]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/slab_common.c
slab: link memcg kmem_caches on their associated memory cgroup
[mirror_ubuntu-artful-kernel.git] / mm / slab_common.c
CommitLineData
039363f3
CL
1/*
2 * Slab allocator functions that are independent of the allocator strategy
3 *
4 * (C) 2012 Christoph Lameter <cl@linux.com>
5 */
6#include <linux/slab.h>
7
8#include <linux/mm.h>
9#include <linux/poison.h>
10#include <linux/interrupt.h>
11#include <linux/memory.h>
12#include <linux/compiler.h>
13#include <linux/module.h>
20cea968
CL
14#include <linux/cpu.h>
15#include <linux/uaccess.h>
b7454ad3
GC
16#include <linux/seq_file.h>
17#include <linux/proc_fs.h>
039363f3
CL
18#include <asm/cacheflush.h>
19#include <asm/tlbflush.h>
20#include <asm/page.h>
2633d7a0 21#include <linux/memcontrol.h>
928cec9c
AR
22
23#define CREATE_TRACE_POINTS
f1b6eb6e 24#include <trace/events/kmem.h>
039363f3 25
97d06609
CL
26#include "slab.h"
27
28enum slab_state slab_state;
18004c5d
CL
29LIST_HEAD(slab_caches);
30DEFINE_MUTEX(slab_mutex);
9b030cb8 31struct kmem_cache *kmem_cache;
97d06609 32
657dc2f9
TH
33static LIST_HEAD(slab_caches_to_rcu_destroy);
34static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
35static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
36 slab_caches_to_rcu_destroy_workfn);
37
423c929c
JK
38/*
39 * Set of flags that will prevent slab merging
40 */
41#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
42 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
7ed2f9e6 43 SLAB_FAILSLAB | SLAB_KASAN)
423c929c 44
230e9fc2
VD
45#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
46 SLAB_NOTRACK | SLAB_ACCOUNT)
423c929c
JK
47
48/*
49 * Merge control. If this is set then no merging of slab caches will occur.
50 * (Could be removed. This was introduced to pacify the merge skeptics.)
51 */
52static int slab_nomerge;
53
54static int __init setup_slab_nomerge(char *str)
55{
56 slab_nomerge = 1;
57 return 1;
58}
59
60#ifdef CONFIG_SLUB
61__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
62#endif
63
64__setup("slab_nomerge", setup_slab_nomerge);
65
07f361b2
JK
66/*
67 * Determine the size of a slab object
68 */
69unsigned int kmem_cache_size(struct kmem_cache *s)
70{
71 return s->object_size;
72}
73EXPORT_SYMBOL(kmem_cache_size);
74
77be4b13 75#ifdef CONFIG_DEBUG_VM
794b1248 76static int kmem_cache_sanity_check(const char *name, size_t size)
039363f3
CL
77{
78 struct kmem_cache *s = NULL;
79
039363f3
CL
80 if (!name || in_interrupt() || size < sizeof(void *) ||
81 size > KMALLOC_MAX_SIZE) {
77be4b13
SK
82 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
83 return -EINVAL;
039363f3 84 }
b920536a 85
20cea968
CL
86 list_for_each_entry(s, &slab_caches, list) {
87 char tmp;
88 int res;
89
90 /*
91 * This happens when the module gets unloaded and doesn't
92 * destroy its slab cache and no-one else reuses the vmalloc
93 * area of the module. Print a warning.
94 */
95 res = probe_kernel_address(s->name, tmp);
96 if (res) {
77be4b13 97 pr_err("Slab cache with size %d has lost its name\n",
20cea968
CL
98 s->object_size);
99 continue;
100 }
20cea968
CL
101 }
102
103 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
104 return 0;
105}
106#else
794b1248 107static inline int kmem_cache_sanity_check(const char *name, size_t size)
77be4b13
SK
108{
109 return 0;
110}
20cea968
CL
111#endif
112
484748f0
CL
113void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
114{
115 size_t i;
116
ca257195
JDB
117 for (i = 0; i < nr; i++) {
118 if (s)
119 kmem_cache_free(s, p[i]);
120 else
121 kfree(p[i]);
122 }
484748f0
CL
123}
124
865762a8 125int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
484748f0
CL
126 void **p)
127{
128 size_t i;
129
130 for (i = 0; i < nr; i++) {
131 void *x = p[i] = kmem_cache_alloc(s, flags);
132 if (!x) {
133 __kmem_cache_free_bulk(s, i, p);
865762a8 134 return 0;
484748f0
CL
135 }
136 }
865762a8 137 return i;
484748f0
CL
138}
139
127424c8 140#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
f7ce3190 141void slab_init_memcg_params(struct kmem_cache *s)
33a690c4 142{
9eeadc8b 143 s->memcg_params.root_cache = NULL;
f7ce3190 144 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
9eeadc8b 145 INIT_LIST_HEAD(&s->memcg_params.children);
f7ce3190
VD
146}
147
148static int init_memcg_params(struct kmem_cache *s,
149 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
150{
151 struct memcg_cache_array *arr;
33a690c4 152
9eeadc8b 153 if (root_cache) {
f7ce3190 154 s->memcg_params.root_cache = root_cache;
9eeadc8b
TH
155 s->memcg_params.memcg = memcg;
156 INIT_LIST_HEAD(&s->memcg_params.children_node);
bc2791f8 157 INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
