]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/rmap.c
Memory controller: add switch to control what type of pages to limit
[mirror_ubuntu-bionic-kernel.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
1da177e4
LT
39 */
40
41#include <linux/mm.h>
42#include <linux/pagemap.h>
43#include <linux/swap.h>
44#include <linux/swapops.h>
45#include <linux/slab.h>
46#include <linux/init.h>
47#include <linux/rmap.h>
48#include <linux/rcupdate.h>
a48d07af 49#include <linux/module.h>
7de6b805 50#include <linux/kallsyms.h>
8a9f3ccd 51#include <linux/memcontrol.h>
1da177e4
LT
52
53#include <asm/tlbflush.h>
54
fcc234f8 55struct kmem_cache *anon_vma_cachep;
1da177e4 56
1da177e4
LT
57/* This must be called under the mmap_sem. */
58int anon_vma_prepare(struct vm_area_struct *vma)
59{
60 struct anon_vma *anon_vma = vma->anon_vma;
61
62 might_sleep();
63 if (unlikely(!anon_vma)) {
64 struct mm_struct *mm = vma->vm_mm;
65 struct anon_vma *allocated, *locked;
66
67 anon_vma = find_mergeable_anon_vma(vma);
68 if (anon_vma) {
69 allocated = NULL;
70 locked = anon_vma;
71 spin_lock(&locked->lock);
72 } else {
73 anon_vma = anon_vma_alloc();
74 if (unlikely(!anon_vma))
75 return -ENOMEM;
76 allocated = anon_vma;
77 locked = NULL;
78 }
79
80 /* page_table_lock to protect against threads */
81 spin_lock(&mm->page_table_lock);
82 if (likely(!vma->anon_vma)) {
83 vma->anon_vma = anon_vma;
0697212a 84 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
1da177e4
LT
85 allocated = NULL;
86 }
87 spin_unlock(&mm->page_table_lock);
88
89 if (locked)
90 spin_unlock(&locked->lock);
91 if (unlikely(allocated))
92 anon_vma_free(allocated);
93 }
94 return 0;
95}
96
97void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
98{
99 BUG_ON(vma->anon_vma != next->anon_vma);
100 list_del(&next->anon_vma_node);
101}
102
103void __anon_vma_link(struct vm_area_struct *vma)
104{
105 struct anon_vma *anon_vma = vma->anon_vma;
106
30acbaba 107 if (anon_vma)
0697212a 108 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
1da177e4
LT
109}
110
111void anon_vma_link(struct vm_area_struct *vma)
112{
113 struct anon_vma *anon_vma = vma->anon_vma;
114
115 if (anon_vma) {
116 spin_lock(&anon_vma->lock);
0697212a 117 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
1da177e4
LT
118 spin_unlock(&anon_vma->lock);
119 }
120}
121
122void anon_vma_unlink(struct vm_area_struct *vma)
123{
124 struct anon_vma *anon_vma = vma->anon_vma;
125 int empty;
126
127 if (!anon_vma)
128 return;
129
130 spin_lock(&anon_vma->lock);
1da177e4
LT
131 list_del(&vma->anon_vma_node);
132
133 /* We must garbage collect the anon_vma if it's empty */
134 empty = list_empty(&anon_vma->head);
135 spin_unlock(&anon_vma->lock);
136
137 if (empty)
138 anon_vma_free(anon_vma);
139}
140
4ba9b9d0 141static void anon_vma_ctor(struct kmem_cache *cachep, void *data)
1da177e4 142{
a35afb83 143 struct anon_vma *anon_vma = data;
1da177e4 144
a35afb83
CL
145 spin_lock_init(&anon_vma->lock);
146 INIT_LIST_HEAD(&anon_vma->head);
1da177e4
LT
147}
148
149void __init anon_vma_init(void)
150{
151 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 152 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
1da177e4
LT
153}
154
155/*
156 * Getting a lock on a stable anon_vma from a page off the LRU is
157 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
158 */
159static struct anon_vma *page_lock_anon_vma(struct page *page)
160{
34bbd704 161 struct anon_vma *anon_vma;
1da177e4
LT
162 unsigned long anon_mapping;
163
164 rcu_read_lock();
165 anon_mapping = (unsigned long) page->mapping;
166 if (!(anon_mapping & PAGE_MAPPING_ANON))
167 goto out;
168 if (!page_mapped(page))
169 goto out;
170
171 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
172 spin_lock(&anon_vma->lock);
34bbd704 173 return anon_vma;
1da177e4
LT
174out:
175 rcu_read_unlock();
34bbd704
ON
176 return NULL;
177}
178
179static void page_unlock_anon_vma(struct anon_vma *anon_vma)
180{
181 spin_unlock(&anon_vma->lock);
182 rcu_read_unlock();
1da177e4
LT
183}
184
185/*
3ad33b24
LS
186 * At what user virtual address is page expected in @vma?
