgdat->node_zonelists[0];
3076 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3077 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3078 for (z = zonelist->_zonerefs; z->zone; z++)
3079 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3080}
3081
7aac7898
LS
3082#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3083/*
3084 * Return node id of node used for "local" allocations.
3085 * I.e., first node id of first zone in arg node's generic zonelist.
3086 * Used for initializing percpu 'numa_mem', which is used primarily
3087 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3088 */
3089int local_memory_node(int node)
3090{
3091 struct zone *zone;
3092
3093 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3094 gfp_zone(GFP_KERNEL),
3095 NULL,
3096 &zone);
3097 return zone->node;
3098}
3099#endif
f0c0b2b8 3100
1da177e4
LT
3101#else /* CONFIG_NUMA */
3102
f0c0b2b8
KH
3103static void set_zonelist_order(void)
3104{
3105 current_zonelist_order = ZONELIST_ORDER_ZONE;
3106}
3107
3108static void build_zonelists(pg_data_t *pgdat)
1da177e4 3109{
19655d34 3110 int node, local_node;
54a6eb5c
MG
3111 enum zone_type j;
3112 struct zonelist *zonelist;
1da177e4
LT
3113
3114 local_node = pgdat->node_id;
1da177e4 3115
54a6eb5c
MG
3116 zonelist = &pgdat->node_zonelists[0];
3117 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 3118
54a6eb5c
MG
3119 /*
3120 * Now we build the zonelist so that it contains the zones
3121 * of all the other nodes.
3122 * We don't want to pressure a particular node, so when
3123 * building the zones for node N, we make sure that the
3124 * zones coming right after the local ones are those from
3125 * node N+1 (modulo N)
3126 */
3127 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3128 if (!node_online(node))
3129 continue;
3130 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3131 MAX_NR_ZONES - 1);
1da177e4 3132 }
54a6eb5c
MG
3133 for (node = 0; node < local_node; node++) {
3134 if (!node_online(node))
3135 continue;
3136 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3137 MAX_NR_ZONES - 1);
3138 }
3139
dd1a239f
MG
3140 zonelist->_zonerefs[j].zone = NULL;
3141 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3142}
3143
9276b1bc 3144/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3145static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3146{
54a6eb5c 3147 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3148}
3149
1da177e4
LT
3150#endif /* CONFIG_NUMA */
3151
99dcc3e5
CL
3152/*
3153 * Boot pageset table. One per cpu which is going to be used for all
3154 * zones and all nodes. The parameters will be set in such a way
3155 * that an item put on a list will immediately be handed over to
3156 * the buddy list. This is safe since pageset manipulation is done
3157 * with interrupts disabled.
3158 *
3159 * The boot_pagesets must be kept even after bootup is complete for
3160 * unused processors and/or zones. They do play a role for bootstrapping
3161 * hotplugged processors.
3162 *
3163 * zoneinfo_show() and maybe other functions do
3164 * not check if the processor is online before following the pageset pointer.
3165 * Other parts of the kernel may not check if the zone is available.
3166 */
3167static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3168static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3169static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3170
4eaf3f64
HL
3171/*
3172 * Global mutex to protect against size modification of zonelists
3173 * as well as to serialize pageset setup for the new populated zone.
3174 */
3175DEFINE_MUTEX(zonelists_mutex);
3176
9b1a4d38 3177/* return values int ....just for stop_machine() */
1f522509 3178static __init_refok int __build_all_zonelists(void *data)
1da177e4 3179{
6811378e 3180 int nid;
99dcc3e5 3181 int cpu;
9276b1bc 3182
7f9cfb31
BL
3183#ifdef CONFIG_NUMA
3184 memset(node_load, 0, sizeof(node_load));
3185#endif
9276b1bc 3186 for_each_online_node(nid) {
7ea1530a
CL
3187 pg_data_t *pgdat = NODE_DATA(nid);
3188
3189 build_zonelists(pgdat);
3190 build_zonelist_cache(pgdat);
9276b1bc 3191 }
99dcc3e5
CL
3192
3193 /*
3194 * Initialize the boot_pagesets that are going to be used
3195 * for bootstrapping processors. The real pagesets for
3196 * each zone will be allocated later when the per cpu
3197 * allocator is available.
3198 *
3199 * boot_pagesets are used also for bootstrapping offline
3200 * cpus if the system is already booted because the pagesets
3201 * are needed to initialize allocators on a specific cpu too.
3202 * F.e. the percpu allocator needs the page allocator which
3203 * needs the percpu allocator in order to allocate its pagesets
3204 * (a chicken-egg dilemma).
3205 */
7aac7898 3206 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3207 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3208
7aac7898
LS
3209#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3210 /*
3211 * We now know the "local memory node" for each node--
3212 * i.e., the node of the first zone in the generic zonelist.
3213 * Set up numa_mem percpu variable for on-line cpus. During
3214 * boot, only the boot cpu should be on-line; we'll init the
3215 * secondary cpus' numa_mem as they come on-line. During
3216 * node/memory hotplug, we'll fixup all on-line cpus.
3217 */
3218 if (cpu_online(cpu))
3219 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3220#endif
3221 }
3222
6811378e
YG
3223 return 0;
3224}
3225
4eaf3f64
HL
3226/*
3227 * Called with zonelists_mutex held always
3228 * unless system_state == SYSTEM_BOOTING.
3229 */
9f6ae448 3230void __ref build_all_zonelists(void *data)
6811378e 3231{
f0c0b2b8
KH
3232 set_zonelist_order();
3233
6811378e 3234 if (system_state == SYSTEM_BOOTING) {
423b41d7 3235 __build_all_zonelists(NULL);
68ad8df4 3236 mminit_verify_zonelist();
6811378e
YG
3237 cpuset_init_current_mems_allowed();
3238 } else {
183ff22b 3239 /* we have to stop all cpus to guarantee there is no user
6811378e 3240 of zonelist */
e9959f0f
KH
3241#ifdef CONFIG_MEMORY_HOTPLUG
3242 if (data)
3243 setup_zone_pageset((struct zone *)data);
3244#endif
3245 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
3246 /* cpuset refresh routine should be here */
3247 }
bd1e22b8 3248 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3249 /*
3250 * Disable grouping by mobility if the number of pages in the
3251 * system is too low to allow the mechanism to work. It would be
3252 * more accurate, but expensive to check per-zone. This check is
3253 * made on memory-hotadd so a system can start with mobility
3254 * disabled and enable it later
3255 */
d9c23400 3256 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3257 page_group_by_mobility_disabled = 1;
3258 else
3259 page_group_by_mobility_disabled = 0;
3260
3261 printk("Built %i zonelists in %s order, mobility grouping %s. "
3262 "Total pages: %ld\n",
62bc62a8 3263 nr_online_nodes,
f0c0b2b8 3264 zonelist_order_name[current_zonelist_order],
9ef9acb0 3265 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3266 vm_total_pages);
3267#ifdef CONFIG_NUMA
3268 printk("Policy zone: %s\n", zone_names[policy_zone]);
3269#endif
1da177e4
LT
3270}
3271
3272/*
3273 * Helper functions to size the waitqueue hash table.
3274 * Essentially these want to choose hash table sizes sufficiently
3275 * large so that collisions trying to wait on pages are rare.
3276 * But in fact, the number of active page waitqueues on typical
3277 * systems is ridiculously low, less than 200. So this is even
3278 * conservative, even though it seems large.
3279 *
3280 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3281 * waitqueues, i.e. the size of the waitq table given the number of pages.
3282 */
3283#define PAGES_PER_WAITQUEUE 256
3284
cca448fe 3285#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3286static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3287{
3288 unsigned long size = 1;
3289
3290 pages /= PAGES_PER_WAITQUEUE;
3291
3292 while (size < pages)
3293 size <<= 1;
3294
3295 /*
3296 * Once we have dozens or even hundreds of threads sleeping
3297 * on IO we've got bigger problems than wait queue collision.
3298 * Limit the size of the wait table to a reasonable size.
3299 */
3300 size = min(size, 4096UL);
3301
3302 return max(size, 4UL);
3303}
cca448fe
YG
3304#else
3305/*
3306 * A zone's size might be changed by hot-add, so it is not possible to determine
3307 * a suitable size for its wait_table. So we use the maximum size now.
3308 *
3309 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3310 *
3311 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3312 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3313 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3314 *
3315 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3316 * or more by the traditional way. (See above). It equals:
3317 *
3318 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3319 * ia64(16K page size) : = ( 8G + 4M)byte.
3320 * powerpc (64K page size) : = (32G +16M)byte.
3321 */
3322static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3323{
3324 return 4096UL;
3325}
3326#endif
1da177e4
LT
3327
3328/*
3329 * This is an integer logarithm so that shifts can be used later
3330 * to extract the more random high bits from the multiplicative
3331 * hash function before the remainder is taken.
3332 */
3333static inline unsigned long wait_table_bits(unsigned long size)
3334{
3335 return ffz(~size);
3336}
3337
3338#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3339
6d3163ce
AH
3340/*
3341 * Check if a pageblock contains reserved pages
3342 */
3343static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3344{
3345 unsigned long pfn;
3346
3347 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3348 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3349 return 1;
3350 }
3351 return 0;
3352}
3353
56fd56b8 3354/*
d9c23400 3355 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3356 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3357 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3358 * higher will lead to a bigger reserve which will get freed as contiguous
3359 * blocks as reclaim kicks in
3360 */
3361static void setup_zone_migrate_reserve(struct zone *zone)
3362{
6d3163ce 3363 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3364 struct page *page;
78986a67
MG
3365 unsigned long block_migratetype;
3366 int reserve;
56fd56b8
MG
3367
3368 /* Get the start pfn, end pfn and the number of blocks to reserve */
3369 start_pfn = zone->zone_start_pfn;
3370 end_pfn = start_pfn + zone->spanned_pages;
41858966 3371 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3372 pageblock_order;
56fd56b8 3373
78986a67
MG
3374 /*
3375 * Reserve blocks are generally in place to help high-order atomic
3376 * allocations that are short-lived. A min_free_kbytes value that
3377 * would result in more than 2 reserve blocks for atomic allocations
3378 * is assumed to be in place to help anti-fragmentation for the
3379 * future allocation of hugepages at runtime.
3380 */
3381 reserve = min(2, reserve);
3382
d9c23400 3383 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3384 if (!pfn_valid(pfn))
3385 continue;
3386 page = pfn_to_page(pfn);
3387
344c790e
AL
3388 /* Watch out for overlapping nodes */
3389 if (page_to_nid(page) != zone_to_nid(zone))
3390 continue;
3391
56fd56b8 3392 /* Blocks with reserved pages will never free, skip them. */
6d3163ce
AH
3393 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3394 if (pageblock_is_reserved(pfn, block_end_pfn))
56fd56b8
MG
3395 continue;
3396
3397 block_migratetype = get_pageblock_migratetype(page);
3398
3399 /* If this block is reserved, account for it */
3400 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3401 reserve--;
3402 continue;
3403 }
3404
3405 /* Suitable for reserving if this block is movable */
3406 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3407 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3408 move_freepages_block(zone, page, MIGRATE_RESERVE);
3409 reserve--;
3410 continue;
3411 }
3412
3413 /*
3414 * If the reserve is met and this is a previous reserved block,
3415 * take it back
3416 */
3417 if (block_migratetype == MIGRATE_RESERVE) {
3418 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3419 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3420 }
3421 }
3422}
ac0e5b7a 3423
1da177e4
LT
3424/*
3425 * Initially all pages are reserved - free ones are freed
3426 * up by free_all_bootmem() once the early boot process is
3427 * done. Non-atomic initialization, single-pass.