33a690c4 158 return 0;
f7ce3190 159 }
33a690c4 160
f7ce3190 161 slab_init_memcg_params(s);
33a690c4 162
f7ce3190
VD
163 if (!memcg_nr_cache_ids)
164 return 0;
33a690c4 165
f7ce3190
VD
166 arr = kzalloc(sizeof(struct memcg_cache_array) +
167 memcg_nr_cache_ids * sizeof(void *),
168 GFP_KERNEL);
169 if (!arr)
170 return -ENOMEM;
33a690c4 171
f7ce3190 172 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
33a690c4
VD
173 return 0;
174}
175
f7ce3190 176static void destroy_memcg_params(struct kmem_cache *s)
33a690c4 177{
f7ce3190
VD
178 if (is_root_cache(s))
179 kfree(rcu_access_pointer(s->memcg_params.memcg_caches));
33a690c4
VD
180}
181
f7ce3190 182static int update_memcg_params(struct kmem_cache *s, int new_array_size)
6f817f4c 183{
f7ce3190 184 struct memcg_cache_array *old, *new;
6f817f4c 185
f7ce3190
VD
186 if (!is_root_cache(s))
187 return 0;
6f817f4c 188
f7ce3190
VD
189 new = kzalloc(sizeof(struct memcg_cache_array) +
190 new_array_size * sizeof(void *), GFP_KERNEL);
191 if (!new)
6f817f4c
VD
192 return -ENOMEM;
193
f7ce3190
VD
194 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
195 lockdep_is_held(&slab_mutex));
196 if (old)
197 memcpy(new->entries, old->entries,
198 memcg_nr_cache_ids * sizeof(void *));
6f817f4c 199
f7ce3190
VD
200 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
201 if (old)
202 kfree_rcu(old, rcu);
6f817f4c
VD
203 return 0;
204}
205
55007d84
GC
206int memcg_update_all_caches(int num_memcgs)
207{
208 struct kmem_cache *s;
209 int ret = 0;
55007d84 210
05257a1a 211 mutex_lock(&slab_mutex);
55007d84 212 list_for_each_entry(s, &slab_caches, list) {
f7ce3190 213 ret = update_memcg_params(s, num_memcgs);
55007d84 214 /*
55007d84
GC
215 * Instead of freeing the memory, we'll just leave the caches
216 * up to this point in an updated state.
217 */
218 if (ret)
05257a1a 219 break;
55007d84 220 }
55007d84
GC
221 mutex_unlock(&slab_mutex);
222 return ret;
223}
657dc2f9
TH
224
225static void unlink_memcg_cache(struct kmem_cache *s)
226{
9eeadc8b 227 list_del(&s->memcg_params.children_node);
bc2791f8 228 list_del(&s->memcg_params.kmem_caches_node);
657dc2f9 229}
33a690c4 230#else
f7ce3190
VD
231static inline int init_memcg_params(struct kmem_cache *s,
232 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
33a690c4
VD
233{
234 return 0;
235}
236
f7ce3190 237static inline void destroy_memcg_params(struct kmem_cache *s)
33a690c4
VD
238{
239}
657dc2f9
TH
240
241static inline void unlink_memcg_cache(struct kmem_cache *s)
242{
243}
127424c8 244#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
55007d84 245
423c929c
JK
246/*
247 * Find a mergeable slab cache
248 */
249int slab_unmergeable(struct kmem_cache *s)
250{
251 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
252 return 1;
253
254 if (!is_root_cache(s))
255 return 1;
256
257 if (s->ctor)
258 return 1;
259
260 /*
261 * We may have set a slab to be unmergeable during bootstrap.
262 */
263 if (s->refcount < 0)
264 return 1;
265
266 return 0;
267}
268
269struct kmem_cache *find_mergeable(size_t size, size_t align,
270 unsigned long flags, const char *name, void (*ctor)(void *))
271{
272 struct kmem_cache *s;
273
c6e28895 274 if (slab_nomerge)
423c929c
JK
275 return NULL;
276
277 if (ctor)
278 return NULL;
279
280 size = ALIGN(size, sizeof(void *));
281 align = calculate_alignment(flags, align, size);
282 size = ALIGN(size, align);
283 flags = kmem_cache_flags(size, flags, name, NULL);
284
c6e28895
GM
285 if (flags & SLAB_NEVER_MERGE)
286 return NULL;
287
54362057 288 list_for_each_entry_reverse(s, &slab_caches, list) {
423c929c
JK
289 if (slab_unmergeable(s))
290 continue;
291
292 if (size > s->size)
293 continue;
294
295 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
296 continue;
297 /*
298 * Check if alignment is compatible.
299 * Courtesy of Adrian Drzewiecki
300 */
301 if ((s->size & ~(align - 1)) != s->size)
302 continue;
303
304 if (s->size - size >= sizeof(void *))
305 continue;
306
95069ac8
JK
307 if (IS_ENABLED(CONFIG_SLAB) && align &&
308 (align > s->align || s->align % align))
309 continue;
310
423c929c
JK
311 return s;
312 }
313 return NULL;
314}
315
45906855
CL
316/*
317 * Figure out what the alignment of the objects will be given a set of
318 * flags, a user specified alignment and the size of the objects.
319 */
320unsigned long calculate_alignment(unsigned long flags,
321 unsigned long align, unsigned long size)
322{
323 /*
324 * If the user wants hardware cache aligned objects then follow that
325 * suggestion if the object is sufficiently large.
326 *
327 * The hardware cache alignment cannot override the specified
328 * alignment though. If that is greater then use it.