187 * Returns virtual address or -EFAULT if page's index/offset is not
188 * within the range mapped the @vma.
1da177e4
LT
189 */
190static inline unsigned long
191vma_address(struct page *page, struct vm_area_struct *vma)
192{
193 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
194 unsigned long address;
195
196 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
197 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
3ad33b24 198 /* page should be within @vma mapping range */
1da177e4
LT
199 return -EFAULT;
200 }
201 return address;
202}
203
204/*
205 * At what user virtual address is page expected in vma? checking that the
ee498ed7 206 * page matches the vma: currently only used on anon pages, by unuse_vma;
1da177e4
LT
207 */
208unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
209{
210 if (PageAnon(page)) {
211 if ((void *)vma->anon_vma !=
212 (void *)page->mapping - PAGE_MAPPING_ANON)
213 return -EFAULT;
214 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
215 if (!vma->vm_file ||
216 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
217 return -EFAULT;
218 } else
219 return -EFAULT;
220 return vma_address(page, vma);
221}
222
81b4082d
ND
223/*
224 * Check that @page is mapped at @address into @mm.
225 *
b8072f09 226 * On success returns with pte mapped and locked.
81b4082d 227 */
ceffc078 228pte_t *page_check_address(struct page *page, struct mm_struct *mm,
c0718806 229 unsigned long address, spinlock_t **ptlp)
81b4082d
ND
230{
231 pgd_t *pgd;
232 pud_t *pud;
233 pmd_t *pmd;
234 pte_t *pte;
c0718806 235 spinlock_t *ptl;
81b4082d 236
81b4082d 237 pgd = pgd_offset(mm, address);
c0718806
HD
238 if (!pgd_present(*pgd))
239 return NULL;
240
241 pud = pud_offset(pgd, address);
242 if (!pud_present(*pud))
243 return NULL;
244
245 pmd = pmd_offset(pud, address);
246 if (!pmd_present(*pmd))
247 return NULL;
248
249 pte = pte_offset_map(pmd, address);
250 /* Make a quick check before getting the lock */
251 if (!pte_present(*pte)) {
252 pte_unmap(pte);
253 return NULL;
254 }
255
4c21e2f2 256 ptl = pte_lockptr(mm, pmd);
c0718806
HD
257 spin_lock(ptl);
258 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
259 *ptlp = ptl;
260 return pte;
81b4082d 261 }
c0718806
HD
262 pte_unmap_unlock(pte, ptl);
263 return NULL;
81b4082d
ND
264}
265
1da177e4
LT
266/*
267 * Subfunctions of page_referenced: page_referenced_one called
268 * repeatedly from either page_referenced_anon or page_referenced_file.