3428 */
c09b4240 3429void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3430 unsigned long start_pfn, enum memmap_context context)
1da177e4 3431{
1da177e4 3432 struct page *page;
29751f69
AW
3433 unsigned long end_pfn = start_pfn + size;
3434 unsigned long pfn;
86051ca5 3435 struct zone *z;
1da177e4 3436
22b31eec
HD
3437 if (highest_memmap_pfn < end_pfn - 1)
3438 highest_memmap_pfn = end_pfn - 1;
3439
86051ca5 3440 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3441 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3442 /*
3443 * There can be holes in boot-time mem_map[]s
3444 * handed to this function. They do not
3445 * exist on hotplugged memory.
3446 */
3447 if (context == MEMMAP_EARLY) {
3448 if (!early_pfn_valid(pfn))
3449 continue;
3450 if (!early_pfn_in_nid(pfn, nid))
3451 continue;
3452 }
d41dee36
AW
3453 page = pfn_to_page(pfn);
3454 set_page_links(page, zone, nid, pfn);
708614e6 3455 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3456 init_page_count(page);
1da177e4
LT
3457 reset_page_mapcount(page);
3458 SetPageReserved(page);
b2a0ac88
MG
3459 /*
3460 * Mark the block movable so that blocks are reserved for
3461 * movable at startup. This will force kernel allocations
3462 * to reserve their blocks rather than leaking throughout
3463 * the address space during boot when many long-lived
56fd56b8
MG
3464 * kernel allocations are made. Later some blocks near
3465 * the start are marked MIGRATE_RESERVE by
3466 * setup_zone_migrate_reserve()
86051ca5
KH
3467 *
3468 * bitmap is created for zone's valid pfn range. but memmap
3469 * can be created for invalid pages (for alignment)
3470 * check here not to call set_pageblock_migratetype() against
3471 * pfn out of zone.
b2a0ac88 3472 */
86051ca5
KH
3473 if ((z->zone_start_pfn <= pfn)
3474 && (pfn < z->zone_start_pfn + z->spanned_pages)
3475 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3476 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3477
1da177e4
LT
3478 INIT_LIST_HEAD(&page->lru);
3479#ifdef WANT_PAGE_VIRTUAL
3480 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3481 if (!is_highmem_idx(zone))
3212c6be 3482 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3483#endif
1da177e4
LT
3484 }
3485}
3486
1e548deb 3487static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3488{
b2a0ac88
MG
3489 int order, t;
3490 for_each_migratetype_order(order, t) {
3491 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3492 zone->free_area[order].nr_free = 0;
3493 }
3494}
3495
3496#ifndef __HAVE_ARCH_MEMMAP_INIT
3497#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3498 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3499#endif
3500
1d6f4e60 3501static int zone_batchsize(struct zone *zone)
e7c8d5c9 3502{
3a6be87f 3503#ifdef CONFIG_MMU
e7c8d5c9
CL
3504 int batch;
3505
3506 /*
3507 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3508 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3509 *
3510 * OK, so we don't know how big the cache is. So guess.
3511 */
3512 batch = zone->present_pages / 1024;
ba56e91c
SR
3513 if (batch * PAGE_SIZE > 512 * 1024)
3514 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3515 batch /= 4; /* We effectively *= 4 below */
3516 if (batch < 1)
3517 batch = 1;
3518
3519 /*
0ceaacc9
NP
3520 * Clamp the batch to a 2^n - 1 value. Having a power
3521 * of 2 value was found to be more likely to have
3522 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3523 *
0ceaacc9
NP
3524 * For example if 2 tasks are alternately allocating
3525 * batches of pages, one task can end up with a lot
3526 * of pages of one half of the possible page colors
3527 * and the other with pages of the other colors.
e7c8d5c9 3528 */
9155203a 3529 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3530
e7c8d5c9 3531 return batch;
3a6be87f
DH
3532
3533#else
3534 /* The deferral and batching of frees should be suppressed under NOMMU
3535 * conditions.
3536 *
3537 * The problem is that NOMMU needs to be able to allocate large chunks
3538 * of contiguous memory as there's no hardware page translation to
3539 * assemble apparent contiguous memory from discontiguous pages.
3540 *
3541 * Queueing large contiguous runs of pages for batching, however,
3542 * causes the pages to actually be freed in smaller chunks. As there
3543 * can be a significant delay between the individual batches being
3544 * recycled, this leads to the once large chunks of space being
3545 * fragmented and becoming unavailable for high-order allocations.
3546 */
3547 return 0;
3548#endif
e7c8d5c9
CL
3549}
3550
b69a7288 3551static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3552{
3553 struct per_cpu_pages *pcp;
5f8dcc21 3554 int migratetype;
2caaad41 3555
1c6fe946
MD
3556 memset(p, 0, sizeof(*p));
3557
3dfa5721 3558 pcp = &p->pcp;
2caaad41 3559 pcp->count = 0;
2caaad41
CL
3560 pcp->high = 6 * batch;
3561 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3562 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3563 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3564}
3565
8ad4b1fb
RS
3566/*
3567 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3568 * to the value high for the pageset p.
3569 */
3570
3571static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3572 unsigned long high)
3573{
3574 struct per_cpu_pages *pcp;
3575
3dfa5721 3576 pcp = &p->pcp;
8ad4b1fb
RS
3577 pcp->high = high;
3578 pcp->batch = max(1UL, high/4);
3579 if ((high/4) > (PAGE_SHIFT * 8))
3580 pcp->batch = PAGE_SHIFT * 8;
3581}
3582
58c2ee40 3583static void setup_zone_pageset(struct zone *zone)
319774e2
WF
3584{
3585 int cpu;
3586
3587 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3588
3589 for_each_possible_cpu(cpu) {
3590 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3591
3592 setup_pageset(pcp, zone_batchsize(zone));
3593
3594 if (percpu_pagelist_fraction)
3595 setup_pagelist_highmark(pcp,
3596 (zone->present_pages /
3597 percpu_pagelist_fraction));
3598 }
3599}
3600
2caaad41 3601/*
99dcc3e5
CL
3602 * Allocate per cpu pagesets and initialize them.
3603 * Before this call only boot pagesets were available.
e7c8d5c9 3604 */
99dcc3e5 3605void __init setup_per_cpu_pageset(void)
e7c8d5c9 3606{
99dcc3e5 3607 struct zone *zone;
e7c8d5c9 3608
319774e2
WF
3609 for_each_populated_zone(zone)
3610 setup_zone_pageset(zone);
e7c8d5c9
CL
3611}
3612
577a32f6 3613static noinline __init_refok
cca448fe 3614int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3615{
3616 int i;
3617 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3618 size_t alloc_size;
ed8ece2e
DH
3619
3620 /*
3621 * The per-page waitqueue mechanism uses hashed waitqueues
3622 * per zone.
3623 */
02b694de
YG
3624 zone->wait_table_hash_nr_entries =
3625 wait_table_hash_nr_entries(zone_size_pages);
3626 zone->wait_table_bits =
3627 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3628 alloc_size = zone->wait_table_hash_nr_entries
3629 * sizeof(wait_queue_head_t);
3630
cd94b9db 3631 if (!slab_is_available()) {
cca448fe 3632 zone->wait_table = (wait_queue_head_t *)
8f389a99 3633 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
3634 } else {
3635 /*
3636 * This case means that a zone whose size was 0 gets new memory
3637 * via memory hot-add.
3638 * But it may be the case that a new node was hot-added. In
3639 * this case vmalloc() will not be able to use this new node's
3640 * memory - this wait_table must be initialized to use this new
3641 * node itself as well.
3642 * To use this new node's memory, further consideration will be
3643 * necessary.
3644 */
8691f3a7 3645 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3646 }
3647 if (!zone->wait_table)
3648 return -ENOMEM;
ed8ece2e 3649
02b694de 3650 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3651 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3652
3653 return 0;
ed8ece2e
DH
3654}
3655
112067f0
SL
3656static int __zone_pcp_update(void *data)
3657{
3658 struct zone *zone = data;
3659 int cpu;
3660 unsigned long batch = zone_batchsize(zone), flags;
3661
2d30a1f6 3662 for_each_possible_cpu(cpu) {
112067f0
SL
3663 struct per_cpu_pageset *pset;
3664 struct per_cpu_pages *pcp;
3665
99dcc3e5 3666 pset = per_cpu_ptr(zone->pageset, cpu);
112067f0
SL
3667 pcp = &pset->pcp;
3668
3669 local_irq_save(flags);
5f8dcc21 3670 free_pcppages_bulk(zone, pcp->count, pcp);
112067f0
SL
3671 setup_pageset(pset, batch);
3672 local_irq_restore(flags);
3673 }
3674 return 0;
3675}
3676
3677void zone_pcp_update(struct zone *zone)
3678{
3679 stop_machine(__zone_pcp_update, zone, NULL);
3680}
3681
c09b4240 3682static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 3683{
99dcc3e5
CL
3684 /*
3685 * per cpu subsystem is not up at this point. The following code
3686 * relies on the ability of the linker to provide the
3687 * offset of a (static) per cpu variable into the per cpu area.
3688 */
3689 zone->pageset = &boot_pageset;
ed8ece2e 3690
f5335c0f 3691 if (zone->present_pages)
99dcc3e5
CL
3692 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3693 zone->name, zone->present_pages,
3694 zone_batchsize(zone));
ed8ece2e
DH
3695}
3696
718127cc
YG
3697__meminit int init_currently_empty_zone(struct zone *zone,
3698 unsigned long zone_start_pfn,
a2f3aa02
DH
3699 unsigned long size,
3700 enum memmap_context context)
ed8ece2e
DH
3701{
3702 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3703 int ret;
3704 ret = zone_wait_table_init(zone, size);
3705 if (ret)
3706 return ret;
ed8ece2e
DH
3707 pgdat->nr_zones = zone_idx(zone) + 1;
3708
ed8ece2e
DH
3709 zone->zone_start_pfn = zone_start_pfn;
3710
708614e6
MG
3711 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3712 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3713 pgdat->node_id,
3714 (unsigned long)zone_idx(zone),
3715 zone_start_pfn, (zone_start_pfn + size));
3716
1e548deb 3717 zone_init_free_lists(zone);
718127cc
YG
3718
3719 return 0;
ed8ece2e
DH
3720}
3721
c713216d
MG
3722#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3723/*
3724 * Basic iterator support. Return the first range of PFNs for a node
3725 * Note: nid == MAX_NUMNODES returns first region regardless of node
3726 */
a3142c8e 3727static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
3728{
3729 int i;
3730
3731 for (i = 0; i < nr_nodemap_entries; i++)
3732 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3733 return i;
3734
3735 return -1;
3736}
3737
3738/*
3739 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 3740 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 3741 */
a3142c8e 3742static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
3743{
3744 for (index = index + 1; index < nr_nodemap_entries; index++)
3745 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3746 return index;
3747
3748 return -1;
3749}
3750
3751#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3752/*
3753 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3754 * Architectures may implement their own version but if add_active_range()
3755 * was used and there are no special requirements, this is a convenient
3756 * alternative
3757 */
f2dbcfa7 3758int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
3759{
3760 int i;
3761
3762 for (i = 0; i < nr_nodemap_entries; i++) {
3763 unsigned long start_pfn = early_node_map[i].start_pfn;
3764 unsigned long end_pfn = early_node_map[i].end_pfn;
3765
3766 if (start_pfn <= pfn && pfn < end_pfn)
3767 return early_node_map[i].nid;
3768 }
cc2559bc
KH
3769 /* This is a memory hole */
3770 return -1;
c713216d
MG
3771}
3772#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3773
f2dbcfa7
KH
3774int __meminit early_pfn_to_nid(unsigned long pfn)
3775{
cc2559bc
KH
3776 int nid;
3777
3778 nid = __early_pfn_to_nid(pfn);
3779 if (nid >= 0)
3780 return nid;
3781 /* just returns 0 */
3782 return 0;
f2dbcfa7
KH
3783}
3784
cc2559bc
KH
3785#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3786bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3787{
3788 int nid;
3789
3790 nid = __early_pfn_to_nid(pfn);
3791 if (nid >= 0 && nid != node)
3792 return false;
3793 return true;
3794}
3795#endif
f2dbcfa7 3796
c713216d
MG
3797/* Basic iterator support to walk early_node_map[] */
3798#define for_each_active_range_index_in_nid(i, nid) \
3799 for (i = first_active_region_index_in_nid(nid); i != -1; \
3800 i = next_active_region_index_in_nid(i, nid))
3801
3802/**
3803 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3804 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3805 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3806 *
3807 * If an architecture guarantees that all ranges registered with
3808 * add_active_ranges() contain no holes and may be freed, this
3809 * this function may be used instead of calling free_bootmem() manually.
