]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
badpage: remove vma from page_remove_rmap
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4
LT
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
1da177e4
LT
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
5a3135c2 31#include <linux/oom.h>
1da177e4
LT
32#include <linux/notifier.h>
33#include <linux/topology.h>
34#include <linux/sysctl.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
bdc8cb98 37#include <linux/memory_hotplug.h>
1da177e4
LT
38#include <linux/nodemask.h>
39#include <linux/vmalloc.h>
4be38e35 40#include <linux/mempolicy.h>
6811378e 41#include <linux/stop_machine.h>
c713216d
MG
42#include <linux/sort.h>
43#include <linux/pfn.h>
3fcfab16 44#include <linux/backing-dev.h>
933e312e 45#include <linux/fault-inject.h>
a5d76b54 46#include <linux/page-isolation.h>
52d4b9ac 47#include <linux/page_cgroup.h>
3ac7fe5a 48#include <linux/debugobjects.h>
1da177e4
LT
49
50#include <asm/tlbflush.h>
ac924c60 51#include <asm/div64.h>
1da177e4
LT
52#include "internal.h"
53
54/*
13808910 55 * Array of node states.
1da177e4 56 */
13808910
CL
57nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
58 [N_POSSIBLE] = NODE_MASK_ALL,
59 [N_ONLINE] = { { [0] = 1UL } },
60#ifndef CONFIG_NUMA
61 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
62#ifdef CONFIG_HIGHMEM
63 [N_HIGH_MEMORY] = { { [0] = 1UL } },
64#endif
65 [N_CPU] = { { [0] = 1UL } },
66#endif /* NUMA */
67};
68EXPORT_SYMBOL(node_states);
69
6c231b7b 70unsigned long totalram_pages __read_mostly;
cb45b0e9 71unsigned long totalreserve_pages __read_mostly;
22b31eec 72unsigned long highest_memmap_pfn __read_mostly;
8ad4b1fb 73int percpu_pagelist_fraction;
1da177e4 74
d9c23400
MG
75#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76int pageblock_order __read_mostly;
77#endif
78
d98c7a09 79static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 80
1da177e4
LT
81/*
82 * results with 256, 32 in the lowmem_reserve sysctl:
83 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84 * 1G machine -> (16M dma, 784M normal, 224M high)
85 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
88 *
89 * TBD: should special case ZONE_DMA32 machines here - in those we normally
90 * don't need any ZONE_NORMAL reservation
1da177e4 91 */
2f1b6248 92int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 93#ifdef CONFIG_ZONE_DMA
2f1b6248 94 256,
4b51d669 95#endif
fb0e7942 96#ifdef CONFIG_ZONE_DMA32
2f1b6248 97 256,
fb0e7942 98#endif
e53ef38d 99#ifdef CONFIG_HIGHMEM
2a1e274a 100 32,
e53ef38d 101#endif
2a1e274a 102 32,
2f1b6248 103};
1da177e4
LT
104
105EXPORT_SYMBOL(totalram_pages);
1da177e4 106
15ad7cdc 107static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 108#ifdef CONFIG_ZONE_DMA
2f1b6248 109 "DMA",
4b51d669 110#endif
fb0e7942 111#ifdef CONFIG_ZONE_DMA32
2f1b6248 112 "DMA32",
fb0e7942 113#endif
2f1b6248 114 "Normal",
e53ef38d 115#ifdef CONFIG_HIGHMEM
2a1e274a 116 "HighMem",
e53ef38d 117#endif
2a1e274a 118 "Movable",
2f1b6248
CL
119};
120
1da177e4
LT
121int min_free_kbytes = 1024;
122
86356ab1
YG
123unsigned long __meminitdata nr_kernel_pages;
124unsigned long __meminitdata nr_all_pages;
a3142c8e 125static unsigned long __meminitdata dma_reserve;
1da177e4 126
c713216d
MG
127#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
128 /*
183ff22b 129 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
130 * ranges of memory (RAM) that may be registered with add_active_range().
131 * Ranges passed to add_active_range() will be merged if possible
132 * so the number of times add_active_range() can be called is
133 * related to the number of nodes and the number of holes
134 */
135 #ifdef CONFIG_MAX_ACTIVE_REGIONS
136 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
138 #else
139 #if MAX_NUMNODES >= 32
140 /* If there can be many nodes, allow up to 50 holes per node */
141 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
142 #else
143 /* By default, allow up to 256 distinct regions */
144 #define MAX_ACTIVE_REGIONS 256
145 #endif
146 #endif
147
98011f56
JB
148 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
149 static int __meminitdata nr_nodemap_entries;
150 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
151 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
fb01439c 152#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
98011f56
JB
153 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
154 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
fb01439c 155#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
b69a7288 156 static unsigned long __initdata required_kernelcore;
484f51f8 157 static unsigned long __initdata required_movablecore;
b69a7288 158 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
159
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 int movable_zone;
162 EXPORT_SYMBOL(movable_zone);
c713216d
MG
163#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
164
418508c1
MS
165#if MAX_NUMNODES > 1
166int nr_node_ids __read_mostly = MAX_NUMNODES;
167EXPORT_SYMBOL(nr_node_ids);
168#endif
169
9ef9acb0
MG
170int page_group_by_mobility_disabled __read_mostly;
171
b2a0ac88
MG
172static void set_pageblock_migratetype(struct page *page, int migratetype)
173{
174 set_pageblock_flags_group(page, (unsigned long)migratetype,
175 PB_migrate, PB_migrate_end);
176}
177
13e7444b 178#ifdef CONFIG_DEBUG_VM
c6a57e19 179static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 180{
bdc8cb98
DH
181 int ret = 0;
182 unsigned seq;
183 unsigned long pfn = page_to_pfn(page);
c6a57e19 184
bdc8cb98
DH
185 do {
186 seq = zone_span_seqbegin(zone);
187 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
188 ret = 1;
189 else if (pfn < zone->zone_start_pfn)
190 ret = 1;
191 } while (zone_span_seqretry(zone, seq));
192
193 return ret;
c6a57e19
DH
194}
195
196static int page_is_consistent(struct zone *zone, struct page *page)
197{
14e07298 198 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 199 return 0;
1da177e4 200 if (zone != page_zone(page))
c6a57e19
DH
201 return 0;
202
203 return 1;
204}
205/*
206 * Temporary debugging check for pages not lying within a given zone.
207 */
208static int bad_range(struct zone *zone, struct page *page)
209{
210 if (page_outside_zone_boundaries(zone, page))
1da177e4 211 return 1;
c6a57e19
DH
212 if (!page_is_consistent(zone, page))
213 return 1;
214
1da177e4
LT
215 return 0;
216}
13e7444b
NP
217#else
218static inline int bad_range(struct zone *zone, struct page *page)
219{
220 return 0;
221}
222#endif
223
224abf92 224static void bad_page(struct page *page)
1da177e4 225{
3dc14741
HD
226 printk(KERN_EMERG "Bad page state in process %s pfn:%05lx\n",
227 current->comm, page_to_pfn(page));
228 printk(KERN_EMERG
229 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
230 page, (void *)page->flags, page_count(page),
231 page_mapcount(page), page->mapping, page->index);
232 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
233
1da177e4 234 dump_stack();
8cc3b392
HD
235
236 /* Leave bad fields for debug, except PageBuddy could make trouble */
237 __ClearPageBuddy(page);
9f158333 238 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
239}
240
1da177e4
LT
241/*
242 * Higher-order pages are called "compound pages". They are structured thusly:
243 *
244 * The first PAGE_SIZE page is called the "head page".
245 *
246 * The remaining PAGE_SIZE pages are called "tail pages".
247 *
248 * All pages have PG_compound set. All pages have their ->private pointing at
249 * the head page (even the head page has this).
250 *
41d78ba5
HD
251 * The first tail page's ->lru.next holds the address of the compound page's
252 * put_page() function. Its ->lru.prev holds the order of allocation.
253 * This usage means that zero-order pages may not be compound.
1da177e4 254 */
d98c7a09
HD
255
256static void free_compound_page(struct page *page)
257{
d85f3385 258 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
259}
260
01ad1c08 261void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
262{
263 int i;
264 int nr_pages = 1 << order;
265
266 set_compound_page_dtor(page, free_compound_page);
267 set_compound_order(page, order);
268 __SetPageHead(page);
269 for (i = 1; i < nr_pages; i++) {
270 struct page *p = page + i;
271
272 __SetPageTail(p);
273 p->first_page = page;
274 }
275}
276
277#ifdef CONFIG_HUGETLBFS
278void prep_compound_gigantic_page(struct page *page, unsigned long order)
1da177e4
LT
279{
280 int i;
281 int nr_pages = 1 << order;
6babc32c 282 struct page *p = page + 1;
1da177e4 283
33f2ef89 284 set_compound_page_dtor(page, free_compound_page);
d85f3385 285 set_compound_order(page, order);
6d777953 286 __SetPageHead(page);
18229df5 287 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
d85f3385 288 __SetPageTail(p);
d85f3385 289 p->first_page = page;
1da177e4
LT
290 }
291}
18229df5 292#endif
1da177e4 293
8cc3b392 294static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
295{
296 int i;
297 int nr_pages = 1 << order;
8cc3b392 298 int bad = 0;
1da177e4 299
8cc3b392
HD
300 if (unlikely(compound_order(page) != order) ||
301 unlikely(!PageHead(page))) {
224abf92 302 bad_page(page);
8cc3b392
HD
303 bad++;
304 }
1da177e4 305
6d777953 306 __ClearPageHead(page);
8cc3b392 307
18229df5
AW
308 for (i = 1; i < nr_pages; i++) {
309 struct page *p = page + i;
1da177e4 310
8cc3b392 311 if (unlikely(!PageTail(p) | (p->first_page != page))) {
224abf92 312 bad_page(page);
8cc3b392
HD
313 bad++;
314 }
d85f3385 315 __ClearPageTail(p);
1da177e4 316 }
8cc3b392
HD
317
318 return bad;
1da177e4 319}
1da177e4 320
17cf4406
NP
321static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
322{
323 int i;
324
6626c5d5
AM
325 /*
326 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
327 * and __GFP_HIGHMEM from hard or soft interrupt context.
328 */
725d704e 329 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
330 for (i = 0; i < (1 << order); i++)
331 clear_highpage(page + i);
332}
333
6aa3001b
AM
334static inline void set_page_order(struct page *page, int order)
335{
4c21e2f2 336 set_page_private(page, order);
676165a8 337 __SetPageBuddy(page);
1da177e4
LT
338}
339
340static inline void rmv_page_order(struct page *page)
341{
676165a8 342 __ClearPageBuddy(page);
4c21e2f2 343 set_page_private(page, 0);
1da177e4
LT
344}
345
346/*
347 * Locate the struct page for both the matching buddy in our
348 * pair (buddy1) and the combined O(n+1) page they form (page).
349 *
350 * 1) Any buddy B1 will have an order O twin B2 which satisfies
351 * the following equation:
352 * B2 = B1 ^ (1 << O)
353 * For example, if the starting buddy (buddy2) is #8 its order
354 * 1 buddy is #10:
355 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
356 *
357 * 2) Any buddy B will have an order O+1 parent P which
358 * satisfies the following equation:
359 * P = B & ~(1 << O)
360 *
d6e05edc 361 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
362 */
363static inline struct page *
364__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
365{
366 unsigned long buddy_idx = page_idx ^ (1 << order);
367
368 return page + (buddy_idx - page_idx);
369}
370
371static inline unsigned long
372__find_combined_index(unsigned long page_idx, unsigned int order)
373{
374 return (page_idx & ~(1 << order));
375}
376
377/*
378 * This function checks whether a page is free && is the buddy
379 * we can do coalesce a page and its buddy if
13e7444b 380 * (a) the buddy is not in a hole &&
676165a8 381 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
382 * (c) a page and its buddy have the same order &&
383 * (d) a page and its buddy are in the same zone.
676165a8
NP
384 *
385 * For recording whether a page is in the buddy system, we use PG_buddy.
386 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 387 *
676165a8 388 * For recording page's order, we use page_private(page).
1da177e4 389 */
cb2b95e1
AW
390static inline int page_is_buddy(struct page *page, struct page *buddy,
391 int order)
1da177e4 392{
14e07298 393 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 394 return 0;
13e7444b 395
cb2b95e1
AW
396 if (page_zone_id(page) != page_zone_id(buddy))
397 return 0;
398
399 if (PageBuddy(buddy) && page_order(buddy) == order) {
400 BUG_ON(page_count(buddy) != 0);
6aa3001b 401 return 1;
676165a8 402 }
6aa3001b 403 return 0;
1da177e4
LT
404}
405
406/*
407 * Freeing function for a buddy system allocator.
408 *
409 * The concept of a buddy system is to maintain direct-mapped table
410 * (containing bit values) for memory blocks of various "orders".
411 * The bottom level table contains the map for the smallest allocatable
412 * units of memory (here, pages), and each level above it describes
413 * pairs of units from the levels below, hence, "buddies".
414 * At a high level, all that happens here is marking the table entry
415 * at the bottom level available, and propagating the changes upward
416 * as necessary, plus some accounting needed to play nicely with other
417 * parts of the VM system.
418 * At each level, we keep a list of pages, which are heads of continuous
676165a8 419 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 420 * order is recorded in page_private(page) field.
1da177e4
LT
421 * So when we are allocating or freeing one, we can derive the state of the
422 * other. That is, if we allocate a small block, and both were
423 * free, the remainder of the region must be split into blocks.
424 * If a block is freed, and its buddy is also free, then this
425 * triggers coalescing into a block of larger size.
426 *
427 * -- wli
428 */
429
48db57f8 430static inline void __free_one_page(struct page *page,
1da177e4
LT
431 struct zone *zone, unsigned int order)
432{
433 unsigned long page_idx;
434 int order_size = 1 << order;
b2a0ac88 435 int migratetype = get_pageblock_migratetype(page);
1da177e4 436
224abf92 437 if (unlikely(PageCompound(page)))
8cc3b392
HD
438 if (unlikely(destroy_compound_page(page, order)))
439 return;
1da177e4
LT
440
441 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
442
725d704e
NP
443 VM_BUG_ON(page_idx & (order_size - 1));
444 VM_BUG_ON(bad_range(zone, page));
1da177e4 445
d23ad423 446 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
1da177e4
LT
447 while (order < MAX_ORDER-1) {
448 unsigned long combined_idx;
1da177e4
LT
449 struct page *buddy;
450
1da177e4 451 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 452 if (!page_is_buddy(page, buddy, order))
3c82d0ce 453 break;
13e7444b 454
3c82d0ce 455 /* Our buddy is free, merge with it and move up one order. */
1da177e4 456 list_del(&buddy->lru);
b2a0ac88 457 zone->free_area[order].nr_free--;
1da177e4 458 rmv_page_order(buddy);
13e7444b 459 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
460 page = page + (combined_idx - page_idx);
461 page_idx = combined_idx;
462 order++;
463 }
464 set_page_order(page, order);
b2a0ac88
MG
465 list_add(&page->lru,
466 &zone->free_area[order].free_list[migratetype]);
1da177e4
LT
467 zone->free_area[order].nr_free++;
468}
469
224abf92 470static inline int free_pages_check(struct page *page)
1da177e4 471{
985737cf 472 free_page_mlock(page);
92be2e33
NP
473 if (unlikely(page_mapcount(page) |
474 (page->mapping != NULL) |
475 (page_count(page) != 0) |
8cc3b392 476 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
224abf92 477 bad_page(page);
79f4b7bf 478 return 1;
8cc3b392 479 }
79f4b7bf
HD
480 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
481 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
482 return 0;
1da177e4
LT
483}
484
485/*
486 * Frees a list of pages.
487 * Assumes all pages on list are in same zone, and of same order.
207f36ee 488 * count is the number of pages to free.
1da177e4
LT
489 *
490 * If the zone was previously in an "all pages pinned" state then look to
491 * see if this freeing clears that state.
492 *
493 * And clear the zone's pages_scanned counter, to hold off the "all pages are
494 * pinned" detection logic.
495 */
48db57f8
NP
496static void free_pages_bulk(struct zone *zone, int count,
497 struct list_head *list, int order)
1da177e4 498{
c54ad30c 499 spin_lock(&zone->lock);
e815af95 500 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
1da177e4 501 zone->pages_scanned = 0;
48db57f8
NP
502 while (count--) {
503 struct page *page;
504
725d704e 505 VM_BUG_ON(list_empty(list));
1da177e4 506 page = list_entry(list->prev, struct page, lru);
48db57f8 507 /* have to delete it as __free_one_page list manipulates */
1da177e4 508 list_del(&page->lru);
48db57f8 509 __free_one_page(page, zone, order);
1da177e4 510 }
c54ad30c 511 spin_unlock(&zone->lock);
1da177e4
LT
512}
513
48db57f8 514static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4 515{
006d22d9 516 spin_lock(&zone->lock);
e815af95 517 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
006d22d9 518 zone->pages_scanned = 0;
0798e519 519 __free_one_page(page, zone, order);
006d22d9 520 spin_unlock(&zone->lock);
48db57f8
NP
521}
522
523static void __free_pages_ok(struct page *page, unsigned int order)
524{
525 unsigned long flags;
1da177e4 526 int i;
8cc3b392 527 int bad = 0;
1da177e4 528
1da177e4 529 for (i = 0 ; i < (1 << order) ; ++i)
8cc3b392
HD
530 bad += free_pages_check(page + i);
531 if (bad)
689bcebf
HD
532 return;
533
3ac7fe5a 534 if (!PageHighMem(page)) {
9858db50 535 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
536 debug_check_no_obj_freed(page_address(page),
537 PAGE_SIZE << order);
538 }
dafb1367 539 arch_free_page(page, order);
48db57f8 540 kernel_map_pages(page, 1 << order, 0);
dafb1367 541
c54ad30c 542 local_irq_save(flags);
f8891e5e 543 __count_vm_events(PGFREE, 1 << order);
48db57f8 544 free_one_page(page_zone(page), page, order);
c54ad30c 545 local_irq_restore(flags);
1da177e4
LT
546}
547
a226f6c8
DH
548/*
549 * permit the bootmem allocator to evade page validation on high-order frees
550 */
af370fb8 551void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
552{
553 if (order == 0) {
554 __ClearPageReserved(page);
555 set_page_count(page, 0);
7835e98b 556 set_page_refcounted(page);
545b1ea9 557 __free_page(page);
a226f6c8 558 } else {
a226f6c8
DH
559 int loop;
560
545b1ea9 561 prefetchw(page);
a226f6c8
DH
562 for (loop = 0; loop < BITS_PER_LONG; loop++) {
563 struct page *p = &page[loop];
564
545b1ea9
NP
565 if (loop + 1 < BITS_PER_LONG)
566 prefetchw(p + 1);
a226f6c8
DH
567 __ClearPageReserved(p);
568 set_page_count(p, 0);
569 }
570
7835e98b 571 set_page_refcounted(page);
545b1ea9 572 __free_pages(page, order);
a226f6c8
DH
573 }
574}
575
1da177e4
LT
576
577/*
578 * The order of subdivision here is critical for the IO subsystem.
579 * Please do not alter this order without good reasons and regression
580 * testing. Specifically, as large blocks of memory are subdivided,
581 * the order in which smaller blocks are delivered depends on the order
582 * they're subdivided in this function. This is the primary factor
583 * influencing the order in which pages are delivered to the IO
584 * subsystem according to empirical testing, and this is also justified
585 * by considering the behavior of a buddy system containing a single
586 * large block of memory acted on by a series of small allocations.
587 * This behavior is a critical factor in sglist merging's success.
