]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
mm: fix deferred congestion timeout if preferred zone is not allowed
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
5a3135c2 33#include <linux/oom.h>
1da177e4
LT
34#include <linux/notifier.h>
35#include <linux/topology.h>
36#include <linux/sysctl.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
bdc8cb98 39#include <linux/memory_hotplug.h>
1da177e4
LT
40#include <linux/nodemask.h>
41#include <linux/vmalloc.h>
4be38e35 42#include <linux/mempolicy.h>
6811378e 43#include <linux/stop_machine.h>
c713216d
MG
44#include <linux/sort.h>
45#include <linux/pfn.h>
3fcfab16 46#include <linux/backing-dev.h>
933e312e 47#include <linux/fault-inject.h>
a5d76b54 48#include <linux/page-isolation.h>
52d4b9ac 49#include <linux/page_cgroup.h>
3ac7fe5a 50#include <linux/debugobjects.h>
dbb1f81c 51#include <linux/kmemleak.h>
925cc71e 52#include <linux/memory.h>
56de7263 53#include <linux/compaction.h>
0d3d062a 54#include <trace/events/kmem.h>
718a3821 55#include <linux/ftrace_event.h>
1da177e4
LT
56
57#include <asm/tlbflush.h>
ac924c60 58#include <asm/div64.h>
1da177e4
LT
59#include "internal.h"
60
72812019
LS
61#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
62DEFINE_PER_CPU(int, numa_node);
63EXPORT_PER_CPU_SYMBOL(numa_node);
64#endif
65
7aac7898
LS
66#ifdef CONFIG_HAVE_MEMORYLESS_NODES
67/*
68 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
69 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
70 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
71 * defined in <linux/topology.h>.
72 */
73DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
74EXPORT_PER_CPU_SYMBOL(_numa_mem_);
75#endif
76
1da177e4 77/*
13808910 78 * Array of node states.
1da177e4 79 */
13808910
CL
80nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
81 [N_POSSIBLE] = NODE_MASK_ALL,
82 [N_ONLINE] = { { [0] = 1UL } },
83#ifndef CONFIG_NUMA
84 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
85#ifdef CONFIG_HIGHMEM
86 [N_HIGH_MEMORY] = { { [0] = 1UL } },
87#endif
88 [N_CPU] = { { [0] = 1UL } },
89#endif /* NUMA */
90};
91EXPORT_SYMBOL(node_states);
92
6c231b7b 93unsigned long totalram_pages __read_mostly;
cb45b0e9 94unsigned long totalreserve_pages __read_mostly;
8ad4b1fb 95int percpu_pagelist_fraction;
dcce284a 96gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 97
452aa699
RW
98#ifdef CONFIG_PM_SLEEP
99/*
100 * The following functions are used by the suspend/hibernate code to temporarily
101 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
102 * while devices are suspended. To avoid races with the suspend/hibernate code,
103 * they should always be called with pm_mutex held (gfp_allowed_mask also should
104 * only be modified with pm_mutex held, unless the suspend/hibernate code is
105 * guaranteed not to run in parallel with that modification).
106 */
c9e664f1
RW
107
108static gfp_t saved_gfp_mask;
109
110void pm_restore_gfp_mask(void)
452aa699
RW
111{
112 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
113 if (saved_gfp_mask) {
114 gfp_allowed_mask = saved_gfp_mask;
115 saved_gfp_mask = 0;
116 }
452aa699
RW
117}
118
c9e664f1 119void pm_restrict_gfp_mask(void)
452aa699 120{
452aa699 121 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
122 WARN_ON(saved_gfp_mask);
123 saved_gfp_mask = gfp_allowed_mask;
124 gfp_allowed_mask &= ~GFP_IOFS;
452aa699
RW
125}
126#endif /* CONFIG_PM_SLEEP */
127
d9c23400
MG
128#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
129int pageblock_order __read_mostly;
130#endif
131
d98c7a09 132static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 133
1da177e4
LT
134/*
135 * results with 256, 32 in the lowmem_reserve sysctl:
136 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
137 * 1G machine -> (16M dma, 784M normal, 224M high)
138 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
139 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
140 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
141 *
142 * TBD: should special case ZONE_DMA32 machines here - in those we normally
143 * don't need any ZONE_NORMAL reservation
1da177e4 144 */
2f1b6248 145int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 146#ifdef CONFIG_ZONE_DMA
2f1b6248 147 256,
4b51d669 148#endif
fb0e7942 149#ifdef CONFIG_ZONE_DMA32
2f1b6248 150 256,
fb0e7942 151#endif
e53ef38d 152#ifdef CONFIG_HIGHMEM
2a1e274a 153 32,
e53ef38d 154#endif
2a1e274a 155 32,
2f1b6248 156};
1da177e4
LT
157
158EXPORT_SYMBOL(totalram_pages);
1da177e4 159
15ad7cdc 160static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 161#ifdef CONFIG_ZONE_DMA
2f1b6248 162 "DMA",
4b51d669 163#endif
fb0e7942 164#ifdef CONFIG_ZONE_DMA32
2f1b6248 165 "DMA32",
fb0e7942 166#endif
2f1b6248 167 "Normal",
e53ef38d 168#ifdef CONFIG_HIGHMEM
2a1e274a 169 "HighMem",
e53ef38d 170#endif
2a1e274a 171 "Movable",
2f1b6248
CL
172};
173
1da177e4
LT
174int min_free_kbytes = 1024;
175
2c85f51d
JB
176static unsigned long __meminitdata nr_kernel_pages;
177static unsigned long __meminitdata nr_all_pages;
a3142c8e 178static unsigned long __meminitdata dma_reserve;
1da177e4 179
c713216d
MG
180#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
181 /*
183ff22b 182 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
183 * ranges of memory (RAM) that may be registered with add_active_range().
184 * Ranges passed to add_active_range() will be merged if possible
185 * so the number of times add_active_range() can be called is
186 * related to the number of nodes and the number of holes
187 */
188 #ifdef CONFIG_MAX_ACTIVE_REGIONS
189 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
190 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
191 #else
192 #if MAX_NUMNODES >= 32
193 /* If there can be many nodes, allow up to 50 holes per node */
194 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
195 #else
196 /* By default, allow up to 256 distinct regions */
197 #define MAX_ACTIVE_REGIONS 256
198 #endif
199 #endif
200
98011f56
JB
201 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
202 static int __meminitdata nr_nodemap_entries;
203 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
204 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
b69a7288 205 static unsigned long __initdata required_kernelcore;
484f51f8 206 static unsigned long __initdata required_movablecore;
b69a7288 207 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
208
209 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
210 int movable_zone;
211 EXPORT_SYMBOL(movable_zone);
c713216d
MG
212#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
213
418508c1
MS
214#if MAX_NUMNODES > 1
215int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 216int nr_online_nodes __read_mostly = 1;
418508c1 217EXPORT_SYMBOL(nr_node_ids);
62bc62a8 218EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
219#endif
220
9ef9acb0
MG
221int page_group_by_mobility_disabled __read_mostly;
222
b2a0ac88
MG
223static void set_pageblock_migratetype(struct page *page, int migratetype)
224{
49255c61
MG
225
226 if (unlikely(page_group_by_mobility_disabled))
227 migratetype = MIGRATE_UNMOVABLE;
228
b2a0ac88
MG
229 set_pageblock_flags_group(page, (unsigned long)migratetype,
230 PB_migrate, PB_migrate_end);
231}
232
7f33d49a
RW
233bool oom_killer_disabled __read_mostly;
234
13e7444b 235#ifdef CONFIG_DEBUG_VM
c6a57e19 236static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 237{
bdc8cb98
DH
238 int ret = 0;
239 unsigned seq;
240 unsigned long pfn = page_to_pfn(page);
c6a57e19 241
bdc8cb98
DH
242 do {
243 seq = zone_span_seqbegin(zone);
244 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
245 ret = 1;
246 else if (pfn < zone->zone_start_pfn)
247 ret = 1;
248 } while (zone_span_seqretry(zone, seq));
249
250 return ret;
c6a57e19
DH
251}
252
253static int page_is_consistent(struct zone *zone, struct page *page)
254{
14e07298 255 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 256 return 0;
1da177e4 257 if (zone != page_zone(page))
c6a57e19
DH
258 return 0;
259
260 return 1;
261}
262/*
263 * Temporary debugging check for pages not lying within a given zone.
264 */
265static int bad_range(struct zone *zone, struct page *page)
266{
267 if (page_outside_zone_boundaries(zone, page))
1da177e4 268 return 1;
c6a57e19
DH
269 if (!page_is_consistent(zone, page))
270 return 1;
271
1da177e4
LT
272 return 0;
273}
13e7444b
NP
274#else
275static inline int bad_range(struct zone *zone, struct page *page)
276{
277 return 0;
278}
279#endif
280
224abf92 281static void bad_page(struct page *page)
1da177e4 282{
d936cf9b
HD
283 static unsigned long resume;
284 static unsigned long nr_shown;
285 static unsigned long nr_unshown;
286
2a7684a2
WF
287 /* Don't complain about poisoned pages */
288 if (PageHWPoison(page)) {
289 __ClearPageBuddy(page);
290 return;
291 }
292
d936cf9b
HD
293 /*
294 * Allow a burst of 60 reports, then keep quiet for that minute;
295 * or allow a steady drip of one report per second.
296 */
297 if (nr_shown == 60) {
298 if (time_before(jiffies, resume)) {
299 nr_unshown++;
300 goto out;
301 }
302 if (nr_unshown) {
1e9e6365
HD
303 printk(KERN_ALERT
304 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
305 nr_unshown);
306 nr_unshown = 0;
307 }
308 nr_shown = 0;
309 }
310 if (nr_shown++ == 0)
311 resume = jiffies + 60 * HZ;
312
1e9e6365 313 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 314 current->comm, page_to_pfn(page));
718a3821 315 dump_page(page);
3dc14741 316
1da177e4 317 dump_stack();
d936cf9b 318out:
8cc3b392
HD
319 /* Leave bad fields for debug, except PageBuddy could make trouble */
320 __ClearPageBuddy(page);
9f158333 321 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
322}
323
1da177e4
LT
324/*
325 * Higher-order pages are called "compound pages". They are structured thusly:
326 *
327 * The first PAGE_SIZE page is called the "head page".
328 *
329 * The remaining PAGE_SIZE pages are called "tail pages".
330 *
331 * All pages have PG_compound set. All pages have their ->private pointing at
332 * the head page (even the head page has this).
333 *
41d78ba5
HD
334 * The first tail page's ->lru.next holds the address of the compound page's
335 * put_page() function. Its ->lru.prev holds the order of allocation.
336 * This usage means that zero-order pages may not be compound.
1da177e4 337 */
d98c7a09
HD
338
339static void free_compound_page(struct page *page)
340{
d85f3385 341 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
342}
343
01ad1c08 344void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
345{
346 int i;
347 int nr_pages = 1 << order;
348
349 set_compound_page_dtor(page, free_compound_page);
350 set_compound_order(page, order);
351 __SetPageHead(page);
352 for (i = 1; i < nr_pages; i++) {
353 struct page *p = page + i;
354
355 __SetPageTail(p);
356 p->first_page = page;
357 }
358}
359
59ff4216 360/* update __split_huge_page_refcount if you change this function */
8cc3b392 361static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
362{
363 int i;
364 int nr_pages = 1 << order;
8cc3b392 365 int bad = 0;
1da177e4 366
8cc3b392
HD
367 if (unlikely(compound_order(page) != order) ||
368 unlikely(!PageHead(page))) {
224abf92 369 bad_page(page);
8cc3b392
HD
370 bad++;
371 }
1da177e4 372
6d777953 373 __ClearPageHead(page);
8cc3b392 374
18229df5
AW
375 for (i = 1; i < nr_pages; i++) {
376 struct page *p = page + i;
1da177e4 377
e713a21d 378 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 379 bad_page(page);
8cc3b392
HD
380 bad++;
381 }
d85f3385 382 __ClearPageTail(p);
1da177e4 383 }
8cc3b392
HD
384
385 return bad;
1da177e4 386}
1da177e4 387
17cf4406
NP
388static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
389{
390 int i;
391
6626c5d5
AM
392 /*
393 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
394 * and __GFP_HIGHMEM from hard or soft interrupt context.
395 */
725d704e 396 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
397 for (i = 0; i < (1 << order); i++)
398 clear_highpage(page + i);
399}
400
6aa3001b
AM
401static inline void set_page_order(struct page *page, int order)
402{
4c21e2f2 403 set_page_private(page, order);
676165a8 404 __SetPageBuddy(page);
1da177e4
LT
405}
406
407static inline void rmv_page_order(struct page *page)
408{
676165a8 409 __ClearPageBuddy(page);
4c21e2f2 410 set_page_private(page, 0);
1da177e4
LT
411}
412
413/*
414 * Locate the struct page for both the matching buddy in our
415 * pair (buddy1) and the combined O(n+1) page they form (page).
416 *
417 * 1) Any buddy B1 will have an order O twin B2 which satisfies
418 * the following equation:
419 * B2 = B1 ^ (1 << O)
420 * For example, if the starting buddy (buddy2) is #8 its order
421 * 1 buddy is #10:
422 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
423 *
424 * 2) Any buddy B will have an order O+1 parent P which
425 * satisfies the following equation:
426 * P = B & ~(1 << O)
427 *
d6e05edc 428 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 429 */
1da177e4 430static inline unsigned long
43506fad 431__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 432{
43506fad 433 return page_idx ^ (1 << order);
1da177e4
LT
434}
435
436/*
437 * This function checks whether a page is free && is the buddy
438 * we can do coalesce a page and its buddy if
13e7444b 439 * (a) the buddy is not in a hole &&
676165a8 440 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
441 * (c) a page and its buddy have the same order &&
442 * (d) a page and its buddy are in the same zone.
676165a8 443 *
5f24ce5f
AA
444 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
445 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 446 *
676165a8 447 * For recording page's order, we use page_private(page).
1da177e4 448 */
cb2b95e1
AW
449static inline int page_is_buddy(struct page *page, struct page *buddy,
450 int order)
1da177e4 451{
14e07298 452 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 453 return 0;
13e7444b 454
cb2b95e1
AW
455 if (page_zone_id(page) != page_zone_id(buddy))
456 return 0;
457
458 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 459 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 460 return 1;
676165a8 461 }
6aa3001b 462 return 0;
1da177e4
LT
463}
464
465/*
466 * Freeing function for a buddy system allocator.
467 *
468 * The concept of a buddy system is to maintain direct-mapped table
469 * (containing bit values) for memory blocks of various "orders".
470 * The bottom level table contains the map for the smallest allocatable
471 * units of memory (here, pages), and each level above it describes
472 * pairs of units from the levels below, hence, "buddies".
473 * At a high level, all that happens here is marking the table entry
474 * at the bottom level available, and propagating the changes upward
475 * as necessary, plus some accounting needed to play nicely with other
476 * parts of the VM system.
477 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 478 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 479 * order is recorded in page_private(page) field.
1da177e4
LT
480 * So when we are allocating or freeing one, we can derive the state of the
481 * other. That is, if we allocate a small block, and both were
482 * free, the remainder of the region must be split into blocks.
483 * If a block is freed, and its buddy is also free, then this
484 * triggers coalescing into a block of larger size.
485 *
486 * -- wli
487 */
488
48db57f8 489static inline void __free_one_page(struct page *page,
ed0ae21d
MG
490 struct zone *zone, unsigned int order,
491 int migratetype)
1da177e4
LT
492{
493 unsigned long page_idx;
6dda9d55 494 unsigned long combined_idx;
43506fad 495 unsigned long uninitialized_var(buddy_idx);
6dda9d55 496 struct page *buddy;
1da177e4 497
224abf92 498 if (unlikely(PageCompound(page)))
8cc3b392
HD
499 if (unlikely(destroy_compound_page(page, order)))
500 return;
1da177e4 501
ed0ae21d
MG
502 VM_BUG_ON(migratetype == -1);
503
1da177e4
LT
504 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
505
f2260e6b 506 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 507 VM_BUG_ON(bad_range(zone, page));
1da177e4 508
1da177e4 509 while (order < MAX_ORDER-1) {
43506fad
KC
510 buddy_idx = __find_buddy_index(page_idx, order);
511 buddy = page + (buddy_idx - page_idx);
cb2b95e1 512 if (!page_is_buddy(page, buddy, order))
3c82d0ce 513 break;
13e7444b 514
3c82d0ce 515 /* Our buddy is free, merge with it and move up one order. */
1da177e4 516 list_del(&buddy->lru);
b2a0ac88 517 zone->free_area[order].nr_free--;
1da177e4 518 rmv_page_order(buddy);
43506fad 519 combined_idx = buddy_idx & page_idx;
1da177e4
LT
520 page = page + (combined_idx - page_idx);
521 page_idx = combined_idx;
522 order++;
523 }
524 set_page_order(page, order);
6dda9d55
CZ
525
526 /*
527 * If this is not the largest possible page, check if the buddy
528 * of the next-highest order is free. If it is, it's possible
529 * that pages are being freed that will coalesce soon. In case,
530 * that is happening, add the free page to the tail of the list
531 * so it's less likely to be used soon and more likely to be merged
532 * as a higher order page
533 */
b7f50cfa 534 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 535 struct page *higher_page, *higher_buddy;
43506fad
KC
536 combined_idx = buddy_idx & page_idx;
537 higher_page = page + (combined_idx - page_idx);
538 buddy_idx = __find_buddy_index(combined_idx, order + 1);
539 higher_buddy = page + (buddy_idx - combined_idx);
6dda9d55
CZ
540 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
541 list_add_tail(&page->lru,
542 &zone->free_area[order].free_list[migratetype]);
543 goto out;
544 }
545 }
546
547 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
548out:
1da177e4
LT
549 zone->free_area[order].nr_free++;
550}
551
092cead6
KM
552/*
553 * free_page_mlock() -- clean up attempts to free and mlocked() page.
554 * Page should not be on lru, so no need to fix that up.
555 * free_pages_check() will verify...
556 */
557static inline void free_page_mlock(struct page *page)
558{
092cead6
KM
559 __dec_zone_page_state(page, NR_MLOCK);
560 __count_vm_event(UNEVICTABLE_MLOCKFREED);
561}
092cead6 562
224abf92 563static inline int free_pages_check(struct page *page)
1da177e4 564{
92be2e33
NP
565 if (unlikely(page_mapcount(page) |
566 (page->mapping != NULL) |
a3af9c38 567 (atomic_read(&page->_count) != 0) |
8cc3b392 568 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
224abf92 569 bad_page(page);
79f4b7bf 570 return 1;
8cc3b392 571 }
79f4b7bf
HD
572 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
573 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
574 return 0;
1da177e4
LT
575}
576
577/*
5f8dcc21 578 * Frees a number of pages from the PCP lists
1da177e4 579 * Assumes all pages on list are in same zone, and of same order.
207f36ee 580 * count is the number of pages to free.
1da177e4
LT
581 *
582 * If the zone was previously in an "all pages pinned" state then look to
583 * see if this freeing clears that state.
584 *
585 * And clear the zone's pages_scanned counter, to hold off the "all pages are
586 * pinned" detection logic.
587 */
5f8dcc21
MG
588static void free_pcppages_bulk(struct zone *zone, int count,
589 struct per_cpu_pages *pcp)
1da177e4 590{
5f8dcc21 591 int migratetype = 0;
a6f9edd6 592 int batch_free = 0;
72853e29 593 int to_free = count;
5f8dcc21 594
c54ad30c 595 spin_lock(&zone->lock);
93e4a89a 596 zone->all_unreclaimable = 0;
1da177e4 597 zone->pages_scanned = 0;
f2260e6b 598
72853e29 599 while (to_free) {
48db57f8 600 struct page *page;
5f8dcc21
MG
601 struct list_head *list;
602
603 /*
a6f9edd6
MG
604 * Remove pages from lists in a round-robin fashion. A
605 * batch_free count is maintained that is incremented when an
606 * empty list is encountered. This is so more pages are freed
607 * off fuller lists instead of spinning excessively around empty
608 * lists
5f8dcc21
MG
609 */
610 do {
a6f9edd6 611 batch_free++;
5f8dcc21
MG
612 if (++migratetype == MIGRATE_PCPTYPES)
613 migratetype = 0;
614 list = &pcp->lists[migratetype];
615 } while (list_empty(list));
48db57f8 616
a6f9edd6
MG
617 do {
618 page = list_entry(list->prev, struct page, lru);
619 /* must delete as __free_one_page list manipulates */
620 list_del(&page->lru);
a7016235
HD
621 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
622 __free_one_page(page, zone, 0, page_private(page));
623 trace_mm_page_pcpu_drain(page, 0, page_private(page));
72853e29 624 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 625 }
72853e29 626 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
c54ad30c 627 spin_unlock(&zone->lock);
1da177e4
LT
628}
629
ed0ae21d
MG
630static void free_one_page(struct zone *zone, struct page *page, int order,
631 int migratetype)
1da177e4 632{
006d22d9 633 spin_lock(&zone->lock);
93e4a89a 634 zone->all_unreclaimable = 0;
006d22d9 635 zone->pages_scanned = 0;
f2260e6b 636
ed0ae21d 637 __free_one_page(page, zone, order, migratetype);
72853e29 638 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
006d22d9 639 spin_unlock(&zone->lock);
48db57f8
NP
640}
641
ec95f53a 642static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 643{
1da177e4 644 int i;
8cc3b392 645 int bad = 0;
1da177e4 646
f650316c 647 trace_mm_page_free_direct(page, order);
b1eeab67
VN
648 kmemcheck_free_shadow(page, order);
649
8dd60a3a
AA
650 if (PageAnon(page))
651 page->mapping = NULL;
652 for (i = 0; i < (1 << order); i++)
653 bad += free_pages_check(page + i);
8cc3b392 654 if (bad)
ec95f53a 655 return false;
689bcebf 656
3ac7fe5a 657 if (!PageHighMem(page)) {
9858db50 658 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
659 debug_check_no_obj_freed(page_address(page),
660 PAGE_SIZE << order);
661 }
dafb1367 662 arch_free_page(page, order);
48db57f8 663 kernel_map_pages(page, 1 << order, 0);
dafb1367 664
ec95f53a
KM
665 return true;
666}
667
668static void __free_pages_ok(struct page *page, unsigned int order)
669{
670 unsigned long flags;
671 int wasMlocked = __TestClearPageMlocked(page);
672
673 if (!free_pages_prepare(page, order))
674 return;
675
c54ad30c 676 local_irq_save(flags);
c277331d 677 if (unlikely(wasMlocked))
da456f14 678 free_page_mlock(page);
f8891e5e 679 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
680 free_one_page(page_zone(page), page, order,
681 get_pageblock_migratetype(page));
c54ad30c 682 local_irq_restore(flags);
1da177e4
LT
683}
684
a226f6c8
DH
685/*
686 * permit the bootmem allocator to evade page validation on high-order frees
687 */
af370fb8 688void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
689{
690 if (order == 0) {
691 __ClearPageReserved(page);
692 set_page_count(page, 0);
7835e98b 693 set_page_refcounted(page);
545b1ea9 694 __free_page(page);
a226f6c8 695 } else {
a226f6c8
DH
696 int loop;
697
545b1ea9 698 prefetchw(page);
a226f6c8
DH
699 for (loop = 0; loop < BITS_PER_LONG; loop++) {
700 struct page *p = &page[loop];
701
545b1ea9
NP
702 if (loop + 1 < BITS_PER_LONG)
703 prefetchw(p + 1);
a226f6c8
DH
704 __ClearPageReserved(p);
705 set_page_count(p, 0);
706 }
707
7835e98b 708 set_page_refcounted(page);
545b1ea9 709 __free_pages(page, order);
a226f6c8
DH
710 }
711}
712
1da177e4
LT
713
714/*
715 * The order of subdivision here is critical for the IO subsystem.