3810 */
3811void __init free_bootmem_with_active_regions(int nid,
3812 unsigned long max_low_pfn)
3813{
3814 int i;
3815
3816 for_each_active_range_index_in_nid(i, nid) {
3817 unsigned long size_pages = 0;
3818 unsigned long end_pfn = early_node_map[i].end_pfn;
3819
3820 if (early_node_map[i].start_pfn >= max_low_pfn)
3821 continue;
3822
3823 if (end_pfn > max_low_pfn)
3824 end_pfn = max_low_pfn;
3825
3826 size_pages = end_pfn - early_node_map[i].start_pfn;
3827 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3828 PFN_PHYS(early_node_map[i].start_pfn),
3829 size_pages << PAGE_SHIFT);
3830 }
3831}
3832
edbe7d23 3833#ifdef CONFIG_HAVE_MEMBLOCK
cc289894
YL
3834/*
3835 * Basic iterator support. Return the last range of PFNs for a node
3836 * Note: nid == MAX_NUMNODES returns last region regardless of node
3837 */
3838static int __meminit last_active_region_index_in_nid(int nid)
3839{
3840 int i;
3841
3842 for (i = nr_nodemap_entries - 1; i >= 0; i--)
3843 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3844 return i;
3845
3846 return -1;
3847}
3848
3849/*
3850 * Basic iterator support. Return the previous active range of PFNs for a node
3851 * Note: nid == MAX_NUMNODES returns next region regardless of node
3852 */
3853static int __meminit previous_active_region_index_in_nid(int index, int nid)
3854{
3855 for (index = index - 1; index >= 0; index--)
3856 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3857 return index;
3858
3859 return -1;
3860}
3861
3862#define for_each_active_range_index_in_nid_reverse(i, nid) \
3863 for (i = last_active_region_index_in_nid(nid); i != -1; \
3864 i = previous_active_region_index_in_nid(i, nid))
3865
edbe7d23
YL
3866u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3867 u64 goal, u64 limit)
3868{
3869 int i;
3870
3871 /* Need to go over early_node_map to find out good range for node */
1a4a678b 3872 for_each_active_range_index_in_nid_reverse(i, nid) {
edbe7d23
YL
3873 u64 addr;
3874 u64 ei_start, ei_last;
3875 u64 final_start, final_end;
3876
3877 ei_last = early_node_map[i].end_pfn;
3878 ei_last <<= PAGE_SHIFT;
3879 ei_start = early_node_map[i].start_pfn;
3880 ei_start <<= PAGE_SHIFT;
3881
3882 final_start = max(ei_start, goal);
3883 final_end = min(ei_last, limit);
3884
3885 if (final_start >= final_end)
3886 continue;
3887
3888 addr = memblock_find_in_range(final_start, final_end, size, align);
3889
3890 if (addr == MEMBLOCK_ERROR)
3891 continue;
3892
3893 return addr;
3894 }
3895
3896 return MEMBLOCK_ERROR;
3897}
3898#endif
3899
08677214
YL
3900int __init add_from_early_node_map(struct range *range, int az,
3901 int nr_range, int nid)
3902{
3903 int i;
3904 u64 start, end;
3905
3906 /* need to go over early_node_map to find out good range for node */
3907 for_each_active_range_index_in_nid(i, nid) {
3908 start = early_node_map[i].start_pfn;
3909 end = early_node_map[i].end_pfn;
3910 nr_range = add_range(range, az, nr_range, start, end);
3911 }
3912 return nr_range;
3913}
3914
b5bc6c0e
YL
3915void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3916{
3917 int i;
d52d53b8 3918 int ret;
b5bc6c0e 3919
d52d53b8
YL
3920 for_each_active_range_index_in_nid(i, nid) {
3921 ret = work_fn(early_node_map[i].start_pfn,
3922 early_node_map[i].end_pfn, data);
3923 if (ret)
3924 break;
3925 }
b5bc6c0e 3926}
c713216d
MG
3927/**
3928 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3929 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3930 *
3931 * If an architecture guarantees that all ranges registered with
3932 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3933 * function may be used instead of calling memory_present() manually.
c713216d
MG
3934 */
3935void __init sparse_memory_present_with_active_regions(int nid)
3936{
3937 int i;
3938
3939 for_each_active_range_index_in_nid(i, nid)
3940 memory_present(early_node_map[i].nid,
3941 early_node_map[i].start_pfn,
3942 early_node_map[i].end_pfn);
3943}
3944
3945/**
3946 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3947 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3948 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3949 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3950 *
3951 * It returns the start and end page frame of a node based on information
3952 * provided by an arch calling add_active_range(). If called for a node
3953 * with no available memory, a warning is printed and the start and end
88ca3b94 3954 * PFNs will be 0.
c713216d 3955 */
a3142c8e 3956void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3957 unsigned long *start_pfn, unsigned long *end_pfn)
3958{
3959 int i;
3960 *start_pfn = -1UL;
3961 *end_pfn = 0;
3962
3963 for_each_active_range_index_in_nid(i, nid) {
3964 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3965 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3966 }
3967
633c0666 3968 if (*start_pfn == -1UL)
c713216d 3969 *start_pfn = 0;
c713216d
MG
3970}
3971
2a1e274a
MG
3972/*
3973 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3974 * assumption is made that zones within a node are ordered in monotonic
3975 * increasing memory addresses so that the "highest" populated zone is used
3976 */
b69a7288 3977static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3978{
3979 int zone_index;
3980 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3981 if (zone_index == ZONE_MOVABLE)
3982 continue;
3983
3984 if (arch_zone_highest_possible_pfn[zone_index] >
3985 arch_zone_lowest_possible_pfn[zone_index])
3986 break;
3987 }
3988
3989 VM_BUG_ON(zone_index == -1);
3990 movable_zone = zone_index;
3991}
3992
3993/*
3994 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 3995 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
3996 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3997 * in each node depending on the size of each node and how evenly kernelcore
3998 * is distributed. This helper function adjusts the zone ranges
3999 * provided by the architecture for a given node by using the end of the
4000 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4001 * zones within a node are in order of monotonic increases memory addresses
4002 */
b69a7288 4003static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4004 unsigned long zone_type,
4005 unsigned long node_start_pfn,
4006 unsigned long node_end_pfn,
4007 unsigned long *zone_start_pfn,
4008 unsigned long *zone_end_pfn)
4009{
4010 /* Only adjust if ZONE_MOVABLE is on this node */
4011 if (zone_movable_pfn[nid]) {
4012 /* Size ZONE_MOVABLE */
4013 if (zone_type == ZONE_MOVABLE) {
4014 *zone_start_pfn = zone_movable_pfn[nid];
4015 *zone_end_pfn = min(node_end_pfn,
4016 arch_zone_highest_possible_pfn[movable_zone]);
4017
4018 /* Adjust for ZONE_MOVABLE starting within this range */
4019 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4020 *zone_end_pfn > zone_movable_pfn[nid]) {
4021 *zone_end_pfn = zone_movable_pfn[nid];
4022
4023 /* Check if this whole range is within ZONE_MOVABLE */
4024 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4025 *zone_start_pfn = *zone_end_pfn;
4026 }
4027}
4028
c713216d
MG
4029/*
4030 * Return the number of pages a zone spans in a node, including holes
4031 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4032 */
6ea6e688 4033static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4034 unsigned long zone_type,
4035 unsigned long *ignored)
4036{
4037 unsigned long node_start_pfn, node_end_pfn;
4038 unsigned long zone_start_pfn, zone_end_pfn;
4039
4040 /* Get the start and end of the node and zone */
4041 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4042 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4043 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4044 adjust_zone_range_for_zone_movable(nid, zone_type,
4045 node_start_pfn, node_end_pfn,
4046 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4047
4048 /* Check that this node has pages within the zone's required range */
4049 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4050 return 0;
4051
4052 /* Move the zone boundaries inside the node if necessary */
4053 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4054 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4055
4056 /* Return the spanned pages */
4057 return zone_end_pfn - zone_start_pfn;
4058}
4059
4060/*
4061 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4062 * then all holes in the requested range will be accounted for.