329 */
330 if (flags & SLAB_HWCACHE_ALIGN) {
331 unsigned long ralign = cache_line_size();
332 while (size <= ralign / 2)
333 ralign /= 2;
334 align = max(align, ralign);
335 }
336
337 if (align < ARCH_SLAB_MINALIGN)
338 align = ARCH_SLAB_MINALIGN;
339
340 return ALIGN(align, sizeof(void *));
341}
342
c9a77a79
VD
343static struct kmem_cache *create_cache(const char *name,
344 size_t object_size, size_t size, size_t align,
345 unsigned long flags, void (*ctor)(void *),
346 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
794b1248
VD
347{
348 struct kmem_cache *s;
349 int err;
350
351 err = -ENOMEM;
352 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
353 if (!s)
354 goto out;
355
356 s->name = name;
357 s->object_size = object_size;
358 s->size = size;
359 s->align = align;
360 s->ctor = ctor;
361
f7ce3190 362 err = init_memcg_params(s, memcg, root_cache);
794b1248
VD
363 if (err)
364 goto out_free_cache;
365
366 err = __kmem_cache_create(s, flags);
367 if (err)
368 goto out_free_cache;
369
370 s->refcount = 1;
371 list_add(&s->list, &slab_caches);
794b1248
VD
372out:
373 if (err)
374 return ERR_PTR(err);
375 return s;
376
377out_free_cache:
f7ce3190 378 destroy_memcg_params(s);
7c4da061 379 kmem_cache_free(kmem_cache, s);
794b1248
VD
380 goto out;
381}
45906855 382
77be4b13
SK
383/*
384 * kmem_cache_create - Create a cache.
385 * @name: A string which is used in /proc/slabinfo to identify this cache.
386 * @size: The size of objects to be created in this cache.
387 * @align: The required alignment for the objects.
388 * @flags: SLAB flags
389 * @ctor: A constructor for the objects.
390 *
391 * Returns a ptr to the cache on success, NULL on failure.
392 * Cannot be called within a interrupt, but can be interrupted.
393 * The @ctor is run when new pages are allocated by the cache.
394 *
395 * The flags are
396 *
397 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
398 * to catch references to uninitialised memory.
399 *
400 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
401 * for buffer overruns.
402 *
403 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
404 * cacheline. This can be beneficial if you're counting cycles as closely
405 * as davem.
406 */
2633d7a0 407struct kmem_cache *
794b1248
VD
408kmem_cache_create(const char *name, size_t size, size_t align,
409 unsigned long flags, void (*ctor)(void *))
77be4b13 410{
40911a79 411 struct kmem_cache *s = NULL;
3dec16ea 412 const char *cache_name;
3965fc36 413 int err;
039363f3 414
77be4b13 415 get_online_cpus();
03afc0e2 416 get_online_mems();
05257a1a 417 memcg_get_cache_ids();
03afc0e2 418
77be4b13 419 mutex_lock(&slab_mutex);
686d550d 420
794b1248 421 err = kmem_cache_sanity_check(name, size);
3aa24f51 422 if (err) {
3965fc36 423 goto out_unlock;
3aa24f51 424 }
686d550d 425
e70954fd
TG
426 /* Refuse requests with allocator specific flags */
427 if (flags & ~SLAB_FLAGS_PERMITTED) {
428 err = -EINVAL;
429 goto out_unlock;
430 }
431
d8843922
GC
432 /*
433 * Some allocators will constraint the set of valid flags to a subset
434 * of all flags. We expect them to define CACHE_CREATE_MASK in this
435 * case, and we'll just provide them with a sanitized version of the
436 * passed flags.
437 */
438 flags &= CACHE_CREATE_MASK;
686d550d 439
794b1248
VD
440 s = __kmem_cache_alias(name, size, align, flags, ctor);
441 if (s)
3965fc36 442 goto out_unlock;
2633d7a0 443
3dec16ea 444 cache_name = kstrdup_const(name, GFP_KERNEL);
794b1248
VD
445 if (!cache_name) {
446 err = -ENOMEM;
447 goto out_unlock;
448 }
7c9adf5a 449
c9a77a79
VD
450 s = create_cache(cache_name, size, size,
451 calculate_alignment(flags, align, size),
452 flags, ctor, NULL, NULL);
794b1248
VD
453 if (IS_ERR(s)) {
454 err = PTR_ERR(s);
3dec16ea 455 kfree_const(cache_name);
794b1248 456 }
3965fc36
VD
457
458out_unlock:
20cea968 459 mutex_unlock(&slab_mutex);
03afc0e2 460
05257a1a 461 memcg_put_cache_ids();
03afc0e2 462 put_online_mems();
20cea968
CL
463 put_online_cpus();
464
ba3253c7 465 if (err) {
686d550d
CL
466 if (flags & SLAB_PANIC)
467 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
468 name, err);
469 else {
1170532b 470 pr_warn("kmem_cache_create(%s) failed with error %d\n",
686d550d
CL
471 name, err);
472 dump_stack();
473 }
686d550d
CL
474 return NULL;
475 }
039363f3
CL
476 return s;
477}
794b1248 478EXPORT_SYMBOL(kmem_cache_create);
2633d7a0 479
657dc2f9 480static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
d5b3cf71 481{
657dc2f9
TH
482 LIST_HEAD(to_destroy);
483 struct kmem_cache *s, *s2;
d5b3cf71 484
657dc2f9
TH
485 /*
486 * On destruction, SLAB_DESTROY_BY_RCU kmem_caches are put on the
487 * @slab_caches_to_rcu_destroy list. The slab pages are freed
488 * through RCU and and the associated kmem_cache are dereferenced
489 * while freeing the pages, so the kmem_caches should be freed only
490 * after the pending RCU operations are finished. As rcu_barrier()
491 * is a pretty slow operation, we batch all pending destructions
492 * asynchronously.