716 * Please do not alter this order without good reasons and regression
717 * testing. Specifically, as large blocks of memory are subdivided,
718 * the order in which smaller blocks are delivered depends on the order
719 * they're subdivided in this function. This is the primary factor
720 * influencing the order in which pages are delivered to the IO
721 * subsystem according to empirical testing, and this is also justified
722 * by considering the behavior of a buddy system containing a single
723 * large block of memory acted on by a series of small allocations.
724 * This behavior is a critical factor in sglist merging's success.
725 *
726 * -- wli
727 */
085cc7d5 728static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
729 int low, int high, struct free_area *area,
730 int migratetype)
1da177e4
LT
731{
732 unsigned long size = 1 << high;
733
734 while (high > low) {
735 area--;
736 high--;
737 size >>= 1;
725d704e 738 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 739 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
740 area->nr_free++;
741 set_page_order(&page[size], high);
742 }
1da177e4
LT
743}
744
1da177e4
LT
745/*
746 * This page is about to be returned from the page allocator
747 */
2a7684a2 748static inline int check_new_page(struct page *page)
1da177e4 749{
92be2e33
NP
750 if (unlikely(page_mapcount(page) |
751 (page->mapping != NULL) |
a3af9c38 752 (atomic_read(&page->_count) != 0) |
8cc3b392 753 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
224abf92 754 bad_page(page);
689bcebf 755 return 1;
8cc3b392 756 }
2a7684a2
WF
757 return 0;
758}
759
760static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
761{
762 int i;
763
764 for (i = 0; i < (1 << order); i++) {
765 struct page *p = page + i;
766 if (unlikely(check_new_page(p)))
767 return 1;
768 }
689bcebf 769
4c21e2f2 770 set_page_private(page, 0);
7835e98b 771 set_page_refcounted(page);
cc102509
NP
772
773 arch_alloc_page(page, order);
1da177e4 774 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
775
776 if (gfp_flags & __GFP_ZERO)
777 prep_zero_page(page, order, gfp_flags);
778
779 if (order && (gfp_flags & __GFP_COMP))
780 prep_compound_page(page, order);
781
689bcebf 782 return 0;
1da177e4
LT
783}
784
56fd56b8
MG
785/*
786 * Go through the free lists for the given migratetype and remove
787 * the smallest available page from the freelists
788 */
728ec980
MG
789static inline
790struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
791 int migratetype)
792{
793 unsigned int current_order;
794 struct free_area * area;
795 struct page *page;
796
797 /* Find a page of the appropriate size in the preferred list */
798 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
799 area = &(zone->free_area[current_order]);
800 if (list_empty(&area->free_list[migratetype]))
801 continue;
802
803 page = list_entry(area->free_list[migratetype].next,
804 struct page, lru);
805 list_del(&page->lru);
806 rmv_page_order(page);
807 area->nr_free--;
56fd56b8
MG
808 expand(zone, page, order, current_order, area, migratetype);
809 return page;
810 }
811
812 return NULL;
813}
814
815
b2a0ac88
MG
816/*
817 * This array describes the order lists are fallen back to when
818 * the free lists for the desirable migrate type are depleted
819 */
820static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
821 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
822 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
823 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
824 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
825};
826
c361be55
MG
827/*
828 * Move the free pages in a range to the free lists of the requested type.
d9c23400 829 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
830 * boundary. If alignment is required, use move_freepages_block()
831 */
b69a7288
AB
832static int move_freepages(struct zone *zone,
833 struct page *start_page, struct page *end_page,
834 int migratetype)
c361be55
MG
835{
836 struct page *page;
837 unsigned long order;
d100313f 838 int pages_moved = 0;
c361be55
MG
839
840#ifndef CONFIG_HOLES_IN_ZONE
841 /*
842 * page_zone is not safe to call in this context when
843 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
844 * anyway as we check zone boundaries in move_freepages_block().
845 * Remove at a later date when no bug reports exist related to
ac0e5b7a 846 * grouping pages by mobility
c361be55
MG
847 */
848 BUG_ON(page_zone(start_page) != page_zone(end_page));
849#endif
850
851 for (page = start_page; page <= end_page;) {
344c790e
AL
852 /* Make sure we are not inadvertently changing nodes */
853 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
854
c361be55
MG
855 if (!pfn_valid_within(page_to_pfn(page))) {
856 page++;
857 continue;
858 }
859
860 if (!PageBuddy(page)) {
861 page++;
862 continue;
863 }
864
865 order = page_order(page);
866 list_del(&page->lru);
867 list_add(&page->lru,
868 &zone->free_area[order].free_list[migratetype]);
869 page += 1 << order;
d100313f 870 pages_moved += 1 << order;
c361be55
MG
871 }
872
d100313f 873 return pages_moved;
c361be55
MG
874}
875
b69a7288
AB
876static int move_freepages_block(struct zone *zone, struct page *page,
877 int migratetype)
c361be55
MG
878{
879 unsigned long start_pfn, end_pfn;
880 struct page *start_page, *end_page;
881
882 start_pfn = page_to_pfn(page);
d9c23400 883 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 884 start_page = pfn_to_page(start_pfn);
d9c23400
MG
885 end_page = start_page + pageblock_nr_pages - 1;
886 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
887
888 /* Do not cross zone boundaries */
889 if (start_pfn < zone->zone_start_pfn)
890 start_page = page;
891 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
892 return 0;
893
894 return move_freepages(zone, start_page, end_page, migratetype);
895}
896
2f66a68f
MG
897static void change_pageblock_range(struct page *pageblock_page,
898 int start_order, int migratetype)
899{
900 int nr_pageblocks = 1 << (start_order - pageblock_order);
901
902 while (nr_pageblocks--) {
903 set_pageblock_migratetype(pageblock_page, migratetype);
904 pageblock_page += pageblock_nr_pages;
905 }
906}
907
b2a0ac88 908/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
909static inline struct page *
910__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
911{
912 struct free_area * area;
913 int current_order;
914 struct page *page;
915 int migratetype, i;
916
917 /* Find the largest possible block of pages in the other list */
918 for (current_order = MAX_ORDER-1; current_order >= order;
919 --current_order) {
920 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
921 migratetype = fallbacks[start_migratetype][i];
922
56fd56b8
MG
923 /* MIGRATE_RESERVE handled later if necessary */
924 if (migratetype == MIGRATE_RESERVE)
925 continue;
e010487d 926
b2a0ac88
MG
927 area = &(zone->free_area[current_order]);
928 if (list_empty(&area->free_list[migratetype]))
929 continue;
930
931 page = list_entry(area->free_list[migratetype].next,
932 struct page, lru);
933 area->nr_free--;
934
935 /*
c361be55 936 * If breaking a large block of pages, move all free
46dafbca
MG
937 * pages to the preferred allocation list. If falling
938 * back for a reclaimable kernel allocation, be more
939 * agressive about taking ownership of free pages
b2a0ac88 940 */
d9c23400 941 if (unlikely(current_order >= (pageblock_order >> 1)) ||
dd5d241e
MG
942 start_migratetype == MIGRATE_RECLAIMABLE ||
943 page_group_by_mobility_disabled) {
46dafbca
MG
944 unsigned long pages;
945 pages = move_freepages_block(zone, page,
946 start_migratetype);
947
948 /* Claim the whole block if over half of it is free */
dd5d241e
MG
949 if (pages >= (1 << (pageblock_order-1)) ||
950 page_group_by_mobility_disabled)
46dafbca
MG
951 set_pageblock_migratetype(page,
952 start_migratetype);
953
b2a0ac88 954 migratetype = start_migratetype;
c361be55 955 }
b2a0ac88
MG
956
957 /* Remove the page from the freelists */
958 list_del(&page->lru);
959 rmv_page_order(page);
b2a0ac88 960
2f66a68f
MG
961 /* Take ownership for orders >= pageblock_order */
962 if (current_order >= pageblock_order)
963 change_pageblock_range(page, current_order,
b2a0ac88
MG
964 start_migratetype);
965
966 expand(zone, page, order, current_order, area, migratetype);
e0fff1bd
MG
967
968 trace_mm_page_alloc_extfrag(page, order, current_order,
969 start_migratetype, migratetype);
970
b2a0ac88
MG
971 return page;
972 }
973 }
974
728ec980 975 return NULL;
b2a0ac88
MG
976}
977
56fd56b8 978/*
1da177e4
LT
979 * Do the hard work of removing an element from the buddy allocator.
980 * Call me with the zone->lock already held.
981 */
b2a0ac88
MG
982static struct page *__rmqueue(struct zone *zone, unsigned int order,
983 int migratetype)
1da177e4 984{
1da177e4
LT
985 struct page *page;
986
728ec980 987retry_reserve:
56fd56b8 988 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 989
728ec980 990 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 991 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 992
728ec980
MG
993 /*
994 * Use MIGRATE_RESERVE rather than fail an allocation. goto
995 * is used because __rmqueue_smallest is an inline function
996 * and we want just one call site
997 */
998 if (!page) {
999 migratetype = MIGRATE_RESERVE;
1000 goto retry_reserve;
1001 }
1002 }
1003
0d3d062a 1004 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1005 return page;
1da177e4
LT
1006}
1007
1008/*
1009 * Obtain a specified number of elements from the buddy allocator, all under
1010 * a single hold of the lock, for efficiency. Add them to the supplied list.
1011 * Returns the number of new pages which were placed at *list.
1012 */
1013static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1014 unsigned long count, struct list_head *list,
e084b2d9 1015 int migratetype, int cold)
1da177e4 1016{
1da177e4 1017 int i;
1da177e4 1018
c54ad30c 1019 spin_lock(&zone->lock);
1da177e4 1020 for (i = 0; i < count; ++i) {
b2a0ac88 1021 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1022 if (unlikely(page == NULL))
1da177e4 1023 break;
81eabcbe
MG
1024
1025 /*
1026 * Split buddy pages returned by expand() are received here
1027 * in physical page order. The page is added to the callers and
1028 * list and the list head then moves forward. From the callers
1029 * perspective, the linked list is ordered by page number in
1030 * some conditions. This is useful for IO devices that can
1031 * merge IO requests if the physical pages are ordered
1032 * properly.
1033 */
e084b2d9
MG
1034 if (likely(cold == 0))
1035 list_add(&page->lru, list);
1036 else
1037 list_add_tail(&page->lru, list);
535131e6 1038 set_page_private(page, migratetype);
81eabcbe 1039 list = &page->lru;
1da177e4 1040 }
f2260e6b 1041 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1042 spin_unlock(&zone->lock);
085cc7d5 1043 return i;
1da177e4
LT
1044}
1045
4ae7c039 1046#ifdef CONFIG_NUMA
8fce4d8e 1047/*
4037d452
CL
1048 * Called from the vmstat counter updater to drain pagesets of this
1049 * currently executing processor on remote nodes after they have
1050 * expired.
1051 *
879336c3
CL
1052 * Note that this function must be called with the thread pinned to
1053 * a single processor.
8fce4d8e 1054 */
4037d452 1055void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1056{
4ae7c039 1057 unsigned long flags;
4037d452 1058 int to_drain;
4ae7c039 1059
4037d452
CL
1060 local_irq_save(flags);
1061 if (pcp->count >= pcp->batch)
1062 to_drain = pcp->batch;
1063 else
1064 to_drain = pcp->count;
5f8dcc21 1065 free_pcppages_bulk(zone, to_drain, pcp);
4037d452
CL
1066 pcp->count -= to_drain;
1067 local_irq_restore(flags);
4ae7c039
CL
1068}
1069#endif
1070
9f8f2172
CL
1071/*
1072 * Drain pages of the indicated processor.
1073 *
1074 * The processor must either be the current processor and the
1075 * thread pinned to the current processor or a processor that
1076 * is not online.
1077 */
1078static void drain_pages(unsigned int cpu)
1da177e4 1079{
c54ad30c 1080 unsigned long flags;
1da177e4 1081 struct zone *zone;
1da177e4 1082
ee99c71c 1083 for_each_populated_zone(zone) {
1da177e4 1084 struct per_cpu_pageset *pset;
3dfa5721 1085 struct per_cpu_pages *pcp;
1da177e4 1086
99dcc3e5
CL
1087 local_irq_save(flags);
1088 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1089
1090 pcp = &pset->pcp;
5f8dcc21 1091 free_pcppages_bulk(zone, pcp->count, pcp);
3dfa5721
CL
1092 pcp->count = 0;
1093 local_irq_restore(flags);
1da177e4
LT
1094 }
1095}
1da177e4 1096
9f8f2172
CL
1097/*
1098 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1099 */
1100void drain_local_pages(void *arg)
1101{
1102 drain_pages(smp_processor_id());
1103}
1104
1105/*
1106 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1107 */
1108void drain_all_pages(void)
1109{
15c8b6c1 1110 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
1111}
1112
296699de 1113#ifdef CONFIG_HIBERNATION
1da177e4
LT
1114
1115void mark_free_pages(struct zone *zone)
1116{
f623f0db
RW
1117 unsigned long pfn, max_zone_pfn;
1118 unsigned long flags;
b2a0ac88 1119 int order, t;
1da177e4
LT
1120 struct list_head *curr;
1121
1122 if (!zone->spanned_pages)
1123 return;
1124
1125 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1126
1127 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1128 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1129 if (pfn_valid(pfn)) {
1130 struct page *page = pfn_to_page(pfn);
1131
7be98234
RW
1132 if (!swsusp_page_is_forbidden(page))
1133 swsusp_unset_page_free(page);
f623f0db 1134 }
1da177e4 1135
b2a0ac88
MG
1136 for_each_migratetype_order(order, t) {
1137 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1138 unsigned long i;
1da177e4 1139
f623f0db
RW
1140 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1141 for (i = 0; i < (1UL << order); i++)
7be98234 1142 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1143 }
b2a0ac88 1144 }
1da177e4
LT
1145 spin_unlock_irqrestore(&zone->lock, flags);
1146}
e2c55dc8 1147#endif /* CONFIG_PM */
1da177e4 1148
1da177e4
LT
1149/*
1150 * Free a 0-order page
fc91668e 1151 * cold == 1 ? free a cold page : free a hot page
1da177e4 1152 */
fc91668e 1153void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1154{
1155 struct zone *zone = page_zone(page);
1156 struct per_cpu_pages *pcp;
1157 unsigned long flags;
5f8dcc21 1158 int migratetype;
451ea25d 1159 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1160
ec95f53a 1161 if (!free_pages_prepare(page, 0))
689bcebf
HD
1162 return;
1163
5f8dcc21
MG
1164 migratetype = get_pageblock_migratetype(page);
1165 set_page_private(page, migratetype);
1da177e4 1166 local_irq_save(flags);
c277331d 1167 if (unlikely(wasMlocked))
da456f14 1168 free_page_mlock(page);
f8891e5e 1169 __count_vm_event(PGFREE);
da456f14 1170
5f8dcc21
MG
1171 /*
1172 * We only track unmovable, reclaimable and movable on pcp lists.
1173 * Free ISOLATE pages back to the allocator because they are being
1174 * offlined but treat RESERVE as movable pages so we can get those
1175 * areas back if necessary. Otherwise, we may have to free
1176 * excessively into the page allocator
1177 */
1178 if (migratetype >= MIGRATE_PCPTYPES) {
1179 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1180 free_one_page(zone, page, 0, migratetype);
1181 goto out;
1182 }
1183 migratetype = MIGRATE_MOVABLE;
1184 }
1185
99dcc3e5 1186 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1187 if (cold)
5f8dcc21 1188 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1189 else
5f8dcc21 1190 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1191 pcp->count++;
48db57f8 1192 if (pcp->count >= pcp->high) {
5f8dcc21 1193 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1194 pcp->count -= pcp->batch;
1195 }
5f8dcc21
MG
1196
1197out:
1da177e4 1198 local_irq_restore(flags);
1da177e4
LT
1199}
1200
8dfcc9ba
NP
1201/*
1202 * split_page takes a non-compound higher-order page, and splits it into
1203 * n (1<<order) sub-pages: page[0..n]
1204 * Each sub-page must be freed individually.
1205 *
1206 * Note: this is probably too low level an operation for use in drivers.
1207 * Please consult with lkml before using this in your driver.
1208 */
1209void split_page(struct page *page, unsigned int order)
1210{
1211 int i;
1212
725d704e
NP
1213 VM_BUG_ON(PageCompound(page));
1214 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1215
1216#ifdef CONFIG_KMEMCHECK
1217 /*
1218 * Split shadow pages too, because free(page[0]) would
1219 * otherwise free the whole shadow.
1220 */
1221 if (kmemcheck_page_is_tracked(page))
1222 split_page(virt_to_page(page[0].shadow), order);
1223#endif
1224
7835e98b
NP
1225 for (i = 1; i < (1 << order); i++)
1226 set_page_refcounted(page + i);
8dfcc9ba 1227}
8dfcc9ba 1228
748446bb
MG
1229/*
1230 * Similar to split_page except the page is already free. As this is only
1231 * being used for migration, the migratetype of the block also changes.
1232 * As this is called with interrupts disabled, the caller is responsible
1233 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1234 * are enabled.
1235 *
1236 * Note: this is probably too low level an operation for use in drivers.
1237 * Please consult with lkml before using this in your driver.
1238 */
1239int split_free_page(struct page *page)
1240{
1241 unsigned int order;
1242 unsigned long watermark;
1243 struct zone *zone;
1244
1245 BUG_ON(!PageBuddy(page));
1246
1247 zone = page_zone(page);
1248 order = page_order(page);
1249
1250 /* Obey watermarks as if the page was being allocated */
1251 watermark = low_wmark_pages(zone) + (1 << order);
1252 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1253 return 0;
1254
1255 /* Remove page from free list */
1256 list_del(&page->lru);
1257 zone->free_area[order].nr_free--;
1258 rmv_page_order(page);
1259 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1260
1261 /* Split into individual pages */
1262 set_page_refcounted(page);
1263 split_page(page, order);
1264
1265 if (order >= pageblock_order - 1) {
1266 struct page *endpage = page + (1 << order) - 1;
1267 for (; page < endpage; page += pageblock_nr_pages)
1268 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1269 }
1270
1271 return 1 << order;
1272}
1273
1da177e4
LT
1274/*
1275 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1276 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1277 * or two.
1278 */
0a15c3e9
MG
1279static inline
1280struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1281 struct zone *zone, int order, gfp_t gfp_flags,
1282 int migratetype)
1da177e4
LT
1283{
1284 unsigned long flags;
689bcebf 1285 struct page *page;
1da177e4
LT
1286 int cold = !!(gfp_flags & __GFP_COLD);
1287
689bcebf 1288again:
48db57f8 1289 if (likely(order == 0)) {
1da177e4 1290 struct per_cpu_pages *pcp;
5f8dcc21 1291 struct list_head *list;
1da177e4 1292
1da177e4 1293 local_irq_save(flags);
99dcc3e5
CL
1294 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1295 list = &pcp->lists[migratetype];
5f8dcc21 1296 if (list_empty(list)) {
535131e6 1297 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1298 pcp->batch, list,
e084b2d9 1299 migratetype, cold);
5f8dcc21 1300 if (unlikely(list_empty(list)))
6fb332fa 1301 goto failed;
535131e6 1302 }
b92a6edd 1303
5f8dcc21
MG
1304 if (cold)
1305 page = list_entry(list->prev, struct page, lru);
1306 else
1307 page = list_entry(list->next, struct page, lru);
1308
b92a6edd
MG
1309 list_del(&page->lru);
1310 pcp->count--;
7fb1d9fc 1311 } else {
dab48dab
AM
1312 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1313 /*
1314 * __GFP_NOFAIL is not to be used in new code.
1315 *
1316 * All __GFP_NOFAIL callers should be fixed so that they
1317 * properly detect and handle allocation failures.
1318 *
1319 * We most definitely don't want callers attempting to
4923abf9 1320 * allocate greater than order-1 page units with
dab48dab
AM
1321 * __GFP_NOFAIL.
1322 */
4923abf9 1323 WARN_ON_ONCE(order > 1);
dab48dab 1324 }
1da177e4 1325 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1326 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1327 spin_unlock(&zone->lock);
1328 if (!page)
1329 goto failed;
6ccf80eb 1330 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1da177e4
LT
1331 }
1332
f8891e5e 1333 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1334 zone_statistics(preferred_zone, zone);
a74609fa 1335 local_irq_restore(flags);
1da177e4 1336
725d704e 1337 VM_BUG_ON(bad_range(zone, page));
17cf4406 1338 if (prep_new_page(page, order, gfp_flags))
a74609fa 1339 goto again;
1da177e4 1340 return page;
a74609fa
NP
1341
1342failed:
1343 local_irq_restore(flags);
a74609fa 1344 return NULL;
1da177e4
LT
1345}
1346
41858966
MG
1347/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1348#define ALLOC_WMARK_MIN WMARK_MIN
1349#define ALLOC_WMARK_LOW WMARK_LOW
1350#define ALLOC_WMARK_HIGH WMARK_HIGH
1351#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1352
1353/* Mask to get the watermark bits */
1354#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1355
3148890b
NP
1356#define ALLOC_HARDER 0x10 /* try to alloc harder */
1357#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1358#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1359
933e312e
AM
1360#ifdef CONFIG_FAIL_PAGE_ALLOC
1361
1362static struct fail_page_alloc_attr {
1363 struct fault_attr attr;
1364
1365 u32 ignore_gfp_highmem;
1366 u32 ignore_gfp_wait;
54114994 1367 u32 min_order;
933e312e
AM
1368
1369#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1370
1371 struct dentry *ignore_gfp_highmem_file;
1372 struct dentry *ignore_gfp_wait_file;
54114994 1373 struct dentry *min_order_file;
933e312e
AM
1374
1375#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1376
1377} fail_page_alloc = {
1378 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1379 .ignore_gfp_wait = 1,
1380 .ignore_gfp_highmem = 1,
54114994 1381 .min_order = 1,
933e312e
AM
1382};
1383
1384static int __init setup_fail_page_alloc(char *str)
1385{
1386 return setup_fault_attr(&fail_page_alloc.attr, str);
1387}
1388__setup("fail_page_alloc=", setup_fail_page_alloc);
1389
1390static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1391{
54114994
AM
1392 if (order < fail_page_alloc.min_order)
1393 return 0;
933e312e
AM
1394 if (gfp_mask & __GFP_NOFAIL)
1395 return 0;
1396 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1397 return 0;
1398 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1399 return 0;
1400
1401 return should_fail(&fail_page_alloc.attr, 1 << order);
1402}
1403
1404#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1405
1406static int __init fail_page_alloc_debugfs(void)
1407{
1408 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1409 struct dentry *dir;
1410 int err;
1411
1412 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1413 "fail_page_alloc");
1414 if (err)
1415 return err;
1416 dir = fail_page_alloc.attr.dentries.dir;
1417
1418 fail_page_alloc.ignore_gfp_wait_file =
1419 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1420 &fail_page_alloc.ignore_gfp_wait);
1421
1422 fail_page_alloc.ignore_gfp_highmem_file =
1423 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1424 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1425 fail_page_alloc.min_order_file =
1426 debugfs_create_u32("min-order", mode, dir,
1427 &fail_page_alloc.min_order);
933e312e
AM
1428
1429 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1430 !fail_page_alloc.ignore_gfp_highmem_file ||
1431 !fail_page_alloc.min_order_file) {
933e312e
AM
1432 err = -ENOMEM;
1433 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1434 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1435 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1436 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1437 }
1438
1439 return err;
1440}
1441
1442late_initcall(fail_page_alloc_debugfs);
1443
1444#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1445
1446#else /* CONFIG_FAIL_PAGE_ALLOC */
1447
1448static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1449{
1450 return 0;
1451}
1452
1453#endif /* CONFIG_FAIL_PAGE_ALLOC */
1454
1da177e4 1455/*
88f5acf8 1456 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1457 * of the allocation.