269 */
270static int page_referenced_one(struct page *page,
f7b7fd8f 271 struct vm_area_struct *vma, unsigned int *mapcount)
1da177e4
LT
272{
273 struct mm_struct *mm = vma->vm_mm;
274 unsigned long address;
1da177e4 275 pte_t *pte;
c0718806 276 spinlock_t *ptl;
1da177e4
LT
277 int referenced = 0;
278
1da177e4
LT
279 address = vma_address(page, vma);
280 if (address == -EFAULT)
281 goto out;
282
c0718806
HD
283 pte = page_check_address(page, mm, address, &ptl);
284 if (!pte)
285 goto out;
1da177e4 286
5a9bbdcd
HD
287 if (vma->vm_flags & VM_LOCKED) {
288 referenced++;
289 *mapcount = 1; /* break early from loop */
290 } else if (ptep_clear_flush_young(vma, address, pte))
c0718806 291 referenced++;
1da177e4 292
c0718806
HD
293 /* Pretend the page is referenced if the task has the
294 swap token and is in the middle of a page fault. */
f7b7fd8f 295 if (mm != current->mm && has_swap_token(mm) &&
c0718806
HD
296 rwsem_is_locked(&mm->mmap_sem))
297 referenced++;
298
299 (*mapcount)--;
300 pte_unmap_unlock(pte, ptl);
1da177e4
LT
301out:
302 return referenced;
303}
304
f7b7fd8f 305static int page_referenced_anon(struct page *page)
1da177e4
LT
306{
307 unsigned int mapcount;
308 struct anon_vma *anon_vma;
309 struct vm_area_struct *vma;
310 int referenced = 0;
311
312 anon_vma = page_lock_anon_vma(page);
313 if (!anon_vma)
314 return referenced;
315
316 mapcount = page_mapcount(page);
317 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
f7b7fd8f 318 referenced += page_referenced_one(page, vma, &mapcount);
1da177e4
LT
319 if (!mapcount)
320 break;
321 }
34bbd704
ON
322
323 page_unlock_anon_vma(anon_vma);
1da177e4
LT
324 return referenced;
325}
326
327/**
328 * page_referenced_file - referenced check for object-based rmap
329 * @page: the page we're checking references on.
330 *
331 * For an object-based mapped page, find all the places it is mapped and
332 * check/clear the referenced flag. This is done by following the page->mapping
333 * pointer, then walking the chain of vmas it holds. It returns the number
334 * of references it found.
335 *
336 * This function is only called from page_referenced for object-based pages.
337 */
f7b7fd8f 338static int page_referenced_file(struct page *page)
1da177e4
LT
339{
340 unsigned int mapcount;
341 struct address_space *mapping = page->mapping;
342 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
343 struct vm_area_struct *vma;
344 struct prio_tree_iter iter;
345 int referenced = 0;
346
347 /*
348 * The caller's checks on page->mapping and !PageAnon have made
349 * sure that this is a file page: the check for page->mapping
350 * excludes the case just before it gets set on an anon page.
351 */
352 BUG_ON(PageAnon(page));
353
354 /*
355 * The page lock not only makes sure that page->mapping cannot
356 * suddenly be NULLified by truncation, it makes sure that the
357 * structure at mapping cannot be freed and reused yet,
358 * so we can safely take mapping->i_mmap_lock.
359 */
360 BUG_ON(!PageLocked(page));
361
362 spin_lock(&mapping->i_mmap_lock);
363
364 /*
365 * i_mmap_lock does not stabilize mapcount at all, but mapcount
366 * is more likely to be accurate if we note it after spinning.
367 */
368 mapcount = page_mapcount(page);
369
370 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
371 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
372 == (VM_LOCKED|VM_MAYSHARE)) {
373 referenced++;
374 break;
375 }
f7b7fd8f 376 referenced += page_referenced_one(page, vma, &mapcount);
1da177e4
LT
377 if (!mapcount)
378 break;
379 }
380
381 spin_unlock(&mapping->i_mmap_lock);
382 return referenced;
383}
384
385/**
386 * page_referenced - test if the page was referenced
387 * @page: the page to test
388 * @is_locked: caller holds lock on the page
389 *
390 * Quick test_and_clear_referenced for all mappings to a page,
391 * returns the number of ptes which referenced the page.