c713216d 4063 */
32996250 4064unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4065 unsigned long range_start_pfn,
4066 unsigned long range_end_pfn)
4067{
4068 int i = 0;
4069 unsigned long prev_end_pfn = 0, hole_pages = 0;
4070 unsigned long start_pfn;
4071
4072 /* Find the end_pfn of the first active range of pfns in the node */
4073 i = first_active_region_index_in_nid(nid);
4074 if (i == -1)
4075 return 0;
4076
b5445f95
MG
4077 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4078
9c7cd687
MG
4079 /* Account for ranges before physical memory on this node */
4080 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 4081 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
4082
4083 /* Find all holes for the zone within the node */
4084 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
4085
4086 /* No need to continue if prev_end_pfn is outside the zone */
4087 if (prev_end_pfn >= range_end_pfn)
4088 break;
4089
4090 /* Make sure the end of the zone is not within the hole */
4091 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4092 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
4093
4094 /* Update the hole size cound and move on */
4095 if (start_pfn > range_start_pfn) {
4096 BUG_ON(prev_end_pfn > start_pfn);
4097 hole_pages += start_pfn - prev_end_pfn;
4098 }
4099 prev_end_pfn = early_node_map[i].end_pfn;
4100 }
4101
9c7cd687
MG
4102 /* Account for ranges past physical memory on this node */
4103 if (range_end_pfn > prev_end_pfn)
0c6cb974 4104 hole_pages += range_end_pfn -
9c7cd687
MG
4105 max(range_start_pfn, prev_end_pfn);
4106
c713216d
MG
4107 return hole_pages;
4108}
4109
4110/**
4111 * absent_pages_in_range - Return number of page frames in holes within a range
4112 * @start_pfn: The start PFN to start searching for holes
4113 * @end_pfn: The end PFN to stop searching for holes
4114 *
88ca3b94 4115 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4116 */
4117unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4118 unsigned long end_pfn)
4119{
4120 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4121}
4122
4123/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4124static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4125 unsigned long zone_type,
4126 unsigned long *ignored)
4127{
9c7cd687
MG
4128 unsigned long node_start_pfn, node_end_pfn;
4129 unsigned long zone_start_pfn, zone_end_pfn;
4130
4131 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4132 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
4133 node_start_pfn);
4134 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
4135 node_end_pfn);
4136
2a1e274a
MG
4137 adjust_zone_range_for_zone_movable(nid, zone_type,
4138 node_start_pfn, node_end_pfn,
4139 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4140 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4141}
0e0b864e 4142
c713216d 4143#else
6ea6e688 4144static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4145 unsigned long zone_type,
4146 unsigned long *zones_size)
4147{
4148 return zones_size[zone_type];
4149}
4150
6ea6e688 4151static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4152 unsigned long zone_type,
4153 unsigned long *zholes_size)
4154{
4155 if (!zholes_size)
4156 return 0;
4157
4158 return zholes_size[zone_type];
4159}
0e0b864e 4160
c713216d
MG
4161#endif
4162
a3142c8e 4163static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4164 unsigned long *zones_size, unsigned long *zholes_size)
4165{
4166 unsigned long realtotalpages, totalpages = 0;
4167 enum zone_type i;
4168
4169 for (i = 0; i < MAX_NR_ZONES; i++)
4170 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4171 zones_size);
4172 pgdat->node_spanned_pages = totalpages;
4173
4174 realtotalpages = totalpages;
4175 for (i = 0; i < MAX_NR_ZONES; i++)
4176 realtotalpages -=
4177 zone_absent_pages_in_node(pgdat->node_id, i,
4178 zholes_size);
4179 pgdat->node_present_pages = realtotalpages;
4180 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4181 realtotalpages);
4182}
4183
835c134e
MG
4184#ifndef CONFIG_SPARSEMEM
4185/*
4186 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4187 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4188 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4189 * round what is now in bits to nearest long in bits, then return it in
4190 * bytes.
4191 */
4192static unsigned long __init usemap_size(unsigned long zonesize)
4193{
4194 unsigned long usemapsize;
4195
d9c23400
MG
4196 usemapsize = roundup(zonesize, pageblock_nr_pages);
4197 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4198 usemapsize *= NR_PAGEBLOCK_BITS;
4199 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4200
4201 return usemapsize / 8;
4202}
4203
4204static void __init setup_usemap(struct pglist_data *pgdat,
4205 struct zone *zone, unsigned long zonesize)
4206{
4207 unsigned long usemapsize = usemap_size(zonesize);
4208 zone->pageblock_flags = NULL;
58a01a45 4209 if (usemapsize)
8f389a99
YL
4210 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4211 usemapsize);
835c134e
MG
4212}
4213#else
fa9f90be 4214static inline void setup_usemap(struct pglist_data *pgdat,
835c134e
MG
4215 struct zone *zone, unsigned long zonesize) {}
4216#endif /* CONFIG_SPARSEMEM */
4217
d9c23400 4218#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
4219
4220/* Return a sensible default order for the pageblock size. */
4221static inline int pageblock_default_order(void)
4222{
4223 if (HPAGE_SHIFT > PAGE_SHIFT)
4224 return HUGETLB_PAGE_ORDER;
4225
4226 return MAX_ORDER-1;
4227}
4228
d9c23400
MG
4229/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4230static inline void __init set_pageblock_order(unsigned int order)
4231{
4232 /* Check that pageblock_nr_pages has not already been setup */
4233 if (pageblock_order)
4234 return;
4235
4236 /*
4237 * Assume the largest contiguous order of interest is a huge page.
4238 * This value may be variable depending on boot parameters on IA64
4239 */
4240 pageblock_order = order;
4241}
4242#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4243
ba72cb8c
MG
4244/*
4245 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4246 * and pageblock_default_order() are unused as pageblock_order is set
4247 * at compile-time. See include/linux/pageblock-flags.h for the values of
4248 * pageblock_order based on the kernel config
4249 */
4250static inline int pageblock_default_order(unsigned int order)
4251{
4252 return MAX_ORDER-1;
4253}
d9c23400
MG
4254#define set_pageblock_order(x) do {} while (0)
4255
4256#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4257
1da177e4
LT
4258/*
4259 * Set up the zone data structures:
4260 * - mark all pages reserved
4261 * - mark all memory queues empty
4262 * - clear the memory bitmaps
4263 */
b5a0e011 4264static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4265 unsigned long *zones_size, unsigned long *zholes_size)
4266{
2f1b6248 4267 enum zone_type j;
ed8ece2e 4268 int nid = pgdat->node_id;
1da177e4 4269 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4270 int ret;
1da177e4 4271
208d54e5 4272 pgdat_resize_init(pgdat);
1da177e4
LT
4273 pgdat->nr_zones = 0;
4274 init_waitqueue_head(&pgdat->kswapd_wait);
4275 pgdat->kswapd_max_order = 0;
52d4b9ac 4276 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
4277
4278 for (j = 0; j < MAX_NR_ZONES; j++) {
4279 struct zone *zone = pgdat->node_zones + j;
0e0b864e 4280 unsigned long size, realsize, memmap_pages;
b69408e8 4281 enum lru_list l;
1da177e4 4282
c713216d
MG
4283 size = zone_spanned_pages_in_node(nid, j, zones_size);
4284 realsize = size - zone_absent_pages_in_node(nid, j,
4285 zholes_size);
1da177e4 4286
0e0b864e
MG
4287 /*
4288 * Adjust realsize so that it accounts for how much memory
4289 * is used by this zone for memmap. This affects the watermark
4290 * and per-cpu initialisations
4291 */
f7232154
JW
4292 memmap_pages =
4293 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
4294 if (realsize >= memmap_pages) {
4295 realsize -= memmap_pages;
5594c8c8
YL
4296 if (memmap_pages)
4297 printk(KERN_DEBUG
4298 " %s zone: %lu pages used for memmap\n",
4299 zone_names[j], memmap_pages);
0e0b864e
MG
4300 } else
4301 printk(KERN_WARNING
4302 " %s zone: %lu pages exceeds realsize %lu\n",
4303 zone_names[j], memmap_pages, realsize);
4304
6267276f
CL
4305 /* Account for reserved pages */
4306 if (j == 0 && realsize > dma_reserve) {
0e0b864e 4307 realsize -= dma_reserve;
d903ef9f 4308 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4309 zone_names[0], dma_reserve);
0e0b864e
MG
4310 }
4311
98d2b0eb 4312 if (!is_highmem_idx(j))
1da177e4
LT
4313 nr_kernel_pages += realsize;
4314 nr_all_pages += realsize;
4315
4316 zone->spanned_pages = size;
4317 zone->present_pages = realsize;
9614634f 4318#ifdef CONFIG_NUMA
d5f541ed 4319 zone->node = nid;
8417bba4 4320 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4321 / 100;
0ff38490 4322 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4323#endif
1da177e4
LT
4324 zone->name = zone_names[j];
4325 spin_lock_init(&zone->lock);
4326 spin_lock_init(&zone->lru_lock);
bdc8cb98 4327 zone_seqlock_init(zone);
1da177e4 4328 zone->zone_pgdat = pgdat;
1da177e4 4329
ed8ece2e 4330 zone_pcp_init(zone);
246e87a9 4331 for_each_lru(l)
b69408e8 4332 INIT_LIST_HEAD(&zone->lru[l].list);
6e901571
KM
4333 zone->reclaim_stat.recent_rotated[0] = 0;
4334 zone->reclaim_stat.recent_rotated[1] = 0;
4335 zone->reclaim_stat.recent_scanned[0] = 0;
4336 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 4337 zap_zone_vm_stats(zone);
e815af95 4338 zone->flags = 0;
1da177e4
LT
4339 if (!size)
4340 continue;
4341
ba72cb8c 4342 set_pageblock_order(pageblock_default_order());
835c134e 4343 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4344 ret = init_currently_empty_zone(zone, zone_start_pfn,
4345 size, MEMMAP_EARLY);
718127cc 4346 BUG_ON(ret);
76cdd58e 4347 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4348 zone_start_pfn += size;
1da177e4
LT
4349 }
4350}
4351
577a32f6 4352static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4353{
1da177e4
LT
4354 /* Skip empty nodes */
4355 if (!pgdat->node_spanned_pages)
4356 return;
4357
d41dee36 4358#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4359 /* ia64 gets its own node_mem_map, before this, without bootmem */
4360 if (!pgdat->node_mem_map) {
e984bb43 4361 unsigned long size, start, end;
d41dee36
AW
4362 struct page *map;
4363
e984bb43
BP
4364 /*
4365 * The zone's endpoints aren't required to be MAX_ORDER
4366 * aligned but the node_mem_map endpoints must be in order
4367 * for the buddy allocator to function correctly.
4368 */
4369 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4370 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4371 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4372 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4373 map = alloc_remap(pgdat->node_id, size);
4374 if (!map)
8f389a99 4375 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4376 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4377 }
12d810c1 4378#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4379 /*
4380 * With no DISCONTIG, the global mem_map is just set as node 0's
4381 */
c713216d 4382 if (pgdat == NODE_DATA(0)) {
1da177e4 4383 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
4384#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4385 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4386 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
4387#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4388 }
1da177e4 4389#endif
d41dee36 4390#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4391}
4392
9109fb7b
JW
4393void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4394 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4395{
9109fb7b
JW
4396 pg_data_t *pgdat = NODE_DATA(nid);
4397
1da177e4
LT
4398 pgdat->node_id = nid;
4399 pgdat->node_start_pfn = node_start_pfn;
c713216d 4400 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4401
4402 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4403#ifdef CONFIG_FLAT_NODE_MEM_MAP
4404 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4405 nid, (unsigned long)pgdat,
4406 (unsigned long)pgdat->node_mem_map);
4407#endif
1da177e4
LT
4408
4409 free_area_init_core(pgdat, zones_size, zholes_size);
4410}
4411
c713216d 4412#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
4413
4414#if MAX_NUMNODES > 1
4415/*
4416 * Figure out the number of possible node ids.
4417 */
4418static void __init setup_nr_node_ids(void)
4419{
4420 unsigned int node;
4421 unsigned int highest = 0;
4422
4423 for_each_node_mask(node, node_possible_map)
4424 highest = node;
4425 nr_node_ids = highest + 1;
4426}
4427#else
4428static inline void setup_nr_node_ids(void)
4429{
4430}
4431#endif
4432
c713216d
MG
4433/**
4434 * add_active_range - Register a range of PFNs backed by physical memory
4435 * @nid: The node ID the range resides on
4436 * @start_pfn: The start PFN of the available physical memory
4437 * @end_pfn: The end PFN of the available physical memory
4438 *
4439 * These ranges are stored in an early_node_map[] and later used by
4440 * free_area_init_nodes() to calculate zone sizes and holes. If the
4441 * range spans a memory hole, it is up to the architecture to ensure
4442 * the memory is not freed by the bootmem allocator. If possible
4443 * the range being registered will be merged with existing ranges.