1458 */
88f5acf8
MG
1459static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1460 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1461{
1462 /* free_pages my go negative - that's OK */
d23ad423 1463 long min = mark;
1da177e4
LT
1464 int o;
1465
88f5acf8 1466 free_pages -= (1 << order) + 1;
7fb1d9fc 1467 if (alloc_flags & ALLOC_HIGH)
1da177e4 1468 min -= min / 2;
7fb1d9fc 1469 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1470 min -= min / 4;
1471
1472 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 1473 return false;
1da177e4
LT
1474 for (o = 0; o < order; o++) {
1475 /* At the next order, this order's pages become unavailable */
1476 free_pages -= z->free_area[o].nr_free << o;
1477
1478 /* Require fewer higher order pages to be free */
1479 min >>= 1;
1480
1481 if (free_pages <= min)
88f5acf8 1482 return false;
1da177e4 1483 }
88f5acf8
MG
1484 return true;
1485}
1486
1487bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1488 int classzone_idx, int alloc_flags)
1489{
1490 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1491 zone_page_state(z, NR_FREE_PAGES));
1492}
1493
1494bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1495 int classzone_idx, int alloc_flags)
1496{
1497 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1498
1499 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1500 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1501
1502 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1503 free_pages);
1da177e4
LT
1504}
1505
9276b1bc
PJ
1506#ifdef CONFIG_NUMA
1507/*
1508 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1509 * skip over zones that are not allowed by the cpuset, or that have
1510 * been recently (in last second) found to be nearly full. See further
1511 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1512 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1513 *
1514 * If the zonelist cache is present in the passed in zonelist, then
1515 * returns a pointer to the allowed node mask (either the current
37b07e41 1516 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1517 *
1518 * If the zonelist cache is not available for this zonelist, does
1519 * nothing and returns NULL.
1520 *
1521 * If the fullzones BITMAP in the zonelist cache is stale (more than
1522 * a second since last zap'd) then we zap it out (clear its bits.)
1523 *
1524 * We hold off even calling zlc_setup, until after we've checked the
1525 * first zone in the zonelist, on the theory that most allocations will
1526 * be satisfied from that first zone, so best to examine that zone as
1527 * quickly as we can.
1528 */
1529static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1530{
1531 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1532 nodemask_t *allowednodes; /* zonelist_cache approximation */
1533
1534 zlc = zonelist->zlcache_ptr;
1535 if (!zlc)
1536 return NULL;
1537
f05111f5 1538 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1539 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1540 zlc->last_full_zap = jiffies;
1541 }
1542
1543 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1544 &cpuset_current_mems_allowed :
37b07e41 1545 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1546 return allowednodes;
1547}
1548
1549/*
1550 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1551 * if it is worth looking at further for free memory:
1552 * 1) Check that the zone isn't thought to be full (doesn't have its
1553 * bit set in the zonelist_cache fullzones BITMAP).
1554 * 2) Check that the zones node (obtained from the zonelist_cache
1555 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1556 * Return true (non-zero) if zone is worth looking at further, or
1557 * else return false (zero) if it is not.
1558 *
1559 * This check -ignores- the distinction between various watermarks,
1560 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1561 * found to be full for any variation of these watermarks, it will
1562 * be considered full for up to one second by all requests, unless
1563 * we are so low on memory on all allowed nodes that we are forced
1564 * into the second scan of the zonelist.
1565 *
1566 * In the second scan we ignore this zonelist cache and exactly
1567 * apply the watermarks to all zones, even it is slower to do so.
1568 * We are low on memory in the second scan, and should leave no stone
1569 * unturned looking for a free page.
1570 */
dd1a239f 1571static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1572 nodemask_t *allowednodes)
1573{
1574 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1575 int i; /* index of *z in zonelist zones */
1576 int n; /* node that zone *z is on */
1577
1578 zlc = zonelist->zlcache_ptr;
1579 if (!zlc)
1580 return 1;
1581
dd1a239f 1582 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1583 n = zlc->z_to_n[i];
1584
1585 /* This zone is worth trying if it is allowed but not full */
1586 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1587}
1588
1589/*
1590 * Given 'z' scanning a zonelist, set the corresponding bit in
1591 * zlc->fullzones, so that subsequent attempts to allocate a page
1592 * from that zone don't waste time re-examining it.
1593 */
dd1a239f 1594static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1595{
1596 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1597 int i; /* index of *z in zonelist zones */
1598
1599 zlc = zonelist->zlcache_ptr;
1600 if (!zlc)
1601 return;
1602
dd1a239f 1603 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1604
1605 set_bit(i, zlc->fullzones);
1606}
1607
1608#else /* CONFIG_NUMA */
1609
1610static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1611{
1612 return NULL;
1613}
1614
dd1a239f 1615static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1616 nodemask_t *allowednodes)
1617{
1618 return 1;
1619}
1620
dd1a239f 1621static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1622{
1623}
1624#endif /* CONFIG_NUMA */
1625
7fb1d9fc 1626/*
0798e519 1627 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1628 * a page.
1629 */
1630static struct page *
19770b32 1631get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1632 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1633 struct zone *preferred_zone, int migratetype)
753ee728 1634{
dd1a239f 1635 struct zoneref *z;
7fb1d9fc 1636 struct page *page = NULL;
54a6eb5c 1637 int classzone_idx;
5117f45d 1638 struct zone *zone;
9276b1bc
PJ
1639 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1640 int zlc_active = 0; /* set if using zonelist_cache */
1641 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1642
19770b32 1643 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1644zonelist_scan:
7fb1d9fc 1645 /*
9276b1bc 1646 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1647 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1648 */
19770b32
MG
1649 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1650 high_zoneidx, nodemask) {
9276b1bc
PJ
1651 if (NUMA_BUILD && zlc_active &&
1652 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1653 continue;
7fb1d9fc 1654 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1655 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1656 goto try_next_zone;
7fb1d9fc 1657
41858966 1658 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1659 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1660 unsigned long mark;
fa5e084e
MG
1661 int ret;
1662
41858966 1663 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1664 if (zone_watermark_ok(zone, order, mark,
1665 classzone_idx, alloc_flags))
1666 goto try_this_zone;
1667
1668 if (zone_reclaim_mode == 0)
1669 goto this_zone_full;
1670
1671 ret = zone_reclaim(zone, gfp_mask, order);
1672 switch (ret) {
1673 case ZONE_RECLAIM_NOSCAN:
1674 /* did not scan */
1675 goto try_next_zone;
1676 case ZONE_RECLAIM_FULL:
1677 /* scanned but unreclaimable */
1678 goto this_zone_full;
1679 default:
1680 /* did we reclaim enough */
1681 if (!zone_watermark_ok(zone, order, mark,
1682 classzone_idx, alloc_flags))
9276b1bc 1683 goto this_zone_full;
0798e519 1684 }
7fb1d9fc
RS
1685 }
1686
fa5e084e 1687try_this_zone:
3dd28266
MG
1688 page = buffered_rmqueue(preferred_zone, zone, order,
1689 gfp_mask, migratetype);
0798e519 1690 if (page)
7fb1d9fc 1691 break;
9276b1bc
PJ
1692this_zone_full:
1693 if (NUMA_BUILD)
1694 zlc_mark_zone_full(zonelist, z);
1695try_next_zone:
62bc62a8 1696 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
d395b734
MG
1697 /*
1698 * we do zlc_setup after the first zone is tried but only
1699 * if there are multiple nodes make it worthwhile
1700 */
9276b1bc
PJ
1701 allowednodes = zlc_setup(zonelist, alloc_flags);
1702 zlc_active = 1;
1703 did_zlc_setup = 1;
1704 }
54a6eb5c 1705 }
9276b1bc
PJ
1706
1707 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1708 /* Disable zlc cache for second zonelist scan */
1709 zlc_active = 0;
1710 goto zonelist_scan;
1711 }
7fb1d9fc 1712 return page;
753ee728
MH
1713}
1714
11e33f6a
MG
1715static inline int
1716should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1717 unsigned long pages_reclaimed)
1da177e4 1718{
11e33f6a
MG
1719 /* Do not loop if specifically requested */
1720 if (gfp_mask & __GFP_NORETRY)
1721 return 0;
1da177e4 1722
11e33f6a
MG
1723 /*
1724 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1725 * means __GFP_NOFAIL, but that may not be true in other
1726 * implementations.
1727 */
1728 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1729 return 1;
1730
1731 /*
1732 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1733 * specified, then we retry until we no longer reclaim any pages
1734 * (above), or we've reclaimed an order of pages at least as
1735 * large as the allocation's order. In both cases, if the
1736 * allocation still fails, we stop retrying.
1737 */
1738 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1739 return 1;
cf40bd16 1740
11e33f6a
MG
1741 /*
1742 * Don't let big-order allocations loop unless the caller
1743 * explicitly requests that.
1744 */
1745 if (gfp_mask & __GFP_NOFAIL)
1746 return 1;
1da177e4 1747
11e33f6a
MG
1748 return 0;
1749}
933e312e 1750
11e33f6a
MG
1751static inline struct page *
1752__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1753 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1754 nodemask_t *nodemask, struct zone *preferred_zone,
1755 int migratetype)
11e33f6a
MG
1756{
1757 struct page *page;
1758
1759 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 1760 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 1761 schedule_timeout_uninterruptible(1);
1da177e4
LT
1762 return NULL;
1763 }
6b1de916 1764
11e33f6a
MG
1765 /*
1766 * Go through the zonelist yet one more time, keep very high watermark
1767 * here, this is only to catch a parallel oom killing, we must fail if
1768 * we're still under heavy pressure.
1769 */
1770 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1771 order, zonelist, high_zoneidx,
5117f45d 1772 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1773 preferred_zone, migratetype);
7fb1d9fc 1774 if (page)
11e33f6a
MG
1775 goto out;
1776
4365a567
KH
1777 if (!(gfp_mask & __GFP_NOFAIL)) {
1778 /* The OOM killer will not help higher order allocs */
1779 if (order > PAGE_ALLOC_COSTLY_ORDER)
1780 goto out;
03668b3c
DR
1781 /* The OOM killer does not needlessly kill tasks for lowmem */
1782 if (high_zoneidx < ZONE_NORMAL)
1783 goto out;
4365a567
KH
1784 /*
1785 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1786 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1787 * The caller should handle page allocation failure by itself if
1788 * it specifies __GFP_THISNODE.
1789 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1790 */
1791 if (gfp_mask & __GFP_THISNODE)
1792 goto out;
1793 }
11e33f6a 1794 /* Exhausted what can be done so it's blamo time */
4365a567 1795 out_of_memory(zonelist, gfp_mask, order, nodemask);
11e33f6a
MG
1796
1797out:
1798 clear_zonelist_oom(zonelist, gfp_mask);
1799 return page;
1800}
1801
56de7263
MG
1802#ifdef CONFIG_COMPACTION
1803/* Try memory compaction for high-order allocations before reclaim */
1804static struct page *
1805__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1806 struct zonelist *zonelist, enum zone_type high_zoneidx,
1807 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
77f1fe6b
MG
1808 int migratetype, unsigned long *did_some_progress,
1809 bool sync_migration)
56de7263
MG
1810{
1811 struct page *page;
1812
4f92e258 1813 if (!order || compaction_deferred(preferred_zone))
56de7263
MG
1814 return NULL;
1815
c06b1fca 1816 current->flags |= PF_MEMALLOC;
56de7263 1817 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
77f1fe6b 1818 nodemask, sync_migration);
c06b1fca 1819 current->flags &= ~PF_MEMALLOC;
56de7263
MG
1820 if (*did_some_progress != COMPACT_SKIPPED) {
1821
1822 /* Page migration frees to the PCP lists but we want merging */
1823 drain_pages(get_cpu());
1824 put_cpu();
1825
1826 page = get_page_from_freelist(gfp_mask, nodemask,
1827 order, zonelist, high_zoneidx,
1828 alloc_flags, preferred_zone,
1829 migratetype);
1830 if (page) {
4f92e258
MG
1831 preferred_zone->compact_considered = 0;
1832 preferred_zone->compact_defer_shift = 0;
56de7263
MG
1833 count_vm_event(COMPACTSUCCESS);
1834 return page;
1835 }
1836
1837 /*
1838 * It's bad if compaction run occurs and fails.
1839 * The most likely reason is that pages exist,
1840 * but not enough to satisfy watermarks.
1841 */
1842 count_vm_event(COMPACTFAIL);
4f92e258 1843 defer_compaction(preferred_zone);
56de7263
MG
1844
1845 cond_resched();
1846 }
1847
1848 return NULL;
1849}
1850#else
1851static inline struct page *
1852__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1853 struct zonelist *zonelist, enum zone_type high_zoneidx,
1854 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
77f1fe6b
MG
1855 int migratetype, unsigned long *did_some_progress,
1856 bool sync_migration)
56de7263
MG
1857{
1858 return NULL;
1859}
1860#endif /* CONFIG_COMPACTION */
1861
11e33f6a
MG
1862/* The really slow allocator path where we enter direct reclaim */
1863static inline struct page *
1864__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1865 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 1866 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 1867 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
1868{
1869 struct page *page = NULL;
1870 struct reclaim_state reclaim_state;
9ee493ce 1871 bool drained = false;
11e33f6a
MG
1872
1873 cond_resched();
1874
1875 /* We now go into synchronous reclaim */
1876 cpuset_memory_pressure_bump();
c06b1fca 1877 current->flags |= PF_MEMALLOC;
11e33f6a
MG
1878 lockdep_set_current_reclaim_state(gfp_mask);
1879 reclaim_state.reclaimed_slab = 0;
c06b1fca 1880 current->reclaim_state = &reclaim_state;
11e33f6a
MG
1881
1882 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1883
c06b1fca 1884 current->reclaim_state = NULL;
11e33f6a 1885 lockdep_clear_current_reclaim_state();
c06b1fca 1886 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
1887
1888 cond_resched();
1889
9ee493ce
MG
1890 if (unlikely(!(*did_some_progress)))
1891 return NULL;
11e33f6a 1892
9ee493ce
MG
1893retry:
1894 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1895 zonelist, high_zoneidx,
3dd28266
MG
1896 alloc_flags, preferred_zone,
1897 migratetype);
9ee493ce
MG
1898
1899 /*
1900 * If an allocation failed after direct reclaim, it could be because
1901 * pages are pinned on the per-cpu lists. Drain them and try again
1902 */
1903 if (!page && !drained) {
1904 drain_all_pages();
1905 drained = true;
1906 goto retry;
1907 }
1908
11e33f6a
MG
1909 return page;
1910}
1911
1da177e4 1912/*
11e33f6a
MG
1913 * This is called in the allocator slow-path if the allocation request is of
1914 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 1915 */
11e33f6a
MG
1916static inline struct page *
1917__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1918 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1919 nodemask_t *nodemask, struct zone *preferred_zone,
1920 int migratetype)
11e33f6a
MG
1921{
1922 struct page *page;
1923
1924 do {
1925 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1926 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 1927 preferred_zone, migratetype);
11e33f6a
MG
1928
1929 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 1930 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
1931 } while (!page && (gfp_mask & __GFP_NOFAIL));
1932
1933 return page;
1934}
1935
1936static inline
1937void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
1938 enum zone_type high_zoneidx,
1939 enum zone_type classzone_idx)
1da177e4 1940{
dd1a239f
MG
1941 struct zoneref *z;
1942 struct zone *zone;
1da177e4 1943
11e33f6a 1944 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 1945 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 1946}
cf40bd16 1947
341ce06f
PZ
1948static inline int
1949gfp_to_alloc_flags(gfp_t gfp_mask)
1950{
341ce06f
PZ
1951 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1952 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 1953
a56f57ff 1954 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 1955 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 1956
341ce06f
PZ
1957 /*
1958 * The caller may dip into page reserves a bit more if the caller
1959 * cannot run direct reclaim, or if the caller has realtime scheduling
1960 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1961 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1962 */
e6223a3b 1963 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 1964
341ce06f 1965 if (!wait) {
5c3240d9
AA
1966 /*
1967 * Not worth trying to allocate harder for
1968 * __GFP_NOMEMALLOC even if it can't schedule.
1969 */
1970 if (!(gfp_mask & __GFP_NOMEMALLOC))
1971 alloc_flags |= ALLOC_HARDER;
523b9458 1972 /*
341ce06f
PZ
1973 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1974 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 1975 */
341ce06f 1976 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 1977 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
1978 alloc_flags |= ALLOC_HARDER;
1979
1980 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1981 if (!in_interrupt() &&
c06b1fca 1982 ((current->flags & PF_MEMALLOC) ||
341ce06f
PZ
1983 unlikely(test_thread_flag(TIF_MEMDIE))))
1984 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 1985 }
6b1de916 1986
341ce06f
PZ
1987 return alloc_flags;
1988}
1989
11e33f6a
MG
1990static inline struct page *
1991__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1992 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1993 nodemask_t *nodemask, struct zone *preferred_zone,
1994 int migratetype)
11e33f6a
MG
1995{
1996 const gfp_t wait = gfp_mask & __GFP_WAIT;
1997 struct page *page = NULL;
1998 int alloc_flags;
1999 unsigned long pages_reclaimed = 0;
2000 unsigned long did_some_progress;
77f1fe6b 2001 bool sync_migration = false;
1da177e4 2002
72807a74
MG
2003 /*
2004 * In the slowpath, we sanity check order to avoid ever trying to
2005 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2006 * be using allocators in order of preference for an area that is
2007 * too large.
2008 */
1fc28b70
MG
2009 if (order >= MAX_ORDER) {
2010 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2011 return NULL;
1fc28b70 2012 }
1da177e4 2013
952f3b51
CL
2014 /*
2015 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2016 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2017 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2018 * using a larger set of nodes after it has established that the
2019 * allowed per node queues are empty and that nodes are
2020 * over allocated.
2021 */
2022 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2023 goto nopage;
2024
cc4a6851 2025restart:
32dba98e
AA
2026 if (!(gfp_mask & __GFP_NO_KSWAPD))
2027 wake_all_kswapd(order, zonelist, high_zoneidx,
99504748 2028 zone_idx(preferred_zone));
1da177e4 2029
9bf2229f 2030 /*
7fb1d9fc
RS
2031 * OK, we're below the kswapd watermark and have kicked background
2032 * reclaim. Now things get more complex, so set up alloc_flags according
2033 * to how we want to proceed.
9bf2229f 2034 */
341ce06f 2035 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2036
f33261d7
DR
2037 /*
2038 * Find the true preferred zone if the allocation is unconstrained by
2039 * cpusets.
2040 */
2041 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2042 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2043 &preferred_zone);
2044
341ce06f 2045 /* This is the last chance, in general, before the goto nopage. */
19770b32 2046 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2047 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2048 preferred_zone, migratetype);
7fb1d9fc
RS
2049 if (page)
2050 goto got_pg;
1da177e4 2051
b43a57bb 2052rebalance:
11e33f6a 2053 /* Allocate without watermarks if the context allows */
341ce06f
PZ
2054 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2055 page = __alloc_pages_high_priority(gfp_mask, order,
2056 zonelist, high_zoneidx, nodemask,
2057 preferred_zone, migratetype);
2058 if (page)
2059 goto got_pg;
1da177e4
LT
2060 }
2061
2062 /* Atomic allocations - we can't balance anything */
2063 if (!wait)
2064 goto nopage;
2065
341ce06f 2066 /* Avoid recursion of direct reclaim */
c06b1fca 2067 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2068 goto nopage;
2069
6583bb64
DR
2070 /* Avoid allocations with no watermarks from looping endlessly */
2071 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2072 goto nopage;
2073
77f1fe6b
MG
2074 /*
2075 * Try direct compaction. The first pass is asynchronous. Subsequent
2076 * attempts after direct reclaim are synchronous
2077 */
56de7263
MG
2078 page = __alloc_pages_direct_compact(gfp_mask, order,
2079 zonelist, high_zoneidx,
2080 nodemask,
2081 alloc_flags, preferred_zone,
77f1fe6b
MG
2082 migratetype, &did_some_progress,
2083 sync_migration);
56de7263
MG
2084 if (page)
2085 goto got_pg;
77f1fe6b 2086 sync_migration = true;
56de7263 2087
11e33f6a
MG
2088 /* Try direct reclaim and then allocating */
2089 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2090 zonelist, high_zoneidx,
2091 nodemask,
5117f45d 2092 alloc_flags, preferred_zone,
3dd28266 2093 migratetype, &did_some_progress);
11e33f6a
MG
2094 if (page)
2095 goto got_pg;
1da177e4 2096
e33c3b5e 2097 /*
11e33f6a
MG
2098 * If we failed to make any progress reclaiming, then we are
2099 * running out of options and have to consider going OOM
e33c3b5e 2100 */
11e33f6a
MG
2101 if (!did_some_progress) {
2102 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2103 if (oom_killer_disabled)
2104 goto nopage;
11e33f6a
MG
2105 page = __alloc_pages_may_oom(gfp_mask, order,
2106 zonelist, high_zoneidx,
3dd28266
MG
2107 nodemask, preferred_zone,
2108 migratetype);
11e33f6a
MG
2109 if (page)
2110 goto got_pg;
1da177e4 2111
03668b3c
DR
2112 if (!(gfp_mask & __GFP_NOFAIL)) {
2113 /*
2114 * The oom killer is not called for high-order
2115 * allocations that may fail, so if no progress
2116 * is being made, there are no other options and
2117 * retrying is unlikely to help.
2118 */
2119 if (order > PAGE_ALLOC_COSTLY_ORDER)
2120 goto nopage;
2121 /*
2122 * The oom killer is not called for lowmem
2123 * allocations to prevent needlessly killing
2124 * innocent tasks.