588 *
589 * -- wli
590 */
085cc7d5 591static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
592 int low, int high, struct free_area *area,
593 int migratetype)
1da177e4
LT
594{
595 unsigned long size = 1 << high;
596
597 while (high > low) {
598 area--;
599 high--;
600 size >>= 1;
725d704e 601 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 602 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
603 area->nr_free++;
604 set_page_order(&page[size], high);
605 }
1da177e4
LT
606}
607
1da177e4
LT
608/*
609 * This page is about to be returned from the page allocator
610 */
17cf4406 611static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 612{
92be2e33
NP
613 if (unlikely(page_mapcount(page) |
614 (page->mapping != NULL) |
615 (page_count(page) != 0) |
8cc3b392 616 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
224abf92 617 bad_page(page);
689bcebf 618 return 1;
8cc3b392 619 }
689bcebf 620
4c21e2f2 621 set_page_private(page, 0);
7835e98b 622 set_page_refcounted(page);
cc102509
NP
623
624 arch_alloc_page(page, order);
1da177e4 625 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
626
627 if (gfp_flags & __GFP_ZERO)
628 prep_zero_page(page, order, gfp_flags);
629
630 if (order && (gfp_flags & __GFP_COMP))
631 prep_compound_page(page, order);
632
689bcebf 633 return 0;
1da177e4
LT
634}
635
56fd56b8
MG
636/*
637 * Go through the free lists for the given migratetype and remove
638 * the smallest available page from the freelists
639 */
640static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
641 int migratetype)
642{
643 unsigned int current_order;
644 struct free_area * area;
645 struct page *page;
646
647 /* Find a page of the appropriate size in the preferred list */
648 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
649 area = &(zone->free_area[current_order]);
650 if (list_empty(&area->free_list[migratetype]))
651 continue;
652
653 page = list_entry(area->free_list[migratetype].next,
654 struct page, lru);
655 list_del(&page->lru);
656 rmv_page_order(page);
657 area->nr_free--;
658 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
659 expand(zone, page, order, current_order, area, migratetype);
660 return page;
661 }
662
663 return NULL;
664}
665
666
b2a0ac88
MG
667/*
668 * This array describes the order lists are fallen back to when
669 * the free lists for the desirable migrate type are depleted
670 */
671static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
672 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
673 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
674 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
675 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
676};
677
c361be55
MG
678/*
679 * Move the free pages in a range to the free lists of the requested type.
d9c23400 680 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
681 * boundary. If alignment is required, use move_freepages_block()
682 */
b69a7288
AB
683static int move_freepages(struct zone *zone,
684 struct page *start_page, struct page *end_page,
685 int migratetype)
c361be55
MG
686{
687 struct page *page;
688 unsigned long order;
d100313f 689 int pages_moved = 0;
c361be55
MG
690
691#ifndef CONFIG_HOLES_IN_ZONE
692 /*
693 * page_zone is not safe to call in this context when
694 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
695 * anyway as we check zone boundaries in move_freepages_block().
696 * Remove at a later date when no bug reports exist related to
ac0e5b7a 697 * grouping pages by mobility
c361be55
MG
698 */
699 BUG_ON(page_zone(start_page) != page_zone(end_page));
700#endif
701
702 for (page = start_page; page <= end_page;) {
344c790e
AL
703 /* Make sure we are not inadvertently changing nodes */
704 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
705
c361be55
MG
706 if (!pfn_valid_within(page_to_pfn(page))) {
707 page++;
708 continue;
709 }
710
711 if (!PageBuddy(page)) {
712 page++;
713 continue;
714 }
715
716 order = page_order(page);
717 list_del(&page->lru);
718 list_add(&page->lru,
719 &zone->free_area[order].free_list[migratetype]);
720 page += 1 << order;
d100313f 721 pages_moved += 1 << order;
c361be55
MG
722 }
723
d100313f 724 return pages_moved;
c361be55
MG
725}
726
b69a7288
AB
727static int move_freepages_block(struct zone *zone, struct page *page,
728 int migratetype)
c361be55
MG
729{
730 unsigned long start_pfn, end_pfn;
731 struct page *start_page, *end_page;
732
733 start_pfn = page_to_pfn(page);
d9c23400 734 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 735 start_page = pfn_to_page(start_pfn);
d9c23400
MG
736 end_page = start_page + pageblock_nr_pages - 1;
737 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
738
739 /* Do not cross zone boundaries */
740 if (start_pfn < zone->zone_start_pfn)
741 start_page = page;
742 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
743 return 0;
744
745 return move_freepages(zone, start_page, end_page, migratetype);
746}
747
b2a0ac88
MG
748/* Remove an element from the buddy allocator from the fallback list */
749static struct page *__rmqueue_fallback(struct zone *zone, int order,
750 int start_migratetype)
751{
752 struct free_area * area;
753 int current_order;
754 struct page *page;
755 int migratetype, i;
756
757 /* Find the largest possible block of pages in the other list */
758 for (current_order = MAX_ORDER-1; current_order >= order;
759 --current_order) {
760 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
761 migratetype = fallbacks[start_migratetype][i];
762
56fd56b8
MG
763 /* MIGRATE_RESERVE handled later if necessary */
764 if (migratetype == MIGRATE_RESERVE)
765 continue;
e010487d 766
b2a0ac88
MG
767 area = &(zone->free_area[current_order]);
768 if (list_empty(&area->free_list[migratetype]))
769 continue;
770
771 page = list_entry(area->free_list[migratetype].next,
772 struct page, lru);
773 area->nr_free--;
774
775 /*
c361be55 776 * If breaking a large block of pages, move all free
46dafbca
MG
777 * pages to the preferred allocation list. If falling
778 * back for a reclaimable kernel allocation, be more
779 * agressive about taking ownership of free pages
b2a0ac88 780 */
d9c23400 781 if (unlikely(current_order >= (pageblock_order >> 1)) ||
46dafbca
MG
782 start_migratetype == MIGRATE_RECLAIMABLE) {
783 unsigned long pages;
784 pages = move_freepages_block(zone, page,
785 start_migratetype);
786
787 /* Claim the whole block if over half of it is free */
d9c23400 788 if (pages >= (1 << (pageblock_order-1)))
46dafbca
MG
789 set_pageblock_migratetype(page,
790 start_migratetype);
791
b2a0ac88 792 migratetype = start_migratetype;
c361be55 793 }
b2a0ac88
MG
794
795 /* Remove the page from the freelists */
796 list_del(&page->lru);
797 rmv_page_order(page);
798 __mod_zone_page_state(zone, NR_FREE_PAGES,
799 -(1UL << order));
800
d9c23400 801 if (current_order == pageblock_order)
b2a0ac88
MG
802 set_pageblock_migratetype(page,
803 start_migratetype);
804
805 expand(zone, page, order, current_order, area, migratetype);
806 return page;
807 }
808 }
809
56fd56b8
MG
810 /* Use MIGRATE_RESERVE rather than fail an allocation */
811 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
b2a0ac88
MG
812}
813
56fd56b8 814/*
1da177e4
LT
815 * Do the hard work of removing an element from the buddy allocator.
816 * Call me with the zone->lock already held.
817 */
b2a0ac88
MG
818static struct page *__rmqueue(struct zone *zone, unsigned int order,
819 int migratetype)
1da177e4 820{
1da177e4
LT
821 struct page *page;
822
56fd56b8 823 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 824
56fd56b8
MG
825 if (unlikely(!page))
826 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88
MG
827
828 return page;
1da177e4
LT
829}
830
831/*
832 * Obtain a specified number of elements from the buddy allocator, all under
833 * a single hold of the lock, for efficiency. Add them to the supplied list.
834 * Returns the number of new pages which were placed at *list.
835 */
836static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88
MG
837 unsigned long count, struct list_head *list,
838 int migratetype)
1da177e4 839{
1da177e4 840 int i;
1da177e4 841
c54ad30c 842 spin_lock(&zone->lock);
1da177e4 843 for (i = 0; i < count; ++i) {
b2a0ac88 844 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 845 if (unlikely(page == NULL))
1da177e4 846 break;
81eabcbe
MG
847
848 /*
849 * Split buddy pages returned by expand() are received here
850 * in physical page order. The page is added to the callers and
851 * list and the list head then moves forward. From the callers
852 * perspective, the linked list is ordered by page number in
853 * some conditions. This is useful for IO devices that can
854 * merge IO requests if the physical pages are ordered
855 * properly.
856 */
535131e6
MG
857 list_add(&page->lru, list);
858 set_page_private(page, migratetype);
81eabcbe 859 list = &page->lru;
1da177e4 860 }
c54ad30c 861 spin_unlock(&zone->lock);
085cc7d5 862 return i;
1da177e4
LT
863}
864
4ae7c039 865#ifdef CONFIG_NUMA
8fce4d8e 866/*
4037d452
CL
867 * Called from the vmstat counter updater to drain pagesets of this
868 * currently executing processor on remote nodes after they have
869 * expired.
870 *
879336c3
CL
871 * Note that this function must be called with the thread pinned to
872 * a single processor.
8fce4d8e 873 */
4037d452 874void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 875{
4ae7c039 876 unsigned long flags;
4037d452 877 int to_drain;
4ae7c039 878
4037d452
CL
879 local_irq_save(flags);
880 if (pcp->count >= pcp->batch)
881 to_drain = pcp->batch;
882 else
883 to_drain = pcp->count;
884 free_pages_bulk(zone, to_drain, &pcp->list, 0);
885 pcp->count -= to_drain;
886 local_irq_restore(flags);
4ae7c039
CL
887}
888#endif
889
9f8f2172
CL
890/*
891 * Drain pages of the indicated processor.
892 *
893 * The processor must either be the current processor and the
894 * thread pinned to the current processor or a processor that
895 * is not online.
896 */
897static void drain_pages(unsigned int cpu)
1da177e4 898{
c54ad30c 899 unsigned long flags;
1da177e4 900 struct zone *zone;
1da177e4
LT
901
902 for_each_zone(zone) {
903 struct per_cpu_pageset *pset;
3dfa5721 904 struct per_cpu_pages *pcp;
1da177e4 905
f2e12bb2
CL
906 if (!populated_zone(zone))
907 continue;
908
e7c8d5c9 909 pset = zone_pcp(zone, cpu);
3dfa5721
CL
910
911 pcp = &pset->pcp;
912 local_irq_save(flags);
913 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
914 pcp->count = 0;
915 local_irq_restore(flags);
1da177e4
LT
916 }
917}
1da177e4 918
9f8f2172
CL
919/*
920 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
921 */
922void drain_local_pages(void *arg)
923{
924 drain_pages(smp_processor_id());
925}
926
927/*
928 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
929 */
930void drain_all_pages(void)
931{
15c8b6c1 932 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
933}
934
296699de 935#ifdef CONFIG_HIBERNATION
1da177e4
LT
936
937void mark_free_pages(struct zone *zone)
938{
f623f0db
RW
939 unsigned long pfn, max_zone_pfn;
940 unsigned long flags;
b2a0ac88 941 int order, t;
1da177e4
LT
942 struct list_head *curr;
943
944 if (!zone->spanned_pages)
945 return;
946
947 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
948
949 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
950 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
951 if (pfn_valid(pfn)) {
952 struct page *page = pfn_to_page(pfn);
953
7be98234
RW
954 if (!swsusp_page_is_forbidden(page))
955 swsusp_unset_page_free(page);
f623f0db 956 }
1da177e4 957
b2a0ac88
MG
958 for_each_migratetype_order(order, t) {
959 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 960 unsigned long i;
1da177e4 961
f623f0db
RW
962 pfn = page_to_pfn(list_entry(curr, struct page, lru));
963 for (i = 0; i < (1UL << order); i++)
7be98234 964 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 965 }
b2a0ac88 966 }
1da177e4
LT
967 spin_unlock_irqrestore(&zone->lock, flags);
968}
e2c55dc8 969#endif /* CONFIG_PM */
1da177e4 970
1da177e4
LT
971/*
972 * Free a 0-order page
973 */
920c7a5d 974static void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
975{
976 struct zone *zone = page_zone(page);
977 struct per_cpu_pages *pcp;
978 unsigned long flags;
979
1da177e4
LT
980 if (PageAnon(page))
981 page->mapping = NULL;
224abf92 982 if (free_pages_check(page))
689bcebf
HD
983 return;
984
3ac7fe5a 985 if (!PageHighMem(page)) {
9858db50 986 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
3ac7fe5a
TG
987 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
988 }
dafb1367 989 arch_free_page(page, 0);
689bcebf
HD
990 kernel_map_pages(page, 1, 0);
991
3dfa5721 992 pcp = &zone_pcp(zone, get_cpu())->pcp;
1da177e4 993 local_irq_save(flags);
f8891e5e 994 __count_vm_event(PGFREE);
3dfa5721
CL
995 if (cold)
996 list_add_tail(&page->lru, &pcp->list);
997 else
998 list_add(&page->lru, &pcp->list);
535131e6 999 set_page_private(page, get_pageblock_migratetype(page));
1da177e4 1000 pcp->count++;
48db57f8
NP
1001 if (pcp->count >= pcp->high) {
1002 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1003 pcp->count -= pcp->batch;
1004 }
1da177e4
LT
1005 local_irq_restore(flags);
1006 put_cpu();
1007}
1008
920c7a5d 1009void free_hot_page(struct page *page)
1da177e4
LT
1010{
1011 free_hot_cold_page(page, 0);
1012}
1013
920c7a5d 1014void free_cold_page(struct page *page)
1da177e4
LT
1015{
1016 free_hot_cold_page(page, 1);
1017}
1018
8dfcc9ba
NP
1019/*
1020 * split_page takes a non-compound higher-order page, and splits it into
1021 * n (1<<order) sub-pages: page[0..n]
1022 * Each sub-page must be freed individually.
1023 *
1024 * Note: this is probably too low level an operation for use in drivers.
1025 * Please consult with lkml before using this in your driver.
1026 */
1027void split_page(struct page *page, unsigned int order)
1028{
1029 int i;
1030
725d704e
NP
1031 VM_BUG_ON(PageCompound(page));
1032 VM_BUG_ON(!page_count(page));
7835e98b
NP
1033 for (i = 1; i < (1 << order); i++)
1034 set_page_refcounted(page + i);
8dfcc9ba 1035}
8dfcc9ba 1036
1da177e4
LT
1037/*
1038 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1039 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1040 * or two.
1041 */
18ea7e71 1042static struct page *buffered_rmqueue(struct zone *preferred_zone,
a74609fa 1043 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
1044{
1045 unsigned long flags;
689bcebf 1046 struct page *page;
1da177e4 1047 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 1048 int cpu;
64c5e135 1049 int migratetype = allocflags_to_migratetype(gfp_flags);
1da177e4 1050
689bcebf 1051again:
a74609fa 1052 cpu = get_cpu();
48db57f8 1053 if (likely(order == 0)) {
1da177e4
LT
1054 struct per_cpu_pages *pcp;
1055
3dfa5721 1056 pcp = &zone_pcp(zone, cpu)->pcp;
1da177e4 1057 local_irq_save(flags);
a74609fa 1058 if (!pcp->count) {
941c7105 1059 pcp->count = rmqueue_bulk(zone, 0,
b2a0ac88 1060 pcp->batch, &pcp->list, migratetype);
a74609fa
NP
1061 if (unlikely(!pcp->count))
1062 goto failed;
1da177e4 1063 }
b92a6edd 1064
535131e6 1065 /* Find a page of the appropriate migrate type */
3dfa5721
CL
1066 if (cold) {
1067 list_for_each_entry_reverse(page, &pcp->list, lru)
1068 if (page_private(page) == migratetype)
1069 break;
1070 } else {
1071 list_for_each_entry(page, &pcp->list, lru)
1072 if (page_private(page) == migratetype)
1073 break;
1074 }
535131e6 1075
b92a6edd
MG
1076 /* Allocate more to the pcp list if necessary */
1077 if (unlikely(&page->lru == &pcp->list)) {
535131e6
MG
1078 pcp->count += rmqueue_bulk(zone, 0,
1079 pcp->batch, &pcp->list, migratetype);
1080 page = list_entry(pcp->list.next, struct page, lru);
535131e6 1081 }
b92a6edd
MG
1082
1083 list_del(&page->lru);
1084 pcp->count--;
7fb1d9fc 1085 } else {
1da177e4 1086 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1087 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1088 spin_unlock(&zone->lock);
1089 if (!page)
1090 goto failed;
1da177e4
LT
1091 }
1092
f8891e5e 1093 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1094 zone_statistics(preferred_zone, zone);
a74609fa
NP
1095 local_irq_restore(flags);
1096 put_cpu();
1da177e4 1097
725d704e 1098 VM_BUG_ON(bad_range(zone, page));
17cf4406 1099 if (prep_new_page(page, order, gfp_flags))
a74609fa 1100 goto again;
1da177e4 1101 return page;
a74609fa
NP
1102
1103failed:
1104 local_irq_restore(flags);
1105 put_cpu();
1106 return NULL;
1da177e4
LT
1107}
1108
7fb1d9fc 1109#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
1110#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1111#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1112#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1113#define ALLOC_HARDER 0x10 /* try to alloc harder */
1114#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1115#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1116
933e312e
AM
1117#ifdef CONFIG_FAIL_PAGE_ALLOC
1118
1119static struct fail_page_alloc_attr {
1120 struct fault_attr attr;
1121
1122 u32 ignore_gfp_highmem;
1123 u32 ignore_gfp_wait;
54114994 1124 u32 min_order;
933e312e
AM
1125
1126#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1127
1128 struct dentry *ignore_gfp_highmem_file;
1129 struct dentry *ignore_gfp_wait_file;
54114994 1130 struct dentry *min_order_file;
933e312e
AM
1131
1132#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1133
1134} fail_page_alloc = {
1135 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1136 .ignore_gfp_wait = 1,
1137 .ignore_gfp_highmem = 1,
54114994 1138 .min_order = 1,
933e312e
AM
1139};
1140
1141static int __init setup_fail_page_alloc(char *str)
1142{
1143 return setup_fault_attr(&fail_page_alloc.attr, str);
1144}
1145__setup("fail_page_alloc=", setup_fail_page_alloc);
1146
1147static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1148{
54114994
AM
1149 if (order < fail_page_alloc.min_order)
1150 return 0;
933e312e
AM
1151 if (gfp_mask & __GFP_NOFAIL)
1152 return 0;
1153 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1154 return 0;
1155 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1156 return 0;
1157
1158 return should_fail(&fail_page_alloc.attr, 1 << order);
1159}
1160
1161#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1162
1163static int __init fail_page_alloc_debugfs(void)
1164{
1165 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1166 struct dentry *dir;
1167 int err;
1168
1169 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1170 "fail_page_alloc");
1171 if (err)
1172 return err;
1173 dir = fail_page_alloc.attr.dentries.dir;
1174
1175 fail_page_alloc.ignore_gfp_wait_file =
1176 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1177 &fail_page_alloc.ignore_gfp_wait);
1178
1179 fail_page_alloc.ignore_gfp_highmem_file =
1180 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1181 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1182 fail_page_alloc.min_order_file =
1183 debugfs_create_u32("min-order", mode, dir,
1184 &fail_page_alloc.min_order);
933e312e
AM
1185
1186 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1187 !fail_page_alloc.ignore_gfp_highmem_file ||
1188 !fail_page_alloc.min_order_file) {
933e312e
AM
1189 err = -ENOMEM;
1190 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1191 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1192 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1193 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1194 }
1195
1196 return err;
1197}
1198
1199late_initcall(fail_page_alloc_debugfs);
1200
1201#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1202
1203#else /* CONFIG_FAIL_PAGE_ALLOC */
1204
1205static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1206{
1207 return 0;
1208}
1209
1210#endif /* CONFIG_FAIL_PAGE_ALLOC */
1211
1da177e4
LT
1212/*
1213 * Return 1 if free pages are above 'mark'. This takes into account the order
1214 * of the allocation.