493 */
494 mutex_lock(&slab_mutex);
495 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
496 mutex_unlock(&slab_mutex);
d5b3cf71 497
657dc2f9
TH
498 if (list_empty(&to_destroy))
499 return;
500
501 rcu_barrier();
502
503 list_for_each_entry_safe(s, s2, &to_destroy, list) {
504#ifdef SLAB_SUPPORTS_SYSFS
505 sysfs_slab_release(s);
506#else
507 slab_kmem_cache_release(s);
508#endif
509 }
d5b3cf71
VD
510}
511
657dc2f9 512static int shutdown_cache(struct kmem_cache *s)
d5b3cf71 513{
657dc2f9
TH
514 if (__kmem_cache_shutdown(s) != 0)
515 return -EBUSY;
d5b3cf71 516
657dc2f9
TH
517 list_del(&s->list);
518 if (!is_root_cache(s))
519 unlink_memcg_cache(s);
d5b3cf71 520
657dc2f9
TH
521 if (s->flags & SLAB_DESTROY_BY_RCU) {
522 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
523 schedule_work(&slab_caches_to_rcu_destroy_work);
524 } else {
d5b3cf71 525#ifdef SLAB_SUPPORTS_SYSFS
bf5eb3de 526 sysfs_slab_release(s);
d5b3cf71
VD
527#else
528 slab_kmem_cache_release(s);
529#endif
530 }
657dc2f9
TH
531
532 return 0;
d5b3cf71
VD
533}
534
127424c8 535#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
794b1248 536/*
776ed0f0 537 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
794b1248
VD
538 * @memcg: The memory cgroup the new cache is for.
539 * @root_cache: The parent of the new cache.
540 *
541 * This function attempts to create a kmem cache that will serve allocation
542 * requests going from @memcg to @root_cache. The new cache inherits properties
543 * from its parent.
544 */
d5b3cf71
VD
545void memcg_create_kmem_cache(struct mem_cgroup *memcg,
546 struct kmem_cache *root_cache)
2633d7a0 547{
3e0350a3 548 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
33398cf2 549 struct cgroup_subsys_state *css = &memcg->css;
f7ce3190 550 struct memcg_cache_array *arr;
bd673145 551 struct kmem_cache *s = NULL;
794b1248 552 char *cache_name;
f7ce3190 553 int idx;
794b1248
VD
554
555 get_online_cpus();
03afc0e2
VD
556 get_online_mems();
557
794b1248
VD
558 mutex_lock(&slab_mutex);
559
2a4db7eb 560 /*
567e9ab2 561 * The memory cgroup could have been offlined while the cache
2a4db7eb
VD
562 * creation work was pending.
563 */
b6ecd2de 564 if (memcg->kmem_state != KMEM_ONLINE)
2a4db7eb
VD
565 goto out_unlock;
566
f7ce3190
VD
567 idx = memcg_cache_id(memcg);
568 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
569 lockdep_is_held(&slab_mutex));
570
d5b3cf71
VD
571 /*
572 * Since per-memcg caches are created asynchronously on first
573 * allocation (see memcg_kmem_get_cache()), several threads can try to
574 * create the same cache, but only one of them may succeed.
575 */
f7ce3190 576 if (arr->entries[idx])
d5b3cf71
VD
577 goto out_unlock;
578
f1008365 579 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
73f576c0
JW
580 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
581 css->serial_nr, memcg_name_buf);
794b1248
VD
582 if (!cache_name)
583 goto out_unlock;
584
c9a77a79
VD
585 s = create_cache(cache_name, root_cache->object_size,
586 root_cache->size, root_cache->align,
f773e36d
GT
587 root_cache->flags & CACHE_CREATE_MASK,
588 root_cache->ctor, memcg, root_cache);
d5b3cf71
VD
589 /*
590 * If we could not create a memcg cache, do not complain, because
591 * that's not critical at all as we can always proceed with the root
592 * cache.
593 */
bd673145 594 if (IS_ERR(s)) {
794b1248 595 kfree(cache_name);
d5b3cf71 596 goto out_unlock;
bd673145 597 }
794b1248 598
9eeadc8b
TH
599 list_add(&s->memcg_params.children_node,
600 &root_cache->memcg_params.children);
bc2791f8 601 list_add(&s->memcg_params.kmem_caches_node, &memcg->kmem_caches);
426589f5 602
d5b3cf71
VD
603 /*
604 * Since readers won't lock (see cache_from_memcg_idx()), we need a
605 * barrier here to ensure nobody will see the kmem_cache partially
606 * initialized.
607 */
608 smp_wmb();
f7ce3190 609 arr->entries[idx] = s;
d5b3cf71 610
794b1248
VD
611out_unlock:
612 mutex_unlock(&slab_mutex);
03afc0e2
VD
613
614 put_online_mems();
794b1248 615 put_online_cpus();
2633d7a0 616}
b8529907 617
2a4db7eb
VD
618void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
619{
620 int idx;
621 struct memcg_cache_array *arr;
d6e0b7fa 622 struct kmem_cache *s, *c;
2a4db7eb
VD
623
624 idx = memcg_cache_id(memcg);
625
d6e0b7fa
VD
626 get_online_cpus();
627 get_online_mems();
628
2a4db7eb
VD
629 mutex_lock(&slab_mutex);
630 list_for_each_entry(s, &slab_caches, list) {
631 if (!is_root_cache(s))
632 continue;
633
634 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
635 lockdep_is_held(&slab_mutex));
d6e0b7fa
VD
636 c = arr->entries[idx];
637 if (!c)
638 continue;
639
290b6a58 640 __kmem_cache_shrink(c, true);
2a4db7eb
VD
641 arr->entries[idx] = NULL;
642 }
643 mutex_unlock(&slab_mutex);
d6e0b7fa
VD
644
645 put_online_mems();
646 put_online_cpus();
2a4db7eb
VD
647}
648
d5b3cf71 649void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
b8529907 650{
d5b3cf71 651 struct kmem_cache *s, *s2;
b8529907 652
d5b3cf71
VD
653 get_online_cpus();
654 get_online_mems();
b8529907 655
b8529907 656 mutex_lock(&slab_mutex);
bc2791f8
TH
657 list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
658 memcg_params.kmem_caches_node) {
d5b3cf71
VD
659 /*
660 * The cgroup is about to be freed and therefore has no charges
661 * left. Hence, all its caches must be empty by now.