2125 */
2126 if (high_zoneidx < ZONE_NORMAL)
2127 goto nopage;
2128 }
e2c55dc8 2129
ff0ceb9d
DR
2130 goto restart;
2131 }
1da177e4
LT
2132 }
2133
11e33f6a 2134 /* Check if we should retry the allocation */
a41f24ea 2135 pages_reclaimed += did_some_progress;
11e33f6a
MG
2136 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2137 /* Wait for some write requests to complete then retry */
0e093d99 2138 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2139 goto rebalance;
3e7d3449
MG
2140 } else {
2141 /*
2142 * High-order allocations do not necessarily loop after
2143 * direct reclaim and reclaim/compaction depends on compaction
2144 * being called after reclaim so call directly if necessary
2145 */
2146 page = __alloc_pages_direct_compact(gfp_mask, order,
2147 zonelist, high_zoneidx,
2148 nodemask,
2149 alloc_flags, preferred_zone,
77f1fe6b
MG
2150 migratetype, &did_some_progress,
2151 sync_migration);
3e7d3449
MG
2152 if (page)
2153 goto got_pg;
1da177e4
LT
2154 }
2155
2156nopage:
2157 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2158 printk(KERN_WARNING "%s: page allocation failure."
2159 " order:%d, mode:0x%x\n",
c06b1fca 2160 current->comm, order, gfp_mask);
1da177e4 2161 dump_stack();
578c2fd6 2162 show_mem();
1da177e4 2163 }
b1eeab67 2164 return page;
1da177e4 2165got_pg:
b1eeab67
VN
2166 if (kmemcheck_enabled)
2167 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1da177e4 2168 return page;
11e33f6a 2169
1da177e4 2170}
11e33f6a
MG
2171
2172/*
2173 * This is the 'heart' of the zoned buddy allocator.
2174 */
2175struct page *
2176__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2177 struct zonelist *zonelist, nodemask_t *nodemask)
2178{
2179 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2180 struct zone *preferred_zone;
11e33f6a 2181 struct page *page;
3dd28266 2182 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a 2183
dcce284a
BH
2184 gfp_mask &= gfp_allowed_mask;
2185
11e33f6a
MG
2186 lockdep_trace_alloc(gfp_mask);
2187
2188 might_sleep_if(gfp_mask & __GFP_WAIT);
2189
2190 if (should_fail_alloc_page(gfp_mask, order))
2191 return NULL;
2192
2193 /*
2194 * Check the zones suitable for the gfp_mask contain at least one
2195 * valid zone. It's possible to have an empty zonelist as a result
2196 * of GFP_THISNODE and a memoryless node
2197 */
2198 if (unlikely(!zonelist->_zonerefs->zone))
2199 return NULL;
2200
c0ff7453 2201 get_mems_allowed();
5117f45d 2202 /* The preferred zone is used for statistics later */
f33261d7
DR
2203 first_zones_zonelist(zonelist, high_zoneidx,
2204 nodemask ? : &cpuset_current_mems_allowed,
2205 &preferred_zone);
c0ff7453
MX
2206 if (!preferred_zone) {
2207 put_mems_allowed();
5117f45d 2208 return NULL;
c0ff7453 2209 }
5117f45d
MG
2210
2211 /* First allocation attempt */
11e33f6a 2212 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 2213 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 2214 preferred_zone, migratetype);
11e33f6a
MG
2215 if (unlikely(!page))
2216 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2217 zonelist, high_zoneidx, nodemask,
3dd28266 2218 preferred_zone, migratetype);
c0ff7453 2219 put_mems_allowed();
11e33f6a 2220
4b4f278c 2221 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
11e33f6a 2222 return page;
1da177e4 2223}
d239171e 2224EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2225
2226/*
2227 * Common helper functions.
2228 */
920c7a5d 2229unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2230{
945a1113
AM
2231 struct page *page;
2232
2233 /*
2234 * __get_free_pages() returns a 32-bit address, which cannot represent
2235 * a highmem page
2236 */
2237 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2238
1da177e4
LT
2239 page = alloc_pages(gfp_mask, order);
2240 if (!page)
2241 return 0;
2242 return (unsigned long) page_address(page);
2243}
1da177e4
LT
2244EXPORT_SYMBOL(__get_free_pages);
2245
920c7a5d 2246unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2247{
945a1113 2248 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2249}
1da177e4
LT
2250EXPORT_SYMBOL(get_zeroed_page);
2251
2252void __pagevec_free(struct pagevec *pvec)
2253{
2254 int i = pagevec_count(pvec);
2255
4b4f278c
MG
2256 while (--i >= 0) {
2257 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
1da177e4 2258 free_hot_cold_page(pvec->pages[i], pvec->cold);
4b4f278c 2259 }
1da177e4
LT
2260}
2261
920c7a5d 2262void __free_pages(struct page *page, unsigned int order)
1da177e4 2263{
b5810039 2264 if (put_page_testzero(page)) {
1da177e4 2265 if (order == 0)
fc91668e 2266 free_hot_cold_page(page, 0);
1da177e4
LT
2267 else
2268 __free_pages_ok(page, order);
2269 }
2270}
2271
2272EXPORT_SYMBOL(__free_pages);
2273
920c7a5d 2274void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2275{
2276 if (addr != 0) {
725d704e 2277 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2278 __free_pages(virt_to_page((void *)addr), order);
2279 }
2280}
2281
2282EXPORT_SYMBOL(free_pages);
2283
2be0ffe2
TT
2284/**
2285 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2286 * @size: the number of bytes to allocate
2287 * @gfp_mask: GFP flags for the allocation
2288 *
2289 * This function is similar to alloc_pages(), except that it allocates the
2290 * minimum number of pages to satisfy the request. alloc_pages() can only
2291 * allocate memory in power-of-two pages.
2292 *
2293 * This function is also limited by MAX_ORDER.
2294 *
2295 * Memory allocated by this function must be released by free_pages_exact().
2296 */
2297void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2298{
2299 unsigned int order = get_order(size);
2300 unsigned long addr;
2301
2302 addr = __get_free_pages(gfp_mask, order);
2303 if (addr) {
2304 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2305 unsigned long used = addr + PAGE_ALIGN(size);
2306
5bfd7560 2307 split_page(virt_to_page((void *)addr), order);
2be0ffe2
TT
2308 while (used < alloc_end) {
2309 free_page(used);
2310 used += PAGE_SIZE;
2311 }
2312 }
2313
2314 return (void *)addr;
2315}
2316EXPORT_SYMBOL(alloc_pages_exact);
2317
2318/**
2319 * free_pages_exact - release memory allocated via alloc_pages_exact()
2320 * @virt: the value returned by alloc_pages_exact.
2321 * @size: size of allocation, same value as passed to alloc_pages_exact().
2322 *
2323 * Release the memory allocated by a previous call to alloc_pages_exact.
2324 */
2325void free_pages_exact(void *virt, size_t size)
2326{
2327 unsigned long addr = (unsigned long)virt;
2328 unsigned long end = addr + PAGE_ALIGN(size);
2329
2330 while (addr < end) {
2331 free_page(addr);
2332 addr += PAGE_SIZE;
2333 }
2334}
2335EXPORT_SYMBOL(free_pages_exact);
2336
1da177e4
LT
2337static unsigned int nr_free_zone_pages(int offset)
2338{
dd1a239f 2339 struct zoneref *z;
54a6eb5c
MG
2340 struct zone *zone;
2341
e310fd43 2342 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2343 unsigned int sum = 0;
2344
0e88460d 2345 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2346
54a6eb5c 2347 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2348 unsigned long size = zone->present_pages;
41858966 2349 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2350 if (size > high)
2351 sum += size - high;
1da177e4
LT
2352 }
2353
2354 return sum;
2355}
2356
2357/*
2358 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2359 */
2360unsigned int nr_free_buffer_pages(void)
2361{
af4ca457 2362 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2363}
c2f1a551 2364EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2365
2366/*
2367 * Amount of free RAM allocatable within all zones
2368 */
2369unsigned int nr_free_pagecache_pages(void)
2370{
2a1e274a 2371 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2372}
08e0f6a9
CL
2373
2374static inline void show_node(struct zone *zone)
1da177e4 2375{
08e0f6a9 2376 if (NUMA_BUILD)
25ba77c1 2377 printk("Node %d ", zone_to_nid(zone));
1da177e4 2378}
1da177e4 2379
1da177e4
LT
2380void si_meminfo(struct sysinfo *val)
2381{
2382 val->totalram = totalram_pages;
2383 val->sharedram = 0;
d23ad423 2384 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2385 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2386 val->totalhigh = totalhigh_pages;
2387 val->freehigh = nr_free_highpages();
1da177e4
LT
2388 val->mem_unit = PAGE_SIZE;
2389}
2390
2391EXPORT_SYMBOL(si_meminfo);
2392
2393#ifdef CONFIG_NUMA
2394void si_meminfo_node(struct sysinfo *val, int nid)
2395{
2396 pg_data_t *pgdat = NODE_DATA(nid);
2397
2398 val->totalram = pgdat->node_present_pages;
d23ad423 2399 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2400#ifdef CONFIG_HIGHMEM
1da177e4 2401 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2402 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2403 NR_FREE_PAGES);
98d2b0eb
CL
2404#else
2405 val->totalhigh = 0;
2406 val->freehigh = 0;
2407#endif
1da177e4
LT
2408 val->mem_unit = PAGE_SIZE;
2409}
2410#endif
2411
2412#define K(x) ((x) << (PAGE_SHIFT-10))
2413
2414/*
2415 * Show free area list (used inside shift_scroll-lock stuff)
2416 * We also calculate the percentage fragmentation. We do this by counting the
2417 * memory on each free list with the exception of the first item on the list.
2418 */
2419void show_free_areas(void)
2420{
c7241913 2421 int cpu;
1da177e4
LT
2422 struct zone *zone;
2423
ee99c71c 2424 for_each_populated_zone(zone) {
c7241913
JS
2425 show_node(zone);
2426 printk("%s per-cpu:\n", zone->name);
1da177e4 2427
6b482c67 2428 for_each_online_cpu(cpu) {
1da177e4
LT
2429 struct per_cpu_pageset *pageset;
2430
99dcc3e5 2431 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2432
3dfa5721
CL
2433 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2434 cpu, pageset->pcp.high,
2435 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2436 }
2437 }
2438
a731286d
KM
2439 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2440 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2441 " unevictable:%lu"
b76146ed 2442 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2443 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4b02108a 2444 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe 2445 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2446 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2447 global_page_state(NR_ISOLATED_ANON),
2448 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2449 global_page_state(NR_INACTIVE_FILE),
a731286d 2450 global_page_state(NR_ISOLATED_FILE),
7b854121 2451 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2452 global_page_state(NR_FILE_DIRTY),
ce866b34 2453 global_page_state(NR_WRITEBACK),
fd39fc85 2454 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2455 global_page_state(NR_FREE_PAGES),
3701b033
KM
2456 global_page_state(NR_SLAB_RECLAIMABLE),
2457 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2458 global_page_state(NR_FILE_MAPPED),
4b02108a 2459 global_page_state(NR_SHMEM),
a25700a5
AM
2460 global_page_state(NR_PAGETABLE),
2461 global_page_state(NR_BOUNCE));
1da177e4 2462
ee99c71c 2463 for_each_populated_zone(zone) {
1da177e4
LT
2464 int i;
2465
2466 show_node(zone);
2467 printk("%s"
2468 " free:%lukB"
2469 " min:%lukB"
2470 " low:%lukB"
2471 " high:%lukB"
4f98a2fe
RR
2472 " active_anon:%lukB"
2473 " inactive_anon:%lukB"
2474 " active_file:%lukB"
2475 " inactive_file:%lukB"
7b854121 2476 " unevictable:%lukB"
a731286d
KM
2477 " isolated(anon):%lukB"
2478 " isolated(file):%lukB"
1da177e4 2479 " present:%lukB"
4a0aa73f
KM
2480 " mlocked:%lukB"
2481 " dirty:%lukB"
2482 " writeback:%lukB"
2483 " mapped:%lukB"
4b02108a 2484 " shmem:%lukB"
4a0aa73f
KM
2485 " slab_reclaimable:%lukB"
2486 " slab_unreclaimable:%lukB"
c6a7f572 2487 " kernel_stack:%lukB"
4a0aa73f
KM
2488 " pagetables:%lukB"
2489 " unstable:%lukB"
2490 " bounce:%lukB"
2491 " writeback_tmp:%lukB"
1da177e4
LT
2492 " pages_scanned:%lu"
2493 " all_unreclaimable? %s"
2494 "\n",
2495 zone->name,
88f5acf8 2496 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2497 K(min_wmark_pages(zone)),
2498 K(low_wmark_pages(zone)),
2499 K(high_wmark_pages(zone)),
4f98a2fe
RR
2500 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2501 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2502 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2503 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2504 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2505 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2506 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2507 K(zone->present_pages),
4a0aa73f
KM
2508 K(zone_page_state(zone, NR_MLOCK)),
2509 K(zone_page_state(zone, NR_FILE_DIRTY)),
2510 K(zone_page_state(zone, NR_WRITEBACK)),
2511 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2512 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2513 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2514 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2515 zone_page_state(zone, NR_KERNEL_STACK) *
2516 THREAD_SIZE / 1024,
4a0aa73f
KM
2517 K(zone_page_state(zone, NR_PAGETABLE)),
2518 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2519 K(zone_page_state(zone, NR_BOUNCE)),
2520 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2521 zone->pages_scanned,
93e4a89a 2522 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
2523 );
2524 printk("lowmem_reserve[]:");
2525 for (i = 0; i < MAX_NR_ZONES; i++)
2526 printk(" %lu", zone->lowmem_reserve[i]);
2527 printk("\n");
2528 }
2529
ee99c71c 2530 for_each_populated_zone(zone) {
8f9de51a 2531 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
2532
2533 show_node(zone);
2534 printk("%s: ", zone->name);
1da177e4
LT
2535
2536 spin_lock_irqsave(&zone->lock, flags);
2537 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2538 nr[order] = zone->free_area[order].nr_free;
2539 total += nr[order] << order;
1da177e4
LT
2540 }
2541 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2542 for (order = 0; order < MAX_ORDER; order++)
2543 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2544 printk("= %lukB\n", K(total));
2545 }
2546
e6f3602d
LW
2547 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2548
1da177e4
LT
2549 show_swap_cache_info();
2550}
2551
19770b32
MG
2552static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2553{
2554 zoneref->zone = zone;
2555 zoneref->zone_idx = zone_idx(zone);
2556}
2557
1da177e4
LT
2558/*
2559 * Builds allocation fallback zone lists.
1a93205b
CL
2560 *
2561 * Add all populated zones of a node to the zonelist.
1da177e4 2562 */
f0c0b2b8
KH
2563static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2564 int nr_zones, enum zone_type zone_type)
1da177e4 2565{
1a93205b
CL
2566 struct zone *zone;
2567
98d2b0eb 2568 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2569 zone_type++;
02a68a5e
CL
2570
2571 do {
2f6726e5 2572 zone_type--;
070f8032 2573 zone = pgdat->node_zones + zone_type;
1a93205b 2574 if (populated_zone(zone)) {
dd1a239f
MG
2575 zoneref_set_zone(zone,
2576 &zonelist->_zonerefs[nr_zones++]);
070f8032 2577 check_highest_zone(zone_type);
1da177e4 2578 }
02a68a5e 2579
2f6726e5 2580 } while (zone_type);
070f8032 2581 return nr_zones;
1da177e4
LT
2582}
2583
f0c0b2b8
KH
2584
2585/*
2586 * zonelist_order:
2587 * 0 = automatic detection of better ordering.
2588 * 1 = order by ([node] distance, -zonetype)
2589 * 2 = order by (-zonetype, [node] distance)
2590 *
2591 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2592 * the same zonelist. So only NUMA can configure this param.
2593 */
2594#define ZONELIST_ORDER_DEFAULT 0
2595#define ZONELIST_ORDER_NODE 1
2596#define ZONELIST_ORDER_ZONE 2
2597
2598/* zonelist order in the kernel.
2599 * set_zonelist_order() will set this to NODE or ZONE.
2600 */
2601static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2602static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2603
2604
1da177e4 2605#ifdef CONFIG_NUMA
f0c0b2b8
KH
2606/* The value user specified ....changed by config */
2607static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2608/* string for sysctl */
2609#define NUMA_ZONELIST_ORDER_LEN 16
2610char numa_zonelist_order[16] = "default";
2611
2612/*
2613 * interface for configure zonelist ordering.
2614 * command line option "numa_zonelist_order"
2615 * = "[dD]efault - default, automatic configuration.
2616 * = "[nN]ode - order by node locality, then by zone within node
2617 * = "[zZ]one - order by zone, then by locality within zone
2618 */
2619
2620static int __parse_numa_zonelist_order(char *s)
2621{
2622 if (*s == 'd' || *s == 'D') {
2623 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2624 } else if (*s == 'n' || *s == 'N') {
2625 user_zonelist_order = ZONELIST_ORDER_NODE;
2626 } else if (*s == 'z' || *s == 'Z') {
2627 user_zonelist_order = ZONELIST_ORDER_ZONE;
2628 } else {
2629 printk(KERN_WARNING
2630 "Ignoring invalid numa_zonelist_order value: "
2631 "%s\n", s);
2632 return -EINVAL;
2633 }
2634 return 0;
2635}
2636
2637static __init int setup_numa_zonelist_order(char *s)
2638{
ecb256f8
VL
2639 int ret;
2640
2641 if (!s)
2642 return 0;
2643
2644 ret = __parse_numa_zonelist_order(s);
2645 if (ret == 0)
2646 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2647
2648 return ret;
f0c0b2b8
KH
2649}
2650early_param("numa_zonelist_order", setup_numa_zonelist_order);
2651
2652/*
2653 * sysctl handler for numa_zonelist_order
2654 */
2655int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 2656 void __user *buffer, size_t *length,
f0c0b2b8
KH
2657 loff_t *ppos)
2658{
2659 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2660 int ret;
443c6f14 2661 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 2662
443c6f14 2663 mutex_lock(&zl_order_mutex);
f0c0b2b8 2664 if (write)
443c6f14 2665 strcpy(saved_string, (char*)table->data);
8d65af78 2666 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 2667 if (ret)
443c6f14 2668 goto out;
f0c0b2b8
KH
2669 if (write) {
2670 int oldval = user_zonelist_order;
2671 if (__parse_numa_zonelist_order((char*)table->data)) {
2672 /*
2673 * bogus value. restore saved string
2674 */
2675 strncpy((char*)table->data, saved_string,
2676 NUMA_ZONELIST_ORDER_LEN);
2677 user_zonelist_order = oldval;
4eaf3f64
HL
2678 } else if (oldval != user_zonelist_order) {
2679 mutex_lock(&zonelists_mutex);
1f522509 2680 build_all_zonelists(NULL);
4eaf3f64
HL
2681 mutex_unlock(&zonelists_mutex);
2682 }
f0c0b2b8 2683 }
443c6f14
AK
2684out:
2685 mutex_unlock(&zl_order_mutex);
2686 return ret;
f0c0b2b8
KH
2687}
2688
2689
62bc62a8 2690#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
2691static int node_load[MAX_NUMNODES];
2692
1da177e4 2693/**
4dc3b16b 2694 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2695 * @node: node whose fallback list we're appending
2696 * @used_node_mask: nodemask_t of already used nodes
2697 *
2698 * We use a number of factors to determine which is the next node that should
2699 * appear on a given node's fallback list. The node should not have appeared
2700 * already in @node's fallback list, and it should be the next closest node
2701 * according to the distance array (which contains arbitrary distance values
2702 * from each node to each node in the system), and should also prefer nodes
2703 * with no CPUs, since presumably they'll have very little allocation pressure
2704 * on them otherwise.
2705 * It returns -1 if no node is found.
2706 */
f0c0b2b8 2707static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2708{
4cf808eb 2709 int n, val;
1da177e4
LT
2710 int min_val = INT_MAX;
2711 int best_node = -1;
a70f7302 2712 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2713
4cf808eb
LT
2714 /* Use the local node if we haven't already */
2715 if (!node_isset(node, *used_node_mask)) {
2716 node_set(node, *used_node_mask);
2717 return node;
2718 }
1da177e4 2719
37b07e41 2720 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2721
2722 /* Don't want a node to appear more than once */
2723 if (node_isset(n, *used_node_mask))
2724 continue;
2725
1da177e4
LT
2726 /* Use the distance array to find the distance */
2727 val = node_distance(node, n);
2728
4cf808eb
LT
2729 /* Penalize nodes under us ("prefer the next node") */
2730 val += (n < node);
2731
1da177e4 2732 /* Give preference to headless and unused nodes */
a70f7302
RR
2733 tmp = cpumask_of_node(n);
2734 if (!cpumask_empty(tmp))
1da177e4
LT
2735 val += PENALTY_FOR_NODE_WITH_CPUS;
2736
2737 /* Slight preference for less loaded node */
2738 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2739 val += node_load[n];
2740
2741 if (val < min_val) {
2742 min_val = val;
2743 best_node = n;
2744 }
2745 }
2746
2747 if (best_node >= 0)
2748 node_set(best_node, *used_node_mask);
2749
2750 return best_node;
2751}
2752
f0c0b2b8
KH
2753
2754/*
2755 * Build zonelists ordered by node and zones within node.
2756 * This results in maximum locality--normal zone overflows into local
2757 * DMA zone, if any--but risks exhausting DMA zone.
2758 */
2759static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2760{
f0c0b2b8 2761 int j;
1da177e4 2762 struct zonelist *zonelist;
f0c0b2b8 2763
54a6eb5c 2764 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2765 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2766 ;
2767 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2768 MAX_NR_ZONES - 1);
dd1a239f
MG
2769 zonelist->_zonerefs[j].zone = NULL;
2770 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2771}
2772
523b9458
CL
2773/*
2774 * Build gfp_thisnode zonelists
2775 */
2776static void build_thisnode_zonelists(pg_data_t *pgdat)
2777{
523b9458
CL
2778 int j;
2779 struct zonelist *zonelist;
2780
54a6eb5c
MG
2781 zonelist = &pgdat->node_zonelists[1];
2782 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2783 zonelist->_zonerefs[j].zone = NULL;
2784 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2785}
2786
f0c0b2b8
KH
2787/*
2788 * Build zonelists ordered by zone and nodes within zones.
2789 * This results in conserving DMA zone[s] until all Normal memory is
2790 * exhausted, but results in overflowing to remote node while memory
2791 * may still exist in local DMA zone.