392 */
f7b7fd8f 393int page_referenced(struct page *page, int is_locked)
1da177e4
LT
394{
395 int referenced = 0;
396
1da177e4
LT
397 if (page_test_and_clear_young(page))
398 referenced++;
399
400 if (TestClearPageReferenced(page))
401 referenced++;
402
403 if (page_mapped(page) && page->mapping) {
404 if (PageAnon(page))
f7b7fd8f 405 referenced += page_referenced_anon(page);
1da177e4 406 else if (is_locked)
f7b7fd8f 407 referenced += page_referenced_file(page);
1da177e4
LT
408 else if (TestSetPageLocked(page))
409 referenced++;
410 else {
411 if (page->mapping)
f7b7fd8f 412 referenced += page_referenced_file(page);
1da177e4
LT
413 unlock_page(page);
414 }
415 }
416 return referenced;
417}
418
d08b3851
PZ
419static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
420{
421 struct mm_struct *mm = vma->vm_mm;
422 unsigned long address;
c2fda5fe 423 pte_t *pte;
d08b3851
PZ
424 spinlock_t *ptl;
425 int ret = 0;
426
427 address = vma_address(page, vma);
428 if (address == -EFAULT)
429 goto out;
430
431 pte = page_check_address(page, mm, address, &ptl);
432 if (!pte)
433 goto out;
434
c2fda5fe
PZ
435 if (pte_dirty(*pte) || pte_write(*pte)) {
436 pte_t entry;
d08b3851 437
c2fda5fe
PZ
438 flush_cache_page(vma, address, pte_pfn(*pte));
439 entry = ptep_clear_flush(vma, address, pte);
440 entry = pte_wrprotect(entry);
441 entry = pte_mkclean(entry);
d6e88e67 442 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
443 ret = 1;
444 }
d08b3851 445
d08b3851
PZ
446 pte_unmap_unlock(pte, ptl);
447out:
448 return ret;
449}
450
451static int page_mkclean_file(struct address_space *mapping, struct page *page)
452{
453 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
454 struct vm_area_struct *vma;
455 struct prio_tree_iter iter;
456 int ret = 0;
457
458 BUG_ON(PageAnon(page));
459
460 spin_lock(&mapping->i_mmap_lock);
461 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
462 if (vma->vm_flags & VM_SHARED)
463 ret += page_mkclean_one(page, vma);
464 }
465 spin_unlock(&mapping->i_mmap_lock);
466 return ret;
467}
468
469int page_mkclean(struct page *page)
470{
471 int ret = 0;
472
473 BUG_ON(!PageLocked(page));
474
475 if (page_mapped(page)) {
476 struct address_space *mapping = page_mapping(page);
ce7e9fae 477 if (mapping) {
d08b3851 478 ret = page_mkclean_file(mapping, page);
ce7e9fae
CB
479 if (page_test_dirty(page)) {
480 page_clear_dirty(page);
481 ret = 1;
482 }
6c210482 483 }
d08b3851
PZ
484 }
485
486 return ret;
487}
60b59bea 488EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 489
9617d95e
NP
490/**
491 * page_set_anon_rmap - setup new anonymous rmap
492 * @page: the page to add the mapping to
493 * @vma: the vm area in which the mapping is added
494 * @address: the user virtual address mapped
495 */
496static void __page_set_anon_rmap(struct page *page,
497 struct vm_area_struct *vma, unsigned long address)
498{
499 struct anon_vma *anon_vma = vma->anon_vma;
500
501 BUG_ON(!anon_vma);
502 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
503 page->mapping = (struct address_space *) anon_vma;
504
505 page->index = linear_page_index(vma, address);
506
a74609fa
NP
507 /*
508 * nr_mapped state can be updated without turning off
509 * interrupts because it is not modified via interrupt.
510 */
f3dbd344 511 __inc_zone_page_state(page, NR_ANON_PAGES);
9617d95e
NP
512}
513
c97a9e10
NP
514/**
515 * page_set_anon_rmap - sanity check anonymous rmap addition
516 * @page: the page to add the mapping to
517 * @vma: the vm area in which the mapping is added
518 * @address: the user virtual address mapped
519 */
520static void __page_check_anon_rmap(struct page *page,
521 struct vm_area_struct *vma, unsigned long address)
522{
523#ifdef CONFIG_DEBUG_VM
524 /*
525 * The page's anon-rmap details (mapping and index) are guaranteed to
526 * be set up correctly at this point.
527 *
528 * We have exclusion against page_add_anon_rmap because the caller
529 * always holds the page locked, except if called from page_dup_rmap,
530 * in which case the page is already known to be setup.
531 *
532 * We have exclusion against page_add_new_anon_rmap because those pages
533 * are initially only visible via the pagetables, and the pte is locked
534 * over the call to page_add_new_anon_rmap.
535 */
536 struct anon_vma *anon_vma = vma->anon_vma;
537 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
538 BUG_ON(page->mapping != (struct address_space *)anon_vma);
539 BUG_ON(page->index != linear_page_index(vma, address));
540#endif
541}
542
1da177e4
LT
543/**
544 * page_add_anon_rmap - add pte mapping to an anonymous page
545 * @page: the page to add the mapping to
546 * @vma: the vm area in which the mapping is added
547 * @address: the user virtual address mapped
548 *
c97a9e10 549 * The caller needs to hold the pte lock and the page must be locked.