662 */
657dc2f9 663 BUG_ON(shutdown_cache(s));
d5b3cf71
VD
664 }
665 mutex_unlock(&slab_mutex);
b8529907 666
d5b3cf71
VD
667 put_online_mems();
668 put_online_cpus();
b8529907 669}
d60fdcc9 670
657dc2f9 671static int shutdown_memcg_caches(struct kmem_cache *s)
d60fdcc9
VD
672{
673 struct memcg_cache_array *arr;
674 struct kmem_cache *c, *c2;
675 LIST_HEAD(busy);
676 int i;
677
678 BUG_ON(!is_root_cache(s));
679
680 /*
681 * First, shutdown active caches, i.e. caches that belong to online
682 * memory cgroups.
683 */
684 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
685 lockdep_is_held(&slab_mutex));
686 for_each_memcg_cache_index(i) {
687 c = arr->entries[i];
688 if (!c)
689 continue;
657dc2f9 690 if (shutdown_cache(c))
d60fdcc9
VD
691 /*
692 * The cache still has objects. Move it to a temporary
693 * list so as not to try to destroy it for a second
694 * time while iterating over inactive caches below.
695 */
9eeadc8b 696 list_move(&c->memcg_params.children_node, &busy);
d60fdcc9
VD
697 else
698 /*
699 * The cache is empty and will be destroyed soon. Clear
700 * the pointer to it in the memcg_caches array so that
701 * it will never be accessed even if the root cache
702 * stays alive.
703 */
704 arr->entries[i] = NULL;
705 }
706
707 /*
708 * Second, shutdown all caches left from memory cgroups that are now
709 * offline.
710 */
9eeadc8b
TH
711 list_for_each_entry_safe(c, c2, &s->memcg_params.children,
712 memcg_params.children_node)
657dc2f9 713 shutdown_cache(c);
d60fdcc9 714
9eeadc8b 715 list_splice(&busy, &s->memcg_params.children);
d60fdcc9
VD
716
717 /*
718 * A cache being destroyed must be empty. In particular, this means
719 * that all per memcg caches attached to it must be empty too.
720 */
9eeadc8b 721 if (!list_empty(&s->memcg_params.children))
d60fdcc9
VD
722 return -EBUSY;
723 return 0;
724}
725#else
657dc2f9 726static inline int shutdown_memcg_caches(struct kmem_cache *s)
d60fdcc9
VD
727{
728 return 0;
729}
127424c8 730#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
97d06609 731
41a21285
CL
732void slab_kmem_cache_release(struct kmem_cache *s)
733{
52b4b950 734 __kmem_cache_release(s);
f7ce3190 735 destroy_memcg_params(s);
3dec16ea 736 kfree_const(s->name);
41a21285
CL
737 kmem_cache_free(kmem_cache, s);
738}
739
945cf2b6
CL
740void kmem_cache_destroy(struct kmem_cache *s)
741{
d60fdcc9 742 int err;
d5b3cf71 743
3942d299
SS
744 if (unlikely(!s))
745 return;
746
945cf2b6 747 get_online_cpus();
03afc0e2
VD
748 get_online_mems();
749
55834c59 750 kasan_cache_destroy(s);
945cf2b6 751 mutex_lock(&slab_mutex);
b8529907 752
945cf2b6 753 s->refcount--;
b8529907
VD
754 if (s->refcount)
755 goto out_unlock;
756
657dc2f9 757 err = shutdown_memcg_caches(s);
d60fdcc9 758 if (!err)
657dc2f9 759 err = shutdown_cache(s);
b8529907 760
cd918c55 761 if (err) {
756a025f
JP
762 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
763 s->name);
cd918c55
VD
764 dump_stack();
765 }
b8529907
VD
766out_unlock:
767 mutex_unlock(&slab_mutex);
d5b3cf71 768
03afc0e2 769 put_online_mems();
945cf2b6
CL
770 put_online_cpus();
771}
772EXPORT_SYMBOL(kmem_cache_destroy);
773
03afc0e2
VD
774/**
775 * kmem_cache_shrink - Shrink a cache.
776 * @cachep: The cache to shrink.
777 *
778 * Releases as many slabs as possible for a cache.
779 * To help debugging, a zero exit status indicates all slabs were released.
780 */
781int kmem_cache_shrink(struct kmem_cache *cachep)
782{
783 int ret;
784
785 get_online_cpus();
786 get_online_mems();
55834c59 787 kasan_cache_shrink(cachep);
290b6a58 788 ret = __kmem_cache_shrink(cachep, false);
03afc0e2
VD
789 put_online_mems();
790 put_online_cpus();
791 return ret;
792}
793EXPORT_SYMBOL(kmem_cache_shrink);
794
fda90124 795bool slab_is_available(void)
97d06609
CL
796{
797 return slab_state >= UP;
798}
b7454ad3 799
45530c44
CL
800#ifndef CONFIG_SLOB
801/* Create a cache during boot when no slab services are available yet */
802void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
803 unsigned long flags)
804{
805 int err;
806
807 s->name = name;
808 s->size = s->object_size = size;
45906855 809 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
f7ce3190
VD
810
811 slab_init_memcg_params(s);
812
45530c44
CL
813 err = __kmem_cache_create(s, flags);
814
815 if (err)
31ba7346 816 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
45530c44
CL
817 name, size, err);
818
819 s->refcount = -1; /* Exempt from merging for now */
820}
821
822struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
823 unsigned long flags)
824{
825 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
826
827 if (!s)
828 panic("Out of memory when creating slab %s\n", name);
829
830 create_boot_cache(s, name, size, flags);
831 list_add(&s->list, &slab_caches);
832 s->refcount = 1;
833 return s;
834}
835
9425c58e
CL
836struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
837EXPORT_SYMBOL(kmalloc_caches);
838
839#ifdef CONFIG_ZONE_DMA
840struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
841EXPORT_SYMBOL(kmalloc_dma_caches);
842#endif
843
2c59dd65
CL
844/*
845 * Conversion table for small slabs sizes / 8 to the index in the
846 * kmalloc array. This is necessary for slabs < 192 since we have non power
847 * of two cache sizes there. The size of larger slabs can be determined using
848 * fls.