2792 */
2793static int node_order[MAX_NUMNODES];
2794
2795static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2796{
f0c0b2b8
KH
2797 int pos, j, node;
2798 int zone_type; /* needs to be signed */
2799 struct zone *z;
2800 struct zonelist *zonelist;
2801
54a6eb5c
MG
2802 zonelist = &pgdat->node_zonelists[0];
2803 pos = 0;
2804 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2805 for (j = 0; j < nr_nodes; j++) {
2806 node = node_order[j];
2807 z = &NODE_DATA(node)->node_zones[zone_type];
2808 if (populated_zone(z)) {
dd1a239f
MG
2809 zoneref_set_zone(z,
2810 &zonelist->_zonerefs[pos++]);
54a6eb5c 2811 check_highest_zone(zone_type);
f0c0b2b8
KH
2812 }
2813 }
f0c0b2b8 2814 }
dd1a239f
MG
2815 zonelist->_zonerefs[pos].zone = NULL;
2816 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2817}
2818
2819static int default_zonelist_order(void)
2820{
2821 int nid, zone_type;
2822 unsigned long low_kmem_size,total_size;
2823 struct zone *z;
2824 int average_size;
2825 /*
88393161 2826 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
2827 * If they are really small and used heavily, the system can fall
2828 * into OOM very easily.
e325c90f 2829 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
2830 */
2831 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2832 low_kmem_size = 0;
2833 total_size = 0;
2834 for_each_online_node(nid) {
2835 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2836 z = &NODE_DATA(nid)->node_zones[zone_type];
2837 if (populated_zone(z)) {
2838 if (zone_type < ZONE_NORMAL)
2839 low_kmem_size += z->present_pages;
2840 total_size += z->present_pages;
e325c90f
DR
2841 } else if (zone_type == ZONE_NORMAL) {
2842 /*
2843 * If any node has only lowmem, then node order
2844 * is preferred to allow kernel allocations
2845 * locally; otherwise, they can easily infringe
2846 * on other nodes when there is an abundance of
2847 * lowmem available to allocate from.
2848 */
2849 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
2850 }
2851 }
2852 }
2853 if (!low_kmem_size || /* there are no DMA area. */
2854 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2855 return ZONELIST_ORDER_NODE;
2856 /*
2857 * look into each node's config.
2858 * If there is a node whose DMA/DMA32 memory is very big area on
2859 * local memory, NODE_ORDER may be suitable.
2860 */
37b07e41
LS
2861 average_size = total_size /
2862 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2863 for_each_online_node(nid) {
2864 low_kmem_size = 0;
2865 total_size = 0;
2866 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2867 z = &NODE_DATA(nid)->node_zones[zone_type];
2868 if (populated_zone(z)) {
2869 if (zone_type < ZONE_NORMAL)
2870 low_kmem_size += z->present_pages;
2871 total_size += z->present_pages;
2872 }
2873 }
2874 if (low_kmem_size &&
2875 total_size > average_size && /* ignore small node */
2876 low_kmem_size > total_size * 70/100)
2877 return ZONELIST_ORDER_NODE;
2878 }
2879 return ZONELIST_ORDER_ZONE;
2880}
2881
2882static void set_zonelist_order(void)
2883{
2884 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2885 current_zonelist_order = default_zonelist_order();
2886 else
2887 current_zonelist_order = user_zonelist_order;
2888}
2889
2890static void build_zonelists(pg_data_t *pgdat)
2891{
2892 int j, node, load;
2893 enum zone_type i;
1da177e4 2894 nodemask_t used_mask;
f0c0b2b8
KH
2895 int local_node, prev_node;
2896 struct zonelist *zonelist;
2897 int order = current_zonelist_order;
1da177e4
LT
2898
2899 /* initialize zonelists */
523b9458 2900 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2901 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2902 zonelist->_zonerefs[0].zone = NULL;
2903 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2904 }
2905
2906 /* NUMA-aware ordering of nodes */
2907 local_node = pgdat->node_id;
62bc62a8 2908 load = nr_online_nodes;
1da177e4
LT
2909 prev_node = local_node;
2910 nodes_clear(used_mask);
f0c0b2b8 2911
f0c0b2b8
KH
2912 memset(node_order, 0, sizeof(node_order));
2913 j = 0;
2914
1da177e4 2915 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2916 int distance = node_distance(local_node, node);
2917
2918 /*
2919 * If another node is sufficiently far away then it is better
2920 * to reclaim pages in a zone before going off node.
2921 */
2922 if (distance > RECLAIM_DISTANCE)
2923 zone_reclaim_mode = 1;
2924
1da177e4
LT
2925 /*
2926 * We don't want to pressure a particular node.
2927 * So adding penalty to the first node in same
2928 * distance group to make it round-robin.
2929 */
9eeff239 2930 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2931 node_load[node] = load;
2932
1da177e4
LT
2933 prev_node = node;
2934 load--;
f0c0b2b8
KH
2935 if (order == ZONELIST_ORDER_NODE)
2936 build_zonelists_in_node_order(pgdat, node);
2937 else
2938 node_order[j++] = node; /* remember order */
2939 }
1da177e4 2940
f0c0b2b8
KH
2941 if (order == ZONELIST_ORDER_ZONE) {
2942 /* calculate node order -- i.e., DMA last! */
2943 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2944 }
523b9458
CL
2945
2946 build_thisnode_zonelists(pgdat);
1da177e4
LT
2947}
2948
9276b1bc 2949/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2950static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2951{
54a6eb5c
MG
2952 struct zonelist *zonelist;
2953 struct zonelist_cache *zlc;
dd1a239f 2954 struct zoneref *z;
9276b1bc 2955
54a6eb5c
MG
2956 zonelist = &pgdat->node_zonelists[0];
2957 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2958 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2959 for (z = zonelist->_zonerefs; z->zone; z++)
2960 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2961}
2962
7aac7898
LS
2963#ifdef CONFIG_HAVE_MEMORYLESS_NODES
2964/*
2965 * Return node id of node used for "local" allocations.
2966 * I.e., first node id of first zone in arg node's generic zonelist.
2967 * Used for initializing percpu 'numa_mem', which is used primarily
2968 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
2969 */
2970int local_memory_node(int node)
2971{
2972 struct zone *zone;
2973
2974 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
2975 gfp_zone(GFP_KERNEL),
2976 NULL,
2977 &zone);
2978 return zone->node;
2979}
2980#endif
f0c0b2b8 2981
1da177e4
LT
2982#else /* CONFIG_NUMA */
2983
f0c0b2b8
KH
2984static void set_zonelist_order(void)
2985{
2986 current_zonelist_order = ZONELIST_ORDER_ZONE;
2987}
2988
2989static void build_zonelists(pg_data_t *pgdat)
1da177e4 2990{
19655d34 2991 int node, local_node;
54a6eb5c
MG
2992 enum zone_type j;
2993 struct zonelist *zonelist;
1da177e4
LT
2994
2995 local_node = pgdat->node_id;
1da177e4 2996
54a6eb5c
MG
2997 zonelist = &pgdat->node_zonelists[0];
2998 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2999
54a6eb5c
MG
3000 /*
3001 * Now we build the zonelist so that it contains the zones
3002 * of all the other nodes.
3003 * We don't want to pressure a particular node, so when
3004 * building the zones for node N, we make sure that the
3005 * zones coming right after the local ones are those from
3006 * node N+1 (modulo N)
3007 */
3008 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3009 if (!node_online(node))
3010 continue;
3011 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3012 MAX_NR_ZONES - 1);
1da177e4 3013 }
54a6eb5c
MG
3014 for (node = 0; node < local_node; node++) {
3015 if (!node_online(node))
3016 continue;
3017 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3018 MAX_NR_ZONES - 1);
3019 }
3020
dd1a239f
MG
3021 zonelist->_zonerefs[j].zone = NULL;
3022 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3023}
3024
9276b1bc 3025/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3026static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3027{
54a6eb5c 3028 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3029}
3030
1da177e4
LT
3031#endif /* CONFIG_NUMA */
3032
99dcc3e5
CL
3033/*
3034 * Boot pageset table. One per cpu which is going to be used for all
3035 * zones and all nodes. The parameters will be set in such a way
3036 * that an item put on a list will immediately be handed over to
3037 * the buddy list. This is safe since pageset manipulation is done
3038 * with interrupts disabled.
3039 *
3040 * The boot_pagesets must be kept even after bootup is complete for
3041 * unused processors and/or zones. They do play a role for bootstrapping
3042 * hotplugged processors.
3043 *
3044 * zoneinfo_show() and maybe other functions do
3045 * not check if the processor is online before following the pageset pointer.
3046 * Other parts of the kernel may not check if the zone is available.
3047 */
3048static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3049static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3050static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3051
4eaf3f64
HL
3052/*
3053 * Global mutex to protect against size modification of zonelists
3054 * as well as to serialize pageset setup for the new populated zone.
3055 */
3056DEFINE_MUTEX(zonelists_mutex);
3057
9b1a4d38 3058/* return values int ....just for stop_machine() */
1f522509 3059static __init_refok int __build_all_zonelists(void *data)
1da177e4 3060{
6811378e 3061 int nid;
99dcc3e5 3062 int cpu;
9276b1bc 3063
7f9cfb31
BL
3064#ifdef CONFIG_NUMA
3065 memset(node_load, 0, sizeof(node_load));
3066#endif
9276b1bc 3067 for_each_online_node(nid) {
7ea1530a
CL
3068 pg_data_t *pgdat = NODE_DATA(nid);
3069
3070 build_zonelists(pgdat);
3071 build_zonelist_cache(pgdat);
9276b1bc 3072 }
99dcc3e5
CL
3073
3074 /*
3075 * Initialize the boot_pagesets that are going to be used
3076 * for bootstrapping processors. The real pagesets for
3077 * each zone will be allocated later when the per cpu
3078 * allocator is available.
3079 *
3080 * boot_pagesets are used also for bootstrapping offline
3081 * cpus if the system is already booted because the pagesets
3082 * are needed to initialize allocators on a specific cpu too.
3083 * F.e. the percpu allocator needs the page allocator which
3084 * needs the percpu allocator in order to allocate its pagesets
3085 * (a chicken-egg dilemma).
3086 */
7aac7898 3087 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3088 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3089
7aac7898
LS
3090#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3091 /*
3092 * We now know the "local memory node" for each node--
3093 * i.e., the node of the first zone in the generic zonelist.
3094 * Set up numa_mem percpu variable for on-line cpus. During
3095 * boot, only the boot cpu should be on-line; we'll init the
3096 * secondary cpus' numa_mem as they come on-line. During
3097 * node/memory hotplug, we'll fixup all on-line cpus.
3098 */
3099 if (cpu_online(cpu))
3100 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3101#endif
3102 }
3103
6811378e
YG
3104 return 0;
3105}
3106
4eaf3f64
HL
3107/*
3108 * Called with zonelists_mutex held always
3109 * unless system_state == SYSTEM_BOOTING.
3110 */
1f522509 3111void build_all_zonelists(void *data)
6811378e 3112{
f0c0b2b8
KH
3113 set_zonelist_order();
3114
6811378e 3115 if (system_state == SYSTEM_BOOTING) {
423b41d7 3116 __build_all_zonelists(NULL);
68ad8df4 3117 mminit_verify_zonelist();
6811378e
YG
3118 cpuset_init_current_mems_allowed();
3119 } else {
183ff22b 3120 /* we have to stop all cpus to guarantee there is no user
6811378e 3121 of zonelist */
e9959f0f
KH
3122#ifdef CONFIG_MEMORY_HOTPLUG
3123 if (data)
3124 setup_zone_pageset((struct zone *)data);
3125#endif
3126 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
3127 /* cpuset refresh routine should be here */
3128 }
bd1e22b8 3129 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3130 /*
3131 * Disable grouping by mobility if the number of pages in the
3132 * system is too low to allow the mechanism to work. It would be
3133 * more accurate, but expensive to check per-zone. This check is
3134 * made on memory-hotadd so a system can start with mobility
3135 * disabled and enable it later
3136 */
d9c23400 3137 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3138 page_group_by_mobility_disabled = 1;
3139 else
3140 page_group_by_mobility_disabled = 0;
3141
3142 printk("Built %i zonelists in %s order, mobility grouping %s. "
3143 "Total pages: %ld\n",
62bc62a8 3144 nr_online_nodes,
f0c0b2b8 3145 zonelist_order_name[current_zonelist_order],
9ef9acb0 3146 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3147 vm_total_pages);
3148#ifdef CONFIG_NUMA
3149 printk("Policy zone: %s\n", zone_names[policy_zone]);
3150#endif
1da177e4
LT
3151}
3152
3153/*
3154 * Helper functions to size the waitqueue hash table.
3155 * Essentially these want to choose hash table sizes sufficiently
3156 * large so that collisions trying to wait on pages are rare.
3157 * But in fact, the number of active page waitqueues on typical
3158 * systems is ridiculously low, less than 200. So this is even
3159 * conservative, even though it seems large.
3160 *
3161 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3162 * waitqueues, i.e. the size of the waitq table given the number of pages.
3163 */
3164#define PAGES_PER_WAITQUEUE 256
3165
cca448fe 3166#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3167static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3168{
3169 unsigned long size = 1;
3170
3171 pages /= PAGES_PER_WAITQUEUE;
3172
3173 while (size < pages)
3174 size <<= 1;
3175
3176 /*
3177 * Once we have dozens or even hundreds of threads sleeping
3178 * on IO we've got bigger problems than wait queue collision.
3179 * Limit the size of the wait table to a reasonable size.
3180 */
3181 size = min(size, 4096UL);
3182
3183 return max(size, 4UL);
3184}
cca448fe
YG
3185#else
3186/*
3187 * A zone's size might be changed by hot-add, so it is not possible to determine
3188 * a suitable size for its wait_table. So we use the maximum size now.
3189 *
3190 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3191 *
3192 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3193 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3194 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3195 *
3196 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3197 * or more by the traditional way. (See above). It equals:
3198 *
3199 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3200 * ia64(16K page size) : = ( 8G + 4M)byte.
3201 * powerpc (64K page size) : = (32G +16M)byte.
3202 */
3203static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3204{
3205 return 4096UL;
3206}
3207#endif
1da177e4
LT
3208
3209/*
3210 * This is an integer logarithm so that shifts can be used later
3211 * to extract the more random high bits from the multiplicative
3212 * hash function before the remainder is taken.
3213 */
3214static inline unsigned long wait_table_bits(unsigned long size)
3215{
3216 return ffz(~size);
3217}
3218
3219#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3220
56fd56b8 3221/*
d9c23400 3222 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3223 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3224 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3225 * higher will lead to a bigger reserve which will get freed as contiguous
3226 * blocks as reclaim kicks in
3227 */
3228static void setup_zone_migrate_reserve(struct zone *zone)
3229{
3230 unsigned long start_pfn, pfn, end_pfn;
3231 struct page *page;
78986a67
MG
3232 unsigned long block_migratetype;
3233 int reserve;
56fd56b8
MG
3234
3235 /* Get the start pfn, end pfn and the number of blocks to reserve */
3236 start_pfn = zone->zone_start_pfn;
3237 end_pfn = start_pfn + zone->spanned_pages;
41858966 3238 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3239 pageblock_order;
56fd56b8 3240
78986a67
MG
3241 /*
3242 * Reserve blocks are generally in place to help high-order atomic
3243 * allocations that are short-lived. A min_free_kbytes value that
3244 * would result in more than 2 reserve blocks for atomic allocations
3245 * is assumed to be in place to help anti-fragmentation for the
3246 * future allocation of hugepages at runtime.
3247 */
3248 reserve = min(2, reserve);
3249
d9c23400 3250 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3251 if (!pfn_valid(pfn))
3252 continue;
3253 page = pfn_to_page(pfn);
3254
344c790e
AL
3255 /* Watch out for overlapping nodes */
3256 if (page_to_nid(page) != zone_to_nid(zone))
3257 continue;
3258
56fd56b8
MG
3259 /* Blocks with reserved pages will never free, skip them. */
3260 if (PageReserved(page))
3261 continue;
3262
3263 block_migratetype = get_pageblock_migratetype(page);
3264
3265 /* If this block is reserved, account for it */
3266 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3267 reserve--;
3268 continue;
3269 }
3270
3271 /* Suitable for reserving if this block is movable */
3272 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3273 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3274 move_freepages_block(zone, page, MIGRATE_RESERVE);
3275 reserve--;
3276 continue;
3277 }
3278
3279 /*
3280 * If the reserve is met and this is a previous reserved block,
3281 * take it back
3282 */
3283 if (block_migratetype == MIGRATE_RESERVE) {
3284 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3285 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3286 }
3287 }
3288}
ac0e5b7a 3289
1da177e4
LT
3290/*
3291 * Initially all pages are reserved - free ones are freed
3292 * up by free_all_bootmem() once the early boot process is
3293 * done. Non-atomic initialization, single-pass.
3294 */
c09b4240 3295void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3296 unsigned long start_pfn, enum memmap_context context)
1da177e4 3297{
1da177e4 3298 struct page *page;
29751f69
AW
3299 unsigned long end_pfn = start_pfn + size;
3300 unsigned long pfn;
86051ca5 3301 struct zone *z;
1da177e4 3302
22b31eec
HD
3303 if (highest_memmap_pfn < end_pfn - 1)
3304 highest_memmap_pfn = end_pfn - 1;
3305
86051ca5 3306 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3307 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3308 /*
3309 * There can be holes in boot-time mem_map[]s
3310 * handed to this function. They do not
3311 * exist on hotplugged memory.
3312 */
3313 if (context == MEMMAP_EARLY) {
3314 if (!early_pfn_valid(pfn))
3315 continue;
3316 if (!early_pfn_in_nid(pfn, nid))
3317 continue;
3318 }
d41dee36
AW
3319 page = pfn_to_page(pfn);
3320 set_page_links(page, zone, nid, pfn);
708614e6 3321 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3322 init_page_count(page);
1da177e4
LT
3323 reset_page_mapcount(page);
3324 SetPageReserved(page);
b2a0ac88
MG
3325 /*
3326 * Mark the block movable so that blocks are reserved for
3327 * movable at startup. This will force kernel allocations
3328 * to reserve their blocks rather than leaking throughout
3329 * the address space during boot when many long-lived
56fd56b8
MG
3330 * kernel allocations are made. Later some blocks near
3331 * the start are marked MIGRATE_RESERVE by
3332 * setup_zone_migrate_reserve()
86051ca5
KH
3333 *
3334 * bitmap is created for zone's valid pfn range. but memmap
3335 * can be created for invalid pages (for alignment)
3336 * check here not to call set_pageblock_migratetype() against
3337 * pfn out of zone.
b2a0ac88 3338 */
86051ca5
KH
3339 if ((z->zone_start_pfn <= pfn)
3340 && (pfn < z->zone_start_pfn + z->spanned_pages)
3341 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3342 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3343
1da177e4
LT
3344 INIT_LIST_HEAD(&page->lru);
3345#ifdef WANT_PAGE_VIRTUAL
3346 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3347 if (!is_highmem_idx(zone))
3212c6be 3348 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3349#endif
1da177e4
LT
3350 }
3351}
3352
1e548deb 3353static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3354{
b2a0ac88
MG
3355 int order, t;
3356 for_each_migratetype_order(order, t) {
3357 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3358 zone->free_area[order].nr_free = 0;
3359 }
3360}
3361
3362#ifndef __HAVE_ARCH_MEMMAP_INIT
3363#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3364 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3365#endif
3366
1d6f4e60 3367static int zone_batchsize(struct zone *zone)
e7c8d5c9 3368{
3a6be87f 3369#ifdef CONFIG_MMU
e7c8d5c9
CL
3370 int batch;
3371
3372 /*
3373 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3374 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3375 *
3376 * OK, so we don't know how big the cache is. So guess.
3377 */
3378 batch = zone->present_pages / 1024;
ba56e91c
SR
3379 if (batch * PAGE_SIZE > 512 * 1024)
3380 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3381 batch /= 4; /* We effectively *= 4 below */
3382 if (batch < 1)
3383 batch = 1;
3384
3385 /*
0ceaacc9
NP
3386 * Clamp the batch to a 2^n - 1 value. Having a power
3387 * of 2 value was found to be more likely to have
3388 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3389 *
0ceaacc9
NP
3390 * For example if 2 tasks are alternately allocating
3391 * batches of pages, one task can end up with a lot
3392 * of pages of one half of the possible page colors
3393 * and the other with pages of the other colors.
e7c8d5c9 3394 */
9155203a 3395 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3396
e7c8d5c9 3397 return batch;
3a6be87f
DH
3398
3399#else
3400 /* The deferral and batching of frees should be suppressed under NOMMU
3401 * conditions.
3402 *
3403 * The problem is that NOMMU needs to be able to allocate large chunks
3404 * of contiguous memory as there's no hardware page translation to
3405 * assemble apparent contiguous memory from discontiguous pages.
3406 *
3407 * Queueing large contiguous runs of pages for batching, however,
3408 * causes the pages to actually be freed in smaller chunks. As there
3409 * can be a significant delay between the individual batches being
3410 * recycled, this leads to the once large chunks of space being
3411 * fragmented and becoming unavailable for high-order allocations.
3412 */
3413 return 0;
3414#endif
e7c8d5c9
CL
3415}
3416
b69a7288 3417static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3418{
3419 struct per_cpu_pages *pcp;
5f8dcc21 3420 int migratetype;
2caaad41 3421
1c6fe946
MD
3422 memset(p, 0, sizeof(*p));
3423
3dfa5721 3424 pcp = &p->pcp;
2caaad41 3425 pcp->count = 0;
2caaad41
CL
3426 pcp->high = 6 * batch;
3427 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3428 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3429 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3430}
3431
8ad4b1fb
RS
3432/*
3433 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3434 * to the value high for the pageset p.
3435 */
3436
3437static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3438 unsigned long high)
3439{
3440 struct per_cpu_pages *pcp;
3441
3dfa5721 3442 pcp = &p->pcp;
8ad4b1fb
RS
3443 pcp->high = high;
3444 pcp->batch = max(1UL, high/4);
3445 if ((high/4) > (PAGE_SHIFT * 8))
3446 pcp->batch = PAGE_SHIFT * 8;
3447}
3448
319774e2
WF
3449static __meminit void setup_zone_pageset(struct zone *zone)
3450{
3451 int cpu;
3452
3453 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3454
3455 for_each_possible_cpu(cpu) {
3456 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3457
3458 setup_pageset(pcp, zone_batchsize(zone));
3459
3460 if (percpu_pagelist_fraction)
3461 setup_pagelist_highmark(pcp,
3462 (zone->present_pages /
3463 percpu_pagelist_fraction));
3464 }
3465}
3466
2caaad41 3467/*
99dcc3e5
CL
3468 * Allocate per cpu pagesets and initialize them.
3469 * Before this call only boot pagesets were available.
e7c8d5c9 3470 */
99dcc3e5 3471void __init setup_per_cpu_pageset(void)
e7c8d5c9 3472{
99dcc3e5 3473 struct zone *zone;
e7c8d5c9 3474
319774e2
WF
3475 for_each_populated_zone(zone)
3476 setup_zone_pageset(zone);
e7c8d5c9
CL
3477}
3478
577a32f6 3479static noinline __init_refok
cca448fe 3480int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3481{
3482 int i;
3483 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3484 size_t alloc_size;
ed8ece2e
DH
3485
3486 /*
3487 * The per-page waitqueue mechanism uses hashed waitqueues
3488 * per zone.
3489 */
02b694de
YG
3490 zone->wait_table_hash_nr_entries =
3491 wait_table_hash_nr_entries(zone_size_pages);
3492 zone->wait_table_bits =
3493 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3494 alloc_size = zone->wait_table_hash_nr_entries
3495 * sizeof(wait_queue_head_t);
3496
cd94b9db 3497 if (!slab_is_available()) {
cca448fe
YG
3498 zone->wait_table = (wait_queue_head_t *)
3499 alloc_bootmem_node(pgdat, alloc_size);
3500 } else {
3501 /*
3502 * This case means that a zone whose size was 0 gets new memory
3503 * via memory hot-add.