4444 */
4445void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4446 unsigned long end_pfn)
4447{
4448 int i;
4449
6b74ab97
MG
4450 mminit_dprintk(MMINIT_TRACE, "memory_register",
4451 "Entering add_active_range(%d, %#lx, %#lx) "
4452 "%d entries of %d used\n",
4453 nid, start_pfn, end_pfn,
4454 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 4455
2dbb51c4
MG
4456 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4457
c713216d
MG
4458 /* Merge with existing active regions if possible */
4459 for (i = 0; i < nr_nodemap_entries; i++) {
4460 if (early_node_map[i].nid != nid)
4461 continue;
4462
4463 /* Skip if an existing region covers this new one */
4464 if (start_pfn >= early_node_map[i].start_pfn &&
4465 end_pfn <= early_node_map[i].end_pfn)
4466 return;
4467
4468 /* Merge forward if suitable */
4469 if (start_pfn <= early_node_map[i].end_pfn &&
4470 end_pfn > early_node_map[i].end_pfn) {
4471 early_node_map[i].end_pfn = end_pfn;
4472 return;
4473 }
4474
4475 /* Merge backward if suitable */
d2dbe08d 4476 if (start_pfn < early_node_map[i].start_pfn &&
c713216d
MG
4477 end_pfn >= early_node_map[i].start_pfn) {
4478 early_node_map[i].start_pfn = start_pfn;
4479 return;
4480 }
4481 }
4482
4483 /* Check that early_node_map is large enough */
4484 if (i >= MAX_ACTIVE_REGIONS) {
4485 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4486 MAX_ACTIVE_REGIONS);
4487 return;
4488 }
4489
4490 early_node_map[i].nid = nid;
4491 early_node_map[i].start_pfn = start_pfn;
4492 early_node_map[i].end_pfn = end_pfn;
4493 nr_nodemap_entries = i + 1;
4494}
4495
4496/**
cc1050ba 4497 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 4498 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
4499 * @start_pfn: The new PFN of the range
4500 * @end_pfn: The new PFN of the range
c713216d
MG
4501 *
4502 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
4503 * The map is kept near the end physical page range that has already been
4504 * registered. This function allows an arch to shrink an existing registered
4505 * range.
c713216d 4506 */
cc1050ba
YL
4507void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4508 unsigned long end_pfn)
c713216d 4509{
cc1a9d86
YL
4510 int i, j;
4511 int removed = 0;
c713216d 4512
cc1050ba
YL
4513 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4514 nid, start_pfn, end_pfn);
4515
c713216d 4516 /* Find the old active region end and shrink */
cc1a9d86 4517 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
4518 if (early_node_map[i].start_pfn >= start_pfn &&
4519 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 4520 /* clear it */
cc1050ba 4521 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
4522 early_node_map[i].end_pfn = 0;
4523 removed = 1;
4524 continue;
4525 }
cc1050ba
YL
4526 if (early_node_map[i].start_pfn < start_pfn &&
4527 early_node_map[i].end_pfn > start_pfn) {
4528 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4529 early_node_map[i].end_pfn = start_pfn;
4530 if (temp_end_pfn > end_pfn)
4531 add_active_range(nid, end_pfn, temp_end_pfn);
4532 continue;
4533 }
4534 if (early_node_map[i].start_pfn >= start_pfn &&
4535 early_node_map[i].end_pfn > end_pfn &&
4536 early_node_map[i].start_pfn < end_pfn) {
4537 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 4538 continue;
c713216d 4539 }
cc1a9d86
YL
4540 }
4541
4542 if (!removed)
4543 return;
4544
4545 /* remove the blank ones */
4546 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4547 if (early_node_map[i].nid != nid)
4548 continue;
4549 if (early_node_map[i].end_pfn)
4550 continue;
4551 /* we found it, get rid of it */
4552 for (j = i; j < nr_nodemap_entries - 1; j++)
4553 memcpy(&early_node_map[j], &early_node_map[j+1],
4554 sizeof(early_node_map[j]));
4555 j = nr_nodemap_entries - 1;
4556 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4557 nr_nodemap_entries--;
4558 }
c713216d
MG
4559}
4560
4561/**
4562 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 4563 *
c713216d
MG
4564 * During discovery, it may be found that a table like SRAT is invalid
4565 * and an alternative discovery method must be used. This function removes
4566 * all currently registered regions.
4567 */
88ca3b94 4568void __init remove_all_active_ranges(void)
c713216d
MG
4569{
4570 memset(early_node_map, 0, sizeof(early_node_map));
4571 nr_nodemap_entries = 0;
4572}
4573
4574/* Compare two active node_active_regions */
4575static int __init cmp_node_active_region(const void *a, const void *b)
4576{
4577 struct node_active_region *arange = (struct node_active_region *)a;
4578 struct node_active_region *brange = (struct node_active_region *)b;
4579
4580 /* Done this way to avoid overflows */
4581 if (arange->start_pfn > brange->start_pfn)
4582 return 1;
4583 if (arange->start_pfn < brange->start_pfn)
4584 return -1;
4585
4586 return 0;
4587}
4588
4589/* sort the node_map by start_pfn */
32996250 4590void __init sort_node_map(void)
c713216d
MG
4591{
4592 sort(early_node_map, (size_t)nr_nodemap_entries,
4593 sizeof(struct node_active_region),
4594 cmp_node_active_region, NULL);
4595}
4596
1e01979c
TH
4597/**
4598 * node_map_pfn_alignment - determine the maximum internode alignment
4599 *
4600 * This function should be called after node map is populated and sorted.
4601 * It calculates the maximum power of two alignment which can distinguish
4602 * all the nodes.
4603 *
4604 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4605 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4606 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4607 * shifted, 1GiB is enough and this function will indicate so.
4608 *
4609 * This is used to test whether pfn -> nid mapping of the chosen memory
4610 * model has fine enough granularity to avoid incorrect mapping for the
4611 * populated node map.
4612 *
4613 * Returns the determined alignment in pfn's. 0 if there is no alignment
4614 * requirement (single node).
4615 */
4616unsigned long __init node_map_pfn_alignment(void)
4617{
4618 unsigned long accl_mask = 0, last_end = 0;
4619 int last_nid = -1;
4620 int i;
4621
4622 for_each_active_range_index_in_nid(i, MAX_NUMNODES) {
4623 int nid = early_node_map[i].nid;
4624 unsigned long start = early_node_map[i].start_pfn;
4625 unsigned long end = early_node_map[i].end_pfn;
4626 unsigned long mask;
4627
4628 if (!start || last_nid < 0 || last_nid == nid) {
4629 last_nid = nid;
4630 last_end = end;
4631 continue;
4632 }
4633
4634 /*
4635 * Start with a mask granular enough to pin-point to the
4636 * start pfn and tick off bits one-by-one until it becomes
4637 * too coarse to separate the current node from the last.
4638 */
4639 mask = ~((1 << __ffs(start)) - 1);
4640 while (mask && last_end <= (start & (mask << 1)))
4641 mask <<= 1;
4642
4643 /* accumulate all internode masks */
4644 accl_mask |= mask;
4645 }
4646
4647 /* convert mask to number of pages */
4648 return ~accl_mask + 1;
4649}
4650
a6af2bc3 4651/* Find the lowest pfn for a node */
b69a7288 4652static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
4653{
4654 int i;
a6af2bc3 4655 unsigned long min_pfn = ULONG_MAX;
1abbfb41 4656
c713216d
MG
4657 /* Assuming a sorted map, the first range found has the starting pfn */
4658 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 4659 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 4660
a6af2bc3
MG
4661 if (min_pfn == ULONG_MAX) {
4662 printk(KERN_WARNING
2bc0d261 4663 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4664 return 0;
4665 }
4666
4667 return min_pfn;
c713216d
MG
4668}
4669
4670/**
4671 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4672 *
4673 * It returns the minimum PFN based on information provided via
88ca3b94 4674 * add_active_range().
c713216d
MG
4675 */
4676unsigned long __init find_min_pfn_with_active_regions(void)
4677{
4678 return find_min_pfn_for_node(MAX_NUMNODES);
4679}
4680
37b07e41
LS
4681/*
4682 * early_calculate_totalpages()
4683 * Sum pages in active regions for movable zone.
4684 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4685 */
484f51f8 4686static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
4687{
4688 int i;
4689 unsigned long totalpages = 0;
4690
37b07e41
LS
4691 for (i = 0; i < nr_nodemap_entries; i++) {
4692 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 4693 early_node_map[i].start_pfn;
37b07e41
LS
4694 totalpages += pages;
4695 if (pages)
4696 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4697 }
4698 return totalpages;
7e63efef
MG
4699}
4700
2a1e274a
MG
4701/*
4702 * Find the PFN the Movable zone begins in each node. Kernel memory
4703 * is spread evenly between nodes as long as the nodes have enough
4704 * memory. When they don't, some nodes will have more kernelcore than
4705 * others
4706 */
b69a7288 4707static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
4708{
4709 int i, nid;
4710 unsigned long usable_startpfn;
4711 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4712 /* save the state before borrow the nodemask */
4713 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4714 unsigned long totalpages = early_calculate_totalpages();
4715 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4716
7e63efef
MG
4717 /*
4718 * If movablecore was specified, calculate what size of
4719 * kernelcore that corresponds so that memory usable for
4720 * any allocation type is evenly spread. If both kernelcore
4721 * and movablecore are specified, then the value of kernelcore
4722 * will be used for required_kernelcore if it's greater than
4723 * what movablecore would have allowed.