849 */
850static s8 size_index[24] = {
851 3, /* 8 */
852 4, /* 16 */
853 5, /* 24 */
854 5, /* 32 */
855 6, /* 40 */
856 6, /* 48 */
857 6, /* 56 */
858 6, /* 64 */
859 1, /* 72 */
860 1, /* 80 */
861 1, /* 88 */
862 1, /* 96 */
863 7, /* 104 */
864 7, /* 112 */
865 7, /* 120 */
866 7, /* 128 */
867 2, /* 136 */
868 2, /* 144 */
869 2, /* 152 */
870 2, /* 160 */
871 2, /* 168 */
872 2, /* 176 */
873 2, /* 184 */
874 2 /* 192 */
875};
876
877static inline int size_index_elem(size_t bytes)
878{
879 return (bytes - 1) / 8;
880}
881
882/*
883 * Find the kmem_cache structure that serves a given size of
884 * allocation
885 */
886struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
887{
888 int index;
889
9de1bc87 890 if (unlikely(size > KMALLOC_MAX_SIZE)) {
907985f4 891 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
6286ae97 892 return NULL;
907985f4 893 }
6286ae97 894
2c59dd65
CL
895 if (size <= 192) {
896 if (!size)
897 return ZERO_SIZE_PTR;
898
899 index = size_index[size_index_elem(size)];
900 } else
901 index = fls(size - 1);
902
903#ifdef CONFIG_ZONE_DMA
b1e05416 904 if (unlikely((flags & GFP_DMA)))
2c59dd65
CL
905 return kmalloc_dma_caches[index];
906
907#endif
908 return kmalloc_caches[index];
909}
910
4066c33d
GG
911/*
912 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
913 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
914 * kmalloc-67108864.
915 */
af3b5f87 916const struct kmalloc_info_struct kmalloc_info[] __initconst = {
4066c33d
GG
917 {NULL, 0}, {"kmalloc-96", 96},
918 {"kmalloc-192", 192}, {"kmalloc-8", 8},
919 {"kmalloc-16", 16}, {"kmalloc-32", 32},
920 {"kmalloc-64", 64}, {"kmalloc-128", 128},
921 {"kmalloc-256", 256}, {"kmalloc-512", 512},
922 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
923 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
924 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
925 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
926 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
927 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
928 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
929 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
930 {"kmalloc-67108864", 67108864}
931};
932
f97d5f63 933/*
34cc6990
DS
934 * Patch up the size_index table if we have strange large alignment
935 * requirements for the kmalloc array. This is only the case for
936 * MIPS it seems. The standard arches will not generate any code here.
937 *
938 * Largest permitted alignment is 256 bytes due to the way we
939 * handle the index determination for the smaller caches.
940 *
941 * Make sure that nothing crazy happens if someone starts tinkering
942 * around with ARCH_KMALLOC_MINALIGN
f97d5f63 943 */
34cc6990 944void __init setup_kmalloc_cache_index_table(void)
f97d5f63
CL
945{
946 int i;
947
2c59dd65
CL
948 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
949 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
950
951 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
952 int elem = size_index_elem(i);
953
954 if (elem >= ARRAY_SIZE(size_index))
955 break;
956 size_index[elem] = KMALLOC_SHIFT_LOW;
957 }
958
959 if (KMALLOC_MIN_SIZE >= 64) {
960 /*
961 * The 96 byte size cache is not used if the alignment
962 * is 64 byte.
963 */
964 for (i = 64 + 8; i <= 96; i += 8)
965 size_index[size_index_elem(i)] = 7;
966
967 }
968
969 if (KMALLOC_MIN_SIZE >= 128) {
970 /*
971 * The 192 byte sized cache is not used if the alignment
972 * is 128 byte. Redirect kmalloc to use the 256 byte cache
973 * instead.
974 */
975 for (i = 128 + 8; i <= 192; i += 8)
976 size_index[size_index_elem(i)] = 8;
977 }
34cc6990
DS
978}
979
ae6f2462 980static void __init new_kmalloc_cache(int idx, unsigned long flags)
a9730fca
CL
981{
982 kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
983 kmalloc_info[idx].size, flags);
984}
985
34cc6990
DS
986/*
987 * Create the kmalloc array. Some of the regular kmalloc arrays
988 * may already have been created because they were needed to
989 * enable allocations for slab creation.
990 */
991void __init create_kmalloc_caches(unsigned long flags)
992{
993 int i;
994
a9730fca
CL
995 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
996 if (!kmalloc_caches[i])
997 new_kmalloc_cache(i, flags);
f97d5f63 998
956e46ef 999 /*
a9730fca
CL
1000 * Caches that are not of the two-to-the-power-of size.