1215 */
1216int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1217 int classzone_idx, int alloc_flags)
1da177e4
LT
1218{
1219 /* free_pages my go negative - that's OK */
d23ad423
CL
1220 long min = mark;
1221 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1222 int o;
1223
7fb1d9fc 1224 if (alloc_flags & ALLOC_HIGH)
1da177e4 1225 min -= min / 2;
7fb1d9fc 1226 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1227 min -= min / 4;
1228
1229 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1230 return 0;
1231 for (o = 0; o < order; o++) {
1232 /* At the next order, this order's pages become unavailable */
1233 free_pages -= z->free_area[o].nr_free << o;
1234
1235 /* Require fewer higher order pages to be free */
1236 min >>= 1;
1237
1238 if (free_pages <= min)
1239 return 0;
1240 }
1241 return 1;
1242}
1243
9276b1bc
PJ
1244#ifdef CONFIG_NUMA
1245/*
1246 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1247 * skip over zones that are not allowed by the cpuset, or that have
1248 * been recently (in last second) found to be nearly full. See further
1249 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1250 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1251 *
1252 * If the zonelist cache is present in the passed in zonelist, then
1253 * returns a pointer to the allowed node mask (either the current
37b07e41 1254 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1255 *
1256 * If the zonelist cache is not available for this zonelist, does
1257 * nothing and returns NULL.
1258 *
1259 * If the fullzones BITMAP in the zonelist cache is stale (more than
1260 * a second since last zap'd) then we zap it out (clear its bits.)
1261 *
1262 * We hold off even calling zlc_setup, until after we've checked the
1263 * first zone in the zonelist, on the theory that most allocations will
1264 * be satisfied from that first zone, so best to examine that zone as
1265 * quickly as we can.
1266 */
1267static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1268{
1269 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1270 nodemask_t *allowednodes; /* zonelist_cache approximation */
1271
1272 zlc = zonelist->zlcache_ptr;
1273 if (!zlc)
1274 return NULL;
1275
f05111f5 1276 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1277 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1278 zlc->last_full_zap = jiffies;
1279 }
1280
1281 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1282 &cpuset_current_mems_allowed :
37b07e41 1283 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1284 return allowednodes;
1285}
1286
1287/*
1288 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1289 * if it is worth looking at further for free memory:
1290 * 1) Check that the zone isn't thought to be full (doesn't have its
1291 * bit set in the zonelist_cache fullzones BITMAP).
1292 * 2) Check that the zones node (obtained from the zonelist_cache
1293 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1294 * Return true (non-zero) if zone is worth looking at further, or
1295 * else return false (zero) if it is not.
1296 *
1297 * This check -ignores- the distinction between various watermarks,
1298 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1299 * found to be full for any variation of these watermarks, it will
1300 * be considered full for up to one second by all requests, unless
1301 * we are so low on memory on all allowed nodes that we are forced
1302 * into the second scan of the zonelist.
1303 *
1304 * In the second scan we ignore this zonelist cache and exactly
1305 * apply the watermarks to all zones, even it is slower to do so.
1306 * We are low on memory in the second scan, and should leave no stone
1307 * unturned looking for a free page.
1308 */
dd1a239f 1309static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1310 nodemask_t *allowednodes)
1311{
1312 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1313 int i; /* index of *z in zonelist zones */
1314 int n; /* node that zone *z is on */
1315
1316 zlc = zonelist->zlcache_ptr;
1317 if (!zlc)
1318 return 1;
1319
dd1a239f 1320 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1321 n = zlc->z_to_n[i];
1322
1323 /* This zone is worth trying if it is allowed but not full */
1324 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1325}
1326
1327/*
1328 * Given 'z' scanning a zonelist, set the corresponding bit in
1329 * zlc->fullzones, so that subsequent attempts to allocate a page
1330 * from that zone don't waste time re-examining it.
1331 */
dd1a239f 1332static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1333{
1334 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1335 int i; /* index of *z in zonelist zones */
1336
1337 zlc = zonelist->zlcache_ptr;
1338 if (!zlc)
1339 return;
1340
dd1a239f 1341 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1342
1343 set_bit(i, zlc->fullzones);
1344}
1345
1346#else /* CONFIG_NUMA */
1347
1348static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1349{
1350 return NULL;
1351}
1352
dd1a239f 1353static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1354 nodemask_t *allowednodes)
1355{
1356 return 1;
1357}
1358
dd1a239f 1359static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1360{
1361}
1362#endif /* CONFIG_NUMA */
1363
7fb1d9fc 1364/*
0798e519 1365 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1366 * a page.
1367 */
1368static struct page *
19770b32 1369get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
54a6eb5c 1370 struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
753ee728 1371{
dd1a239f 1372 struct zoneref *z;
7fb1d9fc 1373 struct page *page = NULL;
54a6eb5c 1374 int classzone_idx;
18ea7e71 1375 struct zone *zone, *preferred_zone;
9276b1bc
PJ
1376 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1377 int zlc_active = 0; /* set if using zonelist_cache */
1378 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1379
19770b32
MG
1380 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1381 &preferred_zone);
7eb54824
AW
1382 if (!preferred_zone)
1383 return NULL;
1384
19770b32 1385 classzone_idx = zone_idx(preferred_zone);
7fb1d9fc 1386
9276b1bc 1387zonelist_scan:
7fb1d9fc 1388 /*
9276b1bc 1389 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1390 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1391 */
19770b32
MG
1392 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1393 high_zoneidx, nodemask) {
9276b1bc
PJ
1394 if (NUMA_BUILD && zlc_active &&
1395 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1396 continue;
7fb1d9fc 1397 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1398 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1399 goto try_next_zone;
7fb1d9fc
RS
1400
1401 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
1402 unsigned long mark;
1403 if (alloc_flags & ALLOC_WMARK_MIN)
1192d526 1404 mark = zone->pages_min;
3148890b 1405 else if (alloc_flags & ALLOC_WMARK_LOW)
1192d526 1406 mark = zone->pages_low;
3148890b 1407 else
1192d526 1408 mark = zone->pages_high;
0798e519
PJ
1409 if (!zone_watermark_ok(zone, order, mark,
1410 classzone_idx, alloc_flags)) {
9eeff239 1411 if (!zone_reclaim_mode ||
1192d526 1412 !zone_reclaim(zone, gfp_mask, order))
9276b1bc 1413 goto this_zone_full;
0798e519 1414 }
7fb1d9fc
RS
1415 }
1416
18ea7e71 1417 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
0798e519 1418 if (page)
7fb1d9fc 1419 break;
9276b1bc
PJ
1420this_zone_full:
1421 if (NUMA_BUILD)
1422 zlc_mark_zone_full(zonelist, z);
1423try_next_zone:
1424 if (NUMA_BUILD && !did_zlc_setup) {
1425 /* we do zlc_setup after the first zone is tried */
1426 allowednodes = zlc_setup(zonelist, alloc_flags);
1427 zlc_active = 1;
1428 did_zlc_setup = 1;
1429 }
54a6eb5c 1430 }
9276b1bc
PJ
1431
1432 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1433 /* Disable zlc cache for second zonelist scan */
1434 zlc_active = 0;
1435 goto zonelist_scan;
1436 }
7fb1d9fc 1437 return page;
753ee728
MH
1438}
1439
1da177e4
LT
1440/*
1441 * This is the 'heart' of the zoned buddy allocator.
1442 */
e4048e5d 1443struct page *
19770b32
MG
1444__alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1445 struct zonelist *zonelist, nodemask_t *nodemask)
1da177e4 1446{
260b2367 1447 const gfp_t wait = gfp_mask & __GFP_WAIT;
54a6eb5c 1448 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
dd1a239f
MG
1449 struct zoneref *z;
1450 struct zone *zone;
1da177e4
LT
1451 struct page *page;
1452 struct reclaim_state reclaim_state;
1453 struct task_struct *p = current;
1da177e4 1454 int do_retry;
7fb1d9fc 1455 int alloc_flags;
a41f24ea
NA
1456 unsigned long did_some_progress;
1457 unsigned long pages_reclaimed = 0;
1da177e4
LT
1458
1459 might_sleep_if(wait);
1460
933e312e
AM
1461 if (should_fail_alloc_page(gfp_mask, order))
1462 return NULL;
1463
6b1de916 1464restart:
dd1a239f 1465 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
1da177e4 1466
dd1a239f 1467 if (unlikely(!z->zone)) {
523b9458
CL
1468 /*
1469 * Happens if we have an empty zonelist as a result of
1470 * GFP_THISNODE being used on a memoryless node
1471 */
1da177e4
LT
1472 return NULL;
1473 }
6b1de916 1474
19770b32 1475 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
54a6eb5c 1476 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
1477 if (page)
1478 goto got_pg;
1da177e4 1479
952f3b51
CL
1480 /*
1481 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1482 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1483 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1484 * using a larger set of nodes after it has established that the
1485 * allowed per node queues are empty and that nodes are
1486 * over allocated.
1487 */
1488 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1489 goto nopage;
1490
dd1a239f
MG
1491 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1492 wakeup_kswapd(zone, order);
1da177e4 1493
9bf2229f 1494 /*
7fb1d9fc
RS
1495 * OK, we're below the kswapd watermark and have kicked background
1496 * reclaim. Now things get more complex, so set up alloc_flags according
1497 * to how we want to proceed.
1498 *
1499 * The caller may dip into page reserves a bit more if the caller
1500 * cannot run direct reclaim, or if the caller has realtime scheduling
4eac915d
PJ
1501 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1502 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
9bf2229f 1503 */
3148890b 1504 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
1505 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1506 alloc_flags |= ALLOC_HARDER;
1507 if (gfp_mask & __GFP_HIGH)
1508 alloc_flags |= ALLOC_HIGH;
bdd804f4
PJ
1509 if (wait)
1510 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
1511
1512 /*
1513 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 1514 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
1515 *
1516 * This is the last chance, in general, before the goto nopage.
1517 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 1518 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 1519 */
19770b32 1520 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
54a6eb5c 1521 high_zoneidx, alloc_flags);
7fb1d9fc
RS
1522 if (page)
1523 goto got_pg;
1da177e4
LT
1524
1525 /* This allocation should allow future memory freeing. */
b84a35be 1526
b43a57bb 1527rebalance:
b84a35be
NP
1528 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1529 && !in_interrupt()) {
1530 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 1531nofail_alloc:
b84a35be 1532 /* go through the zonelist yet again, ignoring mins */
19770b32 1533 page = get_page_from_freelist(gfp_mask, nodemask, order,
54a6eb5c 1534 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
1535 if (page)
1536 goto got_pg;
885036d3 1537 if (gfp_mask & __GFP_NOFAIL) {
3fcfab16 1538 congestion_wait(WRITE, HZ/50);
885036d3
KK
1539 goto nofail_alloc;
1540 }
1da177e4
LT
1541 }
1542 goto nopage;
1543 }
1544
1545 /* Atomic allocations - we can't balance anything */
1546 if (!wait)
1547 goto nopage;
1548
1da177e4
LT
1549 cond_resched();
1550
1551 /* We now go into synchronous reclaim */
3e0d98b9 1552 cpuset_memory_pressure_bump();
e33c3b5e
DR
1553 /*
1554 * The task's cpuset might have expanded its set of allowable nodes
1555 */
1556 cpuset_update_task_memory_state();
1da177e4
LT
1557 p->flags |= PF_MEMALLOC;
1558 reclaim_state.reclaimed_slab = 0;
1559 p->reclaim_state = &reclaim_state;
1560
dac1d27b 1561 did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1da177e4
LT
1562
1563 p->reclaim_state = NULL;
1564 p->flags &= ~PF_MEMALLOC;
1565
1566 cond_resched();
1567
e2c55dc8 1568 if (order != 0)
9f8f2172 1569 drain_all_pages();
e2c55dc8 1570
1da177e4 1571 if (likely(did_some_progress)) {
19770b32 1572 page = get_page_from_freelist(gfp_mask, nodemask, order,
54a6eb5c 1573 zonelist, high_zoneidx, alloc_flags);
7fb1d9fc
RS
1574 if (page)
1575 goto got_pg;
1da177e4 1576 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
dd1a239f 1577 if (!try_set_zone_oom(zonelist, gfp_mask)) {
ff0ceb9d
DR
1578 schedule_timeout_uninterruptible(1);
1579 goto restart;
1580 }
1581
1da177e4
LT
1582 /*
1583 * Go through the zonelist yet one more time, keep
1584 * very high watermark here, this is only to catch
1585 * a parallel oom killing, we must fail if we're still
1586 * under heavy pressure.
1587 */
19770b32
MG
1588 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1589 order, zonelist, high_zoneidx,
1590 ALLOC_WMARK_HIGH|ALLOC_CPUSET);
ff0ceb9d 1591 if (page) {
dd1a239f 1592 clear_zonelist_oom(zonelist, gfp_mask);
7fb1d9fc 1593 goto got_pg;
ff0ceb9d 1594 }
1da177e4 1595
a8bbf72a 1596 /* The OOM killer will not help higher order allocs so fail */
ff0ceb9d 1597 if (order > PAGE_ALLOC_COSTLY_ORDER) {
dd1a239f 1598 clear_zonelist_oom(zonelist, gfp_mask);
a8bbf72a 1599 goto nopage;
ff0ceb9d 1600 }
a8bbf72a 1601
9b0f8b04 1602 out_of_memory(zonelist, gfp_mask, order);
dd1a239f 1603 clear_zonelist_oom(zonelist, gfp_mask);
1da177e4
LT
1604 goto restart;
1605 }
1606
1607 /*
1608 * Don't let big-order allocations loop unless the caller explicitly
1609 * requests that. Wait for some write requests to complete then retry.
1610 *
a41f24ea
NA
1611 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1612 * means __GFP_NOFAIL, but that may not be true in other
ab857d09 1613 * implementations.
a41f24ea
NA
1614 *
1615 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1616 * specified, then we retry until we no longer reclaim any pages
1617 * (above), or we've reclaimed an order of pages at least as
1618 * large as the allocation's order. In both cases, if the
1619 * allocation still fails, we stop retrying.
1da177e4 1620 */
a41f24ea 1621 pages_reclaimed += did_some_progress;
1da177e4
LT
1622 do_retry = 0;
1623 if (!(gfp_mask & __GFP_NORETRY)) {
a41f24ea 1624 if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1da177e4 1625 do_retry = 1;
a41f24ea
NA
1626 } else {
1627 if (gfp_mask & __GFP_REPEAT &&
1628 pages_reclaimed < (1 << order))
1629 do_retry = 1;
1630 }
1da177e4
LT
1631 if (gfp_mask & __GFP_NOFAIL)
1632 do_retry = 1;
1633 }
1634 if (do_retry) {
3fcfab16 1635 congestion_wait(WRITE, HZ/50);
1da177e4
LT
1636 goto rebalance;
1637 }
1638
1639nopage:
1640 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1641 printk(KERN_WARNING "%s: page allocation failure."
1642 " order:%d, mode:0x%x\n",
1643 p->comm, order, gfp_mask);
1644 dump_stack();
578c2fd6 1645 show_mem();
1da177e4 1646 }
1da177e4 1647got_pg:
1da177e4
LT
1648 return page;
1649}
e4048e5d 1650EXPORT_SYMBOL(__alloc_pages_internal);
1da177e4
LT
1651
1652/*
1653 * Common helper functions.
1654 */
920c7a5d 1655unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1656{
1657 struct page * page;
1658 page = alloc_pages(gfp_mask, order);
1659 if (!page)
1660 return 0;
1661 return (unsigned long) page_address(page);
1662}
1663
1664EXPORT_SYMBOL(__get_free_pages);
1665
920c7a5d 1666unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1667{
1668 struct page * page;
1669
1670 /*
1671 * get_zeroed_page() returns a 32-bit address, which cannot represent
1672 * a highmem page
1673 */
725d704e 1674 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1675
1676 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1677 if (page)
1678 return (unsigned long) page_address(page);
1679 return 0;
1680}
1681
1682EXPORT_SYMBOL(get_zeroed_page);
1683
1684void __pagevec_free(struct pagevec *pvec)
1685{
1686 int i = pagevec_count(pvec);
1687
1688 while (--i >= 0)
1689 free_hot_cold_page(pvec->pages[i], pvec->cold);
1690}
1691
920c7a5d 1692void __free_pages(struct page *page, unsigned int order)
1da177e4 1693{
b5810039 1694 if (put_page_testzero(page)) {
1da177e4
LT
1695 if (order == 0)
1696 free_hot_page(page);
1697 else
1698 __free_pages_ok(page, order);
1699 }
1700}
1701
1702EXPORT_SYMBOL(__free_pages);
1703
920c7a5d 1704void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
1705{
1706 if (addr != 0) {
725d704e 1707 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1708 __free_pages(virt_to_page((void *)addr), order);
1709 }
1710}
1711
1712EXPORT_SYMBOL(free_pages);
1713
2be0ffe2
TT
1714/**
1715 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1716 * @size: the number of bytes to allocate
1717 * @gfp_mask: GFP flags for the allocation
1718 *
1719 * This function is similar to alloc_pages(), except that it allocates the
1720 * minimum number of pages to satisfy the request. alloc_pages() can only
1721 * allocate memory in power-of-two pages.
1722 *
1723 * This function is also limited by MAX_ORDER.
1724 *
1725 * Memory allocated by this function must be released by free_pages_exact().
1726 */
1727void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1728{
1729 unsigned int order = get_order(size);
1730 unsigned long addr;
1731
1732 addr = __get_free_pages(gfp_mask, order);
1733 if (addr) {
1734 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1735 unsigned long used = addr + PAGE_ALIGN(size);
1736
1737 split_page(virt_to_page(addr), order);
1738 while (used < alloc_end) {
1739 free_page(used);
1740 used += PAGE_SIZE;
1741 }
1742 }
1743
1744 return (void *)addr;
1745}
1746EXPORT_SYMBOL(alloc_pages_exact);
1747
1748/**
1749 * free_pages_exact - release memory allocated via alloc_pages_exact()
1750 * @virt: the value returned by alloc_pages_exact.
1751 * @size: size of allocation, same value as passed to alloc_pages_exact().
1752 *
1753 * Release the memory allocated by a previous call to alloc_pages_exact.