3504 * But it may be the case that a new node was hot-added. In
3505 * this case vmalloc() will not be able to use this new node's
3506 * memory - this wait_table must be initialized to use this new
3507 * node itself as well.
3508 * To use this new node's memory, further consideration will be
3509 * necessary.
3510 */
8691f3a7 3511 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3512 }
3513 if (!zone->wait_table)
3514 return -ENOMEM;
ed8ece2e 3515
02b694de 3516 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3517 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3518
3519 return 0;
ed8ece2e
DH
3520}
3521
112067f0
SL
3522static int __zone_pcp_update(void *data)
3523{
3524 struct zone *zone = data;
3525 int cpu;
3526 unsigned long batch = zone_batchsize(zone), flags;
3527
2d30a1f6 3528 for_each_possible_cpu(cpu) {
112067f0
SL
3529 struct per_cpu_pageset *pset;
3530 struct per_cpu_pages *pcp;
3531
99dcc3e5 3532 pset = per_cpu_ptr(zone->pageset, cpu);
112067f0
SL
3533 pcp = &pset->pcp;
3534
3535 local_irq_save(flags);
5f8dcc21 3536 free_pcppages_bulk(zone, pcp->count, pcp);
112067f0
SL
3537 setup_pageset(pset, batch);
3538 local_irq_restore(flags);
3539 }
3540 return 0;
3541}
3542
3543void zone_pcp_update(struct zone *zone)
3544{
3545 stop_machine(__zone_pcp_update, zone, NULL);
3546}
3547
c09b4240 3548static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 3549{
99dcc3e5
CL
3550 /*
3551 * per cpu subsystem is not up at this point. The following code
3552 * relies on the ability of the linker to provide the
3553 * offset of a (static) per cpu variable into the per cpu area.
3554 */
3555 zone->pageset = &boot_pageset;
ed8ece2e 3556
f5335c0f 3557 if (zone->present_pages)
99dcc3e5
CL
3558 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3559 zone->name, zone->present_pages,
3560 zone_batchsize(zone));
ed8ece2e
DH
3561}
3562
718127cc
YG
3563__meminit int init_currently_empty_zone(struct zone *zone,
3564 unsigned long zone_start_pfn,
a2f3aa02
DH
3565 unsigned long size,
3566 enum memmap_context context)
ed8ece2e
DH
3567{
3568 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3569 int ret;
3570 ret = zone_wait_table_init(zone, size);
3571 if (ret)
3572 return ret;
ed8ece2e
DH
3573 pgdat->nr_zones = zone_idx(zone) + 1;
3574
ed8ece2e
DH
3575 zone->zone_start_pfn = zone_start_pfn;
3576
708614e6
MG
3577 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3578 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3579 pgdat->node_id,
3580 (unsigned long)zone_idx(zone),
3581 zone_start_pfn, (zone_start_pfn + size));
3582
1e548deb 3583 zone_init_free_lists(zone);
718127cc
YG
3584
3585 return 0;
ed8ece2e
DH
3586}
3587
c713216d
MG
3588#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3589/*
3590 * Basic iterator support. Return the first range of PFNs for a node
3591 * Note: nid == MAX_NUMNODES returns first region regardless of node
3592 */
a3142c8e 3593static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
3594{
3595 int i;
3596
3597 for (i = 0; i < nr_nodemap_entries; i++)
3598 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3599 return i;
3600
3601 return -1;
3602}
3603
3604/*
3605 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 3606 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 3607 */
a3142c8e 3608static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
3609{
3610 for (index = index + 1; index < nr_nodemap_entries; index++)
3611 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3612 return index;
3613
3614 return -1;
3615}
3616
3617#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3618/*
3619 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3620 * Architectures may implement their own version but if add_active_range()
3621 * was used and there are no special requirements, this is a convenient
3622 * alternative
3623 */
f2dbcfa7 3624int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
3625{
3626 int i;
3627
3628 for (i = 0; i < nr_nodemap_entries; i++) {
3629 unsigned long start_pfn = early_node_map[i].start_pfn;
3630 unsigned long end_pfn = early_node_map[i].end_pfn;
3631
3632 if (start_pfn <= pfn && pfn < end_pfn)
3633 return early_node_map[i].nid;
3634 }
cc2559bc
KH
3635 /* This is a memory hole */
3636 return -1;
c713216d
MG
3637}
3638#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3639
f2dbcfa7
KH
3640int __meminit early_pfn_to_nid(unsigned long pfn)
3641{
cc2559bc
KH
3642 int nid;
3643
3644 nid = __early_pfn_to_nid(pfn);
3645 if (nid >= 0)
3646 return nid;
3647 /* just returns 0 */
3648 return 0;
f2dbcfa7
KH
3649}
3650
cc2559bc
KH
3651#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3652bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3653{
3654 int nid;
3655
3656 nid = __early_pfn_to_nid(pfn);
3657 if (nid >= 0 && nid != node)
3658 return false;
3659 return true;
3660}
3661#endif
f2dbcfa7 3662
c713216d
MG
3663/* Basic iterator support to walk early_node_map[] */
3664#define for_each_active_range_index_in_nid(i, nid) \
3665 for (i = first_active_region_index_in_nid(nid); i != -1; \
3666 i = next_active_region_index_in_nid(i, nid))
3667
3668/**
3669 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3670 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3671 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3672 *
3673 * If an architecture guarantees that all ranges registered with
3674 * add_active_ranges() contain no holes and may be freed, this
3675 * this function may be used instead of calling free_bootmem() manually.
3676 */
3677void __init free_bootmem_with_active_regions(int nid,
3678 unsigned long max_low_pfn)
3679{
3680 int i;
3681
3682 for_each_active_range_index_in_nid(i, nid) {
3683 unsigned long size_pages = 0;
3684 unsigned long end_pfn = early_node_map[i].end_pfn;
3685
3686 if (early_node_map[i].start_pfn >= max_low_pfn)
3687 continue;
3688
3689 if (end_pfn > max_low_pfn)
3690 end_pfn = max_low_pfn;
3691
3692 size_pages = end_pfn - early_node_map[i].start_pfn;
3693 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3694 PFN_PHYS(early_node_map[i].start_pfn),
3695 size_pages << PAGE_SHIFT);
3696 }
3697}
3698
edbe7d23
YL
3699#ifdef CONFIG_HAVE_MEMBLOCK
3700u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3701 u64 goal, u64 limit)
3702{
3703 int i;
3704
3705 /* Need to go over early_node_map to find out good range for node */
3706 for_each_active_range_index_in_nid(i, nid) {
3707 u64 addr;
3708 u64 ei_start, ei_last;
3709 u64 final_start, final_end;
3710
3711 ei_last = early_node_map[i].end_pfn;
3712 ei_last <<= PAGE_SHIFT;
3713 ei_start = early_node_map[i].start_pfn;
3714 ei_start <<= PAGE_SHIFT;
3715
3716 final_start = max(ei_start, goal);
3717 final_end = min(ei_last, limit);
3718
3719 if (final_start >= final_end)
3720 continue;
3721
3722 addr = memblock_find_in_range(final_start, final_end, size, align);
3723
3724 if (addr == MEMBLOCK_ERROR)
3725 continue;
3726
3727 return addr;
3728 }
3729
3730 return MEMBLOCK_ERROR;
3731}
3732#endif
3733
08677214
YL
3734int __init add_from_early_node_map(struct range *range, int az,
3735 int nr_range, int nid)
3736{
3737 int i;
3738 u64 start, end;
3739
3740 /* need to go over early_node_map to find out good range for node */
3741 for_each_active_range_index_in_nid(i, nid) {
3742 start = early_node_map[i].start_pfn;
3743 end = early_node_map[i].end_pfn;
3744 nr_range = add_range(range, az, nr_range, start, end);
3745 }
3746 return nr_range;
3747}
3748
2ee78f7b 3749#ifdef CONFIG_NO_BOOTMEM
08677214
YL
3750void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3751 u64 goal, u64 limit)
3752{
08677214 3753 void *ptr;
72d7c3b3 3754 u64 addr;
08677214 3755
72d7c3b3
YL
3756 if (limit > memblock.current_limit)
3757 limit = memblock.current_limit;
b8ab9f82 3758
72d7c3b3 3759 addr = find_memory_core_early(nid, size, align, goal, limit);
08677214 3760
72d7c3b3
YL
3761 if (addr == MEMBLOCK_ERROR)
3762 return NULL;
08677214 3763
72d7c3b3
YL
3764 ptr = phys_to_virt(addr);
3765 memset(ptr, 0, size);
3766 memblock_x86_reserve_range(addr, addr + size, "BOOTMEM");
3767 /*
3768 * The min_count is set to 0 so that bootmem allocated blocks
3769 * are never reported as leaks.
3770 */
3771 kmemleak_alloc(ptr, size, 0, 0);
3772 return ptr;
08677214 3773}
2ee78f7b 3774#endif
08677214
YL
3775
3776
b5bc6c0e
YL
3777void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3778{
3779 int i;
d52d53b8 3780 int ret;
b5bc6c0e 3781
d52d53b8
YL
3782 for_each_active_range_index_in_nid(i, nid) {
3783 ret = work_fn(early_node_map[i].start_pfn,
3784 early_node_map[i].end_pfn, data);
3785 if (ret)
3786 break;
3787 }
b5bc6c0e 3788}
c713216d
MG
3789/**
3790 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3791 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3792 *
3793 * If an architecture guarantees that all ranges registered with
3794 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3795 * function may be used instead of calling memory_present() manually.
c713216d
MG
3796 */
3797void __init sparse_memory_present_with_active_regions(int nid)
3798{
3799 int i;
3800
3801 for_each_active_range_index_in_nid(i, nid)
3802 memory_present(early_node_map[i].nid,
3803 early_node_map[i].start_pfn,
3804 early_node_map[i].end_pfn);
3805}
3806
3807/**
3808 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3809 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3810 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3811 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3812 *
3813 * It returns the start and end page frame of a node based on information
3814 * provided by an arch calling add_active_range(). If called for a node
3815 * with no available memory, a warning is printed and the start and end
88ca3b94 3816 * PFNs will be 0.
c713216d 3817 */
a3142c8e 3818void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3819 unsigned long *start_pfn, unsigned long *end_pfn)
3820{
3821 int i;
3822 *start_pfn = -1UL;
3823 *end_pfn = 0;
3824
3825 for_each_active_range_index_in_nid(i, nid) {
3826 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3827 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3828 }
3829
633c0666 3830 if (*start_pfn == -1UL)
c713216d 3831 *start_pfn = 0;
c713216d
MG
3832}
3833
2a1e274a
MG
3834/*
3835 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3836 * assumption is made that zones within a node are ordered in monotonic
3837 * increasing memory addresses so that the "highest" populated zone is used
3838 */
b69a7288 3839static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3840{
3841 int zone_index;
3842 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3843 if (zone_index == ZONE_MOVABLE)
3844 continue;
3845
3846 if (arch_zone_highest_possible_pfn[zone_index] >
3847 arch_zone_lowest_possible_pfn[zone_index])
3848 break;
3849 }
3850
3851 VM_BUG_ON(zone_index == -1);
3852 movable_zone = zone_index;
3853}
3854
3855/*
3856 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3857 * because it is sized independant of architecture. Unlike the other zones,
3858 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3859 * in each node depending on the size of each node and how evenly kernelcore
3860 * is distributed. This helper function adjusts the zone ranges
3861 * provided by the architecture for a given node by using the end of the
3862 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3863 * zones within a node are in order of monotonic increases memory addresses
3864 */
b69a7288 3865static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3866 unsigned long zone_type,
3867 unsigned long node_start_pfn,
3868 unsigned long node_end_pfn,
3869 unsigned long *zone_start_pfn,
3870 unsigned long *zone_end_pfn)
3871{
3872 /* Only adjust if ZONE_MOVABLE is on this node */
3873 if (zone_movable_pfn[nid]) {
3874 /* Size ZONE_MOVABLE */
3875 if (zone_type == ZONE_MOVABLE) {
3876 *zone_start_pfn = zone_movable_pfn[nid];
3877 *zone_end_pfn = min(node_end_pfn,
3878 arch_zone_highest_possible_pfn[movable_zone]);
3879
3880 /* Adjust for ZONE_MOVABLE starting within this range */
3881 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3882 *zone_end_pfn > zone_movable_pfn[nid]) {
3883 *zone_end_pfn = zone_movable_pfn[nid];
3884
3885 /* Check if this whole range is within ZONE_MOVABLE */
3886 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3887 *zone_start_pfn = *zone_end_pfn;
3888 }
3889}
3890
c713216d
MG
3891/*
3892 * Return the number of pages a zone spans in a node, including holes
3893 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3894 */
6ea6e688 3895static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3896 unsigned long zone_type,
3897 unsigned long *ignored)
3898{
3899 unsigned long node_start_pfn, node_end_pfn;
3900 unsigned long zone_start_pfn, zone_end_pfn;
3901
3902 /* Get the start and end of the node and zone */
3903 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3904 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3905 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3906 adjust_zone_range_for_zone_movable(nid, zone_type,
3907 node_start_pfn, node_end_pfn,
3908 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3909
3910 /* Check that this node has pages within the zone's required range */
3911 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3912 return 0;
3913
3914 /* Move the zone boundaries inside the node if necessary */
3915 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3916 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3917
3918 /* Return the spanned pages */
3919 return zone_end_pfn - zone_start_pfn;
3920}
3921
3922/*
3923 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3924 * then all holes in the requested range will be accounted for.
c713216d 3925 */
32996250 3926unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3927 unsigned long range_start_pfn,
3928 unsigned long range_end_pfn)
3929{
3930 int i = 0;
3931 unsigned long prev_end_pfn = 0, hole_pages = 0;
3932 unsigned long start_pfn;
3933
3934 /* Find the end_pfn of the first active range of pfns in the node */
3935 i = first_active_region_index_in_nid(nid);
3936 if (i == -1)
3937 return 0;
3938
b5445f95
MG
3939 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3940
9c7cd687
MG
3941 /* Account for ranges before physical memory on this node */
3942 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3943 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3944
3945 /* Find all holes for the zone within the node */
3946 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3947
3948 /* No need to continue if prev_end_pfn is outside the zone */
3949 if (prev_end_pfn >= range_end_pfn)
3950 break;
3951
3952 /* Make sure the end of the zone is not within the hole */
3953 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3954 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3955
3956 /* Update the hole size cound and move on */
3957 if (start_pfn > range_start_pfn) {
3958 BUG_ON(prev_end_pfn > start_pfn);
3959 hole_pages += start_pfn - prev_end_pfn;
3960 }
3961 prev_end_pfn = early_node_map[i].end_pfn;
3962 }
3963
9c7cd687
MG
3964 /* Account for ranges past physical memory on this node */
3965 if (range_end_pfn > prev_end_pfn)
0c6cb974 3966 hole_pages += range_end_pfn -
9c7cd687
MG
3967 max(range_start_pfn, prev_end_pfn);
3968
c713216d
MG
3969 return hole_pages;
3970}
3971
3972/**
3973 * absent_pages_in_range - Return number of page frames in holes within a range
3974 * @start_pfn: The start PFN to start searching for holes
3975 * @end_pfn: The end PFN to stop searching for holes
3976 *
88ca3b94 3977 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3978 */
3979unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3980 unsigned long end_pfn)
3981{
3982 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3983}
3984
3985/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3986static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3987 unsigned long zone_type,
3988 unsigned long *ignored)
3989{
9c7cd687
MG
3990 unsigned long node_start_pfn, node_end_pfn;
3991 unsigned long zone_start_pfn, zone_end_pfn;
3992
3993 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3994 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3995 node_start_pfn);
3996 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3997 node_end_pfn);
3998
2a1e274a
MG
3999 adjust_zone_range_for_zone_movable(nid, zone_type,
4000 node_start_pfn, node_end_pfn,
4001 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4002 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4003}
0e0b864e 4004
c713216d 4005#else
6ea6e688 4006static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4007 unsigned long zone_type,
4008 unsigned long *zones_size)
4009{
4010 return zones_size[zone_type];
4011}
4012
6ea6e688 4013static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4014 unsigned long zone_type,
4015 unsigned long *zholes_size)
4016{
4017 if (!zholes_size)
4018 return 0;
4019
4020 return zholes_size[zone_type];
4021}
0e0b864e 4022
c713216d
MG
4023#endif
4024
a3142c8e 4025static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4026 unsigned long *zones_size, unsigned long *zholes_size)
4027{
4028 unsigned long realtotalpages, totalpages = 0;
4029 enum zone_type i;
4030
4031 for (i = 0; i < MAX_NR_ZONES; i++)
4032 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4033 zones_size);
4034 pgdat->node_spanned_pages = totalpages;
4035
4036 realtotalpages = totalpages;
4037 for (i = 0; i < MAX_NR_ZONES; i++)
4038 realtotalpages -=
4039 zone_absent_pages_in_node(pgdat->node_id, i,
4040 zholes_size);
4041 pgdat->node_present_pages = realtotalpages;
4042 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4043 realtotalpages);
4044}
4045
835c134e
MG
4046#ifndef CONFIG_SPARSEMEM
4047/*
4048 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4049 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4050 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4051 * round what is now in bits to nearest long in bits, then return it in
4052 * bytes.
4053 */
4054static unsigned long __init usemap_size(unsigned long zonesize)
4055{
4056 unsigned long usemapsize;
4057
d9c23400
MG
4058 usemapsize = roundup(zonesize, pageblock_nr_pages);
4059 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4060 usemapsize *= NR_PAGEBLOCK_BITS;
4061 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4062
4063 return usemapsize / 8;
4064}
4065
4066static void __init setup_usemap(struct pglist_data *pgdat,
4067 struct zone *zone, unsigned long zonesize)
4068{
4069 unsigned long usemapsize = usemap_size(zonesize);
4070 zone->pageblock_flags = NULL;
58a01a45 4071 if (usemapsize)
835c134e 4072 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
835c134e
MG
4073}
4074#else
fa9f90be 4075static inline void setup_usemap(struct pglist_data *pgdat,
835c134e
MG
4076 struct zone *zone, unsigned long zonesize) {}
4077#endif /* CONFIG_SPARSEMEM */
4078
d9c23400 4079#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
4080
4081/* Return a sensible default order for the pageblock size. */
4082static inline int pageblock_default_order(void)
4083{
4084 if (HPAGE_SHIFT > PAGE_SHIFT)
4085 return HUGETLB_PAGE_ORDER;
4086
4087 return MAX_ORDER-1;
4088}
4089
d9c23400
MG
4090/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4091static inline void __init set_pageblock_order(unsigned int order)
4092{
4093 /* Check that pageblock_nr_pages has not already been setup */
4094 if (pageblock_order)
4095 return;
4096
4097 /*
4098 * Assume the largest contiguous order of interest is a huge page.
4099 * This value may be variable depending on boot parameters on IA64
4100 */
4101 pageblock_order = order;
4102}
4103#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4104
ba72cb8c
MG
4105/*
4106 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4107 * and pageblock_default_order() are unused as pageblock_order is set
4108 * at compile-time. See include/linux/pageblock-flags.h for the values of
4109 * pageblock_order based on the kernel config
4110 */
4111static inline int pageblock_default_order(unsigned int order)
4112{
4113 return MAX_ORDER-1;
4114}
d9c23400
MG
4115#define set_pageblock_order(x) do {} while (0)
4116
4117#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4118
1da177e4
LT
4119/*
4120 * Set up the zone data structures:
4121 * - mark all pages reserved
4122 * - mark all memory queues empty
4123 * - clear the memory bitmaps
4124 */
b5a0e011 4125static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4126 unsigned long *zones_size, unsigned long *zholes_size)
4127{
2f1b6248 4128 enum zone_type j;
ed8ece2e 4129 int nid = pgdat->node_id;
1da177e4 4130 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4131 int ret;
1da177e4 4132
208d54e5 4133 pgdat_resize_init(pgdat);
1da177e4
LT
4134 pgdat->nr_zones = 0;
4135 init_waitqueue_head(&pgdat->kswapd_wait);
4136 pgdat->kswapd_max_order = 0;
52d4b9ac 4137 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
4138
4139 for (j = 0; j < MAX_NR_ZONES; j++) {
4140 struct zone *zone = pgdat->node_zones + j;
0e0b864e 4141 unsigned long size, realsize, memmap_pages;
b69408e8 4142 enum lru_list l;
1da177e4 4143
c713216d
MG
4144 size = zone_spanned_pages_in_node(nid, j, zones_size);
4145 realsize = size - zone_absent_pages_in_node(nid, j,
4146 zholes_size);
1da177e4 4147
0e0b864e
MG
4148 /*
4149 * Adjust realsize so that it accounts for how much memory
4150 * is used by this zone for memmap. This affects the watermark
4151 * and per-cpu initialisations
4152 */
f7232154
JW
4153 memmap_pages =
4154 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
4155 if (realsize >= memmap_pages) {
4156 realsize -= memmap_pages;
5594c8c8
YL
4157 if (memmap_pages)
4158 printk(KERN_DEBUG
4159 " %s zone: %lu pages used for memmap\n",
4160 zone_names[j], memmap_pages);
0e0b864e
MG
4161 } else
4162 printk(KERN_WARNING
4163 " %s zone: %lu pages exceeds realsize %lu\n",
4164 zone_names[j], memmap_pages, realsize);
4165
6267276f
CL
4166 /* Account for reserved pages */
4167 if (j == 0 && realsize > dma_reserve) {
0e0b864e 4168 realsize -= dma_reserve;
d903ef9f 4169 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4170 zone_names[0], dma_reserve);
0e0b864e
MG
4171 }
4172
98d2b0eb 4173 if (!is_highmem_idx(j))
1da177e4
LT
4174 nr_kernel_pages += realsize;
4175 nr_all_pages += realsize;
4176
4177 zone->spanned_pages = size;
4178 zone->present_pages = realsize;
9614634f 4179#ifdef CONFIG_NUMA
d5f541ed 4180 zone->node = nid;
8417bba4 4181 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4182 / 100;
0ff38490 4183 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4184#endif
1da177e4
LT
4185 zone->name = zone_names[j];
4186 spin_lock_init(&zone->lock);
4187 spin_lock_init(&zone->lru_lock);
bdc8cb98 4188 zone_seqlock_init(zone);
1da177e4 4189 zone->zone_pgdat = pgdat;
1da177e4 4190
ed8ece2e 4191 zone_pcp_init(zone);
b69408e8
CL
4192 for_each_lru(l) {
4193 INIT_LIST_HEAD(&zone->lru[l].list);
f8629631 4194 zone->reclaim_stat.nr_saved_scan[l] = 0;
b69408e8 4195 }
6e901571
KM
4196 zone->reclaim_stat.recent_rotated[0] = 0;
4197 zone->reclaim_stat.recent_rotated[1] = 0;
4198 zone->reclaim_stat.recent_scanned[0] = 0;
4199 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 4200 zap_zone_vm_stats(zone);
e815af95 4201 zone->flags = 0;
1da177e4
LT
4202 if (!size)
4203 continue;
4204
ba72cb8c 4205 set_pageblock_order(pageblock_default_order());
835c134e 4206 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4207 ret = init_currently_empty_zone(zone, zone_start_pfn,
4208 size, MEMMAP_EARLY);
718127cc 4209 BUG_ON(ret);
76cdd58e 4210 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4211 zone_start_pfn += size;
1da177e4
LT
4212 }
4213}
4214
577a32f6 4215static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4216{
1da177e4
LT
4217 /* Skip empty nodes */
4218 if (!pgdat->node_spanned_pages)
4219 return;
4220
d41dee36 4221#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4222 /* ia64 gets its own node_mem_map, before this, without bootmem */
4223 if (!pgdat->node_mem_map) {
e984bb43 4224 unsigned long size, start, end;
d41dee36
AW
4225 struct page *map;
4226
e984bb43
BP
4227 /*
4228 * The zone's endpoints aren't required to be MAX_ORDER
4229 * aligned but the node_mem_map endpoints must be in order
4230 * for the buddy allocator to function correctly.