4724 */
4725 if (required_movablecore) {
7e63efef
MG
4726 unsigned long corepages;
4727
4728 /*
4729 * Round-up so that ZONE_MOVABLE is at least as large as what
4730 * was requested by the user
4731 */
4732 required_movablecore =
4733 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4734 corepages = totalpages - required_movablecore;
4735
4736 required_kernelcore = max(required_kernelcore, corepages);
4737 }
4738
2a1e274a
MG
4739 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4740 if (!required_kernelcore)
66918dcd 4741 goto out;
2a1e274a
MG
4742
4743 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4744 find_usable_zone_for_movable();
4745 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4746
4747restart:
4748 /* Spread kernelcore memory as evenly as possible throughout nodes */
4749 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4750 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
4751 /*
4752 * Recalculate kernelcore_node if the division per node
4753 * now exceeds what is necessary to satisfy the requested
4754 * amount of memory for the kernel
4755 */
4756 if (required_kernelcore < kernelcore_node)
4757 kernelcore_node = required_kernelcore / usable_nodes;
4758
4759 /*
4760 * As the map is walked, we track how much memory is usable
4761 * by the kernel using kernelcore_remaining. When it is
4762 * 0, the rest of the node is usable by ZONE_MOVABLE
4763 */
4764 kernelcore_remaining = kernelcore_node;
4765
4766 /* Go through each range of PFNs within this node */
4767 for_each_active_range_index_in_nid(i, nid) {
4768 unsigned long start_pfn, end_pfn;
4769 unsigned long size_pages;
4770
4771 start_pfn = max(early_node_map[i].start_pfn,
4772 zone_movable_pfn[nid]);
4773 end_pfn = early_node_map[i].end_pfn;
4774 if (start_pfn >= end_pfn)
4775 continue;
4776
4777 /* Account for what is only usable for kernelcore */
4778 if (start_pfn < usable_startpfn) {
4779 unsigned long kernel_pages;
4780 kernel_pages = min(end_pfn, usable_startpfn)
4781 - start_pfn;
4782
4783 kernelcore_remaining -= min(kernel_pages,
4784 kernelcore_remaining);
4785 required_kernelcore -= min(kernel_pages,
4786 required_kernelcore);
4787
4788 /* Continue if range is now fully accounted */
4789 if (end_pfn <= usable_startpfn) {
4790
4791 /*
4792 * Push zone_movable_pfn to the end so
4793 * that if we have to rebalance
4794 * kernelcore across nodes, we will
4795 * not double account here
4796 */
4797 zone_movable_pfn[nid] = end_pfn;
4798 continue;
4799 }
4800 start_pfn = usable_startpfn;
4801 }
4802
4803 /*
4804 * The usable PFN range for ZONE_MOVABLE is from
4805 * start_pfn->end_pfn. Calculate size_pages as the
4806 * number of pages used as kernelcore
4807 */
4808 size_pages = end_pfn - start_pfn;
4809 if (size_pages > kernelcore_remaining)
4810 size_pages = kernelcore_remaining;
4811 zone_movable_pfn[nid] = start_pfn + size_pages;
4812
4813 /*
4814 * Some kernelcore has been met, update counts and
4815 * break if the kernelcore for this node has been
4816 * satisified
4817 */
4818 required_kernelcore -= min(required_kernelcore,
4819 size_pages);
4820 kernelcore_remaining -= size_pages;
4821 if (!kernelcore_remaining)
4822 break;
4823 }
4824 }
4825
4826 /*
4827 * If there is still required_kernelcore, we do another pass with one
4828 * less node in the count. This will push zone_movable_pfn[nid] further
4829 * along on the nodes that still have memory until kernelcore is
4830 * satisified
4831 */
4832 usable_nodes--;
4833 if (usable_nodes && required_kernelcore > usable_nodes)
4834 goto restart;
4835
4836 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4837 for (nid = 0; nid < MAX_NUMNODES; nid++)
4838 zone_movable_pfn[nid] =
4839 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4840
4841out:
4842 /* restore the node_state */
4843 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4844}
4845
37b07e41
LS
4846/* Any regular memory on that node ? */
4847static void check_for_regular_memory(pg_data_t *pgdat)
4848{
4849#ifdef CONFIG_HIGHMEM
4850 enum zone_type zone_type;
4851
4852 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4853 struct zone *zone = &pgdat->node_zones[zone_type];
4854 if (zone->present_pages)
4855 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4856 }
4857#endif
4858}
4859
c713216d
MG
4860/**
4861 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4862 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4863 *
4864 * This will call free_area_init_node() for each active node in the system.
4865 * Using the page ranges provided by add_active_range(), the size of each
4866 * zone in each node and their holes is calculated. If the maximum PFN
4867 * between two adjacent zones match, it is assumed that the zone is empty.
4868 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4869 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4870 * starts where the previous one ended. For example, ZONE_DMA32 starts
4871 * at arch_max_dma_pfn.
4872 */
4873void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4874{
4875 unsigned long nid;
db99100d 4876 int i;
c713216d 4877
a6af2bc3
MG
4878 /* Sort early_node_map as initialisation assumes it is sorted */
4879 sort_node_map();
4880
c713216d
MG
4881 /* Record where the zone boundaries are */
4882 memset(arch_zone_lowest_possible_pfn, 0,
4883 sizeof(arch_zone_lowest_possible_pfn));
4884 memset(arch_zone_highest_possible_pfn, 0,
4885 sizeof(arch_zone_highest_possible_pfn));
4886 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4887 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4888 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4889 if (i == ZONE_MOVABLE)
4890 continue;
c713216d
MG
4891 arch_zone_lowest_possible_pfn[i] =
4892 arch_zone_highest_possible_pfn[i-1];
4893 arch_zone_highest_possible_pfn[i] =
4894 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4895 }
2a1e274a
MG
4896 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4897 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4898
4899 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4900 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4901 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4902
c713216d
MG
4903 /* Print out the zone ranges */
4904 printk("Zone PFN ranges:\n");
2a1e274a
MG
4905 for (i = 0; i < MAX_NR_ZONES; i++) {
4906 if (i == ZONE_MOVABLE)
4907 continue;
72f0ba02
DR
4908 printk(" %-8s ", zone_names[i]);
4909 if (arch_zone_lowest_possible_pfn[i] ==
4910 arch_zone_highest_possible_pfn[i])
4911 printk("empty\n");
4912 else
4913 printk("%0#10lx -> %0#10lx\n",
c713216d
MG
4914 arch_zone_lowest_possible_pfn[i],
4915 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4916 }
4917
4918 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4919 printk("Movable zone start PFN for each node\n");
4920 for (i = 0; i < MAX_NUMNODES; i++) {
4921 if (zone_movable_pfn[i])
4922 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4923 }
c713216d
MG
4924
4925 /* Print out the early_node_map[] */
4926 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4927 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4928 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4929 early_node_map[i].start_pfn,
4930 early_node_map[i].end_pfn);
4931
4932 /* Initialise every node */
708614e6 4933 mminit_verify_pageflags_layout();
8ef82866 4934 setup_nr_node_ids();
c713216d
MG
4935 for_each_online_node(nid) {
4936 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4937 free_area_init_node(nid, NULL,
c713216d 4938 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4939
4940 /* Any memory on that node */
4941 if (pgdat->node_present_pages)
4942 node_set_state(nid, N_HIGH_MEMORY);
4943 check_for_regular_memory(pgdat);
c713216d
MG
4944 }
4945}
2a1e274a 4946
7e63efef 4947static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4948{
4949 unsigned long long coremem;
4950 if (!p)
4951 return -EINVAL;
4952
4953 coremem = memparse(p, &p);
7e63efef 4954 *core = coremem >> PAGE_SHIFT;
2a1e274a 4955
7e63efef 4956 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4957 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4958
4959 return 0;
4960}
ed7ed365 4961
7e63efef
MG
4962/*
4963 * kernelcore=size sets the amount of memory for use for allocations that
4964 * cannot be reclaimed or migrated.
4965 */
4966static int __init cmdline_parse_kernelcore(char *p)
4967{
4968 return cmdline_parse_core(p, &required_kernelcore);
4969}
4970
4971/*
4972 * movablecore=size sets the amount of memory for use for allocations that
4973 * can be reclaimed or migrated.
4974 */
4975static int __init cmdline_parse_movablecore(char *p)
4976{
4977 return cmdline_parse_core(p, &required_movablecore);
4978}
4979
ed7ed365 4980early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4981early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4982
c713216d
MG
4983#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4984
0e0b864e 4985/**
88ca3b94
RD
4986 * set_dma_reserve - set the specified number of pages reserved in the first zone
4987 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4988 *
4989 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4990 * In the DMA zone, a significant percentage may be consumed by kernel image
4991 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4992 * function may optionally be used to account for unfreeable pages in the
4993 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4994 * smaller per-cpu batchsize.
0e0b864e
MG
4995 */
4996void __init set_dma_reserve(unsigned long new_dma_reserve)
4997{
4998 dma_reserve = new_dma_reserve;
4999}
5000
1da177e4
LT
5001void __init free_area_init(unsigned long *zones_size)
5002{
9109fb7b 5003 free_area_init_node(0, zones_size,
1da177e4
LT
5004 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5005}
1da177e4 5006
1da177e4
LT
5007static int page_alloc_cpu_notify(struct notifier_block *self,
5008 unsigned long action, void *hcpu)
5009{
5010 int cpu = (unsigned long)hcpu;
1da177e4 5011
8bb78442 5012 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
5013 drain_pages(cpu);
5014
5015 /*
5016 * Spill the event counters of the dead processor
5017 * into the current processors event counters.
5018 * This artificially elevates the count of the current
5019 * processor.
5020 */
f8891e5e 5021 vm_events_fold_cpu(cpu);
9f8f2172
CL
5022
5023 /*
5024 * Zero the differential counters of the dead processor
5025 * so that the vm statistics are consistent.
5026 *
5027 * This is only okay since the processor is dead and cannot
5028 * race with what we are doing.
5029 */
2244b95a 5030 refresh_cpu_vm_stats(cpu);
1da177e4
LT
5031 }
5032 return NOTIFY_OK;
5033}
1da177e4
LT
5034
5035void __init page_alloc_init(void)
5036{
5037 hotcpu_notifier(page_alloc_cpu_notify, 0);
5038}
5039
cb45b0e9
HA
5040/*
5041 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5042 * or min_free_kbytes changes.
5043 */
5044static void calculate_totalreserve_pages(void)
5045{
5046 struct pglist_data *pgdat;
5047 unsigned long reserve_pages = 0;
2f6726e5 5048 enum zone_type i, j;
cb45b0e9
HA
5049
5050 for_each_online_pgdat(pgdat) {
5051 for (i = 0; i < MAX_NR_ZONES; i++) {
5052 struct zone *zone = pgdat->node_zones + i;
5053 unsigned long max = 0;
5054
5055 /* Find valid and maximum lowmem_reserve in the zone */
5056 for (j = i; j < MAX_NR_ZONES; j++) {
5057 if (zone->lowmem_reserve[j] > max)
5058 max = zone->lowmem_reserve[j];
5059 }
5060
41858966
MG
5061 /* we treat the high watermark as reserved pages. */
5062 max += high_wmark_pages(zone);
cb45b0e9
HA
5063
5064 if (max > zone->present_pages)
5065 max = zone->present_pages;
5066 reserve_pages += max;
5067 }
5068 }
5069 totalreserve_pages = reserve_pages;
5070}
5071
1da177e4
LT
5072/*
5073 * setup_per_zone_lowmem_reserve - called whenever
5074 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5075 * has a correct pages reserved value, so an adequate number of
5076 * pages are left in the zone after a successful __alloc_pages().
5077 */
5078static void setup_per_zone_lowmem_reserve(void)
5079{
5080 struct pglist_data *pgdat;
2f6726e5 5081 enum zone_type j, idx;
1da177e4 5082
ec936fc5 5083 for_each_online_pgdat(pgdat) {
1da177e4
LT
5084 for (j = 0; j < MAX_NR_ZONES; j++) {
5085 struct zone *zone = pgdat->node_zones + j;
5086 unsigned long present_pages = zone->present_pages;
5087
5088 zone->lowmem_reserve[j] = 0;
5089
2f6726e5
CL
5090 idx = j;
5091 while (idx) {
1da177e4
LT
5092 struct zone *lower_zone;
5093
2f6726e5
CL
5094 idx--;
5095
1da177e4
LT
5096 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5097 sysctl_lowmem_reserve_ratio[idx] = 1;
5098
5099 lower_zone = pgdat->node_zones + idx;
5100 lower_zone->lowmem_reserve[j] = present_pages /
5101 sysctl_lowmem_reserve_ratio[idx];
5102 present_pages += lower_zone->present_pages;
5103 }
5104 }
5105 }
cb45b0e9
HA
5106
5107 /* update totalreserve_pages */
5108 calculate_totalreserve_pages();
1da177e4
LT
5109}
5110
88ca3b94 5111/**
bc75d33f 5112 * setup_per_zone_wmarks - called when min_free_kbytes changes
bce7394a 5113 * or when memory is hot-{added|removed}
88ca3b94 5114 *
bc75d33f
MK
5115 * Ensures that the watermark[min,low,high] values for each zone are set
5116 * correctly with respect to min_free_kbytes.