1754 */
1755void free_pages_exact(void *virt, size_t size)
1756{
1757 unsigned long addr = (unsigned long)virt;
1758 unsigned long end = addr + PAGE_ALIGN(size);
1759
1760 while (addr < end) {
1761 free_page(addr);
1762 addr += PAGE_SIZE;
1763 }
1764}
1765EXPORT_SYMBOL(free_pages_exact);
1766
1da177e4
LT
1767static unsigned int nr_free_zone_pages(int offset)
1768{
dd1a239f 1769 struct zoneref *z;
54a6eb5c
MG
1770 struct zone *zone;
1771
e310fd43 1772 /* Just pick one node, since fallback list is circular */
1da177e4
LT
1773 unsigned int sum = 0;
1774
0e88460d 1775 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 1776
54a6eb5c 1777 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43
MB
1778 unsigned long size = zone->present_pages;
1779 unsigned long high = zone->pages_high;
1780 if (size > high)
1781 sum += size - high;
1da177e4
LT
1782 }
1783
1784 return sum;
1785}
1786
1787/*
1788 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1789 */
1790unsigned int nr_free_buffer_pages(void)
1791{
af4ca457 1792 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 1793}
c2f1a551 1794EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
1795
1796/*
1797 * Amount of free RAM allocatable within all zones
1798 */
1799unsigned int nr_free_pagecache_pages(void)
1800{
2a1e274a 1801 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 1802}
08e0f6a9
CL
1803
1804static inline void show_node(struct zone *zone)
1da177e4 1805{
08e0f6a9 1806 if (NUMA_BUILD)
25ba77c1 1807 printk("Node %d ", zone_to_nid(zone));
1da177e4 1808}
1da177e4 1809
1da177e4
LT
1810void si_meminfo(struct sysinfo *val)
1811{
1812 val->totalram = totalram_pages;
1813 val->sharedram = 0;
d23ad423 1814 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 1815 val->bufferram = nr_blockdev_pages();
1da177e4
LT
1816 val->totalhigh = totalhigh_pages;
1817 val->freehigh = nr_free_highpages();
1da177e4
LT
1818 val->mem_unit = PAGE_SIZE;
1819}
1820
1821EXPORT_SYMBOL(si_meminfo);
1822
1823#ifdef CONFIG_NUMA
1824void si_meminfo_node(struct sysinfo *val, int nid)
1825{
1826 pg_data_t *pgdat = NODE_DATA(nid);
1827
1828 val->totalram = pgdat->node_present_pages;
d23ad423 1829 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 1830#ifdef CONFIG_HIGHMEM
1da177e4 1831 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
1832 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1833 NR_FREE_PAGES);
98d2b0eb
CL
1834#else
1835 val->totalhigh = 0;
1836 val->freehigh = 0;
1837#endif
1da177e4
LT
1838 val->mem_unit = PAGE_SIZE;
1839}
1840#endif
1841
1842#define K(x) ((x) << (PAGE_SHIFT-10))
1843
1844/*
1845 * Show free area list (used inside shift_scroll-lock stuff)
1846 * We also calculate the percentage fragmentation. We do this by counting the
1847 * memory on each free list with the exception of the first item on the list.
1848 */
1849void show_free_areas(void)
1850{
c7241913 1851 int cpu;
1da177e4
LT
1852 struct zone *zone;
1853
1854 for_each_zone(zone) {
c7241913 1855 if (!populated_zone(zone))
1da177e4 1856 continue;
c7241913
JS
1857
1858 show_node(zone);
1859 printk("%s per-cpu:\n", zone->name);
1da177e4 1860
6b482c67 1861 for_each_online_cpu(cpu) {
1da177e4
LT
1862 struct per_cpu_pageset *pageset;
1863
e7c8d5c9 1864 pageset = zone_pcp(zone, cpu);
1da177e4 1865
3dfa5721
CL
1866 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1867 cpu, pageset->pcp.high,
1868 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
1869 }
1870 }
1871
7b854121
LS
1872 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
1873 " inactive_file:%lu"
1874//TODO: check/adjust line lengths
1875#ifdef CONFIG_UNEVICTABLE_LRU
1876 " unevictable:%lu"
1877#endif
1878 " dirty:%lu writeback:%lu unstable:%lu\n"
d23ad423 1879 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe
RR
1880 global_page_state(NR_ACTIVE_ANON),
1881 global_page_state(NR_ACTIVE_FILE),
1882 global_page_state(NR_INACTIVE_ANON),
1883 global_page_state(NR_INACTIVE_FILE),
7b854121
LS
1884#ifdef CONFIG_UNEVICTABLE_LRU
1885 global_page_state(NR_UNEVICTABLE),
1886#endif
b1e7a8fd 1887 global_page_state(NR_FILE_DIRTY),
ce866b34 1888 global_page_state(NR_WRITEBACK),
fd39fc85 1889 global_page_state(NR_UNSTABLE_NFS),
d23ad423 1890 global_page_state(NR_FREE_PAGES),
972d1a7b
CL
1891 global_page_state(NR_SLAB_RECLAIMABLE) +
1892 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 1893 global_page_state(NR_FILE_MAPPED),
a25700a5
AM
1894 global_page_state(NR_PAGETABLE),
1895 global_page_state(NR_BOUNCE));
1da177e4
LT
1896
1897 for_each_zone(zone) {
1898 int i;
1899
c7241913
JS
1900 if (!populated_zone(zone))
1901 continue;
1902
1da177e4
LT
1903 show_node(zone);
1904 printk("%s"
1905 " free:%lukB"
1906 " min:%lukB"
1907 " low:%lukB"
1908 " high:%lukB"
4f98a2fe
RR
1909 " active_anon:%lukB"
1910 " inactive_anon:%lukB"
1911 " active_file:%lukB"
1912 " inactive_file:%lukB"
7b854121
LS
1913#ifdef CONFIG_UNEVICTABLE_LRU
1914 " unevictable:%lukB"
1915#endif
1da177e4
LT
1916 " present:%lukB"
1917 " pages_scanned:%lu"
1918 " all_unreclaimable? %s"
1919 "\n",
1920 zone->name,
d23ad423 1921 K(zone_page_state(zone, NR_FREE_PAGES)),
1da177e4
LT
1922 K(zone->pages_min),
1923 K(zone->pages_low),
1924 K(zone->pages_high),
4f98a2fe
RR
1925 K(zone_page_state(zone, NR_ACTIVE_ANON)),
1926 K(zone_page_state(zone, NR_INACTIVE_ANON)),
1927 K(zone_page_state(zone, NR_ACTIVE_FILE)),
1928 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121
LS
1929#ifdef CONFIG_UNEVICTABLE_LRU
1930 K(zone_page_state(zone, NR_UNEVICTABLE)),
1931#endif
1da177e4
LT
1932 K(zone->present_pages),
1933 zone->pages_scanned,
e815af95 1934 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1da177e4
LT
1935 );
1936 printk("lowmem_reserve[]:");
1937 for (i = 0; i < MAX_NR_ZONES; i++)
1938 printk(" %lu", zone->lowmem_reserve[i]);
1939 printk("\n");
1940 }
1941
1942 for_each_zone(zone) {
8f9de51a 1943 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 1944
c7241913
JS
1945 if (!populated_zone(zone))
1946 continue;
1947
1da177e4
LT
1948 show_node(zone);
1949 printk("%s: ", zone->name);
1da177e4
LT
1950
1951 spin_lock_irqsave(&zone->lock, flags);
1952 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
1953 nr[order] = zone->free_area[order].nr_free;
1954 total += nr[order] << order;
1da177e4
LT
1955 }
1956 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
1957 for (order = 0; order < MAX_ORDER; order++)
1958 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
1959 printk("= %lukB\n", K(total));
1960 }
1961
e6f3602d
LW
1962 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1963
1da177e4
LT
1964 show_swap_cache_info();
1965}
1966
19770b32
MG
1967static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1968{
1969 zoneref->zone = zone;
1970 zoneref->zone_idx = zone_idx(zone);
1971}
1972
1da177e4
LT
1973/*
1974 * Builds allocation fallback zone lists.
1a93205b
CL
1975 *
1976 * Add all populated zones of a node to the zonelist.
1da177e4 1977 */
f0c0b2b8
KH
1978static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1979 int nr_zones, enum zone_type zone_type)
1da177e4 1980{
1a93205b
CL
1981 struct zone *zone;
1982
98d2b0eb 1983 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 1984 zone_type++;
02a68a5e
CL
1985
1986 do {
2f6726e5 1987 zone_type--;
070f8032 1988 zone = pgdat->node_zones + zone_type;
1a93205b 1989 if (populated_zone(zone)) {
dd1a239f
MG
1990 zoneref_set_zone(zone,
1991 &zonelist->_zonerefs[nr_zones++]);
070f8032 1992 check_highest_zone(zone_type);
1da177e4 1993 }
02a68a5e 1994
2f6726e5 1995 } while (zone_type);
070f8032 1996 return nr_zones;
1da177e4
LT
1997}
1998
f0c0b2b8
KH
1999
2000/*
2001 * zonelist_order:
2002 * 0 = automatic detection of better ordering.
2003 * 1 = order by ([node] distance, -zonetype)
2004 * 2 = order by (-zonetype, [node] distance)
2005 *
2006 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2007 * the same zonelist. So only NUMA can configure this param.
2008 */
2009#define ZONELIST_ORDER_DEFAULT 0
2010#define ZONELIST_ORDER_NODE 1
2011#define ZONELIST_ORDER_ZONE 2
2012
2013/* zonelist order in the kernel.
2014 * set_zonelist_order() will set this to NODE or ZONE.
2015 */
2016static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2017static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2018
2019
1da177e4 2020#ifdef CONFIG_NUMA
f0c0b2b8
KH
2021/* The value user specified ....changed by config */
2022static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2023/* string for sysctl */
2024#define NUMA_ZONELIST_ORDER_LEN 16
2025char numa_zonelist_order[16] = "default";
2026
2027/*
2028 * interface for configure zonelist ordering.
2029 * command line option "numa_zonelist_order"
2030 * = "[dD]efault - default, automatic configuration.
2031 * = "[nN]ode - order by node locality, then by zone within node
2032 * = "[zZ]one - order by zone, then by locality within zone
2033 */
2034
2035static int __parse_numa_zonelist_order(char *s)
2036{
2037 if (*s == 'd' || *s == 'D') {
2038 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2039 } else if (*s == 'n' || *s == 'N') {
2040 user_zonelist_order = ZONELIST_ORDER_NODE;
2041 } else if (*s == 'z' || *s == 'Z') {
2042 user_zonelist_order = ZONELIST_ORDER_ZONE;
2043 } else {
2044 printk(KERN_WARNING
2045 "Ignoring invalid numa_zonelist_order value: "
2046 "%s\n", s);
2047 return -EINVAL;
2048 }
2049 return 0;
2050}
2051
2052static __init int setup_numa_zonelist_order(char *s)
2053{
2054 if (s)
2055 return __parse_numa_zonelist_order(s);
2056 return 0;
2057}
2058early_param("numa_zonelist_order", setup_numa_zonelist_order);
2059
2060/*
2061 * sysctl handler for numa_zonelist_order
2062 */
2063int numa_zonelist_order_handler(ctl_table *table, int write,
2064 struct file *file, void __user *buffer, size_t *length,
2065 loff_t *ppos)
2066{
2067 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2068 int ret;
2069
2070 if (write)
2071 strncpy(saved_string, (char*)table->data,
2072 NUMA_ZONELIST_ORDER_LEN);
2073 ret = proc_dostring(table, write, file, buffer, length, ppos);
2074 if (ret)
2075 return ret;
2076 if (write) {
2077 int oldval = user_zonelist_order;
2078 if (__parse_numa_zonelist_order((char*)table->data)) {
2079 /*
2080 * bogus value. restore saved string
2081 */
2082 strncpy((char*)table->data, saved_string,
2083 NUMA_ZONELIST_ORDER_LEN);
2084 user_zonelist_order = oldval;
2085 } else if (oldval != user_zonelist_order)
2086 build_all_zonelists();
2087 }
2088 return 0;
2089}
2090
2091
1da177e4 2092#define MAX_NODE_LOAD (num_online_nodes())
f0c0b2b8
KH
2093static int node_load[MAX_NUMNODES];
2094
1da177e4 2095/**
4dc3b16b 2096 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2097 * @node: node whose fallback list we're appending
2098 * @used_node_mask: nodemask_t of already used nodes
2099 *
2100 * We use a number of factors to determine which is the next node that should
2101 * appear on a given node's fallback list. The node should not have appeared
2102 * already in @node's fallback list, and it should be the next closest node
2103 * according to the distance array (which contains arbitrary distance values
2104 * from each node to each node in the system), and should also prefer nodes
2105 * with no CPUs, since presumably they'll have very little allocation pressure
2106 * on them otherwise.
2107 * It returns -1 if no node is found.
2108 */
f0c0b2b8 2109static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2110{
4cf808eb 2111 int n, val;
1da177e4
LT
2112 int min_val = INT_MAX;
2113 int best_node = -1;
c5f59f08 2114 node_to_cpumask_ptr(tmp, 0);
1da177e4 2115
4cf808eb
LT
2116 /* Use the local node if we haven't already */
2117 if (!node_isset(node, *used_node_mask)) {
2118 node_set(node, *used_node_mask);
2119 return node;
2120 }
1da177e4 2121
37b07e41 2122 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2123
2124 /* Don't want a node to appear more than once */
2125 if (node_isset(n, *used_node_mask))
2126 continue;
2127
1da177e4
LT
2128 /* Use the distance array to find the distance */
2129 val = node_distance(node, n);
2130
4cf808eb
LT
2131 /* Penalize nodes under us ("prefer the next node") */
2132 val += (n < node);
2133
1da177e4 2134 /* Give preference to headless and unused nodes */
c5f59f08
MT
2135 node_to_cpumask_ptr_next(tmp, n);
2136 if (!cpus_empty(*tmp))
1da177e4
LT
2137 val += PENALTY_FOR_NODE_WITH_CPUS;
2138
2139 /* Slight preference for less loaded node */
2140 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2141 val += node_load[n];
2142
2143 if (val < min_val) {
2144 min_val = val;
2145 best_node = n;
2146 }
2147 }
2148
2149 if (best_node >= 0)
2150 node_set(best_node, *used_node_mask);
2151
2152 return best_node;
2153}
2154
f0c0b2b8
KH
2155
2156/*
2157 * Build zonelists ordered by node and zones within node.
2158 * This results in maximum locality--normal zone overflows into local
2159 * DMA zone, if any--but risks exhausting DMA zone.
2160 */
2161static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2162{
f0c0b2b8 2163 int j;
1da177e4 2164 struct zonelist *zonelist;
f0c0b2b8 2165
54a6eb5c 2166 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2167 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2168 ;
2169 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2170 MAX_NR_ZONES - 1);
dd1a239f
MG
2171 zonelist->_zonerefs[j].zone = NULL;
2172 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2173}
2174
523b9458
CL
2175/*
2176 * Build gfp_thisnode zonelists
2177 */
2178static void build_thisnode_zonelists(pg_data_t *pgdat)
2179{
523b9458
CL
2180 int j;
2181 struct zonelist *zonelist;
2182
54a6eb5c
MG
2183 zonelist = &pgdat->node_zonelists[1];
2184 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2185 zonelist->_zonerefs[j].zone = NULL;
2186 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2187}
2188
f0c0b2b8
KH
2189/*
2190 * Build zonelists ordered by zone and nodes within zones.
2191 * This results in conserving DMA zone[s] until all Normal memory is
2192 * exhausted, but results in overflowing to remote node while memory
2193 * may still exist in local DMA zone.
2194 */
2195static int node_order[MAX_NUMNODES];
2196
2197static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2198{
f0c0b2b8
KH
2199 int pos, j, node;
2200 int zone_type; /* needs to be signed */
2201 struct zone *z;
2202 struct zonelist *zonelist;
2203
54a6eb5c
MG
2204 zonelist = &pgdat->node_zonelists[0];
2205 pos = 0;
2206 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2207 for (j = 0; j < nr_nodes; j++) {
2208 node = node_order[j];
2209 z = &NODE_DATA(node)->node_zones[zone_type];
2210 if (populated_zone(z)) {
dd1a239f
MG
2211 zoneref_set_zone(z,
2212 &zonelist->_zonerefs[pos++]);
54a6eb5c 2213 check_highest_zone(zone_type);
f0c0b2b8
KH
2214 }
2215 }
f0c0b2b8 2216 }
dd1a239f
MG
2217 zonelist->_zonerefs[pos].zone = NULL;
2218 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2219}
2220
2221static int default_zonelist_order(void)
2222{
2223 int nid, zone_type;
2224 unsigned long low_kmem_size,total_size;
2225 struct zone *z;
2226 int average_size;
2227 /*
2228 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2229 * If they are really small and used heavily, the system can fall
2230 * into OOM very easily.
2231 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2232 */
2233 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2234 low_kmem_size = 0;
2235 total_size = 0;
2236 for_each_online_node(nid) {
2237 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2238 z = &NODE_DATA(nid)->node_zones[zone_type];
2239 if (populated_zone(z)) {
2240 if (zone_type < ZONE_NORMAL)
2241 low_kmem_size += z->present_pages;
2242 total_size += z->present_pages;
2243 }
2244 }
2245 }
2246 if (!low_kmem_size || /* there are no DMA area. */
2247 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2248 return ZONELIST_ORDER_NODE;
2249 /*
2250 * look into each node's config.
2251 * If there is a node whose DMA/DMA32 memory is very big area on
2252 * local memory, NODE_ORDER may be suitable.
2253 */
37b07e41
LS
2254 average_size = total_size /
2255 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2256 for_each_online_node(nid) {
2257 low_kmem_size = 0;
2258 total_size = 0;
2259 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2260 z = &NODE_DATA(nid)->node_zones[zone_type];
2261 if (populated_zone(z)) {
2262 if (zone_type < ZONE_NORMAL)
2263 low_kmem_size += z->present_pages;
2264 total_size += z->present_pages;
2265 }
2266 }
2267 if (low_kmem_size &&
2268 total_size > average_size && /* ignore small node */
2269 low_kmem_size > total_size * 70/100)
2270 return ZONELIST_ORDER_NODE;
2271 }
2272 return ZONELIST_ORDER_ZONE;
2273}
2274
2275static void set_zonelist_order(void)
2276{
2277 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2278 current_zonelist_order = default_zonelist_order();
2279 else
2280 current_zonelist_order = user_zonelist_order;
2281}
2282
2283static void build_zonelists(pg_data_t *pgdat)
2284{
2285 int j, node, load;
2286 enum zone_type i;
1da177e4 2287 nodemask_t used_mask;
f0c0b2b8
KH
2288 int local_node, prev_node;
2289 struct zonelist *zonelist;
2290 int order = current_zonelist_order;
1da177e4
LT
2291
2292 /* initialize zonelists */
523b9458 2293 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2294 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2295 zonelist->_zonerefs[0].zone = NULL;
2296 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2297 }
2298
2299 /* NUMA-aware ordering of nodes */
2300 local_node = pgdat->node_id;
2301 load = num_online_nodes();
2302 prev_node = local_node;
2303 nodes_clear(used_mask);
f0c0b2b8
KH
2304
2305 memset(node_load, 0, sizeof(node_load));
2306 memset(node_order, 0, sizeof(node_order));
2307 j = 0;
2308
1da177e4 2309 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2310 int distance = node_distance(local_node, node);
2311
2312 /*
2313 * If another node is sufficiently far away then it is better
2314 * to reclaim pages in a zone before going off node.
2315 */
2316 if (distance > RECLAIM_DISTANCE)
2317 zone_reclaim_mode = 1;
2318
1da177e4
LT
2319 /*
2320 * We don't want to pressure a particular node.
2321 * So adding penalty to the first node in same
2322 * distance group to make it round-robin.
2323 */
9eeff239 2324 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2325 node_load[node] = load;
2326
1da177e4
LT
2327 prev_node = node;
2328 load--;
f0c0b2b8
KH
2329 if (order == ZONELIST_ORDER_NODE)
2330 build_zonelists_in_node_order(pgdat, node);
2331 else
2332 node_order[j++] = node; /* remember order */
2333 }
1da177e4 2334
f0c0b2b8
KH
2335 if (order == ZONELIST_ORDER_ZONE) {
2336 /* calculate node order -- i.e., DMA last! */
2337 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2338 }
523b9458
CL
2339
2340 build_thisnode_zonelists(pgdat);
1da177e4
LT
2341}
2342
9276b1bc 2343/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2344static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2345{
54a6eb5c
MG
2346 struct zonelist *zonelist;
2347 struct zonelist_cache *zlc;
dd1a239f 2348 struct zoneref *z;
9276b1bc 2349
54a6eb5c
MG
2350 zonelist = &pgdat->node_zonelists[0];
2351 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2352 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2353 for (z = zonelist->_zonerefs; z->zone; z++)
2354 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2355}
2356
f0c0b2b8 2357
1da177e4
LT
2358#else /* CONFIG_NUMA */
2359
f0c0b2b8
KH
2360static void set_zonelist_order(void)
2361{
2362 current_zonelist_order = ZONELIST_ORDER_ZONE;
2363}
2364
2365static void build_zonelists(pg_data_t *pgdat)
1da177e4 2366{
19655d34 2367 int node, local_node;
54a6eb5c
MG
2368 enum zone_type j;
2369 struct zonelist *zonelist;
1da177e4
LT
2370
2371 local_node = pgdat->node_id;
1da177e4 2372
54a6eb5c
MG
2373 zonelist = &pgdat->node_zonelists[0];
2374 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2375
54a6eb5c
MG
2376 /*
2377 * Now we build the zonelist so that it contains the zones
2378 * of all the other nodes.