1001 * These have to be created immediately after the
1002 * earlier power of two caches
956e46ef 1003 */
a9730fca
CL
1004 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
1005 new_kmalloc_cache(1, flags);
1006 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
1007 new_kmalloc_cache(2, flags);
8a965b3b
CL
1008 }
1009
f97d5f63
CL
1010 /* Kmalloc array is now usable */
1011 slab_state = UP;
1012
f97d5f63
CL
1013#ifdef CONFIG_ZONE_DMA
1014 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1015 struct kmem_cache *s = kmalloc_caches[i];
1016
1017 if (s) {
1018 int size = kmalloc_size(i);
1019 char *n = kasprintf(GFP_NOWAIT,
1020 "dma-kmalloc-%d", size);
1021
1022 BUG_ON(!n);
1023 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
1024 size, SLAB_CACHE_DMA | flags);
1025 }
1026 }
1027#endif
1028}
45530c44
CL
1029#endif /* !CONFIG_SLOB */
1030
cea371f4
VD
1031/*
1032 * To avoid unnecessary overhead, we pass through large allocation requests
1033 * directly to the page allocator. We use __GFP_COMP, because we will need to
1034 * know the allocation order to free the pages properly in kfree.
1035 */
52383431
VD
1036void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1037{
1038 void *ret;
1039 struct page *page;
1040
1041 flags |= __GFP_COMP;
4949148a 1042 page = alloc_pages(flags, order);
52383431
VD
1043 ret = page ? page_address(page) : NULL;
1044 kmemleak_alloc(ret, size, 1, flags);
505f5dcb 1045 kasan_kmalloc_large(ret, size, flags);
52383431
VD
1046 return ret;
1047}
1048EXPORT_SYMBOL(kmalloc_order);
1049
f1b6eb6e
CL
1050#ifdef CONFIG_TRACING
1051void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1052{
1053 void *ret = kmalloc_order(size, flags, order);
1054 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1055 return ret;
1056}
1057EXPORT_SYMBOL(kmalloc_order_trace);
1058#endif
45530c44 1059
7c00fce9
TG
1060#ifdef CONFIG_SLAB_FREELIST_RANDOM
1061/* Randomize a generic freelist */
1062static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1063 size_t count)
1064{
1065 size_t i;
1066 unsigned int rand;
1067
1068 for (i = 0; i < count; i++)
1069 list[i] = i;
1070
1071 /* Fisher-Yates shuffle */
1072 for (i = count - 1; i > 0; i--) {
1073 rand = prandom_u32_state(state);
1074 rand %= (i + 1);
1075 swap(list[i], list[rand]);
1076 }
1077}
1078
1079/* Create a random sequence per cache */
1080int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1081 gfp_t gfp)
1082{
1083 struct rnd_state state;
1084
1085 if (count < 2 || cachep->random_seq)
1086 return 0;
1087
1088 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1089 if (!cachep->random_seq)
1090 return -ENOMEM;
1091
1092 /* Get best entropy at this stage of boot */
1093 prandom_seed_state(&state, get_random_long());
1094
1095 freelist_randomize(&state, cachep->random_seq, count);
1096 return 0;
1097}
1098
1099/* Destroy the per-cache random freelist sequence */
1100void cache_random_seq_destroy(struct kmem_cache *cachep)
1101{
1102 kfree(cachep->random_seq);
1103 cachep->random_seq = NULL;
1104}
1105#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1106
b7454ad3 1107#ifdef CONFIG_SLABINFO
e9b4db2b
WL
1108
1109#ifdef CONFIG_SLAB
1110#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1111#else
1112#define SLABINFO_RIGHTS S_IRUSR
1113#endif
1114
b047501c 1115static void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
1116{
1117 /*
1118 * Output format version, so at least we can change it
1119 * without _too_ many complaints.
1120 */
1121#ifdef CONFIG_DEBUG_SLAB
1122 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1123#else
1124 seq_puts(m, "slabinfo - version: 2.1\n");
1125#endif
756a025f 1126 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
bcee6e2a
GC
1127 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1128 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1129#ifdef CONFIG_DEBUG_SLAB
756a025f 1130 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
bcee6e2a
GC
1131 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1132#endif
1133 seq_putc(m, '\n');
1134}
1135
1df3b26f 1136void *slab_start(struct seq_file *m, loff_t *pos)
b7454ad3 1137{
b7454ad3 1138 mutex_lock(&slab_mutex);
b7454ad3
GC
1139 return seq_list_start(&slab_caches, *pos);
1140}
1141
276a2439 1142void *slab_next(struct seq_file *m, void *p, loff_t *pos)
b7454ad3
GC
1143{
1144 return seq_list_next(p, &slab_caches, pos);
1145}
1146
276a2439 1147void slab_stop(struct seq_file *m, void *p)
b7454ad3
GC
1148{
1149 mutex_unlock(&slab_mutex);
1150}
1151
749c5415
GC
1152static void
1153memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1154{
1155 struct kmem_cache *c;
1156 struct slabinfo sinfo;
749c5415
GC
1157
1158 if (!is_root_cache(s))
1159 return;
1160
426589f5 1161 for_each_memcg_cache(c, s) {
749c5415
GC
1162 memset(&sinfo, 0, sizeof(sinfo));
1163 get_slabinfo(c, &sinfo);
1164
1165 info->active_slabs += sinfo.active_slabs;
1166 info->num_slabs += sinfo.num_slabs;
1167 info->shared_avail += sinfo.shared_avail;
1168 info->active_objs += sinfo.active_objs;
1169 info->num_objs += sinfo.num_objs;
1170 }
1171}
1172
b047501c 1173static void cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 1174{
0d7561c6
GC
1175 struct slabinfo sinfo;
1176
1177 memset(&sinfo, 0, sizeof(sinfo));
1178 get_slabinfo(s, &sinfo);
1179
749c5415
GC
1180 memcg_accumulate_slabinfo(s, &sinfo);
1181
0d7561c6 1182 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
749c5415 1183 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
1184 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1185
1186 seq_printf(m, " : tunables %4u %4u %4u",
1187 sinfo.limit, sinfo.batchcount, sinfo.shared);