1da177e4 5117 */
bc75d33f 5118void setup_per_zone_wmarks(void)
1da177e4
LT
5119{
5120 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5121 unsigned long lowmem_pages = 0;
5122 struct zone *zone;
5123 unsigned long flags;
5124
5125 /* Calculate total number of !ZONE_HIGHMEM pages */
5126 for_each_zone(zone) {
5127 if (!is_highmem(zone))
5128 lowmem_pages += zone->present_pages;
5129 }
5130
5131 for_each_zone(zone) {
ac924c60
AM
5132 u64 tmp;
5133
1125b4e3 5134 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
5135 tmp = (u64)pages_min * zone->present_pages;
5136 do_div(tmp, lowmem_pages);
1da177e4
LT
5137 if (is_highmem(zone)) {
5138 /*
669ed175
NP
5139 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5140 * need highmem pages, so cap pages_min to a small
5141 * value here.
5142 *
41858966 5143 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5144 * deltas controls asynch page reclaim, and so should
5145 * not be capped for highmem.
1da177e4
LT
5146 */
5147 int min_pages;
5148
5149 min_pages = zone->present_pages / 1024;
5150 if (min_pages < SWAP_CLUSTER_MAX)
5151 min_pages = SWAP_CLUSTER_MAX;
5152 if (min_pages > 128)
5153 min_pages = 128;
41858966 5154 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5155 } else {
669ed175
NP
5156 /*
5157 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5158 * proportionate to the zone's size.
5159 */
41858966 5160 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5161 }
5162
41858966
MG
5163 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5164 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
56fd56b8 5165 setup_zone_migrate_reserve(zone);
1125b4e3 5166 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5167 }
cb45b0e9
HA
5168
5169 /* update totalreserve_pages */
5170 calculate_totalreserve_pages();
1da177e4
LT
5171}
5172
55a4462a 5173/*
556adecb
RR
5174 * The inactive anon list should be small enough that the VM never has to
5175 * do too much work, but large enough that each inactive page has a chance
5176 * to be referenced again before it is swapped out.
5177 *
5178 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5179 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5180 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5181 * the anonymous pages are kept on the inactive list.
5182 *
5183 * total target max
5184 * memory ratio inactive anon
5185 * -------------------------------------
5186 * 10MB 1 5MB
5187 * 100MB 1 50MB
5188 * 1GB 3 250MB
5189 * 10GB 10 0.9GB
5190 * 100GB 31 3GB
5191 * 1TB 101 10GB
5192 * 10TB 320 32GB
5193 */
1b79acc9 5194static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5195{
96cb4df5 5196 unsigned int gb, ratio;
556adecb 5197
96cb4df5
MK
5198 /* Zone size in gigabytes */
5199 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5200 if (gb)
556adecb 5201 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5202 else
5203 ratio = 1;
556adecb 5204
96cb4df5
MK
5205 zone->inactive_ratio = ratio;
5206}
556adecb 5207
839a4fcc 5208static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5209{
5210 struct zone *zone;
5211
5212 for_each_zone(zone)
5213 calculate_zone_inactive_ratio(zone);
556adecb
RR
5214}
5215
1da177e4
LT
5216/*
5217 * Initialise min_free_kbytes.
5218 *
5219 * For small machines we want it small (128k min). For large machines
5220 * we want it large (64MB max). But it is not linear, because network
5221 * bandwidth does not increase linearly with machine size. We use
5222 *
5223 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5224 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5225 *
5226 * which yields
5227 *
5228 * 16MB: 512k
5229 * 32MB: 724k
5230 * 64MB: 1024k
5231 * 128MB: 1448k
5232 * 256MB: 2048k
5233 * 512MB: 2896k
5234 * 1024MB: 4096k
5235 * 2048MB: 5792k
5236 * 4096MB: 8192k
5237 * 8192MB: 11584k
5238 * 16384MB: 16384k
5239 */
1b79acc9 5240int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5241{
5242 unsigned long lowmem_kbytes;
5243
5244 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5245
5246 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5247 if (min_free_kbytes < 128)
5248 min_free_kbytes = 128;
5249 if (min_free_kbytes > 65536)
5250 min_free_kbytes = 65536;
bc75d33f 5251 setup_per_zone_wmarks();
a6cccdc3 5252 refresh_zone_stat_thresholds();
1da177e4 5253 setup_per_zone_lowmem_reserve();
556adecb 5254 setup_per_zone_inactive_ratio();
1da177e4
LT
5255 return 0;
5256}
bc75d33f 5257module_init(init_per_zone_wmark_min)
1da177e4
LT
5258
5259/*
5260 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5261 * that we can call two helper functions whenever min_free_kbytes
5262 * changes.
5263 */
5264int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5265 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5266{
8d65af78 5267 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5268 if (write)
bc75d33f 5269 setup_per_zone_wmarks();
1da177e4
LT
5270 return 0;
5271}
5272
9614634f
CL
5273#ifdef CONFIG_NUMA
5274int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5275 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5276{
5277 struct zone *zone;
5278 int rc;
5279
8d65af78 5280 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5281 if (rc)
5282 return rc;
5283
5284 for_each_zone(zone)
8417bba4 5285 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5286 sysctl_min_unmapped_ratio) / 100;
5287 return 0;
5288}
0ff38490
CL
5289
5290int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5291 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5292{
5293 struct zone *zone;
5294 int rc;
5295
8d65af78 5296 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5297 if (rc)
5298 return rc;
5299
5300 for_each_zone(zone)
5301 zone->min_slab_pages = (zone->present_pages *
5302 sysctl_min_slab_ratio) / 100;
5303 return 0;
5304}
9614634f
CL
5305#endif
5306
1da177e4
LT
5307/*
5308 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5309 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5310 * whenever sysctl_lowmem_reserve_ratio changes.
5311 *
5312 * The reserve ratio obviously has absolutely no relation with the
41858966 5313 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5314 * if in function of the boot time zone sizes.
5315 */
5316int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5317 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5318{
8d65af78 5319 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5320 setup_per_zone_lowmem_reserve();
5321 return 0;
5322}
5323
8ad4b1fb
RS
5324/*
5325 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5326 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5327 * can have before it gets flushed back to buddy allocator.
5328 */
5329
5330int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5331 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5332{
5333 struct zone *zone;
5334 unsigned int cpu;
5335 int ret;
5336
8d65af78 5337 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8ad4b1fb
RS
5338 if (!write || (ret == -EINVAL))
5339 return ret;
364df0eb 5340 for_each_populated_zone(zone) {
99dcc3e5 5341 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5342 unsigned long high;
5343 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5344 setup_pagelist_highmark(
5345 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5346 }
5347 }
5348 return 0;
5349}
5350
f034b5d4 5351int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5352
5353#ifdef CONFIG_NUMA
5354static int __init set_hashdist(char *str)
5355{
5356 if (!str)
5357 return 0;
5358 hashdist = simple_strtoul(str, &str, 0);
5359 return 1;
5360}
5361__setup("hashdist=", set_hashdist);
5362#endif
5363
5364/*
5365 * allocate a large system hash table from bootmem
5366 * - it is assumed that the hash table must contain an exact power-of-2
5367 * quantity of entries
5368 * - limit is the number of hash buckets, not the total allocation size
5369 */
5370void *__init alloc_large_system_hash(const char *tablename,
5371 unsigned long bucketsize,
5372 unsigned long numentries,
5373 int scale,
5374 int flags,
5375 unsigned int *_hash_shift,
5376 unsigned int *_hash_mask,
5377 unsigned long limit)
5378{
5379 unsigned long long max = limit;
5380 unsigned long log2qty, size;
5381 void *table = NULL;
5382
5383 /* allow the kernel cmdline to have a say */
5384 if (!numentries) {
5385 /* round applicable memory size up to nearest megabyte */
04903664 5386 numentries = nr_kernel_pages;
1da177e4
LT
5387 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5388 numentries >>= 20 - PAGE_SHIFT;
5389 numentries <<= 20 - PAGE_SHIFT;
5390
5391 /* limit to 1 bucket per 2^scale bytes of low memory */
5392 if (scale > PAGE_SHIFT)
5393 numentries >>= (scale - PAGE_SHIFT);
5394 else
5395 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5396
5397 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5398 if (unlikely(flags & HASH_SMALL)) {
5399 /* Makes no sense without HASH_EARLY */
5400 WARN_ON(!(flags & HASH_EARLY));
5401 if (!(numentries >> *_hash_shift)) {
5402 numentries = 1UL << *_hash_shift;
5403 BUG_ON(!numentries);
5404 }
5405 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5406 numentries = PAGE_SIZE / bucketsize;
1da177e4 5407 }
6e692ed3 5408 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5409
5410 /* limit allocation size to 1/16 total memory by default */
5411 if (max == 0) {
5412 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5413 do_div(max, bucketsize);
5414 }
5415
5416 if (numentries > max)
5417 numentries = max;
5418
f0d1b0b3 5419 log2qty = ilog2(numentries);
1da177e4
LT
5420
5421 do {
5422 size = bucketsize << log2qty;
5423 if (flags & HASH_EARLY)
74768ed8 5424 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5425 else if (hashdist)
5426 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5427 else {
1037b83b
ED
5428 /*
5429 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5430 * some pages at the end of hash table which
5431 * alloc_pages_exact() automatically does
1037b83b 5432 */
264ef8a9 5433 if (get_order(size) < MAX_ORDER) {
a1dd268c 5434 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5435 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5436 }
1da177e4
LT
5437 }
5438 } while (!table && size > PAGE_SIZE && --log2qty);
5439
5440 if (!table)
5441 panic("Failed to allocate %s hash table\n", tablename);
5442
f241e660 5443 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5444 tablename,
f241e660 5445 (1UL << log2qty),
f0d1b0b3 5446 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5447 size);
5448
5449 if (_hash_shift)
5450 *_hash_shift = log2qty;
5451 if (_hash_mask)
5452 *_hash_mask = (1 << log2qty) - 1;
5453
5454 return table;
5455}
a117e66e 5456
835c134e
MG
5457/* Return a pointer to the bitmap storing bits affecting a block of pages */
5458static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5459 unsigned long pfn)
5460{
5461#ifdef CONFIG_SPARSEMEM
5462 return __pfn_to_section(pfn)->pageblock_flags;
5463#else
5464 return zone->pageblock_flags;
5465#endif /* CONFIG_SPARSEMEM */
5466}
5467
5468static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5469{
5470#ifdef CONFIG_SPARSEMEM
5471 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5472 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5473#else
5474 pfn = pfn - zone->zone_start_pfn;
d9c23400 5475 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5476#endif /* CONFIG_SPARSEMEM */
5477}
5478
5479/**
d9c23400 5480 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5481 * @page: The page within the block of interest
5482 * @start_bitidx: The first bit of interest to retrieve
5483 * @end_bitidx: The last bit of interest
5484 * returns pageblock_bits flags
5485 */
5486unsigned long get_pageblock_flags_group(struct page *page,
5487 int start_bitidx, int end_bitidx)
5488{
5489 struct zone *zone;
5490 unsigned long *bitmap;
5491 unsigned long pfn, bitidx;
5492 unsigned long flags = 0;
5493 unsigned long value = 1;
5494
5495 zone = page_zone(page);
5496 pfn = page_to_pfn(page);
5497 bitmap = get_pageblock_bitmap(zone, pfn);
5498 bitidx = pfn_to_bitidx(zone, pfn);
5499
5500 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5501 if (test_bit(bitidx + start_bitidx, bitmap))
5502 flags |= value;
6220ec78 5503
835c134e
MG
5504 return flags;
5505}
5506
5507/**
d9c23400 5508 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5509 * @page: The page within the block of interest
5510 * @start_bitidx: The first bit of interest
5511 * @end_bitidx: The last bit of interest
5512 * @flags: The flags to set
5513 */
5514void set_pageblock_flags_group(struct page *page, unsigned long flags,
5515 int start_bitidx, int end_bitidx)
5516{
5517 struct zone *zone;
5518 unsigned long *bitmap;
5519 unsigned long pfn, bitidx;
5520 unsigned long value = 1;
5521
5522 zone = page_zone(page);
5523 pfn = page_to_pfn(page);
5524 bitmap = get_pageblock_bitmap(zone, pfn);
5525 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5526 VM_BUG_ON(pfn < zone->zone_start_pfn);
5527 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5528
5529 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5530 if (flags & value)
5531 __set_bit(bitidx + start_bitidx, bitmap);
5532 else
5533 __clear_bit(bitidx + start_bitidx, bitmap);
5534}
a5d76b54
KH
5535
5536/*
5537 * This is designed as sub function...plz see page_isolation.c also.