2379 * We don't want to pressure a particular node, so when
2380 * building the zones for node N, we make sure that the
2381 * zones coming right after the local ones are those from
2382 * node N+1 (modulo N)
2383 */
2384 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2385 if (!node_online(node))
2386 continue;
2387 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2388 MAX_NR_ZONES - 1);
1da177e4 2389 }
54a6eb5c
MG
2390 for (node = 0; node < local_node; node++) {
2391 if (!node_online(node))
2392 continue;
2393 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2394 MAX_NR_ZONES - 1);
2395 }
2396
dd1a239f
MG
2397 zonelist->_zonerefs[j].zone = NULL;
2398 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
2399}
2400
9276b1bc 2401/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2402static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2403{
54a6eb5c 2404 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
2405}
2406
1da177e4
LT
2407#endif /* CONFIG_NUMA */
2408
9b1a4d38 2409/* return values int ....just for stop_machine() */
f0c0b2b8 2410static int __build_all_zonelists(void *dummy)
1da177e4 2411{
6811378e 2412 int nid;
9276b1bc
PJ
2413
2414 for_each_online_node(nid) {
7ea1530a
CL
2415 pg_data_t *pgdat = NODE_DATA(nid);
2416
2417 build_zonelists(pgdat);
2418 build_zonelist_cache(pgdat);
9276b1bc 2419 }
6811378e
YG
2420 return 0;
2421}
2422
f0c0b2b8 2423void build_all_zonelists(void)
6811378e 2424{
f0c0b2b8
KH
2425 set_zonelist_order();
2426
6811378e 2427 if (system_state == SYSTEM_BOOTING) {
423b41d7 2428 __build_all_zonelists(NULL);
68ad8df4 2429 mminit_verify_zonelist();
6811378e
YG
2430 cpuset_init_current_mems_allowed();
2431 } else {
183ff22b 2432 /* we have to stop all cpus to guarantee there is no user
6811378e 2433 of zonelist */
9b1a4d38 2434 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
2435 /* cpuset refresh routine should be here */
2436 }
bd1e22b8 2437 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
2438 /*
2439 * Disable grouping by mobility if the number of pages in the
2440 * system is too low to allow the mechanism to work. It would be
2441 * more accurate, but expensive to check per-zone. This check is
2442 * made on memory-hotadd so a system can start with mobility
2443 * disabled and enable it later
2444 */
d9c23400 2445 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
2446 page_group_by_mobility_disabled = 1;
2447 else
2448 page_group_by_mobility_disabled = 0;
2449
2450 printk("Built %i zonelists in %s order, mobility grouping %s. "
2451 "Total pages: %ld\n",
f0c0b2b8
KH
2452 num_online_nodes(),
2453 zonelist_order_name[current_zonelist_order],
9ef9acb0 2454 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
2455 vm_total_pages);
2456#ifdef CONFIG_NUMA
2457 printk("Policy zone: %s\n", zone_names[policy_zone]);
2458#endif
1da177e4
LT
2459}
2460
2461/*
2462 * Helper functions to size the waitqueue hash table.
2463 * Essentially these want to choose hash table sizes sufficiently
2464 * large so that collisions trying to wait on pages are rare.
2465 * But in fact, the number of active page waitqueues on typical
2466 * systems is ridiculously low, less than 200. So this is even
2467 * conservative, even though it seems large.
2468 *
2469 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2470 * waitqueues, i.e. the size of the waitq table given the number of pages.
2471 */
2472#define PAGES_PER_WAITQUEUE 256
2473
cca448fe 2474#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 2475static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
2476{
2477 unsigned long size = 1;
2478
2479 pages /= PAGES_PER_WAITQUEUE;
2480
2481 while (size < pages)
2482 size <<= 1;
2483
2484 /*
2485 * Once we have dozens or even hundreds of threads sleeping
2486 * on IO we've got bigger problems than wait queue collision.
2487 * Limit the size of the wait table to a reasonable size.
2488 */
2489 size = min(size, 4096UL);
2490
2491 return max(size, 4UL);
2492}
cca448fe
YG
2493#else
2494/*
2495 * A zone's size might be changed by hot-add, so it is not possible to determine
2496 * a suitable size for its wait_table. So we use the maximum size now.
2497 *
2498 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2499 *
2500 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2501 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2502 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2503 *
2504 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2505 * or more by the traditional way. (See above). It equals:
2506 *
2507 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2508 * ia64(16K page size) : = ( 8G + 4M)byte.
2509 * powerpc (64K page size) : = (32G +16M)byte.
2510 */
2511static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2512{
2513 return 4096UL;
2514}
2515#endif
1da177e4
LT
2516
2517/*
2518 * This is an integer logarithm so that shifts can be used later
2519 * to extract the more random high bits from the multiplicative
2520 * hash function before the remainder is taken.
2521 */
2522static inline unsigned long wait_table_bits(unsigned long size)
2523{
2524 return ffz(~size);
2525}
2526
2527#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2528
56fd56b8 2529/*
d9c23400 2530 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
56fd56b8
MG
2531 * of blocks reserved is based on zone->pages_min. The memory within the
2532 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2533 * higher will lead to a bigger reserve which will get freed as contiguous
2534 * blocks as reclaim kicks in
2535 */
2536static void setup_zone_migrate_reserve(struct zone *zone)
2537{
2538 unsigned long start_pfn, pfn, end_pfn;
2539 struct page *page;
2540 unsigned long reserve, block_migratetype;
2541
2542 /* Get the start pfn, end pfn and the number of blocks to reserve */
2543 start_pfn = zone->zone_start_pfn;
2544 end_pfn = start_pfn + zone->spanned_pages;
d9c23400
MG
2545 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2546 pageblock_order;
56fd56b8 2547
d9c23400 2548 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
2549 if (!pfn_valid(pfn))
2550 continue;
2551 page = pfn_to_page(pfn);
2552
344c790e
AL
2553 /* Watch out for overlapping nodes */
2554 if (page_to_nid(page) != zone_to_nid(zone))
2555 continue;
2556
56fd56b8
MG
2557 /* Blocks with reserved pages will never free, skip them. */
2558 if (PageReserved(page))
2559 continue;
2560
2561 block_migratetype = get_pageblock_migratetype(page);
2562
2563 /* If this block is reserved, account for it */
2564 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2565 reserve--;
2566 continue;
2567 }
2568
2569 /* Suitable for reserving if this block is movable */
2570 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2571 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2572 move_freepages_block(zone, page, MIGRATE_RESERVE);
2573 reserve--;
2574 continue;
2575 }
2576
2577 /*
2578 * If the reserve is met and this is a previous reserved block,
2579 * take it back
2580 */
2581 if (block_migratetype == MIGRATE_RESERVE) {
2582 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2583 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2584 }
2585 }
2586}
ac0e5b7a 2587
1da177e4
LT
2588/*
2589 * Initially all pages are reserved - free ones are freed
2590 * up by free_all_bootmem() once the early boot process is
2591 * done. Non-atomic initialization, single-pass.
2592 */
c09b4240 2593void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 2594 unsigned long start_pfn, enum memmap_context context)
1da177e4 2595{
1da177e4 2596 struct page *page;
29751f69
AW
2597 unsigned long end_pfn = start_pfn + size;
2598 unsigned long pfn;
86051ca5 2599 struct zone *z;
1da177e4 2600
22b31eec
HD
2601 if (highest_memmap_pfn < end_pfn - 1)
2602 highest_memmap_pfn = end_pfn - 1;
2603
86051ca5 2604 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 2605 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
2606 /*
2607 * There can be holes in boot-time mem_map[]s
2608 * handed to this function. They do not
2609 * exist on hotplugged memory.
2610 */
2611 if (context == MEMMAP_EARLY) {
2612 if (!early_pfn_valid(pfn))
2613 continue;
2614 if (!early_pfn_in_nid(pfn, nid))
2615 continue;
2616 }
d41dee36
AW
2617 page = pfn_to_page(pfn);
2618 set_page_links(page, zone, nid, pfn);
708614e6 2619 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 2620 init_page_count(page);
1da177e4
LT
2621 reset_page_mapcount(page);
2622 SetPageReserved(page);
b2a0ac88
MG
2623 /*
2624 * Mark the block movable so that blocks are reserved for
2625 * movable at startup. This will force kernel allocations
2626 * to reserve their blocks rather than leaking throughout
2627 * the address space during boot when many long-lived
56fd56b8
MG
2628 * kernel allocations are made. Later some blocks near
2629 * the start are marked MIGRATE_RESERVE by
2630 * setup_zone_migrate_reserve()
86051ca5
KH
2631 *
2632 * bitmap is created for zone's valid pfn range. but memmap
2633 * can be created for invalid pages (for alignment)
2634 * check here not to call set_pageblock_migratetype() against
2635 * pfn out of zone.
b2a0ac88 2636 */
86051ca5
KH
2637 if ((z->zone_start_pfn <= pfn)
2638 && (pfn < z->zone_start_pfn + z->spanned_pages)
2639 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 2640 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 2641
1da177e4
LT
2642 INIT_LIST_HEAD(&page->lru);
2643#ifdef WANT_PAGE_VIRTUAL
2644 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2645 if (!is_highmem_idx(zone))
3212c6be 2646 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 2647#endif
1da177e4
LT
2648 }
2649}
2650
1e548deb 2651static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 2652{
b2a0ac88
MG
2653 int order, t;
2654 for_each_migratetype_order(order, t) {
2655 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
2656 zone->free_area[order].nr_free = 0;
2657 }
2658}
2659
2660#ifndef __HAVE_ARCH_MEMMAP_INIT
2661#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 2662 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
2663#endif
2664
1d6f4e60 2665static int zone_batchsize(struct zone *zone)
e7c8d5c9
CL
2666{
2667 int batch;
2668
2669 /*
2670 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 2671 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
2672 *
2673 * OK, so we don't know how big the cache is. So guess.
2674 */
2675 batch = zone->present_pages / 1024;
ba56e91c
SR
2676 if (batch * PAGE_SIZE > 512 * 1024)
2677 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
2678 batch /= 4; /* We effectively *= 4 below */
2679 if (batch < 1)
2680 batch = 1;
2681
2682 /*
0ceaacc9
NP
2683 * Clamp the batch to a 2^n - 1 value. Having a power
2684 * of 2 value was found to be more likely to have
2685 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 2686 *
0ceaacc9
NP
2687 * For example if 2 tasks are alternately allocating
2688 * batches of pages, one task can end up with a lot
2689 * of pages of one half of the possible page colors
2690 * and the other with pages of the other colors.
e7c8d5c9 2691 */
0ceaacc9 2692 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 2693
e7c8d5c9
CL
2694 return batch;
2695}
2696
b69a7288 2697static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
2698{
2699 struct per_cpu_pages *pcp;
2700
1c6fe946
MD
2701 memset(p, 0, sizeof(*p));
2702
3dfa5721 2703 pcp = &p->pcp;
2caaad41 2704 pcp->count = 0;
2caaad41
CL
2705 pcp->high = 6 * batch;
2706 pcp->batch = max(1UL, 1 * batch);
2707 INIT_LIST_HEAD(&pcp->list);
2caaad41
CL
2708}
2709
8ad4b1fb
RS
2710/*
2711 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2712 * to the value high for the pageset p.
2713 */
2714
2715static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2716 unsigned long high)
2717{
2718 struct per_cpu_pages *pcp;
2719
3dfa5721 2720 pcp = &p->pcp;
8ad4b1fb
RS
2721 pcp->high = high;
2722 pcp->batch = max(1UL, high/4);
2723 if ((high/4) > (PAGE_SHIFT * 8))
2724 pcp->batch = PAGE_SHIFT * 8;
2725}
2726
2727
e7c8d5c9
CL
2728#ifdef CONFIG_NUMA
2729/*
2caaad41
CL
2730 * Boot pageset table. One per cpu which is going to be used for all
2731 * zones and all nodes. The parameters will be set in such a way
2732 * that an item put on a list will immediately be handed over to
2733 * the buddy list. This is safe since pageset manipulation is done
2734 * with interrupts disabled.
2735 *
2736 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
2737 *
2738 * The boot_pagesets must be kept even after bootup is complete for
2739 * unused processors and/or zones. They do play a role for bootstrapping
2740 * hotplugged processors.
2741 *
2742 * zoneinfo_show() and maybe other functions do
2743 * not check if the processor is online before following the pageset pointer.
2744 * Other parts of the kernel may not check if the zone is available.
2caaad41 2745 */
88a2a4ac 2746static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
2747
2748/*
2749 * Dynamically allocate memory for the
e7c8d5c9
CL
2750 * per cpu pageset array in struct zone.
2751 */
6292d9aa 2752static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
2753{
2754 struct zone *zone, *dzone;
37c0708d
CL
2755 int node = cpu_to_node(cpu);
2756
2757 node_set_state(node, N_CPU); /* this node has a cpu */
e7c8d5c9
CL
2758
2759 for_each_zone(zone) {
e7c8d5c9 2760
66a55030
CL
2761 if (!populated_zone(zone))
2762 continue;
2763
23316bc8 2764 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
37c0708d 2765 GFP_KERNEL, node);
23316bc8 2766 if (!zone_pcp(zone, cpu))
e7c8d5c9 2767 goto bad;
e7c8d5c9 2768
23316bc8 2769 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
2770
2771 if (percpu_pagelist_fraction)
2772 setup_pagelist_highmark(zone_pcp(zone, cpu),
2773 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
2774 }
2775
2776 return 0;
2777bad:
2778 for_each_zone(dzone) {
64191688
AM
2779 if (!populated_zone(dzone))
2780 continue;
e7c8d5c9
CL
2781 if (dzone == zone)
2782 break;
23316bc8
NP
2783 kfree(zone_pcp(dzone, cpu));
2784 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
2785 }
2786 return -ENOMEM;
2787}
2788
2789static inline void free_zone_pagesets(int cpu)
2790{
e7c8d5c9
CL
2791 struct zone *zone;
2792
2793 for_each_zone(zone) {
2794 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2795
f3ef9ead
DR
2796 /* Free per_cpu_pageset if it is slab allocated */
2797 if (pset != &boot_pageset[cpu])
2798 kfree(pset);
e7c8d5c9 2799 zone_pcp(zone, cpu) = NULL;
e7c8d5c9 2800 }
e7c8d5c9
CL
2801}
2802
9c7b216d 2803static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
2804 unsigned long action,
2805 void *hcpu)
2806{
2807 int cpu = (long)hcpu;
2808 int ret = NOTIFY_OK;
2809
2810 switch (action) {
ce421c79 2811 case CPU_UP_PREPARE:
8bb78442 2812 case CPU_UP_PREPARE_FROZEN:
ce421c79
AW
2813 if (process_zones(cpu))
2814 ret = NOTIFY_BAD;
2815 break;
2816 case CPU_UP_CANCELED:
8bb78442 2817 case CPU_UP_CANCELED_FROZEN:
ce421c79 2818 case CPU_DEAD:
8bb78442 2819 case CPU_DEAD_FROZEN:
ce421c79
AW
2820 free_zone_pagesets(cpu);
2821 break;
2822 default:
2823 break;
e7c8d5c9
CL
2824 }
2825 return ret;
2826}
2827
74b85f37 2828static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
2829 { &pageset_cpuup_callback, NULL, 0 };
2830
78d9955b 2831void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
2832{
2833 int err;
2834
2835 /* Initialize per_cpu_pageset for cpu 0.
2836 * A cpuup callback will do this for every cpu
2837 * as it comes online
2838 */
2839 err = process_zones(smp_processor_id());
2840 BUG_ON(err);
2841 register_cpu_notifier(&pageset_notifier);
2842}
2843
2844#endif
2845
577a32f6 2846static noinline __init_refok
cca448fe 2847int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
2848{
2849 int i;
2850 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 2851 size_t alloc_size;
ed8ece2e
DH
2852
2853 /*
2854 * The per-page waitqueue mechanism uses hashed waitqueues
2855 * per zone.
2856 */
02b694de
YG
2857 zone->wait_table_hash_nr_entries =
2858 wait_table_hash_nr_entries(zone_size_pages);
2859 zone->wait_table_bits =
2860 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
2861 alloc_size = zone->wait_table_hash_nr_entries
2862 * sizeof(wait_queue_head_t);
2863
cd94b9db 2864 if (!slab_is_available()) {
cca448fe
YG
2865 zone->wait_table = (wait_queue_head_t *)
2866 alloc_bootmem_node(pgdat, alloc_size);
2867 } else {
2868 /*
2869 * This case means that a zone whose size was 0 gets new memory
2870 * via memory hot-add.
2871 * But it may be the case that a new node was hot-added. In
2872 * this case vmalloc() will not be able to use this new node's
2873 * memory - this wait_table must be initialized to use this new
2874 * node itself as well.
2875 * To use this new node's memory, further consideration will be
2876 * necessary.
2877 */
8691f3a7 2878 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
2879 }
2880 if (!zone->wait_table)
2881 return -ENOMEM;
ed8ece2e 2882
02b694de 2883 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 2884 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
2885
2886 return 0;
ed8ece2e
DH
2887}
2888
c09b4240 2889static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
2890{
2891 int cpu;
2892 unsigned long batch = zone_batchsize(zone);
2893
2894 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2895#ifdef CONFIG_NUMA
2896 /* Early boot. Slab allocator not functional yet */
23316bc8 2897 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
2898 setup_pageset(&boot_pageset[cpu],0);
2899#else
2900 setup_pageset(zone_pcp(zone,cpu), batch);
2901#endif
2902 }
f5335c0f
AB
2903 if (zone->present_pages)
2904 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2905 zone->name, zone->present_pages, batch);
ed8ece2e
DH
2906}
2907
718127cc
YG
2908__meminit int init_currently_empty_zone(struct zone *zone,
2909 unsigned long zone_start_pfn,
a2f3aa02
DH
2910 unsigned long size,
2911 enum memmap_context context)
ed8ece2e
DH
2912{
2913 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
2914 int ret;
2915 ret = zone_wait_table_init(zone, size);
2916 if (ret)
2917 return ret;
ed8ece2e
DH
2918 pgdat->nr_zones = zone_idx(zone) + 1;
2919
ed8ece2e
DH
2920 zone->zone_start_pfn = zone_start_pfn;
2921
708614e6
MG
2922 mminit_dprintk(MMINIT_TRACE, "memmap_init",
2923 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
2924 pgdat->node_id,
2925 (unsigned long)zone_idx(zone),
2926 zone_start_pfn, (zone_start_pfn + size));
2927
1e548deb 2928 zone_init_free_lists(zone);
718127cc
YG
2929
2930 return 0;
ed8ece2e
DH
2931}
2932
c713216d
MG
2933#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2934/*
2935 * Basic iterator support. Return the first range of PFNs for a node
2936 * Note: nid == MAX_NUMNODES returns first region regardless of node
2937 */
a3142c8e 2938static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
2939{
2940 int i;
2941
2942 for (i = 0; i < nr_nodemap_entries; i++)
2943 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2944 return i;
2945
2946 return -1;
2947}
2948
2949/*
2950 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 2951 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 2952 */
a3142c8e 2953static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
2954{
2955 for (index = index + 1; index < nr_nodemap_entries; index++)
2956 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2957 return index;
2958
2959 return -1;
2960}
2961
2962#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2963/*
2964 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2965 * Architectures may implement their own version but if add_active_range()
2966 * was used and there are no special requirements, this is a convenient
2967 * alternative
2968 */
6f076f5d 2969int __meminit early_pfn_to_nid(unsigned long pfn)
c713216d
MG
2970{
2971 int i;
2972
2973 for (i = 0; i < nr_nodemap_entries; i++) {
2974 unsigned long start_pfn = early_node_map[i].start_pfn;
2975 unsigned long end_pfn = early_node_map[i].end_pfn;
2976
2977 if (start_pfn <= pfn && pfn < end_pfn)
2978 return early_node_map[i].nid;
2979 }
2980
2981 return 0;
2982}
2983#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2984
2985/* Basic iterator support to walk early_node_map[] */
2986#define for_each_active_range_index_in_nid(i, nid) \
2987 for (i = first_active_region_index_in_nid(nid); i != -1; \
2988 i = next_active_region_index_in_nid(i, nid))
2989
2990/**
2991 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
2992 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2993 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
2994 *
2995 * If an architecture guarantees that all ranges registered with
2996 * add_active_ranges() contain no holes and may be freed, this
2997 * this function may be used instead of calling free_bootmem() manually.