1da177e4
LT
550 */
551void page_add_anon_rmap(struct page *page,
552 struct vm_area_struct *vma, unsigned long address)
553{
c97a9e10
NP
554 VM_BUG_ON(!PageLocked(page));
555 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
9617d95e
NP
556 if (atomic_inc_and_test(&page->_mapcount))
557 __page_set_anon_rmap(page, vma, address);
8a9f3ccd 558 else {
c97a9e10 559 __page_check_anon_rmap(page, vma, address);
8a9f3ccd
BS
560 /*
561 * We unconditionally charged during prepare, we uncharge here
562 * This takes care of balancing the reference counts
563 */
564 mem_cgroup_uncharge_page(page);
565 }
1da177e4
LT
566}
567
9617d95e
NP
568/*
569 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
570 * @page: the page to add the mapping to
571 * @vma: the vm area in which the mapping is added
572 * @address: the user virtual address mapped
573 *
574 * Same as page_add_anon_rmap but must only be called on *new* pages.
575 * This means the inc-and-test can be bypassed.
c97a9e10 576 * Page does not have to be locked.
9617d95e
NP
577 */
578void page_add_new_anon_rmap(struct page *page,
579 struct vm_area_struct *vma, unsigned long address)
580{
c97a9e10 581 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
9617d95e
NP
582 atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
583 __page_set_anon_rmap(page, vma, address);
584}
585
1da177e4
LT
586/**
587 * page_add_file_rmap - add pte mapping to a file page
588 * @page: the page to add the mapping to
589 *
b8072f09 590 * The caller needs to hold the pte lock.
1da177e4
LT
591 */
592void page_add_file_rmap(struct page *page)
593{
1da177e4 594 if (atomic_inc_and_test(&page->_mapcount))
65ba55f5 595 __inc_zone_page_state(page, NR_FILE_MAPPED);
8a9f3ccd
BS
596 else
597 /*
598 * We unconditionally charged during prepare, we uncharge here
599 * This takes care of balancing the reference counts
600 */
601 mem_cgroup_uncharge_page(page);
1da177e4
LT
602}
603
c97a9e10
NP
604#ifdef CONFIG_DEBUG_VM
605/**
606 * page_dup_rmap - duplicate pte mapping to a page
607 * @page: the page to add the mapping to
608 *
609 * For copy_page_range only: minimal extract from page_add_file_rmap /
610 * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
611 * quicker.
612 *
613 * The caller needs to hold the pte lock.
614 */
615void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
616{
617 BUG_ON(page_mapcount(page) == 0);
618 if (PageAnon(page))
619 __page_check_anon_rmap(page, vma, address);
620 atomic_inc(&page->_mapcount);
621}
622#endif
623
1da177e4
LT
624/**
625 * page_remove_rmap - take down pte mapping from a page
626 * @page: page to remove mapping from
627 *
b8072f09 628 * The caller needs to hold the pte lock.
1da177e4 629 */
7de6b805 630void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
1da177e4 631{
1da177e4 632 if (atomic_add_negative(-1, &page->_mapcount)) {
b7ab795b 633 if (unlikely(page_mapcount(page) < 0)) {
ef2bf0dc 634 printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
7de6b805 635 printk (KERN_EMERG " page pfn = %lx\n", page_to_pfn(page));
ef2bf0dc
DJ
636 printk (KERN_EMERG " page->flags = %lx\n", page->flags);
637 printk (KERN_EMERG " page->count = %x\n", page_count(page));
638 printk (KERN_EMERG " page->mapping = %p\n", page->mapping);
7de6b805 639 print_symbol (KERN_EMERG " vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
54cb8821 640 if (vma->vm_ops) {
7de6b805 641 print_symbol (KERN_EMERG " vma->vm_ops->nopage = %s\n", (unsigned long)vma->vm_ops->nopage);
54cb8821
NP
642 print_symbol (KERN_EMERG " vma->vm_ops->fault = %s\n", (unsigned long)vma->vm_ops->fault);
643 }
7de6b805
NP
644 if (vma->vm_file && vma->vm_file->f_op)
645 print_symbol (KERN_EMERG " vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
b16bc64d 646 BUG();
ef2bf0dc 647 }
b16bc64d 648
1da177e4
LT
649 /*
650 * It would be tidy to reset the PageAnon mapping here,
651 * but that might overwrite a racing page_add_anon_rmap
652 * which increments mapcount after us but sets mapping
653 * before us: so leave the reset to free_hot_cold_page,
654 * and remember that it's only reliable while mapped.