5538 * set/clear page block's type to be ISOLATE.
5539 * page allocater never alloc memory from ISOLATE block.
5540 */
5541
49ac8255
KH
5542static int
5543__count_immobile_pages(struct zone *zone, struct page *page, int count)
5544{
5545 unsigned long pfn, iter, found;
5546 /*
5547 * For avoiding noise data, lru_add_drain_all() should be called
5548 * If ZONE_MOVABLE, the zone never contains immobile pages
5549 */
5550 if (zone_idx(zone) == ZONE_MOVABLE)
5551 return true;
5552
5553 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5554 return true;
5555
5556 pfn = page_to_pfn(page);
5557 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5558 unsigned long check = pfn + iter;
5559
29723fcc 5560 if (!pfn_valid_within(check))
49ac8255 5561 continue;
29723fcc 5562
49ac8255
KH
5563 page = pfn_to_page(check);
5564 if (!page_count(page)) {
5565 if (PageBuddy(page))
5566 iter += (1 << page_order(page)) - 1;
5567 continue;
5568 }
5569 if (!PageLRU(page))
5570 found++;
5571 /*
5572 * If there are RECLAIMABLE pages, we need to check it.
5573 * But now, memory offline itself doesn't call shrink_slab()
5574 * and it still to be fixed.
5575 */
5576 /*
5577 * If the page is not RAM, page_count()should be 0.
5578 * we don't need more check. This is an _used_ not-movable page.
5579 *
5580 * The problematic thing here is PG_reserved pages. PG_reserved
5581 * is set to both of a memory hole page and a _used_ kernel
5582 * page at boot.
5583 */
5584 if (found > count)
5585 return false;
5586 }
5587 return true;
5588}
5589
5590bool is_pageblock_removable_nolock(struct page *page)
5591{
5592 struct zone *zone = page_zone(page);
5593 return __count_immobile_pages(zone, page, 0);
5594}
5595
a5d76b54
KH
5596int set_migratetype_isolate(struct page *page)
5597{
5598 struct zone *zone;
49ac8255 5599 unsigned long flags, pfn;
925cc71e
RJ
5600 struct memory_isolate_notify arg;
5601 int notifier_ret;
a5d76b54
KH
5602 int ret = -EBUSY;
5603
5604 zone = page_zone(page);
925cc71e 5605
a5d76b54 5606 spin_lock_irqsave(&zone->lock, flags);
925cc71e
RJ
5607
5608 pfn = page_to_pfn(page);
5609 arg.start_pfn = pfn;
5610 arg.nr_pages = pageblock_nr_pages;
5611 arg.pages_found = 0;
5612
a5d76b54 5613 /*
925cc71e
RJ
5614 * It may be possible to isolate a pageblock even if the
5615 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5616 * notifier chain is used by balloon drivers to return the
5617 * number of pages in a range that are held by the balloon
5618 * driver to shrink memory. If all the pages are accounted for
5619 * by balloons, are free, or on the LRU, isolation can continue.
5620 * Later, for example, when memory hotplug notifier runs, these
5621 * pages reported as "can be isolated" should be isolated(freed)
5622 * by the balloon driver through the memory notifier chain.
a5d76b54 5623 */
925cc71e
RJ
5624 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5625 notifier_ret = notifier_to_errno(notifier_ret);
4b20477f 5626 if (notifier_ret)
a5d76b54 5627 goto out;
49ac8255
KH
5628 /*
5629 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5630 * We just check MOVABLE pages.
5631 */
5632 if (__count_immobile_pages(zone, page, arg.pages_found))
925cc71e
RJ
5633 ret = 0;
5634
49ac8255
KH
5635 /*
5636 * immobile means "not-on-lru" paes. If immobile is larger than
5637 * removable-by-driver pages reported by notifier, we'll fail.
5638 */
5639
a5d76b54 5640out:
925cc71e
RJ
5641 if (!ret) {
5642 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5643 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5644 }
5645
a5d76b54
KH
5646 spin_unlock_irqrestore(&zone->lock, flags);
5647 if (!ret)
9f8f2172 5648 drain_all_pages();
a5d76b54
KH
5649 return ret;
5650}
5651
5652void unset_migratetype_isolate(struct page *page)
5653{
5654 struct zone *zone;
5655 unsigned long flags;
5656 zone = page_zone(page);
5657 spin_lock_irqsave(&zone->lock, flags);
5658 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5659 goto out;
5660 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5661 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5662out:
5663 spin_unlock_irqrestore(&zone->lock, flags);
5664}
0c0e6195
KH
5665
5666#ifdef CONFIG_MEMORY_HOTREMOVE
5667/*
5668 * All pages in the range must be isolated before calling this.
5669 */
5670void
5671__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5672{
5673 struct page *page;
5674 struct zone *zone;
5675 int order, i;
5676 unsigned long pfn;
5677 unsigned long flags;
5678 /* find the first valid pfn */
5679 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5680 if (pfn_valid(pfn))
5681 break;
5682 if (pfn == end_pfn)
5683 return;
5684 zone = page_zone(pfn_to_page(pfn));
5685 spin_lock_irqsave(&zone->lock, flags);
5686 pfn = start_pfn;
5687 while (pfn < end_pfn) {
5688 if (!pfn_valid(pfn)) {
5689 pfn++;
5690 continue;
5691 }
5692 page = pfn_to_page(pfn);
5693 BUG_ON(page_count(page));
5694 BUG_ON(!PageBuddy(page));
5695 order = page_order(page);
5696#ifdef CONFIG_DEBUG_VM
5697 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5698 pfn, 1 << order, end_pfn);
5699#endif
5700 list_del(&page->lru);
5701 rmv_page_order(page);
5702 zone->free_area[order].nr_free--;
5703 __mod_zone_page_state(zone, NR_FREE_PAGES,
5704 - (1UL << order));
5705 for (i = 0; i < (1 << order); i++)
5706 SetPageReserved((page+i));
5707 pfn += (1 << order);
5708 }
5709 spin_unlock_irqrestore(&zone->lock, flags);
5710}
5711#endif
8d22ba1b
WF
5712
5713#ifdef CONFIG_MEMORY_FAILURE
5714bool is_free_buddy_page(struct page *page)
5715{
5716 struct zone *zone = page_zone(page);
5717 unsigned long pfn = page_to_pfn(page);
5718 unsigned long flags;
5719 int order;
5720
5721 spin_lock_irqsave(&zone->lock, flags);
5722 for (order = 0; order < MAX_ORDER; order++) {
5723 struct page *page_head = page - (pfn & ((1 << order) - 1));
5724
5725 if (PageBuddy(page_head) && page_order(page_head) >= order)
5726 break;
5727 }
5728 spin_unlock_irqrestore(&zone->lock, flags);
5729
5730 return order < MAX_ORDER;
5731}
5732#endif
718a3821
WF
5733
5734static struct trace_print_flags pageflag_names[] = {
5735 {1UL << PG_locked, "locked" },
5736 {1UL << PG_error, "error" },
5737 {1UL << PG_referenced, "referenced" },
5738 {1UL << PG_uptodate, "uptodate" },
5739 {1UL << PG_dirty, "dirty" },
5740 {1UL << PG_lru, "lru" },
5741 {1UL << PG_active, "active" },
5742 {1UL << PG_slab, "slab" },
5743 {1UL << PG_owner_priv_1, "owner_priv_1" },
5744 {1UL << PG_arch_1, "arch_1" },
5745 {1UL << PG_reserved, "reserved" },
5746 {1UL << PG_private, "private" },
5747 {1UL << PG_private_2, "private_2" },
5748 {1UL << PG_writeback, "writeback" },
5749#ifdef CONFIG_PAGEFLAGS_EXTENDED
5750 {1UL << PG_head, "head" },
5751 {1UL << PG_tail, "tail" },
5752#else
5753 {1UL << PG_compound, "compound" },
5754#endif
5755 {1UL << PG_swapcache, "swapcache" },
5756 {1UL << PG_mappedtodisk, "mappedtodisk" },
5757 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
5758 {1UL << PG_swapbacked, "swapbacked" },
5759 {1UL << PG_unevictable, "unevictable" },
5760#ifdef CONFIG_MMU
5761 {1UL << PG_mlocked, "mlocked" },
5762#endif
5763#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5764 {1UL << PG_uncached, "uncached" },
5765#endif
5766#ifdef CONFIG_MEMORY_FAILURE
5767 {1UL << PG_hwpoison, "hwpoison" },
5768#endif
5769 {-1UL, NULL },
5770};
5771
5772static void dump_page_flags(unsigned long flags)
5773{
5774 const char *delim = "";
5775 unsigned long mask;
5776 int i;
5777
5778 printk(KERN_ALERT "page flags: %#lx(", flags);
5779
5780 /* remove zone id */
5781 flags &= (1UL << NR_PAGEFLAGS) - 1;
5782
5783 for (i = 0; pageflag_names[i].name && flags; i++) {
5784
5785 mask = pageflag_names[i].mask;
5786 if ((flags & mask) != mask)
5787 continue;
5788
5789 flags &= ~mask;
5790 printk("%s%s", delim, pageflag_names[i].name);
5791 delim = "|";
5792 }
5793
5794 /* check for left over flags */
5795 if (flags)
5796 printk("%s%#lx", delim, flags);
5797
5798 printk(")\n");
5799}
5800
5801void dump_page(struct page *page)
5802{
5803 printk(KERN_ALERT
5804 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 5805 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
5806 page->mapping, page->index);
5807 dump_page_flags(page->flags);
f212ad7c 5808 mem_cgroup_print_bad_page(page);
718a3821 5809}