2998 */
2999void __init free_bootmem_with_active_regions(int nid,
3000 unsigned long max_low_pfn)
3001{
3002 int i;
3003
3004 for_each_active_range_index_in_nid(i, nid) {
3005 unsigned long size_pages = 0;
3006 unsigned long end_pfn = early_node_map[i].end_pfn;
3007
3008 if (early_node_map[i].start_pfn >= max_low_pfn)
3009 continue;
3010
3011 if (end_pfn > max_low_pfn)
3012 end_pfn = max_low_pfn;
3013
3014 size_pages = end_pfn - early_node_map[i].start_pfn;
3015 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3016 PFN_PHYS(early_node_map[i].start_pfn),
3017 size_pages << PAGE_SHIFT);
3018 }
3019}
3020
b5bc6c0e
YL
3021void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3022{
3023 int i;
d52d53b8 3024 int ret;
b5bc6c0e 3025
d52d53b8
YL
3026 for_each_active_range_index_in_nid(i, nid) {
3027 ret = work_fn(early_node_map[i].start_pfn,
3028 early_node_map[i].end_pfn, data);
3029 if (ret)
3030 break;
3031 }
b5bc6c0e 3032}
c713216d
MG
3033/**
3034 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3035 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3036 *
3037 * If an architecture guarantees that all ranges registered with
3038 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3039 * function may be used instead of calling memory_present() manually.
c713216d
MG
3040 */
3041void __init sparse_memory_present_with_active_regions(int nid)
3042{
3043 int i;
3044
3045 for_each_active_range_index_in_nid(i, nid)
3046 memory_present(early_node_map[i].nid,
3047 early_node_map[i].start_pfn,
3048 early_node_map[i].end_pfn);
3049}
3050
fb01439c
MG
3051/**
3052 * push_node_boundaries - Push node boundaries to at least the requested boundary
3053 * @nid: The nid of the node to push the boundary for
3054 * @start_pfn: The start pfn of the node
3055 * @end_pfn: The end pfn of the node
3056 *
3057 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
3058 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
3059 * be hotplugged even though no physical memory exists. This function allows
3060 * an arch to push out the node boundaries so mem_map is allocated that can
3061 * be used later.
3062 */
3063#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3064void __init push_node_boundaries(unsigned int nid,
3065 unsigned long start_pfn, unsigned long end_pfn)
3066{
6b74ab97
MG
3067 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3068 "Entering push_node_boundaries(%u, %lu, %lu)\n",
fb01439c
MG
3069 nid, start_pfn, end_pfn);
3070
3071 /* Initialise the boundary for this node if necessary */
3072 if (node_boundary_end_pfn[nid] == 0)
3073 node_boundary_start_pfn[nid] = -1UL;
3074
3075 /* Update the boundaries */
3076 if (node_boundary_start_pfn[nid] > start_pfn)
3077 node_boundary_start_pfn[nid] = start_pfn;
3078 if (node_boundary_end_pfn[nid] < end_pfn)
3079 node_boundary_end_pfn[nid] = end_pfn;
3080}
3081
3082/* If necessary, push the node boundary out for reserve hotadd */
98011f56 3083static void __meminit account_node_boundary(unsigned int nid,
fb01439c
MG
3084 unsigned long *start_pfn, unsigned long *end_pfn)
3085{
6b74ab97
MG
3086 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3087 "Entering account_node_boundary(%u, %lu, %lu)\n",
fb01439c
MG
3088 nid, *start_pfn, *end_pfn);
3089
3090 /* Return if boundary information has not been provided */
3091 if (node_boundary_end_pfn[nid] == 0)
3092 return;
3093
3094 /* Check the boundaries and update if necessary */
3095 if (node_boundary_start_pfn[nid] < *start_pfn)
3096 *start_pfn = node_boundary_start_pfn[nid];
3097 if (node_boundary_end_pfn[nid] > *end_pfn)
3098 *end_pfn = node_boundary_end_pfn[nid];
3099}
3100#else
3101void __init push_node_boundaries(unsigned int nid,
3102 unsigned long start_pfn, unsigned long end_pfn) {}
3103
98011f56 3104static void __meminit account_node_boundary(unsigned int nid,
fb01439c
MG
3105 unsigned long *start_pfn, unsigned long *end_pfn) {}
3106#endif
3107
3108
c713216d
MG
3109/**
3110 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3111 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3112 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3113 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3114 *
3115 * It returns the start and end page frame of a node based on information
3116 * provided by an arch calling add_active_range(). If called for a node
3117 * with no available memory, a warning is printed and the start and end
88ca3b94 3118 * PFNs will be 0.
c713216d 3119 */
a3142c8e 3120void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3121 unsigned long *start_pfn, unsigned long *end_pfn)
3122{
3123 int i;
3124 *start_pfn = -1UL;
3125 *end_pfn = 0;
3126
3127 for_each_active_range_index_in_nid(i, nid) {
3128 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3129 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3130 }
3131
633c0666 3132 if (*start_pfn == -1UL)
c713216d 3133 *start_pfn = 0;
fb01439c
MG
3134
3135 /* Push the node boundaries out if requested */
3136 account_node_boundary(nid, start_pfn, end_pfn);
c713216d
MG
3137}
3138
2a1e274a
MG
3139/*
3140 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3141 * assumption is made that zones within a node are ordered in monotonic
3142 * increasing memory addresses so that the "highest" populated zone is used
3143 */
b69a7288 3144static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3145{
3146 int zone_index;
3147 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3148 if (zone_index == ZONE_MOVABLE)
3149 continue;
3150
3151 if (arch_zone_highest_possible_pfn[zone_index] >
3152 arch_zone_lowest_possible_pfn[zone_index])
3153 break;
3154 }
3155
3156 VM_BUG_ON(zone_index == -1);
3157 movable_zone = zone_index;
3158}
3159
3160/*
3161 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3162 * because it is sized independant of architecture. Unlike the other zones,
3163 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3164 * in each node depending on the size of each node and how evenly kernelcore
3165 * is distributed. This helper function adjusts the zone ranges
3166 * provided by the architecture for a given node by using the end of the
3167 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3168 * zones within a node are in order of monotonic increases memory addresses
3169 */
b69a7288 3170static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3171 unsigned long zone_type,
3172 unsigned long node_start_pfn,
3173 unsigned long node_end_pfn,
3174 unsigned long *zone_start_pfn,
3175 unsigned long *zone_end_pfn)
3176{
3177 /* Only adjust if ZONE_MOVABLE is on this node */
3178 if (zone_movable_pfn[nid]) {
3179 /* Size ZONE_MOVABLE */
3180 if (zone_type == ZONE_MOVABLE) {
3181 *zone_start_pfn = zone_movable_pfn[nid];
3182 *zone_end_pfn = min(node_end_pfn,
3183 arch_zone_highest_possible_pfn[movable_zone]);
3184
3185 /* Adjust for ZONE_MOVABLE starting within this range */
3186 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3187 *zone_end_pfn > zone_movable_pfn[nid]) {
3188 *zone_end_pfn = zone_movable_pfn[nid];
3189
3190 /* Check if this whole range is within ZONE_MOVABLE */
3191 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3192 *zone_start_pfn = *zone_end_pfn;
3193 }
3194}
3195
c713216d
MG
3196/*
3197 * Return the number of pages a zone spans in a node, including holes
3198 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3199 */
6ea6e688 3200static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3201 unsigned long zone_type,
3202 unsigned long *ignored)
3203{
3204 unsigned long node_start_pfn, node_end_pfn;
3205 unsigned long zone_start_pfn, zone_end_pfn;
3206
3207 /* Get the start and end of the node and zone */
3208 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3209 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3210 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3211 adjust_zone_range_for_zone_movable(nid, zone_type,
3212 node_start_pfn, node_end_pfn,
3213 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3214
3215 /* Check that this node has pages within the zone's required range */
3216 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3217 return 0;
3218
3219 /* Move the zone boundaries inside the node if necessary */
3220 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3221 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3222
3223 /* Return the spanned pages */
3224 return zone_end_pfn - zone_start_pfn;
3225}
3226
3227/*
3228 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3229 * then all holes in the requested range will be accounted for.
c713216d 3230 */
b69a7288 3231static unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3232 unsigned long range_start_pfn,
3233 unsigned long range_end_pfn)
3234{
3235 int i = 0;
3236 unsigned long prev_end_pfn = 0, hole_pages = 0;
3237 unsigned long start_pfn;
3238
3239 /* Find the end_pfn of the first active range of pfns in the node */
3240 i = first_active_region_index_in_nid(nid);
3241 if (i == -1)
3242 return 0;
3243
b5445f95
MG
3244 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3245
9c7cd687
MG
3246 /* Account for ranges before physical memory on this node */
3247 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3248 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3249
3250 /* Find all holes for the zone within the node */
3251 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3252
3253 /* No need to continue if prev_end_pfn is outside the zone */
3254 if (prev_end_pfn >= range_end_pfn)
3255 break;
3256
3257 /* Make sure the end of the zone is not within the hole */
3258 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3259 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3260
3261 /* Update the hole size cound and move on */
3262 if (start_pfn > range_start_pfn) {
3263 BUG_ON(prev_end_pfn > start_pfn);
3264 hole_pages += start_pfn - prev_end_pfn;
3265 }
3266 prev_end_pfn = early_node_map[i].end_pfn;
3267 }
3268
9c7cd687
MG
3269 /* Account for ranges past physical memory on this node */
3270 if (range_end_pfn > prev_end_pfn)
0c6cb974 3271 hole_pages += range_end_pfn -
9c7cd687
MG
3272 max(range_start_pfn, prev_end_pfn);
3273
c713216d
MG
3274 return hole_pages;
3275}
3276
3277/**
3278 * absent_pages_in_range - Return number of page frames in holes within a range
3279 * @start_pfn: The start PFN to start searching for holes
3280 * @end_pfn: The end PFN to stop searching for holes
3281 *
88ca3b94 3282 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3283 */
3284unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3285 unsigned long end_pfn)
3286{
3287 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3288}
3289
3290/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3291static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3292 unsigned long zone_type,
3293 unsigned long *ignored)
3294{
9c7cd687
MG
3295 unsigned long node_start_pfn, node_end_pfn;
3296 unsigned long zone_start_pfn, zone_end_pfn;
3297
3298 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3299 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3300 node_start_pfn);
3301 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3302 node_end_pfn);
3303
2a1e274a
MG
3304 adjust_zone_range_for_zone_movable(nid, zone_type,
3305 node_start_pfn, node_end_pfn,
3306 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3307 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3308}
0e0b864e 3309
c713216d 3310#else
6ea6e688 3311static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3312 unsigned long zone_type,
3313 unsigned long *zones_size)
3314{
3315 return zones_size[zone_type];
3316}
3317
6ea6e688 3318static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3319 unsigned long zone_type,
3320 unsigned long *zholes_size)
3321{
3322 if (!zholes_size)
3323 return 0;
3324
3325 return zholes_size[zone_type];
3326}
0e0b864e 3327
c713216d
MG
3328#endif
3329
a3142c8e 3330static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3331 unsigned long *zones_size, unsigned long *zholes_size)
3332{
3333 unsigned long realtotalpages, totalpages = 0;
3334 enum zone_type i;
3335
3336 for (i = 0; i < MAX_NR_ZONES; i++)
3337 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3338 zones_size);
3339 pgdat->node_spanned_pages = totalpages;
3340
3341 realtotalpages = totalpages;
3342 for (i = 0; i < MAX_NR_ZONES; i++)
3343 realtotalpages -=
3344 zone_absent_pages_in_node(pgdat->node_id, i,
3345 zholes_size);
3346 pgdat->node_present_pages = realtotalpages;
3347 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3348 realtotalpages);
3349}
3350
835c134e
MG
3351#ifndef CONFIG_SPARSEMEM
3352/*
3353 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
3354 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3355 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
3356 * round what is now in bits to nearest long in bits, then return it in
3357 * bytes.
3358 */
3359static unsigned long __init usemap_size(unsigned long zonesize)
3360{
3361 unsigned long usemapsize;
3362
d9c23400
MG
3363 usemapsize = roundup(zonesize, pageblock_nr_pages);
3364 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
3365 usemapsize *= NR_PAGEBLOCK_BITS;
3366 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3367
3368 return usemapsize / 8;
3369}
3370
3371static void __init setup_usemap(struct pglist_data *pgdat,
3372 struct zone *zone, unsigned long zonesize)
3373{
3374 unsigned long usemapsize = usemap_size(zonesize);
3375 zone->pageblock_flags = NULL;
58a01a45 3376 if (usemapsize)
835c134e 3377 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
835c134e
MG
3378}
3379#else
3380static void inline setup_usemap(struct pglist_data *pgdat,
3381 struct zone *zone, unsigned long zonesize) {}
3382#endif /* CONFIG_SPARSEMEM */
3383
d9c23400 3384#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
3385
3386/* Return a sensible default order for the pageblock size. */
3387static inline int pageblock_default_order(void)
3388{
3389 if (HPAGE_SHIFT > PAGE_SHIFT)
3390 return HUGETLB_PAGE_ORDER;
3391
3392 return MAX_ORDER-1;
3393}
3394
d9c23400
MG
3395/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3396static inline void __init set_pageblock_order(unsigned int order)
3397{
3398 /* Check that pageblock_nr_pages has not already been setup */
3399 if (pageblock_order)
3400 return;
3401
3402 /*
3403 * Assume the largest contiguous order of interest is a huge page.
3404 * This value may be variable depending on boot parameters on IA64
3405 */
3406 pageblock_order = order;
3407}
3408#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3409
ba72cb8c
MG
3410/*
3411 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3412 * and pageblock_default_order() are unused as pageblock_order is set
3413 * at compile-time. See include/linux/pageblock-flags.h for the values of
3414 * pageblock_order based on the kernel config
3415 */
3416static inline int pageblock_default_order(unsigned int order)
3417{
3418 return MAX_ORDER-1;
3419}
d9c23400
MG
3420#define set_pageblock_order(x) do {} while (0)
3421
3422#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3423
1da177e4
LT
3424/*
3425 * Set up the zone data structures:
3426 * - mark all pages reserved
3427 * - mark all memory queues empty
3428 * - clear the memory bitmaps
3429 */
b5a0e011 3430static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
3431 unsigned long *zones_size, unsigned long *zholes_size)
3432{
2f1b6248 3433 enum zone_type j;
ed8ece2e 3434 int nid = pgdat->node_id;
1da177e4 3435 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 3436 int ret;
1da177e4 3437
208d54e5 3438 pgdat_resize_init(pgdat);
1da177e4
LT
3439 pgdat->nr_zones = 0;
3440 init_waitqueue_head(&pgdat->kswapd_wait);
3441 pgdat->kswapd_max_order = 0;
52d4b9ac 3442 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
3443
3444 for (j = 0; j < MAX_NR_ZONES; j++) {
3445 struct zone *zone = pgdat->node_zones + j;
0e0b864e 3446 unsigned long size, realsize, memmap_pages;
b69408e8 3447 enum lru_list l;
1da177e4 3448
c713216d
MG
3449 size = zone_spanned_pages_in_node(nid, j, zones_size);
3450 realsize = size - zone_absent_pages_in_node(nid, j,
3451 zholes_size);
1da177e4 3452
0e0b864e
MG
3453 /*
3454 * Adjust realsize so that it accounts for how much memory
3455 * is used by this zone for memmap. This affects the watermark
3456 * and per-cpu initialisations
3457 */
f7232154
JW
3458 memmap_pages =
3459 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
3460 if (realsize >= memmap_pages) {
3461 realsize -= memmap_pages;
5594c8c8
YL
3462 if (memmap_pages)
3463 printk(KERN_DEBUG
3464 " %s zone: %lu pages used for memmap\n",
3465 zone_names[j], memmap_pages);
0e0b864e
MG
3466 } else
3467 printk(KERN_WARNING
3468 " %s zone: %lu pages exceeds realsize %lu\n",
3469 zone_names[j], memmap_pages, realsize);
3470
6267276f
CL
3471 /* Account for reserved pages */
3472 if (j == 0 && realsize > dma_reserve) {
0e0b864e 3473 realsize -= dma_reserve;
d903ef9f 3474 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 3475 zone_names[0], dma_reserve);
0e0b864e
MG
3476 }
3477
98d2b0eb 3478 if (!is_highmem_idx(j))
1da177e4
LT
3479 nr_kernel_pages += realsize;
3480 nr_all_pages += realsize;
3481
3482 zone->spanned_pages = size;
3483 zone->present_pages = realsize;
9614634f 3484#ifdef CONFIG_NUMA
d5f541ed 3485 zone->node = nid;
8417bba4 3486 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 3487 / 100;
0ff38490 3488 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 3489#endif
1da177e4
LT
3490 zone->name = zone_names[j];
3491 spin_lock_init(&zone->lock);
3492 spin_lock_init(&zone->lru_lock);
bdc8cb98 3493 zone_seqlock_init(zone);
1da177e4 3494 zone->zone_pgdat = pgdat;
1da177e4 3495
3bb1a852 3496 zone->prev_priority = DEF_PRIORITY;
1da177e4 3497
ed8ece2e 3498 zone_pcp_init(zone);
b69408e8
CL
3499 for_each_lru(l) {
3500 INIT_LIST_HEAD(&zone->lru[l].list);
3501 zone->lru[l].nr_scan = 0;
3502 }
4f98a2fe
RR
3503 zone->recent_rotated[0] = 0;
3504 zone->recent_rotated[1] = 0;
3505 zone->recent_scanned[0] = 0;
3506 zone->recent_scanned[1] = 0;
2244b95a 3507 zap_zone_vm_stats(zone);
e815af95 3508 zone->flags = 0;
1da177e4
LT
3509 if (!size)
3510 continue;
3511
ba72cb8c 3512 set_pageblock_order(pageblock_default_order());
835c134e 3513 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
3514 ret = init_currently_empty_zone(zone, zone_start_pfn,
3515 size, MEMMAP_EARLY);
718127cc 3516 BUG_ON(ret);
76cdd58e 3517 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 3518 zone_start_pfn += size;
1da177e4
LT
3519 }
3520}
3521
577a32f6 3522static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 3523{
1da177e4
LT
3524 /* Skip empty nodes */
3525 if (!pgdat->node_spanned_pages)
3526 return;
3527
d41dee36 3528#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
3529 /* ia64 gets its own node_mem_map, before this, without bootmem */
3530 if (!pgdat->node_mem_map) {
e984bb43 3531 unsigned long size, start, end;
d41dee36
AW
3532 struct page *map;
3533
e984bb43
BP
3534 /*
3535 * The zone's endpoints aren't required to be MAX_ORDER
3536 * aligned but the node_mem_map endpoints must be in order
3537 * for the buddy allocator to function correctly.