655 * Leaving it set also helps swapoff to reinstate ptes
656 * faster for those pages still in swapcache.
657 */
6c210482
MS
658 if (page_test_dirty(page)) {
659 page_clear_dirty(page);
1da177e4 660 set_page_dirty(page);
6c210482 661 }
8a9f3ccd
BS
662 mem_cgroup_uncharge_page(page);
663
f3dbd344
CL
664 __dec_zone_page_state(page,
665 PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
1da177e4
LT
666 }
667}
668
669/*
670 * Subfunctions of try_to_unmap: try_to_unmap_one called
671 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
672 */
a48d07af 673static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
7352349a 674 int migration)
1da177e4
LT
675{
676 struct mm_struct *mm = vma->vm_mm;
677 unsigned long address;
1da177e4
LT
678 pte_t *pte;
679 pte_t pteval;
c0718806 680 spinlock_t *ptl;
1da177e4
LT
681 int ret = SWAP_AGAIN;
682
1da177e4
LT
683 address = vma_address(page, vma);
684 if (address == -EFAULT)
685 goto out;
686
c0718806
HD
687 pte = page_check_address(page, mm, address, &ptl);
688 if (!pte)
81b4082d 689 goto out;
1da177e4
LT
690
691 /*
692 * If the page is mlock()d, we cannot swap it out.
693 * If it's recently referenced (perhaps page_referenced
694 * skipped over this mm) then we should reactivate it.
695 */
e6a1530d
CL
696 if (!migration && ((vma->vm_flags & VM_LOCKED) ||
697 (ptep_clear_flush_young(vma, address, pte)))) {
1da177e4
LT
698 ret = SWAP_FAIL;
699 goto out_unmap;
700 }
701
1da177e4
LT
702 /* Nuke the page table entry. */
703 flush_cache_page(vma, address, page_to_pfn(page));
704 pteval = ptep_clear_flush(vma, address, pte);
705
706 /* Move the dirty bit to the physical page now the pte is gone. */
707 if (pte_dirty(pteval))
708 set_page_dirty(page);
709
365e9c87
HD
710 /* Update high watermark before we lower rss */
711 update_hiwater_rss(mm);
712
1da177e4 713 if (PageAnon(page)) {
4c21e2f2 714 swp_entry_t entry = { .val = page_private(page) };
0697212a
CL
715
716 if (PageSwapCache(page)) {
717 /*
718 * Store the swap location in the pte.
719 * See handle_pte_fault() ...
720 */
721 swap_duplicate(entry);
722 if (list_empty(&mm->mmlist)) {
723 spin_lock(&mmlist_lock);
724 if (list_empty(&mm->mmlist))
725 list_add(&mm->mmlist, &init_mm.mmlist);
726 spin_unlock(&mmlist_lock);
727 }
442c9137 728 dec_mm_counter(mm, anon_rss);
04e62a29 729#ifdef CONFIG_MIGRATION
0697212a
CL
730 } else {
731 /*
732 * Store the pfn of the page in a special migration
733 * pte. do_swap_page() will wait until the migration
734 * pte is removed and then restart fault handling.
735 */
736 BUG_ON(!migration);
737 entry = make_migration_entry(page, pte_write(pteval));
04e62a29 738#endif
1da177e4
LT
739 }
740 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
741 BUG_ON(pte_file(*pte));
4294621f 742 } else
04e62a29
CL
743#ifdef CONFIG_MIGRATION
744 if (migration) {
745 /* Establish migration entry for a file page */
746 swp_entry_t entry;
747 entry = make_migration_entry(page, pte_write(pteval));
748 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
749 } else
750#endif
4294621f 751 dec_mm_counter(mm, file_rss);
1da177e4 752
04e62a29 753
7de6b805 754 page_remove_rmap(page, vma);
1da177e4
LT
755 page_cache_release(page);
756
757out_unmap:
c0718806 758 pte_unmap_unlock(pte, ptl);
1da177e4
LT
759out:
760 return ret;
761}
762
763/*
764 * objrmap doesn't work for nonlinear VMAs because the assumption that
765 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
766 * Consequently, given a particular page and its ->index, we cannot locate the
767 * ptes which are mapping that page without an exhaustive linear search.