1188 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1189 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1190 slabinfo_show_stats(m, s);
1191 seq_putc(m, '\n');
b7454ad3
GC
1192}
1193
1df3b26f 1194static int slab_show(struct seq_file *m, void *p)
749c5415
GC
1195{
1196 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1197
1df3b26f
VD
1198 if (p == slab_caches.next)
1199 print_slabinfo_header(m);
b047501c
VD
1200 if (is_root_cache(s))
1201 cache_show(s, m);
1202 return 0;
1203}
1204
127424c8 1205#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
bc2791f8
TH
1206void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1207{
1208 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1209
1210 mutex_lock(&slab_mutex);
1211 return seq_list_start(&memcg->kmem_caches, *pos);
1212}
1213
1214void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1215{
1216 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1217
1218 return seq_list_next(p, &memcg->kmem_caches, pos);
1219}
1220
1221void memcg_slab_stop(struct seq_file *m, void *p)
1222{
1223 mutex_unlock(&slab_mutex);
1224}
1225
b047501c
VD
1226int memcg_slab_show(struct seq_file *m, void *p)
1227{
bc2791f8
TH
1228 struct kmem_cache *s = list_entry(p, struct kmem_cache,
1229 memcg_params.kmem_caches_node);
b047501c
VD
1230 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1231
bc2791f8 1232 if (p == memcg->kmem_caches.next)
b047501c 1233 print_slabinfo_header(m);
bc2791f8 1234 cache_show(s, m);
b047501c 1235 return 0;
749c5415 1236}
b047501c 1237#endif
749c5415 1238
b7454ad3
GC
1239/*
1240 * slabinfo_op - iterator that generates /proc/slabinfo
1241 *
1242 * Output layout:
1243 * cache-name
1244 * num-active-objs
1245 * total-objs
1246 * object size
1247 * num-active-slabs
1248 * total-slabs
1249 * num-pages-per-slab
1250 * + further values on SMP and with statistics enabled
1251 */
1252static const struct seq_operations slabinfo_op = {
1df3b26f 1253 .start = slab_start,
276a2439
WL
1254 .next = slab_next,
1255 .stop = slab_stop,
1df3b26f 1256 .show = slab_show,
b7454ad3
GC
1257};
1258
1259static int slabinfo_open(struct inode *inode, struct file *file)
1260{
1261 return seq_open(file, &slabinfo_op);
1262}
1263
1264static const struct file_operations proc_slabinfo_operations = {
1265 .open = slabinfo_open,
1266 .read = seq_read,
1267 .write = slabinfo_write,
1268 .llseek = seq_lseek,
1269 .release = seq_release,
1270};
1271
1272static int __init slab_proc_init(void)
1273{
e9b4db2b
WL
1274 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1275 &proc_slabinfo_operations);
b7454ad3
GC
1276 return 0;
1277}
1278module_init(slab_proc_init);
1279#endif /* CONFIG_SLABINFO */
928cec9c
AR
1280
1281static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1282 gfp_t flags)
1283{
1284 void *ret;
1285 size_t ks = 0;
1286
1287 if (p)
1288 ks = ksize(p);
1289
0316bec2 1290 if (ks >= new_size) {
505f5dcb 1291 kasan_krealloc((void *)p, new_size, flags);
928cec9c 1292 return (void *)p;
0316bec2 1293 }
928cec9c
AR
1294
1295 ret = kmalloc_track_caller(new_size, flags);
1296 if (ret && p)
1297 memcpy(ret, p, ks);
1298
1299 return ret;
1300}
1301
1302/**
1303 * __krealloc - like krealloc() but don't free @p.
1304 * @p: object to reallocate memory for.
1305 * @new_size: how many bytes of memory are required.
1306 * @flags: the type of memory to allocate.
1307 *
1308 * This function is like krealloc() except it never frees the originally
1309 * allocated buffer. Use this if you don't want to free the buffer immediately
1310 * like, for example, with RCU.
1311 */
1312void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1313{
1314 if (unlikely(!new_size))
1315 return ZERO_SIZE_PTR;
1316
1317 return __do_krealloc(p, new_size, flags);
1318
1319}
1320EXPORT_SYMBOL(__krealloc);
1321
1322/**
1323 * krealloc - reallocate memory. The contents will remain unchanged.
1324 * @p: object to reallocate memory for.
1325 * @new_size: how many bytes of memory are required.
1326 * @flags: the type of memory to allocate.
1327 *
1328 * The contents of the object pointed to are preserved up to the
1329 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1330 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1331 * %NULL pointer, the object pointed to is freed.
1332 */
1333void *krealloc(const void *p, size_t new_size, gfp_t flags)
1334{
1335 void *ret;
1336
1337 if (unlikely(!new_size)) {
1338 kfree(p);
1339 return ZERO_SIZE_PTR;
1340 }
1341
1342 ret = __do_krealloc(p, new_size, flags);
1343 if (ret && p != ret)
1344 kfree(p);
1345
1346 return ret;
1347}
1348EXPORT_SYMBOL(krealloc);
1349
1350/**
1351 * kzfree - like kfree but zero memory
1352 * @p: object to free memory of
1353 *
1354 * The memory of the object @p points to is zeroed before freed.
1355 * If @p is %NULL, kzfree() does nothing.
1356 *
1357 * Note: this function zeroes the whole allocated buffer which can be a good
1358 * deal bigger than the requested buffer size passed to kmalloc(). So be
1359 * careful when using this function in performance sensitive code.
1360 */
1361void kzfree(const void *p)
1362{
1363 size_t ks;
1364 void *mem = (void *)p;
1365
1366 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1367 return;
1368 ks = ksize(mem);
1369 memset(mem, 0, ks);
1370 kfree(mem);
1371}
1372EXPORT_SYMBOL(kzfree);
1373
1374/* Tracepoints definitions. */
1375EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1376EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1377EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1378EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1379EXPORT_TRACEPOINT_SYMBOL(kfree);
1380EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);