3538 */
3539 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3540 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3541 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3542 size = (end - start) * sizeof(struct page);
6f167ec7
DH
3543 map = alloc_remap(pgdat->node_id, size);
3544 if (!map)
3545 map = alloc_bootmem_node(pgdat, size);
e984bb43 3546 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 3547 }
12d810c1 3548#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3549 /*
3550 * With no DISCONTIG, the global mem_map is just set as node 0's
3551 */
c713216d 3552 if (pgdat == NODE_DATA(0)) {
1da177e4 3553 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
3554#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3555 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 3556 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
3557#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3558 }
1da177e4 3559#endif
d41dee36 3560#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
3561}
3562
9109fb7b
JW
3563void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3564 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 3565{
9109fb7b
JW
3566 pg_data_t *pgdat = NODE_DATA(nid);
3567
1da177e4
LT
3568 pgdat->node_id = nid;
3569 pgdat->node_start_pfn = node_start_pfn;
c713216d 3570 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
3571
3572 alloc_node_mem_map(pgdat);
e8c27ac9
YL
3573#ifdef CONFIG_FLAT_NODE_MEM_MAP
3574 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3575 nid, (unsigned long)pgdat,
3576 (unsigned long)pgdat->node_mem_map);
3577#endif
1da177e4
LT
3578
3579 free_area_init_core(pgdat, zones_size, zholes_size);
3580}
3581
c713216d 3582#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
3583
3584#if MAX_NUMNODES > 1
3585/*
3586 * Figure out the number of possible node ids.
3587 */
3588static void __init setup_nr_node_ids(void)
3589{
3590 unsigned int node;
3591 unsigned int highest = 0;
3592
3593 for_each_node_mask(node, node_possible_map)
3594 highest = node;
3595 nr_node_ids = highest + 1;
3596}
3597#else
3598static inline void setup_nr_node_ids(void)
3599{
3600}
3601#endif
3602
c713216d
MG
3603/**
3604 * add_active_range - Register a range of PFNs backed by physical memory
3605 * @nid: The node ID the range resides on
3606 * @start_pfn: The start PFN of the available physical memory
3607 * @end_pfn: The end PFN of the available physical memory
3608 *
3609 * These ranges are stored in an early_node_map[] and later used by
3610 * free_area_init_nodes() to calculate zone sizes and holes. If the
3611 * range spans a memory hole, it is up to the architecture to ensure
3612 * the memory is not freed by the bootmem allocator. If possible
3613 * the range being registered will be merged with existing ranges.
3614 */
3615void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3616 unsigned long end_pfn)
3617{
3618 int i;
3619
6b74ab97
MG
3620 mminit_dprintk(MMINIT_TRACE, "memory_register",
3621 "Entering add_active_range(%d, %#lx, %#lx) "
3622 "%d entries of %d used\n",
3623 nid, start_pfn, end_pfn,
3624 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 3625
2dbb51c4
MG
3626 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3627
c713216d
MG
3628 /* Merge with existing active regions if possible */
3629 for (i = 0; i < nr_nodemap_entries; i++) {
3630 if (early_node_map[i].nid != nid)
3631 continue;
3632
3633 /* Skip if an existing region covers this new one */
3634 if (start_pfn >= early_node_map[i].start_pfn &&
3635 end_pfn <= early_node_map[i].end_pfn)
3636 return;
3637
3638 /* Merge forward if suitable */
3639 if (start_pfn <= early_node_map[i].end_pfn &&
3640 end_pfn > early_node_map[i].end_pfn) {
3641 early_node_map[i].end_pfn = end_pfn;
3642 return;
3643 }
3644
3645 /* Merge backward if suitable */
3646 if (start_pfn < early_node_map[i].end_pfn &&
3647 end_pfn >= early_node_map[i].start_pfn) {
3648 early_node_map[i].start_pfn = start_pfn;
3649 return;
3650 }
3651 }
3652
3653 /* Check that early_node_map is large enough */
3654 if (i >= MAX_ACTIVE_REGIONS) {
3655 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3656 MAX_ACTIVE_REGIONS);
3657 return;
3658 }
3659
3660 early_node_map[i].nid = nid;
3661 early_node_map[i].start_pfn = start_pfn;
3662 early_node_map[i].end_pfn = end_pfn;
3663 nr_nodemap_entries = i + 1;
3664}
3665
3666/**
cc1050ba 3667 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 3668 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
3669 * @start_pfn: The new PFN of the range
3670 * @end_pfn: The new PFN of the range
c713216d
MG
3671 *
3672 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
3673 * The map is kept near the end physical page range that has already been
3674 * registered. This function allows an arch to shrink an existing registered
3675 * range.
c713216d 3676 */
cc1050ba
YL
3677void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3678 unsigned long end_pfn)
c713216d 3679{
cc1a9d86
YL
3680 int i, j;
3681 int removed = 0;
c713216d 3682
cc1050ba
YL
3683 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3684 nid, start_pfn, end_pfn);
3685
c713216d 3686 /* Find the old active region end and shrink */
cc1a9d86 3687 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
3688 if (early_node_map[i].start_pfn >= start_pfn &&
3689 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 3690 /* clear it */
cc1050ba 3691 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
3692 early_node_map[i].end_pfn = 0;
3693 removed = 1;
3694 continue;
3695 }
cc1050ba
YL
3696 if (early_node_map[i].start_pfn < start_pfn &&
3697 early_node_map[i].end_pfn > start_pfn) {
3698 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3699 early_node_map[i].end_pfn = start_pfn;
3700 if (temp_end_pfn > end_pfn)
3701 add_active_range(nid, end_pfn, temp_end_pfn);
3702 continue;
3703 }
3704 if (early_node_map[i].start_pfn >= start_pfn &&
3705 early_node_map[i].end_pfn > end_pfn &&
3706 early_node_map[i].start_pfn < end_pfn) {
3707 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 3708 continue;
c713216d 3709 }
cc1a9d86
YL
3710 }
3711
3712 if (!removed)
3713 return;
3714
3715 /* remove the blank ones */
3716 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3717 if (early_node_map[i].nid != nid)
3718 continue;
3719 if (early_node_map[i].end_pfn)
3720 continue;
3721 /* we found it, get rid of it */
3722 for (j = i; j < nr_nodemap_entries - 1; j++)
3723 memcpy(&early_node_map[j], &early_node_map[j+1],
3724 sizeof(early_node_map[j]));
3725 j = nr_nodemap_entries - 1;
3726 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3727 nr_nodemap_entries--;
3728 }
c713216d
MG
3729}
3730
3731/**
3732 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 3733 *
c713216d
MG
3734 * During discovery, it may be found that a table like SRAT is invalid
3735 * and an alternative discovery method must be used. This function removes
3736 * all currently registered regions.
3737 */
88ca3b94 3738void __init remove_all_active_ranges(void)
c713216d
MG
3739{
3740 memset(early_node_map, 0, sizeof(early_node_map));
3741 nr_nodemap_entries = 0;
fb01439c
MG
3742#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3743 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3744 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3745#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
c713216d
MG
3746}
3747
3748/* Compare two active node_active_regions */
3749static int __init cmp_node_active_region(const void *a, const void *b)
3750{
3751 struct node_active_region *arange = (struct node_active_region *)a;
3752 struct node_active_region *brange = (struct node_active_region *)b;
3753
3754 /* Done this way to avoid overflows */
3755 if (arange->start_pfn > brange->start_pfn)
3756 return 1;
3757 if (arange->start_pfn < brange->start_pfn)
3758 return -1;
3759
3760 return 0;
3761}
3762
3763/* sort the node_map by start_pfn */
3764static void __init sort_node_map(void)
3765{
3766 sort(early_node_map, (size_t)nr_nodemap_entries,
3767 sizeof(struct node_active_region),
3768 cmp_node_active_region, NULL);
3769}
3770
a6af2bc3 3771/* Find the lowest pfn for a node */
b69a7288 3772static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
3773{
3774 int i;
a6af2bc3 3775 unsigned long min_pfn = ULONG_MAX;
1abbfb41 3776
c713216d
MG
3777 /* Assuming a sorted map, the first range found has the starting pfn */
3778 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 3779 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 3780
a6af2bc3
MG
3781 if (min_pfn == ULONG_MAX) {
3782 printk(KERN_WARNING
2bc0d261 3783 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
3784 return 0;
3785 }
3786
3787 return min_pfn;
c713216d
MG
3788}
3789
3790/**
3791 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3792 *
3793 * It returns the minimum PFN based on information provided via
88ca3b94 3794 * add_active_range().
c713216d
MG
3795 */
3796unsigned long __init find_min_pfn_with_active_regions(void)
3797{
3798 return find_min_pfn_for_node(MAX_NUMNODES);
3799}
3800
37b07e41
LS
3801/*
3802 * early_calculate_totalpages()
3803 * Sum pages in active regions for movable zone.
3804 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3805 */
484f51f8 3806static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
3807{
3808 int i;
3809 unsigned long totalpages = 0;
3810
37b07e41
LS
3811 for (i = 0; i < nr_nodemap_entries; i++) {
3812 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 3813 early_node_map[i].start_pfn;
37b07e41
LS
3814 totalpages += pages;
3815 if (pages)
3816 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3817 }
3818 return totalpages;
7e63efef
MG
3819}
3820
2a1e274a
MG
3821/*
3822 * Find the PFN the Movable zone begins in each node. Kernel memory
3823 * is spread evenly between nodes as long as the nodes have enough
3824 * memory. When they don't, some nodes will have more kernelcore than
3825 * others
3826 */
b69a7288 3827static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
3828{
3829 int i, nid;
3830 unsigned long usable_startpfn;
3831 unsigned long kernelcore_node, kernelcore_remaining;
37b07e41
LS
3832 unsigned long totalpages = early_calculate_totalpages();
3833 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 3834
7e63efef
MG
3835 /*
3836 * If movablecore was specified, calculate what size of
3837 * kernelcore that corresponds so that memory usable for
3838 * any allocation type is evenly spread. If both kernelcore
3839 * and movablecore are specified, then the value of kernelcore
3840 * will be used for required_kernelcore if it's greater than
3841 * what movablecore would have allowed.
3842 */
3843 if (required_movablecore) {
7e63efef
MG
3844 unsigned long corepages;
3845
3846 /*
3847 * Round-up so that ZONE_MOVABLE is at least as large as what
3848 * was requested by the user
3849 */
3850 required_movablecore =
3851 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3852 corepages = totalpages - required_movablecore;
3853
3854 required_kernelcore = max(required_kernelcore, corepages);
3855 }
3856
2a1e274a
MG
3857 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3858 if (!required_kernelcore)
3859 return;
3860
3861 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3862 find_usable_zone_for_movable();
3863 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3864
3865restart:
3866 /* Spread kernelcore memory as evenly as possible throughout nodes */
3867 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 3868 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
3869 /*
3870 * Recalculate kernelcore_node if the division per node
3871 * now exceeds what is necessary to satisfy the requested
3872 * amount of memory for the kernel
3873 */
3874 if (required_kernelcore < kernelcore_node)
3875 kernelcore_node = required_kernelcore / usable_nodes;
3876
3877 /*
3878 * As the map is walked, we track how much memory is usable
3879 * by the kernel using kernelcore_remaining. When it is
3880 * 0, the rest of the node is usable by ZONE_MOVABLE
3881 */
3882 kernelcore_remaining = kernelcore_node;
3883
3884 /* Go through each range of PFNs within this node */
3885 for_each_active_range_index_in_nid(i, nid) {
3886 unsigned long start_pfn, end_pfn;
3887 unsigned long size_pages;
3888
3889 start_pfn = max(early_node_map[i].start_pfn,
3890 zone_movable_pfn[nid]);
3891 end_pfn = early_node_map[i].end_pfn;
3892 if (start_pfn >= end_pfn)
3893 continue;
3894
3895 /* Account for what is only usable for kernelcore */
3896 if (start_pfn < usable_startpfn) {
3897 unsigned long kernel_pages;
3898 kernel_pages = min(end_pfn, usable_startpfn)
3899 - start_pfn;
3900
3901 kernelcore_remaining -= min(kernel_pages,
3902 kernelcore_remaining);
3903 required_kernelcore -= min(kernel_pages,
3904 required_kernelcore);
3905
3906 /* Continue if range is now fully accounted */
3907 if (end_pfn <= usable_startpfn) {
3908
3909 /*
3910 * Push zone_movable_pfn to the end so
3911 * that if we have to rebalance
3912 * kernelcore across nodes, we will
3913 * not double account here
3914 */
3915 zone_movable_pfn[nid] = end_pfn;
3916 continue;
3917 }
3918 start_pfn = usable_startpfn;
3919 }
3920
3921 /*
3922 * The usable PFN range for ZONE_MOVABLE is from
3923 * start_pfn->end_pfn. Calculate size_pages as the
3924 * number of pages used as kernelcore
3925 */
3926 size_pages = end_pfn - start_pfn;
3927 if (size_pages > kernelcore_remaining)
3928 size_pages = kernelcore_remaining;
3929 zone_movable_pfn[nid] = start_pfn + size_pages;
3930
3931 /*
3932 * Some kernelcore has been met, update counts and
3933 * break if the kernelcore for this node has been
3934 * satisified
3935 */
3936 required_kernelcore -= min(required_kernelcore,
3937 size_pages);
3938 kernelcore_remaining -= size_pages;
3939 if (!kernelcore_remaining)
3940 break;
3941 }
3942 }
3943
3944 /*
3945 * If there is still required_kernelcore, we do another pass with one
3946 * less node in the count. This will push zone_movable_pfn[nid] further
3947 * along on the nodes that still have memory until kernelcore is
3948 * satisified
3949 */
3950 usable_nodes--;
3951 if (usable_nodes && required_kernelcore > usable_nodes)
3952 goto restart;
3953
3954 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3955 for (nid = 0; nid < MAX_NUMNODES; nid++)
3956 zone_movable_pfn[nid] =
3957 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3958}
3959
37b07e41
LS
3960/* Any regular memory on that node ? */
3961static void check_for_regular_memory(pg_data_t *pgdat)
3962{
3963#ifdef CONFIG_HIGHMEM
3964 enum zone_type zone_type;
3965
3966 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3967 struct zone *zone = &pgdat->node_zones[zone_type];
3968 if (zone->present_pages)
3969 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3970 }
3971#endif
3972}
3973
c713216d
MG
3974/**
3975 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 3976 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
3977 *
3978 * This will call free_area_init_node() for each active node in the system.
3979 * Using the page ranges provided by add_active_range(), the size of each
3980 * zone in each node and their holes is calculated. If the maximum PFN
3981 * between two adjacent zones match, it is assumed that the zone is empty.
3982 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3983 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3984 * starts where the previous one ended. For example, ZONE_DMA32 starts
3985 * at arch_max_dma_pfn.
3986 */
3987void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3988{
3989 unsigned long nid;
db99100d 3990 int i;
c713216d 3991
a6af2bc3
MG
3992 /* Sort early_node_map as initialisation assumes it is sorted */
3993 sort_node_map();
3994
c713216d
MG
3995 /* Record where the zone boundaries are */
3996 memset(arch_zone_lowest_possible_pfn, 0,
3997 sizeof(arch_zone_lowest_possible_pfn));
3998 memset(arch_zone_highest_possible_pfn, 0,
3999 sizeof(arch_zone_highest_possible_pfn));
4000 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4001 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4002 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4003 if (i == ZONE_MOVABLE)
4004 continue;
c713216d
MG
4005 arch_zone_lowest_possible_pfn[i] =
4006 arch_zone_highest_possible_pfn[i-1];
4007 arch_zone_highest_possible_pfn[i] =
4008 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4009 }
2a1e274a
MG
4010 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4011 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4012
4013 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4014 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4015 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4016
c713216d
MG
4017 /* Print out the zone ranges */
4018 printk("Zone PFN ranges:\n");
2a1e274a
MG
4019 for (i = 0; i < MAX_NR_ZONES; i++) {
4020 if (i == ZONE_MOVABLE)
4021 continue;
5dab8ec1 4022 printk(" %-8s %0#10lx -> %0#10lx\n",
c713216d
MG
4023 zone_names[i],
4024 arch_zone_lowest_possible_pfn[i],
4025 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4026 }
4027
4028 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4029 printk("Movable zone start PFN for each node\n");
4030 for (i = 0; i < MAX_NUMNODES; i++) {
4031 if (zone_movable_pfn[i])
4032 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4033 }
c713216d
MG
4034
4035 /* Print out the early_node_map[] */
4036 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4037 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4038 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4039 early_node_map[i].start_pfn,
4040 early_node_map[i].end_pfn);
4041
4042 /* Initialise every node */
708614e6 4043 mminit_verify_pageflags_layout();
8ef82866 4044 setup_nr_node_ids();
c713216d
MG
4045 for_each_online_node(nid) {
4046 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4047 free_area_init_node(nid, NULL,
c713216d 4048 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4049
4050 /* Any memory on that node */
4051 if (pgdat->node_present_pages)
4052 node_set_state(nid, N_HIGH_MEMORY);
4053 check_for_regular_memory(pgdat);
c713216d
MG
4054 }
4055}
2a1e274a 4056
7e63efef 4057static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4058{
4059 unsigned long long coremem;
4060 if (!p)
4061 return -EINVAL;
4062
4063 coremem = memparse(p, &p);
7e63efef 4064 *core = coremem >> PAGE_SHIFT;
2a1e274a 4065
7e63efef 4066 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4067 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4068
4069 return 0;
4070}
ed7ed365 4071
7e63efef
MG
4072/*
4073 * kernelcore=size sets the amount of memory for use for allocations that
4074 * cannot be reclaimed or migrated.
4075 */
4076static int __init cmdline_parse_kernelcore(char *p)
4077{
4078 return cmdline_parse_core(p, &required_kernelcore);
4079}
4080
4081/*
4082 * movablecore=size sets the amount of memory for use for allocations that
4083 * can be reclaimed or migrated.
4084 */
4085static int __init cmdline_parse_movablecore(char *p)
4086{
4087 return cmdline_parse_core(p, &required_movablecore);
4088}
4089
ed7ed365 4090early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4091early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4092
c713216d
MG
4093#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4094
0e0b864e 4095/**
88ca3b94
RD
4096 * set_dma_reserve - set the specified number of pages reserved in the first zone
4097 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4098 *
4099 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4100 * In the DMA zone, a significant percentage may be consumed by kernel image
4101 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4102 * function may optionally be used to account for unfreeable pages in the
4103 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4104 * smaller per-cpu batchsize.
0e0b864e
MG
4105 */
4106void __init set_dma_reserve(unsigned long new_dma_reserve)
4107{
4108 dma_reserve = new_dma_reserve;
4109}
4110
93b7504e 4111#ifndef CONFIG_NEED_MULTIPLE_NODES
52765583 4112struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
1da177e4 4113EXPORT_SYMBOL(contig_page_data);
93b7504e 4114#endif
1da177e4
LT
4115
4116void __init free_area_init(unsigned long *zones_size)
4117{
9109fb7b 4118 free_area_init_node(0, zones_size,
1da177e4
LT
4119 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4120}
1da177e4 4121
1da177e4
LT
4122static int page_alloc_cpu_notify(struct notifier_block *self,
4123 unsigned long action, void *hcpu)
4124{
4125 int cpu = (unsigned long)hcpu;
1da177e4 4126
8bb78442 4127 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4128 drain_pages(cpu);
4129
4130 /*
4131 * Spill the event counters of the dead processor
4132 * into the current processors event counters.