768 *
769 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
770 * maps the file to which the target page belongs. The ->vm_private_data field
771 * holds the current cursor into that scan. Successive searches will circulate
772 * around the vma's virtual address space.
773 *
774 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
775 * more scanning pressure is placed against them as well. Eventually pages
776 * will become fully unmapped and are eligible for eviction.
777 *
778 * For very sparsely populated VMAs this is a little inefficient - chances are
779 * there there won't be many ptes located within the scan cluster. In this case
780 * maybe we could scan further - to the end of the pte page, perhaps.
781 */
782#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
783#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
784
785static void try_to_unmap_cluster(unsigned long cursor,
786 unsigned int *mapcount, struct vm_area_struct *vma)
787{
788 struct mm_struct *mm = vma->vm_mm;
789 pgd_t *pgd;
790 pud_t *pud;
791 pmd_t *pmd;
c0718806 792 pte_t *pte;
1da177e4 793 pte_t pteval;
c0718806 794 spinlock_t *ptl;
1da177e4
LT
795 struct page *page;
796 unsigned long address;
797 unsigned long end;
1da177e4 798
1da177e4
LT
799 address = (vma->vm_start + cursor) & CLUSTER_MASK;
800 end = address + CLUSTER_SIZE;
801 if (address < vma->vm_start)
802 address = vma->vm_start;
803 if (end > vma->vm_end)
804 end = vma->vm_end;
805
806 pgd = pgd_offset(mm, address);
807 if (!pgd_present(*pgd))
c0718806 808 return;
1da177e4
LT
809
810 pud = pud_offset(pgd, address);
811 if (!pud_present(*pud))
c0718806 812 return;
1da177e4
LT
813
814 pmd = pmd_offset(pud, address);
815 if (!pmd_present(*pmd))
c0718806
HD
816 return;
817
818 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 819
365e9c87
HD
820 /* Update high watermark before we lower rss */
821 update_hiwater_rss(mm);
822
c0718806 823 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
824 if (!pte_present(*pte))
825 continue;
6aab341e
LT
826 page = vm_normal_page(vma, address, *pte);
827 BUG_ON(!page || PageAnon(page));
1da177e4
LT
828
829 if (ptep_clear_flush_young(vma, address, pte))
830 continue;
831
832 /* Nuke the page table entry. */
eca35133 833 flush_cache_page(vma, address, pte_pfn(*pte));
1da177e4
LT
834 pteval = ptep_clear_flush(vma, address, pte);
835
836 /* If nonlinear, store the file page offset in the pte. */
837 if (page->index != linear_page_index(vma, address))
838 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
839
840 /* Move the dirty bit to the physical page now the pte is gone. */
841 if (pte_dirty(pteval))
842 set_page_dirty(page);
843
7de6b805 844 page_remove_rmap(page, vma);
1da177e4 845 page_cache_release(page);
4294621f 846 dec_mm_counter(mm, file_rss);
1da177e4
LT
847 (*mapcount)--;
848 }
c0718806 849 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
850}
851
7352349a 852static int try_to_unmap_anon(struct page *page, int migration)
1da177e4
LT
853{
854 struct anon_vma *anon_vma;
855 struct vm_area_struct *vma;
856 int ret = SWAP_AGAIN;
857
858 anon_vma = page_lock_anon_vma(page);
859 if (!anon_vma)
860 return ret;
861
862 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
7352349a 863 ret = try_to_unmap_one(page, vma, migration);
1da177e4
LT
864 if (ret == SWAP_FAIL || !page_mapped(page))
865 break;
866 }
34bbd704
ON
867
868 page_unlock_anon_vma(anon_vma);
1da177e4
LT
869 return ret;
870}
871
872/**
873 * try_to_unmap_file - unmap file page using the object-based rmap method
874 * @page: the page to unmap
875 *
876 * Find all the mappings of a page using the mapping pointer and the vma chains
877 * contained in the address_space struct it points to.
878 *
879 * This function is only called from try_to_unmap for object-based pages.