4231 */
4232 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4233 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4234 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4235 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4236 map = alloc_remap(pgdat->node_id, size);
4237 if (!map)
4238 map = alloc_bootmem_node(pgdat, size);
e984bb43 4239 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4240 }
12d810c1 4241#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4242 /*
4243 * With no DISCONTIG, the global mem_map is just set as node 0's
4244 */
c713216d 4245 if (pgdat == NODE_DATA(0)) {
1da177e4 4246 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
4247#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4248 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4249 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
4250#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4251 }
1da177e4 4252#endif
d41dee36 4253#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4254}
4255
9109fb7b
JW
4256void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4257 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4258{
9109fb7b
JW
4259 pg_data_t *pgdat = NODE_DATA(nid);
4260
1da177e4
LT
4261 pgdat->node_id = nid;
4262 pgdat->node_start_pfn = node_start_pfn;
c713216d 4263 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4264
4265 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4266#ifdef CONFIG_FLAT_NODE_MEM_MAP
4267 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4268 nid, (unsigned long)pgdat,
4269 (unsigned long)pgdat->node_mem_map);
4270#endif
1da177e4
LT
4271
4272 free_area_init_core(pgdat, zones_size, zholes_size);
4273}
4274
c713216d 4275#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
4276
4277#if MAX_NUMNODES > 1
4278/*
4279 * Figure out the number of possible node ids.
4280 */
4281static void __init setup_nr_node_ids(void)
4282{
4283 unsigned int node;
4284 unsigned int highest = 0;
4285
4286 for_each_node_mask(node, node_possible_map)
4287 highest = node;
4288 nr_node_ids = highest + 1;
4289}
4290#else
4291static inline void setup_nr_node_ids(void)
4292{
4293}
4294#endif
4295
c713216d
MG
4296/**
4297 * add_active_range - Register a range of PFNs backed by physical memory
4298 * @nid: The node ID the range resides on
4299 * @start_pfn: The start PFN of the available physical memory
4300 * @end_pfn: The end PFN of the available physical memory
4301 *
4302 * These ranges are stored in an early_node_map[] and later used by
4303 * free_area_init_nodes() to calculate zone sizes and holes. If the
4304 * range spans a memory hole, it is up to the architecture to ensure
4305 * the memory is not freed by the bootmem allocator. If possible
4306 * the range being registered will be merged with existing ranges.
4307 */
4308void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4309 unsigned long end_pfn)
4310{
4311 int i;
4312
6b74ab97
MG
4313 mminit_dprintk(MMINIT_TRACE, "memory_register",
4314 "Entering add_active_range(%d, %#lx, %#lx) "
4315 "%d entries of %d used\n",
4316 nid, start_pfn, end_pfn,
4317 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 4318
2dbb51c4
MG
4319 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4320
c713216d
MG
4321 /* Merge with existing active regions if possible */
4322 for (i = 0; i < nr_nodemap_entries; i++) {
4323 if (early_node_map[i].nid != nid)
4324 continue;
4325
4326 /* Skip if an existing region covers this new one */
4327 if (start_pfn >= early_node_map[i].start_pfn &&
4328 end_pfn <= early_node_map[i].end_pfn)
4329 return;
4330
4331 /* Merge forward if suitable */
4332 if (start_pfn <= early_node_map[i].end_pfn &&
4333 end_pfn > early_node_map[i].end_pfn) {
4334 early_node_map[i].end_pfn = end_pfn;
4335 return;
4336 }
4337
4338 /* Merge backward if suitable */
d2dbe08d 4339 if (start_pfn < early_node_map[i].start_pfn &&
c713216d
MG
4340 end_pfn >= early_node_map[i].start_pfn) {
4341 early_node_map[i].start_pfn = start_pfn;
4342 return;
4343 }
4344 }
4345
4346 /* Check that early_node_map is large enough */
4347 if (i >= MAX_ACTIVE_REGIONS) {
4348 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4349 MAX_ACTIVE_REGIONS);
4350 return;
4351 }
4352
4353 early_node_map[i].nid = nid;
4354 early_node_map[i].start_pfn = start_pfn;
4355 early_node_map[i].end_pfn = end_pfn;
4356 nr_nodemap_entries = i + 1;
4357}
4358
4359/**
cc1050ba 4360 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 4361 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
4362 * @start_pfn: The new PFN of the range
4363 * @end_pfn: The new PFN of the range
c713216d
MG
4364 *
4365 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
4366 * The map is kept near the end physical page range that has already been
4367 * registered. This function allows an arch to shrink an existing registered
4368 * range.
c713216d 4369 */
cc1050ba
YL
4370void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4371 unsigned long end_pfn)
c713216d 4372{
cc1a9d86
YL
4373 int i, j;
4374 int removed = 0;
c713216d 4375
cc1050ba
YL
4376 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4377 nid, start_pfn, end_pfn);
4378
c713216d 4379 /* Find the old active region end and shrink */
cc1a9d86 4380 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
4381 if (early_node_map[i].start_pfn >= start_pfn &&
4382 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 4383 /* clear it */
cc1050ba 4384 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
4385 early_node_map[i].end_pfn = 0;
4386 removed = 1;
4387 continue;
4388 }
cc1050ba
YL
4389 if (early_node_map[i].start_pfn < start_pfn &&
4390 early_node_map[i].end_pfn > start_pfn) {
4391 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4392 early_node_map[i].end_pfn = start_pfn;
4393 if (temp_end_pfn > end_pfn)
4394 add_active_range(nid, end_pfn, temp_end_pfn);
4395 continue;
4396 }
4397 if (early_node_map[i].start_pfn >= start_pfn &&
4398 early_node_map[i].end_pfn > end_pfn &&
4399 early_node_map[i].start_pfn < end_pfn) {
4400 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 4401 continue;
c713216d 4402 }
cc1a9d86
YL
4403 }
4404
4405 if (!removed)
4406 return;
4407
4408 /* remove the blank ones */
4409 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4410 if (early_node_map[i].nid != nid)
4411 continue;
4412 if (early_node_map[i].end_pfn)
4413 continue;
4414 /* we found it, get rid of it */
4415 for (j = i; j < nr_nodemap_entries - 1; j++)
4416 memcpy(&early_node_map[j], &early_node_map[j+1],
4417 sizeof(early_node_map[j]));
4418 j = nr_nodemap_entries - 1;
4419 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4420 nr_nodemap_entries--;
4421 }
c713216d
MG
4422}
4423
4424/**
4425 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 4426 *
c713216d
MG
4427 * During discovery, it may be found that a table like SRAT is invalid
4428 * and an alternative discovery method must be used. This function removes
4429 * all currently registered regions.
4430 */
88ca3b94 4431void __init remove_all_active_ranges(void)
c713216d
MG
4432{
4433 memset(early_node_map, 0, sizeof(early_node_map));
4434 nr_nodemap_entries = 0;
4435}
4436
4437/* Compare two active node_active_regions */
4438static int __init cmp_node_active_region(const void *a, const void *b)
4439{
4440 struct node_active_region *arange = (struct node_active_region *)a;
4441 struct node_active_region *brange = (struct node_active_region *)b;
4442
4443 /* Done this way to avoid overflows */
4444 if (arange->start_pfn > brange->start_pfn)
4445 return 1;
4446 if (arange->start_pfn < brange->start_pfn)
4447 return -1;
4448
4449 return 0;
4450}
4451
4452/* sort the node_map by start_pfn */
32996250 4453void __init sort_node_map(void)
c713216d
MG
4454{
4455 sort(early_node_map, (size_t)nr_nodemap_entries,
4456 sizeof(struct node_active_region),
4457 cmp_node_active_region, NULL);
4458}
4459
a6af2bc3 4460/* Find the lowest pfn for a node */
b69a7288 4461static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
4462{
4463 int i;
a6af2bc3 4464 unsigned long min_pfn = ULONG_MAX;
1abbfb41 4465
c713216d
MG
4466 /* Assuming a sorted map, the first range found has the starting pfn */
4467 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 4468 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 4469
a6af2bc3
MG
4470 if (min_pfn == ULONG_MAX) {
4471 printk(KERN_WARNING
2bc0d261 4472 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4473 return 0;
4474 }
4475
4476 return min_pfn;
c713216d
MG
4477}
4478
4479/**
4480 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4481 *
4482 * It returns the minimum PFN based on information provided via
88ca3b94 4483 * add_active_range().
c713216d
MG
4484 */
4485unsigned long __init find_min_pfn_with_active_regions(void)
4486{
4487 return find_min_pfn_for_node(MAX_NUMNODES);
4488}
4489
37b07e41
LS
4490/*
4491 * early_calculate_totalpages()
4492 * Sum pages in active regions for movable zone.
4493 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4494 */
484f51f8 4495static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
4496{
4497 int i;
4498 unsigned long totalpages = 0;
4499
37b07e41
LS
4500 for (i = 0; i < nr_nodemap_entries; i++) {
4501 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 4502 early_node_map[i].start_pfn;
37b07e41
LS
4503 totalpages += pages;
4504 if (pages)
4505 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4506 }
4507 return totalpages;
7e63efef
MG
4508}
4509
2a1e274a
MG
4510/*
4511 * Find the PFN the Movable zone begins in each node. Kernel memory
4512 * is spread evenly between nodes as long as the nodes have enough
4513 * memory. When they don't, some nodes will have more kernelcore than
4514 * others
4515 */
b69a7288 4516static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
4517{
4518 int i, nid;
4519 unsigned long usable_startpfn;
4520 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4521 /* save the state before borrow the nodemask */
4522 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4523 unsigned long totalpages = early_calculate_totalpages();
4524 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4525
7e63efef
MG
4526 /*
4527 * If movablecore was specified, calculate what size of
4528 * kernelcore that corresponds so that memory usable for
4529 * any allocation type is evenly spread. If both kernelcore
4530 * and movablecore are specified, then the value of kernelcore
4531 * will be used for required_kernelcore if it's greater than
4532 * what movablecore would have allowed.
4533 */
4534 if (required_movablecore) {
7e63efef
MG
4535 unsigned long corepages;
4536
4537 /*
4538 * Round-up so that ZONE_MOVABLE is at least as large as what
4539 * was requested by the user
4540 */
4541 required_movablecore =
4542 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4543 corepages = totalpages - required_movablecore;
4544
4545 required_kernelcore = max(required_kernelcore, corepages);
4546 }
4547
2a1e274a
MG
4548 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4549 if (!required_kernelcore)
66918dcd 4550 goto out;
2a1e274a
MG
4551
4552 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4553 find_usable_zone_for_movable();
4554 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4555
4556restart:
4557 /* Spread kernelcore memory as evenly as possible throughout nodes */
4558 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4559 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
4560 /*
4561 * Recalculate kernelcore_node if the division per node
4562 * now exceeds what is necessary to satisfy the requested
4563 * amount of memory for the kernel
4564 */
4565 if (required_kernelcore < kernelcore_node)
4566 kernelcore_node = required_kernelcore / usable_nodes;
4567
4568 /*
4569 * As the map is walked, we track how much memory is usable
4570 * by the kernel using kernelcore_remaining. When it is
4571 * 0, the rest of the node is usable by ZONE_MOVABLE
4572 */
4573 kernelcore_remaining = kernelcore_node;
4574
4575 /* Go through each range of PFNs within this node */
4576 for_each_active_range_index_in_nid(i, nid) {
4577 unsigned long start_pfn, end_pfn;
4578 unsigned long size_pages;
4579
4580 start_pfn = max(early_node_map[i].start_pfn,
4581 zone_movable_pfn[nid]);
4582 end_pfn = early_node_map[i].end_pfn;
4583 if (start_pfn >= end_pfn)
4584 continue;
4585
4586 /* Account for what is only usable for kernelcore */
4587 if (start_pfn < usable_startpfn) {
4588 unsigned long kernel_pages;
4589 kernel_pages = min(end_pfn, usable_startpfn)
4590 - start_pfn;
4591
4592 kernelcore_remaining -= min(kernel_pages,
4593 kernelcore_remaining);
4594 required_kernelcore -= min(kernel_pages,
4595 required_kernelcore);
4596
4597 /* Continue if range is now fully accounted */
4598 if (end_pfn <= usable_startpfn) {
4599
4600 /*
4601 * Push zone_movable_pfn to the end so
4602 * that if we have to rebalance
4603 * kernelcore across nodes, we will
4604 * not double account here
4605 */
4606 zone_movable_pfn[nid] = end_pfn;
4607 continue;
4608 }
4609 start_pfn = usable_startpfn;
4610 }
4611
4612 /*
4613 * The usable PFN range for ZONE_MOVABLE is from
4614 * start_pfn->end_pfn. Calculate size_pages as the
4615 * number of pages used as kernelcore
4616 */
4617 size_pages = end_pfn - start_pfn;
4618 if (size_pages > kernelcore_remaining)
4619 size_pages = kernelcore_remaining;
4620 zone_movable_pfn[nid] = start_pfn + size_pages;
4621
4622 /*
4623 * Some kernelcore has been met, update counts and
4624 * break if the kernelcore for this node has been
4625 * satisified
4626 */
4627 required_kernelcore -= min(required_kernelcore,
4628 size_pages);
4629 kernelcore_remaining -= size_pages;
4630 if (!kernelcore_remaining)
4631 break;
4632 }
4633 }
4634
4635 /*
4636 * If there is still required_kernelcore, we do another pass with one
4637 * less node in the count. This will push zone_movable_pfn[nid] further
4638 * along on the nodes that still have memory until kernelcore is
4639 * satisified
4640 */
4641 usable_nodes--;
4642 if (usable_nodes && required_kernelcore > usable_nodes)
4643 goto restart;
4644
4645 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4646 for (nid = 0; nid < MAX_NUMNODES; nid++)
4647 zone_movable_pfn[nid] =
4648 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4649
4650out:
4651 /* restore the node_state */
4652 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4653}
4654
37b07e41
LS
4655/* Any regular memory on that node ? */
4656static void check_for_regular_memory(pg_data_t *pgdat)
4657{
4658#ifdef CONFIG_HIGHMEM
4659 enum zone_type zone_type;
4660
4661 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4662 struct zone *zone = &pgdat->node_zones[zone_type];
4663 if (zone->present_pages)
4664 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4665 }
4666#endif
4667}
4668
c713216d
MG
4669/**
4670 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4671 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4672 *
4673 * This will call free_area_init_node() for each active node in the system.
4674 * Using the page ranges provided by add_active_range(), the size of each
4675 * zone in each node and their holes is calculated. If the maximum PFN
4676 * between two adjacent zones match, it is assumed that the zone is empty.
4677 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4678 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4679 * starts where the previous one ended. For example, ZONE_DMA32 starts
4680 * at arch_max_dma_pfn.
4681 */
4682void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4683{
4684 unsigned long nid;
db99100d 4685 int i;
c713216d 4686
a6af2bc3
MG
4687 /* Sort early_node_map as initialisation assumes it is sorted */
4688 sort_node_map();
4689
c713216d
MG
4690 /* Record where the zone boundaries are */
4691 memset(arch_zone_lowest_possible_pfn, 0,
4692 sizeof(arch_zone_lowest_possible_pfn));
4693 memset(arch_zone_highest_possible_pfn, 0,
4694 sizeof(arch_zone_highest_possible_pfn));
4695 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4696 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4697 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4698 if (i == ZONE_MOVABLE)
4699 continue;
c713216d
MG
4700 arch_zone_lowest_possible_pfn[i] =
4701 arch_zone_highest_possible_pfn[i-1];
4702 arch_zone_highest_possible_pfn[i] =
4703 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4704 }
2a1e274a
MG
4705 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4706 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4707
4708 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4709 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4710 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4711
c713216d
MG
4712 /* Print out the zone ranges */
4713 printk("Zone PFN ranges:\n");
2a1e274a
MG
4714 for (i = 0; i < MAX_NR_ZONES; i++) {
4715 if (i == ZONE_MOVABLE)
4716 continue;
72f0ba02
DR
4717 printk(" %-8s ", zone_names[i]);
4718 if (arch_zone_lowest_possible_pfn[i] ==
4719 arch_zone_highest_possible_pfn[i])
4720 printk("empty\n");
4721 else
4722 printk("%0#10lx -> %0#10lx\n",
c713216d
MG
4723 arch_zone_lowest_possible_pfn[i],
4724 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4725 }
4726
4727 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4728 printk("Movable zone start PFN for each node\n");
4729 for (i = 0; i < MAX_NUMNODES; i++) {
4730 if (zone_movable_pfn[i])
4731 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4732 }
c713216d
MG
4733
4734 /* Print out the early_node_map[] */
4735 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4736 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4737 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4738 early_node_map[i].start_pfn,
4739 early_node_map[i].end_pfn);
4740
4741 /* Initialise every node */
708614e6 4742 mminit_verify_pageflags_layout();
8ef82866 4743 setup_nr_node_ids();
c713216d
MG
4744 for_each_online_node(nid) {
4745 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4746 free_area_init_node(nid, NULL,
c713216d 4747 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4748
4749 /* Any memory on that node */
4750 if (pgdat->node_present_pages)
4751 node_set_state(nid, N_HIGH_MEMORY);
4752 check_for_regular_memory(pgdat);
c713216d
MG
4753 }
4754}
2a1e274a 4755
7e63efef 4756static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4757{
4758 unsigned long long coremem;
4759 if (!p)
4760 return -EINVAL;
4761
4762 coremem = memparse(p, &p);
7e63efef 4763 *core = coremem >> PAGE_SHIFT;
2a1e274a 4764
7e63efef 4765 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4766 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4767
4768 return 0;
4769}
ed7ed365 4770
7e63efef
MG
4771/*
4772 * kernelcore=size sets the amount of memory for use for allocations that
4773 * cannot be reclaimed or migrated.
4774 */
4775static int __init cmdline_parse_kernelcore(char *p)
4776{
4777 return cmdline_parse_core(p, &required_kernelcore);
4778}
4779
4780/*
4781 * movablecore=size sets the amount of memory for use for allocations that
4782 * can be reclaimed or migrated.
4783 */
4784static int __init cmdline_parse_movablecore(char *p)
4785{
4786 return cmdline_parse_core(p, &required_movablecore);
4787}
4788
ed7ed365 4789early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4790early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4791
c713216d
MG
4792#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4793
0e0b864e 4794/**
88ca3b94
RD
4795 * set_dma_reserve - set the specified number of pages reserved in the first zone
4796 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4797 *
4798 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4799 * In the DMA zone, a significant percentage may be consumed by kernel image
4800 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4801 * function may optionally be used to account for unfreeable pages in the
4802 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4803 * smaller per-cpu batchsize.
0e0b864e
MG
4804 */
4805void __init set_dma_reserve(unsigned long new_dma_reserve)
4806{
4807 dma_reserve = new_dma_reserve;
4808}
4809
93b7504e 4810#ifndef CONFIG_NEED_MULTIPLE_NODES
08677214
YL
4811struct pglist_data __refdata contig_page_data = {
4812#ifndef CONFIG_NO_BOOTMEM
4813 .bdata = &bootmem_node_data[0]
4814#endif
4815 };
1da177e4 4816EXPORT_SYMBOL(contig_page_data);
93b7504e 4817#endif
1da177e4
LT
4818
4819void __init free_area_init(unsigned long *zones_size)
4820{
9109fb7b 4821 free_area_init_node(0, zones_size,
1da177e4
LT
4822 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4823}
1da177e4 4824
1da177e4
LT
4825static int page_alloc_cpu_notify(struct notifier_block *self,
4826 unsigned long action, void *hcpu)
4827{
4828 int cpu = (unsigned long)hcpu;
1da177e4 4829
8bb78442 4830 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4831 drain_pages(cpu);
4832
4833 /*
4834 * Spill the event counters of the dead processor
4835 * into the current processors event counters.
4836 * This artificially elevates the count of the current
4837 * processor.
4838 */
f8891e5e 4839 vm_events_fold_cpu(cpu);
9f8f2172
CL
4840
4841 /*
4842 * Zero the differential counters of the dead processor
4843 * so that the vm statistics are consistent.
4844 *
4845 * This is only okay since the processor is dead and cannot
4846 * race with what we are doing.
4847 */
2244b95a 4848 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4849 }
4850 return NOTIFY_OK;
4851}
1da177e4
LT
4852
4853void __init page_alloc_init(void)
4854{
4855 hotcpu_notifier(page_alloc_cpu_notify, 0);
4856}
4857
cb45b0e9
HA
4858/*
4859 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4860 * or min_free_kbytes changes.
4861 */
4862static void calculate_totalreserve_pages(void)
4863{
4864 struct pglist_data *pgdat;
4865 unsigned long reserve_pages = 0;
2f6726e5 4866 enum zone_type i, j;
cb45b0e9
HA
4867
4868 for_each_online_pgdat(pgdat) {
4869 for (i = 0; i < MAX_NR_ZONES; i++) {
4870 struct zone *zone = pgdat->node_zones + i;
4871 unsigned long max = 0;
4872
4873 /* Find valid and maximum lowmem_reserve in the zone */
4874 for (j = i; j < MAX_NR_ZONES; j++) {
4875 if (zone->lowmem_reserve[j] > max)
4876 max = zone->lowmem_reserve[j];
4877 }
4878
41858966
MG
4879 /* we treat the high watermark as reserved pages. */
4880 max += high_wmark_pages(zone);
cb45b0e9
HA
4881
4882 if (max > zone->present_pages)
4883 max = zone->present_pages;
4884 reserve_pages += max;
4885 }
4886 }
4887 totalreserve_pages = reserve_pages;
4888}
4889
1da177e4
LT
4890/*
4891 * setup_per_zone_lowmem_reserve - called whenever
4892 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4893 * has a correct pages reserved value, so an adequate number of
4894 * pages are left in the zone after a successful __alloc_pages().