4133 * This artificially elevates the count of the current
4134 * processor.
4135 */
f8891e5e 4136 vm_events_fold_cpu(cpu);
9f8f2172
CL
4137
4138 /*
4139 * Zero the differential counters of the dead processor
4140 * so that the vm statistics are consistent.
4141 *
4142 * This is only okay since the processor is dead and cannot
4143 * race with what we are doing.
4144 */
2244b95a 4145 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4146 }
4147 return NOTIFY_OK;
4148}
1da177e4
LT
4149
4150void __init page_alloc_init(void)
4151{
4152 hotcpu_notifier(page_alloc_cpu_notify, 0);
4153}
4154
cb45b0e9
HA
4155/*
4156 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4157 * or min_free_kbytes changes.
4158 */
4159static void calculate_totalreserve_pages(void)
4160{
4161 struct pglist_data *pgdat;
4162 unsigned long reserve_pages = 0;
2f6726e5 4163 enum zone_type i, j;
cb45b0e9
HA
4164
4165 for_each_online_pgdat(pgdat) {
4166 for (i = 0; i < MAX_NR_ZONES; i++) {
4167 struct zone *zone = pgdat->node_zones + i;
4168 unsigned long max = 0;
4169
4170 /* Find valid and maximum lowmem_reserve in the zone */
4171 for (j = i; j < MAX_NR_ZONES; j++) {
4172 if (zone->lowmem_reserve[j] > max)
4173 max = zone->lowmem_reserve[j];
4174 }
4175
4176 /* we treat pages_high as reserved pages. */
4177 max += zone->pages_high;
4178
4179 if (max > zone->present_pages)
4180 max = zone->present_pages;
4181 reserve_pages += max;
4182 }
4183 }
4184 totalreserve_pages = reserve_pages;
4185}
4186
1da177e4
LT
4187/*
4188 * setup_per_zone_lowmem_reserve - called whenever
4189 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4190 * has a correct pages reserved value, so an adequate number of
4191 * pages are left in the zone after a successful __alloc_pages().
4192 */
4193static void setup_per_zone_lowmem_reserve(void)
4194{
4195 struct pglist_data *pgdat;
2f6726e5 4196 enum zone_type j, idx;
1da177e4 4197
ec936fc5 4198 for_each_online_pgdat(pgdat) {
1da177e4
LT
4199 for (j = 0; j < MAX_NR_ZONES; j++) {
4200 struct zone *zone = pgdat->node_zones + j;
4201 unsigned long present_pages = zone->present_pages;
4202
4203 zone->lowmem_reserve[j] = 0;
4204
2f6726e5
CL
4205 idx = j;
4206 while (idx) {
1da177e4
LT
4207 struct zone *lower_zone;
4208
2f6726e5
CL
4209 idx--;
4210
1da177e4
LT
4211 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4212 sysctl_lowmem_reserve_ratio[idx] = 1;
4213
4214 lower_zone = pgdat->node_zones + idx;
4215 lower_zone->lowmem_reserve[j] = present_pages /
4216 sysctl_lowmem_reserve_ratio[idx];
4217 present_pages += lower_zone->present_pages;
4218 }
4219 }
4220 }
cb45b0e9
HA
4221
4222 /* update totalreserve_pages */
4223 calculate_totalreserve_pages();
1da177e4
LT
4224}
4225
88ca3b94
RD
4226/**
4227 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4228 *
4229 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4230 * with respect to min_free_kbytes.
1da177e4 4231 */
3947be19 4232void setup_per_zone_pages_min(void)
1da177e4
LT
4233{
4234 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4235 unsigned long lowmem_pages = 0;
4236 struct zone *zone;
4237 unsigned long flags;
4238
4239 /* Calculate total number of !ZONE_HIGHMEM pages */
4240 for_each_zone(zone) {
4241 if (!is_highmem(zone))
4242 lowmem_pages += zone->present_pages;
4243 }
4244
4245 for_each_zone(zone) {
ac924c60
AM
4246 u64 tmp;
4247
1125b4e3 4248 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4249 tmp = (u64)pages_min * zone->present_pages;
4250 do_div(tmp, lowmem_pages);
1da177e4
LT
4251 if (is_highmem(zone)) {
4252 /*
669ed175
NP
4253 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4254 * need highmem pages, so cap pages_min to a small
4255 * value here.
4256 *
4257 * The (pages_high-pages_low) and (pages_low-pages_min)
4258 * deltas controls asynch page reclaim, and so should
4259 * not be capped for highmem.
1da177e4
LT
4260 */
4261 int min_pages;
4262
4263 min_pages = zone->present_pages / 1024;
4264 if (min_pages < SWAP_CLUSTER_MAX)
4265 min_pages = SWAP_CLUSTER_MAX;
4266 if (min_pages > 128)
4267 min_pages = 128;
4268 zone->pages_min = min_pages;
4269 } else {
669ed175
NP
4270 /*
4271 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4272 * proportionate to the zone's size.
4273 */
669ed175 4274 zone->pages_min = tmp;
1da177e4
LT
4275 }
4276
ac924c60
AM
4277 zone->pages_low = zone->pages_min + (tmp >> 2);
4278 zone->pages_high = zone->pages_min + (tmp >> 1);
56fd56b8 4279 setup_zone_migrate_reserve(zone);
1125b4e3 4280 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4281 }
cb45b0e9
HA
4282
4283 /* update totalreserve_pages */
4284 calculate_totalreserve_pages();
1da177e4
LT
4285}
4286
556adecb
RR
4287/**
4288 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4289 *
4290 * The inactive anon list should be small enough that the VM never has to
4291 * do too much work, but large enough that each inactive page has a chance
4292 * to be referenced again before it is swapped out.
4293 *
4294 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4295 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4296 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4297 * the anonymous pages are kept on the inactive list.
4298 *
4299 * total target max
4300 * memory ratio inactive anon
4301 * -------------------------------------
4302 * 10MB 1 5MB
4303 * 100MB 1 50MB
4304 * 1GB 3 250MB
4305 * 10GB 10 0.9GB
4306 * 100GB 31 3GB
4307 * 1TB 101 10GB
4308 * 10TB 320 32GB
4309 */
efab8186 4310static void setup_per_zone_inactive_ratio(void)
556adecb
RR
4311{
4312 struct zone *zone;
4313
4314 for_each_zone(zone) {
4315 unsigned int gb, ratio;
4316
4317 /* Zone size in gigabytes */
4318 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4319 ratio = int_sqrt(10 * gb);
4320 if (!ratio)
4321 ratio = 1;
4322
4323 zone->inactive_ratio = ratio;
4324 }
4325}
4326
1da177e4
LT
4327/*
4328 * Initialise min_free_kbytes.
4329 *
4330 * For small machines we want it small (128k min). For large machines
4331 * we want it large (64MB max). But it is not linear, because network
4332 * bandwidth does not increase linearly with machine size. We use
4333 *
4334 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4335 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4336 *
4337 * which yields
4338 *
4339 * 16MB: 512k
4340 * 32MB: 724k
4341 * 64MB: 1024k
4342 * 128MB: 1448k
4343 * 256MB: 2048k
4344 * 512MB: 2896k
4345 * 1024MB: 4096k
4346 * 2048MB: 5792k
4347 * 4096MB: 8192k
4348 * 8192MB: 11584k
4349 * 16384MB: 16384k
4350 */
4351static int __init init_per_zone_pages_min(void)
4352{
4353 unsigned long lowmem_kbytes;
4354
4355 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4356
4357 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4358 if (min_free_kbytes < 128)
4359 min_free_kbytes = 128;
4360 if (min_free_kbytes > 65536)
4361 min_free_kbytes = 65536;
4362 setup_per_zone_pages_min();
4363 setup_per_zone_lowmem_reserve();
556adecb 4364 setup_per_zone_inactive_ratio();
1da177e4
LT
4365 return 0;
4366}
4367module_init(init_per_zone_pages_min)
4368
4369/*
4370 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4371 * that we can call two helper functions whenever min_free_kbytes
4372 * changes.
4373 */
4374int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4375 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4376{
4377 proc_dointvec(table, write, file, buffer, length, ppos);
3b1d92c5
MG
4378 if (write)
4379 setup_per_zone_pages_min();
1da177e4
LT
4380 return 0;
4381}
4382
9614634f
CL
4383#ifdef CONFIG_NUMA
4384int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4385 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4386{
4387 struct zone *zone;
4388 int rc;
4389
4390 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4391 if (rc)
4392 return rc;
4393
4394 for_each_zone(zone)
8417bba4 4395 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
4396 sysctl_min_unmapped_ratio) / 100;
4397 return 0;
4398}
0ff38490
CL
4399
4400int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4401 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4402{
4403 struct zone *zone;
4404 int rc;
4405
4406 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4407 if (rc)
4408 return rc;
4409
4410 for_each_zone(zone)
4411 zone->min_slab_pages = (zone->present_pages *
4412 sysctl_min_slab_ratio) / 100;
4413 return 0;
4414}
9614634f
CL
4415#endif
4416
1da177e4
LT
4417/*
4418 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4419 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4420 * whenever sysctl_lowmem_reserve_ratio changes.
4421 *
4422 * The reserve ratio obviously has absolutely no relation with the
4423 * pages_min watermarks. The lowmem reserve ratio can only make sense
4424 * if in function of the boot time zone sizes.
4425 */
4426int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4427 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4428{
4429 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4430 setup_per_zone_lowmem_reserve();
4431 return 0;
4432}
4433
8ad4b1fb
RS
4434/*
4435 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4436 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4437 * can have before it gets flushed back to buddy allocator.
4438 */
4439
4440int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4441 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4442{
4443 struct zone *zone;
4444 unsigned int cpu;
4445 int ret;
4446
4447 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4448 if (!write || (ret == -EINVAL))
4449 return ret;
4450 for_each_zone(zone) {
4451 for_each_online_cpu(cpu) {
4452 unsigned long high;
4453 high = zone->present_pages / percpu_pagelist_fraction;
4454 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4455 }
4456 }
4457 return 0;
4458}
4459
f034b5d4 4460int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
4461
4462#ifdef CONFIG_NUMA
4463static int __init set_hashdist(char *str)
4464{
4465 if (!str)
4466 return 0;
4467 hashdist = simple_strtoul(str, &str, 0);
4468 return 1;
4469}
4470__setup("hashdist=", set_hashdist);
4471#endif
4472
4473/*
4474 * allocate a large system hash table from bootmem
4475 * - it is assumed that the hash table must contain an exact power-of-2
4476 * quantity of entries
4477 * - limit is the number of hash buckets, not the total allocation size
4478 */
4479void *__init alloc_large_system_hash(const char *tablename,
4480 unsigned long bucketsize,
4481 unsigned long numentries,
4482 int scale,
4483 int flags,
4484 unsigned int *_hash_shift,
4485 unsigned int *_hash_mask,
4486 unsigned long limit)
4487{
4488 unsigned long long max = limit;
4489 unsigned long log2qty, size;
4490 void *table = NULL;
4491
4492 /* allow the kernel cmdline to have a say */
4493 if (!numentries) {
4494 /* round applicable memory size up to nearest megabyte */
04903664 4495 numentries = nr_kernel_pages;
1da177e4
LT
4496 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4497 numentries >>= 20 - PAGE_SHIFT;
4498 numentries <<= 20 - PAGE_SHIFT;
4499
4500 /* limit to 1 bucket per 2^scale bytes of low memory */
4501 if (scale > PAGE_SHIFT)
4502 numentries >>= (scale - PAGE_SHIFT);
4503 else
4504 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
4505
4506 /* Make sure we've got at least a 0-order allocation.. */
4507 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4508 numentries = PAGE_SIZE / bucketsize;
1da177e4 4509 }
6e692ed3 4510 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
4511
4512 /* limit allocation size to 1/16 total memory by default */
4513 if (max == 0) {
4514 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4515 do_div(max, bucketsize);
4516 }
4517
4518 if (numentries > max)
4519 numentries = max;
4520
f0d1b0b3 4521 log2qty = ilog2(numentries);
1da177e4
LT
4522
4523 do {
4524 size = bucketsize << log2qty;
4525 if (flags & HASH_EARLY)
74768ed8 4526 table = alloc_bootmem_nopanic(size);
1da177e4
LT
4527 else if (hashdist)
4528 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4529 else {
2309f9e6 4530 unsigned long order = get_order(size);
1da177e4 4531 table = (void*) __get_free_pages(GFP_ATOMIC, order);
1037b83b
ED
4532 /*
4533 * If bucketsize is not a power-of-two, we may free
4534 * some pages at the end of hash table.
4535 */
4536 if (table) {
4537 unsigned long alloc_end = (unsigned long)table +
4538 (PAGE_SIZE << order);
4539 unsigned long used = (unsigned long)table +
4540 PAGE_ALIGN(size);
4541 split_page(virt_to_page(table), order);
4542 while (used < alloc_end) {
4543 free_page(used);
4544 used += PAGE_SIZE;
4545 }
4546 }
1da177e4
LT
4547 }
4548 } while (!table && size > PAGE_SIZE && --log2qty);
4549
4550 if (!table)
4551 panic("Failed to allocate %s hash table\n", tablename);
4552
b49ad484 4553 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
4554 tablename,
4555 (1U << log2qty),
f0d1b0b3 4556 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
4557 size);
4558
4559 if (_hash_shift)
4560 *_hash_shift = log2qty;
4561 if (_hash_mask)
4562 *_hash_mask = (1 << log2qty) - 1;
4563
4564 return table;
4565}
a117e66e
KH
4566
4567#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
a117e66e
KH
4568struct page *pfn_to_page(unsigned long pfn)
4569{
67de6482 4570 return __pfn_to_page(pfn);
a117e66e
KH
4571}
4572unsigned long page_to_pfn(struct page *page)
4573{
67de6482 4574 return __page_to_pfn(page);
a117e66e 4575}
a117e66e
KH
4576EXPORT_SYMBOL(pfn_to_page);
4577EXPORT_SYMBOL(page_to_pfn);
4578#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
6220ec78 4579
835c134e
MG
4580/* Return a pointer to the bitmap storing bits affecting a block of pages */
4581static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4582 unsigned long pfn)
4583{
4584#ifdef CONFIG_SPARSEMEM
4585 return __pfn_to_section(pfn)->pageblock_flags;
4586#else
4587 return zone->pageblock_flags;
4588#endif /* CONFIG_SPARSEMEM */
4589}
4590
4591static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4592{
4593#ifdef CONFIG_SPARSEMEM
4594 pfn &= (PAGES_PER_SECTION-1);
d9c23400 4595 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4596#else
4597 pfn = pfn - zone->zone_start_pfn;
d9c23400 4598 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4599#endif /* CONFIG_SPARSEMEM */
4600}
4601
4602/**
d9c23400 4603 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
4604 * @page: The page within the block of interest
4605 * @start_bitidx: The first bit of interest to retrieve
4606 * @end_bitidx: The last bit of interest
4607 * returns pageblock_bits flags
4608 */
4609unsigned long get_pageblock_flags_group(struct page *page,
4610 int start_bitidx, int end_bitidx)
4611{
4612 struct zone *zone;
4613 unsigned long *bitmap;
4614 unsigned long pfn, bitidx;
4615 unsigned long flags = 0;
4616 unsigned long value = 1;
4617
4618 zone = page_zone(page);
4619 pfn = page_to_pfn(page);
4620 bitmap = get_pageblock_bitmap(zone, pfn);
4621 bitidx = pfn_to_bitidx(zone, pfn);
4622
4623 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4624 if (test_bit(bitidx + start_bitidx, bitmap))
4625 flags |= value;
6220ec78 4626
835c134e
MG
4627 return flags;
4628}
4629
4630/**
d9c23400 4631 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
4632 * @page: The page within the block of interest
4633 * @start_bitidx: The first bit of interest
4634 * @end_bitidx: The last bit of interest
4635 * @flags: The flags to set
4636 */
4637void set_pageblock_flags_group(struct page *page, unsigned long flags,
4638 int start_bitidx, int end_bitidx)
4639{
4640 struct zone *zone;
4641 unsigned long *bitmap;
4642 unsigned long pfn, bitidx;
4643 unsigned long value = 1;
4644
4645 zone = page_zone(page);
4646 pfn = page_to_pfn(page);
4647 bitmap = get_pageblock_bitmap(zone, pfn);
4648 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
4649 VM_BUG_ON(pfn < zone->zone_start_pfn);
4650 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
4651
4652 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4653 if (flags & value)
4654 __set_bit(bitidx + start_bitidx, bitmap);
4655 else
4656 __clear_bit(bitidx + start_bitidx, bitmap);
4657}
a5d76b54
KH
4658
4659/*
4660 * This is designed as sub function...plz see page_isolation.c also.
4661 * set/clear page block's type to be ISOLATE.
4662 * page allocater never alloc memory from ISOLATE block.
4663 */
4664
4665int set_migratetype_isolate(struct page *page)
4666{
4667 struct zone *zone;
4668 unsigned long flags;
4669 int ret = -EBUSY;
4670
4671 zone = page_zone(page);
4672 spin_lock_irqsave(&zone->lock, flags);
4673 /*
4674 * In future, more migrate types will be able to be isolation target.
4675 */
4676 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4677 goto out;
4678 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4679 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4680 ret = 0;
4681out:
4682 spin_unlock_irqrestore(&zone->lock, flags);
4683 if (!ret)
9f8f2172 4684 drain_all_pages();
a5d76b54
KH
4685 return ret;
4686}
4687
4688void unset_migratetype_isolate(struct page *page)
4689{
4690 struct zone *zone;
4691 unsigned long flags;
4692 zone = page_zone(page);
4693 spin_lock_irqsave(&zone->lock, flags);
4694 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4695 goto out;
4696 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4697 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4698out:
4699 spin_unlock_irqrestore(&zone->lock, flags);
4700}
0c0e6195
KH
4701
4702#ifdef CONFIG_MEMORY_HOTREMOVE
4703/*
4704 * All pages in the range must be isolated before calling this.
4705 */
4706void
4707__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4708{
4709 struct page *page;
4710 struct zone *zone;
4711 int order, i;
4712 unsigned long pfn;
4713 unsigned long flags;
4714 /* find the first valid pfn */
4715 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4716 if (pfn_valid(pfn))
4717 break;
4718 if (pfn == end_pfn)
4719 return;
4720 zone = page_zone(pfn_to_page(pfn));
4721 spin_lock_irqsave(&zone->lock, flags);
4722 pfn = start_pfn;
4723 while (pfn < end_pfn) {
4724 if (!pfn_valid(pfn)) {
4725 pfn++;
4726 continue;
4727 }
4728 page = pfn_to_page(pfn);
4729 BUG_ON(page_count(page));
4730 BUG_ON(!PageBuddy(page));
4731 order = page_order(page);
4732#ifdef CONFIG_DEBUG_VM
4733 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4734 pfn, 1 << order, end_pfn);
4735#endif
4736 list_del(&page->lru);
4737 rmv_page_order(page);
4738 zone->free_area[order].nr_free--;
4739 __mod_zone_page_state(zone, NR_FREE_PAGES,
4740 - (1UL << order));
4741 for (i = 0; i < (1 << order); i++)
4742 SetPageReserved((page+i));
4743 pfn += (1 << order);
4744 }
4745 spin_unlock_irqrestore(&zone->lock, flags);
4746}
4747#endif