880 */
7352349a 881static int try_to_unmap_file(struct page *page, int migration)
1da177e4
LT
882{
883 struct address_space *mapping = page->mapping;
884 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
885 struct vm_area_struct *vma;
886 struct prio_tree_iter iter;
887 int ret = SWAP_AGAIN;
888 unsigned long cursor;
889 unsigned long max_nl_cursor = 0;
890 unsigned long max_nl_size = 0;
891 unsigned int mapcount;
892
893 spin_lock(&mapping->i_mmap_lock);
894 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
7352349a 895 ret = try_to_unmap_one(page, vma, migration);
1da177e4
LT
896 if (ret == SWAP_FAIL || !page_mapped(page))
897 goto out;
898 }
899
900 if (list_empty(&mapping->i_mmap_nonlinear))
901 goto out;
902
903 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
904 shared.vm_set.list) {
e6a1530d 905 if ((vma->vm_flags & VM_LOCKED) && !migration)
1da177e4
LT
906 continue;
907 cursor = (unsigned long) vma->vm_private_data;
908 if (cursor > max_nl_cursor)
909 max_nl_cursor = cursor;
910 cursor = vma->vm_end - vma->vm_start;
911 if (cursor > max_nl_size)
912 max_nl_size = cursor;
913 }
914
915 if (max_nl_size == 0) { /* any nonlinears locked or reserved */
916 ret = SWAP_FAIL;
917 goto out;
918 }
919
920 /*
921 * We don't try to search for this page in the nonlinear vmas,
922 * and page_referenced wouldn't have found it anyway. Instead
923 * just walk the nonlinear vmas trying to age and unmap some.
924 * The mapcount of the page we came in with is irrelevant,
925 * but even so use it as a guide to how hard we should try?
926 */
927 mapcount = page_mapcount(page);
928 if (!mapcount)
929 goto out;
930 cond_resched_lock(&mapping->i_mmap_lock);
931
932 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
933 if (max_nl_cursor == 0)
934 max_nl_cursor = CLUSTER_SIZE;
935
936 do {
937 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
938 shared.vm_set.list) {
e6a1530d 939 if ((vma->vm_flags & VM_LOCKED) && !migration)
1da177e4
LT
940 continue;
941 cursor = (unsigned long) vma->vm_private_data;
839b9685 942 while ( cursor < max_nl_cursor &&
1da177e4
LT
943 cursor < vma->vm_end - vma->vm_start) {
944 try_to_unmap_cluster(cursor, &mapcount, vma);
945 cursor += CLUSTER_SIZE;
946 vma->vm_private_data = (void *) cursor;
947 if ((int)mapcount <= 0)
948 goto out;
949 }
950 vma->vm_private_data = (void *) max_nl_cursor;
951 }
952 cond_resched_lock(&mapping->i_mmap_lock);
953 max_nl_cursor += CLUSTER_SIZE;
954 } while (max_nl_cursor <= max_nl_size);
955
956 /*
957 * Don't loop forever (perhaps all the remaining pages are
958 * in locked vmas). Reset cursor on all unreserved nonlinear
959 * vmas, now forgetting on which ones it had fallen behind.
960 */
101d2be7
HD
961 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
962 vma->vm_private_data = NULL;
1da177e4
LT
963out:
964 spin_unlock(&mapping->i_mmap_lock);
965 return ret;
966}
967
968/**
969 * try_to_unmap - try to remove all page table mappings to a page
970 * @page: the page to get unmapped
971 *
972 * Tries to remove all the page table entries which are mapping this
973 * page, used in the pageout path. Caller must hold the page lock.
974 * Return values are:
975 *
976 * SWAP_SUCCESS - we succeeded in removing all mappings
977 * SWAP_AGAIN - we missed a mapping, try again later
978 * SWAP_FAIL - the page is unswappable
979 */
7352349a 980int try_to_unmap(struct page *page, int migration)
1da177e4
LT
981{
982 int ret;
983
1da177e4
LT
984 BUG_ON(!PageLocked(page));
985
986 if (PageAnon(page))
7352349a 987 ret = try_to_unmap_anon(page, migration);
1da177e4 988 else
7352349a 989 ret = try_to_unmap_file(page, migration);
1da177e4
LT
990
991 if (!page_mapped(page))
992 ret = SWAP_SUCCESS;
993 return ret;
994}
81b4082d 995