4895 */
4896static void setup_per_zone_lowmem_reserve(void)
4897{
4898 struct pglist_data *pgdat;
2f6726e5 4899 enum zone_type j, idx;
1da177e4 4900
ec936fc5 4901 for_each_online_pgdat(pgdat) {
1da177e4
LT
4902 for (j = 0; j < MAX_NR_ZONES; j++) {
4903 struct zone *zone = pgdat->node_zones + j;
4904 unsigned long present_pages = zone->present_pages;
4905
4906 zone->lowmem_reserve[j] = 0;
4907
2f6726e5
CL
4908 idx = j;
4909 while (idx) {
1da177e4
LT
4910 struct zone *lower_zone;
4911
2f6726e5
CL
4912 idx--;
4913
1da177e4
LT
4914 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4915 sysctl_lowmem_reserve_ratio[idx] = 1;
4916
4917 lower_zone = pgdat->node_zones + idx;
4918 lower_zone->lowmem_reserve[j] = present_pages /
4919 sysctl_lowmem_reserve_ratio[idx];
4920 present_pages += lower_zone->present_pages;
4921 }
4922 }
4923 }
cb45b0e9
HA
4924
4925 /* update totalreserve_pages */
4926 calculate_totalreserve_pages();
1da177e4
LT
4927}
4928
88ca3b94 4929/**
bc75d33f 4930 * setup_per_zone_wmarks - called when min_free_kbytes changes
bce7394a 4931 * or when memory is hot-{added|removed}
88ca3b94 4932 *
bc75d33f
MK
4933 * Ensures that the watermark[min,low,high] values for each zone are set
4934 * correctly with respect to min_free_kbytes.
1da177e4 4935 */
bc75d33f 4936void setup_per_zone_wmarks(void)
1da177e4
LT
4937{
4938 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4939 unsigned long lowmem_pages = 0;
4940 struct zone *zone;
4941 unsigned long flags;
4942
4943 /* Calculate total number of !ZONE_HIGHMEM pages */
4944 for_each_zone(zone) {
4945 if (!is_highmem(zone))
4946 lowmem_pages += zone->present_pages;
4947 }
4948
4949 for_each_zone(zone) {
ac924c60
AM
4950 u64 tmp;
4951
1125b4e3 4952 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4953 tmp = (u64)pages_min * zone->present_pages;
4954 do_div(tmp, lowmem_pages);
1da177e4
LT
4955 if (is_highmem(zone)) {
4956 /*
669ed175
NP
4957 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4958 * need highmem pages, so cap pages_min to a small
4959 * value here.
4960 *
41858966 4961 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
4962 * deltas controls asynch page reclaim, and so should
4963 * not be capped for highmem.
1da177e4
LT
4964 */
4965 int min_pages;
4966
4967 min_pages = zone->present_pages / 1024;
4968 if (min_pages < SWAP_CLUSTER_MAX)
4969 min_pages = SWAP_CLUSTER_MAX;
4970 if (min_pages > 128)
4971 min_pages = 128;
41858966 4972 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 4973 } else {
669ed175
NP
4974 /*
4975 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4976 * proportionate to the zone's size.
4977 */
41858966 4978 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
4979 }
4980
41858966
MG
4981 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4982 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
56fd56b8 4983 setup_zone_migrate_reserve(zone);
1125b4e3 4984 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4985 }
cb45b0e9
HA
4986
4987 /* update totalreserve_pages */
4988 calculate_totalreserve_pages();
1da177e4
LT
4989}
4990
55a4462a 4991/*
556adecb
RR
4992 * The inactive anon list should be small enough that the VM never has to
4993 * do too much work, but large enough that each inactive page has a chance
4994 * to be referenced again before it is swapped out.
4995 *
4996 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4997 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4998 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4999 * the anonymous pages are kept on the inactive list.
5000 *
5001 * total target max
5002 * memory ratio inactive anon
5003 * -------------------------------------
5004 * 10MB 1 5MB
5005 * 100MB 1 50MB
5006 * 1GB 3 250MB
5007 * 10GB 10 0.9GB
5008 * 100GB 31 3GB
5009 * 1TB 101 10GB
5010 * 10TB 320 32GB
5011 */
96cb4df5 5012void calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5013{
96cb4df5 5014 unsigned int gb, ratio;
556adecb 5015
96cb4df5
MK
5016 /* Zone size in gigabytes */
5017 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5018 if (gb)
556adecb 5019 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5020 else
5021 ratio = 1;
556adecb 5022
96cb4df5
MK
5023 zone->inactive_ratio = ratio;
5024}
556adecb 5025
96cb4df5
MK
5026static void __init setup_per_zone_inactive_ratio(void)
5027{
5028 struct zone *zone;
5029
5030 for_each_zone(zone)
5031 calculate_zone_inactive_ratio(zone);
556adecb
RR
5032}
5033
1da177e4
LT
5034/*
5035 * Initialise min_free_kbytes.
5036 *
5037 * For small machines we want it small (128k min). For large machines
5038 * we want it large (64MB max). But it is not linear, because network
5039 * bandwidth does not increase linearly with machine size. We use
5040 *
5041 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5042 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5043 *
5044 * which yields
5045 *
5046 * 16MB: 512k
5047 * 32MB: 724k
5048 * 64MB: 1024k
5049 * 128MB: 1448k
5050 * 256MB: 2048k
5051 * 512MB: 2896k
5052 * 1024MB: 4096k
5053 * 2048MB: 5792k
5054 * 4096MB: 8192k
5055 * 8192MB: 11584k
5056 * 16384MB: 16384k
5057 */
bc75d33f 5058static int __init init_per_zone_wmark_min(void)
1da177e4
LT
5059{
5060 unsigned long lowmem_kbytes;
5061
5062 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5063
5064 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5065 if (min_free_kbytes < 128)
5066 min_free_kbytes = 128;
5067 if (min_free_kbytes > 65536)
5068 min_free_kbytes = 65536;
bc75d33f 5069 setup_per_zone_wmarks();
1da177e4 5070 setup_per_zone_lowmem_reserve();
556adecb 5071 setup_per_zone_inactive_ratio();
1da177e4
LT
5072 return 0;
5073}
bc75d33f 5074module_init(init_per_zone_wmark_min)
1da177e4
LT
5075
5076/*
5077 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5078 * that we can call two helper functions whenever min_free_kbytes
5079 * changes.
5080 */
5081int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5082 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5083{
8d65af78 5084 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5085 if (write)
bc75d33f 5086 setup_per_zone_wmarks();
1da177e4
LT
5087 return 0;
5088}
5089
9614634f
CL
5090#ifdef CONFIG_NUMA
5091int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5092 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5093{
5094 struct zone *zone;
5095 int rc;
5096
8d65af78 5097 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5098 if (rc)
5099 return rc;
5100
5101 for_each_zone(zone)
8417bba4 5102 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5103 sysctl_min_unmapped_ratio) / 100;
5104 return 0;
5105}
0ff38490
CL
5106
5107int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5108 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5109{
5110 struct zone *zone;
5111 int rc;
5112
8d65af78 5113 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5114 if (rc)
5115 return rc;
5116
5117 for_each_zone(zone)
5118 zone->min_slab_pages = (zone->present_pages *
5119 sysctl_min_slab_ratio) / 100;
5120 return 0;
5121}
9614634f
CL
5122#endif
5123
1da177e4
LT
5124/*
5125 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5126 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5127 * whenever sysctl_lowmem_reserve_ratio changes.
5128 *
5129 * The reserve ratio obviously has absolutely no relation with the
41858966 5130 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5131 * if in function of the boot time zone sizes.
5132 */
5133int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5134 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5135{
8d65af78 5136 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5137 setup_per_zone_lowmem_reserve();
5138 return 0;
5139}
5140
8ad4b1fb
RS
5141/*
5142 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5143 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5144 * can have before it gets flushed back to buddy allocator.
5145 */
5146
5147int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5148 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5149{
5150 struct zone *zone;
5151 unsigned int cpu;
5152 int ret;
5153
8d65af78 5154 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8ad4b1fb
RS
5155 if (!write || (ret == -EINVAL))
5156 return ret;
364df0eb 5157 for_each_populated_zone(zone) {
99dcc3e5 5158 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5159 unsigned long high;
5160 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5161 setup_pagelist_highmark(
5162 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5163 }
5164 }
5165 return 0;
5166}
5167
f034b5d4 5168int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5169
5170#ifdef CONFIG_NUMA
5171static int __init set_hashdist(char *str)
5172{
5173 if (!str)
5174 return 0;
5175 hashdist = simple_strtoul(str, &str, 0);
5176 return 1;
5177}
5178__setup("hashdist=", set_hashdist);
5179#endif
5180
5181/*
5182 * allocate a large system hash table from bootmem
5183 * - it is assumed that the hash table must contain an exact power-of-2
5184 * quantity of entries
5185 * - limit is the number of hash buckets, not the total allocation size
5186 */
5187void *__init alloc_large_system_hash(const char *tablename,
5188 unsigned long bucketsize,
5189 unsigned long numentries,
5190 int scale,
5191 int flags,
5192 unsigned int *_hash_shift,
5193 unsigned int *_hash_mask,
5194 unsigned long limit)
5195{
5196 unsigned long long max = limit;
5197 unsigned long log2qty, size;
5198 void *table = NULL;
5199
5200 /* allow the kernel cmdline to have a say */
5201 if (!numentries) {
5202 /* round applicable memory size up to nearest megabyte */
04903664 5203 numentries = nr_kernel_pages;
1da177e4
LT
5204 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5205 numentries >>= 20 - PAGE_SHIFT;
5206 numentries <<= 20 - PAGE_SHIFT;
5207
5208 /* limit to 1 bucket per 2^scale bytes of low memory */
5209 if (scale > PAGE_SHIFT)
5210 numentries >>= (scale - PAGE_SHIFT);
5211 else
5212 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5213
5214 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5215 if (unlikely(flags & HASH_SMALL)) {
5216 /* Makes no sense without HASH_EARLY */
5217 WARN_ON(!(flags & HASH_EARLY));
5218 if (!(numentries >> *_hash_shift)) {
5219 numentries = 1UL << *_hash_shift;
5220 BUG_ON(!numentries);
5221 }
5222 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5223 numentries = PAGE_SIZE / bucketsize;
1da177e4 5224 }
6e692ed3 5225 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5226
5227 /* limit allocation size to 1/16 total memory by default */
5228 if (max == 0) {
5229 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5230 do_div(max, bucketsize);
5231 }
5232
5233 if (numentries > max)
5234 numentries = max;
5235
f0d1b0b3 5236 log2qty = ilog2(numentries);
1da177e4
LT
5237
5238 do {
5239 size = bucketsize << log2qty;
5240 if (flags & HASH_EARLY)
74768ed8 5241 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5242 else if (hashdist)
5243 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5244 else {
1037b83b
ED
5245 /*
5246 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5247 * some pages at the end of hash table which
5248 * alloc_pages_exact() automatically does
1037b83b 5249 */
264ef8a9 5250 if (get_order(size) < MAX_ORDER) {
a1dd268c 5251 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5252 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5253 }
1da177e4
LT
5254 }
5255 } while (!table && size > PAGE_SIZE && --log2qty);
5256
5257 if (!table)
5258 panic("Failed to allocate %s hash table\n", tablename);
5259
f241e660 5260 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5261 tablename,
f241e660 5262 (1UL << log2qty),
f0d1b0b3 5263 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5264 size);
5265
5266 if (_hash_shift)
5267 *_hash_shift = log2qty;
5268 if (_hash_mask)
5269 *_hash_mask = (1 << log2qty) - 1;
5270
5271 return table;
5272}
a117e66e 5273
835c134e
MG
5274/* Return a pointer to the bitmap storing bits affecting a block of pages */
5275static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5276 unsigned long pfn)
5277{
5278#ifdef CONFIG_SPARSEMEM
5279 return __pfn_to_section(pfn)->pageblock_flags;
5280#else
5281 return zone->pageblock_flags;
5282#endif /* CONFIG_SPARSEMEM */
5283}
5284
5285static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5286{
5287#ifdef CONFIG_SPARSEMEM
5288 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5289 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5290#else
5291 pfn = pfn - zone->zone_start_pfn;
d9c23400 5292 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5293#endif /* CONFIG_SPARSEMEM */
5294}
5295
5296/**
d9c23400 5297 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5298 * @page: The page within the block of interest
5299 * @start_bitidx: The first bit of interest to retrieve
5300 * @end_bitidx: The last bit of interest
5301 * returns pageblock_bits flags
5302 */
5303unsigned long get_pageblock_flags_group(struct page *page,
5304 int start_bitidx, int end_bitidx)
5305{
5306 struct zone *zone;
5307 unsigned long *bitmap;
5308 unsigned long pfn, bitidx;
5309 unsigned long flags = 0;
5310 unsigned long value = 1;
5311
5312 zone = page_zone(page);
5313 pfn = page_to_pfn(page);
5314 bitmap = get_pageblock_bitmap(zone, pfn);
5315 bitidx = pfn_to_bitidx(zone, pfn);
5316
5317 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5318 if (test_bit(bitidx + start_bitidx, bitmap))
5319 flags |= value;
6220ec78 5320
835c134e
MG
5321 return flags;
5322}
5323
5324/**
d9c23400 5325 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5326 * @page: The page within the block of interest
5327 * @start_bitidx: The first bit of interest
5328 * @end_bitidx: The last bit of interest
5329 * @flags: The flags to set
5330 */
5331void set_pageblock_flags_group(struct page *page, unsigned long flags,
5332 int start_bitidx, int end_bitidx)
5333{
5334 struct zone *zone;
5335 unsigned long *bitmap;
5336 unsigned long pfn, bitidx;
5337 unsigned long value = 1;
5338
5339 zone = page_zone(page);
5340 pfn = page_to_pfn(page);
5341 bitmap = get_pageblock_bitmap(zone, pfn);
5342 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5343 VM_BUG_ON(pfn < zone->zone_start_pfn);
5344 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5345
5346 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5347 if (flags & value)
5348 __set_bit(bitidx + start_bitidx, bitmap);
5349 else
5350 __clear_bit(bitidx + start_bitidx, bitmap);
5351}
a5d76b54
KH
5352
5353/*
5354 * This is designed as sub function...plz see page_isolation.c also.
5355 * set/clear page block's type to be ISOLATE.
5356 * page allocater never alloc memory from ISOLATE block.
5357 */
5358
49ac8255
KH
5359static int
5360__count_immobile_pages(struct zone *zone, struct page *page, int count)
5361{
5362 unsigned long pfn, iter, found;
5363 /*
5364 * For avoiding noise data, lru_add_drain_all() should be called
5365 * If ZONE_MOVABLE, the zone never contains immobile pages
5366 */
5367 if (zone_idx(zone) == ZONE_MOVABLE)
5368 return true;
5369
5370 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5371 return true;
5372
5373 pfn = page_to_pfn(page);
5374 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5375 unsigned long check = pfn + iter;
5376
5377 if (!pfn_valid_within(check)) {
5378 iter++;
5379 continue;
5380 }
5381 page = pfn_to_page(check);
5382 if (!page_count(page)) {
5383 if (PageBuddy(page))
5384 iter += (1 << page_order(page)) - 1;
5385 continue;
5386 }
5387 if (!PageLRU(page))
5388 found++;
5389 /*
5390 * If there are RECLAIMABLE pages, we need to check it.
5391 * But now, memory offline itself doesn't call shrink_slab()
5392 * and it still to be fixed.
5393 */
5394 /*
5395 * If the page is not RAM, page_count()should be 0.
5396 * we don't need more check. This is an _used_ not-movable page.
5397 *
5398 * The problematic thing here is PG_reserved pages. PG_reserved
5399 * is set to both of a memory hole page and a _used_ kernel
5400 * page at boot.
5401 */
5402 if (found > count)
5403 return false;
5404 }
5405 return true;
5406}
5407
5408bool is_pageblock_removable_nolock(struct page *page)
5409{
5410 struct zone *zone = page_zone(page);
5411 return __count_immobile_pages(zone, page, 0);
5412}
5413
a5d76b54
KH
5414int set_migratetype_isolate(struct page *page)
5415{
5416 struct zone *zone;
49ac8255 5417 unsigned long flags, pfn;
925cc71e
RJ
5418 struct memory_isolate_notify arg;
5419 int notifier_ret;
a5d76b54 5420 int ret = -EBUSY;
8e7e40d9 5421 int zone_idx;
a5d76b54
KH
5422
5423 zone = page_zone(page);
8e7e40d9 5424 zone_idx = zone_idx(zone);
925cc71e 5425
a5d76b54 5426 spin_lock_irqsave(&zone->lock, flags);
925cc71e
RJ
5427
5428 pfn = page_to_pfn(page);
5429 arg.start_pfn = pfn;
5430 arg.nr_pages = pageblock_nr_pages;
5431 arg.pages_found = 0;
5432
a5d76b54 5433 /*
925cc71e
RJ
5434 * It may be possible to isolate a pageblock even if the
5435 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5436 * notifier chain is used by balloon drivers to return the
5437 * number of pages in a range that are held by the balloon
5438 * driver to shrink memory. If all the pages are accounted for
5439 * by balloons, are free, or on the LRU, isolation can continue.
5440 * Later, for example, when memory hotplug notifier runs, these
5441 * pages reported as "can be isolated" should be isolated(freed)
5442 * by the balloon driver through the memory notifier chain.
a5d76b54 5443 */
925cc71e
RJ
5444 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5445 notifier_ret = notifier_to_errno(notifier_ret);
4b20477f 5446 if (notifier_ret)
a5d76b54 5447 goto out;
49ac8255
KH
5448 /*
5449 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5450 * We just check MOVABLE pages.
5451 */
5452 if (__count_immobile_pages(zone, page, arg.pages_found))
925cc71e
RJ
5453 ret = 0;
5454
49ac8255
KH
5455 /*
5456 * immobile means "not-on-lru" paes. If immobile is larger than
5457 * removable-by-driver pages reported by notifier, we'll fail.
5458 */
5459
a5d76b54 5460out:
925cc71e
RJ
5461 if (!ret) {
5462 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5463 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5464 }
5465
a5d76b54
KH
5466 spin_unlock_irqrestore(&zone->lock, flags);
5467 if (!ret)
9f8f2172 5468 drain_all_pages();
a5d76b54
KH
5469 return ret;
5470}
5471
5472void unset_migratetype_isolate(struct page *page)
5473{
5474 struct zone *zone;
5475 unsigned long flags;
5476 zone = page_zone(page);
5477 spin_lock_irqsave(&zone->lock, flags);
5478 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5479 goto out;
5480 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5481 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5482out:
5483 spin_unlock_irqrestore(&zone->lock, flags);
5484}
0c0e6195
KH
5485
5486#ifdef CONFIG_MEMORY_HOTREMOVE
5487/*
5488 * All pages in the range must be isolated before calling this.
5489 */
5490void
5491__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5492{
5493 struct page *page;
5494 struct zone *zone;
5495 int order, i;
5496 unsigned long pfn;
5497 unsigned long flags;
5498 /* find the first valid pfn */
5499 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5500 if (pfn_valid(pfn))
5501 break;
5502 if (pfn == end_pfn)
5503 return;
5504 zone = page_zone(pfn_to_page(pfn));
5505 spin_lock_irqsave(&zone->lock, flags);
5506 pfn = start_pfn;
5507 while (pfn < end_pfn) {
5508 if (!pfn_valid(pfn)) {
5509 pfn++;
5510 continue;
5511 }
5512 page = pfn_to_page(pfn);
5513 BUG_ON(page_count(page));
5514 BUG_ON(!PageBuddy(page));
5515 order = page_order(page);
5516#ifdef CONFIG_DEBUG_VM
5517 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5518 pfn, 1 << order, end_pfn);
5519#endif
5520 list_del(&page->lru);
5521 rmv_page_order(page);
5522 zone->free_area[order].nr_free--;
5523 __mod_zone_page_state(zone, NR_FREE_PAGES,
5524 - (1UL << order));
5525 for (i = 0; i < (1 << order); i++)
5526 SetPageReserved((page+i));
5527 pfn += (1 << order);
5528 }
5529 spin_unlock_irqrestore(&zone->lock, flags);
5530}
5531#endif
8d22ba1b
WF
5532
5533#ifdef CONFIG_MEMORY_FAILURE
5534bool is_free_buddy_page(struct page *page)
5535{
5536 struct zone *zone = page_zone(page);
5537 unsigned long pfn = page_to_pfn(page);
5538 unsigned long flags;
5539 int order;
5540
5541 spin_lock_irqsave(&zone->lock, flags);
5542 for (order = 0; order < MAX_ORDER; order++) {
5543 struct page *page_head = page - (pfn & ((1 << order) - 1));
5544
5545 if (PageBuddy(page_head) && page_order(page_head) >= order)
5546 break;
5547 }
5548 spin_unlock_irqrestore(&zone->lock, flags);
5549
5550 return order < MAX_ORDER;
5551}
5552#endif
718a3821
WF
5553
5554static struct trace_print_flags pageflag_names[] = {
5555 {1UL << PG_locked, "locked" },
5556 {1UL << PG_error, "error" },
5557 {1UL << PG_referenced, "referenced" },
5558 {1UL << PG_uptodate, "uptodate" },
5559 {1UL << PG_dirty, "dirty" },
5560 {1UL << PG_lru, "lru" },
5561 {1UL << PG_active, "active" },
5562 {1UL << PG_slab, "slab" },
5563 {1UL << PG_owner_priv_1, "owner_priv_1" },
5564 {1UL << PG_arch_1, "arch_1" },
5565 {1UL << PG_reserved, "reserved" },
5566 {1UL << PG_private, "private" },
5567 {1UL << PG_private_2, "private_2" },
5568 {1UL << PG_writeback, "writeback" },
5569#ifdef CONFIG_PAGEFLAGS_EXTENDED
5570 {1UL << PG_head, "head" },
5571 {1UL << PG_tail, "tail" },
5572#else
5573 {1UL << PG_compound, "compound" },
5574#endif
5575 {1UL << PG_swapcache, "swapcache" },
5576 {1UL << PG_mappedtodisk, "mappedtodisk" },
5577 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
5578 {1UL << PG_swapbacked, "swapbacked" },
5579 {1UL << PG_unevictable, "unevictable" },
5580#ifdef CONFIG_MMU
5581 {1UL << PG_mlocked, "mlocked" },
5582#endif
5583#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5584 {1UL << PG_uncached, "uncached" },
5585#endif
5586#ifdef CONFIG_MEMORY_FAILURE
5587 {1UL << PG_hwpoison, "hwpoison" },
5588#endif
5589 {-1UL, NULL },
5590};
5591
5592static void dump_page_flags(unsigned long flags)
5593{
5594 const char *delim = "";
5595 unsigned long mask;
5596 int i;
5597
5598 printk(KERN_ALERT "page flags: %#lx(", flags);
5599
5600 /* remove zone id */
5601 flags &= (1UL << NR_PAGEFLAGS) - 1;
5602
5603 for (i = 0; pageflag_names[i].name && flags; i++) {
5604
5605 mask = pageflag_names[i].mask;
5606 if ((flags & mask) != mask)
5607 continue;
5608
5609 flags &= ~mask;
5610 printk("%s%s", delim, pageflag_names[i].name);
5611 delim = "|";
5612 }
5613
5614 /* check for left over flags */
5615 if (flags)
5616 printk("%s%#lx", delim, flags);
5617
5618 printk(")\n");
5619}
5620
5621void dump_page(struct page *page)
5622{
5623 printk(KERN_ALERT
5624 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 5625 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
5626 page->mapping, page->index);
5627 dump_page_flags(page->flags);
5628}